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Scheduling and rescheduling of trains

1.1 Introduction: the PRaCoSy project

The PRaCoSy (Peoples Republic of China Raay Computing Sytem) project
was a collaborative project between the Chinese Ministry of Railways and/UN
IIST, the United Nations University International Institute fafSvare Technol-
ogy in Macau. The first phase ran from September 1993 to December 1994 and
the second from August 1995 to March 1996.

The project aimed to develop skills in software engineering for autamati
in the Chinese Railways. A specific goal was the automation of the system f
monitoring the movement of trains and rescheduling their arrivals andrtleps
to satisfy operational constraints.

1.1.1 The problem

Efficient use of railway resources involves good allocation of resourcdsiarai
track, rolling stock and staff. This project was concerned with allocatidreok.
There are two activities involved:

scheduling : the creation of a timetable for all the trains: passenger, freight,
military, etc.

rescheduling : the modification of the timetable to take account of disturbances
such as lateness of trains and breakdowns.

A computerized system to support these activities is cal@id@atchsystemgis-
patchersare people responsible for monitoring and coordinating the movement
of trains, ensuring that they run as far as possible according to tie¢dinie. They
do this by communicating with stations the timetables and adjustmeiein.
Technically, astationis anywhere that there are switches (points) enabling trains
to move from one line to another, or where different lines meet. Inq@aar it
includes both passenger stations and marshalling yards for freighd.train

In China dispatching is done by dispatchers workinglispatch unitsand
communicating with stations and other dispatch units. They make desialmut
how to make changes to arrivals and departures of trains in order to minih@ze
effects of disturbances. Currently the work is entirely manual (pencil ape)
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2 Scheduling and rescheduling of trains

and slow. The slowness is due to both the manual methods and poor cicamu
tions.

When dispatchers make decisions to dispatch, delay or reroute trainsthey n
to check a number of things. Is a new route feasible? Are there enou@brpiat
or tracks in each station to hold the trains intended to occupy it at any oe€ ti
Are there clashes over the occupations of tracks or of lines between stafions?
the rules in China about minimum separations between departures ancsdraval
ing adhered to? Can the trains make the journeys in the times allowéeény t
according the the normal and any special speed restrictions? Etcetera. Know-
ing and conforming to these rules is part of the skill of the dispatdingralso
something the computer can check more rapidly and more definitely, alldthéng
dispatcher to concentrate on the tactical decisions of what changes to try.

It might seem that dispatching is safety-critical in keeping trains safely sep
arated. This is in fact not the case: there are other safety systems to prevent
accidents. But a timetable that predicts an impossible future is lefligte; it will
simply cause more rescheduling to be necessary as the problems becometmanifes

The area chosen for the initial stage of the project was the 600km limebat
Zhengzhou and Wuhan. This includes part of the main north-south éitveclen
Beijing and Guangzhou (Canton) and is one of the busiest railway areasnia.Ch
It is also a critical national infrastructural resource. The area includesgttih
units and 90 stations. See Figure 1.1. It is not a toy example!

1.2 The running map tool

Figure 1.2 shows the prototypenning maptool that was produced in phase 1 of
the project.

This copies closely the large sheets of paper that are used currently byctssat
Stations are listed vertically, time passes horizontally, and the pétingins are
shown in the central area. Currently the display is showing part of atéibte
for trains running between Nanjingxi and Shanghai (the southernopooti the
line from Beijing to Shanghai). Consider train Y1, due to depart fidamjing

at 08:28. Note that it is due to overtake train K335 in Danyan. Now cs@pY'1
leaves Nanjing a few minutes late. There are several possibilities:

¢ Y1 may be able to travel more quickly than timetabled and pass through
Danyan on schedule;

¢ Y1 may pass through Danyan only a very short time before K335 is due to
leave; K335 will then be delayed;

¢ Y1 may pass through Danyan just after K335 has left and (unless they are
or can be put on differentlines) Y1 will be delayed. The extent to which Y1
is delayed will depend on the signalling, and hence the train capacity, of the
line between Danyan and Changzhou.
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Figure 1.1: Zhengzhou — Wuhan line map

The dispatcher has to decide which of these will occur and react accordingly. If
K335 is not a passenger train it might be possible to dispatch it fdamyan
early, or even cancel its stop there, so that Y1 can overtake it it at Changzhou
(which might also mean changing K335’s track at Changzhou). Or K335 can be
told to wait at Danyan until Y1 has passed and, perhaps, be delayed at Changzhou
but be back on time at Wuxi since it seems to travel comparatively slowm fr
Changzhou to Wuxi.

In this case the dispatcher has perhaps nearly an hour to make his decision,
work out the detailed adjustments and transmit them, but this is afiysang.
The display shown here is also unrealistically sparse; it only showgpiaal
timetable for passenger trains.

The dispatcher needs information about how fast trains are allowed & tnav
different lines, on the tracks available at stations, on the lines alailaiziuding
the possibility of switching a train to the “opposite” line), oretbapacity of lines,
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Figure 1.2: Running map tool display

on the relative priorities of trains, etc.

The mode of operation of the tool for rescheduling is that the dispatcdn
make adjustments either graphically (by clicking and dragging on thdagisp
or textually (by clicking on a train identifier icon to bring up a teattimetable
for the train and editing it). If such an operation breaks one of the “fue=e
Section 1.4.5) then a pop-up window will appear describing the inbactivhen
the dispatcher is happy with the adjustments they can be “committed” amzti
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timetable output.

The same tool can be used for scheduling — the creation of timetables. This
is done by starting with the “basic” passenger timetable for 24 hourthécur-
rent period, such as Summer, and then adding all the freight and additiaimal t
required for that day. This is then split into 12-hahift plansand then again into
3-hourstage plans A dispatcher is typically operating one stage plan and also
reflecting “knock-on” effects into the next one.

The display shows oreegmentwhich is a set of stations connected linearly by
lines. The area covered by a dispatch unit will typically involve sevegirents.

So, for example, train K340 terminates at Zhengjian but train K326 coesin
from Nanjing on a different segment. The textual display for thexgahow this.
It is possible to switch the display to different segments.

This prototype tool is only intended to aid planners and dispatchednels
not try to find solutions to problems. It was felt that such a “passiwel tould
be much more likely to find acceptance initially than one that tried to taketbe
existing dispatching job. It was also felt that it would take sometiounderstand
the tactics used by actual dispatchers, and to create a tool whose propagals wo
be respected by them.

1.2.1 Methodological approach

PRaCoSy is one of UNU/IIST'sadvanced development projechs these projects
the work takes place at UNU/IIST in Macau and is done by “fellows” from one
or more developing countries trained and supervised by UNU/IIST. stiafthis
project the fellows were (except for one) software engineers from thaeShi
Railways.

The purpose of such projects is both to train the software engine@ivéau
and also to improve the software capability of their institution. Aimcomponent
in this capability is the development ddmain model& their area of interest —
railways in this case. So a major part of the project was devoted to domaysanal
and modelling of railways.

Work done by UNU/IIST involving public funds is automaticallylgic do-
main. So software production within such projects is limited toqgie, demon-
strator software.

Three stages were therefore followed in phase 1 of the project:

Domain analysis : thorough understanding and documentation of the compo-
nents of a railway

Requirements capture : documentation of the various functions required to sup-
port scheduling and rescheduling

Software development: production of a prototype tool

In the three Sections 1.4, 1.5 and 1.6 we describe these three stages.
Phase 2, involving new Fellows had two main tasks:
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1. following evaluation of the prototype running map, to consated specify
the changes needed to make a tool that could actually be used by dispatch-
ers;

2. to consider the problems of a distributed running map, alloworgdfs-
patchers and dispatch units to operate concurrently while maintaining a
consistent view of the schedule and adjustments to it.

Phase 2 is described in Section 1.7.
In Section 1.8 we draw some conclusions.

1.2.2 Levels of formality

Throughout the project the approach wiasmal using the RAISE specification
language and method [RAI92, RAI95]. There is a variety of ways in which f
mality may be applied to software development:

¢ The “lightest” approach is to write an initial specification and then use it t
produce programming language code.

¢ A “heavier” approach is to write the initial specification and themefine
it in one or more steps into a more concrete specification before praglucin
a program from it. This approach gives the opportunity to:

¢ provethe refinement steps are correct, the “heaviest” and most expen-
sive approach, or to

¢ justify the refinements wholly or partly informally, the “rigorous” ap-
proach [Jon80].

There are also other variations possible. A common tactic is to chooseupeantty
critical properties of a system and prove only those for the initiat#jration and
refinements. Safety-critical properties are often tackled in this way.

Common to all these approaches is the pivotal role of the initial spedaificat
It is this that is meant to describe the domain and the system requirerapdti
must be shown to be correct with respect to the client’'s or custometignsodf
what they want. Showing this we calalidation Validation is inevitably infor-
mal (assuming your client is not able to present you with a formal spedifigat
because their requirements are written in natural language, which is ingvitab
ambiguous and typically incomplete in some respects and inconsistaherso

In this project we adopted the “light” approach, which we saw as most appro
priate for a system that was not safety-critical. It therefore diffemnfexamples
like [DM94, Han94, OH95, Sim94]. (Although a description of &t&m to mon-
itor rail freight [DPdB95] points out that systems whose failurexpensive may
also be considered critical.) We also wanted to adopt a “rapid prototyple” ity
development. Such a style is particularly appropriate when you hopeptade
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computer support for an activity previously done manually, and wheseaccep-
tance may be part of the problem. “The tool must be acceptable to userstis har
to formalize! A brief introduction to the RAISE Specification Language tred
style adopted is given in Section 1.3.

We believe that much of the advantage of formality lies in creating thiglini
specification. It serves to isolate and clarify the important concepts, te thakn
amenable to formal or informal but still precise analysis, and also tdglbse
aspects which are not or cannot be formalized, the “non-functional” reqaimsm
like acceptability. A development plan can then make sure that these are dealt
with in some way. (A general discussion on non-functional requirememds
how to deal with them is beyond the scope of this chapter.) Getting mdref
formality, proving critical properties or doing refinement, givesliertconfidence
in correctness but at substantial cost: there is a law of diminishingT®t

1.3 The RAISE Specification Language

The RAISE Specification Language (RSL) [RAI92] is a “wide spectrum” lan-
guage: it is possible to describe applicative or imperative, sequentiahaurrent
systems. The normal style proposed in the RAISE method [RAIg6]s¢art with

an abstract, applicative sequential specification and to develop this to a encret
specification, initially still applicative and then, usually, imperataral perhaps
concurrent. Phase 1 of this project adopted the “light” approach referre@vé pr
ously. It only used the applicative sequential style and was rather moczate

than a style one would adopt using a “heavier” approach. Phase 2 used a more
abstract approach to analysing the distribution of the running mdmtabalso
developed a concurrent specification to describe an architecture for it.

RSL specifications are collections of modules, usualihems which are
named (and possibly parameterized}ssexpressions. We do not present here the
complete specification; that for phase 1 can be found in [Pre94] and for plrase 2
[Don96]. Both are available via the UNU/IIST home page http:/iwigt.unu.edu.
Neither do we show here the division into modules. Most modules baartic-
ular “type of interest” and provide functions to create, modify and olesealues
of this type. There are modules describing the tyjpack then one usingrack
to defineStation one definingLine, then one usingtationand Line to define
Network and so on.

A typical applicative class expression contains one or nyje declarations,
one or morevalue declarations for defining constants and functions and perhaps
someaxiom declarations containing axioms used to constrain the values.

1.3.1 Types

Type declarations may be “abstract” or “concrete”. An abstract type, also termed
a “sort”, is just given a name. If we declare
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type Date

then Dateis a sort. We know nothing about its structure, about how dates will
be represented. It might later be modelled as a natural number (theNpe
interpreted as days since some base date, or a record of day, month and year.

If Dateis defined as a sort it is still possible to constrain it to say, for gddam
thatDatevalues are totally ordered. We might do this by introducing and operator
and some axioms:

value
< : Datex Date— Bool
axiom
[ reflexivel
vV d: Date- d< d,
[transitive
vV d1,d2,d3: Dated1< d2A d2< d3= d1< d3,

In the phase 1 specification only a few rather uninteresting types,dikifiers
for tracks, stations, trains, etc. were defined as sorts, and no axioms iwene g
In this case all we have for values in the type are equality and inequaliity the
standard congruence properties).

A “concrete” type is defined by being equal to some other type, or a type
expression formed from other types. For example

type
Year= Nat,
Month={|n:Nat-n>1An< 12|},
Day={|n:Nat-n>1An< 31|},
Date= {| d: Yearx Monthx Day- is_day(d)|}

definesDateconcretely in terms of tuples dear, Month andDay. Nat is built in,
together with literals likeD and 1, plus standard operators like and<. Month,

Day and Date are all subtypesis_day will be a function defined elsewhere (to
deal with months of less than 31 days and with leap ye&sgjayhas result type
Bool, and so might be termed a predicate: predicates are not distinguished from
functions.

x is a type constructor. Others used here g (finite power set); (finite
sequence)+ (finite map),— (total function) and= (partial function). Each
has a number of corresponding operators, such @sembership) and (subset)
for sets,dom (domain) andng (range) for maps. Function, map and list (index)
applications are written by enclosing arguments in brackets, @sday(d)

We also commonly use “variant” and “record” types. Alternatives to some of
those above are
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type
Month== Jan| Feb] ... | Dec,
Daté :: year: Year month : Month day : Day,
Date= {| d : Daté - is_date(d) }

Here Month is a variant (in this case just like an enumerated type in other lan-
guages: more complicated variants, including recursive ones, are @)sSihle
ellipsis ..., used here for convenience, is not valid RRate is a record. It is
much like the tuple used earlier fratebut allows convenient extraction of com-
ponents, by “destructors” likgear Destructors are functions, sodfis a Date,
year(d)is its year.

1.3.2 Constants and functions

Constants and functions are values, and must be given at least “signatures” —
names and types:

value
start : Date,
next : Date— Date

In a concrete style we often give “explicit” definitions for values. Se might
write

value
start : Date= mk_Datée (0, Jan, 1),
tomorrow : Date— Date
tomorrow(d)=
if endof_month(d)then ...
elsemk_Daté (year(d), month(d), date(d) 1)
end

mk_X is the “constructor” for a record typ¥.
More implicit styles are also possible. For example, one might defaséer-
dayas the left inverse aiomorrowby a postcondition:

value
yesterday : Daté> Date
yesterday(dasd’
post tomorrow(d) = d
pre d # start

Or we might use an axiom:
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value
yesterday : Daté> Date
axiom
V d : Date- yesterday(tomorrow(dy d

If we are doing more formal development we might start with the axiompost-
condition for yesterdayand later devise the explicit algorithm and then prove it
satisfies the earlier specification. This is a simple example of refinement.

1.3.3 Benefits

All this looks like rather like functional programming, and, apadrfrthe axioms
(which were rarely used in this “light” style), directly implementable. \&lay
bother with a specification?

The built-in data structures are much more convenient to use thanakage
able in a language like C. This allows very rapid modelling of the dosai-
volved and convenient and terse expressions of the functions. These ate eas
read, easy to discuss with others, and easy to modify. And it is also eagy to e
press critical properties, either as theorems or as earlier specifications, and then
prove them (which is not always so easy!). Some of this would alsoueeitra
functional programming language, or in one having the built-ires/ps generic
modules. But the ability to state and reason about critical propertigsitially
or with a proof tool) would still be lacking.

Second, there are functions even in this style which are not immediately e
cutable but which are expressible as simple specifications. For examppsnse
we want to state the property that in a timetable, if a train stops it dodsr at
leastmin_stop minutes. Assume the from a station viSITV we can extract or
calculate an arrival timarr and a departure timdep We can define a predicate
on atimetable of typdT:

value
min_arr.depseparation : T+ Bool
min_arr.depseparation(TTE
(V stv: STV- is_in(stv, tt)=
dep(stv)= arr(stv)v
dep(stv)— arr(stv)> min_stop)

This specification is not executable because of the universal quantificatien.
specification does not say how we extract all the station visits fromintetable.
Instead it is expressed at the level of the requirement. Hence it is easydatgal
against the requirement. It is important that the initial specificatiorttiagprop-
erty of being “at the appropriate level” for validation, for checking thaheets
the requirements. If we are forced to write something executable, anthgivght
to the algorithm as well as the condition, this makes things much nifficudt.
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Neither does this specification say what we do if the timetable does not meet
the requirement. Presumably we would like the final program to say sameth
rather more informative than “false”.

We will see in Section 1.6 how the problems of algorithm and message-gener
ation were dealt with when we translated to C.

We shall also see in Section 1.7.3 how the specification in terms of such pred
icates over timetables led to a completely different style of implementaiging
constraint propagation.

We are not advocating such a style for all projects. Critical applicatiats w
need more statements of even higher level properties and hence a greater degree
of abstraction and of proof. We are trying to show how a “light” approzen be
extremely valuable in obtaining a precise definition of the problemalomand in
capturing the main requirements.

A more abstract approach is also useful in tackling issues that we want to
separate from the details of the example being dealt with. The workidgiease
2 on distributing maps, described in Section 1.7.2, is an examplésof th

1.4 Domain analysis

The purpose of domain analysis is to understand and document the centpon
of the system and its environment. So in our case we ask immediatiedt is
(re)schedulingThis leads immediately to descriptions in termswfning maps
timetablesand railwayregulations which in turn involve terms likenetworkof
lines and stationsandtime intervals To understand these terms in the fullest
sense we need assurance that what we think they mean corresponds to what our
customers think they mean, and when our customers speak a different language
and come from a different cultural tradition it is particularly criticalves if we
were experts in railways there is a significant, perhaps even enhanced, deiger t
the differences in railway cultures will cause problems. In phase 1 thenell
were not experienced in dispatching.

This problem was tackled from two directions: informal and formal.

1.4.1 Informal description

The informal domain descriptions involved several components. Thexg vin-
tended for domain experts, i.e. railway staff, especially dispatchers, riuher
computing experts:

Synopsis: a summary of the domain;

Narrative : a more detailed explanation of the domain in terms ofd@siponents
andprocesses

Terminology : a list of technical terms and their definitions.
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In fact the first document in this group was translated from Chinese; itthvas

first “statement of requirements”. Then we produced a synopsis and narrative
and effectively “replayed” our understanding of (currently relevant) pdrtisese
requirements. At the same time the terminology document was writtEngtish

and then translated to Chinese so that it could more effectively be checked by
people in China.

1.4.2 Formal description

At the same time as trying to capture the domain in natural languageaffor
model was constructed. This formal model was be the basis for the reguitem
capture and software development, and hence the basis for its correctnatbs (o
erwise). There were two components:

Domain specification : specifying the intrinsic domain notions in RSL [RAI92];

Data flow diagrams : recording basically therganizationof the activities in-
volved in (re)scheduling. Figure 1.3 is an example.

The labelled arrows were accompanied by descriptions of the data. E.g. E1
is “Station states; track states; time traces”. Time traces are relevant events
like train arrivals and departures, with times.

We did not claim any mathematical semantics for our data flow diagrams;
they should perhaps be termed “semi-formal” in that they almost certainly
could be formalized [LPT94] but we did not want to use them in a formal
way. That is, we had no intention efasoningthat our system would be
correct with respect to them.

1.4.3 Aspects of domains

In doing domain analysis we consider and document a number of aspects:

Intrinsics : The essential technical aspects of the domain — in our case such
things as lines, stations, trains, timetables etc.

Support technology : The technical aspects of the domain that depend on a par-
ticular technology and which may change with time. Thus particular sig-
nalling and interlocking mechanisms would be in this category.

Regulations : The regulations that affect the system, i.e. that it must conform to
or for which breaches must be detected and handled in a special manner.
This is obviously important for railways, and would be importamtainy
safety-critical system.
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Figure 1.3: Data flow diagram for stage plan adjustment

Staff : The maintainers and (for safety-critical systems, for example) iteirsp
tors or people who license it for use.

Clients : The users of the system.

Computing and communications platforms : Details of the hardware on which
the system is to run or with which it is required to interact.

The intrinsics are documented by creating a formal description, a speaifiazti
the system. Support technology aspects may be captured by extensibasrof t
trinsics, butin general we try to avoid this, to make at least thealrgpecification
independent of them. Regulations should be captured formally. Othectasgre
typically mostly informal; they are (like support technology)dik to give direc-
tion later in the development but not be captured in the initial specificatvhich
should be high level and abstract.

Why do we stress the idea of domain analysis prior to requirements e&ptur
These notions are normally regarded as part of requirements capture. Téere ar
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two reasons:

+ Domain analysis involves understanding the environment of the syatem

well as the system itself. That is, we look more widely than the boueslar
of the system; we try to understand the world (including the humé&aorey)
within which it will operate. Only when we have thoroughly undecsto
this do we attempt to define all the processes in this domain, the eiliti
our system will provide. Defining these facilities (again mostly fotgjal
will be the requirements capture step.

Domain analysis is often wider than the immediate concerns of the current
system: it can be the basis of other systems in the same domain. For ex-
ample, the model of lines and stations we developed for the running map
tool provided the basis for work developing tools for station mamagnt
[Yul95]. This has obvious reuse advantages for anyone hoping or plan-
ning to produce further software in the domain. Using the same Uyicdgr
domain model also makes it much easier to ensure that systems will inter-
operate correctly.

In fact the model used to describe station management needed more de-
tail about switches and crossovers, about the detailed routes between lines
and tracks. We defined a notion oLait as a piece of track witlconnec-

tors Lines and tracks are constructed from linear (two-connector) units.
Switches and crossovers have three or more connectors. Units hawe poss
ble paths through them (so we can distinguish switched and non-gditch
crossovers, for example) and also states (so that we can model the changing
of a switch). The notions of line and track used in the model presented her
can be easily extended with information about their constituent units.

1.4.4 Specification of the railway network

Thenetworkconsists obtationsconnected byines A station consists essentially
of a number otracks Figure 1.4 shows a station with five tracks.

DOWN

| QJHU‘

UpP

Figure 1.4: Example station layout



Bjarner, George & Prehn 15

The Roman numbering of the “through” tracks used for non-stoppaigd, and
the even/odd numbering for up/down lines are Chinese conventions.

1.4.4.1 Tracks

For each track there are number of lines from which the track can be reached, and
a number of lines that can be reached from the track. Tracks also have lengths
and types. Stations, lines and tracks all have identifiers. We definegb&R/to

model tracks:

type
TR :: fns : LNidset tins : LNid-set t: TRtype Ing : LNG,
TRtype== LINE | SIDING | PLATFORM| FREIGHT,
LNG = Nat,
LNid

This and the rest of the specification were written in RSL, and the RAVSIS t
[BT95] were used to type check them and pretty print them.

TR is a record with four components: the possible incoming lifies out-
going linestins, typet, and lengthing. TRtypeis a variant type containing four
constant values.

1.4.4.2 Stations
The station typeST is then a finite map (in general a many-one relation) of track
identifiers to tracks:

type ST= TRid » TR

1.4.4.3 Lines
Lines go from one station to another, have a type, a length and a ma)dpesq:

type
LN': s1:STid s2:STid It: Ltyp Ing: LNG sp: SP,
Ltyp == UP| DOWN | BOTH,
SP= Nat,
LN ={|In:LN"-s1(In)# s2(In)|}

We expressed the requirement that lines link different stations byfiseubtype
definition for the type.N.

1.4.4.4 The network

The network consists of a collection of stations, modelled as a map, arge:-co
tion of lines, also modelled as a map. But there is a convention that fotwamy
stations connected by one or more lines, one direction between theff @&d
the other isDOWN. (The running map display also follows this convention in its
orientation.) We want to observe this convention in the way we labes oy their
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end stations: goinOWN from s1to s2 So if there is a line from one station
to another then any lines between these two stations will have the statidime
same order, i.e. none will have them in the opposite order:

type

ST.m= STid m ST,

LN_m' = LNid m LN,

LN-m={| Inm: LN_.m" - is-wf_LN_m(Inm)|}
value

iswf_LN_m : LN.m' — Bool

is.wf_LN_m(lnm)=

(VIn,In': LN -
{In,In"} C g Inm=- (s1(In),s2(In))}~ (s2(In'),s1(In)))

The network is the combination of the line map and the station mapelteoidas
a cartesian product (tuple), but with a number of well-formedness dondit

type
NW' = ST.mx LN_m,
NW = {| nw: NW' - is-wf_-NW(nw) |}
value
is.wf_NW : NW' — Bool
is.wf_NW(stm, Inm)=
(VIn:LN-Inermg Inm=-{s1(In),s2(In} C dom stm)A
(V s: STid- se dom stm=-
InstoST(s,Inmj InsfromST(s,Inm)= {} A
Vitr:TR-
tr € rng stm(s)=
fins(tr) C InstoST(s,InmN tins(tr) C InsfromST(s,Inm)))

The well-formedness conditions for the network are:
¢ the stations at the ends of lines are in the station map, and
+ for each station in the station map:

¢ the lines into the station are disjoint from the lines out of tteish,
and

o for each track in the station, the lines into it are a subset of the lines
into the station and the lines from it are a subset of the lines fran th
station.

The auxiliary functionnstoSTis defined as follows:

value
InstoST : STidx LN_m — LNid-set
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InstoST(s,Inme
{ Inid| Inid : LNid - Inid € dom Inm A is_Into(Inm(Inid),s)},

is_Into : LN x Stid— Bool
is_Into(In, s)=
let mk.LN'(s1,s2,It,_,_ )= Inin
(It = DOWNA s2=s)V (It= UPA s1l=s)V
(It =BOTHA s€ {s1,s2)
end

InstoSTdefines the lines into a station using a set comprehension: it retwses th
lines in the line map that go into the station. A line goes into aaaiif it is a
DOWN line and its second end stationgsr if it is an UP line ...

InsfromSTis defined similarly.

1.4.5 Specification of timetables

The following concepts were defined:

Station visit : A record of station and track identifiers, arrival and departure
times, optional departure line, arrival and departure lengths of traihs.
well-formedness condition is that the arrival is not earlier than the deyear
(equality indicating passage through without stopping). Timedslefied
by a typeT, a subtype ofNat including those times in minutes that repre-
sent dates from the (the arbitrarily chosen) beginning of 1993 teitigeof
2399:

type
STV'::s:STid tr: TRid a: T d: T din: OptLN al : LNG dl : LNG,
STV={|stv: STV - d(stv)> a(stv)|},
OptLN == nil | mk_LN(l : LNid)

Journey : A sequence of station visits. The well-formedness condition is kigat t
sequence is non empty, departure at one station precedes arrival at the next,
and only the last visit may have no departure line.

type

J = STV,

J={]j: 3 j# () niswiI)|}
value

is.wf_J : J — Bool

is.wf_J(j) =

(Vi: Nat-
{ii+1} Cindsj =
a(j(i+1)) > d(j()) A (din(j(i)) = nil = i = len}))
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There is an additional function expressing the well-formedness afragy
with respect to a network. It requires that the stations exist, the teisks

in the station, the departure and arrival lengths are not less thanaitie tr
length, and (for visits apart from the last) the departure line isafliom the
station to the next, goes from the track, leads to the next track, trertdep
length equals the next arrival length, and the travel time is consistiémt
the maximum speed and length of the line.

Segment: A non-empty sequence of stations. The well-formedness condition is
that the adjacent stations are connected by at least one line, and the segment
is listed in theUP order.

Timetable : A map from train identifiers to journeys. Train identifiers include
a date as well as a (sort) identifier so that we can distinguish between the
same train on different days.

type
TNid :: id : TNid_ dt: Date,
TNid_,
TT = TNid m J

A “basic” 24-hour timetable, such as the Summer one, has all dates set to
zero.

We do not use a subtype for well-formedness of timetables since we ex-
pect that during adjustment they will temporarily be ill-formed.téal we
specify a function that can be used to check them.

There are three kinds of well-formedness conditions for timetables:

1. Consistency between the timetable and the network, i.e. all journeys
are well formed.

2. The physical constraint that trains on the same line cannot overtake.

3. A number of regulatory rules. There are minimal time separations
between:
¢ trains occupying the same track
¢ two station entries on the same line
¢ two station exits on the same line
¢ occupations of a line in opposite directions.

Projection : A restriction of a timetable to a particular segment and a particular
time period. A projection of a timetable gives the display of the mgn
map tool.
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Before discussing, in Section 1.5, the stage of requirements captisrevdrth
reflecting on what the domain analysis achieved. We had a formal and hence very
specific semantic definition of a whole number of concepts that are commonly
used in (Chinese) railway circles but were initially difficult for outsid to grasp
(apart from the translation problem in going from Chinese to Ehyli&\nd the
specifications we generated (accompanied by commentary much like that used in
this chapter) were examined and discussed by the Chinese fellows at @&NU/II
so that we gained assurance that these particular definitions are the coagct on
We had also defined a number of well-formedness conditions. Many of these
are consistency requirements — stations at ends of lines exist, traihgxist-
ing stations on existing tracks by existing and reachable lines, etc. Wideys
expressegulationsabout the way that Chinese railways are operated. Hence the
specification provides theoryof railway networks and of the operation of trains:
we can formulate as theorems expected properties and justify them, either for
mally by theorem proving or informally. Doing so is an essential paxtadidat-
ing the specification, i.e. checking that it meets its requirements. It is an tengor
feature of the model that it allows the easy and transparent statement latiegs
as well-formedness functions, so that validation is simple. We can valttat
a well-formed timetable complies with a regulation by pointing te ghedicate
expressing it. A close correspondence between requirements and therstofctu
the specification also provides a good basis for requirements tracking.

1.5 Requirements capture

Requirements capture extends the formal specification produced by therdomai
analysis with the definitions of the operational facilities that theesyswill pro-

vide to its users. In our case the domain analysis gave us in particdédirgtion

of a timetable together with all the railway regulations that make a éibietwell-
formed. The task in requirements analysis is then to specify the runmapgool.

We already had the functions to project a timetable on to a particular panida
particular segment, hence defining the contents of the main window ofrtinéng

map tool. We defined in addition:

¢ functions to input timetables to the tool — to suppssheduling

¢ functions to modify a timetable — to suppaeesscheduling

The first of these resulted eventually in a separate tool for timetapid,ias the
mainly graphical means of editing timetables in the running map tooethiout
to be too clumsy for inputting large amounts of data. Then the nornoalem
of operating the running map tool was to start by loading a completetdibhe.
There are several kinds of timetable. The process starts whiihsitimetable,
which is not set to any particular day. From a basic timetable, 12-$tuftrplans
are generated by planning units, and from these typically 3-btage plansre
generated and used for rescheduling by dispatch units. The ability ecpmjer
periods and segments allows all these activities to be supported.
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Rescheduling is currently done manually, by drawing on large sheetgpefp
(prepared with the segment stations listed) lines indicating how#estshould
move and stop. Rescheduling is done by erasure and redrawing. A cortgaiter
to support this activity clearly needs to be mainly graphic, with thesibigy to
draw lines, move them, shift points on them, etc. But the displaypsedsentially
an abstraction. It doesn't show which line between stations is being ysad b
train, or which track in a station. Itis also hard to read precise times.dldeawn
running maps do have more annotations to help with some of thebleprs.) So
the tool has a number of tabular displays that can be shown by clickindgrama
identifier, to show complete details of its journey, or on a statioshbw complete
details of all visits to that station. Changes can be made by editing dith&atiles
or the graphic display.

We also attempted to formally specify the widgets generating the actual dis-
play of the running map tool, which is (X) window-based. This captureite
well the hierarchy of processes and the effects of events — button pushesg mo
clicks etc. — but says nothing about the appearance and is of little usddn ju
ing the usability of the tool. This specification was actually produceet dlfte
tool as part of its documentation. So, in fact, we started the developstege
with a formal specification of the kernel of the running map tool, the treat
checks for well-formedness of timetables plus a specification of the prajecti
a timetable that would form the basis of the centre of the displaynbubf the
buttons, pop-up menus, etc. that would form the user interface. Insteallew
the graphic design and checked informally that the functions required fhe
data flow diagrams could be supported.

It would also be possible to start requirements capture by makiradpsinac-
tion of the specification from the domain analysis. It has been found elsewhere
[DGPZ93] that the first specifications one writes, with the aim of undading
the problem, are often more concrete than is appropriate for startisgagement.
There are standard techniques in RAISE for producing a more abstract specifi
tion from a concrete one [RAI95].

1.6 Software development
1.6.1 Design

It was decided to code the tool essentially from the initial specificatidverdhan
doing any formal development, at least in the sense of data structuetogenent.
Formalising the basic concepts by domain analysis and identifying anthfis-
ing all the functions needed to create and modify timetables had placed tketproj
on a firm footing. So there were two design tasks to be done: the gaplser
interface (which we had not specified formally) and the C data structures. Th
latter was part of translation.

The running map tool graphical interface was created using Athena widgets
and a detailed design of the tool was done showing its intended appearance, th
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widget tree and for each listing the widgets, their classes and attribttedinal
tool (which precisely follows this design) was illustrated in Figlir2 on page 4.

The display separates stations (vertically) proportionately to theiadces so
that a train running at constant speed appears as a line of constant slope. The
transformation to achieve this for any given segment was defined (inasthnd
mathematical notation).

We wanted to be easily able to instantiate the tool for particular netwyarikd
hence to be able to communicate these and to be easily able to inspect and edit
them. So descriptors in, essentially, BNF were defined for them. Then corre-
sponding C data structures were defined and the procedures to parse arsgunpar
them written.

Timetables were handled similarly.

There was a change between the specification and the final code in that the
functions to check for well-formedness were developed into functicatsgbner-
ated messages about any breach of well-formedness. These messages then appear
in pop-up windows.

1.6.2 Translation

We though that for a demonstrator tool a fairly simple strategyefuroding the

data structures would suffice. Of the data structures we had used, recantes,

sian products and enumerated types either exist in C or could be coded immedi-
ately. For maps we used a simple strategy of encoding a map as a linkedtlist

the domain element added as an extra field to the range element. For example we
have the following RSL type definitions and the corresponding Gdieiins:

type
LN_m' = LNid m LN,
LN-m={| Inm: LN.m' - is.wf_LN_m(Inm)|}

typedef struct LN.m * LN m
struct LN.m {

LN I n; [* the line record */
LN.m next_p; /* next_pointer */
¥
type
LN':s1:STid...,

LN ={|In:LN"-s1(In)# s2(In)|}
typedef struct LN * LN

struct LN_ {
LN d [ nid;
STid s1;
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So what has happened to the subtypes? Functions were written for them in C
(whether, as witl.N_m the RSL used a separate function, or, as vLith it did
not). For example, the C functiors _wf _LN;

/* well _fornmed line check */
/* sl nmust be different froms2. */
bool is_wf_LN(LN In)
{ if (ldent_eq(ln->s1, In->s2))
{error("Warning error:
expected a different station name
inline %:\n", In->Inid);
return false;

}

return true;

As well as making the check the C code also includes the generation of asuitabl
error message. Such functions are then used as part of the parsing of daia used
instantiate the tool; see Section 1.6.1. The well-formedness conslitin timeta-
bles are checked both on initial loading of a timetable and also after resamgduli
changes; they produce messages in pop-up boxes.

Functions that involved existential or universal quantification weredac it-
erative functions over the linked lists. Comprehended expressiorestvegrslated
similarly. For example, the functiomstoST for collecting the set of identifiers
of lines into a station, was specified and then translated as follows:

value
InstoST : STidx LN_m — LNid-set
InstoST(s,Inmk
{ Inid | Inid : LNid - Inid € dom Inm A is_Into(Inm(Inid),s)}

/* apply a line map and a stid. return a Inid _set to stid.*/
IDS I nstoST(LN m Inm STid stid)
{ LNmplns = Inm
IDS Is = IDS NULL;
while (plns !'= LN m NULL){
if (is_Into(lnmget In(plns), stid))
I's = ids_add(ls, In_get Inid(Inmget In(plns)));
plns = | nmnext(plns);
}

return |s;

}s

Hence the specification could be regarded as to a large extent “translatable”. At
the time, mid-1994, the translator from RSL to C++'[#] was still under de-
velopment. If we used it now it could translate the map types since itui#isrb

a standard translation for maps (not unlike the one we used). Buinikiersally
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and existentially quantified expressions would still need hand tramslaill the
functions had been specified explicitly, i.e. not using post conditisraxioms,
and many could be translated directly (and could have been translated by.a tool

It is readily apparent that the RSL specification is much easier to read than the
C code and hence much easier to validate against the requirements (and easier to
change if found not to be correct). The separation of specification frorngodi
supports a separation of concerns between conceptual correctness (is this the ap
propriate condition?) from algorithmic correctness and the appraméssts of the
messages generated. In addition the separation of the two levels wouldtmake
possible to change the data structures used (to sorted linked listesror hash
tables rather than unsorted linked lists for some of the maps or seexdmple)
if found necessary, without changing the specification.

The C functionl nst oST uses a typé DS modelling sets of identifiers (again
as linked lists) together with functions likels _add (for adding an identifier to a
set). There are functions for deletion, for set union, intersection étcolécted
into a separate module. This was typical of the general approach: each of the RSL
modules defining tracks, stations, lines, network etc. were extendetunittions
to create such an object, add it, delete it, get each component of it, and check its
well-formedness. This meant that the C code generated, as well as folldveing t
modularity of the specification, had a distinctly “object oriented” flavtauit,
with each kind of entity accessed and manipulated by its own particular collection
of functions.

1.7 Phase 2

The first group of fellows returned to China in December 1994. Two rfediews
were supposed to come from Zhengzhou in January 1995 but there welemsob
and they did not come to Macau until August that year.

1.7.1 Improving the running map specification

The main comments they reported on the prototype running map wasald-i
ity to handle different kinds of train (passenger, freight, special aritamnyl) and
locomotive (electric, diesel, and steam). It also lacked a number of special sym-
bols used as annotations: to show new trains starting, terminatingngdrom a
neighbouring dispatch unit, going to a neighbouring dispatch traihs merging,
trains splitting, temporary speed restrictions on lines, lines bloblyeadccidents
or for repair, etc.

There were a number of standard intervals for two trains arriving at mstat
on the same line, departing on the same line, etc. In the original maztd there
assumed to be constant: in fact they depend on the station and the linémé&ke
for travel on lines are also not in fact constant: they depend on the fylpe®
motive and whether the line is being used in the “opposite” model@rrain
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on aDOWN line, or vice versa). There are also additions for acceleration and/or
deceleration if the train is starting from rest and/or stopping. These wocu-
mented from the official Chinese manuals, with formulae and diagrams and th
included in a new specification, cross referenced by comments to the formulae i
the documentation.

These changes were quite straightforward to make. They appeared only in the
record types for stations, trains and lines (each in separate RSL moduleg) and
the predicates used to check well-formedness of timetables. The overalliggruct
of the specification and the types for the network and timetables were uraffect

1.7.2 Distributing the specification

The prototype running map and its specification assumed a single tile¢halb

could be projected into several segments. But in practice schedulingésahoan

area basis bplanning units who pass schedules ondspatch centreg/ho par-

tition them amongstlispatch units These dispatch units do the actual reschedul-

ing, communicating with stations, their dispatch centre and neighhgdispatch

units. We needed to work out how to distribute a timetable and thestd@nts to

it, and to analyse when adjustments to one component would affect others.
This was done by specifying a general theorylstributinga map according

to apartition of its domain. This could be applied by representing a timetable as

type TT = STid x TNid m STV

and then partitioning this according to which dispatch unit (DUid) eaatiost
belongs to. The distributed timetable would have a type

type DTT = DUid mp TT

The theory of partitioning was developed generically and then instaniiatdds
way.

In the generic theory the notion delegabilitywas defined . A functioff to
change a map idelegablef the diagram in Figure 1.5 commutes:

Heredf is f applied to just one component of the distributed map (and only
exists if f has a domain value of the map as a parameter, allowing the compo-
nent to be identified).mergeis the inverse ofdistribute Intuitively, a function
to adjust a timetable is delegable if the change can be made by one dispatcher
and the resulting timetable, formed by merging the distributed onasldibe the
same as if the adjustment had been made to an undistributed timetable. An algo
rithm for checking delegability was defined and proved correct using th&SRAI
justification editor [B~95] (the only time formal proof was used in this project).

A similar notion was applied to the conceptafalysinga map and generating
messages (to be used for the messages reporting infractions of the tingetab
rules). We need to know when, after an adjustment, we will not create angspur
messages or lose any messages because of the distribution, i.e. when e analy
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Map Map

distribute merge

Dist_Map Dist_Map
df

Figure 1.5: Correctness of distributed function

each component separately. This can be defined in terms of a similar commuting
diagram.

Another notion, not directly related to distribution but expecteddmbuse,
was that ofpartial analysis For a particular adjustment function, what analy-
ses need to be redone and which are guaranteed to generate the same messages?
Knowing this will enable us to only perform some of the checks after chang
and to reliably improve the speed of the running map tool.

These ideas were formally specified and instantiated for timetables [Geo95].
This would have enabled all the functions for adjusting timetables anchieck-
ing for well-formedness to be checked for delegability and distriblitgand for
communication procedures with neighbouring dispatch units to be defihecke
necessary.

This is an example of a general method for defining distributed systeats t
has been found effective on several systems. First the complete sysfeniftes!
as one entity. Then the division into components is done and themeticor-
rectness of the distributed system defined in terms of some equivalerctheit
original. This gives a theory about the communications and high lee¢bgols
needed in the distributed system. Trying to work “bottom up” froradfications
of the distributed components makes things much more difficult bectlassks
the notion of correctness.

It is also worth noticing that the analysis can be done without any need to
specify the distributed system as a concurrent system: the analysisderal
on an applicative model, and can even, as here, be defined initially in terms of
a parameterized abstraction of the original model, later instantiated to tinel act
one.

A development of the applicative distributed running map to a conctsgen
tem was done [Mei95].
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1.7.3 A constraint-based approach

Jimmy Ho Man Lee and Ho-Fung Leung of the Intelligent Real-Time Systems
Laboratory at the Chinese University of Hong Kong set up a jointgmtojvith
UNU/IIST during the academic year 1995-6 involving two final-year ugcet-
uates and a PhD student. They wanted to take the running map tool fimtbex,

tool that would apply constraint propagation techniques to the resahggurbb-

lem, and generate proposed solutions.

They were given the RAISE specification from phase 1, and given a breef tut
rial on how to read it — they had no previous experience with formal sppatiin.
They also had all the other documentation and the existing prototypsy Were
able, with little interaction, to reproduce the existing tool (orifeedent platform
as well as with a different implementation technique). This is a strikixam-
ple of the use of a formal description to precisely state requirementiseaen
to transmit them to people previously unacquainted with the notaitiem mini-
mal training. It also shows the benefit of specifying the conditiontsetachecked
rather than the algorithms to do so. The conditions can be validated atjaiss
in the existing documentation, because they are expressed in a sirailaemat-
ical style at the same level of abstraction, and also fairly easily communitated
others.

They were also able to devise and implement some strategies for redolgedul
[CCL™96].

1.8 Conclusions
1.8.1 Achievements

Phase 1 took just over a year, involving most of the time of five fedlfnom the
Chinese railways (though one also worked much of the time on his M&ig
on station management [Yul95], and also as a system administrator) apdrthe
time help of first the first and third of the authors of this chaptegntthe first
and second. The RSL specification for phase 1 was some 850 lines and the C
code 15000 lines (of which 5000 is the non-specified graphical useranatf
The modular structure of the C code follows closely that of the spedditathe
documentation runs to 600 pages. Many ofRaCoSy documents are available
on the World Wide Web, via the UNU/IIST home page http://wwst.linu.edu.

This is rather more than a normal industrial development of such arsyiut
a lot of time was spent on domain analysis and on training the fellowsimip in
RAISE (and C) but also in a number of software engineering disciplihedso
included work to set up configuration management and version control system
Last but not least, the fellows were working in a foreign language.

The quality of the resulting tool is very high for a prototype. dcords were
kept of errors found but few were discovered. The performance was ipiabr,
but after some tuning in terms of extra code to determine what checks needed t
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be re-done after changes to the running map it became quite acceptabledrunnin
on a SUN sparc workstation).

Phase 2 lasted 8 months and involved 2 fellows from the Chinese railways.
This phase was unfortunately curtailed when the two fellows were called back
to Zhengzhou, for reasons that were never fully explained to us, but seaerbed
their being needed for other projects. At the time they left we had incated the
changes needed to the network and the timetables (while preserving ttteisru
of the specification) and were close to translating to a new prototype.

1.8.2 Role of formal methods

Formal methods are often claimed to be expensive to introduce, difficdilean
pensive to use, to lack adequate tools, to be inapplicable to large exatopes
incomprehensible to customers, to be applicable if at all only to safetgission-
critical systems [Hal90, BH95]. This project provides some evidenamtmter
these claims.

The fellows from China were “up to speed” with RAISE in quite a stione.
The “light” use of RAISE as a means of describing the domain and softweare
quirements clearly and providing a basis for the code to be written wabglieve,
very effective and provided a development route for a non-critical sytatwas
both fast and reliable. The system is not extremely large, but is certainkidato
erably more than an academic example. The RAISE tools are robust, fast,ecapabl
of supporting projects involving several people, and produce goodrdentation.
The success of the separate group from Hong Kong in re-implementingeaherf
developing the running map tool using a different technologygiaiformal spec-
ification as their main input, is striking. The use of a formal method I'rapid
prototyping” style is unusual, at least in the literature, but prostelctive, and
we believe that phase 2 could have rapidly produced a second, disttiprdto-
type involving all the extra details needed by dispatchers in a very 8hna. The
substantial initial work analysing and describing the railway domaio pisved
effective in supporting one fellow’s separate work on station management

At the same time, we must point out the need for experts in trainingasigt-
ing such a project. Using formal methods involves a different way ofe@augr, in
which analysing, understanding and defining the problem is the majardas
writing the code is deferred and done quite late. This involves skdl jadge-
ment, and industries are well advised to seek external help initiallythetl have
developed their own experts. It also takes time to develop an appropuiatee,
in which a project that has so far produced lots of specifications but no s i
automatically seen as in danger.
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1.8.3 Further work

The project stopped very abruptly: not an unknown event but disapipgito
those involved. Recently, however, interest has been expressed in Irtdia an
Russia in continuing the work.

For India, the running map tool was ported to Linux. This exposedrse of
the usual problems in the behaviour of the tool due to differencémibéhaviour
of C compilers (even though both were gcc) and in the behaviour of thigets
(again supposedly identical) but none (apparently, but without antial testing)
in the code for checking timetables.
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