
Domain Endurants

An Analysis and Description Process Model

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Danmark
DTU, DK-2800 Kgs. Lyngby, Denmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

Laudatio

Futatsugi says he’s known me since the IFIP World Gongress in Tokyo, Japan, September
1980. I can certainly and clearly remember having met Kokichi in the late Joseph Goguen’s
SRI office in July 1984. He was there; so was José Meseguer and Jean-Pierre Jouannaud.
They were clearly onto something, OBJectively speaking, very exciting ! Nothing really
“destined” us for one another. Kokichi was into algebraic specifications and I into model-
oriented ones. Mathematicians versus engineers — some would say. Well, the RAISE, [25],
specification language RSL, [24], does “mix” traditional model-oriented expressivity with
sorts, observers and axioms — borrowed very specifically from early work on OBJ [27]. So
maybe we were destined. At least I have enjoyed, tremendously, our acquaintance. Had we
lived closer, geographically, I might even have been able to claim the kind of friendship
that survives sitting together, not saying a word, for hours. That’s not difficult in our case:
Kokichi has his mother tongue, hopelessly isolated out here, in the Far East, and I have
my mother tongue, hopelessly isolated back here ! Kokichi and his work has become an
institution [26]. First ETL and then JAIST became firmly implanted in the universe of the
communities of algebraic semantics and formal specification scientists. Not many Japanese
computer scientists have become so well-known abroad as has Kokichi. One thing that
has paved the way for this is Kokichi’s personality. A Japanese at ease also in the Western
World. Westerners being so very kindly accepted and welcome by Kokichi and his colleagues
here in the beautiful, enigmatic Land of the Rising Sun. One thing I always do complain
about when seeing Kokichi in my world is that he should bring his wife, charming Junko,
there more often — well every time ! So, Kokichi, thanks for your scientific contributions;
thanks for your being a fine Doctors Father; thanks for hosting one of my former students,
Dr. Anne Elisabeth Haxthausen for half a year at ETL; thanks for hosting me here at JAIST
for a whole year, 2006; and thanks for helping us “barbarian” Westerners getting to love
Japan and all things Japanese.

Abstract: We present a summary, Sect. 2, of a structure of domain analysis
and description concepts: techniques and tools. And we link, in Sect. 3, these
concepts, embodied in domain analysis prompts and domain description prompts,
in a model of how a diligent domain analyser cum describer would use them. We
claim that both sections, Sects. 2–3, contribute to a methodology of software
engineering.

2

1 Introduction

A Context for Domains: Before software can be designed we must have a
reasonably good grasp of its requirements. Before requirements can be prescribed
we must have a reasonably good grasp of the domain in which the software is
to reside. So we turn to domain analysis & description as a means to obtain and
record that ‘grasp’. In this paper we summarise an approach to domain analysis
& description recorded in more detail in [12]. Thus this paper is based on [12].

Related Papers: This paper is one in a series of papers on domain science &
engineering. In [6] we present techniques related to the analysis and description
of domain facets. In [4] we investigate some research issues of domain science.
The paper [13] examines possible contributions of domain science & engineering
to computation for the humanities. It is expected that the present paper may be
followed by respective (“spin-off”) papers on Perdurants [10], A Formal Model of

Prompts [11], Domain Facets (cf. [6]) [9], and On Deriving Requirements From

Domain Descriptions (cf. [5]) [14].

A TripTych of Software Engineering: The first 3+ lines above suggest an
“idealised”, the TripTych, approach to software development: first a phase of
domain engineering in which is built a domain model; then a phase of requirements
engineering in which is built a requirements model; and finally a phase of software
design in which the code is developed. We show in [5] how to systematically
“transform” domain descriptions into requirements prescriptions.

Structure of this Paper: The structure of this paper is as follows: First, in
Sect. 2 we present a terse summary of a system of domain analysis & description
concepts focused on endurants. This summary is rather terse, and is a “tour de

force”. Section 2 is one of the two main sections of this paper. Section 3 sug-
gests a formal-looking model of the structure of domain analysis prompts and
domain description prompts introduced in Sect. 2. It is not a formalisation of do-
mains, but of the domain analysis & description process. Domains are usually
not computationally tractable. Less so is the domain analysis & description pro-
cesses. Finally, Sect. 4 concludes this paper. An appendix, Appendix A, presents
a domain description of a [class of] pipeline systems. Some seminars over the
underlying paper may start by a brief presentation of this model. The reader is
invited to browse this pipeline system model before, during and/or after reading
Sects. 2–3.

2 The Domain Analysis Approach

2.1 Hierarchical versus Compositional Analysis & Description

In this paper we choose, what we shall call, a ‘hierarchical analysis’ approach
which is based on decomposing an understanding of a domain from the “over-

3

all domain” into its components, and these, if not atomic, into their subcom-
ponents •. In contrast we could have chosen a ‘compositional analysis’ approach
which starts with an understanding of a domain from its atomic endurants and
composes these into composite ones, finally ending up with an “overall domain”
description •.

2.2 Domains

A ‘domain’ is characterised by its observable, i.e., manifest entities and their
qualities •. 1 Example 1. Domains: a road net, a container line, a pipeline, a hospi-
tal . 2

2.3 Sorts, Types and Domain Analysis

By a ‘sort’ (or ‘type’ which we take to be the same) we shall understand the
largest set of entities all of which have the same qualities3 •. Example 2. Sorts:
Links of any road net constitute a sort. So does hubs. The largest set of (well-
formed) collections of links constitute a sort. So does similar collections of hubs.
The largest set of road nets (containing well-formed collections of hubs and links)
form a sort .

By ‘domain analysis’ we shall understand a process whereby a domain analyser
groups entities of a domain into sorts (and types) •. The rest of this paper will
outline a class of domain analysis principles, techniques and tools.

2.4 Entities and Qualities

Entities: By an ‘entity’ we shall understand a phenomenon that can be observed,
i.e., be seen or touched4 by humans, or that can be conceived as an abstraction of
an entity5 •. The method can thus be said to provide the domain analysis prompt:
is entity where is entity(θ) holds if θ is an entity. Example 3. Entities: (a) a
road net, (b) a link6 of a road net, (c) a hub7 of a road net; and (d) insertion of a
link in a road net, (e) disappearance of a link of a road net, and (f) the movement
of a vehicle on a road net .

1 Definitions start with a single quoted ‘term’ and conclude with a •.
2 Examples conclude with a .
3 Taking a sort (type) to be the largest set of entities all of which have the same

qualities reflects Ganter & Wille’s notion of a ‘formal concept’ [23].
4 An entity which can be seen or touched is thus a physical phenomenon. If an entity

has the quality the colour red, it is not the red that is an entity.
5 There is no “infinite loop” here: a concept can be an abstraction of (another) concept,

etc., which is finally an abstraction of a physical phenomenon.
6 A link: a street segment between two adjacent hubs
7 A hub: an intersection of street segments

4

Qualities: By a ‘quality’ of an entity we shall understand a property that can
be given a name and precisely measured by physical instruments or otherwise
identified •. Example 4. Quality Names: cadestral location of a hub, hub state8,
hub state space9, etcetera . Example 5. Quality Values: the name of a road net,
the ownership of a road net, the length of a link, the location of a hub, etcetera .

2.5 Endurants and Perdurants

Entities are either endurants or are perdurants.

Endurants: By an ‘endurant entity’ (or just, an endurant) we shall understand
that can be observed or conceived, as a “complete thing”, at no matter which
given snapshot of time. Were we to “freeze” time we would still be able to ob-
serve the entire endurant •. Thus the method provides a domain analysis prompt:
is endurant where is endurant(e) holds if entity e is an endurant. Example 6.
Endurants: Items (a–b–c) of Example 2.4 are endurants; so are the pipes, valves,
and pumps of a pipeline.

Perdurants: By a ‘perdurant entity’ (or just, an perdurant) we shall understand
an entity for which only a fragment exists if we look at or touch them at any given
snapshot in time, that is, were we to freeze time we would only see or touch a
fragment of the perdurant •. Thus the method provides a domain analysis prompt:
is perdurant where is perdurant(e) holds if entity e is a perdurant. Example
7. Perdurants: Items (d–e–f) of Example 2.4 are perdurants; so are the insertion
of a hub, removal of a link, etcetera .

2.6 Discrete and Continuous Endurants

Entities are either discrete or are continuous.

Discrete Endurants: By a ‘discrete endurant’ we shall understand something
which is separate or distinct in form or concept, consisting of distinct or separate
parts •. We use the term ‘part’ for discrete endurants, that is: is part(p)≡
is endurant(p)∧is discrete(p)•. Thus the method provides a domain analysis
prompt: is discrete where is discrete(e) holds if entity e is discrete. Example
8. Discrete Endurants: The examples of Example 2.5 are all discrete endurants .

Continuous Endurants: By a ‘continuous endurant’ we shall understand some-
thing which is prolonged without interruption, in an unbroken series or pattern •.
We use the term ‘material’ for continuous endurants •. Thus the method provides

8 From which links can one reach which links at a given time.
9 Set of all hub states over time.

5

a domain analysis prompt: is continuous where is continuous(e) holds if en-
tity e is continuous. Example 9. Continuous Endurants: The pipes, valves, pumps,
etc., of Example 2.5 may contain oil; water of a hydro electric power plant is also
a material (i.e., a continuous endurant) .

2.7 Discrete and Continuous Perdurants

We are not covering perdurants in this paper.

2.8 Atomic and Composite Discrete Endurants

Discrete endurants are either atomic or are composite.

Atomic Endurants: By an ‘atomic endurant’ we shall understand a discrete
endurant which in a given context, is deemed to not consist of meaningful,
separately observable proper sub-parts •. The method can thus be said to provide
the domain analysis prompt: is atomic where is atomic(p) holds if p is an
atomic part. Example 10. Atomic Parts: Examples of atomic parts of the above
mentioned domains are: aircraft (of air traffic), demand/deposit accounts (of
banks), containers (of container lines), documents (of document systems), hubs,
links and vehicles (of road traffic), patients, medical staff and beds (of hospitals),
pipes, valves and pumps (of pipeline systems), and rail units and locomotives
(of railway systems) .

Composite Endurants: By a ‘composite endurant’ we shall understand a dis-
crete endurant which in a given context, is deemed to indeed consist of mean-
ingful, separately observable proper sub-parts •. The method can thus be said
to provide the domain analysis prompt: is composite where is composite(p)

holds if p is an a composite part. Example 11. Composite Parts: Examples of
composite parts of the above mentioned domains are: airports and air lanes (of
air traffic), banks (of a financial service industry), container vessels (of container
lines), dossiers of documents (of document systems), routes (of road nets), med-
ical wards (of hospitals), pipelines (of pipeline systems), and trains, rail lines
and train stations (of railway systems) .

It is the domain analysers who decide whether an endurant is atomic or
composite. In the context of air traffic an aircraft might very well be described
as an atomic entity; whereas in the context of an airline an aircraft might very
well be described as a composite entity consisting of the aircraft ‘body’, the
crew, the passengers, their luggage, the fuel, etc.

2.9 Part Observers

From atomic parts we cannot observe any sub-parts. But from composite parts
we can.

6

Composite Sorts: For composite parts, p, the domain description prompt

observe part sorts(p)

yields some formal description text according to the following schema:

type P1, P2, ..., Pn;10

value obs P1: P→P1, obs P2: P→P2,...,obs Pn: P→Pn;11

where sorts P1, P2, ..., Pn must be disjoint. A proof obligation may need be
discharged to secure disjointness.

Sort Models: A part sort is an abstract type. Some part sorts, P, may have a
concrete type model, T. Here we consider only two such models: one model is
as sets of parts of sort A: T = A-set; the other model has parts being of either
of two or more alternative, disjoint sorts: T=P1|P2|...|PN. The domain analysis
prompt: has concrete type(p) holds if part p has a concrete type. In this case
the domain description prompt

observe concrete type(p)

yields some formal description text according to the following schema,

* either

type P1, P2, ..., PN, T = E(P1,P2,...,PN)12

value obs T: P → T13

where E(...) is some type expression over part sorts and where P1,P2,...,PN
are either (new) part sorts or are auxiliary (abstract or concrete) types14;

* or:

type

T = P1 | P2 | ... | PN15

P1, P2, ..., Pn

P1 :: mkP1(P1), P2 :: mkP2(P2), ..., PN :: mkPN(P) 16

value

obs T: P → T17

10 This RSL type clause defines P1, P2, ..., Pn to be types.
11 Thus RSL value clause defines n function values. All from type P into some type Pi.
12 The concrete type definition T = E(P1,P2,...,PN) define type T to be the set of

elements of the type expressed by type expression E(P1,P2,...,PN).
13

obs T is a function from any element of P to some element of T.
14 The domain analysis prompt: sorts of(t) yields a subset of {P1,P2,...,PN}.
15 A|B is the union type of types A and B.
16 Type definition A :: mkA(B) defines type A to be the set of elements mkA(b) where

b is any element of type B
17

obs T is a function from any element of P to some element of T.

7

2.10 Material Observers

Some parts p of sort P may contain material. The domain analysis prompt has ma-

terial(p) holds if composite part p contains one or more materials. The domain
description prompt

observe material sorts(p)

yields some formal description text according to the following schema:

type M1, M2, ..., Mm;
value obs M1: P → M1, obs M2: P → M2, ..., obs Mm: P → Mm;

where values, mi, of type Mi satisfy is material(m) for all i; and where M1,
M2, ..., Mm must be disjoint sorts. Example 12. Part Materials: The pipeline parts
p pipes, valves, pumps, etc., contains some either liquid material, say crude oil.
or gaseous material, say natural gas .

Some material m of sort M may contain parts. The domain analysis prompt
has parts(m) holds if material m contains one or more parts. The domain de-
scription prompt

observe part sorts(m)

yields some formal description text according to the following schema:

type P1, P2, ..., Pn;
value obs P1: M→P1, obs P2: M→P2,...,obs Pm: M→Pm;

where values, pi, of type Pi satisfy is part(pi) for all i; and where P1, P2,
..., Pn must be disjoint sorts. Example 13. Material and Part Relations: A global
transport system can, for example, be described as primarily containing naviga-
ble waters, land areas and air — as three major collections of parts. Navigable
waters contain a number of “neighbouring” oceans, channels, canals, rivers and
lakes reachable by canals or rivers from other navigable waters (all of which
are parts). The part sorts of navigable waters has water materials. All water
materials has (zero or more) parts such as vessels and sea-ports. Land areas
contain continents, some of which are neighbouring (parts), while some are iso-
lated (that is, being islands not “border–”connected to other continents). Some
land areas contain harbour. Harbours and seaports are overlapping parts shar-
ing many attributes. And harbours and seaports are connected to road and rail
nets. Etcetera, etcetera . The above example, Example 2.10, help motivate the
concept of mereology (see below).

2.11 Endurant Properties

External and Internal Qualities: We have already, above, treated the follow-
ing properties of endurants: is discrete, is continuous, is atomic, is com-

posite and has material. We may think of those properties as external qualities.
In contrast we may consider the following internal qualities: has unique identi-

fier (parts), has mereology (parts) and has attributes (parts and materials).

8

2.12 Unique Identifiers

Without loss of generality we can assume that every part has a unique identi-
fier18. A ‘unique part identifier’ (or just unique identifier) is a further undefined,
abstract quantity. If two parts are claimed to have the same unique identifier
then they are identical, that is, their possible mereology and attributes are (also)
identical •. The domain description prompt:

observe unique identifier(p)

yields some formal description text according to the following schema:

type PI;
value uid P: P → PI;

Example 14. Unique Identifiers: A road net consists of a set of hubs and a set of
links. Hubs and links have unique identifiers. That is: type HI, LI; value uid H:
H→HI, uid L: L→LI; .

2.13 Mereology

By ‘mereology’ [35] we shall understand the study, knowledge and practice of
parts, their relations to other parts and “the whole” •.

Part relations are such as: two or more parts being connected, one part
being embedded within another part, and two or more parts sharing (other)
attributes. Example 15. Mereology: The mereology of a link of a road net is
the set of the two unique identifiers of exactly two hubs to which the link is
connected. The mereology of a hub of a road net is the set of zero or more unique
identifiers of the links to which the hub is connected . The domain analysis
prompt: has mereology(p) holds if the part p is related to some others parts
(pa, pb, . . . , pc). The domain description prompt:

observe mereology(p)

can then be invoked and yields some formal description text according to the
following schema:

type MT = E(PIA,PIB,...,PIC);
value mereo P: P → MT;

where E(...) is some type expression over unique identifier types of one or more
part sorts. Mereologies are expressed in terms of structures of unique part iden-
tifiers. Usually mereologies are constrained. Constraints express that a mereol-
ogy’s unique part identifiers must indeed reference existing parts, but also that
these mereology identifiers “define” a proper structuring of parts. Example 16.
Mereology Constraints: We continue our line of examples of road net endurants,
cf. Example 2.4 but now a bit more systematically: A road net, n:N, contains

18 That is, has unique identifier(p) for all parts p.

9

a pair, (HS,LS), of sets Hs of hubs h:H and sets Ls of links. The mereology of
links must identify exactly two hubs of the road net, the mereology of hubs must
identify links of the road net, so connected hubs and links must have commen-
surate mereologies . Two parts, pi:Pi and pj :Pj , of possibly the same sort (i.e.,
Pi≡Pj) are said to ‘refer one to another’ if the mereology of pi contains the unique
identifier of pj and vice-versa•. The parts pi and pj are then said to enjoy ‘part
overlap’ •. We refer to the concept of shared attributes covered at the very end of
this section.

2.14 Attributes

Attributes are what really endows parts with qualities. The external properties19

are far from enough to distinguish one sort of parts from another. Similarly with
unique identifiers and the mereology of parts. We therefore assume, without loss
of generality, that every part, whether discrete or continuous, whether, when
discrete, atomic or composite, has at least one attributes.

By a ‘part attribute’, or just an ‘attribute’, we shall understand a property
that is associated with a part p of sort P , and if removed from part p, that
part would no longer be part p but may be a part of some other sort P ′; and
where that property itself has no physical extent (i.e., volume), as the part may
have, but may be measurable by physical means •. Example 17. Attributes: Some
attributes of road net hubs are location, hub state20, hub state space21, and of
road net links are location, length, link state22, link state space23, etcetera .
The domain description prompt

observe attributes(p)

yields some formal description text according to the following schema:

type A1, A2, ..., An, ATTR;
value attr A1:P→A1, attr A2:P→A2, ..., attr An:P→An,

attr ATTR:P→ATTR;

where for ∀ p:P, attr Ai(attr ATTR(p)) ≡ attr Ai(p).

Shared Attributes: A final quality of endurant entities is that they may share
attributes. Two parts, pi:Pi, pj :Pj , of different sorts are said to enjoy ‘shared
attributes’ if Pi and Pj have at least one attribute name in common •. In such
cases the mereologies of pi and pj are expected to refer to one another, i.e., be
‘commensurable’.

19 is discrete,is continuous,is atomic,is compositehas material.
20 Hub state: a set of pairs of unique identifiers of actually connected links.
21 Hub state space: a set of hub states that a hub states may range over.
22 Link state: a set of pairs of unique identifiers of actually connected hubs.
23 Link state space: a set of link states that a link state may range over.

10

3 A Model of The Analysis & Description Process

3.1 A Summary of Prompts

In the previous section we outlined two classes of prompts: the domain [endurant]
analysis prompts:24

a. is entity
b. is endurant
c. is perdurant
d. is part
e. is discrete
f. is continuous
g. is atomic
h. is composite

i. has concrete type

j. sorts of

k. has material

l. has parts

m. has unique identifier

n. has mereology

o. has attributes

and the domain [endurant] description prompts:

1. observe part sorts

2. observe concrete type

3. observe material sorts

4. observe unique identifier

5. observe mereology

6. observe attributes

These prompts are imposed upon the domain analyser cum describer. They
are “figuratively” applied to the domain. Their orderly, sequenced application
follows the method hinted at in the previous section and expressed in a pseudo-
formal notation in this section. The notation looks formal but since we have
not formalised these prompts it is only pseudo-formal. In [11] we shall formalise
these prompts.

3.2 Preliminaries

Let P be a sort, that is, a collection of endurants. By ηP we shall understand
a syntactic quantity: the name of P. By ιp:P we shall understand the semantic
quantity: an (arbitrarily selected) endurant in P. And by η−1ηP we shall un-
derstand P. To guide the TripTych domain analysis & description process we
decompose it into steps. Each step “handles” a sort p:P or a material m:M. Steps
handling discovery of composite sorts generate a set of sort names ηP1, ηP2, . . . ,
ηPn and ηM1, ηM2, . . . , ηMn. These are put in a reservoir for sorts to be in-
spected. The handled sort ηP or ηM is removed from that reservoir. Handling of
material sorts concerns only their attributes. Each domain description prompt
results in domain specification text (here we show only the formal texts) being
deposited in the domain description reservoir, a global variable τ . The clause:
domain description prompt(p) : τ := τ ⊕ [”text ; ”] means that the formal

24 The prompts are sorted in order of appearence. The one or two digits following the
prompt names refer to page numbers minus the number of the first page of this
paper + 1.

11

text ”text ; ” is joined to the global variable τ where that ”text ; ” is prompted
by domain description prompt(p). The meaning of ⊕ will be discussed at the
end of this section.

3.3 Initialising the Domain Analysis & Description Process

We remind the reader that we are dealing only with endurant domain entities.
The domain analysis approach covered in Sect. 2 was based on decomposing
an understanding of a domain from the “overall domain” into its components,
and these, if not atomic, into their subcomponents. So we need to initialise the
domain analysis & description by selecting (or choosing) the domain ∆.

Here is how we think of that “initialisation” process. The domain analyser
& describer spends some time focusing on the domain, maybe at the “white
board”25, rambling, perhaps in an un-structured manner, across its domain, ∆,
and its subdomains. Informally jotting down more-or-less final sort names, build-
ing, in the domain analysers’ & describers’ mind an image of that domain. After
some time, doing this, the domain analyser & describer is ready. An image of the
domain is in the form of “a domain” endurant, δ:∆. Those are the quantities,
η∆ (name of ∆) [Item 1] and ιp:P (for (δ:∆)) [Item8], referred to below.

Thus this initialisation process is truly a creative one.

3.4 A Domain Analysis & Description State

1. A global variable αps will accumulate all the sort names being discovered.
2. A global variable νps will hold names of sorts yet to be analysed and de-

scribed.
3. A global variable τ will hold the (so far) generated (in this case only) formal

domain description text.

variable

1. αps := [η∆] ηP-set or ηP∗

2. νps := [η∆] (ηP|ηM)-set or (ηP|ηM)∗

3. τ := [] Text-set or Text∗

We shall explain the use of [...]s and the operations of \ and ⊕ on the above
variables in Sect. 3.6.

3.5 Analysis & Description of Endurants

4. To analyse and describe endurants means to first
5. examine those endurant which have yet to be so analysed and described
6. by selecting and removing from νps (Item 11.) an as yet unexamined sort

(by name);

25 Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow
“post-it” stickers, or it could be an electronic conference “gadget”.

12

7. then analyse and describe an endurant entity (ιp:P) of that sort — this
analysis, when applied to composite parts, leads to the insertion of zero26 or
more sort names27;

8. then to analyse and describe the mereology of each part sort,
9. and finally to analyse and describe the attributes of each sort.

value

4. analyse and describe endurants: Unit → Unit

4. analyse and describe endurants() ≡
5. while ∼is empty(νps) do

6. let ηS = select and remove ηS() in

7. analyse and describe endurant sort(ιs:S) end end ;
8. for all ηP • ηP ∈ αps do analyse and describe mereology(ιp:P) end

9. for all ηP • ηP ∈ αps do analyse and describe attributes(ιp:P) end

The ι of Items 7, 8 and 9 are crucial. The domain analyser is focused on sort
S (and P) and is “directed” (by those items) to choose (select) an endurant ιs
(ιp) of that sort. The ability of the domain analyser to find such an entity is a
measure of that person’s professional creativity.

As was indicated in Sect. 2, the mereology of a part may involve unique
identifiers of any part sort, hence must be done after all such part sort unique
identifiers have been identified. Similarly for attributes which also may involve
unique identifiers. Each iteration of analyse and describe endurant sort(ιp:P) in-
volves the selection of a sort (by name) (which is that of either a part sort or a
material sort) with this sort name then being removed.

10. The selection occurs from the global state (hence: ()) and changes that (hence
Unit).

11. The affected global state component is that of the reservoir, νps.

value

10. select and remove ηS: Unit → ηP
10. select and remove ηS() ≡
11. let ηS • ηS ∈ νps in νps := νps \ {ηS} ; ηS end

The analysis and description of all sorts also performs an analysis and description
of their possible unique identifiers (if part sorts) and attributes. The analysis and
description of sort mereologies potentially requires the unique identifiers of any
set of sorts. Therefore the analysis and description of sort mereologies follows
that of analysis and description of all sorts.

12. To analyse and describe an endurant

26 If the sub-parts of p are all either atomic or already analysed, then no new sort
names are added to the repository νps.

27 These new sort names are then “picked-up” for sort analysis &c. in a next iteration
of the while loop.

13

13. is to find out whether it is a part.
14. If so then it is to analyse and describe it as a part,
15. else it is to analyse and describe it as a material.

12. analyse and describe endurant sort: (P|M) → Unit

12. analyse and describe endurant sort(e:(P|M)) ≡
13. if is part(e)
13. assert: is part(e) ≡ is endurant(e)∧is discrete(e)
14. then analyse and describe part sort(e:P)
15. else analyse and describe material parts(e:M)
12. end

Analysis & Description of Part Sorts:

16. The analysis and description of a part sort
17. is based on there being a set, ps, of parts28 to analyse —
18. of which an archetypal one, p′, is arbitrarily selected.
19. analyse and describe part p′

16. analyse and describe part sort: P → Unit

16. analyse and describe part sort(p:P) ≡
17. let ps = observe parts(p) in

18. let p′:P • p′ ∈ ps in

19. analyse and describe part(p′)
16. end end

20. The analysis (&c.) of a part
21. first analyses and describes its unique identifiers.
22. If atomic
23. and
24. if the part embodies materials,
25. we analyse and describe these.
26. If not atomic then the part is composite
27. and is analysed and described as such.

20. analyse and describe part: P → Unit

20. analyse and describe part(p) ≡
21. analyse and describe unique identifier(p) ;
22. if is atomic(p)
23. then

28 We can assume that there is at least one element of that set. For the case that
the sort being analysed is a domain ∆, say “The Transport Domain”, p′ is some
representative “transport domain” δ. Similarly for any other sort for which ps is
now one of the sorts of δ.

14

24. if has materials(p)
25. then analyse and describe part materials(p) end

26. else assert: is composite(p)
27. analyse and describe composite endurant(p) end

20. pre: is discrete(p)

We do not associate materials with composite parts.

Analysis & Description of Part Materials:

28. The analysis and description of the material part sorts, one or more, of
atomic parts p of sort P containing such materials,

29. simply observes the material sorts of p,
30. that is, generates the one or more continuous endurants
31. and the corresponding observer function text.
32. The reservoir of sorts to be inspected is augmented by the material sorts —

except if already previously entered (the \ αps clause).

28. analyse and describe part materials: P → Unit

28. analyse and describe part materials(p) ≡
29. observe material sorts(p) :
30. τ := τ ⊕ [”type M1,M2,...,Mm;
31. value obs M1:P→M1,obs M2:P→M2,...,obs Mm:P→Mm;”]
32. νps := νps ⊕ ([M1,M2,...,Mm] \ αps)
28. pre: has materials(p)

Analysis & Description of Material Parts:

33. To analyse and describe materials, m, i.e., continuous endurants,
34. is only necessary if m has parts.
35. Then we observe the sorts of these parts.
36. The identified part sort names update both name reservoirs.

33. analyse and describe material parts: M → Unit

33. analyse and describe material parts(m:M) ≡
34. if has parts(m)
35. then observe part sorts(m):
35. τ := τ ⊕ [” type P1,P2,...,PN ;
35. value obs Pi: M→Pi i:{1..N};”]
36. ‖ νps := νps ⊕ ([ηP1,ηP2,...,ηPN]\ αps)
36. ‖ αps := αps ⊕ [ηP1,ηP2,...,ηPN]
33. end

33. assert: is continuous(m)

15

Analysis & Description of Composite Endurants:

37. To analyse and describe a composite endurant of sort P
38. is to analyse and describe the unique identifier of that composite endurant,
39. then to analyse and describe the sort. If the sort has a concrete type
40. then we analyse and describe that concrete sort type
41. else we analyse and describe the abstract sort.

37. analyse and describe composite endurant: P → Unit

37. analyse and describe composite endurant(p) ≡
38. analyse and describe unique identifier(p) ;
39. if has concrete type(p)
40. then analyse and describe concrete sort(p)
41. else analyse and describe abstract sort(p)
39. end

Analysis & Description of Concrete Sort Types:

42. The concrete sort type being analysed and described
43. is either
44. expressible by some compound type expression
43. or is
45. expressible by some alternative type expression.

42. analyse and describe concrete sort: P → Unit

42. analyse and describe concrete sort(p:P) ≡
44. analyse and describe concrete compound type(p)
43. ⌈⌉
45. analyse and describe concrete alternative type(p)
42. pre: has concrete type(p)

46. The concrete compound sort type
47. is expressible by some simple type expression, T=E(Q,R,...,S) over either

concrete types or existing or new sorts Q, R, ..., S.
48. The emerging sort types are identified
49. and assigned to both νps
50. and αps.

44. analyse and describe concrete compound type: P → Unit

44. analyse and describe concrete compound type(p:P) ≡
46. observe part type(p):
46. τ := τ ⊕ [”type Q,R,..,S, T = E(Q,R,...,S);
46. value obs T: P → T ;”] ;
47. let {Pa,Pb,...,Pc} = sorts of({Q,R,...,S})
48. assert: {Pa,Pb,...,Pc} ⊆ {Q,R,...,S} in

49. νps := νps ⊕ [ηPa, ηPb, ..., ηPc] ‖
50. αps := αps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) end

44. pre: has concrete type(p)

16

51. The concrete alternative sort type expression
52. is expressible by an alternative type expression T=P1|P2|...|PN where each

of the alternative types is made disjoint wrt. existing types by means of the
description language Pi::mkPi(su:Pi) construction.

53. The emerging sort types are identified and assigned
54. to both νps
55. and αps.

45. analyse and describe concrete alternative type: P → Unit

45. analyse and describe concrete alternative type(p:P) ≡
51. observe part type(p):
52. τ := τ ⊕ [”type T=P1 | P2 | ... | PN, Pi::mkPi(s u:Pi) (1≤i≤N);
52. value obs T: P→T ;”] ;
53. let {Pa,Pb,...,Pc} = sorts of({Pi|1≤i≤n})
53. assert: {Pa,Pb,...,Pc} ⊆ {Pi|1≤i≤n} in

54. νps := νps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) ‖
55. αps := αps ⊕ [ηPa, ηPb, ..., ηPc] end

42. pre: has concrete type(p)

Analysis & Description of Abstract Sorts:

56. To analyse and describe an abstract sort
57. amounts to observe part sorts and to
58. update the sort name repositories.

56. analyse and describe abstract sort: P → Unit

56. analyse and describe abstract sort(p:P) ≡
57. observe part sorts(p):
57. τ := τ ⊕ [”type P1, P2, ..., Pn;
57. value obs Pi:P→Pi (0≤i≤n);”]
58. ‖ νps := νps ⊕ ([ηP1, ηP2, ..., ηPn] \ αps)
58. ‖ αps := αps ⊕ [ηP1, ηP2, ..., ηPn]

Analysis & Description of Unique Identifiers:

59. To analyse and describe the unique identifier of parts of sort P is
60. to observe the unique identifier of parts of sort P
61. where we assume that all parts have unique identifiers.

59. analyse and describe unique identifier: P → Unit

59. analyse and describe unique identifier(p) ≡
60. observe unique identifier(p):
60. τ := τ ⊕ [”type PI; value uid P:P→PI;”]
61. assert: has unique identifier(p)

17

Analysis & Description of Mereologies:

62. To analyse and describe a part mereology
63. if it has one
64. amounts to observe that mereology
65. and otherwise do nothing.
66. The analysed quantity must be a part.

62. analyse and describe mereology: P → Unit

62. analyse and describe mereology(p) ≡
63. if has mereology(p)
64. then observe mereology(p) :
64. τ := τ ⊕ ”type MT = E(PIa,PIb,...,PIc) ;
64. value mereo P: P→MT ;”
65. else skip end

62. pre: is part(p)

Analysis & Description of Part Attributes:

67. To analyse and describe the attributes of parts of sort P is
68. to observe the attributes of parts of sort P
69. where we assume that all parts have attributes.

67. analyse and describe part attributes: P → Unit

67. analyse and describe part attributes(p) ≡
68. observe attributes(p):
68. τ := τ ⊕ [”type A1, ..., Am ;
68. value attr A1:P→A1,,...,attr Am:P→Am;”]
69. assert: has attributes(p)

3.6 Discussion of The Model

The above model lacks a formal understanding of the individual prompts as
listed in Sect. 3.1. Such an understanding is attempted in [11].

Termination: The sort name reservoir νps is “reduced” by one name in each
iteration of the while loop of the analyse and describe endurants, cf. Item6, and
is augmented, in each iteration of that loop, by sort names – if not already
dispensed of iterations of in earlier itetrations, cf. formula Items 32, 36, 49, 54
and 49. We take it as a dogma that domains contain a finite number of differently
typed parts and matyerials. This introduction and removal of sort names and
the finiteness of sort names is then the basis for a proper proof of terminaton of
the the analysis & description process.

18

Axioms and Proof Obligations: We have omitted from the above treat-
ment of axioms concerning well-formedness of parts, materials and attributes
and proof obligations concerning disjointness of observed part and material sorts
and attribute types. A more proper treatment would entail adding a line of proof
obligation text right after Item lines 65 and 68, and of axiom text right after
Item lines 31, 35, 46, 48, 60, 68, No axiom is needed in connection with Item
line 52.

[12] covers axioms and proof obligations in some detail.

Order of Analysis & Description: A Meaning of ‘⊕’: The variables αps,
νps and τ are defined to hold either sets or lists. The operator ⊕ can be thought
of as either set union (∪ and [,]≡{, }) — in which case the domain description
text in τ is a set of domain description texts or as list concatenation (̂ and
[,]≡〈,〉) of domain description texts. The operator ℓ1 ⊕ ℓ2 now has at least two
interpretations: either ℓ1̂ℓ2 or ℓ2̂ℓ1. In the case of lists the ⊕ (i.e., ̂) does not
(suffix or prefix) append ℓ2 elements already in ℓ1. The select and remove ηP
function on Page12 applies to the set interpretation. A list interpretation is:

value

6. select and remove ηP: Unit → ηP
6. select and remove ηP() ≡
6. let ηP = hd νps in νps := tl νps; ηP end

In the first case (ℓ1̂ℓ2) the analysis and description process proceeds from the
root, breadth first, In the second case (ℓ2̂ℓ1) the analysis and description process
proceeds from the root, depth first.

Laws of Description Prompts: The domain ‘method’ outlined in the previous
section suggests that many different orders of analysis & description may be
possible. But are they ? That is, will they all result in “similar” descriptions ?
That is, if Da and Db are two domain description prompts where Da and Db

can be pursued in any order will that yield the same description ? And what
do we mean by ‘can be pursued in any order’, and ‘same description’ ? Let us
assume that sort P decomposes into sorts Pa and Pb (etcetera). Let us assume
that the domain description prompt Da is related to the description of Pa and
Db to Pb. Here we would expect Da and Db to commute, that is Da;Db yields
same result as does Db;Da. In [7] we made an early exploration of such laws of
domain description prompts.

To answer these questions we need a reasonably precise model of domain
prompts. We attempt such a model in [11].

4 Conclusion

Domains can be studied, that is, analysed and described, without any thoughts of
possible, subsequent phases of requirements and software development. To study

19

domains includes, for proper studies. the establishment of domain theories, that
is, of theorems about what is being described. This paper does not, unfortunately,
show even “top of the iceberg” domain theorems. Such theories are necessary
in order to develop a trust in domain desxcriptions. Theorems can then be held
up against the actual domain and it can then be checked whether that domain
satisfy the theorems. We know that such domain theories can be established
as a result of domain modelling. A domain description can be said to be the
description of the language spoken by practitioners of the domain, that is, by its
stake-holders, hence of a semantics of that language.

4.1 Comparison to Other Work

Domain Analysis: Section 2 outlined the TripTych] approach to the analysis
& description of domain endurants. We shall now compare that approach to a
number of techniques and tools that are somehow related — if only by the term
‘domain’ !

[1] Ontological and Knowledge Engineering: Ontological engineering [3] build
ontologies. Ontologies are “formal representations of a set of concepts within a
domain and the relationships between those concepts” — expressed usually in some
logic. Published ontologies usually consists of thousands of logical expressions.
These are represented in some, for example, low-level mechanisable form so that
they can be interchanged between ontology research groups and processed by
various tools. There does not seem to be a concern for “deriving” such ontologies
into requirements for software. Usually ontology presentations either start with
the presentation of, or makes reference to its reliance on, an upper ontology.
Instead the ontology databases appear to be used for the computerised discovery
and analysis of relations between ontologies.

The aim of knowledge engineering was formulated, in 1983, by an originator of
the concept, Edward A. Feigenbaum [20]: knowledge engineering is an engineering
discipline that involves integrating knowledge into computer systems in order to
solve complex problems normally requiring a high level of human expertise. A
seminal text is that of [19]. Knowledge engineering focus on continually build-
ing up (acquire) large, shared data bases (i.e., knowledge bases), their continued
maintenance, testing the validity of the stored ‘knowledge’, continued experi-
ments with respect to knowledge representation, etcetera. Knowledge engineering
can, perhaps, best be understood in contrast to algorithmic engineering: In the lat-
ter we seek more-or-less conventional, usually imperative programming language
expressions of algorithms whose algorithmic structure embodies the knowledge re-
quired to solve the problem being solved by the algorithm. The former seeks to solve
problems based on an interpreter inferring possible solutions from logical data.
This logical data has three parts: a collection that “mimics” the semantics of, say,
the imperative programming language, a collection that formulates the problem, and
a collection that constitutes the knowledge particular to the problem. We refer to
[15].

The concerns of our form of domain science & engineering is based on that
of algorithmic engineering. Domain science & engineering is not aimed at letting

20

the computer solve problems based on the knowledge it may have stored. Instead
it builds models based on knowledge of the domain. Our form of domain science
& engineering differs from conventional ontological engineering in the following,
essential ways: Our domain descriptions rely essentially on a “built-in” upper
ontology: types, abstract as well as model-oriented (i.e., concrete) and actions,
events and behaviours. Domain science & engineering is not, to a first degree,
concerned with modalities, and hence do not focus on the modelling of knowledge
and belief, necessity and possibility, i.e., alethic modalities, epistemic modality
(certainty), promise and obligation (deontic modalities), etcetera.

[2] Domain Analysis: Domain analysis, or product line analysis (see below) —
as it was then conceived in the early 1980s by James Neighbors — is the analysis
of related software systems in a domain to find their common and variable parts.
It is a model of a wider business context for the system. This form of domain
analysis turns matters “upside-down”: it is the set of software “systems” (or
packages) that is subject to some form of inquiry, albeit having some domain
in mind, in order to find common features of the software that can be said to
represent a named domain. In this section ([2]) we shall mainly be comparing
the TripTych approach to domain analysis to that of Reubén Prieto-Dı̃az’s ap-
proach [40–42]. Firstly, the two meanings of domain analysis basically coincide.
Secondly, in, for example, [40], Prieto-Dı̃az’s domain analysis is focused on the
very important stages that precede the kind of domain modelling that we have
described: major concerns are selection of what appears to be similar, but specific
entities, identification of common features, abstraction of entities and classification.
Selection and identification is assumed in the TripTych approach, but we suggest
to follow the ideas of Prieto-Dı̃az. Abstraction (from values to types and signa-
tures) and classification into parts, materials, actions, events and behaviours is
what we have focused on. All-in-all we find Prieto-Dı̃az’s work very relevant to
our work: relating to it by providing guidance to pre-modelling steps, thereby
emphasising issues that are necessarily informal, yet difficult to get started on
by most software engineers. Where we might differ is on the following: although
Prieto-Dı̃az does mention a need for domain specific languages, he does not show
examples of domain descriptions in such DSLs. We, of course, basically use math-
ematics as the DSL. In the TripTych approach we do not consider requirements,
let alone software components, as do Prieto-Dı̃az, but we find that that is not
an important issue.

[3] Domain Specific Languages Martin Fowler29 defines a Domain-specific
language (DSL) as a computer programming language of limited expressiveness fo-
cused on a particular domain [21]. Other references are [38, 45]. Common to [45,
38, 21] is that they define a domain in terms of classes of software packages; that
they never really “derive” the DSL from a description of the domain; and that

29 http://martinfowler.com/dsl.h

21

they certainly do not describe the domain in terms of that DSL, for example, by
formalising the DSL.

[4] Feature-oriented Domain Analysis (FODA): FODA is a domain analysis
method which introduced feature modelling to domain engineering FODA was de-
veloped in 1990 following several U.S. Government research projects. Its concepts
have been regarded as critically advancing software engineering and software
reuse. The US Government supported report [34] states: “FODA is a necessary

first step” for software reuse. To the extent that domain engineering with its sub-
sequent requirements engineering indeed encourages reuse at all levels: domain
descriptions and requirements prescription, we can only agree. Another source on
FODA is [18]. Since FODA “leans” quite heavily on ‘Software Product Line Engi-
neering’ our remarks in that section, next, apply equally well here.

[5] Software Product Line Engineering [SPLE]: SPLE earlier known as
domain engineering, is the entire process of reusing domain knowledge in the pro-
duction of new software systems. Key concerns of SPLE are reuse, the building of
repositories of reusable software components, and domain specific languages with
which to more-or-less automatically build software based on reusable software
components. These are not the primary concerns of our form of domain science
& engineering. But they do become concerns as we move from domain descriptions
to requirements prescriptions. But it strongly seems that software product line en-
gineering is not really focused on the concerns of domain description — such as is
our form of domain engineering. It seems that software product line engineering is
primarily based, as is, for example, FODA, on analysing features of software sys-
tems. Our [8] puts the ideas of software product lines and model-oriented software
development in the context of the TripTych approach.

[6] Problem Frames [PF]: The concept of PF is covered in [32]. Jack-
son’s prescription for software development focus on the “triple development”
of descriptions of the problem world, the requirements and the machine (i.e., the
hardware and software) to be built. Here domain analysis means, the same as for
us, the problem world analysis. In the PF approach the software developer plays
three, that is, all the rôles: domain engineer, requirements engineer and software
engineer, “all at the same time”, iterating between these rôles repeatedly. So,
perhaps belabouring the point, domain engineering is done only to the extent
needed by the prescription of requirements and the design of software . These, re-
ally are minor points. But in “restricting” oneself to consider only those aspects
of the domain which are mandated by the requirements prescription and software
design one is considering a potentially smaller fragment [31] of the domain than
is suggested by the TripTych approach. At the same time one is, however, sure to
consider aspects of the domain that might have been overlooked when pursuing
domain description development in the “more general” three stage development
approach outlined above.

[7] Domain Specific Software Architectures (DSSA): It seems that the con-
cept of DSSA was formulated by a group of ARPA30 project “seekers” who also

30 ARPA: The US DoD Advanced Research Projects Agency

22

performed a year long study (from around early-mid 1990s); key members of
the DSSA project were Will Tracz, Bob Balzer, Rick Hayes-Roth and Richard
Platek [46]. The [46] definition of domain engineering is “the process of creating

a DSSA: domain analysis and domain modelling followed by creating a software
architecture and populating it with software components.” This definition is ba-
sically followed also by [39, 44, 36]. Defined and pursued this way, DSSA appears,
notably in these latter references, to start with the analysis of software compo-
nents, “per domain”, to identify commonalities within application software, and
to then base the idea of software architecture on these findings. Thus DSSA turns
matter “upside-down” with respect to our requirements development by start-
ing with software components, assuming that these satisfy some requirements,
and then suggesting domain specific software built using these components. This
is not what we are doing: we suggest that requirements can be “derived” sys-
tematically from, and related back, formally to domain descriptionss without, in
principle, considering software components, whether already existing, or being
subsequently developed. Of course, given a domain description it is obvious that
one can develop, from it, any number of requirements prescriptions and that these
may strongly hint at shared, (to be) implemented software components; but it
may also, as well, be the case two or more requirements prescriptions “derived”
from the same domain description may share no software components whatso-
ever ! It seems to this author that had the DSSA promoters based their studies
and practice on also using formal specifications, at all levels of their study and
practice, then some very interesting insights might have arisen.

[8] Domain Driven Design [DDD] DDD31“is an approach to developing software

for complex needs by deeply connecting the implementation to an evolving model

of the core business concepts; the premise of domain-driven design is the follow-

ing: placing the project’s primary focus on the core domain and domain logic;

basing complex designs on a model; initiating a creative collaboration between

technical and domain experts to iteratively cut ever closer to the conceptual

heart of the problem.”32 We have studied some of the DDD literature, mostly
only accessible on the Internet, but see also [29], and find that it really does
not contribute to new insight into domains such as we see them: it is just “plain,
good old software engineering cooked up with a new jargon.

[9] Unified Modelling Language (UML) Three books representative of UML

are [16, 43, 33]. The term domain analysis appears numerous times in these books,
yet there is no clear, definitive understanding of whether it, the domain, stands
for entities in the domain such as we understand it, or whether it is wrought
up, as most of the ‘approaches’ treated in this section, to wit, Items [3–8], with
either software design (as it most often is), or requirements prescription. Certainly,
in UML, in [16, 43, 33], as well as in most published papers claiming “adherence”
to UML, domain analysis usually is manifested in some UML text which “mod-
els” some requirements facet. Nothing is necessarily wrong with that, but it is
therefore not really our form of domain analysis with its concepts of abstract

31 Eric Evans: http://www.domaindrivendesign.org/
32 http://en.wikipedia.org/wiki/Domain-driven design

23

representations of endurant and perdurants, and with its distinctions between
domain and requirements, and with its possibility of “deriving” requirements pre-
scriptions from domain descriptions. The UML notion of class diagrams is worth
relating to our structuring of the domain. Class diagrams appear to be inspired
by [2, Bachman, 1969] and [17, Chen, 1976]. It seems that each part sort — as
well as other than part (or material) sorts — deserves a class diagram (box),
that (assignable) attributes — as well as other non-part (or material) types —
are written into the diagram box — as are action signatures — as well as other
function signatures. Class diagram boxes are line connected with annotations
where some annotations are as per the mereology of the part type and the con-
nected part types and others are not part related. The class diagrams are said
to be object-oriented but it is not clear how objects relate to parts as many
are rather implementation-oriented quantities. All this needs looking into a bit
more, for those who care.

• • •

Summary of Comparisons: It should now be clear from the above that basi-
cally only Jackson’s problem frames really take the same view of domains and,
in essence, basically maintain similar relations between requirements prescription
and domain description. So potential sources of, we should claim, mutual inspi-
ration ought be found in one-another’s work — with, for example, [28, 31], and
the present document, being a good starting point.

But none of the referenced works make the distinction between discrete en-
durants (parts) and their qualities, with their further distinctions between unique
identifiers, mereology and attributes. And none of them makes the distinction be-
tween parts and materials.

Domain Analysis and Philosophy: Many readers may have felt somewhat
queasy about our definitions of, for example, the notions of domain, entity, en-
durant, perdurant, discrete, continuous, part and material. Perhaps they thought
that these were not proper definitions. Well, the problem is that we are en-
croaching upon the disciplines of epistemology33, in particular ontology34. Thus
we have to thread carefully: On one hand we cannot and do not pretend to for-
malise philosophical notions. On the other hand we do wish to “get as close to
such formalisations as possible” ! In the context of a philosophical inquiry our

33 Epistemology is the branch of philosophy concerned with the nature and scope of
knowledge and is also referred to as “theory of knowledge”. It questions what knowl-
edge is and how it can be acquired, and the extent to which any given subject or
entity can be known. Much of the debate in this field has focused on analyzing the
nature of knowledge and how it relates to connected notions such as truth, belief,
and justification[1, 30].

34 Ontology is the philosophical study of the nature of being, becoming, existence, or
reality, as well as the basic categories of being and their relations. Traditionally
listed as a part of the major branch of philosophy known as metaphysics, ontology
deals with questions concerning what entities exist or can be said to exist, and how
such entities can be grouped, related within a hierarchy, and subdivided according
to similarities and differences [1, 30].

24

definitions are acceptable as witnessed by two work on which we draw [37, 22].
In the context of classical computer science they are not. In computer science
we would expect precise, mathematical definitions. But that would defeat our
purpose, namely to get “as close” to actual domains as possible ! So we have
opted for a compromise: To keep our ‘philosophical-inquiry-acceptable’ defini-
tions, while, as in Sect. 3, beginning a journey of formalising such processes of
‘philosophical-inquiry-processes’.

4.2 What Have We Achieved

Domain Analysis: In Sect. 2 we have presented a terse, seven+ page, sum-
mary of a novel approach to domain analysis. That this approach is different
from other ‘domain analysis’ approaches is argued in [12, Sect. 6.2]. The new as-
pects are: the distinction between parts and materials, the distinction between
external and internal properties (Sect. 2.11), the introduction of the concept of
mereologies and the therefrom separate treatment of attributes. It seems to us
that “conventional” domain analysis treated all endurant qualities as attributes.
The many concepts, endurants and perdurants, discrete and continuous, hence
parts and materials, atomic and composite, uniqueness of parts, mereology, and
shared attributes, we claim, are forced upon the analysis by the nature of
domains: existing in some not necessarily computable reality. In this way the
proposed domain analysis & description approach is new.

Methodology: By a ‘method’ we shall understand a set of principles for se-
lecting and applying techniques and tools in order to analyse and construct an
artifact. Section 3 presents a partially instantiated framework for a formal model
of a ‘method’ for domain analysis & description: Some principles are abstraction
(sorts in preference for concrete types), separation of concerns (tackling endurants
before perdurants), commensurate narratives and formalisations, tackling do-
main analysis either “top-down”, hierarchically from composite endurants, or
“bottom-up”, compositionally, from atomic endurants, or in some orderly com-
bination of these; etcetera. Some techniques are expressing axioms concerning
well-formedness of mereologies and attribute values; stating (and discharging)
proof obligations securing disjointness of sorts; etcetera. And some tools are
the domain analysis prompts, the domain description prompts and the description
language (here RSL [24]). We claim that we have sketched a formalisation of a
method for domain analysis and description.

What is really new here is, as for domain analysis, that the analysis & de-
scription process is applied to a domain, that is, to our image of that domain,
something not necessarily computable, and that our description therefore must
not reduce the described domain to a computable artefact.

4.3 Future Work

There remains to conclude studies of, that is, to document and publish treat-
ments of the following related topics: (i) domain analysis of perdurants (actions,

25

events and behaviours [12, Sect. 5]) — including related domain analysis prompts
and domain description prompts35, (ii) model(s) of prompts36, (iii) domain facets,
cf. [6]37, and (iv) derivation of requirements from domain descriptions, cf. [5]38.
. And there remains to actually establish theories of specific domains.

4.4 Acknowledgements

The author thanks three referees for their careful reading and comments. I think
that I have dealt with all their remarks.

5 Bibliography

5.1 Bibliographical Notes

Concerning Sect. 3, A Model of The Analysis & Description Process: we could
not find — and were therefore not influenced or inspired by — publications of
formalised process models for software development.

5.2 References

1. R. Audi. The Cambridge Dictionary of Philosophy. Cambridge University Press, The
Pitt Building, Trumpington Street, Cambridge CB2 1RP, England, 1995.

2. C. Bachman. Data structure diagrams. Data Base, Journal of ACM SIGBDP, 1(2),
1969.

3. V. Benjamins and D. Fensel. The Ontological Engineering Initiative (KA)2. Internet
publication + Formal Ontology in Information Systems, University of Amsterdam,
SWI, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands and University of
Karlsruhe, AIFB, 76128 Karlsruhe, Germany, 1998.
http://www.aifb.uni-karlsruhe.de/WBS/broker/KA2.htm.

4. D. Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research
Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds.
J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007. Springer.

5. D. Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065
of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and
José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

6. D. Bjørner. Domain Engineering. In P. Boca and J. Bowen, editors, Formal Methods:
State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages
1–42, London, UK, 2010. Springer.

7. D. Bjørner. Domain Science & Engineering – From Computer Science to The
Sciences of Informatics Part II of II: The Science Part. Kibernetika i sistemny analiz,
(2):100–120, May 2011.

35 See forthcoming [10]
36 See forthcoming [11]
37 See forthcoming [9]
38 See forthcoming [14]

26

8. D. Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of
Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann
Maurer on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude,
G. Rozenberg and A. Saloma), pages 167–183. Springer, Heidelberg, Germany,
January 2011.

9. D. Bjørner. Domain Analysis & Description: Modelling Facets [Writing to begin
Summer 2013] (paper39, slides40). Research Report 2013-7, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Summer/Fall 2013. A first draft of this
document might be written late summer of 2013.

10. D. Bjørner. Domain Analysis & Description: Perdurants [Writing to begin Summer
2013] (paper41, slides42). Research Report 2013-7, DTU Compute and Fredsvej 11,
DK-2840 Holte, Denmark, Summer/Fall 2013. A first draft of this document might
be written late summer of 2013.

11. D. Bjørner. Domain Analysis: A Model of Prompts [Writing of crucial final section
yet to begin] (paper43, slides44). Research Report 2013-6, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Summer 2013. A first draft of this document
will be written over the summer of 2013.

12. D. Bjørner. Domain Analysis (paper45 slides46). Research Report 2013-1, DTU
Compute and Fredsvej 11, DK-2840 Holte, Denmark, April 2013.

13. D. Bjørner. Domain Science and Engineering as a Foundation for Computation for
Humanity, chapter 7, pages 159–177. Computational Analysis, Synthesis, and Design
of Dynamic Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter
J. Mosterman).

14. D. Bjørner. On Deriving Requirements from Domain Specifications [Writing to begin
Summer 2013] (paper47, slides48). Research Report 2013-8, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Summer/Fall 2013. A first draft of this
document might be written late summer of 2013.

15. D. Bjørner and J. F. Nilsson. Algorithmic & Knowledge Based Methods — Do they
“Unify” ? In International Conference on Fifth Generation Computer Systems:
FGCS’92, pages 191–198. ICOT, June 1–5 1992.

16. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

17. P. P. Chen. The Entity-Relationship Model - Toward a Unified View of Data. ACM
Trans. Database Syst, 1(1):9–36, 1976.

18. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison Wesley, 2000.

19. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
The MIT Press, Massachusetts Institute of Technology, Cambridge, Massachusetts
02142, 1996. 2nd printing.

39 http://www.imm.dtu.dk/˜dibj/da-facets-p.pdf
40 http://www.imm.dtu.dk/˜dibj/da-facets-s.pdf
41 http://www.imm.dtu.dk/˜dibj/perd-p.pdf
42 http://www.imm.dtu.dk/˜dibj/perd-s.pdf
43 http://www.imm.dtu.dk/˜dibj/da-mod-p.pdf
44 http://www.imm.dtu.dk/˜dibj/da-mod-s.pdf
45 http://www.imm.dtu.dk/˜dibj/da-p.pdf
46 http://www.imm.dtu.dk/˜dibj/da-s.pdf
47 http://www.imm.dtu.dk/˜dibj/da-fac-p.pdf
48 http://www.imm.dtu.dk/˜dibj/da-fac-s.pdf

27

20. E. A. Feigenbaum and P. McCorduck. The fifth generation. Addison-Wesley,
Reading, MA, USA, 1st ed. edition, 1983.

21. M. Fowler. Domain Specific Languages. Signature Series. Addison Wesley, October
20120.

22. C. Fox. The Ontology of Language: Properties, Individuals and Discourse. CSLI
Publications, Center for the Study of Language and Information, Stanford University,
California, ISA, 2000.

23. B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations.
Springer-Verlag, January 1999. ISBN: 3540627715, 300 pages, Amazon price: US $
44.95.

24. C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen,
S. Prehn, and K. R. Wagner. The RAISE Specification Language. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

25. C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen.
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead, England, 1995.

26. J. A. Goguen and R. Burstall. Introducing institutions. In E. Clarke and D. Kozen,
editors, Proceedings, Logics of Programming Workshop, pages 221–256. Springer,
1984. Lecture Notes in Computer Science, Volume 164.

27. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ . In J. A. Goguen and G. Malcolm, editors, Software Engineering
with OBJ : Algebraic Specification in Action. Kluwer Press, 2000. Also Technical
Report SRI-CSL-88-9, August 1988, SRI International.

28. C. A. Gunter, E. L. Gunter, M. A. Jackson, and P. Zave. A Reference Model for
Requirements and Specifications. IEEE Software, 17(3):37–43, May–June 2000.

29. D. Haywood. Domain-Driven Design Using Naked Objects. The Pragmatic Bookshelf
(an imprint of ‘The Pragmatic Programmers, LLC.’), http://pragprog.com/, 2009.

30. T. Honderich. The Oxford Companion to Philosophy. Oxford University Press,
Walton St., Oxford ox2 6dp, England, 1995.

31. M. Jackson. Program Verification and System Dependability. In P. Boca and
J. Bowen, editors, Formal Methods: State of the Art and New Directions, pages
43–78, London, UK, 2010. Springer.

32. M. A. Jackson. Problem Frames — Analyzing and Structuring Software Development
Problems. ACM Press, Pearson Education. Addison-Wesley, England, 2001.

33. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

34. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Foda:
Feature-oriented domain analysis. Feasibility Study CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, November 1990.
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm.

35. E. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The
Netherlands, 1962.

36. N. Medvidovic and E. Colbert. Domain-Specific Software Architectures (DSSA).
Power Point Presentation, found on The Internet, Absolute Software Corp., Inc.:
Abs[S/W], 5 March 2004.

37. D. H. Mellor and A. Oliver, editors. Properties. Oxford Readings in Philosophy.
Oxford Univ Press, May 1997. ISBN: 0198751761, 320 pages.

38. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys, 37(4):316–344, December 2005.

28

39. E. Mettala and M. H. Graham. The Domain Specific Software Architecture Program.
Project Report CMU/SEI-92-SR-009, Software Engineering Institute Carnegie Mellon
University Pittsburgh, Pennsylvania 15213, June 1992.

40. R. Prieto-D́ıaz. Domain Analysis for Reusability. In COMPSAC 87. ACM Press, 1987.
41. R. Prieto-D́ıaz. Domain analysis: an introduction. Software Engineering Notes,

15(2):47–54, 1990.
42. R. Prieto-D́ıaz and G. Arrango. Domain Analysis and Software Systems Modelling.

IEEE Computer Society Press, 1991.
43. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference

Manual. Addison-Wesley, 1998.
44. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice Hall, 1996.
45. D. Spinellis. Notable design patterns for domain specific languages. Journal of

Systems and Software, 56(1):91–99, Feb. 2001.
46. W. Tracz. Domain-specific software architecture (DSSA) frequently asked questions

(FAQ). Software Engineering Notes, 19(2):52–56, 1994.

A Pipeline Endurants

Our example is an abstraction of pipeline system endurants. The presentation of the
example reflects a rigorous use of the domain analysis & description method outlined in
Sect. 2, but is relaxed with respect to not showing all — one could say — intermediate
analysis steps and description texts, but following stoichiometry ideas from chemistry
makes a few short-cuts here and there. The use of the “stoichiometrical” reductions,
usually skipping intermediate endurant sorts, ought properly be justified in each step
— and such is adviced in proper, tool-supported industry-scale domain analyses &
descriptions.

A.1 Parts

70. A pipeline system contains a set of pipeline units and a pipeline system monitor.
71. The well-formedness of a pipeline system depends on its mereology (cf. Sect. A.2) and

the routing of its pipes (cf. Sect. A.3).
72. A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a join, or a sink unit.
73. We consider all these units to be distinguishable, i.e., the set of wells, the set pipe,

etc., the set of sinks, to be disjoint.

type

70. PLS′, U, M
71. PLS = {| pls:PLS′

•wf PLS(pls) |}
value

71. wf PLS: PLS → Bool

71. wf PLS(pls) ≡ wf Mereology(pls) ∧ wf Routes(pls)
70. obs Us: PLS → U-set

70. obs M: PLS → M
type

72. U = We | Pi | Pu | Va | Fo | Jo | Si
73. We :: Well
73. Pi :: Pipe

29

73. Va :: Valv
73. Fo :: Fork
73. Jo :: Join
73. Si :: Sink

A.2 Part Identification and Mereology

Unique Identification:

74. Each pipeline unit is uniquely distinguished by its unique unit identifier.

type

74. UI
value

74. uid UI: U → UI
axiom

74. ∀ pls:PLS,u,u′:U•{u,u′}⊆obs Us(pls)⇒u 6=u′⇒uid UI(u) 6=uid UI(u′)

Unique Identifiers:

75. From a pipeline system one can observe the set of all unique unit identifiers.

value

75. xtr UIs: PLS → UI-set
75. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

76. We can prove that the number of unique unit identifiers of a pipeline system equals
that of the units of that system.

theorem:

76. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

Mereology:

77. Each unit is connected to zero, one or two other existing input units and zero, one or
two other existing output units as follows:

a A well unit is connected to exactly one output unit (and, hence, has no “input”).
b A pipe unit is connected to exactly one input unit and one output unit.

c A pump unit is connected to exactly one input unit and one output unit.
d A valve is connected to exactly one input unit and one output unit.
e A fork is connected to exactly one input unit and two distinct output units.
f A join is connected to exactly two distinct input units and one output unit.

g A sink is connected to exactly one input unit (and, hence, has no “output”).

30

type

77. MER = UI-set × UI-set
value

77. mereo U: U → MER
axiom

77. wf Mereology: PLS → Bool

77. wf Mereology(pls) ≡
77. ∀ u:U•u ∈ obs Us(pls)⇒
77. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
77. case (u,(card uius,card ouis)) of

77a. (mk We(we),(0,1)) → true,
77b. (mk Pi(pi),(1,1)) → true,
77c. (mk Pu(pu),(1,1)) → true,
77d. (mk Va(va),(1,1)) → true,
77e. (mk Fo(fo),(1,1)) → true,
77f. (mk Jo(jo),(1,1)) → true,
77g. (mk Si(si),(1,1)) → true,
77. → false end end

A.3 Part Concepts

An aspect of domain analysis & description that was not covered in Sect. 2 was that of de-
rived concepts. Example pipeline concepts are routes, acyclic or cyclic, circular, etcetera. In
expressing well-formedness of pipeline systems one often has to develop subsidiary concepts
such as these by means of which well-formedness is then expressed.

Pipe Routes:

78. A route (of a pipeline system) is a sequence of connected units (of the pipeline system).
79. A route descriptor is a sequence of unit identifiers and the connected units of a route

(of a pipeline system).

type

78. R′ = Uω

78. R = {| r:Route′•wf Route(r) |}
79. RD = UIω

axiom

79. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

79. descriptor: R → RD
79. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

80. Two units are adjacent if the output unit identifiers of one shares a unique unit identifier
with the input identifiers of the other.

value

80. adjacent: U × U → Bool

80. adjacent(u,u′) ≡
80. let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in

80. ouis ∩ iuis 6= {} end

31

81. Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.

a The empty sequence, 〈〉, is a route of pls.
b Let u, u′ be any units of pls, such that an output unit identifier of u is the same

as an input unit identifier of u′ then 〈u, u′〉 is a route of pls.
c If r and r′ are routes of pls such that the last element of r is the same as the first

element of r′, then rbtlr′ is a route of pls.
d No sequence of units is a route unless it follows from a finite (or an infinite)

number of applications of the basis and induction clauses of Items 81a–81c.

value

81. Routes: PLS → RD-infset

81. Routes(pls) ≡
81a. let rs = 〈〉 ∪
81b. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
81c. ∪ {rbtl r′|r,r′:R•{r,r′}⊆rs}
81d. in rs end

Well-formed Routes:

82. A route is acyclic if no two route positions reveal the same unique unit identifier.

value

82. acyclic Route: R → Bool

82. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i6=j ∧ r[i]=r[j]

83. A pipeline system is well-formed if none of its routes are circular (and all of its routes
embedded in well-to-sink routes).

value

83. wf Routes: PLS → Bool

83. wf Routes(pls) ≡
83. non circular(pls) ∧ are embedded in well to sink Routes(pls)

83. non circular PLS: PLS → Bool

83. non circular PLS(pls) ≡
83. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

84. We define well-formedness in terms of well-to-sink routes, i.e., routes which start with
a well unit and end with a sink unit.

value

84. well to sink Routes: PLS → R-set

84. well to sink Routes(pls) ≡
84. let rs = Routes(pls) in

84. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

32

85. A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

85. are embedded in well to sink Routes: PLS → Bool

85. are embedded in well to sink Routes(pls) ≡
85. let wsrs = well to sink Routes(pls) in

85. ∀ r:R • r ∈ Routes(pls) ⇒
85. ∃ r′:R,i,j:Nat •

85. r′ ∈ wsrs
85. ∧ {i,j}⊆inds r′∧i≤j
85. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

Embedded Routes:

86. For every route we can define the set of all its embedded routes.

value

86. embedded Routes: R → R-set

86. embedded Routes(r) ≡
86. {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

A Theorem:

87. The following theorem is conjectured:
a the set of all routes (of the pipeline system)
b is the set of all well-to-sink routes (of a pipeline system) and
c all their embedded routes

theorem:

87. ∀ pls:PLS •

87. let rs = Routes(pls),
87. wsrs = well to sink Routes(pls) in

87a. rs =
87b. wsrs ∪
87c. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
86. end

A.4 Materials

88. The only material of concern to pipelines is the gas49 or liquid50 which the pipes
transport51.

type

88. GoL
value

88. obs GoL: U → GoL

49 Gaseous materials include: air, gas, etc.
50 Liquid materials include water, oil, etc.
51 The description of this document is relevant only to gas or oil pipelines.

33

A.5 Attributes

Part Attributes:

89. These are some attribute types:
a estimated current well capacity (barrels of oil, etc.),
b pipe length,
c current pump height,
d current valve open/close status and
e flow (e.g., volume/second).

type

89a. WellCap
89b. LEN
89c. Height
89d. ValSta == open | close
89e. Flow

90. Flows can be added (also distributively) and subtracted, and
91. flows can be compared.

value

90. ⊕,⊖: Flow×Flow → Flow
90. ⊕: Flow-set → Flow
91. <,≤,=,6=,≥,>: Flow × Flow → Bool

92. Properties of pipeline units include
a estimated current well capacity (barrels of oil, etc.),
b pipe length,
c current pump height,
d current valve open/close status,
e current Laminar in-flow at unit input,
f current Laminar in-flow leak at unit input,
g maximum Laminar guaranteed in-flow leak at unit input,
h current Laminar leak unit interior,
i current Laminar flow in unit interior,
j maximum Laminar guaranteed flow in unit interior,
k current Laminar out-flow at unit output,
l current Laminar out-flow leak at unit output,

m maximum guaranteed Laminar out-flow leak at unit output.

value

92a. attr WellCap: We → WellCap
92b. attr LEN: Pi → LEN
92c. attr Height: Pu → Height
92d. attr ValSta: Va → VaSta
92e. attr In FlowL: U → UI → Flow
92f. attr In LeakL: U → UI → Flow
92g. attr Max In LeakL: U → UI → Flow

34

92h. attr body FlowL: U → Flow
92i. attr body LeakL: U → Flow
92j. attr Max FlowL: U → Flow
92k. attr Out FlowL: U → UI → Flow
92l. attr Out LeakL: U → UI → Flow
92m. attr Max Out LeakL: U → UI → Flow

A.6 Flow Laws

93. “What flows in, flows out !”. For Laminar flows: for any non-well and non-sink unit
the sums of input leaks and in-flows equals the sums of unit and output leaks and
out-flows.

Law:

93. ∀ u:U\We\Si •

93. sum in leaks(u) ⊕ sum in flows(u) =
93. attr body LeakL(u) ⊕
93. sum out leaks(u) ⊕ sum out flows(u)

value

sum in leaks: U → Flow
sum in leaks(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

sum in flows: U → Flow
sum in flows(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

94. “What flows out, flows in !”. For Laminar flows: for any adjacent pairs of units the
output flow at one unit connection equals the sum of adjacent unit leak and in-flow
at that connection.

Law:

94. ∀ u,u′:U•adjacent(u,u′) ⇒
94. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in

94. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

94. attr Out FlowL(u)(uid U(u′)) =
94. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u′)(uid U(u)) end

