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Welcome Back — Thanks !
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5. Discrete Perdurant Entities

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if
we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example
’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,
without any previous knowledge one might not even be able to
determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.

• A discrete perdurantδ is a perdurant which is a discrete entity.
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5. Discrete Perdurant Entities

• We shall consider the following discrete perdurants.

⋄⋄ actions (Sect. 5.1),

⋄⋄ events (Sect. 5.2), and

⋄⋄ discrete behaviours (Sect. 5.3).

• Actions and events

⋄⋄ occur instantaneously,

⋄⋄ that is, in time, but taking no time, and to therefore be

◦◦ discrete actionδs and

◦◦ discrete eventδs.
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5.1. Formal Concept Analysis: Discrete Perdurants

• The domain analyser examines collections of discrete perdurants.

⋄⋄ In doing so the domain analyser discovers and thus identifies and lists a
number of perdurant properties.

⋄⋄ Each of the discrete perdurants examined usually satisfies only a subset of
these properties.

⋄⋄ The domain analyser now groups discrete perdurant into collections

◦◦ such that each collection have its discrete perdurants satisfy the same set of
properties,

◦◦ such that no two distinct collections are indexed, as it were, by the same
set of properties, and

◦◦ such that all discrete perdurants are put in some collection.

⋄⋄ The domain analyser now

◦◦ classify collections as actions, events or behaviours, and

◦◦ assign signatures

⋄⋄ to distinct collections.

• That is how we assign signatures to discrete perdurants.
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5.2. Actions

• By a functionδ we understand a mathematical concept,

⋄⋄ a thing

⋄⋄ which when applied to a value, called its argument,

⋄⋄ yields a value, called its result.

• A discrete actionδ can be understood as

⋄⋄ a function

⋄⋄ invoked on a state value

⋄⋄ and is one that potentially changes that value.

• Other terms for action are

⋄⋄ function invocationδ and

⋄⋄ function applicationδ.
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5. Discrete Perdurant Entities 5.2. Actions

Example: 32 Transport Net and Container Vessel Actions.

• Inserting and removing hubs and links in a net are considered
actions.

• Setting the traffic signals for a hub (which has such signals) is
considered an action.

• Loading and unloading containers from or unto the top of a
container stack are considered actions.
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5. Discrete Perdurant Entities 5.2. Actions5.2.1. Abstraction: On Modelling Domain Actions

5.2.1. Abstraction: On Modelling Domain Actions

• We claim that we describe domain actions,

⋄⋄ but we actually describe functions,

⋄⋄ which are “somewhat far removed” from domains.

• So what are we actually claiming ?

⋄⋄ We are claiming that there is an interesting class of actions

⋄⋄ and that they can all be abstracted into one, possibly
non-deterministic function

⋄⋄ whose properties are then claimed to “mimic” those of the
actions in the interesting class.
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5. Discrete Perdurant Entities 5.2. Actions5.2.2. Agents: An Aside on Actions

5.2.2. Agents: An Aside on Actions

Think’st thou existence doth depend on time?
It doth; but actions are our epochs.

George Gordon Noel Byron,
Lord Byron (1788-1824) Manfred. Act II. Sc. 1.

• “An action is

⋄⋄ something an agent does

⋄⋄ that was ‘intentional under some description’ ” [Davidson1980].

• That is, actions are performed by agents.

⋄⋄ We shall not yet go into any deeper treatment of agency or
agents. We shall do so later.

◦◦ Agents will here, for simplicity, be considered behaviours,

◦◦ and are treated later in this lecture.
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5. Discrete Perdurant Entities 5.2. Actions5.2.2. Agents: An Aside on Actions

• As to the relation between intention and action

⋄⋄ we note that Davidson wrote:
‘intentional under some description’

⋄⋄ and take that as our cue:

◦◦ the agent follows a script,

◦◦ that is, a behaviour description,

◦◦ and invokes actions accordingly,

◦◦ that is, follow, or honours that script.
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5. Discrete Perdurant Entities 5.2. Actions5.2.3. Action Signatures

5.2.3. Action Signatures

• By an action signature we understand a quadruple:

⋄⋄ a function name,

⋄⋄ a function definition set type expression,

⋄⋄ a total or partial function designator (→, respectively
∼
→), and

⋄⋄ a function image set type expression:
fct name: A → Σ (→|

∼
→) Σ [× R],

where (X | Y ) means either X or Y , and [Z] means that for some
signatures there may be a Z component meaning that the action
also has the effect of “leaving” a type Z value.
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5. Discrete Perdurant Entities 5.2. Actions5.2.3. Action Signatures

Example: 33 Action Signatures: Nets and Vessels.

insert Hub: N→H
∼
→N;

remove Hub: N→HI
∼
→N;

set Hub Signal: N→HI
∼
→HΣ

∼
→N

load Container: V→C→StackId
∼
→V; and

unload Container: V→StackId
∼
→(V×C).
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5.2.4. Action Definitions

• There are a number of ways in which to characterise an action.

• One way is to characterise its underlying function
by a pair of predicates:

⋄⋄ precondition: a predicate over function arguments — which
includes the state, and

⋄⋄ postcondition: a predicate over function arguments, a proper
argument state and the desired result state.

⋄⋄ If the precondition holds, i.e., is true, then the arguments,
including the argument state, forms a proper ‘input’ to the
action.

⋄⋄ If the postcondition holds, assuming that the precondition held,
then the resulting state [and possibly a yielded, additional
“result” (R)] is as they would be had the function been applied.
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Example: 34 Transport Nets Actions.

• In Example 4 we gave an explicit example of an action:

⋄⋄ ins H: Items 37–37(d),

• while implicit references to net actions were made in the event
predicates

⋄⋄ link dis, pre link dis: Items 38–39(c),

⋄⋄ post link dis (Items 38–39(c)):

◦◦ rem L Item 42(a) and

◦◦ ins L Items 42((c))i–42((c))ii.
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• What is not expressed, but tacitly assume in the above pre- and
post-conditions is

⋄⋄ that the state, here n, satisfy invariant criteria before (i.e. n)
and after (i.e., n′) actions,

⋄⋄ whether these be implied by axioms

⋄⋄ or by well-formedness predicates.

over parts.

• This remark applies to any definition of actions, events and
behaviours.

• There are other ways of defining functions.

• But the form of these are not germane to the aims of this seminar.
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Modelling Actions, I/III

• We refer to the section on Formal Concept Analysis of Discrete Per-
durants on Slide 221.

• The domain describer has decided that an entity is a perdurant and
is, or represents an action: was “done by an agent and intentionally
under some description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed ac-
tion is of a class of actions — of the “same kind” — that need be
described.

⋄⋄ By actions of the ‘same kind’ is meant that these can be described
by the same function signature and function definition.
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Modelling Actions, II/III

• The domain describer must decide on the underlying function sig-
nature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts and/or materials,

◦◦ unique part identifiers, and/or

◦◦ attributes.
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Modelling Actions, III/III

• Sooner or later the domain describer must decide on the function
definition.

⋄⋄ The form must be decided upon.

⋄⋄ For pre/post-condition forms it appears to be convenient to have
developed, “on the side”, a theory of mereology for the part types
involved in the function signature.
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5.3. Events

• By an eventδ we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.
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5. Discrete Perdurant Entities 5.3. Events

Example: 35 Events.

• Container vessel: A container falls overboard
sometimes between times t and t′.

• Financial service industry: A bank goes bankrupt
sometimes between times t and t′.

• Health care: A patient dies
sometimes between times t and t′.

• Pipeline system: A pipe breaks
sometimes between times t and t′.

• Transportation: A link “disappears”
sometimes between times t and t′.
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5. Discrete Perdurant Entities 5.3. Events5.3.1. An Aside on Events

5.3.1. An Aside on Events

• We may observe an event, and

⋄⋄ then we do so at a specific time or

⋄⋄ during a specific time interval.

• But we wish to describe,

⋄⋄ not a specific event

⋄⋄ but a class of events of “the same kind”.

• In this seminar

⋄⋄ we therefore do not ascribe

⋄⋄ time points or time intervals

⋄⋄ with the occurrences of events.
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5.3.2. Event Signatures

• An event signatureδ

⋄⋄ is a predicate signature

⋄⋄ having an event name (evt),

⋄⋄ a pair of state types (Σ × Σ),

⋄⋄ a total function space operator (→)

⋄⋄ and a Boolean type constant:

⋄⋄ evt: (Σ×Σ) → Bool.

• Sometimes there may be a good reason

⋄⋄ for indicating the type, ET, of an event cause value,

⋄⋄ if such a value can be identified:

⋄⋄ evt: ET × (Σ × Σ) → Bool.
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5.3.3. Event Definitions

• An event definitionδ takes the form of

⋄⋄ a predicate definition:

◦◦ a predicate name and argument list, usually just a state pair,

◦◦ an existential quantification

∗ over some part (of the state) or

∗ over some dynamic attribute of some part (of the state)

∗ or combinations of the above

◦◦ a pre-condition expression over the input argument(s),

◦◦ an implication symbol (⇒), and

◦◦ a post-condition expression over the argument(s):

⋄⋄ evt(σ, σ′) = ∃ (ev:ET) • pre evt(ev)(σ) ⇒ post evt(ev)(σ, σ′).

There may be variations to the above form.
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5. Discrete Perdurant Entities 5.3. Events5.3.3. Event Definitions

Example: 36 Road Transport System Event.

• Example 4,

⋄⋄ Items 38–42((c))ii

⋄⋄ (Slides 85–88)

exemplified an event definition.
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Modelling Events I/II

• We refer to the section on
Formal Concept Analysis of Discrete Perdurants on Slide 221.

• The domain describer has decided that an entity is a perdurant and
is, or represents an event: occurred surreptitiously, that is, was not
an action that was “done by an agent and intentionally under some
description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed event
is of a class of events — of the “same kind” — that need be
described.

⋄⋄ By events of the ‘same kind’ is meant that these can be described
by the same predicate function signature and predicate function
definition.
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Modelling Events, II/II

• First the domain describer must decide on the underlying
predicate function signature.

⋄⋄ The argument type and the result type of the signature
are those of either previously identified

◦◦ parts,

◦◦ unique part identifiers, or

◦◦ attributes.

• Sooner or later the domain describer must decide on
the predicate function definition.

⋄⋄ For predicate function definitions it appears to be convenient to
have developed, “on the side”, a theory of mereology for the part
types involved in the function signature.
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5.4. Discrete Behaviours

• We shall distinguish between

⋄⋄ discrete behaviours (this section) and

⋄⋄ continuous behaviours.

• Roughly discrete behaviours

⋄⋄ proceed in discrete (time) steps —

⋄⋄ where, in this lecture, we omit considerations of time.

⋄⋄ Each step corresponds to an action or an event or a time interval
between these.

⋄⋄ Actions and events may take some (usually inconsiderable time),

⋄⋄ but the domain analyser has decided that it is not of interest to
understand what goes on in the domain during that time
(interval).

⋄⋄ Hence the behaviour is considered discrete.
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• Continuous behaviours

⋄⋄ are continuous in the sense of the calculus of mathematical
analysis;

⋄⋄ to qualify as a continuous behaviour time must be an essential
aspect of the behaviour.

• Discrete behaviours can be modelled in many ways, for example
using

⋄⋄ CSP [Hoare85+2004].

⋄⋄ MSC [MSCall],

⋄⋄ Petri Nets [m:petri:wr09] and

⋄⋄ Statechart [Harel87].

• We refer to Chaps. 12–14 of [TheSEBook2wo].

• In this seminar we shall use RSL/CSP.
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5.4.1. What is Meant by ‘Behaviour’ ?

• We give two characterisations of the concept of ‘behaviour’.

⋄⋄ a “loose” one and

⋄⋄ a “slanted one.

• A loose characterisation runs as follows:

⋄⋄ by a behaviourδ we understand

◦◦ a set of sequences of

◦◦ actions, events and behaviours.
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• A “slanted” characterisation runs as follows:

⋄⋄ by a behaviourδ we shall understand

◦◦ either a sequential behaviourδ consisting of a possibly infinite
sequence of zero or more actions and events;

◦◦ or one or more communicating behaviourδs whose output
actions of one behaviour may synchronise and communicate
with input actions of another behaviour;

◦◦ or two or more behaviours acting either as
internal non-deterministic behaviourδs (⌈⌉) or as
external non-deterministic behaviourδs (⌈⌉⌊⌋).
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• This latter characterisation of behaviours

⋄⋄ is “slanted” in favour of a CSP, i.e., a communicating sequential
behaviour, view of behaviours.

⋄⋄ We could similarly choose to “slant” a behaviour
characterisation in favour of

◦◦ Petri Nets, or

◦◦ MSCs, or

◦◦ Statecharts, or other.
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5.4.2. Behaviour Narratives

• Behaviour narratives may take many forms.

⋄⋄ A behaviour may best be seen as composed from several
interacting behaviours.

◦◦ Instead of narrating each of these,

◦◦ as was done in Example 4,

◦◦ one may proceed by first narrating the interactions of these
behaviours.

⋄⋄ Or a behaviour may best be seen otherwise,

◦◦ for which, therefore, another style of narration may be called
for,

◦◦ one that “traverses the landscape” differently.

⋄⋄ Narration is an art.

⋄⋄ Studying narrations – and practice – is a good way to learn
effective narration.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00 248 Domain Science & Engineering



249
5. Discrete Perdurant Entities 5.4. Discrete Behaviours5.4.3. Channels

5.4.3. Channels

• We remind the listener that we are focusing exclusively on domain
behaviours.

⋄⋄ Domain behaviours, as we shall see in Sect. 5.4.6, take their
“root” in parts.

⋄⋄ We shall find, even when “parts” take the form of concepts, that
these do not “overlap”.

◦◦ They may share properties,

◦◦ but we can consider them “disjoint”.

⋄⋄ Hence communication between processes

◦◦ can be thought of as communication between “disjoint parts”,

◦◦ and, as such, can be abstracted as taking place

◦◦ in a non-physical medium which we shall refer to as channels.
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• By a channelδ we shall understand

⋄⋄ a means of communicating entities

⋄⋄ between [two] behaviours.

• To express channel communications we, at present, make use of RSL [RSL]’s
output (ch ! v) / input (ch ?) clauses and channel declarations,

type M
channel ch M,
value ch!v, ch?,

• Variations of the above clauses are

type ChIdx, ChJdx
channel {ch[ i ]|i:ChIdx•P(i,...)}:M, {ch[ i,j ]|i:ChIdx,j:ChJdx•P(i,j,...)}:M
value ch[ i ]!v, ch[ i ]?, ch[ i,j ]!v, ch[ i,j ]?

• where P is a suitable predicate

⋄⋄ over channel indices and

⋄⋄ possibly global domain values.
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5.4.4. Behaviour Signatures

• By a behaviour signatureδ we shall understand a

⋄⋄ a function signature

⋄⋄ augmented by a clause which declares

◦◦ the in channels on which the function accepts inputs and

◦◦ the out channels on which the function offers output.

value behaviour: A → in in chs out out chs B

• where (i)

⋄⋄ the form in in chs out out chs

◦◦ may be just in in chs

◦◦ or out out chs

◦◦ or both in in chs out out chs

that is, behaviour accepts input(s), or offers output(s), or both;
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value behaviour: A → in in chs out out chs B

• where (ii)

⋄⋄ A typically is of the forms

◦◦ Unit if the behaviour “takes no arguments”,

∗ that is: behaviour(),

or

◦◦ PI×P if the behavior is directly based on a part, p:P, for

∗ that is: behaviour(uid P(p),p);
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value behaviour: A → in in chs out out chs B

⋄⋄ where (iii)

⋄⋄ in chs and out chs are of the form

◦◦ either ch,

◦◦ or {ch[ i ]|i:ChIdx•Q(i,...)}

◦◦ or {ch[ i,j ]|i:ChIdx,j:ChJdx•R(i,j,...)},

Q, R are appropriate predicates; and

⋄⋄ where (iv)

◦◦ either

◦◦ B is

∗ either just Unit when the behaviour is typically a
never-ending (i.e., cyclic) behaviours,

∗ or is some result type C.
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5.4.5. Behaviour Definitions

• This section is about the basic form of behaviour function
definitions.

⋄⋄ We shall only be concerned with behaviours which define part
behaviours.

⋄⋄ By a part behaviourδ we shall understand

◦◦ a behaviour whose state

◦◦ is that of the part for which it is the behaviour.

• There are basically two cases for which we are interested in the
form of the behaviour definition:

⋄⋄ the atomic part behaviour, and

⋄⋄ the composite part behaviour.
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5.4.5.1 Atomic Part Behaviours

• Let p:P be an atomic part of type P.

• Then the basic form of a cyclic atomic behaviour definition is

value

atomic core part behaviour(uid P(p))(p) ≡
let p′ = A(uid P(p))(p) in

atomic core part behaviour(uid P(p))(p′) end

post: uid P(p) = uid P(p′),

A: PI → P → in ... out ... P,

• where A usually is a terminating function

⋄⋄ which synchronises and

⋄⋄ communicates with other part behaviours.
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Example: 37 Atomic Part Behaviours.

• Example 4, Sect. 2.8.6 and Sect. 2.8.7 illustrates cyclic atomic
behaviours:

⋄⋄ vehicle at Hub: Items 65–65(d), on Slide 101,

⋄⋄ vehicle on Link: Items 64–68, on Slide 103 and

⋄⋄ monitor: Items 69–71(d), on Slide 105.
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5.4.5.2 Composite Part Behaviours

• Let p:P be an atomic part of type P.

• Then the basic form of a cyclic atomic behaviour definition is

value

composite part behaviour(uid P(p))(p) ≡
composite core part behaviour(uid P(p))(p)

‖ { part behaviour(uid P(p′))(p′)|p′:P•p′ ∈ obs (p)}

core part behaviour: PI → P → in ... out ... Unit

core part behaviour(uid P(p))(p) ≡
let p′ = C(uid P(p))(p) in

composite core part behaviour(uid P(p))(p′) end

post: uid P(p) = uid P(p′)

C: PI → P → in ... out ... P,
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• where C usually is a terminating function

⋄⋄ which synchronises and

⋄⋄ communicates with other part behaviours.

Example: 38 Compositional Behaviours.

• Example 4, Sect. 2.8.3

⋄⋄ illustrated compositionality,

⋄⋄ cf. Items 59– 59(b) on Slide 95.

• The next section

⋄⋄ illustrates the basic principles

⋄⋄ that we recommend

⋄⋄ when modelling behaviours of domains

⋄⋄ consisting of composite and atomic parts.
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5.4.6. A Model of Parts and Behaviours

• How often have you not “confused”, linguistically,

⋄⋄ the perdurant notion of a train process: progressing from railway
station to railway station,

⋄⋄ with the endurant notion of the train, say as it appears listed in
a train time table, or as it is being serviced in workshops, etc.

• There is a reason for that — as we shall now see:
parts may be considered syntactic quantities
denoting semantic quantities.

⋄⋄ We therefore describe a general model of parts of domains

⋄⋄ and we show that for each instance of such a model

⋄⋄ we can ‘compile’ that instance into a CSP ‘program’.
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• The example additionally has a more general aim,

⋄⋄ namely that of showing

⋄⋄ that to every mereology (or parts)

⋄⋄ there is a λ-expression

⋄⋄ here in the form of basically a CSP [Hoare85+2004] program.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00 260 Domain Science & Engineering



261
5. Discrete Perdurant Entities 5.4. Discrete Behaviours5.4.6. A Model of Parts and Behaviours

Example: 39 Syntax and Semantics of Mereology.
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5.4.6.1 A Syntactic Model of Parts

106. The whole contains a set of parts.

107. Parts are either atomic or composite.

108. From composite parts one can observe a set of parts.

109. All parts have unique identifiers
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type

106. W, P, A, C
107. P = A | C
value

108. obs Ps: (W|C) → P-set

type

109. PI
value

109. uid Π: P → Π
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110. From a whole and from any part of that whole we can extract all
contained parts.

111. Similarly one can extract the unique identifiers of all those
contained parts.

112. Each part may have a mereology which may be “empty”.

113. A mereology ’s unique part identifiers must refer to some other
parts other than the part itself.
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value

110. xtr Ps: (W|P) → P-set

110. xtr Ps(w) ≡ {xtr Ps(p)|p:P•p ∈ obs Ps(p)}
110. pre: is W(p)
110. xtr Ps(p) ≡ {xtr Ps(p)|p:C•p∈ obs Ps(p)}∪{p}
110. pre: is P(p)
111. xtr Πs: (W|P) → Π-set

111. xtr Πs(wop) ≡ {uid P(p)|p ∈ xtr Ps(wop)}
112. mereo P: P → Π-set

axiom

113. ∀ w:W
113. let ps = xtr Ps(w) in

113. ∀ p:P • p ∈ ps • ∀ π:Π • π ∈ mereo P(p) ⇒ π ∈ xtr Πs(p) end
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114. An attribute map of a part associates with attribute names, i.e.,
type names, their values, whatever they are.

115. From a part one can extract its attribute map.

116. Two parts share attributes if their respective attribute maps share
attribute names.

117. Two parts share properties if the y

(a) either share attributes

(b) or the unique identifier of one is in the mereology of the other.
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type

114. AttrNm, AttrVAL,
114. AttrMap = AttrNm →m AttrVAL
value

115. attr AttrMap: P → AttrMap
116. share Attributes: P×P → Bool

116. share Attributes(p,p′) ≡
116. dom attr AttrMap(p) ∩
116. dom attr AttrMap(p′) 6= {}
117. share Properties: P×P → Bool

117. share Properties(p,p′) ≡
117(a). share Attributes(p,p′)
117(b). ∨ uid P(p) ∈ mereo P(p′)
117(b). ∨ uid P(p′) ∈ mereo P(p)
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5.4.6.2 A Semantics Model of Parts

118. We can define the set of two element sets of unique identifiers
where

• one of these is a unique part identifier and

• the other is in the mereology of some other part.

• We shall call such two element “pairs” of unique identifiers
connectors.

• That is, a connector is a two element set, i.e., “pairs”, of unique
identifiers for which the identified parts share properties.

119. Let there be given a ‘whole’, w:W.

120. To every such “pair” of unique identifiers we associate a channel

• or rather a position in a matrix of channels indexed over the
“pair sets” of unique identifiers.

• and communicating messages m:M.
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type

118. K = Π-set axiom ∀ k:K•card k=2

value

118. xtr Ks: (W|P) → K-set

118. xtr Ks(wop) ≡

118. let ps = xtr Ps(w) in

118. {{uid P(p),π}|p:P,π:Π•p∈ ps ∧ ∃ p′:P•p′6=p∧π=uid P(p′) ∧ uid P(p)∈uid P(p′)} end

119. w:W

120. channel {ch[ k ]|k:xtr Ks(w)}:M
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121. Now the ‘whole’ behaviour whole is the parallel composition of
part processes, one for each of the immediate parts of the whole.

122. A part process is

(a) either an atomic part process, atom, if the part is an atomic
part,

(b) or it is a composite part process, comp, if the part is a
composite part.
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121. whole: W → Unit

121. whole(w) ≡ ‖ {part(uid P(p))(p) | p:P•p ∈ xtr Ps(w)}

122. part: π:Π → P → Unit

122. part(π)(p) ≡
122(a). is A(p) → atom(π)(p),
122(b). → comp(π)(p)
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123. A composite process, part, consists of

(a) a composite core process, comp core, and

(b) the parallel composition of part processes one for each
contained part of part.

.

value

123. comp: π:Π → p:P → in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]} Unit

123. comp(π)(p) ≡
123(a). comp core(π)(p) ‖
123(b). ‖ {part(uid P(p′))(p′) | p′:P•p′ ∈ obs Ps(p)}
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124. An atomic process consists of just an atomic core process,
atom core

124. atom: π:Π → p:P → in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]} Unit

124. atom(π)(p) ≡ atom core(π)(p)
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125. The core behaviours both

(a) update the part properties and

(b) recurses with the updated properties,

(c) without changing the part identification.

We leave the update action undefined.
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value

125. core: π:Π → p:P → in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]} Unit

125. core(π)(p) ≡
125(a). let p′ = update(π)(p)
125(b). in core(π)(p′) end

125(b). assert: uid P(p)=π=uid P(p′)
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• The model of parts can be said to be a syntactic model.

⋄⋄ No meaning was “attached” to parts.

• The conversion of parts into CSP programs can be said to be a
semantic model of parts,

⋄⋄ one which to every part associates a behaviour

⋄⋄ which evolves “around” a state

⋄⋄ which is that of the properties of the part.
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6. Discrete Perdurant Entities

6. Continuous Entities

• There are two kinds of continuous entities:

⋄⋄ materials (Slides 278–299) and

⋄⋄ continuous behaviours (Slides 300–314).

• By a materialδ we small mean

⋄⋄ a continuous endurant,

⋄⋄ a manifest entity which typically varies in shape and extent.

• By a continuous behaviourδ we small mean

⋄⋄ a continuous perdurant,

⋄⋄ which we may think of as a function

◦◦ from continuous Time

◦◦ to some structure, simple or complicated, of

∗ parts and

∗ materials.
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6.1. Materials

• Let us start with examples of materials.

Example: 40 Materials. Examples of endurant continuous entities
are such as

• coal,

• air,

• natural gas,

• grain,

• sand,

• iron ore,

• minerals,

• crude oil,

• solid waste,

• sewage,

• steam and

• water.
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The above materials are either

• liquid materials (crude oil, sewage, water),

• gaseous materials (air, gas, steam), or

• granular materials (coal, grain, sand, iron ore, mineral, or solid
waste).
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• Endurant continuous entities, or materials as we shall call them,

⋄⋄ are the core endurants of process domains,

⋄⋄ that is, domains in which those materials
form the basis for their “raison d’être”.

6.1.1. Materials-based Domains

• By a materials based domainδ we shall mean a domain

⋄⋄ many of whose parts serve to transport materials, and

⋄⋄ some of whose actions, events and behaviours serve to monitor
and control the part transport of materials.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00 280 Domain Science & Engineering



281
6. Continuous Entities 6.1. Materials6.1.1. Materials-based Domains

Example: 41 Material Processing.

• Oil or gas materials are ubiquitous to pipeline systems — so
pipeline systems are oil or gas-based systems.

• Sewage is ubiquitous to waste management systems — so waste
management systems are sewage-based systems.

• Water is ubiquitous to systems composed from reservoirs, tunnels
and aqueducts which again are ubiquitous to hydro-electric power
plants, irrigation systems or water supply utilities — so
hydro-electric power plants, irrigation systems and water supply
utilities are water-based systems.
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• Ubiquitous means ‘everywhere’.

• A continuous entity, that is, a material

⋄⋄ is a core material,

⋄⋄ if it is “somehow related”

⋄⋄ to one or more parts of a domain.

6.1.2. “Somehow Related” Parts and Materials

• We explain our use of the term “somehow related”.
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Example: 42 Somehow Related Materials and Parts. With
teletype font we designate materials and with slanted font we
imply parts or part processes.

• Oil is pumped from wells, runs through pipes, is “lifted” by
pumps, diverted by forks, “runs together” by means of joins, and
is delivered to sinks.

• Grain is delivered to silos by trucks, piped through a network of
pipes, forks and valves to vessels, etc.

• Minerals are mined, conveyed by belts to lorries or trains or
cargo vessels and finally deposited.

• Iron ore, for example, is ‘conveyed’ into smelters, ‘roasted’,
‘reduced’ and ‘fluxed’, ‘mixed’ with other mineral ores to produce
a molten, pure metal, which is then ‘collected’ into ingots.
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6.1.3. Material Observers

• When analysing domains a key question,

⋄⋄ in view of the above notion of core continuous endurants
(i.e., materials)

is therefore:

⋄⋄ does the domain embody a notion of core continuous endurants
(i.e., materials);

⋄⋄ if so, then identify these “early on” in the domain analysis.

• Identifying materials —

⋄⋄ their types and

⋄⋄ attributes —

is slightly different from identifying discrete endurants, i.e., parts.
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Example: 43 Pipelines: Core Continuous Endurant. We
continue Examples 30 on Slide 209 and 31 on Slide 211.

• The core continuous endurant, i.e., material,

• of (say oil) pipelines is, yes, oil:

type

O material

value

obs O: PLN → O

• The keyword material is a pragmatic.

• Materials are “few and far between” as compared to parts,

⋄⋄ we choose to mark the type definitions which designate materials
with the keyword material.

⋄⋄ In contrast, we do not mark the type definitions which designate
parts with the keyword discrete.
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• First we do not associate the notion of atomicity or composition
with a material. Materials are continuous.

• Second, amongst the attributes, none have to do with geographic
(or cadestral) matters. Materials are moved.

• And materials have no unique identification or mereology. No
“part” of a material distinguishes it from other “parts”.

• But they do have other attributes when occurring in connection
with, that is, related to parts, for example,

⋄⋄ volume or

⋄⋄ weight.
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Example: 44 Pipelines: Parts and Materials. We continue
Examples 30 on Slide 209 and 31 on Slide 211.

126. From an oil pipeline system one can, amongst others,

(a) observe the finite set of all its pipeline bodies,

(b) units are composite and consists of a unit,

(c) and the oil, even if presently, at time of observation, empty of oil.

127. Whether the pipeline is an oil or a gas pipeline is an attribute of
the pipeline system.

(a) The volume of material that can be contained in a unit is an
attribute of that unit.

(b) There is an auxiliary function which estimates the volume of a
given “amount” of oil.

(c) The observed oil of a unit must be less than or equal to the
volume that can be contained by the unit.
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type

126. PLS, B, U, Vol
126. O material

value

126(a). obs Bs: PLS → B-set

126(b). obs U: B → U
126(c). obs O: B → O
127. attr PLS Type: PLS → {”oil”|”gas”}
127(a). attr Vol: U → Vol
127(b). vol: O → Vol
axiom

127(c). ∀ pls:PLS,b:B•b ∈ obs Bs(pls)⇒vol(obs O(b))≤attr Vol(obs U(b))

• Notice how bodies are composite and consists of

⋄⋄ a discrete, atomic part, the unit, and

⋄⋄ a material endurant, the oil.

• We refer to Example 45 on Slide 291.
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6.1.4. Material Properties

• These are some of the key concerns in domains focused on
materials:

⋄⋄ transport, flows, leaks and losses, and

⋄⋄ input to systems and output from systems,

• Other concerns are in the direction of

⋄⋄ dynamic behaviours of materials focused domains
(mining and production), including

⋄⋄ stability, periodicity, bifurcation and ergodicity.

• In this seminar we shall, when dealing with systems focused on
materials, concentrate on modelling techniques for

⋄⋄ transport, flows, leaks and losses, and

⋄⋄ input to systems and output from systems.
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• Formal specification languages like

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks] ,

⋄⋄ CASL [CoFI:2004:CASL-RM]

⋄⋄ CafeOBJ [futatsugi2000a],

⋄⋄ RAISE [RaiseMethod],

⋄⋄ VDM

[e:db:Bj78bwo,e:db:Bj82b,JohnFitzgera

and

⋄⋄ Z [m:z:jd+jcppw96]

do not embody the mathematical calculus notions of

⋄⋄ continuity, hence do not “exhibit”

⋄⋄ neither differential equations

⋄⋄ nor integrals.

• Hence cannot formalise dynamic systems within these
formal specification languages.

• We refer to Sect. 9.3.1 where we discuss these issues at some length.
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Example: 45 Pipelines: Parts and Material Properties. We refer to
Examples 30 on Slide 209, 31 on Slide 211 and 44 on Slide 287.

128. Properties of pipeline units additionally include such which are concerned with
flows (F) and leaks (L) of materials:

(a) current flow of material into a unit input connector,

(b) maximum flow of material into a unit input connector while maintaining
laminar flow,

(c) current flow of material out of a unit output connector,

(d) maximum flow of material out of a unit output connector while maintaining
laminar flow,

(e) current leak of material at a unit input connector,

(f) maximum guaranteed leak of material at a unit input connector,

(g) current leak of material at a unit input connector,

(h) maximum guaranteed leak of material at a unit input connector,

(i) current leak of material from “within” a unit,

(j) maximum guaranteed leak of material from “within” a unit.
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129. There are “the usual” arithmetic and comparison operators of flows
and leaks, and there is a smallest detectable (flow and) leak.

type

129. F, L

value

129. ⊕,⊖: (F|L)×(F|L) → (F|L)
129. <,≤,=: (F|L)×(F|L) → Bool

129. ⊗: (F|L)×Real → (F|L)
129. /: (F|L)×(F|L) → Real

129. ℓ0:L

128(a). attr cur iF: U → UI → F
128(b). attr max iF: U → UI → F
128(c). attr cur oF: U → UI → F
128(d). attr max oF: U → UI → F
128(e). attr cur iL: U → UI → L
128(f). attr max iL: U → UI → L
128(g). attr cur oL: U → UI → L
128(h). attr max oL: U → UI → L
128(i). attr cur L: U → L
128(j). attr max L: U → L
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• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes as dynamic attributes.

130. Properties of pipeline materials may additionally include

(a) kind of material18,

(b) paraffins,

(c) naphtenes,

(d) aromatics,

(e) asphatics,

(f) viscosity,

(g) etcetera.

• We leave it to the student to provide the formalisations.

18For example Brent Blend Crude Oil
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6.1.5. Material Laws of Flows and Leaks

• It may be difficult or costly, or both

⋄⋄ to ascertain flows and leaks in materials-based domains.

⋄⋄ But one can certainly speak of these concepts.

⋄⋄ This casts new light on domain modelling.

⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks

◦◦ in requirements modelling

⋄⋄ where one has to show implementability.

• Modelling flows and leaks is important to the modelling of
materials-based domains.
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Example: 46 Pipelines: Intra Unit Flow and Leak Law. We
continue our line of Pipeline System examples (cf. the opening line of
Example 45 on Slide 291).

131. For every unit of a pipeline system, except the well and the sink
units, the following law apply.

132. The flows into a unit equal

(a) the leak at the inputs

(b) plus the leak within the unit

(c) plus the flows out of the unit

(d) plus the leaks at the outputs.
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axiom

131. ∀ pls:PLS,b:B\We\Si,u:U •

131. b ∈ obs Bs(pls)∧u=obs U(b)⇒
131. let (iuis,ouis) = mereo U(u) in

132. sum cur iF(iuis)(u) =
132(a). sum cur iL(iuis)(u)
132(b). ⊕ attr cur L(u)
132(c). ⊕ sum cur oF(ouis)(u)
132(d). ⊕ sum cur oL(ouis)(u)
131. end

133. The sum cur iF (cf. Item 132) sums current input flows over all
input connectors.

134. The sum cur iL (cf. Item 132(a)) sums current input leaks over all
input connectors.
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135. The sum cur oF (cf. Item 132(c)) sums current output flows over all output
connectors.

136. The sum cur oL (cf. Item 132(d)) sums current output leaks over all output
connectors.

133. sum cur iF: UI-set → U → F
133. sum cur iF(iuis)(u) ≡ ⊕ 〈attr cur iF(ui)(u)|ui:UI•ui ∈ iuis〉
134. sum cur iL: UI-set → U → L
134. sum cur iL(iuis)(u) ≡ ⊕ 〈attr cur iL(ui)(u)|ui:UI•ui ∈ iuis〉
135. sum cur oF: UI-set → U → F
135. sum cur oF(ouis)(u) ≡ ⊕ 〈attr cur iF(ui)(u)|ui:UI•ui ∈ ouis〉
136. sum cur oL: UI-set → U → L
136. sum cur oL(ouis)(u) ≡ ⊕ 〈attr cur iL(ui)(u)|ui:UI•ui ∈ ouis〉

⊕: (F×F)|F∗ → F | (L×L)|L∗ → L

• where ⊕ is both an infix and a distributed-fix function which adds
flows and or leaks.
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Example: 47 Pipelines: Inter Unit Flow and Leak Law.

137. For every pair of connected units of a pipeline system the following law apply:

(a) the flow out of a unit directed at another unit minus the leak at that output
connector

(b) equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

137. ∀ pls:PLS,b,b′:B,u,u′:U•

137. {b,b′}⊆obs Bs(pls)∧b 6=b′∧u′=obs U(b′)
137. ∧ let (iuis,ouis)=mereo U(u),(iuis′,ouis′)=mereo U(u′),
137. ui=uid U(u),ui′=uid U(u′) in

137. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
137(a). attr cur oF(us′)(ui′) ⊖ attr leak oF(us′)(ui′)
137(b). = attr cur iF(us)(ui) ⊕ attr leak iF(us)(ui)
137. end

137. comment: b′ precedes b
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• From the above two laws one can prove the theorem:

⋄⋄ what is pumped from the wells equals

⋄⋄ what is leaked from the systems plus what is output to the sinks.

• We need formalising the flow and leak summation functions.

A Precursor for Requirements Engineering 299 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00



300 6. Continuous Entities 6.2. Continuous Behaviours

6.2. Continuous Behaviours

• This section is still under research and development.

• The aim of this section is to relate

⋄⋄ discrete behaviour domain models of some fragments of a domain

⋄⋄ to continuous behaviour domain models of other fragments of
that domain.

• By a continuous behaviour modelδ we mean

⋄⋄ a domain description that emphasises

⋄⋄ the behaviour of materials, that is,

⋄⋄ how they flow through parts, and related matters.
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6.2.1. Fluid Dynamics

• Continuous behaviour domain models classically express

⋄⋄ the fluid dynamicsδ
◦◦ of flows of fluids,

◦◦ that is, the natural science of

◦◦ liquids and gasses.
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• The natural science of fluids

⋄⋄ (from Wikipedia:)

◦◦ “are based on foundational axioms of fluid dynamics

◦◦ which are the conservation laws,

◦◦ specifically, conservation of mass,

◦◦ conservation of linear momentum

◦◦ (also known as Newton’s Second Law of Motion),

◦◦ and conservation of energy

◦◦ (also known as First Law of Thermodynamics).

◦◦ These are based on classical mechanics.

◦◦ They are expressed using the Reynolds Transport
Theorem.”
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6.2.1.1 Descriptions of Continuous Domain Behaviours

• We are not going to exemplify such descriptive natural science
models.

• Their mathematics, besides being elegant and beautiful,

⋄⋄ includes familiarity with

⋄⋄ Bernoulli Equations,

⋄⋄ Navier Stokes Equations, etc.

• For continuous behaviour domain models

⋄⋄ we shall refer to such mathematical models

⋄⋄ of the natural science of fluids.
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6.2.1.2 Prescriptions of Required Continuous Domain Behaviours

• By a prescriptive domain modelδ we mean

⋄⋄ a desirable behaviour specification

⋄⋄ as in, for example, a requirements prescription

⋄⋄ of a continuous time dynamic system.

• We are also not going to illustrate prescriptive domain models.

⋄⋄ Their mathematics, besides also being elegant and beautiful,

◦◦ is based on the descriptive natural science models;

◦◦ but are now part of the engineering realm of Control Theory.

◦◦ It includes such disciplines as

∗ fuzzy control [Michel-etal-2010],

∗ stochastic control [Karlin+Taylor1998] and

∗ adaptive control [aastroem89], etc.
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Example: 48 Pipelines: Fluid Dynamics and Automatic
Control.

• We refer to Example 49 on Slide 307.

• In that example, next, we expect domain models

⋄⋄ for the fluid dynamics of individual pipeline units: wells, pumps,
pipes, valves, forks, joins and sinks,

⋄⋄ as well as models (one or more) for sequences of such units,

⋄⋄ extending, preferably to entire nets: from wells to sinks.

• And we expect requirements description models

⋄⋄ again for each of some of the individual units:

◦◦ pumps and valves in particular:

◦◦ when they need and how they are controlled:

◦◦ regulating pumps and valves and

◦◦ which unit attributes need be monitored.
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6.2.2. A Pipeline System Behaviour

• We shall model the behaviours of a composite pipeline system.

⋄⋄ We shall be using basically the same form of the description as
first illustrated in Sects. 2.8.2–2.8.7 (Slides 94–105) of Example 4.

⋄⋄ That system, Sects. 2.8.2–2.8.7, can be interpreted as illustrating
the central monitoring of vehicles spread over a wide
geographical area.

⋄⋄ The system to be illustrated in Example 49 can likewise be
interpreted as illustrating the central monitoring of pipeline
units (and their oil) spread over a wide geographical area.
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Example: 49 A Pipeline System Behaviour.

• We consider (cf. Examples 30 on Slide 209 and 31 on Slide 211) the
pipeline system units to represent also the following behaviours:

⋄⋄ pls:PLS, Item 126(a) on Slide 287, to also represent the system
process, pipeline system, and for each kind of unit,
cf. Example 30, there are the unit processes:

◦◦ unit,

◦◦ well (Item 98(c) on Slide 209),

◦◦ pipe (Item 98(a)),

◦◦ pump (Item 98(a)),

◦◦ valve (Item 98(a)),

◦◦ fork (Item 98(b)),

◦◦ join (Item 98(b)) and

◦◦ sink (Item 98(d) on Slide 209).
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channel

{ pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } MUPLS
{ u u ch[ ui,uj ]:ui,uj:UI•{ui,uj}⊆UIs(pls) } MUU

type

MUPLS, MUU
value

pipeline system: PLS → in,out { pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } Unit

pipeline system(pls) ≡ ‖ { unit(u)|u:U•u ∈ obs Us(pls) }
unit: U → Unit

unit(u) ≡
98(c). is We(u) → well(uid U(u))(u),
98(a). is Pu(u) → pump(uid U(u))(u),
98(a). is Pi(u) → pipe(uid U(u))(u),
98(a). is Va(u) → valve(uid U(u))(u),
98(b). is Fo(u) → fork(uid U(u))(u),
98(b). is Jo(u) → join(uid U(u))(u),
98(d). is Si(u) → sink(uid U(u))(u)
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• We illustrate essentials of just one of these behaviours.

98(b). fork: ui:UI → u:U → out,in pls u ch[ ui ],
in { u u ch[ iui,ui ] | iui:UI • iui ∈ sel UIs in(u) }
out { u u ch[ ui,oui ] | iui:UI • oui ∈ sel UIs out(u) } Unit

98(b). fork(ui)(u) ≡
98(b). let u′ = core fork behaviour(ui)(u) in

98(b). fork(ui)(u′) end

• The core fork behaviour(ui)(u) distributes

⋄⋄ what oil (or gas) in receives,

◦◦ on the one input sel UIs in(u) = {iui},

◦◦ along channel u u ch[iui]

⋄⋄ to its two outlets

◦◦ sel UIs out(u) = {oui1,oui2},

◦◦ along channels u u ch[oui1], u u ch[oui2].
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⋄⋄ The core · · · behaviour[s](ui)(u) also communicate with the
pipeline system behaviour.

◦◦ What we have in mind here is to model a traditional
supervisory control and data acquisition, SCADA system.

Figure 2: A supervisory control and data acquisition system
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138. SCADA is then part of the scada pipeline system behaviour.

138. scada pipeline system: PLS →
138. in,out { pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } Unit

138. scada pipeline system(pls) ≡
138. scada(props(pls)) ‖ pipeline system(pls)

⋄⋄ props was defined on Slide 204.

• We refer to Example 48 on Slide 305:

⋄⋄ for all the core · · · behaviours

◦◦ we expect the scada monitor

◦◦ to be expressed in terms of a prescriptive domain model

◦◦ which prescribes some optimal form of control of the pipeline
net.
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139. scada non-deterministically (internal choice, ⌈⌉), alternates between
continually

(a) doing own work,

(b) acquiring data from pipeline units, and

(c) controlling selected such units.

type

139. Props
value

139. scada: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis } Unit

139. scada(props) ≡
139(a). scada(scada own work(props))
139(b). ⌈⌉ scada(scada data acqui work(props))
139(c). ⌈⌉ scada(scada control work(props))
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• We leave it to the listeners imagination to describe scada own work.

140. The scada data acqui work

(a) non-deterministically, external choice, ⌈⌉⌊⌋, offers to accept data,

(b) and scada input updates the scada state —

(c) from any of the pipeline units.

value

140. scada data acqui work: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis
140. scada data acqui work(props) ≡
140(a). ⌈⌉⌊⌋ { let (ui,data) = pls ui ch[ ui ] ? in

140(b). scada input update(ui,data)(props) end

140(c). | ui:UI • ui ∈ uis }

140(b). scada input update: UI × Data → Props → Props
type

140(a). Data
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141. The scada control work

(a) analyses the scada state (props) thereby selecting a pipeline unit,
ui, and the controls, ctrl, that it should be subjected to;

(b) informs the units of this control, and

(c) scada output updates the scada state.

141. scada control work: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis }
141. scada control work(props) ≡
141(a). let (ui,ctrl) = analyse scada(ui,props) in

141(b). pls ui ch[ ui ] ! ctrl ;
141(c). scada output update(ui,ctrl)(props) end

141(c). scada output update UI × Ctrl → Props → Props
type

141(a). Ctrl
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See You in 30 Minutes — Thanks !
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