
RAILWAY STAFF ROSTERING

Albena Strupchanska1, Martin Pěnička2, Dines Bjørner3

1Linguistic Modelling Department, Bulgarian Academy of Sciences
Address: 25A Acad. G. Bonchev Str. Sofia 1113, Bulgaria
Phone: (+359 2) 9796607 , Fax: (+359 2) 707273, e–mail: albena@lml.bas.bg
2Czech Technical University, Faculty of Transportation Sciences, Department of Applied Mathematics
Address: Na Florenci 25, 110 00 Praha 1, Czech Republic
Phone: (+420) 224 890 712, Fax: (+420) 224 890 702, e–mail: penicka@fd.cvut.cz
3Technical University of Denmark, Computer Science and Engineering,
Informatics and Mathematical Modelling
Address: Building 322, Richard Petersens Plads, DK–2800 Kgs.Lyngby, Denmark
Phone: (+45) 4525 3720, Fax: (+45) 4593 0074, e–mail: db@imm.dtu.dk

Abstract: The problem to be tackled is as follows: There is a railway net. Trains travel
from station to station according to a schedule. There are depots (some, not all, stations) in
a railway net to which sets of staff members are associated. Staff members are responsible
for performing sets of actions in order to fullfil schedule demands. Given a schedule, a
staff type, a set of depots and rules (related, for example to the assigninment of staff
to trains), the problem is to construct work schedules for staff members such that they
conform to the rules and to schedule demands. This problem is approached by dividing
it into two subproblems. (i) Staff scheduling: from a given schedule, staff type, depots,
and some rules, to produce duties (sequence of actions) for staff members; and (ii) staff
rostering: generation of base rosters from the duties — constructed in the previous stage
— and assignment of particular staff members to them. Base rosters are cyclic sequences of
duties for some planning period such that they conform to rules and cover the duties. The
assignment of staff members to base rosters is done such that each staff member recieves
a roster according to that staff member’s personal characteristics (abilities, previous duties
etc.). We relate this model to the descriptions provided in (Caprara et al., 1997; Caprara
et al., 1999; Caprara et al., 2001; Ernst et al.; Kroon et al., 2000; Lentink et al., 2002).
Keywords: staff rostering, duties, rosters, staff.

1. INTRODUCTION

Staff planning is a typical problem arising
in the management of large transport com-
panies, including railway companies. It is
concerned with building the work sched-
ules (duties and rosters) for staff mem-
bers needed to cover a planned timetable.
Each work schedule is constructed for each
staff type (engine men, conductors, cater-
ing staff, etc.).

There are two types of staff planning:
long–term planning and short–term plan-
ning. We focus here on long term plan-
ning. Normally the long term planning
task is separated into two stages: (1) staff
scheduling and (2) staff rostering. (1)
Staff scheduling yields short–term working
schedules, called duties, for staff members,

such that they satisfy schedule demands.
After this stage it is easy to determine the
overall required number of staff members,
such that the working schedules can be per-
formed. (2) Staff rostering arranges duties
into long-term working schedules, called
base rosters, and assigns specific staff mem-
bers to them, such that each staff member
performs a roster. During the stage of staff
rostering we assume that we have enough
staff members such that we can assign ros-
ters to them.

In this paper we will explain and an-
alyze the problem, first informally and
then formally. Using a formal specification
approach and the RAISE Specification
Language, RSL (George et al., 1992), we
will present a formal model of the domain

0The writing of this paper, as well as the papers (Pěnička et al., 2003; Bjørner, 2003), also contained in these proceedings,
and their presentation at Budapest, is sponsored by the EU IST Research Training Network AMORE: Algorithmic Models for
Optimising Railways in Europe: http://www.inf.uni-konstanz.de/algo/amore/. Contract no. HPRN-CT-1999-00104, Proposal
no. RTN1-1999-00446

of staff rostering.

1.1 The Major Functions

Given a schedule, a staff type, a depot, and
rules, the task is to produce a set of ros-
ters. What we understand by schedule, de-
pot, and rules will be defined further into
the paper.

value

gen sross: SCH×StfTp×Dep×eRS→Ros

gen sross expresses all rosters for a given
staff type and depot. Usually rosters are
generated per depot and we assume that
after the staff scheduling stage, all duties
generated per depot are moved to the de-
pot. If this is not the case we propose a
function that integrates the two stages in
staff rostering into one. So given a sched-
ule, a staff type, set of depots, and rules, we
produce all rosters per each depot for this
staff type.

value

obtain ross: SCH×StfTp×Dep-set×eRS→Ros-set

1.2 Requirements and Software De-
sign

We formally characterize schedules, duties,
and rosters in such a way as to meet staff
rostering demands. On the basis of such
formal domain characterizations we can
then express software requirements.

The actual software design relies on
the identification of suitable operations re-
search techniques, such which can provide
reasonably optimal solutions at reasonable
computing times. It is not the aim of this
paper to show such operations research al-
gorithms. Instead we formalize the domain
of railway staff rostering such that we can
later apply it to operation research tech-
niques discovered in further research work.

1.3 Paper Structure

The paper consists of five sections. Each
section consists of an informal description
of the problem (ie., the narrative) and its
formalization.

Section 2 introduces the topology of
railway nets from the perspective of staff
management. Section 3 introduces the no-
tions of a staff member and of related char-
acteristics — such that are taken into ac-
count in the early stage of planning. The
last three sections gradually show the cre-
ation of rosters from a schedule, a set of de-
pots and rules. Section 4 is concerned with

separating journeys observed from a sched-
ule into trips. Thus the notions of journey
and trip are introduced. Section 5 intro-
duces the notion of a duty and spefies the
concept of the set of duties per each depot.
Finally Section 6 introduces more charac-
teristics of staff members and the notion of
rosters. The section specifies the concept of
staff rosters.

2. NETS, STATIONS AND
DEPOTS

We introduce the notions of nets, stations
and depots. These are related to the topol-
ogy of the railway net. They are specified
from the staff manager point of view.

2.1 Narrative

We take as a base concept for the railway
net, the topology of that net. From a rail-
way net (Net) we can observe stations (Sta)
and depots (Dep). Depots are staff bases,
ie., places where staff members “live”. The
notion of staff member will be introduced in
more details in subsequent sections. From a
station we can observe the set of depots to
which the station is said to belong. From a
depot we can observe a set of stations from
which it is easy (for staff) to reach the de-
pot. Given a depot and a station we can
observe the distance in time (TInt) between
them. We will be interested in stations and
depots which are ’close’ to each other.

Some constraints are: There are at
least two stations in a net (α1). There is at
least one depot in a net (α2). The set of de-
pots observed from a station consists of de-
pots of the same railway net (α3). The set
of stations observed from a depot consists
of stations of the same railway net (α4).

2.2 Formal Model

We first state some abstract types, ie. sorts,
and some observer functions.

scheme NETWORK =
class

type Net,Sta,Dep,TInt,StaNm,DepNm
value

obs Stas: Net → Sta-set,
obs StaNm: Sta → StaNm,
obs Deps: Net → Dep-set,
obs DepNm: Dep → DepNm,
obs StaDeps: Sta → Dep-set,
obs DepStas: Dep → Sta-set,
obs StDepDistance: Sta×Dep → TInt

axiom

∀ n:Net •

card obs Stas(n) ≥ 2 ∧
card obs Deps(n) ≥ 1 ∧
∀ s:Sta • s ∈ obs Stas(n) ⇒

(∀ d:Dep • d ∈ obs StaDeps(s) ⇒
d ∈ obs Deps(n))

∀ d:Dep • d ∈ obs Deps(n) ⇒
(∀ s:Sta • s ∈ obs DepStas(d) ⇒

s ∈ obs Stas(n))
end

scheme STAFF =
extend NETWORK with

class

type

AnonStfMbr, Name,
SpecStfMbr, PersInfo,
StfTp == engS | condS | catS,
AnonStaff = Name →m AnonStfMbr,
Staff = Name →m SpecStfMbr

value

obs Name: AnonStfMbr → Name,
obs Name: SpecStfMbr → Name,
obs SMStfTp : AnonStfMbr → StfTp,
obs SMStfTp: SpecStfMbr → StfTp,
obs SMDep : AnonStfMbr → Dep,
obs SMDep: SpecStfMbr → Dep,
obs PersInfo: SpecStfMbr → PersInfo

proj SpecAnonStfMbr:
SpecStfMbr → AnonStfMbr

proj SpecAnonStfMbr(ssm) as asm
post

obs SMStfTp(ssm)
= obs SMStfTp(asm)
∧ obs SMDep(ssm)
= obs SMDep(asm)

proj AnonSpecStfMbr:
AnonStfMbr×PersInfo → SpecStfMbr

proj AnonSpecStfMbr(asm,pinf) as ssm
post

obs Name(asm)=obs Name(ssm) ∧
obs PersInfo(ssm)=pinf ∧
obs SMStfTp(asm)
= obs SMStfTp(ssm) ∧
obs SMDep(asm)
= obs SMDep(ssm)

axiom

∀ asm:AnonStfMbr•

∃! ssm:SpecStfMbr •

obs Name(asm)
= obs Name(ssm)

∀ ssm,ssm′:SpecStfMbr •

ssm 6= ssm′ ⇒
proj SpecAnonStfMbr(ssm)
= proj SpecAnonStfMbr(ssm′)

value

depStfMbrs: Dep → AnonStaff
depStfMbrs(d) as astf
post

∀ asm: AnonStfMbr •

astf
= [obs Name(asm) 7→asm] ∧
obs SMDep(asm)=d

deps staff: StfTp → Dep-set
deps staff(stft) ≡

{d|d:Dep•∃ asm:AnonStfMbr •

obs SMStfTp(asm)=stft ∧
obs SMDep(asm) = d}

dstft: Dep×StfTp → AnonStaff
dstft(d, stft) as astf
post

∀ asm: AnonStfMbr •

astf
= [obs Name(asm) 7→asm] ∧
obs SMDep(asm) = d ∧
obs SMStfTp(asm) = stft

dstft num: Dep×StfTp → Nat

dstft num(d,stft) ≡
card dom dstft(d,stft)

dsstft grs:
(Dep-set×StfTp)

→ (Dep×Nat)-set
dsstft grs(ds,stft) ≡

{(dep, n)|dep:Dep,n:Nat •

dep ∈ ds ∧
n=dstft num(dep,stft)}

end

3. SCHEDULE, JOURNEYS AND
TRIPS

We explain the notions of schedule, jour-
neys and trips. They help us to introduce
the notion of duties.

3.1 Narrative

Schedule and Exchange Stations: A sched-
ule includes information about all train
journeys such that each train journey is
uniquely determined by a train number, a
date, and a time. A train number is a
unique identifier which remains the same
from the first to the last station of its jour-
ney.

Some stations in the net are special
from a staff management perspective be-
cause it is possible either to exchange staff
members or for a staff member to start
or to finish work there. We will call such
stations exchange stations. From a sta-
tion we can observe all the staff types for
which this station is an exchange station
(obs ExchgStas). Given a station and a
staff type we can check if the station is
an exchange station or not for this staff
type (is exchgst). Exchange stations are
assumed located “near” the depots of the
railway net.

Journeys and Trips: Staff members are
responsible for performing some actions in
order to fullfil schedule demands. Some ac-
tions are related to train journeys. Train
journeys can be both actual journeys with
passengers or freights, or can be “empty”
train journeys. A train journey is a se-
quence of rides with the same train number.
A ride is characterized by a departure sta-
tion, a departure time, an arrival station,

an arrival time and a, ie., the train between
these two stations. Given a schedule we can
extract a set of train journeys (journ set).

There are some restrictions about max-
imal working time for a staff member be-
tween rests. Taking into account these re-
strictions, it is natural to divide a journey
into indivisible pieces of work for staff mem-
bers. To this end we introduce the notion
of a trip. A trip is a sequence of rides of
a train journey such that the first and the
last station of a trip are exchange stations
and the duration of a trip is less or equal to
the maximal allowed un–interrupted work-
ing time (maxUnIntWrkHr). Each trip is
characterized by a train, a departure time,
a departure station, an arrival time, an ar-
rival station, and possibly additional at-
tributes. From a trip we can observe train
characteristics, for instance ‘kind of engine’,
‘staff types’ and the number needed (for
each staff type) to perform a trip etc.

3.2 Formal Model

First we will state some abstract and con-
crete types and some observer functions.

scheme SCHEDULE =
extend STAFF with

class

type

Date,Hour,Trn,TrnId,LongDistance,
Urban,ICE,TGV,StfAttr,NoStf
TrnChar = LongDistance|Urban|ICE|TGV
DateTime = Date×Hour,
Ride′ ==

rd(sta:Sta,dt:DateTime,nsta:Sta,
at:DateTime,trn:Trn),

Ride = {|rd: Ride′•wf rd(rd)|},
Journey′ = Ride∗ ,
Journey = {|j:Journey′•wf journ(j)|},
Trip = Ride∗,
TrpAttr == Overnight|Other,
SCH = TrnId →m (DateTime →m Journey)

value

< : DateTime×DateTime → Bool,
≤: TInt×TInt → Bool,
− : DateTime×DateTime → TInt,
− : TInt×TInt → TInt,
≤: DateTime×DateTime → Bool,
≥: TInt×TInt → Bool,

cons inti: DateTime×DateTime → Bool,
obs TrnId: Trn → TrnId,
trnchr: Ride → TrnChar,
stfchr: TrnChar → StfTp →m Nat,

obs ExchgStas: Sta
∼

→ StfTp-set,
techTime: Sta×Trn×StfTp → TInt,
maxUnIntWrkHr: StfTp → TInt,
/∗ from a staff type, rules taken into ∗/
/∗ account implicitly, we can observe ∗/
/∗ the maximal permitted working ∗/
/∗ time in minutes without a rest ∗/
maxWrkHr: StfTp → TInt,

/∗ from a staff type, rules taken into ∗/
/∗ account implicitly, we can observe ∗/
/∗ the maximal permitted working time ∗/
tripAttr: Trip → TrpAttr,

wf rd : Ride′ → Bool

wf rd(rd) ≡ dt(rd) < at(rd),

wf journ: Journey′ → Bool

wf journ(j) ≡
∀ i:Nat•{i,i+1}⊆inds j
⇒ obs TrnId(trn(j(i)))

= obs TrnId(trn(j(i+1))) ∧
nsta(j(i)) = sta(j(i+1)) ∧
cons inti(at(j(i)),dt(j(i+1)))

journ set: SCH → Journey-set
journ set(sc) ≡

{j|j:Journey•

∀ trnid:TrnId,timdat:DateTime •

trnid ∈ dom sc ∧
timdat ∈ dom sc(trnid) ⇒

j=sc(trnid)(timdat)}

journ set1: SCH → Journey-set
journ set1(sc) ≡
∪{rng tn|tn:(DateTime →m Journey)

•tn ∈ rng sc}
end

Each train journey is divided into trips
with subject to a staff type. The follow-
ing is a function that divides a journey into
trips.

trip list : Journey×StfTp → Trip∗

trip list(j, stft) as trpl
post

∀ i : Nat • i ∈ inds trpl ⇒
wf stft trip(trpl(i),stft) ∧
check separation(trpl,stft),

A trip is well formed if it consists of consec-
utive rides, if the first and the last stations
of a trip are exchangeable stations, and if
the train during the trip has the same char-
acteristics as seen from a staff member per-
spective.

wf stft trip: Trip ×StfTp → Bool

wf stft trip(trp , stft) ≡
is exchgst(trip fsta(trp), stft) ∧
is exchgst(trip lsta(trp), stft) ∧
∼(possible exchg inside(trp, stft)) ∧
trip fnT(trp) − trip stT(trp)

≤ maxUnIntWrkHr(stft) ∧
same trn(trp, stft)

is exchgst: Sta×StfTp → Bool

is exchgst(s, stft) ≡
stft ∈ obs ExchgStas(s),

possible exchg inside: Trip×StfTp → Bool

possible exchg inside(trp,stft) ≡
∀ i: Nat • i ∈ {1..len trp−1} ⇒

if is exchgst(nsta(trp(i)), stft) then

dt(trp(i + 1)) − at(trp(i))
≥ tech time(trp(i),stft)

else false end

same trn: Trip×StfTp → Bool

same trn(trp, stft) ≡
(∀ i:Nat • {i,i+1}⊆inds trp ⇒
same trnchr(trnchr(trp(i)),

trnchr(trp(i+1)), stft)),

same trnchr:
TrnChar×TrnChar×StfTp → Bool,
/∗ checks if two trains are ∗/
/∗ of the same characteristics ∗/
/∗ from the staff point of view ∗/

check separation: Trip∗ ×StfTp → Bool

check separation(trpl, stft) ≡
(∀ i:Nat•{i,i+1}⊆inds trpl ⇒

coincident sta(trpl(i),trpl(i+1)) ∧
div sta(trpl(i),trpl(i+1),stft)),

coincident sta: Trip ×Trip → Bool

coincident sta(trp1, trp2) ≡
trip lsta(trp1) = trip fsta(trp2),

On the stations, where we separate train
journeies, there should be enough time for
exchanging staff members or for a staff
member to change a train. The time in-
terval between departure and arrival time
of a train at this station should be greater
or equal to this technical time. Thus tech-
nical time is the smallest interval of time for
which it is possible to exchange staff mem-
bers or a staff member to change a train.

div sta: Trip×Trip×StfTp→ Bool

div sta(trp1, trp2, stft) ≡
trip stT(trp2) − trip fnT(trp1)
≥ tech time(last(trp1),stft)

tech time: Ride×StfTp → TInt
tech time(rd, stft) ≡

techTime(sta(rd),trn(rd),stft)

last: Trip
∼

→ Ride
last(trp) ≡ trp(len trp)

pre len trp ≥ 1

Finally given a schedule and a staff type we
produce the trip set such that each journey
that can be extracted from a schedule is di-
vided into trips.

gen tripss: SCH×StfTp→Trip-set
gen tripss(sc, stft) ≡

∪{trips|trips:Trip-set•

trips = gen trips(sc, stft)}

gen trips : SCH×StfTp→Trip-set
gen trips(sc,stft) as trps

post

∀ j:Journey•j ∈ journ set(sc) ⇒
trps = elems trip list(j,stft)

The following are some functions that ex-
tract characteristics of trips.

trip stT: Trip → DateTime
trip stT(trp) ≡ dt(hd trp),

trip fnT: Trip → DateTime
trip fnT(trp) ≡ at(last(trp)),

trip fsta: Trip → Sta
trip fsta(trp) ≡ sta(hd trp),

trip lsta: Trip → Sta
trip lsta(trp) ≡ nsta(last(trp)),

trip trn: Trip → Trn
trip trn(trp) ≡ trn(hd trp),

trip trnchr: Trip → TrnChar
trip trnchr(trp) ≡ trnchr(hd trp),

trip stfchr: Trip → StfTp →m Nat

trip stfchr(trp) ≡ stfchr(trip trnchr(trp)),

trip WrkTm: Trip → TInt
trip WrkTm(tp) ≡

trip fnT(tp) − trip stT(tp)

4. ACTIONS AND DUTIES

4.1 Narrative

Actions: Each staff member performs some
actions. Actions could be (serving on a) se-
quence of trips, undergoing rests, and some
human resource activities (training, etc.).
Rests could be rests between trips, meal
rests, rests away from home depot includ-
ing sleeping in dormitories (external rest)
etc. By human resource activities we mean
activities performed by a staff member in
order to increase qualifications (seminars,
courses, etc.).

Sequences of trips are characterized by
start times, end times, and lists of rides.
A rest is characterized by a start and an
end time, a station name, and also some at-
tributes. We will assume that a rest starts
and ends at the same station. Human re-
source activities has the same characteris-
tics as rests.

Duties: Each staff member is related to
a given depot, the home depot, in a railway
net. A depot represents starting and end-
ing point of staff work segments. A natural
constraint imposes that each staff member
must return to the home depot within some
period of time. This leads to the introduc-
tion of the concept of duty as a list of ac-
tions spanning L consecutive days such that
its start and end actions are related to the
same depot (see Fig. 1). A duty conforms
to some rules and satisfy some requirements
like continuance, working hours per duty
etc. Each duty is concerned with members

of the same staff type. From a duty we
can observe duty attributes such as: ’duty
with external rest’, ’overnight duty’, ’heavy
overnight duty’, ’long duty’, etc. Also each
duty has some characteristics, such as:

• Start time: Specified explicitly when
the first action of a duty is either a
rest or a human resource activity; in
case of a trip it is defined as the de-
parture time of its first ride minus
the sum of technical departure time
and briefing time.

• End time: Specified explicitly when
the last action of a duty is either rest
or human resource activity; in case
of a trip it is defined as the arrival
time of its last ride plus the sum of
technical arrival time and debriefing
time,

• Paid time: Defined as the elapsed
time from start time to end time of
a duty,

• Working time: Defined as the time
interval between the start time and
the end time of a duty minus the ex-
ternal rest, if any.

The above–mentioned characteristics
are common for every duty. There are other
possible characteristics of a duty but they
strictly depend on a staff type. For instance
taking into account the engine men staff
type we could observe:

• Driving time: it is defined as the
sum of the trip durations plus all rest
periods between consecutive trips
which are shorter than, say M , min-
utes eg. 30 minutes,

Duty attributes and characteristics are
taken into account in the scheduling pro-
cess while selecting feasible, efficient and
acceptable duties per each depot and in se-
quencing duties into rosters. This will be
dealt with in the next sections.

Given the schedule, staff type, set of
depots, and rules we can specify duty sets

per each depot.

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

0:00 6:00 12:00 18:00 24:00

Trips to be covered every day

T3

T1 T4

T2 T5

T7

T9

T10

T6T8 T11

0:00 6:00 12:00 18:00 24:00

Duties covering all the trips; each
duty spans at most L=2 consecutive
days

duty1

duty2

duty3

duty4

duty5

Fig. 1 Trips and Duties

4.2 Formal Model

scheme DUTY =
extend SCHEDULE with

class type

RestAttr, HRAttr, DtChar,
Ac ==

mk trip(st:DateTime,
tripl:Trip∗,et:DateTime)

| mk rest(sr:DateTime,rsta:Sta,
ratt:RestAttr,er:DateTime)

| mk hra(sh:DateTime,hsta:Sta,
hatt:HRAttr,eh:DateTime)

Duty = Ac∗ ,

DtAttr ==
ExtRest|Long|Overnight|HeavyOvernight,

AcR = Ac×StfTp → Bool,
AcRS = AcR-set,
DuR = Duty×StfTp → Bool,
DuRS = DuR -set,
DepR = Dep×Duty-set×StfTp→ Bool,
DepRS = DepR-set,
OvDR = (Duty-set)-set×StfTp → Bool,
OvDRS = OvDR-set,
RS ==

check acr(ar:AcRS)
| check dur(dur:DuRS)
| check dpr(dpr:DepRS)
| check ovdsr(ovdsr:OvDRS)

value

dt maxlenght: StfTp → TInt,
dt char: Duty → DtChar,
dt attr: Duty → DtAttr

end

Each duty shall take into account some de-
pot and some staff type. The following is a
function which defines a duty set for a de-
pot. It expresses all possible duties for the
depot.

gendep dutys:
Trip-set×StfTp×Dep×RS → Duty-set

gendep dutys(trps,stft,dep,rs) as ds
post

∀ d:Duty•d ∈ ds ⇒
d=gen duty(trps,stft,dep,rs) ∧

∼∃ d′:Duty•

d′=gen duty(trps,stft,dep,rs) ∧
d′6∈ ds

Each duty has to start and to end at the
same depot and has to conform to some
rules. Rules are related to the sequence of
actions in a duty, maximal number of ac-
tions with a given characteristics, rest time
between actions, overall rest time, overall
working time, etc. These rules we will call
‘rules at a duty level’. Given a trip set, a
staff type, a depot, and rules we can char-
acterise a duty for the depot. The func-
tion below expresses a duty such that its
fist and its last action starts and respec-
tively finishes at the depot, the depot is a
home depot for staff members of the given
staff type, and the duty satisfy the rules.

gen duty : Trip-set×StfTp×Dep×RS → Duty
gen duty(trps,stft,dep,srs) as d

post

is wfd(d,stft,srs) ∧
ac dep(hd d,stft) = dep ∧
dt endt(d)−dt startt(d)

≤ dt maxlenght(stft) ∧
∃ trpl:Trip∗

• belong(trpl,d) ⇒
trip stft(trpl,stft,dep)

is wfd: Duty×StfTp×RS → Bool

is wfd(dt,stft,rs) ≡

ac dep(hd dt,stft)
= ac dep(dt(len dt),stft) ∧
comp dtTrips(dt,stft) ∧
conf dt rules(dt,stft,rs),

ac dep: Ac×StfTp
∼

→ Dep
ac dep(ac,stft) as d

post

∃ d′:Dep •

case ac of

mk trip(,tripl,) → d ∈
st stftdep(sta(hd (hd tripl)),stft),

mk rest(,rsta, ,) → d ∈
st stftdep(rsta,stft),

mk hra(,hsta, ,) → d ∈
st stftdep(hsta,stft)

end ∧ d=d′

st stftdep: Sta×StfTp → Dep-set
st stftdep(st,stft) ≡

{dep|dep:Dep •

dep ∈ obs StaDeps(st)∧
is exchgst(st,stft)}

/∗ checks if all the trips in ∗/
/∗ a duty has the same charac− ∗/
/∗ teristics from staff point of view ∗/

comp dtTrips: Duty×StfTp → Bool

comp dtTrips(dt,stft) ≡
∀ i:Nat•i ∈ inds dt ⇒
case dt(i) of

mk trip(sti,tripli,eti) →
∀ j:Nat •

j ∈ inds dt ∧ j 6= i ⇒
case dt(j) of

mk trip(stj,triplj,etj) →
same(hd tripli,hd triplj,stft),
→ false

end

end

same: Trip×Trip×StfTp → Bool

same(trp1,trp2,stft) ≡
same trnchr(trip trnchr(trp1),

trip trnchr(trp2),stft),

conf dt rules: Duty×StfTp×RS → Bool

conf dt rules(dt, stft, rs) ≡
satf(dt, stft, rs) ∧

∀ i:Nat•i ∈ inds dt ⇒
conf ac(dt(i) stft,rs)

conf ac: Ac×StfTp×RS → Bool

conf ac(ac,stft,rs) ≡
case rs of

check acr(acrs) →
∀ acr:AcR •

acr ∈ acrs ⇒ acr(ac,stft),
→ false

end

/∗ checks if the rules for sequencing ∗/
/∗ actions in a duty are satisfied ∗/

satf: Duty×StfTp×RS → Bool

satf(dt,stft,rs) ≡
case rs of

check dur(durs) →
∀ dur:DuR •

dur ∈ durs ⇒ dur(dt,stft),
→ false

end

belong: Trip∗×Duty → Bool

belong(tpl,dt) ≡
∃ ac:Ac • ac ∈ elems dt ∧
case ac of

mk trip(st,tpl,et) → true,
→ false

end

trip stft: Trip∗×StfTp×Dep → Bool

trip stft(trpl,stft,dep) ≡
let stfm = trip stfchr(hd trpl) in

stft ∈ dom stfm ∧
dstft num(dep, stft) > 0 end

The set of all duties for a depot has to obey
to some rules too. The rules, ie., restric-
tions, can be related to a maximal number
of duties with specific characteristics per
depot, to maximal number of duties per de-
pot, etc. We will call these for ‘rules on a
depot level’.

The function below expresses a subset
of a duty set, generated in a previous stage,
such that it satisfies the rules on the depot
level and there is enough staff at the depot
to perform the duty set.

seldep dutys:
Trip-set×StfTp×Dep×RS → Duty-set

seldep dutys(trps,stft,dep,rs) as ds
post

let ds1=gendep dutys(trps,stft,dep,rs) in

ds ⊆ ds1 ∧
conf dts deprules(dep,ds,stft,rs) ∧
enough staff(ds,stft,dep) end

conf dts deprules:
Dep×Duty-set×StfTp×RS → Bool

conf dts deprules(dep,ds,stft, rs) ≡
case rs of

check dpr(dprs) →
∀ dpr:DepR •

dpr ∈ dprs ⇒ dpr(dep,ds,stft),
→ false

end

enough staff: Duty-set×StfTp×Dep → Bool

enough staff(ds, stft, dep) ≡
dutys staff numb(ds, stft)
≤ dstft num(dep, stft)

dutys staff numb: Duty-set×StfTp → Nat,
/∗ the number of people should be equal ∗/
/∗ to the number of duties, but in case ∗/
/∗ of a conductor staff type the number ∗/
/∗ of people may be more than the number ∗/
/∗ of duties as two conductors may have ∗/
/∗ the same duties ∗/

Finally given a trip set, a staff type, a de-
pot set and rules we can generate a set of
duties per each depot.

gen dutys :
Trip-set×StfTp×Dep-set×RS
→ (Duty-set)-set

gen dutys(trps, stft, deps, rs) as dss
post

∀ ds:Duty-set•ds ∈ dss ⇒
∃! dep:Dep•dep ∈ deps ∧
ds = seldep dutys(trps,stft,dep,rs) ∧
card dss = card deps,

The union of generated sets of duties per
each depot has to conform to some over-
all rules: The number of duties as a whole
with a given characteristics, must, for ex-
ample, not exceed some defined number etc.
Also the generated duties as a whole have
to cover all the trips that can be observed
from a schedule. Finally given a schedule,
a staff type, a set of depots, and rules we
can express the set of duties per each depot
such that the above–mentioned constraints
are satisfied.

sel dutyss:
SCH×StfTp×Dep-set×RS → (Duty-set)-set

sel dutyss(sc,stft,deps,rs) as dss
post

let trps = gen tripss(sc, stft) in

dss=gen dutys(trps,stft,deps,rs) ∧
cover(dss,trps) ∧
conf dts ovr(dss,stft,rs)
end

cover:(Duty-set)-set×Trip-set → Bool,

conf dts ovr: (Duty-set)-set×StfTp×RS → Bool

conf dts ovr(dss,stft,rs) ≡
case rs of

check ovdsr(ovdsrs) →
∀ ovdsr:OvDR

• ovdsr ∈ ovdsrs
⇒ ovdsr(dss, stft),

→ false

end

The following are some auxiliary functions
concerning duties and their characteristics.

duty dep: Duty×StfTp → Dep
duty dep(dt, stft) as dep

post

dep ∈ st stftdep(dt fsta(dt),stft),

dt fsta: Duty → Sta
dt fsta(dt) ≡

case hd dt of

mk trip(,tripl,)→trip fsta(hd tripl),
mk rest(,rsta, ,)→rsta,

mk hra(,hsta, ,)→hsta
end

dt lsta: Duty → Sta
dt lsta(dt) ≡

case dt(len dt) of

mk trip(,tripl,)→trip fsta(hd tripl),
mk rest(,rsta, ,)→rsta,
mk hra(,hsta, ,)→hsta

end

dt starttime: Duty → DateTime
dt starttime(dt) ≡

case hd dt of

mk trip(st, ,) → st,
mk rest(sr, , ,) → sr,
mk hra(sh, , ,) → sh
end

dt endtime: Duty → DateTime
dt endtime(dt) ≡

case dt(len dt) of

mk trip(, ,et) → et,
mk rest(, , ,er) → er,
mk hra(, , ,eh) → eh
end

duty stft num: Duty → StfTp →m Nat

duty stft num(dt) as stfm
post

∃ trpl:Trip∗

• belong(trpl,dt) ⇒
stfm = trip stfchr(hd trpl)

5. ROSTERS AND STAFF
MEMBERS

We explain the notion of a roster and how
it is related to staff members.

5.1 Narrative

Rosters: During the second stage of staff
rostering the duties generated at a previous
stage are ordered in rosters. These are long
term working schedules assigned to specific
staff members. For each depot, in a de-
pot set, a separate staff rostering problem
is solved considering only the correspond-
ing duties. We will introduce two auxiliary
notions in order to explain the concept of
roster and its stages of “construction”.

A ‘plan roster’ is a sequence of duties
generated for anonymous staff members of
the same staff type. A ‘base roster’ is a
cyclic sequence of a plan roster such that

it spans through a planning period deter-
mined by a schedule. In other words, a plan
roster is that part of the base roster which
is repeated several times and a base ros-
ter is just a cyclic sequence of duties (see
Fig. 2). Each base roster has to satisfy
some rules. The rules are about the or-
der of duties in consecutive days, and their
attributes. There are, additionally, some
constraints concerning number of duties in
a base roster with specific attributes. These
rules we will call ‘conventional rules at the
roster level’.

So given a schedule, a staff type, a de-
pot, and rules we can express base rosters
for the given depot. These base rosters have
to cover all the duties corresponding to this
depot and have to conform to some rules.
The rules at this level we will call ‘conven-
tional rules at the overall roster level’.

All the duties in a base roster has to
be performed by a specific staff member. A
roster is a cyclic sequence of (base roster)
duties for a specific staff member such that
that staff member can perform them. From
a base roster, and a staff type we can ex-
press rosters. The number of staff members
assigned to the base roster is equal to the
length of the plan roster. All staff members
perform the base roster but starting on dif-
ferent days.

Staff Members: While allocating du-
ties in a base roster to staff members,
specific staff members are now considered.
At this stage the specificity of staff mem-
bers comes into play — as one is inter-
ested in their personal information. From
a staff member personal information we
can observe his/her private information
(obs PrInf), such as date of birth, place of
living, address, etc. We can further observe
staff qualifications (obs Qual), special work
requirements (obs SpWrkReq), and the list
of previous duties (obs PrevDuty). Given
a base roster and a staff member we can
observe the staff roster.

Fig. 2 Rosters

Plan Roster Roster 1

9 (nine) times

Roster 6

9 (nine) times

Roster 12

9 (nine) times

dt3

rest

dt2

dt4

rest

rest

dt1

dt5

dt6

rest

rest

dt7

PN1
PN2
PN3
PN4
PN5
PN6
PN7
PN8

PN10
PN9

Day1:

Day2:

Day3:

Day4:

Day5:

Day6:

Day7:

Day8:

Day9:

Day10:

Day11:

Day12:

PN11
PN12

dt7 rest, rest,dt6,dt5,dt1,rest,rest,dt4,dt2,dt3, rest,

rest, restdt4, dt2, rest, dt3, dt7, rest, rest, dt6, dt5, dt1,

restrest,dt6,dt5,dt1,rest,rest,dt4,dt2, rest,dt3,dt7,

LEGEND: PN: Person, dt: DutyBase Roster

9
(n

in
e)

 t
im

es

.

5.2 Formal Model

scheme ROSTER =
extend DUTY with

class

type

Info, WrkReq, Qualification
PlRos = Duty∗

BRos = PlRos×Nat

RoR = PlRos×StfTp → Bool

RoRS = RoR-set

OvR = BRos×StfTp → Bool

OvRS = OvR-set

eRS == RS | check ror(rrs:RoRS)
| check ovrs(ovrs:OvRS)

Ros = SpecStfMbr →m BRos

value

f:eRS → RS
obs PrInf: PersInfo → Info
obs SpWrkReq: PersInfo → WrkReq
obs PrevDuty: PersInfo → Duty∗

obs PostDuty: PersInfo → Duty∗

obs Qualf: PersInfo → Qualification
obs PlPer: SCH → Nat

bros length: BRos → Nat

bros length(bros) ≡
let (plros, rnumb) = bros in

len plros end

end

The following function expresses all possi-
ble base rosters for a given duty set (related
to a depot).

gen dep bross:
SCH×StfTp×Dep×eRS → BRos-set

gen dep bross(sc,stft,dep,rs) as bross
post

∀ bros:BRos •

bros ∈ bross ⇒
bros = genbros dep(sc,stft,dep,rs) ∧

∼∃ bros′:BRos •

bros′ = genbros dep(sc,stft,dep,rs) ∧
bros′ 6∈ bross

genbros dep: SCH×StfTp×Dep×eRS → BRos
genbros dep(sc,stft,dep,rs) as bros

post

let ds = dep dutyset(dep, stft) in

cover rds(bros, ds) end ∧
wf bros(bros,sc,stft,rs)

cover rds: BRos×Duty-set → Bool,

wf bros: BRos×SCH×StfTp×eRS → Bool

wf bros(bros,sc,stft,rs) ≡
let (plros,rnumb) = bros in

same qualific(plros, stft) ∧
conform cplrosrs(plros,stft,rs) ∧
len plros ∗ rnumb = obs PlPer(sc) in

end

same qualific : PlRos×StfTp → Bool

same qualific(plros,stft) ≡
∀ i:Nat•{i,i+1} ⊆ inds plros

⇒ sm qual(plros(i),plros(i+1))

sm qual: Duty×Duty → Bool

conform cplrosrs: PlRos×StfTp×eRS → Bool

conform cplrosrs(plros,stft,rs) ≡
conform plrosrs(plros,stft,rs) ∧
let cycros = 〈plros(len plros)〉̂ 〈hd plros〉
in conform plrosrs(cycros,stft,rs)
end

conform plrosrs: PlRos×StfTp×eRS → Bool

conform plrosrs(plros,stft,rs) ≡
case rs of

check ror(rrs) →
∀ rr:RoR•rr ∈ rrs

⇒ rr(plros, stft),
→ false

end

Sets of base rosters have to conform to some
rules, such as for example: Having a maxi-
mal percentage of base rosters with partic-
ular characteristics etc.

sel dep bross:
SCH×StfTp×Dep×eRS → BRos-set

sel dep bross(sc,stft,dep,rs) as bross
post

let bross1=gen dep bross(sc,stft,dep,rs) in

bross ⊆ bross1 ∧
conform bros rules(bross,stft,rs)
end

conform bros rules:
BRos-set×StfTp×eRS → Bool

conform bros rules(bross,stft,rs) ≡
∀ bros:BRos•bros ∈ bross ⇒
case rs of

check ovrs(ovrs) →
∀ ovr:OvR •

ovr ∈ ovrs⇒ovr(bros, stft),
→ false

end

Given a base roster, a staff type, and a de-
pot we can express rosters for the specific
staff members of the given staff type.

gen ssmros: BRos×StfTp×Dep → Ros
gen ssmros(bros,stft,dep) as ros

post

let sms=dstft gr(dep, stft) in

ros=assignment(bros,sms) ∧
card dom ros=bros length(bros)
end

dstft gr: Dep×StfTp → Staff
dstft gr(dep,stft) ≡

let anstaff = dstft(dep, stft) in

get staff(anstaff) end

get staff: AnonStaff → Staff
get staff(anstaff) as staff

post

∀ asm:AnonStfMbr •

asm ∈ rng anstaff ⇒
∃! ssm:SpecStfMbr •

ssm ∈ rng staff ∧
obs Name(asm)=obs Name(ssm)

Given a base roster and staff we can as-
sign specific staff members to the base ros-
ter such that we receive a set of rosters. The
number of rosters is equal to the length of
the base roster. All the rosters are permu-
tations of the base roster. So at this stage
of planning we assign specific staff members
to duties in the plan roster (ie., the cyclic
part of the base roster).

assignment : BRos×Staff → Ros
assignment(bros,staff) as ros

pre

card rng staff > bros length(bros)
post

∀ dt:Duty •

duty in bros(dt,bros)⇒
∃! ssm:SpecStfMbr •

ssm ∈ dom ros ∧
dt=first bros duty(ros(ssm)) ∧
conform rsm(ros(ssm),ssm) ∧
permutation(ros(ssm),bros)

duty in bros: Duty×BRos → Bool

duty in bros(dt,bros) ≡
let (plros, rnumb) = bros in

dt ∈ elems plros end

first bros duty: BRos → Duty
first bros duty(bros) ≡

let (plros, rnumb) = bros in

hd plros end

Each roster is assigned to a specific staff
member according to qualifications, spe-
cial work requirements, and previous du-
ties, and such that they are performable by
that staff member.

conform rsm: BRos×SpecStfMbr → Bool

conform rsm(bros, ssm) ≡
sat qual(bros,obs Qualf(obs PersInfo(ssm))) ∧
sat predt(bros,obs PrevDuty(obs PersInfo(ssm))) ∧
sat swr(bros,obs SpWrkReq(obs PersInfo(ssm)))

sat qual: BRos×Qualification → Bool,
sat predt : BRos×Duty∗ → Bool,
sat swr : BRos×WrkReq → Bool,

permutation: BRos×BRos → Bool,

Finally we express the rosters for the given
depot and staff type. For each base roster
generated in the previous stage we generate
these rosters.

gen sross: SCH×StfTp×Dep×eRS → Ros
gen sross(sc,stft,dep,rs) as ros

post

let bross=sel dep bross(sc,stft,dep,rs) in

∀ bros:BRos • bros ∈ bross
⇒ ros = gen ssmros(bros, stft, dep)

end

All rosters are generated taking into ac-
count staff types. So using the function

above, we can generate all rosters per de-
pot for all staff types related to this depot.
To generate (all) rosters per depot we will
need only the schedule, the depot and the
rules.

dep rosters:
SCH×Dep×eRS → (StfTp →m Ros)

dep rosters(sc,dep,rs) as stft ross
post

∃! stft:StfTp •

stft ∈ dep stftypes(dep) ⇒
let rset=gen sross(sc,stft,dep,rs)
in stft ross = [stft 7→ rset] end ∧

card dep stftypes(dep)=card dom stft ross,

dep stftypes : Dep → StfTp-set
dep stftypes(dep) ≡

{stft|stft:StfTp •

∃ ssm:SpecStfMbr •

obs SMDep(ssm) = dep}

Base rosters and respective rosters are gen-
erated per depot, under the assumption,
that after the staff scheduling stage, all du-
ties generated per depot are shifted to the
depot. If this is not the case we can observe
all the duties generated in the staff schedul-
ing stage per depot (dep dutyset): This will
aid us in integrating the two stages of staff
planning into one. So given a schedule, a
staff type, a set of depots, and rules we can
now express all rosters per each depot in
the depot set for the given staff type.

obtain ross:
SCH×StfTp×Dep-set×eRS → Ros-set

obtain ross(sc,stft,deps,rs) as rosset
post

let dtss=sel dutyss(sc,stft,deps,f(rs)) in

∀ ross:Ros • ross ∈ rosset ⇒
∃! dep:Dep • dep ∈ deps ⇒

ross=gen sross(sc,stft,dep,rs) ∧
dep dutyset(dep,stft) ∈ dtss end ∧

card rosset = card deps,

dep dutyset: Dep×StfTp → Duty-set
dep dutyset(dep,stft) ≡

{dt|dt:Duty • dep=duty dep(dt,stft)}

The rest are some of the possible functions
for handling staff members in depots.

hire sm: SpecStfMbr×Staff
∼

→ Staff
hire sm(ssm, stf) ≡

stf ∪ [obs Name(ssm) 7→ssm]
pre

∀ ssm′:SpecStfMbr •

ssm′ ∈ rng stf ⇒
obs Name(ssm′) 6=obs Name(ssm) ∧

ssm 6∈ rng stf

fire sm: SpecStfMbr×Staff
∼

→ Staff
fire sm(ssm,stf) ≡

stf \ {obs Name(ssm)}
pre obs Name(ssm) ∈ dom stf

hired sm: SpecStfMbr×Staff → Bool

hired sm(ssm, stf) ≡ ssm ∈ rng stf,

add specsm:
AnonStfMbr×PersInfo×Name → SpecStfMbr

add specsm(asm,pinf,nm) as ssm
post

obs Name(asm)=nm ∧
obs SMStfTp(asm)=obs SMStfTp(ssm) ∧
obs SMDep(asm)=obs SMDep(ssm) ∧
obs PersInfo(ssm)=pinf

get specsm:
AnonStfMbr×PersInfo → SpecStfMbr

get specsm(asm,pinf) as ssm
post

obs Name(asm)=obs Name(ssm) ∧
obs PersInfo(ssm)=pinf

dep staff: Dep → Staff
dep staff(dep) ≡

let anstaff = depStfMbrs(dep) in

get staff(anstaff) end

6. CONCLUSION

6.1 Summary

We have analysed the problem of staff ros-
tering. This required a careful analysis
of the topology of railway nets, including
“what are” stations and depots, and the
railway staff related to serving on trains and
“located” at depots. Then followed a care-
ful analysis of “what are” schedules, jour-
neys, and trips, including a large number of
auxiliary concepts relating schedules, jour-
neys, trips and staff. After that followed a
careful analysis of railway staff actions and
duties — those “things” for which their ros-
ter is to be “built”. Since rosters must sat-
isfy many constraints we also found a need
to analyse, ie., specify many auxiliary no-
tions. We were then ready to define proper
rosters and real staff members. And hence
to define the main functions of the problem
of staff rostering under many constraints.

6.2 Some Remarks

In this example of applying formal speci-
fication cum analysis techniques to under-
standing the domain and requirements for
what is normally considered an operations
research problem, our specifications became

alarmingly detailed. But careful consider-
ation reveals that in normal optimisation
work many properties are not considered
— they were here — or are overlooked, or
are not even discovered. We do not claim
to have discovered all necessary and suffi-
cient properties — but to have made a great
stride towards that goal.

References

Bjørner, D. (2003). New Results and Trends in For-

mal Techniques & Tools for the Development of

Software for Transportation Systems — A Review.
In FORMS2003: Symposium on Formal Meth-

ods for Railway Operation and Control Systems.
L’Harmattan Hongrie. Conf. held at Techn.Univ.
of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany.

Caprara, A., M. Fischetti, P. Toth, D. Vigo and P.L. Guida,
”Algorithms for Railway Crew Management”. Publi-
cation in Mathematical Programming 79 (1997) 125-
141.

Caprara, A., M. Fischetti, P.L. Guida, P. Toth and D.
Vigo. Solution of Large-Scale railway Crew Planning

Problems: the Italian Experience, in N.H.M. Wil-
son (ed.) Computer-Aided Transit Scheduling, Lec-
ture Notes in Economics and Mathematical Systems
471, Springer-Verlag (1999) 1-18.

Caprara, A., M. Monaci and P. Toth. A Global Method for

Crew Planning in Railway Applications, in J. Daduna,
S. Voss (eds.) Computer-Aided Transit Scheduling,
Lecture Notes in Economics and Mathematical Sys-
tems 505, Springer-Verlag (2001) 17-36.

Ernst, A., H. Jiang, M. Krishnamoorthy, H. Nott and D.
Sier. Rail Crew Scheduling and Rostering: Optimisa-

tion Algorithms, CSIRO Mathematical and Informa-
tion Sciences, Australia.

George, C., Haff, P., Haxthausen, A., Havelund, K., Milne,
R., Nielsen, C.B., Prehn, S., and Wagner, K.R.
(1992). The RAISE Specification Language. The BCS
Practitioners Series. Prentice-Hall International.

Kroon, L. and M. Fischetti. Crew Scheduling for Netherlands

Railways. ERIM Report Series Research In Manage-
ment, Netherlands, December 2000.

Lentink, R., M. Odijk and E.Rijn. Crew Rostering for the

High Speed Train, ERIM Report Series Research In
Management, Netherlands, February 2002.

Pěnička, M., Strupchanska, A. K., and Bjørner, D. (2003).
Train maintenance routing. In FORMS2003: Sympo-

sium on Formal Methods for Railway Operation and

Control Systems. L’Harmattan Hongrie. Conf. held
at Techn.Univ. of Budapest, Hungary. Editors: G.
Tarnai and E. Schnieder, Germany.

