
Train Composition and Decomposition: Domain and

Requirements

Panagiotis Karras and Dines Bjørner

Computer Science and Engineering,

Informatics and Mathematical Modelling, Technical University of Denmark

Building 322, Richard Petersens Plads, DK–2800 Kgs. Lyngby, Denmark

{pan|db}@imm.dtu.dk

22 November, 2002

Abstract

The problem is to be tackled is as follows: There is a railway net. Trains travel
from station to station. When leaving an intermediate station on a train journey, a train
may have its direction reversed. Trains are composed from assemblies. An assembly is
a sequence of carriages. At stations trains may have assemblies added (composed) to, or
removed (decomposed) from the train. Station tracks may restrict train additions and
removals to occur only at either the front, or at the back of a train. Given requirements
for trains to provide suitable load (for example passenger) capacity along a journey with
varying such demands, the problem is now to plan that trains, during their journeys, have
suitable assemblies added to or removed from the train.

We present a standard informal narrative and a formal model of train composition
and decomposition, of their planning and effectuation.

We relate this model to the rough sketch description provided by Dr. Leo Kroon of
NLS Reisigers.

Contents

1 Domain 3

1.1 Brief Outline of the Formal Model . 3

1.2 Introduction of the Formal Model . 5

1.2.1 Railway Topology . 5

1.2.2 Trains, Assemblies, Carriages, and Rolling Stock 7

1.2.3 Journeys, Time Tables and Schedules 9

1.2.4 Passenger Statistics . 12

1.2.5 Planning . 17

2 Requirements 18

2.1 Domain Requirements . 18

2.1.1 Projection . 18

2.1.2 Determination . 18

2.1.3 Extension . 18

1

2 Train Composition and Decomposition: Domain and Requirements

2.1.4 Initialization . 21
2.1.5 Fitting . 22

2.2 Interface Requirements . 22
2.2.1 Computer-Human Interface . 22

2.3 Machine Requirements . 22

3 Conclusion 22

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 3

1 Domain
T:1, F:1

1.1 Brief Outline of the Formal Model

The end result of our model at this stage is schedule-generating function. The schedules this
function generates are such, so that the desired rolling stock changes can be derived from the
schedule itself. This function is producing a set of all allowed schedules which satisfy a given
passenger statistics:

gen Sched: Stat1 × RulReg × RS → Sched-set
gen Sched(st,rr,rs) ≡ {sch | sch: Sched • fitting(reform stat(st),sch)}

F:2

The satisfiability of a given statistics by a schedule is defined by a fitting function:

fitting: Stat1 × Sched → Bool

The statistics as entered into the fitting function are in a well formed format. In this
format, only the number of passengers travelling between consecutive stations at given times
is given. A general non-well-formed statistics may be transformed into a well-formed one
through a function made for that purpose:

reform stat: Stat1′ → Stat1

F:3

Crucial for the definition of this reformation function is the ability to sum over all possible
’trips’ within a statistics of which a ’trip’ between two given consecutive stations is a part.
For that purpose we use a recursive summing function:

sum of nums: Stat1′ × Trip-set → Stat Number

F:4

As well as a function that returns the desired set of trips within a statistics for a given
trip, such that the given trip is part of every trip in that set:

super trip set: Stat1′ × Trip → Trip-set

F:5

Necessary for the definition of such a function is, among others, a function generating the
set of stations that form the shortest path between two given stations:

November 22, 2002, 12:06 c© The AMORE Project

4 Train Composition and Decomposition: Domain and Requirements

connecting set: Sta × Sta → Sta-set

F:6

The connecting set function is based on, among others, a path existence function, which,
for two given stations, returns a true value when there exists a path between them within a
network:

exists path: Sta × Sta → Bool

The path existence function is defined recursively, while its basis is an observer function,
which gives the set of neighbouring stations for a given station:

obs SSS: Sta → Sta-set

It is axiomatically required that a station belongs to the unique same network as its
neighbours. After this short excursion we may proceed to the presentation of the whole
model.F:7

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 5

1.2 Introduction of the Formal Model

1.2.1 Railway Topology

We take as base concept for the railway net topology that of nets. From a railway net we can
observe lines and stations. There are at least two stations and one line in a net. From a line
we can observe the exactly two distinct stations it connects. From a station we can observe
the set of one or more tracks (on which trains may halt). From a station we can observe the
set of those lines from which the station can be reached. From a station we can observe the
set of lines that can be reached from that station. From a track of a station we can observe F:8

the lines from which the track can be reached. From a track of a station we can observe those
lines that can be reached from that track. Given a track and a pair of incoming, respectively
outgoing lines, we can observe whether a train, in order to pass from the incoming to the
outgoing line will be reverse or not. From a route we can observe the ordered list of stations
that it contains, including at least two stations. Given a route and a station, we can observe
whether a train following this route will undergo a reversal at this station or not.

type

Net, Lin, Sta, Tra,
Route = Sta×Tra×(Lin×Sta×Tra)∗

value

obs Stas: Net → Sta-set,
obs Lins: Net → Lin-set,

obs SS: Lin → Sta-set,
obs LS: Sta → Lin-set,
obs SSS: Sta → Sta-set,

obs Tras: Sta → Tra-set,

obs in Lins: Sta×Tra → Lin-set,
obs out Lins: Sta×Tra → Lin-set,

is Line Reversal: Lin × Tra × Lin → Bool,

obs RStas: Route → Sta∗,

is RReversal: Route × Sta → Bool,

exists path: Sta × Sta → Bool

exists path(s1,s2) ≡
(s2 ∈ obs SSS(s1)

∨
(∃ s3: Sta •

s3 ∈ obs SSS(s1) ∧

November 22, 2002, 12:06 c© The AMORE Project

6 Train Composition and Decomposition: Domain and Requirements

exists path(s3,s2))
),

next station: Route × Sta → Sta
next station((FS,FT,LSTlist),s) as s′

post

(∃ idx,idx′: Nat, l,l′: Lin, t,t′: Tra •

idx′ = idx + 1 ∧
(l,s,t) = LSTlist(idx) ∧
(l′,s′,t′) = LSTlist(idx′)

)
pre

(s = FS) ∨
(∃ idx: Nat, l: Lin, t: Tra •

(l,s,t) = LSTlist(idx)
)

axiom

∀ n : Net • card obs Stas(n) ≥ 2 ∧
card obs Lins(n) ≥ 1,

∀ s: Sta • ∃! n: Net • s ∈ obs Stas(n),
∀ l: Lin • ∃! n: Net • l ∈ obs Lins(n),
∀ t: Tra • ∃! s: Sta • t ∈ obs Tras(s),

∀ s: Sta, l: Lin •

(l ∈ obs LS(s) ⇒
(∃! n: Net •

(l ∈ obs Lins(n) ∧ s ∈ obs Stas(n)))),

∀ ℓ: Lin •

obs SS(ℓ) =
{ s | s: Sta • ℓ∈ obs LS(s) }

∧
card obs SS(ℓ) = 2,

∀ s: Sta •

obs SSS(s) =
{ s′ | s′: Sta •

∃ ℓ: Lin •

{s,s′} ⊆ obs SS(ℓ) },

∀ s : Sta • obs Tras(s) 6= {},

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 7

∀ s : Sta •

∃ t: Tra •

obs in Lins(s,t) 6= {} ∧
(∀ l : Lin •

l ∈ obs in Lins(s,t) ⇒
s ∈ obs SS(l)),

∀ s : Sta •

∃ t: Tra •

obs out Lins(s,t) 6={} ∧
(∀ l : Lin •

l ∈ obs out Lins(s,t) ⇒
s ∈ obs SS(l)),

∀ t : Tra, s : Sta, ℓ: Lin •

ℓ∈ obs in Lins(s,t) ⇒
t ∈ obs Tras(s),

∀ t : Tra, s : Sta, ℓ: Lin •

ℓ∈ obs out Lins(s,t) ⇒
t ∈ obs Tras(s),

∀ r : Route • len obs RStas(r) > 1

F:9

1.2.2 Trains, Assemblies, Carriages, and Rolling Stock

From a train we can observe the ordered list of assemblies that it contains, including at least
one assembly. From an assembly we can observe the ordered list of carriages that it contains,
including at least one carriage. Given two trains, we can observe whether they constitute a
reversal of each other, in case they are comparable. Given a route, we can observe the next
station within it. We define equivalence and identity relationships between trains.

type

Train, Assem, Carrg

value

obs Assems: Train → Assem∗,
obs Carrgs: Assem → Carrg∗,

is TReversal: Train × Train
∼

→ Bool,
next state in route: Route × Sta × Train → Train × Sta,

equivalent trains: Train × Train → Bool

November 22, 2002, 12:06 c© The AMORE Project

8 Train Composition and Decomposition: Domain and Requirements

equivalent trains(t1,t2) ≡
(∀ c: Carrg •

(∃ asm: Assem •

asm ∈ obs Assems(t1) ∧
c ∈ obs Carrgs(asm)

)
≡
(∃ asm′: Assem •

asm′ ∈ obs Assems(t2) ∧
c ∈ obs Carrgs(asm′)

)
),

identical trains: Train × Train → Bool

identical trains(t1,t2) ≡
(∀ c: Carrg, idx1,idx2: Nat •

(∃ asm: Assem •

asm = obs Assems(t1)(idx1) ∧
c = obs Carrgs(asm)(idx2)

)
≡
(∃ asm′: Assem •

asm′ = obs Assems(t2)(idx1) ∧
c = obs Carrgs(asm′)(idx2)

)
)

axiom

∀ t : Train • len obs Assems(t) > 0,
∀ a : Assem • len obs Carrgs(a) > 0,

∀ r: Route, s: Sta, t: Train •

let

(t′,s′) = next state in route(r,s,t)
in

is RReversal(r,s,t) ⇒ is TReversal(t,t′)
end,

∀ r: Route, s: Sta, t: Train •

let

(t′,s′) = next state in route(r,s,t)
in

s′ = next station(r,s)
end

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 9

F:10

1.2.3 Journeys, Time Tables and Schedules

From a schedule we can observe get the set of journeys described in it. From a schedule and
a train number we can observe the journey the train with this number makes according to
this schedule. From a journey we can observe the list of stations visited in it, including at
least two stations. Given a schedule, a train number and a station, we can observe the set of
pairs of arrival and departure times for the train with this number respectively to and from
that station according to this time table. Given a schedule, a train number, a station and
a time, we can observe the characteristics of the train that appears in that station bearing
this train number at that time by (according to) this schedule. We formulate well-formedness
conditions for journeys and schedules. An assembly map is a pairing of assembly types to
their numbers within a train configuration. For mathematical reasons that will be apparent
in the following section, we define a well-formed assembly map so that its domain includes
all existing assembly types, with possible zero values as numbers of assemblies. We define a
function that gives the expected travelling time between two stations.

type

TrainNum, TrainChars, Platform, AssemType, OClock,
TimeDur == null| ,
TravelTime = TimeDur,
StopTime = TimeDur,
Interval = TimeDur,
FirstTime = OClock,
LastTime = OClock,
Num of Assems = Nat,
Num of Passengers = Nat,

SV = Sta×OClock×OClock×Platform×TrainChars,
Journ′ = SV∗,
Journ = {|j: Journ′ • wf journ(j) |},

TrSer = TrainNum∗,

Sched = TrainNum →m Journ,

AssemMap′ = AssemType →m Num of Assems,
AssemMap = {|am: AssemMap′ • wf assem map(am) |}

value

obs Assemblies: TrainChars → AssemMap,
obs Num of Passengers: AssemType → Num of Passengers,

November 22, 2002, 12:06 c© The AMORE Project

10 Train Composition and Decomposition: Domain and Requirements

journs in sched: Sched → Journ-set
journs in sched(sch) ≡ rng sch,

journ of num: Sched × TrainNum → Journ
journ of num(sch,tn) ≡ sch(tn)
pre

tn ∈ dom sch,

journ stas: Journ → Sta-set
journ stas(j) as station set
post

(∀ s: Sta •

(∃ idx: Nat, dt,at: OClock,
p: Platform, tc: TrainChars •

j(idx) = (s,dt,at,p,tc)
)

≡
s ∈ station set

),

times: Sched × TrainNum × Sta → (OClock × OClock)-set
times(sch,tn,s) as times set
post

(∀ at,dt: OClock •

(at,dt) ∈ times set
≡
(∃ idx: Nat, p: Platform, tc: TrainChars •

(s,at,dt,p,tc) = sch(tn)(idx)
)

)
pre

tn ∈ dom sch ∧
s ∈ journ stas(sch(tn)),

trainchars: Sched × TrainNum × Sta × OClock → TrainChars
trainchars(sch,tn,s,t) as tc
post

(∃ idx: Nat, dt: OClock, p: Platform •

(s,t,dt,p,tc) = sch(tn)(idx)
)
pre

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 11

tn ∈ dom sch ∧
s ∈ obs JStas(sch(tn)),

obs travelling time: Sta × Sta → TravelTime,

>: OClock × OClock → Bool,
>: TimeDur × TimeDur → Bool,

≥: OClock × OClock → Bool,
≥: TimeDur × TimeDur → Bool,

∗: Nat × Interval → Interval,
+: OClock × TimeDur → OClock,
+: TimeDur × TimeDur → TimeDur,
−: OClock × OClock → TimeDur,

wf journ: Journ → Bool

wf journ(j) ≡
(∀ idx1,idx2: Nat •

idx1 < len j ∧ idx2 < len j ⇒
let

(s1,at1,dt1,p1,tc1) = j(idx1),
(s2,at2,dt2,p2,tc2) = j(idx2)

in

s2 ∈ obs SSS(s1) ∧
dt2 > at2 ∧ at2 > dt1 ∧ dt1 > at1 ∧
at2 − dt1 ≥ obs travelling time(s1,s2)

end

),

wf schedule: Sched → Bool

wf schedule(sch) ≡
(∀ j: Journ •

j ∈ rng sch ⇒ wf journ(j)
),

wf assem map: AssemMap → Bool

wf assem map(am) ≡
(∀ at: AssemType •

at ∈ dom am
)

axiom

November 22, 2002, 12:06 c© The AMORE Project

12 Train Composition and Decomposition: Domain and Requirements

∀ sch : Sched • journs in sched(sch) 6= {},

∀ j : Journ • card journ stas(j) > 1,

∀ s: Sta • obs travelling time(s,s) = null

F:11

1.2.4 Passenger Statistics

A Statistics is a mapping from pairs of time values to maps of couples of Stations mapped to
the Number of passangers commuting between those two stations in the time interval between
those two time values. We overload the addition and subtraction operators so that these may
be used for the composition and decomposition of trains, respectively, expressed as adding
and subtracting of assemply maps. Given a journey and a station within this journey, we may
derive the rolling stock to be added and to be taken out of the train making that journey in
that station. A real world statistics given in a general form, in terms of numbers of commuters
between pairs of stations and departure and arrival times, is transformed into a specific
statistics as needed in our model, in terms of number of commuters between consecutive
stations only.

type

Stat Number = Nat,
Trip = (OClock × OClock) × (Sta × Sta),

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 13

Stat1′ = (OClock×OClock) →m ((Sta×Sta) →m Number),
Stat1 = {|s: Stat1 • consecutive(s) |}

value

+: AssemMap × AssemMap → AssemMap
am1 + am2 as am3
post

(∀ at: AssemType •

am3(at) = am1(at) + am2(at)
),

−: AssemMap × AssemMap → AssemMap
am1 − am2 as am3
post

(∀ at: AssemType •

am3(at) = am1(at) − am2(at)
)

pre

(∀ at: AssemType •

am1(at) ≥ am2(at)
),

orthogonal: AssemMap × AssemMap → Bool

orthogonal(am1,am2) ≡
(∀ at: AssemType •

am1(at)∗am2(at) = 0
),

train change: Journ × Sta → TrainChars × TrainChars
train change(j,s) as (tc0,tc1)
post

(∃ idx: Nat, s0: Sta, at,at0,dt,dt0: OClock,
p,p0: Platform •

(s,at,dt,p,tc1) = j(idx) ∧
(s0,at0,dt0,p0,tc0) = j(idx − 1)

)
pre

s ∈ journ stas(j),

implement change: TrainChars × TrainChars → AssemMap × AssemMap
implement change(tc1,tc2) as (out assem map,in assem map)

November 22, 2002, 12:06 c© The AMORE Project

14 Train Composition and Decomposition: Domain and Requirements

post

let

ante assem map = obs Assemblies(tc1),
post assem map = obs Assemblies(tc2)
in

post assem map = ante assem map + in assem map − out assem map
∧
orthogonal(in assem map,out assem map)
end,

comp decomp: Journ × Sta → AssemMap × AssemMap
comp decomp(j,s) ≡
implement change(train change(j,s)),

The following function is checking whether a given statistic possessed the property of
consecutivity, i.e. whether the pairs of stations and times in it are compatible to the properties
of the network they are applied on.

consecutive: Stat1′ → Bool

consecutive(st) ≡
(∀ dst,ast: Sta, num: Stat Number, dt,at: OClock •

(dt,at) ∈ dom st ∧
(dst,ast) ∈ dom st(dt,at) ∧
num = st(dt,at)(dst,ast)
⇒
ast ∈ obs SSS(dst) ∧ at − dt ≥ obs travelling time(dst,ast)

),

The following function produces the set of all stations the lie in the optimal path between
two given stations.

connecting set: Sta × Sta → Sta-set
connecting set(s1,s2) as connecting set
post

(∀ s: Sta •

exists path(s1,s) ∧ exists path(s,s2) ∧
obs travelling time(s1,s) + obs travelling time(s,s2) =
obs travelling time(s1,s2)
≡
s ∈ connecting set

)
pre

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 15

exists path(s1,s2),

The following function produces the set of all trips within a given statistics which include
another given trip.

super trip set: Stat1′ × Trip → Trip-set
super trip set(st,((dt,at),(dst,ast))) as super trip set
post

(∀ dst′,ast′: Sta, dt′,at′: OClock •

(dt′,at′) ∈ dom st ∧
(dst′,ast′) ∈ dom st(dt′,at′) ∧
{dst,ast} ⊆ connecting set(dst′,ast′) ∧
dt ≥ dt′ + obs travelling time(dst,dst′) ∧
at′ ≥ at + obs travelling time(ast′,ast)
≡
((dt′,at′),(dst′,ast′)) ∈ super trip set

),

The following function returns the sum of the numbers of commuters in a given set of
trips.

sum of nums: Stat1′ × Trip-set → Stat Number
sum of nums(st,super trip set) ≡
case card super trip set of
0 → 0,

→
let

dst: Sta, ast: Sta, dt: OClock, at: OClock •

((dt,at),(dst,ast)) ∈ super trip set
in

st(dt,at)(dst,ast) +
sum of nums(st,super trip set\{((dt,at),(dst,ast))})

end

end,

The following function reforms a given statisics into one which has the property of con-
secutivity.

reform stat: Stat1′ → Stat1
reform stat(st′) as st
post

November 22, 2002, 12:06 c© The AMORE Project

16 Train Composition and Decomposition: Domain and Requirements

(∀ dst,ast: Sta, dt,at: OClock •

(dt,at) ∈ dom st ∧
(dst,ast) ∈ dom st(dt,at)
⇒
st(dt,at)(dst,ast) =
sum of nums(st′,super trip set(st′,((dt,at),(dst,ast))))

)
pre

(∀ dst,ast: Sta, dt,at: OClock •

(dt,at) ∈ dom st′ ∧
(dst,ast) ∈ dom st′(dt,at)
⇒
at − dt ≥ obs travelling time(dst,ast)

)

F:12

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 17

1.2.5 Planning

Given a statistics and a set of rules and regulations we can generate a set of scedules for
the given statistics under the given rules and regulations. The generated schedules satisfy
the given statistics. A recursive function computes the sum of passenger load that a given
configuration of train characteristics may take.

type

RulReg

value

passengers sum: AssemMap → Nat

passengers sum(assem map) ≡
case card dom assem map of

0 → 0,
→

let

assem type: AssemType •

assem type ∈ dom assem map
in

assem map(assem type)∗obs Num of Passengers(assem type) +
passengers sum(assem map\{assem type})

end

end,

fitrules: RulReg × Sched → Bool,

fitting: Stat1 × RulReg-set × Sched → Bool

fitting(st,rrs,sch) ≡
(∀ rr: RulReg •

rr ∈ rrs ⇒ fitrules(rr,sched)
)
∧
(∀ dt,at: OClock, dst,ast: Sta, num: Stat Number •

(dt,at) ∈ dom st ∧
(dst,ast) ∈ dom st(dt,at) ∧
num = st(dt,at)(dst,ast)
⇒
(∃ j: Journ •

j ∈ rng sch ∧
(∃ idx1,idx2: Nat, at1,dt2: OClock,

p1,p2: Platform, tc1,tc2: TrainChars •

idx1 ≤ len j ∧ idx2 ≤ len j ∧

November 22, 2002, 12:06 c© The AMORE Project

18 Train Composition and Decomposition: Domain and Requirements

(dst,at1,dt,p1,tc1) = j(idx1) ∧
(ast,at,dt2,p2,tc2) = j(idx2) ∧
passengers sum(obs Assemblies(tc1)) ≥ num

)
)

),

gen Sched: Stat1 × RulReg-set → Sched-set
gen Sched(st,rrs) ≡ {sch | sch: Sched • fitting(reform stat(st),rrs,sch)}

F:13

2 Requirements
T:2, F:14

2.1 Domain Requirements

2.1.1 Projection

We should first ask for which parts of the domain the client wishes computing support. In our
case the part of the domain where computing support is needed is the Planning part outlined
above.

2.1.2 Determination

We consider that the projected parts of our model do not contain any undesired looseness or
non-determinism. However, we do need to insert more content in the rules and regulations
that are inserted in the planning function.

2.1.3 Extension

Below we specify how the developed domain may be extended to include the selection of the
optimal schedules from within a generated set of schedules. The set of schedules generated
by the function provided in the previous section is redundant in a number of ways: Although
all the generated schedules fitting the same given statistics, they do not have to do so by
implementing the same set of trips. At this stage our purpose is to reduce those schedules
who implement the same set of trips as other schedules in the same set, without being optimal
in comparison to them. Firstly, two or more schedules in it may implement exactly the same
set of trips, albeit in different combinations of journeys and allocation of trips to journeys.
Secondly, two or more schedules in the generated set may implement exactly the same set
of trips, and even through the same set of journeys, but the allocation of rolling stock to
trains may be different between them, i.e. one of them may allocate more rolling stock than
necessary. In order to eliminate these redundancies, we follow the approach described below.
The main idea is given in the function optimizing a schedule set. The rest of the following
functions are auxiliary to that main function. Each of the following functions is accompanied
by comments that explain its role in the model.

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 19

value

The following two functions are responsible for deciding whether a given trip belongs to
a certain schedule, i.e. whether the given schedule includes the given trip. In order for a trip
to belong to a schedule, it has to belong to a journey belonging to that schedule.

belongs journ: Trip × Journ → Bool

belongs journ(((dt,at),(dst,ast)),j) ≡
(∃ idx1,idx2: Nat, dt,at: OClock, dst,ast: Sta •

(dst, ,dt, ,) = j(idx1) ∧
(ast,at, , ,) = j(idx2)

),

belongs sched: Trip × Sched → Bool

belongs sched(trip,sch) ≡
(∃ j: Journ •

j ∈ rng sch ∧
belongs journ(trip,j)

),

The following two functions are responsible for deciding whether two given schedules are
equivalent to each other. Equivalence of schedules is defined as the property that a pair of
schedules has when they include the same set of trips.

sched trip set: Sched → Trip-set
sched trip set(sch) as tripset
post

(∀ trip: Trip •

belongs sched(trip,sch)
≡
trip ∈ tripset

),

equiv Sched: Sched × Sched → Bool

equiv Sched(sch1,sch2) ≡
(sched trip set(sch1) = sched trip set(sch2)),

The following group of functions is responsible for the computation of a schedule’s total
cost. This total cost is computed as the sum of the costs of the journeys in the schedule. In
its own turn, the cost of a journey is computed as the sum of the costs of the station visits
that compose this journey. Finally, a station visit’s cost is computed as the cost for the train
making that station visit, which is a function of this train’s characteristics. This is allowed to

November 22, 2002, 12:06 c© The AMORE Project

20 Train Composition and Decomposition: Domain and Requirements

be so, since all the other factors of interest (time duration) are equal under the circumstances
in which we are interested to compare schedules’ costs: we compare the costs of equivalent
schedules, i.e. schedules which include exactly the same sets of trips.

train cost: TrainChars → Nat,

sv cost: SV → Nat

sv cost(sv) ≡
let

tc: TrainChars •

(, , , ,tc) = sv
in

cost(tc)
end,

journ cost: Journ → Nat

journ cost(j) ≡
case len j of
0 → 0,

→
let

sv: SV •

sv = hd j
in

sv cost(sv) +
journ cost(tl j)

end

end,

sched cost: Sched → Nat

sched cost(sch) ≡
case card rng sch of

0 → 0,
→

let

j: Journ, tn: TrainNum •

tn ∈ dom sch ∧
j = sch(tn)

in

journ cost(j) +
sched cost(sch\{tn})

end

end,

c© The AMORE Project November 22, 2002, 12:06

An AMORE Project Report: P.Karras and D.Bjørner 21

The following function returns the optimal schedule of a set of equivalent schedules, i.e.
a member of the set for which no other member of the set costs less than it.

opt Sched: Sched-set → Sched
opt Sched(sch set) as opt sch
post

(opt sch ∈ sch set
∧
(∀ sch: Sched •

sch ∈ sch set
⇒
sched cost(sch) ≥ sched cost(opt sch)

)
),

The following function returns an optimized set of schedules given a general set of sched-
ules. The optimization is performed by eliminating those schedules which are equivalent to
a schedule already included in the set, which is optimal compared to them. In other words,
those and only those schedules of the original set are included in the returned set, which are
such that an equivalent to and better schedule than them does not exist in the original set.

optimize Sched set: Sched-set → Sched-set
optimize Sched set(sch set) as opt sch set
post

(opt sch set ⊆ sch set)
∧
(∀ sch: Sched •

sch ∈ opt sch set
≡
(∀ sch′: Sched •

sch′ ∈ sch set
∧
equiv Sched(sch,sch′)
⇒
sch = opt Sched({sch,sch′})

)
)

2.1.4 Initialization

In dscribing a domain, such as we have done for the domain of railway nets, we have designated
the space of all its components. Sooner or later, one has to initialize the computing system to

November 22, 2002, 12:06 c© The AMORE Project

22 Train Composition and Decomposition: Domain and Requirements

reflect all these many entities. Hence we need to establish requirements for how to initialize
the computing system, how to maintain and update it, etc. In the present case initialization
includes the acquisition of statistical information as well as of the data structures that describe
the net and the data on the available types of assemblies.

2.1.5 Fitting

The developed software system does not need to fit some existing product.

2.2 Interface Requirements

2.2.1 Computer-Human Interface

In the present case the computer-human interface needs to be sufficiently robust to be able to
handle a large amount of statistical and network data. There are no special needs concerning
the user-friendliness of the system, as this is intended to be used only by the railway company.

2.3 Machine Requirements

A software system has been already developed at NS Reizigers, the passenger division of the
”old” Nederlandse Spoorwegen (Dutch Railways, NS), that implements a solution for the
problem described here.

3 Conclusion
T:3, F:15

The present paper has outlined an a posteriori attempt to shed light onto the formal aspects
of the presented problem. In a more formal-oriented approach, we would have liked a software
system to have been developed based on the requirements outlined in this paper.

c© The AMORE Project November 22, 2002, 12:06

