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3. Domains

3.1. Delineations

We characterise a number of terms.
3.1.0.1 Domain

• By a domainδ we shall here understand

⋄⋄ an area of human activity

⋄⋄ characterised by observable phenomena:

◦◦ entities

∗ whether endurants (manifest parts and materials)

∗ or perdurants (actions, events or behaviours),

◦◦ whether

∗ discrete or

∗ continuous;

◦◦ and of their properties.
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3.1.0.2 Domain Phenomena

• By a domain phenomenonδ we shall understand

⋄⋄ something that can be observed by the human senses

⋄⋄ or by equipment based on laws of physics and chemistry.

• Those phenomena that can be observed by

⋄⋄ the human eye or

⋄⋄ touched, for example, by human hands,

⋄⋄ we call parts and materials.

• Those phenomena that can be observed of parts and materials

⋄⋄ can usually be measured

⋄⋄ and we call them properties of these parts and those materials.
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3.1.0.3 Domain Entity

• By a domain entityδ we shall understand

⋄⋄ a manifest domain phenomenon or

⋄⋄ a domain concept, i.e., an abstraction,

⋄⋄ derived from a domain entity.

• The distinction between

⋄⋄ a manifest domain phenomenon and

⋄⋄ a concept thereof, i.e., a domain concept,

is important.

• Really, what we describe are the domain concepts derived

⋄⋄ from domain phenomena or

⋄⋄ from other domain concepts.
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3.1.0.4 Endurant Entity

• We distinguish between

⋄⋄ endurants and

⋄⋄ perdurants.

• From Wikipedia:

⋄⋄ By an endurantδ (also known as a continuantδ or a substanceδ)
we shall understand an entity

◦◦ that can be observed, i.e., perceived or conceived,

◦◦ as a complete concept,

◦◦ at no matter which given snapshot of time.

⋄⋄ Were we to freeze time

◦◦ we would still be able to observe the entire endurant.
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3.1.0.5 Perdurant Entity

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if

we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example

’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,

without any previous knowledge one might not even be able to

determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.
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3.1.0.6 Discrete Endurant

• We distinguish between

⋄⋄ discrete endurants and

⋄⋄ continuous endurants.

• By a discrete endurantδ, that is, a part, we shall understand
something which is

⋄⋄ separate or distinct in form or concept,

⋄⋄ consisting of distinct or separate parts.
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3.1.0.7 Continuous Endurant

• By a continuous endurantδ, that is, a material, we shall understand
an endurant whose spatial characteristics are

⋄⋄ prolonged, without interruption,

⋄⋄ in an unbroken spatial series or pattern.
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3.1.0.8 Domain Parts and Materials

• By a partδ we mean

⋄⋄ a discrete endurant,

⋄⋄ a manifest entity which is fixed in shape and extent.

• By a materialδ

⋄⋄ a continuous endurant,

⋄⋄ a manifest entity which typically varies in shape and extent.
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3.1.0.9 Domain Analysis

• By domain analysisδ we shall understand an examination of a
domain,

⋄⋄ its entities,

⋄⋄ their possible composition,

⋄⋄ properties

⋄⋄ and relations between entities,
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3.1.0.10 Domain Description

• By a domain descriptionδ we shall understand

⋄⋄ a narrative description

⋄⋄ tightly coupled (say line-number-by-line-number)

⋄⋄ to a formal description.
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3.1.0.11 Domain Engineering

• By domain engineeringδ we shall understand

⋄⋄ the engineering of a domain description,

⋄⋄ that is,

◦◦ the rigorous construction of domain descriptions, and

◦◦ the further analysis of these, creating theories of domains10,
etc.

10Section (Slides 36–105) is an example of the basis for a theory of road traffic systems.
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3.1.0.12 Domain Science

• By domain scienceδ we shall understand

⋄⋄ two things:

◦◦ the general study and knowledge of

∗ how to create and handle domain descriptions

∗ (a general theory of domain descriptions)

and

◦◦ the specific study and knowledge of a particular domain.

⋄⋄ The two studies intertwine.
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3.1.0.13 Values & Types

• By a valueδ we mean some mathematical quantity.

• By a typeδ we mean

⋄⋄ a largest set of values,

⋄⋄ each characterised by the same predicate,

⋄⋄ such that there are no other values,

⋄⋄ not members of the set,

⋄⋄ but which still satisfy that predicate.

• We do not give examples here of the kind of type predicates
that may characterise types.
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• When we observe a domain we observe instances of entities;

• but when we describe those instances

⋄⋄ (which we shall call values)

⋄⋄ we describe, not the values,

⋄⋄ but their type and properties:

◦◦ parts and materials have types and values;

◦◦ actions, events and behaviours, all, have types and values,
namely as expressed by their signatures; and

◦◦ actions, events and behaviours have properties,
namely as expressed by their function definitions.

• Values are phenomena and types are concepts thereof.
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3.1.0.14 Discrete Perdurant

• By a discrete perdurantδ we shall understand

⋄⋄ a perdurant

⋄⋄ which we consider as taking place instantaneously,

⋄⋄ in no time,

⋄⋄ or where whatever time interval it may take to complete

⋄⋄ is considered immaterial.
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3.1.0.15 Continuous Perdurant

• By a continuous perdurantδ we shall understand a perdurant whose
temporal characteristics are likewise

⋄⋄ prolonged, without interruption,

⋄⋄ in an unbroken temporal series or pattern.
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3.1.0.16 Extensionality

• By extensionalityδ Merriam-Webster11 means

⋄⋄ “something which relates to, or is marked by extension,”

⋄⋄ “that is, concerned with objective reality”.

• Our use basically follows this characterisation:

⋄⋄ We think of extensionality as a syntactic notion,

⋄⋄ one that characterises an exterior appearance or form

• We shall therefore think of

⋄⋄ part types and material types

⋄⋄ whether parts are atomic or composite, and

⋄⋄ how composite parts are composed

as extensional features.

11Extensionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com
(16 August 2012).
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3.1.0.17 Intentionality

• By intentionalityδ Merriam-Webster12 means:

⋄⋄ “done by intention or design”,

⋄⋄ “intended”,

⋄⋄ “of or relating to epistemological intention”,

⋄⋄ “having external reference”.

• Our use basically follows this characterisation:

⋄⋄ we think of intentionality as a semantic notion,

⋄⋄ one that characterises an intention.

• We shall therefore think of

⋄⋄ part attributess and material attributes

as intentional features.

12Intentionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16
August 2012).
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3.2. Formal Analysis of Entities

• This section is a transcription of

⋄⋄ Ganter & Wille’s [Wille:ConceptualAnalysis1999]
Formal Concept Analysis, Mathematical Foundations,
the 1999 edition, Pages 17–18.

Definition: 1 Formal Context:

• A formal contextδ K := (E, I, Q) consists of two sets;

⋄⋄ E of entities,

⋄⋄ Q of qualities, and a

⋄⋄ relation I between E and Q.

• To express that e is in relation I to a Quality q we write

⋄⋄ eIq, or (e, q) ∈ I which we read as

⋄⋄ “the entity e has the quality q”.
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• Example endurant entities are

⋄⋄ a specific vehicle,

⋄⋄ another specific vehicle,

⋄⋄ etcetera;

⋄⋄ a specific street segment (link),

⋄⋄ another street segment,

⋄⋄ etcetera;

⋄⋄ a specific road intersection (hub),

⋄⋄ another specific road intersection,

⋄⋄ etcetera,

⋄⋄ a monitor.

One can also list perdurant entities.

• Example endurant entity qualities are

⋄⋄ has mobility,

⋄⋄ has possible velocity,

⋄⋄ has possible acceleration,

⋄⋄ has length,

⋄⋄ has location,

⋄⋄ has traffic state,

⋄⋄ can vehicles be sensed,

⋄⋄ etcetera.

One can also list perdurant entity qualities.
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Definition: 2 Qualities Common to a Set of Entities:

• For any subset, sE ⊆ E , of entities we can define

DQ: E → K → Q
DQ(sE)(E, I, Q) ≡ {q | q:Q, e:E • e ∈ sE ∧ eIq },
pre: sE ⊆ E

“the set of qualities common to entities in SE”.
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Definition: 3 Entities Common to a Set of Qualities:

• For any subset, sQ ⊆ Q, of qualities we can define

DE : Q → K → E
DE(sQ)(E, I, Q) ≡ {e | e:E, q:Q • q ∈ sQ ∧ eIq },
pre: sQ ⊆ Q

“the set of entities which have all qualities in sQ”.
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Definition: 4 Formal Concept:

• A formal conceptδ of a context K is a pair:

⋄⋄ (sQ, sE) where

◦◦ DQ(sE)(E, I, Q) = sQ and

◦◦ DE(sQ)(E, I, Q) = sE;

⋄⋄ sQ is called the extentδ of K and

⋄⋄ sE is called the intentδ of K.

• Now comes the “crunch”:

⋄⋄ In the TripTych domain analysis

⋄⋄ we strive to find termiiformalconcepts

⋄⋄ and, when we think we have found one,

⋄⋄ we assign a type to it.
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• In mathematical terms it turns out that formal concepts are Galois
connections.

• We can, in other words, characterise domain analysis to be the
“hunting” for Galois connections.

• Or, even more “catchy”:

⋄⋄ domain types,

⋄⋄ whether they be endurant entity types

⋄⋄ or they be perdurant entity signatures

⋄⋄ are Galois connections.

• We shall put a domain engineering “touch”

⋄⋄ on formal concept analysis

⋄⋄ in Sects. 4.1.3 and 5.1.
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• • •

• The entities referred to by E

⋄⋄ are the domain entities that we shall deal with in this seminar,

• and the qualities referred to by Q

⋄⋄ are the mereologies and attributes of discrete endurant entities

⋄⋄ and the signatures of actions, events and behaviours of discrete
perdurant entities;

⋄⋄ with these terms becoming clearer as we progress through this
seminar.
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• • •

• Earlier in this section, two signatures were expressed as

⋄⋄ DQ: E → K → Q and

⋄⋄ DE : Q → K → E

• The “switch” between using K for types and K for values of that
type is “explained”:

⋄⋄ K is the Cartesian type: E × I ×Q, and

⋄⋄ K = (E, I, Q) is a value of that type.
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3.3. Discussion

• The crucial characterisation (above) is that of domain entity
(Slide 107).

⋄⋄ It is pivotal since all we describe are domain entities.

⋄⋄ If we get the characterisation wrong we get everything wrong !

⋄⋄ What might get the characterisation, or its interpretation, wrong
is the interpretation of domain entities:

◦◦ “those phenomena that can be observed by

∗ the human eye or

∗ touched, for example, by human hands,”

and

◦◦ “manifest domain phenomena or

◦◦ domain concepts, i.e., abstractions,

◦◦ derived from a domain entities”.
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• The whole thing hinges of

⋄⋄ what can be described,

⋄⋄ what constitutes a description and

⋄⋄ when is a text a bona fide description.

• Another set of questions are

⋄⋄ of what we have chosen to constitute entities

⋄⋄ which should we describe,

⋄⋄ which not ?
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• Philosophers have dealt with these questions.

⋄⋄ Recent writings are
[Badiou1988,BarrySmith1993,ChrisFox2000] and
[CasatiVarzi2010,HenryLaycock2011,WilsonScpall2012].

⋄⋄ Going back in time we find
[LeonardGoodman1940,Kripke1980,BowmanLClarke81].

⋄⋄ Among the classics we mention
[Russell1905,Russell1922,RudolfCarnap1928,StanislawLesniewksi1927-19
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• We shall only indirectly contribute to this philosophical discussion

⋄⋄ and do so by presenting the material of this paper;

⋄⋄ having studied, over the years, fragments of the above cited
publications

⋄⋄ we have concluded with the suggestions of this paper:

◦◦ following the principles, techniques and tools presented here

◦◦ can lead the domain engineer to

◦◦ a large class of domain descriptionss,

◦◦ large enough for our “immediate future” needs !

• We shall, in the conclusion, return to the questions of

⋄⋄ what can be described,

⋄⋄ what constitutes a description and

⋄⋄ when is a text a bona fide description ?
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4. Discrete Endurant Entities

• For pragmatics reasons we structure our treatment of discrete
endurant domain entities as follows:

⋄⋄ First we treat the extensional aspects of parts,

⋄⋄ then their properties: the intentional aspects.

• One could claim that when we say “first parts”

⋄⋄ we mean fist: a syntactic analysis of parts

⋄⋄ into atomic and composite parts,

⋄⋄ etcetera;

• and when we say “then their properties”

⋄⋄ we mean: then a partial semantic analysis,

⋄⋄ something which “throws” light over parts,

⋄⋄ since parts really are distinguishable
only through their properties.
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4.1. Parts

4.1.1. What is a Part ?

• By a partδ we mean an observable manifest endurant.

Discussion:

• We use the term ‘part’ where others use different terms, for
example,

⋄⋄ ‘individual’,

⋄⋄ ‘object’,

⋄⋄ ‘particular’,

⋄⋄ ‘thing’,

⋄⋄ ‘unit’,

⋄⋄ or other.
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Example: 5 Parts.

• Example parts have their types defined in the items as follows:

⋄⋄ N Item 1(a) Slide 38,

⋄⋄ F Item 1(b) Slide 38,

⋄⋄ M Item 1(c) Slide 38,

⋄⋄ HS Item 2(a) Slide 39,

⋄⋄ LS Item 2(b) Slide 39,

⋄⋄ VS Item 3 Slide 40,

⋄⋄ Vs Item 4(a) Slide 41,

⋄⋄ V Item 4(b) Slide 41,

⋄⋄ Hs Item 5 Slide 44,

⋄⋄ Ls Item 6 Slide 44,

⋄⋄ H Item 5(a) Slide 44,

⋄⋄ L Item 6(b) Slide 44.
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4.1.2. Classes of “Same Kind” Parts

• We repeat:

⋄⋄ the domain describer does not describe instances of parts,

⋄⋄ but seeks to describe classes of parts of the same kind.

• Instead of the term ‘same kind’ we shall use either the terms

⋄⋄ part sort or

⋄⋄ part type.

• By a same kind class of partsδ, that is a part sort or part type we
shall mean

⋄⋄ a class all of whose members, i.e., parts,

⋄⋄ enjoy “exactly” the same properties

⋄⋄ where a property is expressed as a proposition.
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Example: 6 Part Properties. We continue Example 4.

• Examples of part properties are:

⋄⋄ has unique identity ,

⋄⋄ has mereology ,

⋄⋄ has length,

⋄⋄ has location,

⋄⋄ has traffic movement restriction,

⋄⋄ has position,

⋄⋄ has velocity and

⋄⋄ has acceleration.
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4.1.3. A Preview of Part Properties

• For pragmatic reasons we group endurant properties into two
categories:

⋄⋄ a group which we shall refer to as meta properties:

◦◦ is discrete,

◦◦ is continuous,

◦◦ is atomic ,

◦◦ is composite,

◦◦ has observers ,

◦◦ is sort and

◦◦ has concrete type;

⋄⋄ and a group which we shall refer to as part properties

◦◦ has unique existence,

◦◦ has mereology and

◦◦ has attributes.

• The first group is treated in this section;

• the second group in the next section.
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4.1.4. Formal Concept Analysis: Endurants

• The domain analyser examines collections of parts.

⋄⋄ In doing so the domain analyser discovers and thus identifies and lists a
number of properties.

⋄⋄ Each of the parts examined usually satisfies only a subset of these properties.

⋄⋄ The domain analyser now groups parts into collections

◦◦ such that each collection have its parts satisfy the same set of properties,

◦◦ such that no two distinct collections are indexed, as it were, by the same
set of properties, and

◦◦ such that all parts are put in some collection.

⋄⋄ The domain analyser now

◦◦ assigns distinct type names (same as sort names)

◦◦ to distinct collections.

• That is how we assign types to parts.
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4.1.5. Part Property Values

• By a part property valueδ, i.e., a property valueδ of a part, we mean

⋄⋄ the value

⋄⋄ associated with an intentional property

⋄⋄ of the part.

Example: 7 Part Property Values.

• A link, l:L, may have the following intentional property values:

⋄⋄ LOCation value loc set,

⋄⋄ LENgth value 123 meters and

⋄⋄ mereology value {κi, κj}.
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• Two parts of the same type are different

⋄⋄ if for at least one of the intentional properties of that part type

⋄⋄ they have different part property values.

slut

Example: 8 Distinct Parts.

• Two links, la,lb:L, may have the following respective property values:

⋄⋄ LOCation values loc seta, and loc setb,

⋄⋄ LENgth value 123 meters and 123 meters , i.e., the same, and

⋄⋄ mereology values {κi, κj} and {κm, κn} where
{κi, κj} 6= {κm, κn}.

• When so, they are distinct, and the cadestral space loc seta must
not share any point with cadestral space loc setb.
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4.1.6. Part Sorts

• By an abstract typeδ, or a sortδ, we shall understand a type

⋄⋄ which has been given a name

⋄⋄ but is otherwise undefined, that is,

◦◦ is a set of values of further undefined quantities
[Milne1990:RSL:SemFound,Milne1990:RSL:ProofTheory].

∗ where these are given properties

∗ which we may express in terms of axioms over
sort (including property) values.

• All of the above examples are examples of sorts.
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Example: 9 Part Sorts.

• The discovery of N, F and M was made as a result of
examining the domain, ∆, at domain index 〈∆〉;

• HS and LS at domain index 〈∆,N〉;

• Hs and H (Ls and L) at domain indexes 〈∆,HS〉 (〈∆,LS〉); and

• Vs and V at domain index 〈∆,VS〉.
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4.1.7. Atomic Parts

• By an atomic partδ we mean a part which,

⋄⋄ in a given context,

⋄⋄ is deemed not to consist of
meaningful, separately observable proper sub-parts.

• A sub-part is a part.
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Example: 10 Atomic Types.

• We have exemplified the following atomic types:

⋄⋄ H (Item 5(b) on Slide 43),

⋄⋄ L (Item 6(b) on Slide 43),

⋄⋄ V (Item 4(b) on Slide 41) and

⋄⋄ M (Item 1(c) on Slide 38).

• Implicit tests,

⋄⋄ at domain indexes,

⋄⋄ by the domain analyser,

⋄⋄ for atomicity

were performed as follows:

⋄⋄ for H at 〈∆, N,HS,Hs,H〉;

⋄⋄ for L at 〈∆, N,LS,Ls,L〉;

⋄⋄ for V at 〈∆, F,VS,Vs,V〉; and

⋄⋄ for M at 〈∆, M〉.
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4.1.8. Composite Parts

• By a composite partδ we mean a part which,

⋄⋄ in a given context,

⋄⋄ is deemed to indeed consist of

meaningful, separately observable proper sub-parts.
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Example: 11 Composite Types.

• We have exemplified the following composite types:

⋄⋄ N (Items 2(a)– 2(b) on Slide 39),
HS (Item 5 on Slide 43),
LS (Item 6 on Slide 43),
Hs (Item 5(a) on Slide 43),

Ls (Item 6(a) on Slide 43),
F (Item 3 on Slide 40),
VS (Item 4(a) on Slide 41),
Va (Item 4(a) on Slide 41),

respectively.

• Tests for compostionality of these were implicitly performed;

⋄⋄ for N at index 〈∆, N〉;

⋄⋄ for HS and LS at index 〈∆, N,HS〉 and 〈∆, N,LS〉;

⋄⋄ for Hs and Ls at indexes 〈∆, N,HS,Hs〉 and 〈∆, N,LS,Ls〉;

⋄⋄ for F at index 〈∆, F〉;

⋄⋄ for VS at index 〈∆, F,VS〉; and

⋄⋄ for Vs at index 〈∆, F,VS,Vs〉.
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4.1.9. Part Observers

• By a part observerδ or a material observerδ we mean

⋄⋄ a meta-physical operatorδ (a meta function),

72. obs B: P → B

⋄⋄ that is, one performed by the domain analyser,

⋄⋄ which “applies” (i.e., who applies it) to a composite part value13,
P,

⋄⋄ and which yields the sub-part of type B,

⋄⋄ of the examined part.

13or composite part type
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• We name these obs erver functions obs X to indicate that they are
observing parts of type X.

• The obs erver functions are not computable.

⋄⋄ They can not be mechanised.

⋄⋄ Therefore we refer to them as mental.

⋄⋄ They can be “implemented” as, for example, follows:
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Example: 12 Implementation of Observer Functions.

• I take you around a particular road net, n,say in my town.

• I point out to you, one-by-one,
all the street intersections, h1, h2, . . . , hn, of that net.

• You “write” them down:

⋄⋄ as many characteristics as you (and I) can come across,

◦◦ including some choice of unique identifiers,

◦◦ their mereologies, and

◦◦ attributes, “one-by-one”.

• In the end we have identified, i.e., visited,
all the hubs in my town’s road net n.
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Example: 13 Observer Functions.

• We have exemplified the following obs erver functions:

⋄⋄ obs N (Item 1(a) on
Slide 38),

⋄⋄ obs F (Item 1(b) on Slide 38),

⋄⋄ obs M (Item 1(c) on
Slide 38),

⋄⋄ obs HS (Item 2(a) on
Slide 39),

⋄⋄ obs LS (Item 2(b) on

Slide 39),

⋄⋄ obs VS (Item 3 on Slide 40),

⋄⋄ obs Vs (Item 4(a) on
Slide 41),

⋄⋄ obs Hs (Item 5 on Slide 44)
and

⋄⋄ obs Ls (Item 6 on Slide 44),

where we list their “definitions”, not their many uses.
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4.1.10. Part Types

• By a concrete typeδ we shall understand a type, T,

⋄⋄ which has been given both a name
⋄⋄ and a defining type expression of, for example the form

◦◦ T = A-set,

◦◦ T = A-infset,

◦◦ T = A×B×· · ·×C,

◦◦ T = A∗,

◦◦ T = Aω,

◦◦ T = A →m B,

◦◦ T = A→B,

◦◦ T = A
∼
→B, or

◦◦ T = A|B|· · · |C.

⋄⋄ where A, B, . . . , C are type names or type expressions.

Example: 14 Concrete Types.

• Example concrete part types were exemplified in

⋄⋄ Vs = V-set: Item 4(a) on Slide 41,

⋄⋄ Hs = H-set: Item 5(a) Slide 44,

⋄⋄ Ls = L-set: Item 6(a) Slide 44.
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Example: 15 Has Composite Types.

• The discovery of concrete types were done as follows:

⋄⋄ for HS, Hs = H-set at 〈∆,N,HS〉,

⋄⋄ for LS, Ls = L-set at 〈∆,N,LS〉, and

⋄⋄ for VS, Vs = V-set at 〈∆,F,VS〉.
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4.2. Part Properties

• (I) By a property14 we mean a pair

⋄⋄ a (finite) collection of one or more propositions.

• (II) By an endurant property

⋄⋄ a property which holds of an endurant —

⋄⋄ which we model as a pair of a type and a value (of that type)15.

• (III) By a perdurant propertyδ we shall mean

⋄⋄ a property which holds of an perdurant —

⋄⋄ which we, as a minimum, model as a pair of
a perdurant name and a function type,

⋄⋄ that is, as a function signature.
14By saying ‘a property’ we definitely mean to distinguish our use of the term from one which refers

to legal property such as physical (land) or intangible (legal rights) property.
15 The type value may be a singleton, or lie within a range of discrete values, or lie

within a range of continuous values. The ranges may be finite or may be infinite.
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• Property Value Scales:

⋄⋄ With intentional properties we associate a property value scale.

⋄⋄ By a property value scaleδ of a part type we shall mean

◦◦ a value range that parts of that type

◦◦ will have their property values range over.

Example: 16 Property Value Scales. We continue Example 4.

• The mereology property value scaleδ for hubs of a net range over
finite sets of link identifiers of that net.

• The mereology property value scaleδ for links of a net range over
two element sets of hub identifiers for that net.

• The range of location values for any one hub of a net is restricted
to not share any cadestral point with any other hub’s location value
for that net.
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• Discussion:

⋄⋄ The notion of ‘property’ is central to much philosophical
discussion; we mention a few (that we have studied):

◦◦ [Chris Fox: The Ontology of Language: Properties,
Individuals and Discourse, 2000],

◦◦ [Simons: Parts – A Study in Ontology, 1987] and

◦◦ [Mellor & Oliver (eds.): Properties].16

Their reading has influenced our work.

16 A reading of the contents listing of [Mellor & Oliver] reveals an interpretation of parts and properties:
I Function and Concept, Gottlob Frege

II The World of Universals, Bertrand Russell

III On our Knowledge of Universals, Bertrand Russell

IV Universals, F. P. Ramsey

V On What There Is, W. V. Quine

VI Statements about Universals, Frank Jackson

VII ’Ostrich Nominalism’|’Mirage Realism’, Michael Devitt

VIII Against ’Ostrich’ Nominalism, D. M. Armstrong

IX On the Elements of Being: I, Donald C. Williams

X The Metaphysic of Abstract Particulars, Keith Campbell

XI Tropes, Chris Daly

XII Properties, D. M. Armstrong

XIII Modal Realism at Work: Properties, David Lewis

XIV New Work for a Theory of Universals, David Lewis

XV Causality and Properties, Sydney Shoemaker

XVI Properties and Predicates, D. H. Mellor.
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⋄⋄ The notion of ‘property’ is also central to the recent notion of
concept analysis [Ganter and Wille: Formal Concept Analysis —
Mathematical Foundations, 1999].

◦◦ Here the term concept is understood as a property of a part.

◦◦ There is no associated type and value notions such as we have
expressed in (II) on Slide 156 and Footnote 15 on Slide 156.

◦◦ We shall have more to say about the relations between our
concept of domain analysis and Will & Ganter’s concept
analysis

∗ starting on Slide 123 and

∗ in Item (iii) starting on Slide 460.

• We shall now unravel our ‘Property Theory’17 of parts.

17— with apologies to [Turner:1990,Turner:1992,ChrisFox2000].
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• We see three categories of part properties:

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ (general) attributes.

• Each and every part has unique existence
— which we model through unique identifiers.

• Parts relate (somehow) to other parts, that is, mereology
— which we model a relations between unique identifiers.

• And parts usually have other, additional properties
which we shall refer to as attributes
— which we model as pairs of attribute types and attribute values.
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4.2.1. Unique Identifiers

Example: 17 Unique Identifier Functions.

• We have only exemplified the following unique identifier
meta-functions and types:

⋄⋄ uid H, HI Item 7(a) on Slide 47,

⋄⋄ uid L, LI Item 7(b) on Slide 47 and

⋄⋄ uid V, VI Item 7(c) on Slide 47.

• We did not find a need for defining unique identifier meta-functions
for N, F, M, HS, Hs, LS, Ls, VS, and Vs.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00 162 Domain Science & Engineering



1634. Discrete Endurant Entities 4.2. Part Properties4.2.1. Unique Identifiers4.2.1.1. A Dogma of Unique Existence

4.2.1.1 A Dogma of Unique Existence

• We take, as a dogma, that

⋄⋄ every two parts whose intentional property values differ for at
least one property,

⋄⋄ other than their unique identifiers,

⋄⋄ are distinct and

⋄⋄ thus have distinct unique identifiers.
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4.2.1.2 A Simplification on Specification of Intentional Properties

• So we make a simplification in our treatment of intentional part
properties

⋄⋄ By postulating distinct unique identifiers

⋄⋄ we are forcing distinctness of parts

⋄⋄ and can dispense with,

◦◦ that is, do not have to explicitly ascribe such intentional
properties

◦◦ whose associated values would then have to differ in order to
guarantee distinctness of parts,
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4.2.1.3 Discussion

• Parts have unique existence.

⋄⋄ Whether they be spatial or conceptual.

⋄⋄ Two manifest parts cannot overlap spatially.

⋄⋄ A part is a conceptual part if it is an abstraction of a part.

⋄⋄ Two conceptual parts are identical

◦◦ if they have identical properties,

◦◦ that is, abstract the same manifest part,

◦◦ otherwise they are distinct.

⋄⋄ We shall therefore associate with each part

◦◦ a unique identifier,

◦◦ whether we may need to refer to that property or not.

⋄⋄ There are only manifest parts and conceptual parts.
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4.2.1.4 The uid P Operator

• More specifically we postulate, for every part, p:P, a meta-function:

73. uid P: P → Π

• where Π is the type of the unique identifiers of parts p:P.
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• In practice

⋄⋄ we “construct” the unique identifier type name
for parts of type P by “suffixing” I to P, and

⋄⋄ we explicitly “postulate define” the meta-function shown in
Item 73 on the preceding slide.

• How is the uid PI meta-function “implemented” ?

⋄⋄ Well, for a domain description it suffices to postulate it.

⋄⋄ If we later were to develop software in support of the described domain, then
there are many ways of “implementing” the uid PIs.
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4.2.1.5 Constancy of Unique Identifiers — Some Dogmas

• We postulate the following dogmas:

⋄⋄ parts may be “added” to or “removed” from a domain;

⋄⋄ parts that are “added” to a domain have unique identifiers that
are not identifiers of any other part of the history of the domain;

⋄⋄ parts that are “removed” from a domain will not have their
identifiers reused should parts subsequently be “added” to the
domain; and

⋄⋄ domains do not allow for the changing (update) of unique
identifier values.
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4.2.2. Mereology

• Mereology: By mereologyδ (Greek: µǫρoς ) we shall understand
the study and knowledge about

⋄⋄ the theory of part-hood relations:

◦◦ of the relations of part to whole and

◦◦ the relations of part to part within a whole.
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• In the following please observe the type font distinctions:

⋄⋄ part, etc., and

⋄⋄ part (etc.).

• In the above definition of the term mereology

⋄⋄ we have used the terms

◦◦ part-hood,

◦◦ part and

◦◦ whole

⋄⋄ in a more general sense than we use the term part.
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• In this the “more general sense”

⋄⋄ we interpret part to include,

◦◦ besides what the term part covers in this seminar,

◦◦ also concepts, abstractions, derived from the concept of part.
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• That is, by part we mean

⋄⋄ not only manifest phenomena

⋄⋄ but also intangible phenomena

◦◦ that may be abstract models of parts,

◦◦ or may be (further) abstract models of parts.

Example: 18 Manifest and Conceptual Parts. We refer to
Example 4.

• A net, n:N (Item 1(a) on Slide 38), is a manifest part

• whereas a map, rm:RM (Item 26 on Slide 65), is a part.
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4.2.2.1 Extensional and Intentional Part Relations

• Henceforth we shall “merge” the two terms

⋄⋄ part and

⋄⋄ part

into one meaning.

• So henceforth the term part shall refer to

⋄⋄ both manifest, tangible and discrete endurants

⋄⋄ and to abstractions of these.
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• We are forced to do so by necessity.

⋄⋄ Instead of describing the manifest phenomena

⋄⋄ we are describing conceptual models of these;

• that is,

⋄⋄ instead of describing manifest parts

⋄⋄ we are describing their part types and part properties.
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• Thus we choose “mereology” to model relations between both

⋄⋄ parts and

⋄⋄ parts.

• We can thus distinguish between two kinds of such relations:

⋄⋄ extensional part relations which typically are spatial relations
between manifest parts and

⋄⋄ intentional part relations which typically are conceptual relations
between abstract parts.
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• Extensional relations between manifest parts are of the kind:

⋄⋄ one part, p:P, is “adjacent to” (“physically neighbouring”)
another part, q:Q,

⋄⋄ one part, p:P, is “embedded within”
(“physically surrounded by”) another part, q:Q, and

⋄⋄ one part, p:P, “overlaps with” another part, q:Q.

• We model these relations, “equivalently”, as follows:

⋄⋄ in the mereology of p, mereo P(p),
there is a reference, uid Q(q), to q, and

⋄⋄ in the mereology of q, mereo Q(q),
there is a reference, uid P(p), to p.
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• Intentional relations between abstractions are of the kind:

⋄⋄ part p:P

◦◦ has an attribute

◦◦ whose value

◦◦ always stand in a certain relation

∗ (for example, a copy of a fragment or the whole)

⋄⋄ to another part q:Q’s “corresponding” attribute value.

Example: 19 Shared Route Maps and Bus Time Tables. We
continue and we extend Example 4.

• The ‘Road Transport Domain’ of Example 4

⋄⋄ has its fleet of vehicles be that of a metropolitan city’s busses

⋄⋄ which ply some of the routes according to the city road map (i.e.,
the net) and

⋄⋄ according to a bus time table — which we leave undefined.
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• We can now re-interpret the road traffic monitor to represent a
coordinating bus traffic authority, CBTA.

⋄⋄ CBTA is now the “new” monitor, i.e., is a part.

⋄⋄ Two of its attributes are:

◦◦ a metropolitan area road map and

◦◦ a metropolitan area bus time table

⋄⋄ Vehicles are now busses

◦◦ and each bus

∗ follows a route of the metropolitan area road map

∗ of which it has a copy, as a vehicle attribute,

∗ “shared” with CBTA;

◦◦ each bus additionally

∗ runs according to the metropolitan area bus time table

∗ of which it has a copy, as a vehicle attribute,

∗ “shared” with CBTA.
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• We model these attribute value relations, “ equivalently”, as above:

⋄⋄ in the mereology of p, mereo P(p),
there is a reference, uid Q(q), to q, and

⋄⋄ in the mereology of q, mereo Q(q),
there is a reference, uid P(p), to p.

Example: 20 Monitor and Vehicle Mereologies. We continue
Example 19 on Slide 176.

74. value mereo M: VI-set

75. type MI

76. value uid M: M → MI

77. value mereo V: V → MI
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4.2.2.2 Unique Part Identifier Mereologies

• To express a unique part identifier mereology

⋄⋄ assumes that the related parts

⋄⋄ have been endowed, say explicitly,

⋄⋄ with unique part identifiers.,

⋄⋄ say of unique identifier types

⋄⋄ Πj, Πk, . . . , Πℓ.

• A mereology meta function is now postulated:

78. value mereo P: P → (Πj | Πk | . . . | Πℓ)-set,

⋄⋄ or of some such signature,

⋄⋄ one which applies to parts, p:P,

⋄⋄ and yields unique identifiers

⋄⋄ of other, “the related”, parts —

⋄⋄ where these “other parts” can be of any part type,

⋄⋄ including P.
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Example: 21 Road Traffic System Mereology.

• We have exemplified unique part identifier mereologies for

⋄⋄ hubs, mereo H Item 8(a) on Slide 48 and

⋄⋄ links, mereo L Item 9(a) on Slide 48.

Example: 22 Pipeline Mereology. This is a somewhat lengthy
example from a domain now being exemplified.

• We start by narrating a pipeline domain of pipelines and pipeline
units.
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79. A pipeline consists of pipeline units.

80. A pipeline unit is either

(a) a well unit output connected to a pipe or a pump unit;

(b) a pipe, a pump or a valve unit input and output connected to
two distinct pipeline units other than a well;

(c) a fork unit input connected to a pipeline unit other than a well
and output connected to two pipeline units other than wells and
sinks;

(d) a join unit input connected to two pipeline units other than wells
and output connected to a a pipeline unit other than a sink; and

(e) a sink unit input connected to a valve.
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type

79. PL

value

79. obs Us: PL → U-set

type

80. U = WeU | PiU | PuU | VaU | FoU | JoU | SiU

value

80. uid U: U → UI

80. mereo U: U → UI-set × UI-set

80. i mereo U,o mereo U: U → UI-set

80. i UIs(u) ≡ let (ius, ) = mereo U(u) in ius end

80. o UIs(u) ≡ let ( ,ous) = mereo U(u) in ous end

axiom

∀ pl:PL,u:U • u ∈ obs Us(pl) ⇒

80(a). is WeU(u) → card i UIs(u)=0 ∧ card o UIs(u)=1,

80(b). (is PiU|is PuU|is VaU)(u) → card i UIs(u)=1=card o UIs(u),

80(c). is FoU(u) → card i UIs(u)=1 ∧ card o UIs(u)=2,

80(d). is JoU(u) → card i UIs(u)=2 ∧ card o UIs(u)=1,

80(e). is SiU(u) → card i UIs(u)=1 ∧ card o UIs(u)=0

• The UI “typed” value and axiom Items 80 “reveal” the mereology of pipelines.
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4.2.2.3 Concrete Part Type Mereologies

• Let Ai and Bj, for suitable i, j denote distinct part types and let BjI

• Let there be the following concrete type definitions:

type

a1:A1 = bs:B1-set

a2:A2 = bc:B21
× B22

× ... × B2n

a3:A3 = bl:B3
∗

a4:A4 = bm:BI4 →m B4

• The above part type definitions can be interpreted mereologically:

⋄⋄ Part a:A1 has sub-parts b1i
,b12

,...,b1m
:B1 of bs parthood related to just part a:A1.

⋄⋄ Parts a:A2 has sub-parts b21
,b22

,. . . ,b2m
:B2 of bc parthood related only to parts a:A1

⋄⋄ Parts a:A3 has sub-parts b3i
, for all indices i of the list bℓ, parthood related to parts a:A3, and

to part b3i−1
and part b3i+1

, for 1<i<len bℓ by being “neighbours” and also to other b3j
if

the index j is known to b3i
for i 6=j.

⋄⋄ Parts a:A4 have all parts bm(bij) for index bij in the definition set dom bm, be parthood

related to a:A4 and to other such bm:B4 parts if they know their indexes.
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Example: 23 A Container Line Mereology. This example brings
yet another domain into consideration.

81. Two parts, sets of container vessels, CV-set, and sets of container
terminal ports, CTP-set, are crucial to container lines, CL.

82. Crucial parts of container vessels and container terminal ports are
their structures of bays , bs:BS.

83. A bay structure consists of an indexed set of bays.

84. A bay consists of an indexed set of rows

85. A row consists of an index set of stacks .

86. A stack consists of a linear sequence of containers.
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type

81. CP, CVS, CTPS

value

81. obs CVS: CL → CVS

81. obs CTPS: CL → CTPS

type

81. CVS = CV-set

81. CTPS = CTP-set

value

82. obs BS: (CV|CTP) → BS

type

83. BI, BS, B = BI →m B

value

84. obs RS: B → RS

type

84. RI, RS, R = RI →m R

value

85. obs SS: R → SS

type

85. SI, SS, C = SI →m S

86. S = C∗
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BS

B

RS

R

SS

C

S

CL

CTPCV

CVS CTPS

Figure 1: A container line domain index lattice
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• In Fig. 1 on the facing slide is shown a container line domain index
lattice.

⋄⋄ At the top (“root”) there is the container line domain type name.

⋄⋄ Immediately below it are the, in this case, two sub-domains
(that we consider), CVS and CTPS.

⋄⋄ For each of these two there are the corresponding CV and CTP
sun-domains.

⋄⋄ For each of these one can observe the container bays, hence,
definition-wise, shared sub-domain.

⋄⋄ It is then defined in terms of a sequence of increasingly more
“narrowly” defined sub-domains.

⋄⋄ The lattice “ends” with the atomic sub-domain of containers, C.
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4.2.2.4 Variability of Mereologies

• The mereology of parts (of type P) may be

⋄⋄ a constant, i.e., static, or

⋄⋄ a variable, i.e., dynamic.

• That is, for some, or all, parts of a part type may need to be
updated.

⋄⋄ We express the update of a part mereology as follows:

87. value upd mereo P: (Πi|Πi|. . . |Πi)-set → P → P

⋄⋄ where upd mereo P({πa, πb, . . . , πc})(p)

⋄⋄ results in a part p′:P where

◦◦ all part properties of p′

∗ other than its mereology

∗ are as they “were” in p

∗ but the mereology of p′ is {πa, πb, . . . , πc}.
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Example: 24 Insert Link. We continue Example 4, Item 42 on
Slide 87:

• In the post link dis predicate we referred to the undefined link
insert function, ins L.

• We now define that function:

88. The insert Link action applies to a net, n, and a link, l,

89. and yields a new net, n′.
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90. The conditions for a successful insertion are

(a) that the link, l, is not in the links of net n,

(b) that the unique identifier of l is not in the set of unique identifiers
of the net n, and

(c) that the mereology of link l has been prepared to be, i.e., is the
two element set of unique identifiers of two hubs in net n.

91. The result of a successful insertion is

(a) that the links of the new net, n′, are those of the previous net, n,
“plus” link l;

(b) that the hubs, “originally” h a,h b, connected by l, are only
mereo-logically updated to each additional include the unique
identifier of l; and

(c) that all other hubs of n and n′ are unchanged.
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88. ins L: N → L → N
89. ins L(n)(l) as n′

90. pre:
90(a). l 6∈ obs Ls(obs LS(n))
90(b). ∧ uid L(l) 6∈ in xtr LIs(n)
90(c). ∧ mereo L(l) ⊆ xtr HIs(n)
91. post:
91(a). obs Ls(obs LS(n′))=obs Ls(obs LS(n))∪{l}
91. ∧ let {hi a,hi b}=mereo L(l) in

91. let {h a,h b}={get H(hi a)(n),get H(hi b)(n)} in

91(b). get H(hi a)(n′)=upd mereo H(h a)(mereo H(h a)∪{uid L(l)})
91(b). ∧ get H(hi b)(n′)=upd mereo H(h b)(mereo H(h b)∪{uid L(l)})
91(c). ∧ obs Hs(obs HS(n))=obs Hs(obs HS(n))\{hi a,hi b}∪{h a′,h b′} end end
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• As for the very many other function definitions in this seminar

⋄⋄ we illustrate one form of function definition annotations,

⋄⋄ and not always consistently the same “style”.

• We do not pretend that our function definitions

⋄⋄ are novel, let alone a contribution of this seminar;

⋄⋄ instead we rely on the listener

⋄⋄ having learnt, more laboriously than we this seminar can muster,

⋄⋄ an appropriate function definition narrative style.

• • •
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4.2.3. Attributes

• Attribute: By a part attributeδ we mean

⋄⋄ a part property

◦◦ other than part unique identifier and

◦◦ part mereology,

⋄⋄ and its associated attribute property value.

Example: 25 Road Transport System Part Attributes. We have exemplified,
Example 4, a number of part attribute observation functions:

• attr LΣ Item 10(a) on Slide 52,

• attr LΩ Item 10(b) on Slide 52,

• attr LOC, attr LEN Item 10(c) on Slide 52,

• attr HΣ Item 11(a) on Slide 54,

• attr HΩ Item 11(b) on Slide 54,

• attr LOC Item 11(c) on Slide 54,

• attr VP, attr onL, attr atH, attr VEL and

attr ACC Item 13 on Slide 56.
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4.2.3.1 Stages of Attribute Analysis

• There are four facets to deciding upon part attributes:

⋄⋄ (i) determining on which attributes to focus;

⋄⋄ (ii) selecting appropriate attribute type names,
(viz., LΣ, LΩ, HΣ, HΩ, LEN, LOC, VP, atH, onL, VEL and ACC );

⋄⋄ (iii) determining whether an attribute type is

◦◦ a static attribute type (having constant value)
(viz., LEN, LOC), or

◦◦ a dynamic attribute type (having variable values))
(viz., LΣ, LΩ, HΣ, HΩ, VP, atH, onL, VEL, ACC);

and

⋄⋄ (iv) deciding upon possible concrete type definitions for (some of)
those attribute types
(viz., LΣ, LΩ, HΣ, HΩ, VP, atH, onL).
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Example: 26 Static and Dynamic Attributes. Continuing
Example 4 we have:

• Dynamic attributes:

⋄⋄ LΣ Item 10(a) on Slide 52;

⋄⋄ HΣ Item 11(a) on Slide 54;

⋄⋄ VP, atH, onL Items 12(a)–12((a))ii on Slide 56; and

⋄⋄ VEL and ACC both Item 13 on Slide 56.

• All other attributes are considered static.
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Example: 27 Concrete Attribute Types. From Example 4:

• LΣ=(HI×HI) Item 10(a) on Slide 52,

• LΩ=LΣ-set Item 10(b) on Slide 52,

• HΣ=(LI×LI)-set Item 11(a) on Slide 54 and

• HΩ=HΣ-set Item 11(b) on Slide 54.
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4.2.3.2 The attr A Operator

• To observe a part attribute we therefore describe

⋄⋄ the attribute observer signature

92. attr A: P → A,

⋄⋄ where P is the part type being examined for attributes, and

⋄⋄ A is one of the chosen attribute type names.

• The “hunt” for

⋄⋄ part attributes, i.e., attribute types,

⋄⋄ the resulting attribute function signatures and

⋄⋄ the chosen concrete attribute types

is crucial for achieving successful domain descriptions.
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4.2.3.3 Variability of Attributes

• Static attributes are constants.

• Dynamic attributes are variables.

• To express the update of any one specific dynamic attributevalue we
use the meta-operator:

93. value upd attr A: A → P → P

• where upd attr A(a)(p) results in a part p′:P where

⋄⋄ all part properties of p′

◦◦ other than its the attribute value for attribute A

∗ are as they “were” in p

◦◦ but the attribute value for attribute A is a.
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Example: 28 Setting Road Intersection Traffic Lights. We
refer to Example 4, Items 11(a) (HΣ) and 11(b) (HΩ) on Slide 55.

• The intent of the hub state model
(a hub state as a set of pairs of unique link identifiers) is

⋄⋄ that it expresses the possibly empty set of allowed hub traversals,

⋄⋄ from a link incident upon the hub

⋄⋄ to a link emanating from that hub.
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94. In order to “change” a hub state the set hub state action is
performed,

95. It takes a hub and a hub state and yields a changed hub.
The argument hub state must be in the state space of the hub.
The result of setting the hub state is that the resulting hub has
the argument state as its (updated) hub state.

value

94. set hub state: H → HΣ → H
95. set hub state(h)(hσ) ≡ upd attr HΣ(h)(hσ)
95. pre: hσ ∈ attr HΩ(h)

• The hub state has not changed if attr HΣ(h) = hσ.
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4.2.4. Properties and Concepts

• Some remarks are in order.

4.2.4.1 Inviolability of Part Properties

• Given any part p of type P

⋄⋄ one cannot “remove” any one of its properties

⋄⋄ and still expect the the part to be of type P .

• Properties are what “makes” parts.

• To put the above remark in “context”
let us review Ganter & Wille’s formal concept analysis
[Ganter & Wille: Formal Concept Analysis, 1999].
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4.2.4.2 Ganter & Wille: Formal Concept Analysis

• This review is based on [Ganter & Wille: Formal Concept Analysis,
1999].

⋄⋄ to be written
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4.2.4.3 The Extensionality of Part Attributes

• to be written
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4.2.5. Properties of Parts

• The properties of parts and materials are fully captured by

⋄⋄ (i) the unique part identifiers,

⋄⋄ (ii) the part mereology and

⋄⋄ (iii) the full set ofpart attributes and material attributes

• We therefore postulate a property function

⋄⋄ when when applied to a part or a material

⋄⋄ yield this triplet, (i–iii), of properties

⋄⋄ in a suitable structure.

type

Props = {|PI|nil|} × {|(PI-set×...×PI-set)|nil|} × Attrs
value

props: Part|Material → Props

A Precursor for Requirements Engineering 205 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00



206 4. Discrete Endurant Entities 4.2. Part Properties4.2.5. Properties of Parts

• where

⋄⋄ Part stands for a part type,

⋄⋄ Material stands for a material type,

⋄⋄ PI stand for unique part identifiers and

⋄⋄ PI-set×...×PI-set for part mereologies.

• The {|...|} denotes a proper specification language sub-type and
nil denotes the empty type.
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4.3. States

• By a stateδ we mean

⋄⋄ a collection of such parts

⋄⋄ some of whose part attribute values are dynamic,

⋄⋄ that is, can vary.

Example: 29 A Variety of Road Traffic Domain States. We continue
Example 4.

• A link, l:L, constitutes a state by virtue of if its link traffic state lσ:attr LΣ.

• A hub, h:H, constitutes a state by virtue of its

⋄⋄ hub traffic state hσ:attr HΣ, and

⋄⋄ indepenently, its hub mereology lis:LI-set:mereo H.

• A net, n:N, constitutes a state by virtue of if its link and hub states.

• A monitor, m:M, constitutes a state by virtue of if its vehicle position map
vpm:attr VPM.

A Precursor for Requirements Engineering 207 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 24, 2012: 16:00



208 4. Discrete Endurant Entities 4.4. An Example Domain: Pipelines

4.4. An Example Domain: Pipelines

• We close this lecture with a “second main example”, albeit
“smaller”, in text size, than Example 4.

• The domain is that of pipelines.

• The reason we bring this example is the following:

⋄⋄ Not all domain endurants are discrete domain endurants.

⋄⋄ Some domains possess continuous domain endurants.

⋄⋄ We shall call them materials.

⋄⋄ Two such materials are

◦◦ liquids, like oil (or petroleum), and

◦◦ gaseous, like natural gas.
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• The description of such materials-based domains requires

⋄⋄ additional description concepts and

⋄⋄ new description techniques.

• The examples illustrates these new concepts and techniques

• as do the examples of Sect. 6.1.
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210 4. Discrete Endurant Entities 4.4. An Example Domain: Pipelines

Example: 30 Pipeline Units and Their Mereology.

96. A pipeline consists of connected units, u:U.

97. Units have unique identifiers.

98. And units have mereologies, ui:UI:

(a) pump, pu:Pu, pipe, pi:Pi, and valve, va:Va, units have one input connector
and one output connector;

(b) fork, fo:Fo, [join, jo:Jo] units have one [two] input connector[s] and two [one]
output connector[s];

(c) well, we:We, [sink, si:Si] units have zero [one] input connector and one [zero]
output connector.

(d) Connectors of a unit are designated by the unit identifier of the connected
unit.

(e) The auxiliary sel UIs in selector funtion selects the unique identifiers of
pipeline units providing input to a unit;

(f) sel UIs out selects unique identifiers of output recipients.
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type

96. U = Pu | Pi | Va | Fo | Jo | Si | We
97. UI
value

97. uid U: U → UI
98. mereo U: U → UI-set × UI-set
98. wf mereo U: U → Bool

98. wf mereo U(u) ≡
98(a). let (iuis,ouis) = mereo U(u) in

98(a). is (Pu|Pi|Va)(u) → card iusi = 1 = card ouis,
98(b). is Fo(u) → card iuis = 1 ∧ card ouis = 2,
98(b). is Jo(u) → card iuis = 2 ∧ card ouis = 1,
98(c). is We(u) → card iuis = 0 ∧ card ouis = 1,
98(d). is Si(u) → card iuis = 1 ∧ card ouis = 0 end

98(e). sel UIs in: U → UI-set
98(e). sel UIs in(u) ≡ let (iuis, )=mereo U(u) in iuis end

98(f). sel UIs out: U → UI-set
98(f). sel UIs out(u) ≡ let ( ,ouis)=mereo U(u) in ouis end
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Example: 31 Pipelines: Nets and Routes.

99. A pipeline net consists of several properly connected pipeline units.

Example 30 on Slide 209 already described pipeline units.

Here we shall concentrate on their connectedness, i.e., the
wellformednes of pipeline nets.

100. A pipeline net is well-formed if

(a) all routes of the net are acyclic, and

(b) there are a non-empty set of well-to-sink routes that connect any
well to some sink, and

(c) all other routes of the net are embedded in the well-to-sink routes
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type

99. PLN′

99. PLN = {| pln:PLN′
• is wf PLN(pln) |}

value

99. obs Us: PLN → U-set

100. is wf PLN: PLN′ → Bool

100. is wf PLN(pln) ≡
100. let rs = routes{pln} in

100(b). well to sink routes(pln)6={}
100(c). ∧ embedded routes(pln) end
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101. An acyclic route is a route where any element occurs at most once.

102. A well-to-sink route of a net, pln, is a route whose first element
designates a well in pln and whose last element designates a sink in
pln.

103. One non-empty route, r′, is embedded in another route, r if the
latter can be expressed as the concatenation of three routes: r =
r′′̂r′̂r′′′ where r′′ or r′′′ may be empty routes (〈〉).
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type

105. R′ = UI∗

100(a). R = {r:R′
•is acyclic(r)}

value

100(a). is acyclic: R → Bool

100(a). is acyclic(r) ≡ ∀ i,j:Nat•i 6=j∧{i,j}⊆inds r⇒r[ i ] 6=r[ j ]

100(b). well to sink routes: PLN → R-set

100(b). well to sink routes(pln) ≡
100(b). {r|r:R•r ∈ routes(pln) ∧ ∃ we:WE,si:Si •

100(b). {we,si}⊆obs Us(pln) ⇒ r[ 1 ]=we ∧ r[ len r ]=si}
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104. One non-empty route, er, is embedded in another route, r,

(a) if there are two indices, i, j, into r

(b) such that the sequence of r elements from and including i to and
including j is er.

value

104. is embedded: R × R → Bool

104. is embedded(er,r) ≡
104(a). ∃ i,j:Nat•{i,j}⊆inds r
104(b). ⇒ er = 〈r[ k ]|k:Nat • i≤k≤j〉
104. pre: er6=〈〉
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105. A route, r, of a pipeline net is a sequence of unique unit identifiers,
satisfying the following properties:

(a) if r[i]=uii has uii designate a unit, u, of the pipeline then 〈uii〉 is
a route of the net;

(b) if rî〈uii〉 and 〈uij〉̂rj are routes of the net

i. where ui and uj are the units (of the net) designated by uii
and uij

ii. and uij is in the output mereology of ui and uii is in the input
mereology of uj

iii. then rî〈uii〉̂〈uij〉̂rj is a route of the net.

(c) Only such routes that can be constructed by a finite number of
“applications” of Items 105(a) and 105(b) are routes.
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105. routes: PLN → R-set

105. routes(pln) ≡
105(a). let rs = {〈uid UI(u)〉|u:U•u ∈ obs Us(pln)}
105((b))iii. ∪ { rî〈uii〉̂〈uij〉̂rj
105(b). | rî〈uii〉,〈uij〉̂ri:R • {rî〈uii〉,〈uij〉̂rj}⊆rs
105((b))i. ∧ let ui,uj:U•{ui,ui}⊆obs Us(pln)∧uii=uid U(ui)∧uij=uid U(uj)
105((b))ii. in uii ∈ iuis(uj) ∧ uij ∈ ouis(ui) end }
105(c). in rs end

• Section 6.1 will continue with several examples

⋄⋄ Example 43 on Slide 285,

⋄⋄ Example 44 on Slide 287,

⋄⋄ Example 45 on Slide 291,

⋄⋄ Example 46 on Slide 295 and

⋄⋄ Example 47 on Slide 298

following up on the two examples of this section.
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See You After Lunch: 14:00 — Thanks !
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