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Scheduling and rescheduling of trains

1.1 Introduction: the PRaCoSy project

ThePRaCoSy (Peoples Republic of China Railway Computing System) project
was a collaborative project between the Chinese Ministry of Railways and UNU/-
IIST, the United Nations University International Institute for Software Technol-
ogy in Macau. The first phase ran from September 1993 to December 1994 and
the second from August 1995 to March 1996.

The project aimed to develop skills in software engineering for automation
in the Chinese Railways. A specific goal was the automation of the system for
monitoring the movement of trains and rescheduling their arrivals and departures
to satisfy operational constraints.

1.1.1 The problem

Efficient use of railway resources involves good allocation of resources: railway
track, rolling stock and staff. This project was concerned with allocation oftrack.
There are two activities involved:

scheduling : the creation of a timetable for all the trains: passenger, freight,
military, etc.

rescheduling : the modification of the timetable to take account of disturbances
such as lateness of trains and breakdowns.

A computerized system to support these activities is called adispatchsystem;dis-
patchersare people responsible for monitoring and coordinating the movements
of trains, ensuring that they run as far as possible according to the timetable. They
do this by communicating with stations the timetables and adjustments to them.
Technically, astationis anywhere that there are switches (points) enabling trains
to move from one line to another, or where different lines meet. In particular it
includes both passenger stations and marshalling yards for freight trains.

In China dispatching is done by dispatchers working indispatch unitsand
communicating with stations and other dispatch units. They make decisions about
how to make changes to arrivals and departures of trains in order to minimizethe
effects of disturbances. Currently the work is entirely manual (pencil and paper)
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and slow. The slowness is due to both the manual methods and poor communica-
tions.

When dispatchers make decisions to dispatch, delay or reroute trains they need
to check a number of things. Is a new route feasible? Are there enough platforms
or tracks in each station to hold the trains intended to occupy it at any one time?
Are there clashes over the occupations of tracks or of lines between stations?Are
the rules in China about minimum separations between departures and arrivals be-
ing adhered to? Can the trains make the journeys in the times allowed to them,
according the the normal and any special speed restrictions? Etcetera. Know-
ing and conforming to these rules is part of the skill of the dispatcher, but also
something the computer can check more rapidly and more definitely, allowingthe
dispatcher to concentrate on the tactical decisions of what changes to try.

It might seem that dispatching is safety-critical in keeping trains safely sep-
arated. This is in fact not the case: there are other safety systems to prevent
accidents. But a timetable that predicts an impossible future is of little use; it will
simply cause more rescheduling to be necessary as the problems become manifest.

The area chosen for the initial stage of the project was the 600km line between
Zhengzhou and Wuhan. This includes part of the main north-south line between
Beijing and Guangzhou (Canton) and is one of the busiest railway areas in China.
It is also a critical national infrastructural resource. The area includes 8 dispatch
units and 90 stations. See Figure 1.1. It is not a toy example!

1.2 The running map tool

Figure 1.2 shows the prototyperunning maptool that was produced in phase 1 of
the project.
This copies closely the large sheets of paper that are used currently by dispatchers.
Stations are listed vertically, time passes horizontally, and the paths of trains are
shown in the central area. Currently the display is showing part of a timetable
for trains running between Nanjingxi and Shanghai (the southern portion of the
line from Beijing to Shanghai). Consider train Y1, due to depart fromNanjing
at 08:28. Note that it is due to overtake train K335 in Danyan. Now suppose Y1
leaves Nanjing a few minutes late. There are several possibilities:� Y1 may be able to travel more quickly than timetabled and pass through

Danyan on schedule;� Y1 may pass through Danyan only a very short time before K335 is due to
leave; K335 will then be delayed;� Y1 may pass through Danyan just after K335 has left and (unless they are
or can be put on different lines) Y1 will be delayed. The extent to which Y1
is delayed will depend on the signalling, and hence the train capacity, of the
line between Danyan and Changzhou.
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Figure 1.1: Zhengzhou — Wuhan line map

The dispatcher has to decide which of these will occur and react accordingly. If
K335 is not a passenger train it might be possible to dispatch it fromDanyan
early, or even cancel its stop there, so that Y1 can overtake it it at Changzhou
(which might also mean changing K335’s track at Changzhou). Or K335 can be
told to wait at Danyan until Y1 has passed and, perhaps, be delayed at Changzhou
but be back on time at Wuxi since it seems to travel comparatively slowly from
Changzhou to Wuxi.

In this case the dispatcher has perhaps nearly an hour to make his decision,
work out the detailed adjustments and transmit them, but this is unusually long.
The display shown here is also unrealistically sparse; it only shows a typical
timetable for passenger trains.

The dispatcher needs information about how fast trains are allowed to travel on
different lines, on the tracks available at stations, on the lines available (including
the possibility of switching a train to the “opposite” line), on the capacity of lines,
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Figure 1.2: Running map tool display

on the relative priorities of trains, etc.
The mode of operation of the tool for rescheduling is that the dispatcher can

make adjustments either graphically (by clicking and dragging on the display)
or textually (by clicking on a train identifier icon to bring up a textual timetable
for the train and editing it). If such an operation breaks one of the “rules” (see
Section 1.4.5) then a pop-up window will appear describing the infraction. When
the dispatcher is happy with the adjustments they can be “committed” and the new
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timetable output.
The same tool can be used for scheduling — the creation of timetables. This

is done by starting with the “basic” passenger timetable for 24 hours for the cur-
rent period, such as Summer, and then adding all the freight and additional trains
required for that day. This is then split into 12-hourshift plansand then again into
3-hourstage plans. A dispatcher is typically operating one stage plan and also
reflecting “knock-on” effects into the next one.

The display shows onesegment, which is a set of stations connected linearly by
lines. The area covered by a dispatch unit will typically involve several segments.
So, for example, train K340 terminates at Zhengjian but train K326 continues
from Nanjing on a different segment. The textual display for the trains show this.
It is possible to switch the display to different segments.

This prototype tool is only intended to aid planners and dispatchers. It does
not try to find solutions to problems. It was felt that such a “passive” tool would
be much more likely to find acceptance initially than one that tried to take over the
existing dispatching job. It was also felt that it would take some time to understand
the tactics used by actual dispatchers, and to create a tool whose proposals would
be respected by them.

1.2.1 Methodological approach

PRaCoSy is one of UNU/IIST’sadvanced development projects. In these projects
the work takes place at UNU/IIST in Macau and is done by “fellows” from one
or more developing countries trained and supervised by UNU/IIST staff. In this
project the fellows were (except for one) software engineers from the Chinese
Railways.

The purpose of such projects is both to train the software engineers involved
and also to improve the software capability of their institution. A main component
in this capability is the development ofdomain modelsin their area of interest —
railways in this case. So a major part of the project was devoted to domain analysis
and modelling of railways.

Work done by UNU/IIST involving public funds is automatically public do-
main. So software production within such projects is limited to prototype, demon-
strator software.

Three stages were therefore followed in phase 1 of the project:

Domain analysis : thorough understanding and documentation of the compo-
nents of a railway

Requirements capture : documentation of the various functions required to sup-
port scheduling and rescheduling

Software development : production of a prototype tool

In the three Sections 1.4, 1.5 and 1.6 we describe these three stages.
Phase 2, involving new Fellows had two main tasks:
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1. following evaluation of the prototype running map, to considerand specify
the changes needed to make a tool that could actually be used by dispatch-
ers;

2. to consider the problems of a distributed running map, allowing for dis-
patchers and dispatch units to operate concurrently while maintaining a
consistent view of the schedule and adjustments to it.

Phase 2 is described in Section 1.7.
In Section 1.8 we draw some conclusions.

1.2.2 Levels of formality

Throughout the project the approach wasformal using the RAISE specification
language and method [RAI92, RAI95]. There is a variety of ways in which for-
mality may be applied to software development:� The “lightest” approach is to write an initial specification and then use it to

produce programming language code.� A “heavier” approach is to write the initial specification and then torefine
it in one or more steps into a more concrete specification before producing
a program from it. This approach gives the opportunity to:� provethe refinement steps are correct, the “heaviest” and most expen-

sive approach, or to� justify the refinements wholly or partly informally, the “rigorous” ap-
proach [Jon80].

There are also other variations possible. A common tactic is to choose particularly
critical properties of a system and prove only those for the initial specification and
refinements. Safety-critical properties are often tackled in this way.

Common to all these approaches is the pivotal role of the initial specification.
It is this that is meant to describe the domain and the system requirements, and it
must be shown to be correct with respect to the client’s or customer’s notions of
what they want. Showing this we callvalidation. Validation is inevitably infor-
mal (assuming your client is not able to present you with a formal specification)
because their requirements are written in natural language, which is inevitably
ambiguous and typically incomplete in some respects and inconsistent in others.

In this project we adopted the “light” approach, which we saw as most appro-
priate for a system that was not safety-critical. It therefore differs from examples
like [DM94, Han94, OH95, Sim94]. (Although a description of a system to mon-
itor rail freight [DPdB95] points out that systems whose failure isexpensive may
also be considered critical.) We also wanted to adopt a “rapid prototype” style of
development. Such a style is particularly appropriate when you hope toprovide
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computer support for an activity previously done manually, and where user accep-
tance may be part of the problem. “The tool must be acceptable to users” is hard
to formalize! A brief introduction to the RAISE Specification Language andthe
style adopted is given in Section 1.3.

We believe that much of the advantage of formality lies in creating the initial
specification. It serves to isolate and clarify the important concepts, to make them
amenable to formal or informal but still precise analysis, and also to clarify those
aspects which are not or cannot be formalized, the “non-functional” requirements
like acceptability. A development plan can then make sure that these are dealt
with in some way. (A general discussion on non-functional requirementsand
how to deal with them is beyond the scope of this chapter.) Getting moreout of
formality, proving critical properties or doing refinement, gives further confidence
in correctness but at substantial cost: there is a law of diminishing returns.

1.3 The RAISE Specification Language

The RAISE Specification Language (RSL) [RAI92] is a “wide spectrum” lan-
guage: it is possible to describe applicative or imperative, sequential orconcurrent
systems. The normal style proposed in the RAISE method [RAI95] isto start with
an abstract, applicative sequential specification and to develop this to a concrete
specification, initially still applicative and then, usually, imperativeand perhaps
concurrent. Phase 1 of this project adopted the “light” approach referred to previ-
ously. It only used the applicative sequential style and was rather more concrete
than a style one would adopt using a “heavier” approach. Phase 2 used a more
abstract approach to analysing the distribution of the running map tool and also
developed a concurrent specification to describe an architecture for it.

RSL specifications are collections of modules, usuallyschemes which are
named (and possibly parameterized)classexpressions. We do not present here the
complete specification; that for phase 1 can be found in [Pre94] and for phase 2in
[Don96]. Both are available via the UNU/IIST home page http://www.iist.unu.edu.
Neither do we show here the division into modules. Most modules have a partic-
ular “type of interest” and provide functions to create, modify and observe values
of this type. There are modules describing the typeTrack, then one usingTrack
to defineStation, one definingLine, then one usingStation andLine to define
Network, and so on.

A typical applicative class expression contains one or moretype declarations,
one or morevalue declarations for defining constants and functions and perhaps
someaxiom declarations containing axioms used to constrain the values.

1.3.1 Types

Type declarations may be “abstract” or “concrete”. An abstract type, also termed
a “sort”, is just given a name. If we declare
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type Date

thenDate is a sort. We know nothing about its structure, about how dates will
be represented. It might later be modelled as a natural number (the typeNat)
interpreted as days since some base date, or a record of day, month and year.

If Date is defined as a sort it is still possible to constrain it to say, for example,
thatDatevalues are totally ordered. We might do this by introducing and operator
and some axioms:

value� : Date� Date! Bool
axiom[ reflexive]8 d : Date� d� d,[ transitive]8 d1,d2,d3 : Date� d1� d2^ d2� d3) d1� d3,:::
In the phase 1 specification only a few rather uninteresting types, like identifiers
for tracks, stations, trains, etc. were defined as sorts, and no axioms were given.
In this case all we have for values in the type are equality and inequality (with the
standard congruence properties).

A “concrete” type is defined by being equal to some other type, or a type
expression formed from other types. For example

type
Year= Nat,
Month= fj n : Nat � n� 1^ n� 12 jg,
Day= fj n : Nat � n� 1^ n� 31 jg,
Date= fj d : Year� Month� Day � is day(d)jg

definesDateconcretely in terms of tuples ofYear, Month andDay. Nat is built in,
together with literals like0 and1, plus standard operators like+ and�. Month,
Day andDate are all subtypes:is day will be a function defined elsewhere (to
deal with months of less than 31 days and with leap years).is day has result type
Bool, and so might be termed a predicate: predicates are not distinguished from
functions.� is a type constructor. Others used here are-set (finite power set),� (finite
sequence),!m (finite map),! (total function) and

�! (partial function). Each
has a number of corresponding operators, such as2 (membership) and� (subset)
for sets,dom (domain) andrng (range) for maps. Function, map and list (index)
applications are written by enclosing arguments in brackets, as inis day(d).

We also commonly use “variant” and “record” types. Alternatives to some of
those above are
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type
Month== Janj Febj ::: j Dec,
Date0 :: year : Year month : Month day : Day,
Date= fj d : Date0 � is date(d)jg

HereMonth is a variant (in this case just like an enumerated type in other lan-
guages: more complicated variants, including recursive ones, are possible). The
ellipsis :::, used here for convenience, is not valid RSL.Date0 is a record. It is
much like the tuple used earlier forDatebut allows convenient extraction of com-
ponents, by “destructors” likeyear. Destructors are functions, so ifd is aDate0,
year(d)is its year.

1.3.2 Constants and functions

Constants and functions are values, and must be given at least “signatures” —
names and types:

value
start : Date,
next : Date! Date

In a concrete style we often give “explicit” definitions for values. So we might
write

value
start : Date= mk Date0(0, Jan, 1),
tomorrow : Date! Date
tomorrow(d)�

if endof month(d)then :::
elsemk Date0(year(d), month(d), date(d)+ 1)
end

mk X is the “constructor” for a record typeX.
More implicit styles are also possible. For example, one might defineyester-

dayas the left inverse oftomorrowby a postcondition:

value
yesterday : Date�! Date
yesterday(d)asd 0

post tomorrow(d0) = d
pre d 6= start

Or we might use an axiom:
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value
yesterday : Date�! Date

axiom8 d : Date� yesterday(tomorrow(d))= d

If we are doing more formal development we might start with the axiomor post-
condition foryesterdayand later devise the explicit algorithm and then prove it
satisfies the earlier specification. This is a simple example of refinement.

1.3.3 Benefits

All this looks like rather like functional programming, and, apart from the axioms
(which were rarely used in this “light” style), directly implementable. Sowhy
bother with a specification?

The built-in data structures are much more convenient to use than thoseavail-
able in a language like C. This allows very rapid modelling of the domains in-
volved and convenient and terse expressions of the functions. These are easy to
read, easy to discuss with others, and easy to modify. And it is also easy to ex-
press critical properties, either as theorems or as earlier specifications, and then
prove them (which is not always so easy!). Some of this would also be true in a
functional programming language, or in one having the built-in types as generic
modules. But the ability to state and reason about critical properties (informally
or with a proof tool) would still be lacking.

Second, there are functions even in this style which are not immediately exe-
cutable but which are expressible as simple specifications. For example, suppose
we want to state the property that in a timetable, if a train stops it doesso for at
leastmin stop minutes. Assume the from a station visitSTV we can extract or
calculate an arrival timearr and a departure timedep. We can define a predicate
on a timetable of typeTT :

value
min arr depseparation : TT! Bool
min arr depseparation(TT)�

(8 stv : STV � is in(stv, tt))
dep(stv)= arr(stv)_
dep(stv)� arr(stv)� min stop)

This specification is not executable because of the universal quantification.The
specification does not say how we extract all the station visits from the timetable.
Instead it is expressed at the level of the requirement. Hence it is easy to validate
against the requirement. It is important that the initial specification hasthis prop-
erty of being “at the appropriate level” for validation, for checking that it meets
the requirements. If we are forced to write something executable, and givethought
to the algorithm as well as the condition, this makes things much more difficult.
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Neither does this specification say what we do if the timetable does not meet
the requirement. Presumably we would like the final program to say something
rather more informative than “false”.

We will see in Section 1.6 how the problems of algorithm and message gener-
ation were dealt with when we translated to C.

We shall also see in Section 1.7.3 how the specification in terms of such pred-
icates over timetables led to a completely different style of implementation,using
constraint propagation.

We are not advocating such a style for all projects. Critical applications will
need more statements of even higher level properties and hence a greater degree
of abstraction and of proof. We are trying to show how a “light” approachcan be
extremely valuable in obtaining a precise definition of the problem domain and in
capturing the main requirements.

A more abstract approach is also useful in tackling issues that we want to
separate from the details of the example being dealt with. The work donein phase
2 on distributing maps, described in Section 1.7.2, is an example of this.

1.4 Domain analysis

The purpose of domain analysis is to understand and document the components
of the system and its environment. So in our case we ask immediatelyWhat is
(re)scheduling?This leads immediately to descriptions in terms ofrunning maps,
timetablesand railwayregulations, which in turn involve terms likenetworkof
lines and stationsand time intervals. To understand these terms in the fullest
sense we need assurance that what we think they mean corresponds to what our
customers think they mean, and when our customers speak a different language
and come from a different cultural tradition it is particularly critical. Even if we
were experts in railways there is a significant, perhaps even enhanced, danger that
the differences in railway cultures will cause problems. In phase 1 the fellows
were not experienced in dispatching.

This problem was tackled from two directions: informal and formal.

1.4.1 Informal description

The informal domain descriptions involved several components. They were in-
tended for domain experts, i.e. railway staff, especially dispatchers, ratherthan
computing experts:

Synopsis : a summary of the domain;

Narrative : a more detailed explanation of the domain in terms of itscomponents
andprocesses;

Terminology : a list of technical terms and their definitions.
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In fact the first document in this group was translated from Chinese; it wasthe
first “statement of requirements”. Then we produced a synopsis and narrative
and effectively “replayed” our understanding of (currently relevant) parts of these
requirements. At the same time the terminology document was written inEnglish
and then translated to Chinese so that it could more effectively be checked by
people in China.

1.4.2 Formal description

At the same time as trying to capture the domain in natural language, a formal
model was constructed. This formal model was be the basis for the requirements
capture and software development, and hence the basis for its correctness (or oth-
erwise). There were two components:

Domain specification : specifying the intrinsic domain notions in RSL [RAI92];

Data flow diagrams : recording basically theorganizationof the activities in-
volved in (re)scheduling. Figure 1.3 is an example.

The labelled arrows were accompanied by descriptions of the data. E.g. E1
is “Station states; track states; time traces”. Time traces are relevant events
like train arrivals and departures, with times.

We did not claim any mathematical semantics for our data flow diagrams;
they should perhaps be termed “semi-formal” in that they almost certainly
could be formalized [LPT94] but we did not want to use them in a formal
way. That is, we had no intention ofreasoningthat our system would be
correct with respect to them.

1.4.3 Aspects of domains

In doing domain analysis we consider and document a number of aspects:

Intrinsics : The essential technical aspects of the domain — in our case such
things as lines, stations, trains, timetables etc.

Support technology : The technical aspects of the domain that depend on a par-
ticular technology and which may change with time. Thus particular sig-
nalling and interlocking mechanisms would be in this category.

Regulations : The regulations that affect the system, i.e. that it must conform to
or for which breaches must be detected and handled in a special manner.
This is obviously important for railways, and would be important in any
safety-critical system.
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Figure 1.3: Data flow diagram for stage plan adjustment

Staff : The maintainers and (for safety-critical systems, for example) its inspec-
tors or people who license it for use.

Clients : The users of the system.

Computing and communications platforms : Details of the hardware on which
the system is to run or with which it is required to interact.

The intrinsics are documented by creating a formal description, a specification of
the system. Support technology aspects may be captured by extensions of the in-
trinsics, but in general we try to avoid this, to make at least the initial specification
independent of them. Regulations should be captured formally. Other aspects are
typically mostly informal; they are (like support technology) likely to give direc-
tion later in the development but not be captured in the initial specification, which
should be high level and abstract.

Why do we stress the idea of domain analysis prior to requirements capture?
These notions are normally regarded as part of requirements capture. There are
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two reasons:� Domain analysis involves understanding the environment of the systemas
well as the system itself. That is, we look more widely than the boundaries
of the system; we try to understand the world (including the human culture)
within which it will operate. Only when we have thoroughly understood
this do we attempt to define all the processes in this domain, the facilities
our system will provide. Defining these facilities (again mostly formally)
will be the requirements capture step.� Domain analysis is often wider than the immediate concerns of the current
system: it can be the basis of other systems in the same domain. For ex-
ample, the model of lines and stations we developed for the running map
tool provided the basis for work developing tools for station management
[Yul95]. This has obvious reuse advantages for anyone hoping or plan-
ning to produce further software in the domain. Using the same underlying
domain model also makes it much easier to ensure that systems will inter-
operate correctly.

In fact the model used to describe station management needed more de-
tail about switches and crossovers, about the detailed routes between lines
and tracks. We defined a notion of aunit as a piece of track withconnec-
tors. Lines and tracks are constructed from linear (two-connector) units.
Switches and crossovers have three or more connectors. Units have possi-
ble paths through them (so we can distinguish switched and non-switched
crossovers, for example) and also states (so that we can model the changing
of a switch). The notions of line and track used in the model presented here
can be easily extended with information about their constituent units.

1.4.4 Specification of the railway network

Thenetworkconsists ofstationsconnected bylines. A station consists essentially
of a number oftracks. Figure 1.4 shows a station with five tracks.

DOWN

UP

5

I

II

3

4

Figure 1.4: Example station layout
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The Roman numbering of the “through” tracks used for non-stopping trains, and
the even/odd numbering for up/down lines are Chinese conventions.

1.4.4.1 Tracks
For each track there are number of lines from which the track can be reached, and
a number of lines that can be reached from the track. Tracks also have lengths
and types. Stations, lines and tracks all have identifiers. We define the typeTR to
model tracks:

type
TR :: flns : LNid-set tlns : LNid-set t : TRtype lng : LNG,
TRtype== LINE j SIDING j PLATFORM j FREIGHT,
LNG = Nat,
LNid

This and the rest of the specification were written in RSL, and the RAISE tools
[B+95] were used to type check them and pretty print them.

TR is a record with four components: the possible incoming linesflns, out-
going linestlns, type t, and lengthlng. TRtype is a variant type containing four
constant values.

1.4.4.2 Stations
The station typeST is then a finite map (in general a many-one relation) of track
identifiers to tracks:

type ST= TRid !m TR

1.4.4.3 Lines
Lines go from one station to another, have a type, a length and a maximumspeed:

type
LN 0 :: s1 : STid s2 : STid lt : Ltyp lng : LNG sp : SP,
Ltyp == UP j DOWN j BOTH,
SP= Nat,
LN = fj ln : LN 0 � s1(ln) 6= s2(ln)jg

We expressed the requirement that lines link different stations by use of a subtype
definition for the typeLN.

1.4.4.4 The network
The network consists of a collection of stations, modelled as a map, and a collec-
tion of lines, also modelled as a map. But there is a convention that for anytwo
stations connected by one or more lines, one direction between them isUP and
the other isDOWN. (The running map display also follows this convention in its
orientation.) We want to observe this convention in the way we label lines by their
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end stations: goingDOWN from s1 to s2. So if there is a line from one station
to another then any lines between these two stations will have the stations in the
same order, i.e. none will have them in the opposite order:

type
ST m= STid !m ST,
LN m 0 = LNid !m LN,
LN m= fj lnm : LN m 0 � is wf LN m(lnm) jg

value
is wf LN m : LN m 0 ! Bool
is wf LN m(lnm)�

(8 ln, ln 0 : LN �fln,ln 0g � rng lnm) (s1(ln),s2(ln))6= (s2(ln0),s1(ln0)))
The network is the combination of the line map and the station map, modelled as
a cartesian product (tuple), but with a number of well-formedness conditions:

type
NW 0 = ST m� LN m,
NW = fj nw : NW 0 � is wf NW(nw) jg

value
is wf NW : NW 0 ! Bool
is wf NW(stm, lnm)�

(8 ln : LN � ln 2 rng lnm) fs1(ln),s2(ln)g � dom stm)^
(8 s : STid� s2 dom stm)

lnstoST(s,lnm)\ lnsfromST(s,lnm)= fg ^
(8 tr : TR �

tr 2 rng stm(s))
flns(tr)� lnstoST(s,lnm)̂ tlns(tr)� lnsfromST(s,lnm)))

The well-formedness conditions for the network are:� the stations at the ends of lines are in the station map, and� for each station in the station map:� the lines into the station are disjoint from the lines out of the station,
and� for each track in the station, the lines into it are a subset of the lines
into the station and the lines from it are a subset of the lines from the
station.

The auxiliary functionlnstoST is defined as follows:

value
lnstoST : STid� LN m! LNid-set
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lnstoST(s,lnm)�f lnid j lnid : LNid � lnid 2 dom lnm^ is lnto(lnm(lnid),s)g,
is lnto : LN � Stid! Bool
is lnto(ln, s)�

let mk LN 0(s1,s2,lt, , ) = ln in
(lt = DOWN^ s2= s)_ (lt = UP^ s1= s)_
(lt = BOTH^ s2 fs1,s2g)

end

lnstoSTdefines the lines into a station using a set comprehension: it returns those
lines in the line map that go into the station. A line goes into a station s if it is a
DOWN line and its second end station iss or if it is an UP line . . .

lnsfromST is defined similarly.

1.4.5 Specification of timetables

The following concepts were defined:

Station visit : A record of station and track identifiers, arrival and departure
times, optional departure line, arrival and departure lengths of trains.The
well-formedness condition is that the arrival is not earlier than the departure
(equality indicating passage through without stopping). Time is modelled
by a typeT, a subtype ofNat including those times in minutes that repre-
sent dates from the (the arbitrarily chosen) beginning of 1993 to theend of
2399:

type
STV 0 :: s : STid tr : TRid a : T d : T dln : OptLN al : LNG dl : LNG,
STV= fj stv : STV0 � d(stv)� a(stv)jg,
optLN== nil j mk LN(l : LNid)

Journey : A sequence of station visits. The well-formedness condition is that the
sequence is non empty, departure at one station precedes arrival at the next,
and only the last visit may have no departure line.

type
J 0 = STV�,
J= fj j : J 0 � j 6= hi ^ is wf J(j) jg

value
is wf J : J0 ! Bool
is wf J(j)�

(8 i : Nat �fi,i+1g � inds j )
a(j(i+1))> d(j(i)) ^ (dln(j(i)) = nil ) i = len j))
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There is an additional function expressing the well-formedness of a journey
with respect to a network. It requires that the stations exist, the trackexists
in the station, the departure and arrival lengths are not less than the track
length, and (for visits apart from the last) the departure line is a line from the
station to the next, goes from the track, leads to the next track, the departure
length equals the next arrival length, and the travel time is consistentwith
the maximum speed and length of the line.

Segment : A non-empty sequence of stations. The well-formedness condition is
that the adjacent stations are connected by at least one line, and the segment
is listed in theUP order.

Timetable : A map from train identifiers to journeys. Train identifiers include
a date as well as a (sort) identifier so that we can distinguish between the
same train on different days.

type
TNid :: id : TNid dt : Date,
TNid ,
TT = TNid !m J

A “basic” 24-hour timetable, such as the Summer one, has all dates set to
zero.

We do not use a subtype for well-formedness of timetables since we ex-
pect that during adjustment they will temporarily be ill-formed. Instead we
specify a function that can be used to check them.

There are three kinds of well-formedness conditions for timetables:

1. Consistency between the timetable and the network, i.e. all journeys
are well formed.

2. The physical constraint that trains on the same line cannot overtake.

3. A number of regulatory rules. There are minimal time separations
between:� trains occupying the same track� two station entries on the same line� two station exits on the same line� occupations of a line in opposite directions.

Projection : A restriction of a timetable to a particular segment and a particular
time period. A projection of a timetable gives the display of the running
map tool.
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Before discussing, in Section 1.5, the stage of requirements capture itis worth
reflecting on what the domain analysis achieved. We had a formal and hence very
specific semantic definition of a whole number of concepts that are commonly
used in (Chinese) railway circles but were initially difficult for outsiders to grasp
(apart from the translation problem in going from Chinese to English). And the
specifications we generated (accompanied by commentary much like that used in
this chapter) were examined and discussed by the Chinese fellows at UNU/IIST,
so that we gained assurance that these particular definitions are the correct ones.

We had also defined a number of well-formedness conditions. Many of these
are consistency requirements — stations at ends of lines exist, trains visit exist-
ing stations on existing tracks by existing and reachable lines, etc. Manyothers
expressregulationsabout the way that Chinese railways are operated. Hence the
specification provides atheoryof railway networks and of the operation of trains:
we can formulate as theorems expected properties and justify them, either for-
mally by theorem proving or informally. Doing so is an essential part ofvalidat-
ing the specification, i.e. checking that it meets its requirements. It is an important
feature of the model that it allows the easy and transparent statement of regulations
as well-formedness functions, so that validation is simple. We can validate that
a well-formed timetable complies with a regulation by pointing to the predicate
expressing it. A close correspondence between requirements and the structure of
the specification also provides a good basis for requirements tracking.

1.5 Requirements capture

Requirements capture extends the formal specification produced by the domain
analysis with the definitions of the operational facilities that the system will pro-
vide to its users. In our case the domain analysis gave us in particular adefinition
of a timetable together with all the railway regulations that make a timetable well-
formed. The task in requirements analysis is then to specify the runningmap tool.
We already had the functions to project a timetable on to a particular periodand a
particular segment, hence defining the contents of the main window of therunning
map tool. We defined in addition:� functions to input timetables to the tool — to supportscheduling;� functions to modify a timetable — to supportrescheduling.

The first of these resulted eventually in a separate tool for timetable input, as the
mainly graphical means of editing timetables in the running map tool turned out
to be too clumsy for inputting large amounts of data. Then the normal mode
of operating the running map tool was to start by loading a complete timetable.
There are several kinds of timetable. The process starts with abasic timetable,
which is not set to any particular day. From a basic timetable, 12-hourshift plans
are generated by planning units, and from these typically 3-hourstage plansare
generated and used for rescheduling by dispatch units. The ability to project over
periods and segments allows all these activities to be supported.
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Rescheduling is currently done manually, by drawing on large sheets of paper
(prepared with the segment stations listed) lines indicating how the trains should
move and stop. Rescheduling is done by erasure and redrawing. A computertool
to support this activity clearly needs to be mainly graphic, with the possibility to
draw lines, move them, shift points on them, etc. But the display is also essentially
an abstraction. It doesn’t show which line between stations is being used by a
train, or which track in a station. It is also hard to read precise times. (Hand drawn
running maps do have more annotations to help with some of these problems.) So
the tool has a number of tabular displays that can be shown by clicking on atrain
identifier, to show complete details of its journey, or on a station, to show complete
details of all visits to that station. Changes can be made by editing either the tables
or the graphic display.

We also attempted to formally specify the widgets generating the actual dis-
play of the running map tool, which is (X) window-based. This capturedquite
well the hierarchy of processes and the effects of events — button pushes, mouse
clicks etc. — but says nothing about the appearance and is of little use in judg-
ing the usability of the tool. This specification was actually produced after the
tool as part of its documentation. So, in fact, we started the developmentstage
with a formal specification of the kernel of the running map tool, the part that
checks for well-formedness of timetables plus a specification of the projection of
a timetable that would form the basis of the centre of the display, butnot of the
buttons, pop-up menus, etc. that would form the user interface. Instead we drew
the graphic design and checked informally that the functions required from the
data flow diagrams could be supported.

It would also be possible to start requirements capture by making anabstrac-
tion of the specification from the domain analysis. It has been found elsewhere
[DGPZ93] that the first specifications one writes, with the aim of understanding
the problem, are often more concrete than is appropriate for starting development.
There are standard techniques in RAISE for producing a more abstract specifica-
tion from a concrete one [RAI95].

1.6 Software development

1.6.1 Design

It was decided to code the tool essentially from the initial specification rather than
doing any formal development, at least in the sense of data structure development.
Formalising the basic concepts by domain analysis and identifying and formalis-
ing all the functions needed to create and modify timetables had placed the project
on a firm footing. So there were two design tasks to be done: the graphical user
interface (which we had not specified formally) and the C data structures. The
latter was part of translation.

The running map tool graphical interface was created using Athena widgets
and a detailed design of the tool was done showing its intended appearance, the
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widget tree and for each listing the widgets, their classes and attributes. The final
tool (which precisely follows this design) was illustrated in Figure1.2 on page 4.

The display separates stations (vertically) proportionately to their distances so
that a train running at constant speed appears as a line of constant slope. The
transformation to achieve this for any given segment was defined (in standard
mathematical notation).

We wanted to be easily able to instantiate the tool for particular networks, and
hence to be able to communicate these and to be easily able to inspect and edit
them. So descriptors in, essentially, BNF were defined for them. Then corre-
sponding C data structures were defined and the procedures to parse and unparse
them written.

Timetables were handled similarly.
There was a change between the specification and the final code in that the

functions to check for well-formedness were developed into functions that gener-
ated messages about any breach of well-formedness. These messages then appear
in pop-up windows.

1.6.2 Translation

We though that for a demonstrator tool a fairly simple strategy forencoding the
data structures would suffice. Of the data structures we had used, records,carte-
sian products and enumerated types either exist in C or could be coded immedi-
ately. For maps we used a simple strategy of encoding a map as a linked list, with
the domain element added as an extra field to the range element. For example we
have the following RSL type definitions and the corresponding C definitions:

type
LN m 0 = LNid !m LN,
LN m= fj lnm : LN m 0 � is wf LN m(lnm) jg

typedef struct LN_m_ * LN_m;
struct LN_m_ {

LN ln; /* the line record */
LN_m next_p; /* next_pointer */

};

type
LN 0 :: s1 : STid :::,
LN = fj ln : LN 0 � s1(ln) 6= s2(ln)jg

typedef struct LN_ * LN
struct LN_ {

LNid lnid;
STid s1;
...

};
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So what has happened to the subtypes? Functions were written for them in C
(whether, as withLN m the RSL used a separate function, or, as withLN it did
not). For example, the C functionis wf LN:

/* well_formed line check */
/* s1 must be different from s2.*/
bool is_wf_LN(LN ln)
{ if (Ident_eq(ln->s1, ln->s2))

{error("Warning error:
expected a different station name
in line %s:\n", ln->lnid);

return false;
}

return true;
};

As well as making the check the C code also includes the generation of a suitable
error message. Such functions are then used as part of the parsing of data usedto
instantiate the tool; see Section 1.6.1. The well-formedness conditions on timeta-
bles are checked both on initial loading of a timetable and also after rescheduling
changes; they produce messages in pop-up boxes.

Functions that involved existential or universal quantification were coded as it-
erative functions over the linked lists. Comprehended expressions were translated
similarly. For example, the functionlnstoST, for collecting the set of identifiers
of lines into a station, was specified and then translated as follows:

value
lnstoST : STid� LN m! LNid-set
lnstoST(s,lnm)�f lnid j lnid : LNid � lnid 2 dom lnm^ is lnto(lnm(lnid),s)g

/* apply a line map and a stid. return a lnid_set to stid.*/
IDS lnstoST(LN_m lnm, STid stid)
{ LN_m plns = lnm;

IDS ls = IDS_NULL;
while (plns != LN_m_NULL){
if (is_lnto(lnm_get_ln(plns), stid))
ls = ids_add(ls, ln_get_lnid(lnm_get_ln(plns)));

plns = lnm_next(plns);
}
return ls;

};

Hence the specification could be regarded as to a large extent “translatable”. At
the time, mid-1994, the translator from RSL to C++ [B+95] was still under de-
velopment. If we used it now it could translate the map types since it has built in
a standard translation for maps (not unlike the one we used). But theuniversally
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and existentially quantified expressions would still need hand translation. All the
functions had been specified explicitly, i.e. not using post conditionsor axioms,
and many could be translated directly (and could have been translated by a tool).

It is readily apparent that the RSL specification is much easier to read than the
C code and hence much easier to validate against the requirements (and easier to
change if found not to be correct). The separation of specification from coding
supports a separation of concerns between conceptual correctness (is this the ap-
propriate condition?) from algorithmic correctness and the appropriateness of the
messages generated. In addition the separation of the two levels would makeit
possible to change the data structures used (to sorted linked lists ortrees or hash
tables rather than unsorted linked lists for some of the maps or sets, for example)
if found necessary, without changing the specification.

The C functionlnstoST uses a typeIDS modelling sets of identifiers (again
as linked lists) together with functions likeids add (for adding an identifier to a
set). There are functions for deletion, for set union, intersection etc. all collected
into a separate module. This was typical of the general approach: each of the RSL
modules defining tracks, stations, lines, network etc. were extended withfunctions
to create such an object, add it, delete it, get each component of it, and check its
well-formedness. This meant that the C code generated, as well as following the
modularity of the specification, had a distinctly “object oriented” flavour to it,
with each kind of entity accessed and manipulated by its own particular collection
of functions.

1.7 Phase 2

The first group of fellows returned to China in December 1994. Two morefellows
were supposed to come from Zhengzhou in January 1995 but there were problems
and they did not come to Macau until August that year.

1.7.1 Improving the running map specification

The main comments they reported on the prototype running map was its inabil-
ity to handle different kinds of train (passenger, freight, special and military) and
locomotive (electric, diesel, and steam). It also lacked a number of special sym-
bols used as annotations: to show new trains starting, terminating, coming from a
neighbouring dispatch unit, going to a neighbouring dispatch unit, trains merging,
trains splitting, temporary speed restrictions on lines, lines blockedby accidents
or for repair, etc.

There were a number of standard intervals for two trains arriving at a station
on the same line, departing on the same line, etc. In the original model these were
assumed to be constant: in fact they depend on the station and the line. Thetimes
for travel on lines are also not in fact constant: they depend on the type of loco-
motive and whether the line is being used in the “opposite” mode (anUP train
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on aDOWN line, or vice versa). There are also additions for acceleration and/or
deceleration if the train is starting from rest and/or stopping. These were docu-
mented from the official Chinese manuals, with formulae and diagrams and then
included in a new specification, cross referenced by comments to the formulae in
the documentation.

These changes were quite straightforward to make. They appeared only in the
record types for stations, trains and lines (each in separate RSL modules) andin
the predicates used to check well-formedness of timetables. The overall structure
of the specification and the types for the network and timetables were unaffected.

1.7.2 Distributing the specification

The prototype running map and its specification assumed a single timetable that
could be projected into several segments. But in practice scheduling is done on an
area basis byplanning units, who pass schedules on todispatch centreswho par-
tition them amongstdispatch units. These dispatch units do the actual reschedul-
ing, communicating with stations, their dispatch centre and neighbouring dispatch
units. We needed to work out how to distribute a timetable and the adjustments to
it, and to analyse when adjustments to one component would affect others.

This was done by specifying a general theory ofdistributinga map according
to apartition of its domain. This could be applied by representing a timetable as

type TT = STid� TNid !m STV

and then partitioning this according to which dispatch unit (DUid) each station
belongs to. The distributed timetable would have a type

type DTT = DUid !m TT

The theory of partitioning was developed generically and then instantiatedin this
way.

In the generic theory the notion ofdelegabilitywas defined . A functionf to
change a map isdelegableif the diagram in Figure 1.5 commutes:

Heredf is f applied to just one component of the distributed map (and only
exists if f has a domain value of the map as a parameter, allowing the compo-
nent to be identified).merge is the inverse ofdistribute. Intuitively, a function
to adjust a timetable is delegable if the change can be made by one dispatcher
and the resulting timetable, formed by merging the distributed ones, would be the
same as if the adjustment had been made to an undistributed timetable. An algo-
rithm for checking delegability was defined and proved correct using the RAISE
justification editor [B+95] (the only time formal proof was used in this project).

A similar notion was applied to the concept ofanalysinga map and generating
messages (to be used for the messages reporting infractions of the timetabling
rules). We need to know when, after an adjustment, we will not create any spurious
messages or lose any messages because of the distribution, i.e. when we analyse
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Figure 1.5: Correctness of distributed function

each component separately. This can be defined in terms of a similar commuting
diagram.

Another notion, not directly related to distribution but expected to be of use,
was that ofpartial analysis. For a particular adjustment function, what analy-
ses need to be redone and which are guaranteed to generate the same messages?
Knowing this will enable us to only perform some of the checks after changes,
and to reliably improve the speed of the running map tool.

These ideas were formally specified and instantiated for timetables [Geo95].
This would have enabled all the functions for adjusting timetables and for check-
ing for well-formedness to be checked for delegability and distributability, and for
communication procedures with neighbouring dispatch units to be definedwhere
necessary.

This is an example of a general method for defining distributed systems that
has been found effective on several systems. First the complete system is specified
as one entity. Then the division into components is done and the notion of cor-
rectness of the distributed system defined in terms of some equivalence with the
original. This gives a theory about the communications and high level protocols
needed in the distributed system. Trying to work “bottom up” from specifications
of the distributed components makes things much more difficult because it lacks
the notion of correctness.

It is also worth noticing that the analysis can be done without any need to
specify the distributed system as a concurrent system: the analysis is alldone
on an applicative model, and can even, as here, be defined initially in terms of
a parameterized abstraction of the original model, later instantiated to the actual
one.

A development of the applicative distributed running map to a concurrent sys-
tem was done [Mei95].
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1.7.3 A constraint-based approach

Jimmy Ho Man Lee and Ho-Fung Leung of the Intelligent Real-Time Systems
Laboratory at the Chinese University of Hong Kong set up a joint project with
UNU/IIST during the academic year 1995–6 involving two final-year undergrad-
uates and a PhD student. They wanted to take the running map tool further,into a
tool that would apply constraint propagation techniques to the rescheduling prob-
lem, and generate proposed solutions.

They were given the RAISE specification from phase 1, and given a brief tuto-
rial on how to read it — they had no previous experience with formal specification.
They also had all the other documentation and the existing prototype. They were
able, with little interaction, to reproduce the existing tool (on a different platform
as well as with a different implementation technique). This is a strikingexam-
ple of the use of a formal description to precisely state requirements, and even
to transmit them to people previously unacquainted with the notationafter mini-
mal training. It also shows the benefit of specifying the conditions tobe checked
rather than the algorithms to do so. The conditions can be validated against those
in the existing documentation, because they are expressed in a similar mathemat-
ical style at the same level of abstraction, and also fairly easily communicatedto
others.

They were also able to devise and implement some strategies for rescheduling
[CCL+96].

1.8 Conclusions

1.8.1 Achievements

Phase 1 took just over a year, involving most of the time of five fellows from the
Chinese railways (though one also worked much of the time on his MSc thesis
on station management [Yul95], and also as a system administrator) and thepart
time help of first the first and third of the authors of this chapter, then the first
and second. The RSL specification for phase 1 was some 850 lines and the C
code 15 000 lines (of which 5 000 is the non-specified graphical user interface).
The modular structure of the C code follows closely that of the specification. The
documentation runs to 600 pages. Many of thePRaCoSy documents are available
on the World Wide Web, via the UNU/IIST home page http://www.iist.unu.edu.

This is rather more than a normal industrial development of such a system, but
a lot of time was spent on domain analysis and on training the fellows not only in
RAISE (and C) but also in a number of software engineering disciplines.It also
included work to set up configuration management and version control systems.
Last but not least, the fellows were working in a foreign language.

The quality of the resulting tool is very high for a prototype. No records were
kept of errors found but few were discovered. The performance was initially poor,
but after some tuning in terms of extra code to determine what checks needed to
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be re-done after changes to the running map it became quite acceptable (running
on a SUN sparc workstation).

Phase 2 lasted 8 months and involved 2 fellows from the Chinese railways.
This phase was unfortunately curtailed when the two fellows were called back
to Zhengzhou, for reasons that were never fully explained to us, but seemedto be
their being needed for other projects. At the time they left we had incorporated the
changes needed to the network and the timetables (while preserving the structure
of the specification) and were close to translating to a new prototype.

1.8.2 Role of formal methods

Formal methods are often claimed to be expensive to introduce, difficult and ex-
pensive to use, to lack adequate tools, to be inapplicable to large examples, to be
incomprehensible to customers, to be applicable if at all only to safety- or mission-
critical systems [Hal90, BH95]. This project provides some evidence tocounter
these claims.

The fellows from China were “up to speed” with RAISE in quite a shorttime.
The “light” use of RAISE as a means of describing the domain and softwarere-
quirements clearly and providing a basis for the code to be written was, we believe,
very effective and provided a development route for a non-critical systemthat was
both fast and reliable. The system is not extremely large, but is certainly consid-
erably more than an academic example. The RAISE tools are robust, fast, capable
of supporting projects involving several people, and produce good documentation.
The success of the separate group from Hong Kong in re-implementing and further
developing the running map tool using a different technology, using a formal spec-
ification as their main input, is striking. The use of a formal method in a “rapid
prototyping” style is unusual, at least in the literature, but provedeffective, and
we believe that phase 2 could have rapidly produced a second, distributed proto-
type involving all the extra details needed by dispatchers in a very short time. The
substantial initial work analysing and describing the railway domain also proved
effective in supporting one fellow’s separate work on station management.

At the same time, we must point out the need for experts in training andassist-
ing such a project. Using formal methods involves a different way of approach, in
which analysing, understanding and defining the problem is the major task, and
writing the code is deferred and done quite late. This involves skill and judge-
ment, and industries are well advised to seek external help initially untilthey have
developed their own experts. It also takes time to develop an appropriateculture,
in which a project that has so far produced lots of specifications but no code is not
automatically seen as in danger.
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1.8.3 Further work

The project stopped very abruptly: not an unknown event but disappointing to
those involved. Recently, however, interest has been expressed in India and in
Russia in continuing the work.

For India, the running map tool was ported to Linux. This exposed several of
the usual problems in the behaviour of the tool due to differences in the behaviour
of C compilers (even though both were gcc) and in the behaviour of the widgets
(again supposedly identical) but none (apparently, but without substantial testing)
in the code for checking timetables.
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