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Abstract
Foil # 2

We discuss a rôle for the use of formal techniques in understanding the domain of
railways, in expressing requirements to, and in the design of trustworthy software for
the backbone and program packages for railways. We exemplify such techniques as applied
to the recording of our domain understanding and hints at their use in requirements

and design. We motivate the use of formal techniques, and survey, ever so briefly, the
state-of-affairs of such use. We finally put forward a proposal for and invite you to
join such a proposed European Railway Software Technology Reseasrch & Development
project: TRaIn: The Railway Infrastructure
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1 A Motivation
Foil # 3

We see the rôle of formal techniques (of software development in the context of transporta-
tion systems) from two composite viewpoints: The sociological and socio-economic, and the
computing science and software engineering viewpoints.

1.1 Sociological Motivation

The domain of railways was, for perhaps a hundred years, characterised by stable staff. Once
hired into a railway company, the employee remained there for life. And by not so rapidly
changing technology. Manually thrown switches were in primary use for more than a hundred
years. Electro-mechanically operated switches for at least fifty years. Now staff “drifts” in
and out of the domain; old loyalties have gone; new staff has to be continually retrained;
and staff which is not kept vigilantly to the same operating routines, day after day, easily
forget them. Rail and train technology changes more rapidly than the now much shorter
employment-time of staff. And computers and communication have come to stay.Foil # 4

Do they, computers and communication, offer a relief from the problems of migrant staff
and itinerant technologies ?

Yes, but !

The knowledge that loyal, life-time staff learned, through training, was predicated on that
staff getting that knowledge re-inforced, again and again, year in and year out, by “drill-
work”. That knowledge was usually presented in master class: The experienced staff verbally
taught the new staff.

Computing has to take heed and embody that knowledge. We need to codify that knowl-
edge. To write it down. In precise ways. In both humanly understandable form, and in forms
that can be manipulated by machine.

The technology of former days was based on natural sciences: Switches were mechanical,
then electro-mechanical, and are now seemingly electronic — or are they ? The technology
of today — computing — is not based on natural sciences. It is based on mathematics and
on the “man-mad[e]ness” of infrastructure components: transportation, etc.Foil # 5

It takes time for this view to prevail.

In this paper we wish to indicate a way in which the knowledge of for example railways can
be “codified”: Written down in a form that is guaranteed to last beyond the current fashions
of object-oriented, UML-like models. Namely in good, reliable, old-fashioned mathematics.
Not the mathematics, however, of analysis (differential equations, integrals, statistics, etc.),
but a simpler, more readily accessible mathematics: that of discrete mathematics, algebras
and, notably, logic.

In this paper we wish, briefly, to illuminate the changes that are inherent in computing.
These are changes that will profoundly affect age old institutions like railways — and, for
that matter, any transportation domain.

c© Dines Bjørner, 2000 June 6, 2000, 20:42
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1.2 Engineering Motivation
Foil # 6

1.2.1 Some Delineations

Computer science is the study and knowledge of the phenomena that can exist inside comput-
ers: Data and processes. Computing science is the study and knowledge of how to construct
those devices: Data and processes. Software engineering is, to us, the triptych of engineering
understandings of the domain of applications — void of any reference to computing (&c.),
of engineering requirements to software for computing applications in the support of oper-
ations of the domain, and of engineering the design of that software. An engineer “walks”
the bridge between science and technology: Designs technology based on scientific insight;
and analyses technology to ascertain its science content. Foil # 7

By a method we understand a number of principles, deployed [here] by engineers, to select

and apply, a number of techniques and tools in order efficiently to analyse and efficiently to
synthesize efficient [as here] software.

No one method suffice for a full application. Some techniques of some methods can be
formally based and for some of these formally based tools can be made available. The term
‘formal method’ should really only be understood as ‘formal technique cum tool’.

Some methods span phases, stages and steps of development (viz. VDM [2, 20, 11] and
Raise [12, 13]). Other methods cover just a single aspect of a single step (viz. STeP [22, 23]),
most uses of Petri Nets [19, 24] and Statecharts.

Foil # 8

Domain models initially express the very basics of their domain: This paper will illustrate
such an (i) intrinsics — void of any reference to how that domain may be instrumented: How
it is done so through: (ii) supporting technologies, (iii) management & organisation, (iv)
rules & regulations, (v) human behaviour, etc. Domain models (then) go on to then capture
(ii–iii–iv–v–. . . ).

Foil # 9

Requirements At least two other papers of these proceedings, [21], illustrate, from the
perspectives of both domain and requirements, issues of, amongst others, modelling the sup-

port technology of the group interlocked control of rail switches.
Requirements usually reflect a triple of concerns: To secure (a) support of domain oper-

ations (the domain requirements), (b) the interface between humans (and/or other interfac-
ing quantities) and the hardware/software to be built (the interface requirements), and (c)
performance, dependability, maintainability, platform and other “ility” issues (the machine

requirements).
We shall not cover other than the intrinsics facet in the current paper.

Foil # 10

Software design finally deals with what is normally considered the domain of software
engineering — which in this paper is thus argued to encompass also the more novel do-
main (and the, since some time, well-established requirements) engineering aspects. Software
architecture design implements the domain requirements and parts or all of the interface
requirements, and program organisation implements machine requirements. Further steps of
software design focus on specific platform issues — and it is here that modularisation, the
use of standard, today typically object oriented, packages (CORBA, etc.) enters the design
process.

June 6, 2000, 20:42 c© Dines Bjørner, 2000
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Foil # 11

Descriptions Throughout the development process “reams and reams” of documents are
being constructed: Informal briefs, scope & span synopses, rough sketches, analyses, nar-
rative and terminologies, as well as formal documents: formalisations of the narratives and
verification of properties. Validation is the act of securing, with stake-holders of the domain
that domain and requirements descriptions to a highest, if not fullest, extent, satisfy hu-
man, hence informal, expectations. And throughout the development process, one or another
construction method is being applied.

1.2.2 Promises of Better Engineering
Foil # 12

Domain engineering, as a separate development phase, addresses, typically the “separations

of concern” problem of engineering. Formal techniques, with their use of and facilities for
abstraction, have made it possible to capture the domains of indeed very large scale applica-
tions.

This modern software engineering — now being applied, systematically and rigorously, to
major components, viz. transportation systems, healthcare systems, financial service industry,
etc., of societal infrastructures — enable us to embark upon and tackle the development of
very large scale software systems whose thousands of packages cover, in the end, highly
interwoven, highly interrelated, communicating and synchronising domain phenomena.Foil # 13

So far only software can do that: The “one step” applications of automatic control, or of
operations analysis techniques, cover only well defined “package” parts, where computing is
able to link “it all” together. Automatic control is, classically based on classical mathematical
models, say in the form of differential equations, being first used to model what can be
modelled by such mathematical tools. Similar for operations analysis. The techniques and
tools of automatic control and operations analysis are indeed very profound. Computing
science has only begun to scratch the surface of its profoundness.Foil # 14

But computing can do what the others can’t: Link the various “packages” together. In
doing so, computing does not, as of yet, guarantee that there is a formal, mathematical
understanding of what that “linking” means. The problem is, however, being under intense
study. In general it could be labelled the problem of codesign, but currently that label is used
in a much more narrow sense: The co-design of hardware & software to solve an isolated,
“small” problem. Our co–design is one of systems engineering.

2 A Railway Model
Foil # 15

The purpose of this section is to illustrate — by a “top-of-an-iceberg” example — that we
can indeed capture all, of what need be captured, in precise informal as well as formal terms.

We will explain, in simple words, and in simple mathematics — where the formula fits,
“hand-in-glove” the simple, informal text — what is meant (in a technology independent
abstraction) by the statics of a railway net: by rail lines and railway stations, by the rail
units they consists of, the connectors that “glue” units together, etc.; and by the dynamics:
of the states of signals and swtiches, by open and closed routes, by train movement along
routes (even off the net!), by time tables, schedules and traffic in general.Foil # 16

c© Dines Bjørner, 2000 June 6, 2000, 20:42
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The model given is claimed to describe the domain, independent of any computing ap-
plication. As shown, elsewhere, in other papers, we can then base requirements on domain
models, like the one shown next, and from these requiremtns, in a trustworthy manner, de-
velop dependable software.

After this section we shall expand the view and postulate further applications.
We divide the presentation into two parts: a hierarchical (“topdown”) first part followed

by a compositional (“bottom-up”) second part.

2.1 Hierarchical Presentation
Foil # 17

We focus on the railway net perspective of railway systems. We designate such components of
the rail net which can be physically demonstrated, but we abstract from a number of physical
attributes — they can always be simply “added” later on — and focus on the transport logics.

Pls. inspect figure 1.

Figure 1: A “Model” Railway Net !
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Foil # 18

Our natural, professional railway language description proceeds as follows:1

1. A railway net consists of lines and two or more stations.

2. A railway net consists of units.

3. A line is a linear sequence of one or more linear units.

1We enumerate the sentences for reference.

June 6, 2000, 20:42 c© Dines Bjørner, 2000



6 June 6, 2000, Dines Bjørner, Technical University of Denmark

4. The units of a line must be units of the net of the line.

5. A station is a set of units.

6. The units of a station must be units of the net of the station.

7. No two distinct lines and/or stations of a net share units.

8. A station consists of one or more tracks.

9. A track is a linear sequence of one or more linear units.

10. No two distinct tracks share units.

11. The units of a track must be units of the station (of that track).Foil # 19

12. A unit is either linear, or a switch, or a simple crossover, or a switchable crossover, etc.

13. A unit has one or more connectors.2

14. For every connector there are at most two units which have that connector in common.

15. Every line of a net is connected to exactly two, distinct stations of the net.

16. A linear sequence of units is a non-cyclic sequence of linear units such that neighbouring
units share connectors.

Foil # 20

A corresponding, representationally abstract formal specification — please read it carefully,
line-by-line, is:

type

N, L, S, Tr, U, C
value

1. obs Ls: N → L-set
1. obs Ss: N → S-set
2. obs Us: N → U-set
3. obs Us: L → U-set
5. obs Us: S → U-set
8. obs Trs: S → Tr-set
12. is Linear: U → Bool

12. is Switch: U → Bool

12. is Simple Crossover: U → Bool

12. is Switchable Crossover: U → Bool

13. obs Cs: U → C-set
16. lin seq: U-set → Bool

lin seq(q) ≡

2A linear unit has two distinct connectors, a switch has three distinct connectors, crossovers have four

distinct connectors.

c© Dines Bjørner, 2000 June 6, 2000, 20:42
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let us = obs Us(us) in
∀ i:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗ • len q = card us ∧ elems q = us ∧

∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ c:C •

obs Cs(q(i)) ∩ obs Cs(q(i+1)) = {c} ∧
len q > 1 ⇒ obs Cs(q(i)) ∩ obs Cs(q(len q)) = {}

end

Foil # 21

axiom

1. ∀ n:N • card obs Ss(n) ≥ 2,

3. ∀ n:N, l:L • l ∈ obs Ls(n) ⇒ lin seq(l)

7. ∀ n:N, l,l′:L •

{l,l′} ⊆ obs Ls(n) ∧ l6=l′

⇒ obs Us(l) ∩ obs Us(l′) = {}

7. ∀ n:N, l:L, s:S •

l ∈ obs Ls(n) ∧ s ∈ obs Ss(n)
⇒ obs Us(l) ∩ obs Us(s) = {}

7. ∀ n:N, s,s′:S •

{s,s′} ⊆ obs Ss(n) ∧ s 6=s′

⇒ obs Us(s) ∩ obs Us(s′) = {}

8. ∀ s:S • card obs Trs(s) ≥ 1

9. ∀ n:N, s:S, t:T •

s ∈ obs Ss(n) ∧ t ∈ obs Trs(s) ⇒ lin seq(t)

Foil # 22

10. ∀ n:N, s:S, t,t′;T •

s ∈ obs Ss(n) ∧ {t,t′} ⊆ obs Trs(s) ∧ t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

14. ∀ n:N • ∀ c:C •

c ∈ ∪ { obs Cs(u) | u:U • u ∈ obs Us(n) }
⇒ card{ u | u:U • u ∈ obs Us(n) ∧ c ∈ obs Cs(u) } ≤ 2

15. ∀ n:N,l:L • l ∈ obs Ls(n) ⇒
∃ s,s′:S • {s,s′} ⊆ obs Ss(n) ∧ s 6=s′ ⇒

let sus = obs Us(s), sus′ = obs Us(s′), lus = obs Us(l) in
∃ u:U • u ∈ sus, u′:U • u′ ∈ sus′, u′′,u′′′:U • {u′′,u′′′} ⊆ lus •

let scs = obs Cs(u), scs′ = obs Cs(u′),
lcs = obs Cs(u′′), lcs′ = obs Cs(u′′′) in

June 6, 2000, 20:42 c© Dines Bjørner, 2000
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∃ ! c,c′:C • c 6= c′ ∧ scs ∩ lcs = {c} ∧ scs′ ∩ lcs′ = {c′}
end end

2.2 Configurational Presentation
Foil # 23

We wish, now, to build up to the dynamics of the net: modelling, but abstractly, signals and
their states, the state of switches as well as the intended use-state of rails:

17. A path, p : P , is a pair of connectors, (c, c′), of some unit.3

18. A state, σ : Σ, of a unit is the set of all open paths of that unit (at the time observed).4

19. A unit may, over its operational life, attain any of a (possibly small) number of different
states ω,Ω.Foil # 24

20. A route is a sequence of pairs of units and paths —

21. such that the path of a unit/path pair is a possible path of some state of the unit, and
such that “neighbouring” connectors are identical.

22. An open route is a route such that all its paths are open.

23. A train is modelled as a route.

24. Train movement is modelled as a discrete function (map) from time to routes such that
for any two adjacent times the two corresponding routes differ by at most one of the
following: a unit path pair has been deleted from (one or another end) of the open
routes, or (similarly) added, or both, or no changes — a total of seven possibilities
(i–vii).

type

17 P = C × C
18 Σ = P-set
19 Ω = Σ-set
20 R′ = (U × P)∗

21 R ={| r:R′
• wf R(r) |}

23 Trn = R
24 Mov = T →m Trn
value

18 obs Σ: U → Σ
19 obs Ω: U → Ω

Foil # 25

3A path of a unit designate that a train may move across the unit in the direction from c to c
′. We say

that the unit is open in the direction of the path.
4The state may be empty: the unit is closed.

c© Dines Bjørner, 2000 June 6, 2000, 20:42
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21 wf R: R′ → Bool

wf R(r) ≡
∀ i:Nat • i ∈ inds r let (u,(c,c′)) = r(i) in

(c,c′) ∈
⋃

obs Ω(u) ∧ i+1 ∈ inds r ⇒
let ( ,(c′′, )) = r(i+1) in c′ = c′′ end end

22 open R: R → Bool

open R(r) ≡
∀ (u,p):U×P • (u,p) ∈ elems r ∧ p ∈ obs Σ(u)

24 wf Mov: Mov → Bool

wf Mov(m) ≡ card dom m ≥ 2 ∧
∀ t,t′:T • t,t′ ∈ dom m ∧ t < t′

∧ ∼∃ t′′:T • t′′ ∈ dom m ∧ t < t′′ < t′ ⇒
let (r,r′) = (m(t),m(t′)) in clauses (i) − (vii) end

We leave it as an exercise to define clauses (i)–(vii) above.

2.3 Other Aspects and Discussion
Foil # 26

Models, informal and formal, such as shown above, can be developed for “the whole” of
railway systems — indeed for any (other) transportation infrastructure component: Air traf-
fic (with airports and airlines), shipping (for example emphasizing container logistics), and
metropolitan transport (the interplay between taxis, buses, metro, regional trains, etc.).

For railways we have, in this manner, developed, from the basis shown above, sub-models
that include the following aspects:

• Time tables: Tn for train names, T stands (or could, eg. stand for modulo, say a
week) times, and Sn for station names. TT stands for time tables: Every applicable
train mame associates to a journey, a list of station visits — with their arrival and
departure times:

type Tn, T, Sn
TT = Tn →m (T × Sn × T)∗

Foil # 27

• Traffic: Given that a train can be associated with not only its name but also its
route position on the rails, TF stands for traffic: A continuous function from time, now
absolute, with no modulo necessity, to usually stable nets and certainly monotonically
changing train (TR) positions:

type TR
TF = T → (N × (TR →m R))

value

obsTn: TR → Tn
obsRs: N → R-infset

June 6, 2000, 20:42 c© Dines Bjørner, 2000
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axiom

∀ tf:TF, t:T •

t ∈ dom tf ∧ let (n,tps) = tf(t) in
∀ tr:TR • tr ∈ dom tps ⇒

tps(tr) ∈ obsRs(n) end

• Train Plans: The train engine man is given, during briefing, before the train is
despatched, a train plan. It gives a discrete, ie. not a continuous, description of where
the train is expected to be at certain times, at which sequence, R of units. For all trains
we get:

type

TP = T →m (N × (Tn →m R))

Train plans are discretisations of traffics — and, as is traffic, is modulo the net.Foil # 28

• Scheduling: Given a net and a time table we can speak, as the meaning of the net
and the time table, of all the traffics that satisfies the net and the time table:

value

Meaning: N × TT → TF-infset

We can in particular devise a special planning function, scheduling, which decides upon
a suiable set of train plans:

scheduling: N × TT → TP

Given a traffic and a trains plan we can now speak of monitoring whether trains in the
traffic are on-schedule:

value

ontime: N × TP × TF → Bool

Etcetera.Foil # 29

• Shunting and Marshalling: We can define what is meant by shunting and by mar-
shalling yards, marshalling plans, and marshalling.

• Passenger Service: We can define what is meant by passenger services such as travel
plan inquiry, ticket and seat reservation, ticketing, etc.

• Logistics: With nets, rolling stock control, passenger statistics and old time tables, we
can speak of logistics planning: Constructing new time tables, etc.

c© Dines Bjørner, 2000 June 6, 2000, 20:42
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• Freight Services: We can define what is meant by freight trains, by the logistics
of planning and executing freight service: Reservation, loading, tracing and unloading
freight, etc.

• Rolling Stock Monitoring & Control: And so on: We can model the rolling stock,
its waiting, at sidings, to participate in passenger and/or freight train traffic; the gath-
ering of such rolling stock into operable trains, etc.

• Net Development: You noticed that the net, N, was a parameter in traffic: To model
that the net regularly undergoes maintenance and development. Old rails taken out of
service, new lines and stations being put into service.

Domain models of the above, and of requirements to actual or postulated software for the
support of railway operations, whether of strategic, tactical or operational nature, have been
developed and can be inspected on the Web:

1. http://www.it.dtu.dk/~db/rail/dom.ps

2. http://www.it.dtu.dk/~db/rail/req.ps

3 Other Formal Work
Foil # 30

There is, by now, a very rich literature on applying formal technques to problems of railways.
An EU sponsored network, FMERail carried out by FME: Formal Methods Europe under

the leadership of Dr. Peter Gorm Larsen, http://www.ifad.dk/Projects/fmerail, held
five workshops on the topic across Europe in the period 1998–1999: In The Netherlands,
England, Austria, Sweden and France gathering a total of more than 300 railway IT people.
A very extensive, partially annotated bibliography and a light assessment of international
research and actual commercial use of formal techniques can be inspected:

• http://www.it.dtu.dk/~db/rail/bib.ps

So far the main emphasis — in the use of formal techniques — has been safety criti-
cal aspects of controlling the switches of railway stations, in modern technology known as
interlocking.

4 Challenges and Claims
Foil # 31

4.1 An Infrastructure of Software

The domain of railways is a micro-cosm: It represents a huge variety of possibilities for
applications of software and all these applications “link together”: Are tightly related.

Results of computations by means of some software packages has import as input data to
other packages — yet little, if any effort, is made to vet that data: To insure that an underlying
model, not just of information (ie. data), but of their semantics, ie. of the actions to be taken
on data and the interaction sequences, ie. the processes in which these data are shared with
other processes — that such underlying models indeed do exist and “bind” the information

June 6, 2000, 20:42 c© Dines Bjørner, 2000
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and its use, the data and its processing. As it is today there is hardly any guarantee that
statistical data gathered from one application, say ‘traffic and passenger monitoring’, is indeed
correctly used by ‘time tabling’ software.Foil # 32

The realm of automatic control, the subject of this conference, interacts strongly with
many facets of statistics gathering, time table planning, train scheduling, train despatch,
resource allocation and scheduling, etc. — in a cycle back to the more-or-less automatic
control of train movemenents.

The field of computing science provides design tools, techniques, principles and meth-
ods that allow classical automatic control engineering designs to “link up” to more modern
operations analysis (graph-theoretic and combinatorial resource optimisation). The com-
putability based state, event and process modelling techniques of computing science provides
means lacking in control theory and theories of optimisation.

The understanding of this truth takes time to propagate.

4.2 A Socio–Economic Outlook
Foil # 33

This paper was invited with basically the given title. It therefore behooves us — based on
many years of both scientific and engineering, theoretical as well as quite some substantial
practical experience — to make some statements as to the rôle of formal techniques in software
development, and in particular in the development of software for the support of operations
in the application domain of transportation and traffic.

For sociological reasons it seems to take some time before formal techniques enter the
domain of software for general software for common railway cum transportation support.

In the area of software for safety critical applications there seems to be a strong trend
towards using the formal techniques of this and the companion paper [21] (See also the
references of [21]).

In the area of general software there is hardly any “movement”.Foil # 34

The problem, there, seems to be that most managers of IT departments of the trans-
portation industry: providers as well as users, are not software professionals. In other words:
They really are neither computing scientifically cum software technologically mature nor en-
gineeringly responsible. The current lot of programmers possess the enviable position of being
considered indispensable — managed by non-professionals — where, as a matter of cool fact,
they ought be laid off: The programmers and their management !

A long period therefore confronts us, in which the industry ever so slowly turns around
and becomes mature and responsible.Foil # 35

Meanwhile a few have to “fight it out”.

It will be interesting to see whether the inevitable transition to trustworthy software
conception, from domains via requirements to software design, will primarily be due to the
candidates from universities wanting to have it no other way, or due to insurance companies
demanding claimed “proofs of correctness” ?

The fact is simple enough: There are enough universities around Europe — and Europe
seems to be a leader in the research and use of formal techniques — which produce a rea-
sonably quantity of very highly qualified candidates. There are enough problems that ought
be “formally” tackled. But procurers either do not demand the “proven” quality, or the
providers, the suppliers are not capable, or both !

c© Dines Bjørner, 2000 June 6, 2000, 20:42
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5 Conclusion
Foil # 36

5.1 Formal Techniques and Tools

In this paper, as well as in its “companion” paper, [21], we have used the Raise Specification
Language, RSL [12], and thus implied use of the Raise software development method, [13].
As shown in [5] there are many complementary as well as “competing” approaches: B [1],
VDM-SL [2, 20, 11], Z [18, 26], and others. It seems, to this author, that B is currently being
very successfully applied in “real-life”, commercial projects. We refer to [5] for references.

5.2 A Reinforcement
Foil # 37

In a rather personal style — but that is fortunately what invited papers from long experienced
people are all about, ie. to be expected — I have related some 25 years of hard-won expe-
rience: For the fascinating field of transportation, a highly structured and disciplined field,
the combination of automatic control with operations analysis as linked together by com-
puting science, that is: The well-managed collaboration of control engineers and operations
‘researchers’ with software engineers, brings exciting promises.

The former disciplines: Automatic cotrol and operations analysis, has, since long, adhered
to strong, formal foundations, linking, in the case of automatic control, the natural sciences
with mathematical models, and, in the case of operations analysis, the human decision pro-
cesses with computing. The new corner in the triangle: That of computing science, is now no
longer a trivial means of “hacking” code. Computing science, with domain engineering “at
the top”, is offering radically more fundamental, broad and deep, all-encompassing models of
“all” of railways.

That is the challenge: For owners, operators and procurers of the transportation domains,
to understand and profesionally exploit this.

5.3 TRaIn: A Pan–European — and beyond — R&D Project Proposal
Foil # 38

I think it is high time that we gather forces: Classical automatic control, operations research,
and modern computing science, to embark on exploratory, experimental, as well as committed
R&D wrt. extensive domain models for railway transport systems: The net and its signalling;
trains, their despatch, monitoring & control; rolling stock monitoring & control: Allocation &
scheduling, and shunting and marshalling; time–tabling, scheduling, and re–scheduling; pas-
senger handling: Reservations, ticketing, etc.; freight handling: loading, unloading, tracing,
etc.; etc. Foil # 39

Only through joint R&D can we achieve a much needed clarification and understanding
of strategic, tactical, and operational planning and operations:

• (A) Strategics — resource upgrading and downsizing:

– (i) New transport services: passenger, freight;

– (ii) new lines and stations;

– (iii) or the suspension of the services;

– (iv) financial management,
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– (v) &c.

• (B) Tactics:

– (i) time-tabling,

– (ii) fee structures,

– (iii) spatial resource allocation & scheduling,

– (iv) &c.

• (C) Operations — task allocation & scheduling:

– (i) Planning:

∗ (a) Traffic scheduling and rescheduling,

∗ (b) resource deployment and re–deployment,

∗ (c) &c.

– (ii) Operations:

∗ (a) Traffic monitoring & control,

∗ (b) passenger and freight monitoring & control,

∗ (c) &c.

– (iii) Automation:

∗ (a) ATP: Automatic train protection,

∗ (b) ATC: Automatic train control,

∗ (c) &c.

• (D) &c.

Would you like to join in formulating a joint R&D project proposal ?
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6 Bibliographical Notes

We refer, rather unscientifically, only to “own” publications and reports — that is: work done
by the author and his colleagues during the last 10 years.

In Section 3 we have referred to [9, 10] and to a Web document [5]. The latter lists literally
hundreds of mostly technical and scientific papers and reports — the “sum total” of which
substantiate the claims of the current paper.

In addition we can refer to a number of publications and reports which also substantiate
the claims made in this paper: [25, 8, 4, 14, 6, 16, 7, 15]. [3] hints at the issues but, we now
reckon, represents an altogether too concrete modelling approach. Hence [4] and its followers.

More recently, and perhaps more appropriate than this rather cursory paper we can refer
to [17, 21].
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