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Summary

• This seminar covers

⋄⋄ a new science & engineering of domains as well as

⋄⋄ a new foundation for software development.

We treat the latter first.
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• Instead of commencing with requirements engineering,

⋄⋄ whose pursuit may involve repeated,

⋄⋄ but unstructured forms of domain analysis,

⋄⋄ we propose a predecessor phase of domain engineering.

• That is, we single out domain analysis as an activity to be pursued
prior to requirements engineering.
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• In emphasising domain engineering as a predecessor phase

⋄⋄ we, at the same time, introduce a number of facets

⋄⋄ that are not present, we think,

⋄⋄ in current software engineering studies and practices.

• One facet is the construction of separate domain

descriptions.

⋄⋄ Domain descriptions are void of any reference to requirements

⋄⋄ and encompass the modelling of domain phenomena

⋄⋄ without regard to their being computable.
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• Another facet is the pursuit of domain descriptions as a

free-standing activity.

⋄⋄ In this seminar we emphasize domain description development
need not lead to software development.

⋄⋄ This gives a new meaning to business process engineering,
and should lead to

◦◦ a deeper understanding of a domain

◦◦ and to possible non-IT related business process re-engineering
of areas of that domain.
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• In this seminar we shall investigate

⋄⋄ a method for analysing domains,

⋄⋄ for constructing domain descriptions

⋄⋄ and some emerging scientific bases.
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• Our contribution to domain analysis is

⋄⋄ that we view domain analysis

⋄⋄ as a variant of formal concept analysis
[Wille:ConceptualAnalysis1999],

◦◦ a contribution which can be formulated by the “catch phrase”

◦◦ domain entity types and signatures form a Galois connection,

⋄⋄ and further contribute with a methodology of

⋄⋄ necessary corresponding principles and techniques of domain
analysis.
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• Those corresponding principles and techniques hinge on our view of
domains as having the following ontology.

⋄⋄ There are the entities that we can describe and then there is
“the rest” which we leave un-described.

⋄⋄ We analyse entities into

◦◦ endurant entities and

◦◦ perdurant entities ,

that is,

◦◦ parts and materials as endurant entities and

◦◦ discrete actions, discrete events and behaviours as perdurant
entities , respectively.

• Another way of looking at entities is as

⋄⋄ discrete entities , or as

⋄⋄ continuous entities.
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• We also contribute to the analysis of discrete endurants in terms of
the following notions:

⋄⋄ part types and material types,

⋄⋄ part unique identifiers,

⋄⋄ part mereology and

⋄⋄ part attributes and material attributes and

⋄⋄ material laws.

• Of the above we point to the introduction, into computing science
and software engineering of the notions of

⋄⋄ materials and

⋄⋄ continuous behaviours

as novel.
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• The example formalisations are expressed in

⋄⋄ RAISE [RaiseMethod]

• but could as well have been expressed in for example

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks] ,

⋄⋄ VDM [e:db:Bj78bwo,e:db:Bj82b,JohnFitzgerald+PeterGormLarsen]

or

⋄⋄ Z [m:z:jd+jcppw96].
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1.

1. Introduction

• This is primarily a methodology paper.

• By a methodδ we shall understand

⋄⋄ a set of principles

⋄⋄ for selecting and applying

⋄⋄ a number of techniques and tools

⋄⋄ in order to analyse a problem

⋄⋄ and construct an artefact.

• By methodologyδ we shall understand

⋄⋄ the study and knowledge about methods.
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1. Introduction

• This seminar contributes to

⋄⋄ the study and knowledge

⋄⋄ of software engineering development methods.

• Its contributions are those of suggesting and exploring

⋄⋄ domain engineering and

⋄⋄ domain engineering as a basis for requirements engineering.

• We are not saying

⋄⋄ “thou must develop software this way”,

• but we do suggest

⋄⋄ that since it is possible

⋄⋄ and makes sense to do so

⋄⋄ it may also be wise to do so.
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1. Introduction 1.1. Domains: Some Definitions

1.1. Domains: Some Definitions

• By a domainδ we shall here understand

⋄⋄ an area of human activity

⋄⋄ characterised by observable phenomena:

◦◦ entities

∗ whether endurants (manifest parts and materials)

∗ or perdurants (actions, events or behaviours),

◦◦ whether

∗ discrete or

∗ continuous;

◦◦ and of their properties.
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1. Introduction 1.1. Domains: Some Definitions

Example: 1 Some Domains Some examples are:

air traffic,
airport,
banking,
consumer market,
container lines,
fish industry,
health care,

logistics,
manufacturing,
pipelines,
securities trading,
transportation
etcetera.
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1. Introduction 1.1. Domains: Some Definitions1.1.1. Domain Analysis

1.1.1. Domain Analysis

• By domain analysisδ we shall understand

⋄⋄ an inquiry into the domain,

⋄⋄ its entities

⋄⋄ and their properties.
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1. Introduction 1.1. Domains: Some Definitions1.1.1. Domain Analysis

Example: 2 A Container Line Analysis.

We omit enumerating entity properties.

• parts:

⋄⋄ container,

⋄⋄ vessel,

⋄⋄ terminal port, etc.;

• actions:

⋄⋄ container loading,

⋄⋄ container unloading,

⋄⋄ vessel arrival in port, etc.;

• events:

⋄⋄ container falling overboard;

⋄⋄ container afire;

⋄⋄ etc.;

• behaviour:

⋄⋄ vessel voyage,

⋄⋄ across the seas,

⋄⋄ visiting ports, etc.

Length of a container is a container property.
Name of a vessel is a vessel property.
Location of a container terminal port is a port property.
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1. Introduction 1.1. Domains: Some Definitions1.1.2. Domain Descriptions

1.1.2. Domain Descriptions

• By a domain descriptionδ we shall understand

⋄⋄ a narrative description

⋄⋄ tightly coupled (say line-number-by-line-number)

⋄⋄ to a formal description.

• To develop a domain description
requires a thorough amount of domain analysis.
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1. Introduction 1.1. Domains: Some Definitions1.1.2. Domain Descriptions

Example: 3 A Transport Domain Description.

• Narrative:

⋄⋄ a transport net, n:N,
consists of an aggregation of hubs, hs:HS,
which we “concretise” as a set of hubs, H-set, and
an aggregation of links, ls:LS, that is, a set L-set,

• Formalisation:

⋄⋄ type N, HS, LS, Hs = H-set, Ls = L-set, H, L
value

obs HS: N→HS,
obs LS: N→LS.
obs Hs: HS→H-set,
obs Ls: LS→L-set.
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1. Introduction 1.1. Domains: Some Definitions1.1.3. Domain Engineering

1.1.3. Domain Engineering

• By domain engineeringδ we shall understand

⋄⋄ the engineering of a domain description,

⋄⋄ that is,

◦◦ the rigorous construction of domain descriptions, and

◦◦ the further analysis of these, creating theories of domains.
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1. Introduction 1.1. Domains: Some Definitions1.1.3. Domain Engineering

• The size, structure and complexity of interesting domain
descriptions is usually such as to put a special emphasis on
engineering:

⋄⋄ the management and organisation of several, typically 5–6
collaborating domain describers,

⋄⋄ the ongoing check of description quality, completeness and
consistency, etcetera.
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1. Introduction 1.1. Domains: Some Definitions1.1.4. Domain Science

1.1.4. Domain Science

• By domain scienceδ we shall understand

⋄⋄ two things:

◦◦ the general study and knowledge of

∗ how to create and handle domain descriptions

∗ (a general theory of domain descriptions)

and

◦◦ the specific study and knowledge of a particular domain.

⋄⋄ The two studies intertwine.
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1. Introduction 1.2. The Triptych of Software Development

1.2. The Triptych of Software Development

• We suggest a “dogma”:

⋄⋄ before software can be designed
one must understand1 the requirements; and

⋄⋄ before requirements can be expressed
one must understand2 the domain.

• We can therefore view software development as
ideally proceeding in three (i.e., TripTych) phases:

⋄⋄ an initial phase of domain engineering, followed by

⋄⋄ a phase of requirements engineering, ended by

⋄⋄ a phase of software design.

1Or maybe just: have a reasonably firm grasp of
2See previous footnote!
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1. Introduction 1.2. The Triptych of Software Development

• In the domain engineering phase (D)

⋄⋄ a domain is analysed, described and “theorised”,

⋄⋄ that is, the beginnings of a specific domain theory is established.

• In the requirements engineering phase (R)

⋄⋄ a requirements prescription is constructed —

⋄⋄ significant fragments of which are “derived”,

⋄⋄ systematically, from the domain description.

• In the software design phase (S)

⋄⋄ a software design

⋄⋄ is derived, systematically, rigorously or formally,

⋄⋄ from the requirements prescription.

• Finally the Software is proven correct with respect to the
Requirements under assumption of the Domain: D,S |= R.
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• By a machineδ we shall understand the hardware and software of a
target, i.e., a required IT system.

• In [dines:ugo65:2008,psi2009,Kiev:2010ptI] we indicate
how one can “derive” significant parts of requirements from a
suitably comprehensive domain description – basically as follows.

⋄⋄ Domain projection: from a domain description one projects those
areas that are to be somehow manifested in the software.

⋄⋄ Domain initialisation: for that resulting projected requirements
prescription one initialises a number of part types as well as
action and behaviour definitions, from less abstract to more
concrete, specific types, respectively definitions.
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1. Introduction 1.2. The Triptych of Software Development

⋄⋄ Domain determination: hand-in-hand with domain initialisation
a[n interleaved] stage of making values of types less
non-deterministic, i.e., more deterministic, can take place.

⋄⋄ Domain extension: Requirements often arise in the context of
new business processes or technologies either placing old or
replacing human processes in the domain. Domain extension is
now the ‘enrichment’ of the domain requirements, so far
developed, with the description of these new business processes
or technologies.

⋄⋄ Etcetera.

• The result of this part of “requirements derivation” is the domain
requirements.
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1. Introduction 1.2. The Triptych of Software Development

• A set of domain-to-requirements operators similarly exists for
constructing interface requirements

⋄⋄ from the domain description and,

⋄⋄ independently, also from knowledge of the machine

⋄⋄ for which the required IT system is to be developed.

• We illustrate the techniques of domain requirements and interface
requirements in Sect. 8.

• Finally machine requirements are “derived”

⋄⋄ from just the knowledge of the machine,

⋄⋄ that is,

◦◦ the target hardware and

◦◦ the software system tools for that hardware.
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1. Introduction 1.2. The Triptych of Software Development

• When you review this section
(‘A Triptych of Software Development’)

⋄⋄ then you will observe how ‘the domain’

⋄⋄ predicates both the requirements

⋄⋄ and the software design.

• For a specific domain one may develop

⋄⋄ many (thus related) requirements

⋄⋄ and from each such (set of) requirements

⋄⋄ one may develop many software designs.

• We may characterise this multitude of domain-predicated
requirements and designs as a product line [dines-maurer].

• You may also characterise domain-specific developments as
representing another ‘definition’ of domain engineering.
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1. Introduction 1.3. Issues of Domain Science & Engineering

1.3. Issues of Domain Science & Engineering

• We specifically focus on the following issues of domain science &3

engineering:

⋄⋄ (i) which are the “things” to be described4,

⋄⋄ (ii) how to analyse these “things” into description structures5,

⋄⋄ (iii) how to describe these “things” informally and formally,

⋄⋄ (iv) how to further structure descriptions6, and a further study of

⋄⋄ (v) mereology7.

3When we put ‘&’ between two terms that the compound term forms a whole concept.
4endurants [manifest entities henceforth called parts and materials] and perdurants

[actions, events, behaviours]
5atomic and composite, unique identifiers, mereology, attributes
6intrinsics, support technology, rules & regulations, organisation & manage-

ment, human behaviour etc.
7the study and knowledge of parts and relations of parts to other parts and a “whole”.
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291. Introduction 1.4. Structure of Paper

1.4. Structure of Paper

• First (Sect. 1) we introduce the problem. And that was done above.

• Then, in (Sects. 4–6)

⋄⋄ we bring a rather careful analysis of

⋄⋄ the concept of the observable, manifest phenomena

⋄⋄ that we shall refer to as entities.

• We strongly think that these sections of this seminar

⋄⋄ brings, to our taste, a simple and elegant

⋄⋄ reformulation of what is usually called “data modelling”,

⋄⋄ in this case for domains —

⋄⋄ but with major aspects applicable as well to

⋄⋄ requirements development and software design.
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1. Introduction 1.4. Structure of Paper

• That analysis focuses on

⋄⋄ endurant entities, also called parts and materials,

◦◦ those that can be observed at no matter what time,

◦◦ i.e., entities of substance or continuant, and

⋄⋄ perdurant entities: action, event and behaviour entities, those

◦◦ that occur,

◦◦ that happen,

◦◦ that, in a sense, are accidents.
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1. Introduction 1.4. Structure of Paper

• We think that this “decomposition” of the “data analysis”
problem into

⋄⋄ discrete parts and continuous materials,

⋄⋄ atomic and composite parts,

⋄⋄ their unique identifiers and mereology, and

⋄⋄ their attributes

⋄⋄ is novel,

⋄⋄ and differs from past practices in domain analysis.

A Precursor for Requirements Engineering 31 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17



32
1. Introduction 1.4. Structure of Paper

• In Sect. 7 we suggest

⋄⋄ for each of the entity categories

◦◦ parts,

◦◦ materials,

◦◦ actions,

◦◦ events and

◦◦ behaviours,

⋄⋄ a calculus of meta-functions:

◦◦ analytic functions,

∗ that guide the domain description developer

∗ in the process of selection,

and

◦◦ so-called discovery functions,

∗ that guide that person

∗ in “generating” appropriate domain description texts,
informal and formal.
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1. Introduction 1.4. Structure of Paper

• The domain description calculus is to be thought of

⋄⋄ as directives to the domain engineer,

⋄⋄ mental aids that help a team of domain engineers

⋄⋄ to steer it simply through the otherwise daunting task

⋄⋄ of constructing a usually large domain description.

• Think of the calculus

⋄⋄ as directing

⋄⋄ a human calculation

⋄⋄ of domain descriptions.

• Finally the domain description calculus section

⋄⋄ suggests a number of laws that the

⋄⋄ domain description process ought satisfy.
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1. Introduction 1.4. Structure of Paper

• In Sect. 8 we bring a brief survey of the kind of requirements
engineering

⋄⋄ that one can now pursue based on a reasonably comprehensive
domain description.

⋄⋄ We show how one can systematically, but not automatically

⋄⋄ “derive” significant fragments

◦◦ of requirements prescriptions

◦◦ from domain descriptions.
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1. Introduction 1.4. Structure of Paper

• The formal descriptions will here be expressed in
the RAISE [RaiseMethod] Specification Language, RSL.

• We otherwise refer to [TheSEBook1wo].

• Appendix C of the tutorial notes brings a short primer,
mostly on the syntactic aspects of RSL.

• But other model-oriented formal specification languages
can be used with equal success; for example:

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks] ,

⋄⋄ VDM

[e:db:Bj78bwo,e:db:Bj82b,JohnFitzgerald+PeterGormLarsen]

and

⋄⋄ Z [m:z:jd+jcppw96].

A Precursor for Requirements Engineering 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17



36
2. Introduction

2. The Main Example – Example 3: Road Traffic System

• The main example presents a terse narrative and formalisation of a
road traffic domain.

⋄⋄ Since the example description conceptually covers also major
aspects of

◦◦ railroad nets,

◦◦ shipping nets, and

◦◦ air traffic nets,

⋄⋄ we shall use such terms as hubs and links to stand for

◦◦ road (or street) intersection and road (or street) segments,

◦◦ train stations and rail lines,

◦◦ harbours and shipping lanes, and

◦◦ airports and air lanes.
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2. The Main Example – Example 3: Road Traffic System 2.1. Parts

2.1. Parts

2.1.1. Root Sorts

• The domain,

⋄⋄ the stepwise unfolding of

⋄⋄ whose description is

⋄⋄ to be exemplified,

is that of a composite traffic system

⋄⋄ with a road net,

⋄⋄ with a fleet of vehicles

⋄⋄ of whose individual position on the road net we can speak, that
is, monitor.
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2. The Main Example – Example 3: Road Traffic System 2.1. Parts2.1.1. Root Sorts

1. We analyse the composite traffic system into

(a) a composite road net,

(b) a composite fleet (of vehicles), and

(c) an atomic monitor.

type

1. ∆
1(a). N
1(b). F
1(c). M
value

1(a). obs N: ∆ → N
1(b). obs F: ∆ → F
1(c). obs M: ∆ → M
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392. The Main Example – Example 3: Road Traffic System 2.1. Parts2.1.2. Sub-domain Sorts and Types

2.1.2. Sub-domain Sorts and Types

2. From the road net we can observe

(a) a composite part, HS, of road (i.e., street) intersections (hubs)
and

(b) an composite part, LS, of road (i.e., street) segments (links).

type

2. HS, LS
value

2(a). obs HS: N → HS
2(b). obs LS: N → LS
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40 2. The Main Example – Example 3: Road Traffic System 2.1. Parts2.1.2. Sub-domain Sorts and Types

3. From the fleet sub-domain, F, we observe a composite part, VS, of
vehicles

type

3. VS
value

3. obs VS: F → VS
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4. From the composite sub-domain VS we observe

(a) the composite part Vs, which we concretise as a set of vehicles

(b) where vehicles, V, are considered atomic.

type

4(a). Vs = V-set

4(b). V
value

4(a). obs Vs: VS → V-set
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• The “monitor” is considered atomic; it is an abstraction of the fact
that

⋄⋄ we can speak of the positions of each and every vehicle on the net

⋄⋄ without assuming that we can indeed pin point these positions

⋄⋄ by means of for example sensors.
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2. The Main Example – Example 3: Road Traffic System 2.1. Parts2.1.3. Further Sub-domain Sorts and Types

2.1.3. Further Sub-domain Sorts and Types

• We now analyse the sub-domains of HS and LS.

5. From the hubs aggregate we decide to observe

(a) the concrete type of a set of hubs,

(b) where hubs are considered atomic; and

6. from the links aggregate we decide to observe

(a) the concrete type of a set of links,

(b) where links are considered atomic;
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type

5(a). Hs = H-set

6(a). Ls = L-set

5(b). H
6(b). L
value

5. obs Hs: HS → H-set

6. obs Ls: LS → L-set
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• We have no composite parts left to further analyse into parts

⋄⋄ whether they be again composite

⋄⋄ or atomic.

• That is,

⋄⋄ at various, what we shall refer to as, domain indexes

⋄⋄ we have discovered the following part types:

◦◦ 〈∆〉: N, F, M

◦◦ 〈∆, N〉: HS, LS

◦◦ 〈∆, F 〉: VS

◦◦ 〈∆, HS〉: Hs, H

◦◦ 〈∆, LS〉: Ls, L

◦◦ 〈∆, V S〉: Vs, V

⋄⋄ Thus we have ended up with atomic parts.

A Precursor for Requirements Engineering 45 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17



46
2. The Main Example – Example 3: Road Traffic System 2.2. Properties

2.2. Properties

• Parts are distinguished by their properties:

⋄⋄ the types and

⋄⋄ the values

of these.

• We consider three kinds of properties:

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ attributes.
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2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.1. Unique Identifications

2.2.1. Unique Identifications

7. We decide the following:

(a) each hub has a unique hub identifier,

(b) each link has a unique link identifier and

(c) each vehicle has a unique vehicle identifier.

type

7(a). HI
7(b). LI
7(c). VI
value

7(a). uid H: H → HI
7(b). uid L: L → LI
7(c). uid V: V → VI
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2.2.2. Mereology

2.2.2.1 Road Net Mereology

• By mereology we mean the study, knowledge and practice of
understanding parts and part relations.

8. Each link is connected to exactly two hubs, that is,

(a) from each link we can observe its mereology, that is, the
identities of these two distinct hubs,

(b) and these hubs must be of the net of the link;

9. and each hub is connected to zero, one or more links, that is,

(a) from each hub we can observe its mereology, that is, the
identities of these links,

(b) and these links must be of the net of the hub.
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value

8(a). mereo L: L → HI-set, axiom ∀ l:L•card mereo L(l)=2
axiom

8(b). ∀ n:N,l:L,hi:HI • l ∈ obs Ls(obs LS(n)) ∧ hi ∈ mereo L(l)
8(b). ⇒ ∃ h:H•h ∈ obs Hs(obs HS(n))∧uid H(h)=hi
value

9(a). mereo H: H → LI-set
axiom

9(b). ∀ n:N,h:H,li:LI • h ∈ obs Hs(obs HS(n)) ∧ li ∈ mereo H(h)
9(b). ⇒ ∃ l:L•l ∈ obs Ls(obs LS(n))∧uid L(l)=li
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2.2.2.2 Fleet of Vehicles Mereology

• In the traffic system that we are building up

⋄⋄ there are no relations to be expressed between vehicles,

⋄⋄ only between vehicles and the (single and only) monitor.

• Thus there is no mereology needed for vehicles.
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2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes

2.2.3. Attributes

• We shall model attributes of

⋄⋄ links,

⋄⋄ hubs and

⋄⋄ vehicles.

• The composite parts,

⋄⋄ aggregations of hubs, HS and Hs,

⋄⋄ aggregations of links, LS and Ls and

⋄⋄ aggregations of vehicles, VS and Vs,

also have attributes, but we shall omit modelling them here.
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2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.1. Attributes of Links

2.2.3.1 Attributes of Links

10. The following are attributes of links.

(a) Link states, lσ:LΣ, which we model as possibly empty sets of pairs of distinct
identifiers of the connected hubs.

• A link state expresses the directions that are open to traffic across a link.

(b) Link state spaces, lω:LΩ which we model as the set of link states.

• A link state space expresses the states that a link may attain across time.

(c) Further link attributes are length, location, etcetera.

• Link states are usually dynamic attributes

• whereas

⋄⋄ link state spaces,

⋄⋄ link length and

⋄⋄ link location (usually some curvature rendition)

are considered static attributes.
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type

10(a). LΣ = (HI × HI)-set
axiom

10(a). ∀ lσ:LΣ • 0 ≤ card lσ ≤ 2
value

10(a). attr LΣ: L → LΣ
axiom

10(a). ∀ l:L • let {hi,hi′}=mereo L(l) in attr LΣ(l)⊆{(hi,hi′),(hi′,hi)} end

type

10(b). LΩ = LΣ-set

value

10(b). attr LΩ: L → LΩ
axiom

10(b). ∀ l:L • let {hi,hi′}=mereo L(l) in attr LΣ(l)∈ attr LΩ(l) end

type

10(c). LOC, LEN, ...

value

10(c). attr LOC: L → LOC, attr LEN: L → LEN, ...

A Precursor for Requirements Engineering 53 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17



54 2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.2. Attributes of Hubs

2.2.3.2 Attributes of Hubs

11. The following are attributes of hubs:

(a) Hub states, hσ:HΣ, which we model as possibly empty sets of pairs of
identifiers of the connected links.

• A hub state expresses the directions that are open to traffic across a hub.

(b) Hub state spaces, hω:HΩ which we model as the set of hub states.

• A hub state space expresses the states that a hub may attain across time.

(c) Further hub attributes are location, etcetera.

• Hub states are usually dynamic attributes

• whereas

⋄⋄ hub state spaces and

⋄⋄ hub location

are considered static attributes.
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type

11(a). HΣ = (LI × LI)-set
value

11(a). attr HΣ: H → HΣ
axiom

11(a). ∀ h:H • attr HΣ(h)⊆{(li,li′)|li,li′:LI•{li,li′}⊆mereo H(h)}
type

11(b). HΩ = HΣ-set

value

11(b). attr HΩ: H → HΩ
axiom

11(b). ∀ h:H • attr HΣ(h) ∈ attr HΩ(h)
type

11(c). LOC, ...

value

11(c). attr LOC: L → LOC, ...
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2.2.3.3 Attributes of Vehicles

12. Dynamic attributes of vehicles include

(a) position

i. at a hub (about to enter the hub — referred to by the link it is
coming from, the hub it is at and the link it is going to, all
referred to by their unique identifiers or

ii. some fraction “down” a link (moving in the direction from a
from hub to a to hub — referred to by their unique identifiers)

iii. where we model fraction as a real between 0 and 1 included.

(b) velocity, acceleration, etcetera.

13. All these vehicle attributes can be observed.
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type

12(a). VP = atH | onL
12((a))i. atH :: fli:LI × hi:HI × tli:LI
12((a))ii. onL :: fhi:HI × li:LI × frac:FRAC × thi:HI
12((a))iii. FRAC = Real, axiom ∀ frac:FRAC • 0 ≤ frac ≤ 1
12(b). VEL, ACC, ...

value

13. attr VP:V→VP, attr onL:V→onL, attr atH:V→atH
13. attr VEL:V→VEL, attr ACC:V→ACC
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2.2.3.4 Vehicle Positions

14. Given a net, n:N, we can define the possibly infinite set of potential
vehicle positions on that net, vps(n).

(a) vps(n) is expressed in terms of the links and hubs of the net.

(b) vps(n) is the

(c) union of two sets:

i. the potentially8 infinite set of “on link” positions

ii. for all links of the net

and

i. the finite set of “at hub” positions

ii. for all hubs in the net.

8The ‘potentiality’ arises from the nature of FRAC. If fractions are chosen as, for
example, 1/5’th, 2/5’th, ..., 4/5’th, then there are only a finite number of “on link”
vehicle positions. If instead fraction are arbitrary infinitesimal quantities, then there
are infinitely many such.
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value

14. vps: N → VP-infset

14(b). vps(n) ≡
14(a). let ls=obs Ls(obs LS(n)), hs=obs Hs(obs HS(n)) in

14((c))i. { onL(fhi,uid(l),f,thi) | fhi,thi:HI,l:L,f:FRAC •

14((c))ii. l ∈ ls ∧ {fhi,thi}=mereo L(l) }
14(c). ∪
14((c))i. { atH(fli,uid H(h),tli) | fli,tli:LI,h:H •

14((c))ii. h ∈ hs ∧ {fli,tli}⊆mereo H(h) }
14(a). end
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• Given a net and a finite set of vehicles

⋄⋄ we can distribute these over the net, i.e., assign initial vehicle positions,

⋄⋄ so that no two vehicles “occupy” the same position, i.e., are “crashed” !

• Let us call the non-deterministic assignment function, i.e., a relation, for vpr.

15. vpm:VPM is a bijective map from vehicle identifiers to (distinct)
vehicle positions.

16. vpr has the obvious signature.

17. vpr(vs)(n) is defined in terms of

18. a non-deterministic selection, vpa, of vehicle positions, and

19. a non-deterministic assignment of these vehicle positions to vehicle
identifiers —

20. being the resulting distribution.
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type

15. VPM′ = VI →m VP
15. VPM = {| vpm:VPM′

• card dom vpm = card rng vpm |}
value

16. vpr: V-set × N → VMP
17. vpr(vs)(n) ≡
18. let vpa:VP-set • vpa ⊆ vps(vs)(n) ∧ card vpa = vard vs in

19. let vpm:VPM • dom vpm = vps ∧ rng vpm = vpa in

20. vpm end end

A Precursor for Requirements Engineering 61 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17



62 2. The Main Example – Example 3: Road Traffic System 2.3. Definitions of Auxiliary Functions

2.3. Definitions of Auxiliary Functions

21. From a net we can extract all its link identifiers.

22. From a net we can extract all its hub identifiers.

value

21. xtr LIs: N → LI-set
21. xtr LIs(n) ≡ {uid L(l)|l:L•l ∈ obs Ls(obs LS(n))}
22. xtr HIs: N → HI-set
22. xtr HIs(n) ≡ {uid H(l)|h:H•h ∈ obs Hs(obs HS(n))}

23. Given a link identifier and a net get the link with that identifier in
the net.

24. Given a hub identifier and a net get the hub with that identifier in
the net.
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value

26. get H: HI → N
∼
→ H

26. get H(hi)(n) ≡ ιh:H•h ∈ obs Hs(obs HS(n))∧uid H(h)=hi
26. pre: hi ∈ xtr HIs(n)

26(a). get L: LI → N
∼
→ L

26(a). get L(li)(n) ≡ ι l:L•l ∈ obs Ls(obs LS(n))∧uid L(l)=li
26(a). pre: hl ∈ xtr LIs(n)

• The ι a:A•P(a) expression

⋄⋄ yields the unique value a:A

⋄⋄ which satisfies the predicate P(a).

⋄⋄ If none, or more than one exists then the function is undefined.
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2.4. Some Derived Traffic System Concepts

2.4.1. Maps

25. A road map is an abstraction of a road net. We define one model of
maps below.

(a) A road map, RM, is a finite definition set function, M, (a
specification language map) from

• hub identifiers (the source hub)

• to (such finite definition set) functions

• from link identifiers

• to hub identifiers (the target hub).

type

25(a). RM′ = HI →m (LI →m HI)

• If a hub identifier in the source or an rm:RM maps into the empty
map then the “corresponding” hub is “isolated”: has no links
emanating from it.
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26. These road maps are subject to a well-formedness criterion.

(a) The target hubs must be defined also as source hubs.

(b) If a link is defined from source hub (referred to by its identifier)
shi via link li to a target hub thi, then, vice versa, link li is also
defined from source thi to target shi.

type

26. RM = {| rm:RM′

• wf RM(rm) |}
value

26. wf RM: RM′ → Bool

26. wf RM(rm) ≡
26(a). ∪ { rng(rm(hi))|hi:HI•hi ∈ dom rm } ⊆ dom rm
26(b). ∧ ∀ shi:HI•shi ∈ dom rm ⇒
26(b). ∀ li:LI • li ∈ dom rm(shi) ⇒
26(b). li ∈ dom rm((rm(shi))(li)) ∧ (rm((rm(shi))(li)))(li)=shi
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27. Given a road net, n, one can derive “its” road map.

(a) Let hs and ls be the hubs and links, respectively of the net n.

(b) Every hub with no links emanating from it is mapped into the
empty map.

(c) For every link identifier uid L(l) of links, l, of ls and every hub
identifier, hi, in the mereology of l

(d) hi is mapped into a map from uid L(l) into hi’

(e) where hi’ is the other hub identifier of the mereology of l.
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value

27. derive RM: N → RM
27. derive RM(n) ≡
27(a). let hs = obs Hs(obs HS(n)), ls = obs Ls(obs LS(n)) in

27(b). [ hi 7→ [ ] | hi:HI • ∃ h:H • h ∈ hs ∧ mereo H(h) = {} ] ∪
27(d). [ hi 7→ [ uid L(l) 7→ hi′

27(e). | hi′:HI • hi′ = mereo L(l)\{hi} ]
27(c). | l:L,hi:HI • l ∈ ls ∧ hi ∈ mereo L(l) ] end

• Theorem: If the road net, n, is well-formed then
wf RM(derive RM(n)).
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2.4.2. Traffic Routes

28. A traffic route, tr, is an alternating sequence of hub and link
identifiers such that

(a) li:LI is in the mereology of the hub, h:H, identified by hi:HI, the
predecessor of li:LI in route r, and

(b) hi’:HI, which follows li:LI in route r, is different from hi, and is in
the mereology of the link identified by li.

type

28. R′ = (HI|LI)∗

28. R = {| r:R′
• ∃ n:N • wf R(r)(n) |}

value

28. wf R: R′ → N → Bool

28. wf R(r)(n) ≡
28. ∀ i:Nat • {i,i+1}⊆inds r ⇒
28(a). is HI(r(i)) ⇒ is LI(r(i+1)) ∧ r(i+1) ∈ mereo H(get H(r(i))(n)),
28(b). is LI(r(i)) ⇒ is HI(r(i+1)) ∧ r(i+1) ∈ mereo L(get L(r(i))(n))
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29. From a well-formed road map (i.e., a road net) we can generate the
possibly infinite set of all routes through the net.

(a) Basis Clauses:

i. The empty sequence of identifiers is a route.

ii. The one element sequences of link and hub identifiers of links
and hubs of a road map (i.e., a road net) are routes.

iii. If hi maps into some li in rm then 〈hi,li〉 and 〈li,hi〉 are routes
of the road map (i.e., of the road net).

(b) Induction Clause:

i. Let r̂〈i〉 and 〈i′〉̂r′ be two routes of the road map.

ii. If the identifiers i and i′ are identical, then r̂〈i〉̂r′ is a route.

(c) Extremal Clause:

i. Only such routes that can be formed from a finite number of
applications of the above clauses are routes.

A Precursor for Requirements Engineering 69 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17



70
2. The Main Example – Example 3: Road Traffic System 2.4. Some Derived Traffic System Concepts2.4.2. Traffic Routes

value

29. gen routes: M → Routes-infset

29. gen routes(m) ≡
29((a))i. let rs = {〈〉}
29((a))ii. ∪ {〈li,hi〉,〈hi,li〉|li:LI,hi:HI•...}
29((b))i. ∪ {let r̂〈li〉,〈li′〉̂r′:R • {r̂〈li〉,〈li′〉̂r′}⊆rs,
29((b))i. r′′

̂〈hi〉,〈hi′〉̂r′′′:R • {r′′

̂〈hi〉,〈hi′〉̂r′′′}⊆rs in

29((b))ii. r̂〈li〉̂r′,r′′

̂〈hi〉̂r′′′ end} in

29((c))i. rs end
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2.4.2.1 Circular Routes

30. A route is circular if the same identifier occurs more than once.

value

30. is circular route: R → Bool

30. is circular route(r) ≡ ∃ i,j:Nat • {i,j}⊆inds r ∧ i 6=j ⇒ r(i)=r(j)
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2.4.2.2 Connected Road Nets

31. A road net is connected if there is a route from any hub (or any
link) to any other hub or link in the net.

31. is conn N: N → Bool

31. is conn N(n) ≡
31. let m = derive RM(n) in

31. let rs = gen routes(m) in

31. ∀ i,i′:(LI|HI) • {i,i′}⊆xtr LIs(n)∪ xtr HIs(n)
31. ∃ r:R • r ∈ rs ∧ r(1)=i ∧ r(len r)=i′ end end
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2.4.2.3 Set of Connected Nets of a Net

32. The set, cns, of connected nets of a net, n, is

(a) the smallest set of connected nets, cns,

(b) whose hubs and links together “span” those of the net n.

value

32. conn Ns: N → N-set

32. conn Ns(n) as cns
32(a). pre: true

32(b). post: conn spans HsLs(n)(cns)
32(a). ∧ ∼∃ kns:N-set • card kns < card cns
32(a). ∧ conn spans HsLs(n)(kns)
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32(b). conn spans HsLs: N → N → Bool

32(b). conn spans HsLs(n)(cns) ≡
32(b). ∀ cn:N•cn ∈ cns ⇒ is connected N(n)(cn)
32(b). ∧ let (hs,ls) = (obs Hs(obs HS(n)),obs Ls(obs LS(n))),
32(b). chs = ∪{obs Hs(obs HS(cn))|cn ∈ cns},
32(b). cls = ∪{obs Ls(obs LS(cn))|cn ∈ cns} in

32(b). hs = chs ∧ ls = cls end
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2.4.2.4 Route Length

33. The length attributes of links can be

(a) added and subtracted,

(b) multiplied by reals to obtain lengths,

(c) divided to obtain fractions,

(d) compared as to whether one is shorter than another, etc., and

(e) there is a “zero length” designator.

value

33(a). +,− : LEN × LEN → LEN
33(b). ∗ : LEN × Real → LEN
33(c). / : LEN × LEN → Real

33(d). <,≤,=, 6=,≥,> : LEN × LEN → Bool

33(e). ℓ0 : LEN
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34. One can calculate the length of a route.

value

34. length: R → N → LEN
34. length(r)(n) ≡
34. case r of:
34. 〈〉 → ℓ0,
34. 〈si〉̂r′ →
34. is LI(si)→attr LEN(get L(si)(n))+length(r′)(n)
34. is HI(si)→length(r′)(n)
34. end
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2.4.2.5 Shortest Routes

35. There is a predicate, is R, which,

(a) given a net and two distinct hub identifiers of the net,

(b) tests whether there is a route between these.

value

35. is R: N → (HI×HI) → Bool

35. is R(n)(fhi,thi) ≡
35(a). fhi 6= thi ∧ {fht,thi}⊆xtr HIs(n)
35(b). ∧ ∃ r:R • r ∈ routes(n) ∧ hd r = fhi ∧ r(len r) = thi
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36. The shortest between two given hub identifiers

(a) is an acyclic route, r,

(b) whose first and last elements are the two given hub identifiers

(c) and such that there is no route, r′ which is shorter.

value

36. shortest route: N → (HI×HI) → R
36(a). shortest route(n)(fhi,thi) as r
36(b). pre: pre shortest route(n)(fhi,thi)
36(c). post: pos shortest route(n)(r)(fhi,thi)
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36(b). pre shortest route: N → (HI×HI) → Bool

36(b). pre shortest route(n)(fhi,thi) ≡
36(b). is R(n)(fhi,thi) ∧ fhi 6=thi ∧ {fhi,thi}⊂xtr HIs(n)

36(c). pos shortest route: N → R → (HI×HI) → Bool

36(c). pos shortest route(n)(r)(fhi,thi) ≡
36(c). r ∈ routes(n)
36(c). ∧ ∼∃ r′:R • r′ ∈ routes(n) ∧ length(r′) < length(r)
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2.5. States

• There are different notions of state. In our example these are some
of the states:

⋄⋄ the road net composition of hubs and links;

⋄⋄ the state of a link, or a hub; and

⋄⋄ the vehicle position.
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2.6. Actions

• An action is what happens when a function invocation changes, or
potentially changes a state.

• Examples of traffic system actions are:

⋄⋄ insertion of hubs,

⋄⋄ insertion of links,

⋄⋄ removal of hubs,

⋄⋄ removal of links,

⋄⋄ setting of hub state (hσ),

⋄⋄ setting of link state (lσ),

⋄⋄ moving a vehicle along a link,

⋄⋄ moving a vehicle from a link to a hub and

⋄⋄ moving a vehicle from a hub to a link.
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37. The insert action applies to a net and a hub and conditionally
yields an updated net.

(a) The condition is that there must not be a hub in the “argument”
net with the same unique hub identifier as that of the hub to be
inserted and

(b) the hub to be inserted does not initially designate links with
which it is to be connected.

(c) The updated net contains all the hubs of the initial net “plus”
the new hub.

(d) and the same links.
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value

37. ins H: N → H
∼
→ N

37. ins H(n)(h) as n′, pre: pre ins H(n)(h), post: post ins H(n)(h)

37(a). pre ins H(n)(h) ≡
37(a). ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid HI(h)=uid HI(h′)
37(b). ∧ mereo H(h) = {}

37(c). post ins H(n)(h)(n′) ≡
37(c). obs Hs(n) ∪ {h} = obs Hs(n′)
37(d). ∧ obs Ls(n) = obs Ls(n′)
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2.7. Events

• By an event we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.
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38. Link disappearance is expressed as a predicate on the “before” and
“after” states of the net. The predicate identifies the “missing”
ℓink (!).

39. Before the disappearance of link ℓ in net n

(a) the hubs h′ and h′′ connected to link ℓ

(b) were connected to links identified by {l′1, l
′
2, . . . , l

′
p} respectively

{l′′1 , l′′2 , . . . , l′′q}

(c) where, for example, l′i, l
′′
j are the same and equal to uid Π(ℓ).

38. link dis: N × N → Bool

38. link dis(n,n′) ≡
38. ∃ ℓ:L • pre link dis(n,ℓ) ⇒ post link dis(n,ℓ,n′)
39. pre link dis: N × L → Bool

39. pre link dis(n,ℓ) ≡ ℓ ∈ obs Ls(n)
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40. After link ℓ disappearance there are instead

(a) two separate links, ℓi and ℓj, “truncations” of ℓ

(b) and two new hubs h′′′ and h′′′′

(c) such that ℓi connects h′ and h′′′ and

(d) ℓj connects h′′ and h′′′′;

(e) Existing hubs h′ and h′′ now have mereology

i. {l′1, l
′
2, . . . , l

′
p} \ {uid Π(ℓ)} ∪ {uid Π(ℓi)} respectively

ii. {l′′1 , l′′2 , . . . , l′′q} \ {uid Π(ℓ)} ∪ {uid Π(ℓj)}

41. All other hubs and links of n are unaffected.
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42. We shall “explain” link disappearance as the combined,
instantaneous effect of

(a) first a remove link “event” where the removed link connected
hubs hij and hik;

(b) then the insertion of two new, “fresh” hubs, hα and hβ;

(c) “followed” by the insertion of two new, “fresh” links ljα and lkβ

such that

i. ljα connects hij and hα and

ii. lkβ connects hik and hkβ
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value

42. post link dis(n,ℓ,n′) ≡
42. let h a,h b:H •

42. let {li a,li b}=mereo L(ℓ) in

42. (get H(li a)(n),get H(li b)(n)) end in

42(a). let n′′ = rem L(n)(uid L(ℓ)) in

42(b). let hα,hβ:H • {hα,hβ}∩obs Hs(n)={} in

42(b). let n′′′ = ins H(n′′)(hα) in

42(b). let n′′′′ = ins H(n′′′)(hβ) in

42(c). let ljα,lkβ:L • {ljα,lkβ}∩obs Ls(n)={}
42(c). ∧ mereo L(ljα) = {uid H(h a),uid H(hα)}
42(c). ∧ mereo L(lkβ) = {uid H(h b),uid H(hβ)} in

42((c))i. let n′′′′′ = ins L(n′′′′)(ljα) in

42((c))ii. n′ = ins L(n′′′′′)(lkβ) end end end end end end end
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2.8. Behaviours

2.8.1. Traffic

2.8.1.1 Continuous Traffic

• For the road traffic system

⋄⋄ perhaps the most significant example of a behaviour

⋄⋄ is that of its traffic

43. the continuous time varying discrete positions of vehicles,
vp:VP9,

44. where time is taken as a dense set of points.

type

44. cT
43. cRTF = cT → (V →m VP)

9For VP see Item 12(a) on Slide 56.
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2.8.1.2 Discrete Traffic

• We shall model, not continuous time varying traffic, but

45. discrete time varying discrete positions of vehicles,

46. where time can be considered a set of linearly ordered points.

46. dT

45. dRTF = dT →m (V →m VP)

47. The road traffic that we shall model is, however, of vehicles referred
to by their unique identifiers.

type

47. RTF = dT →m (VI →m VP)
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2.8.1.3 Time: An Aside

• We shall take a rather simplistic view of time
[wayne.d.blizard.90,mctaggart-t0,prior68,J.van.Benthem.Logi

48. We consider dT, or just T, to stand for a totally ordered set of time
points.

49. And we consider TI to stand for time intervals based on T.

50. We postulate an infinitesimal small time interval δ.

51. T, in our presentation, has lower and upper bounds.

52. We can compare times and we can compare time intervals.

53. And there are a number of “arithmetics-like” operations on times
and time intervals.
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type

48. T

49. TI

value

50. δ:TI

51. MIN, MAX: T → T

51. <,≤,=,≥,>: (T×T)|(TI×TI) → Bool

52. −: T×T → TI

53. +: T×TI,TI×T → T

53. −,+: TI×TI → TI

53. ∗: TI×Real → TI

53. /: TI×TI → Real

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – August 25, 2012: 17:17 92 Domain Science & Engineering



932. The Main Example – Example 3: Road Traffic System 2.8. Behaviours2.8.1. Traffic2.8.1.3. Time: An Aside

54. We postulate a global clock behaviour which offers the current time.

55. We declare a channel clk ch.

value

54. clock: T → out clk ch Unit

54. clock(t) ≡ ... clk ch!t ... clock(t ⌈⌉ t+δ)
channnel
55. clk ch:T
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2.8.2. Globally Observable Parts

• There is given

56. a net, n:N,

57. a set of vehicles, vs:V-set, and

58. a monitor, m:M.

• The n:N, vs:V-set and m:M are observable from the road traffic
system domain.

value

56. n:N = obs N(∆)
56. ls:L-set = obs Ls(obs LS(n)), hs:H-set = obs Hs(obs HS(n)),
56. lis:LI-set = {uid L(l)|l:L•l ∈ ls}, his:HI-set = {uid H(h)|h:H•h ∈ hs}
57. vs:V-set = obs Vs(obs VS(obs F(∆))), vis:V-set = {uid V(v)|v:V•v
58. m:obs M(∆)
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2.8.3. Road Traffic System Behaviours

59. Thus we shall consider our road traffic system, rts, as

(a) the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,

(b) the monitor behaviour, based on

(c) the monitor and its unique identifier,

(d) an initial vehicle position map, and

(e) an initial starting time.
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value

59(c). mi:MI = uid (m)
59(d). vpm:VPM = vpr(vs)(n)
59(e). t0:T = clk ch?

59. rts() =
59(a). ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59(b). ‖ mon(mi)(m)([ t0 7→ vpm ])

• where the “extra” monitor argument

⋄⋄ records the discrete road traffic, RTF,

⋄⋄ initially set to the singleton map from an initial start time, t0 to the initial
assignment of vehicle positions.
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2.8.4. Channels

• In order for the monitor behaviour to assess the vehicle positions

⋄⋄ these vehicles communicate their positions

⋄⋄ to the monitor

⋄⋄ via a vehicle to monitor channel.

• In order for the monitor to time-stamp these positions

⋄⋄ it must be able to “read” a clock.

60. Thus we declare a set of channels indexed by the unique identifiers
of vehicles and communicating vehicle positions.

channel

60. {vm ch[ mi,vi ]|vi:VI•vi ∈ vis}:VP
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2.8.5. Behaviour Signatures

61. The road traffic system behaviour, rts, takes no arguments; and
“behaves”, that is, continues forever.

62. The vehicle behaviours are indexed by the unique identifier,
uid V(v):VI, the vehicle part, v:V and the vehicle position; offers
communication to the monitor behaviour; and behaves “forever”.

63. The monitor behaviour takes monitor part, m:M, as argument and
also the discrete road traffic, drtf:dRTF; the behaviour otherwise
runs forever.

value

61. rts: Unit → Unit

62. veh: vi:VI → v:V → VP → out vm ch[ vi ],mi:MI Unit

63. mon: mi:MI → m:M → dRTF → in {vm ch[ mi,vi ]|vi:VI•vi ∈ vis},clk c
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2.8.6. The Vehicle Behaviour

64. A vehicle process

• is indexed by the unique vehicle identifier vi:VI,

• the vehicle “as such”, v:V and

• the vehicle position, vp:VPos.

The vehicle process communicates

• with the monitor process on channel vm[vi]

• (sends, but receives no messages), and

• otherwise evolves “in[de]finitely” (hence Unit).
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65. We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

(a) Either the vehicle remains at that hub informing the monitor,

(b) or, internally non-deterministically,

i. moves onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

ii. informs the monitor, on channel vm[vi], that it is now on the
link identified by tli,

iii. whereupon the vehicle resumes the vehicle behaviour
positioned at the very beginning (0) of that link,

(c) or, again internally non-deterministically,

(d) the vehicle “disappears — off the radar” !
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65. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
65(a). vm ch[ mi,vi ]!vp ; veh(vi)(v)(vp)
65(b). ⌈⌉
65((b))i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
65((b))ii. vm ch[ mi,vi ]!onL(tli,hi,0,thi) ;
65((b))iii. veh(vi)(v)(onL(tli,hi,0,thi)) end

65(c). ⌈⌉
65(d). stop
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66. We describe here an abstraction of the vehicle behaviour on a Link (ii).
Either

(a) the vehicle remains at that link position informing the monitor,

(b) or, internally non-deterministically,

(c) if the vehicle’s position on the link has not yet reached the hub,

i. then the vehicle moves an arbitrary increment δ along the link informing
the monitor of this, or

ii. else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about
to leave),

A. the vehicle informs the monitor that it is now at the hub identified by thi,

B. whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

67. or, internally non-deterministically,

68. the vehicle “disappears — off the radar” !
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64. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
66(a). vm ch[ mi,vi ]!vp ; veh(vi)(v)(vp)
66(b). ⌈⌉
66(c). if f + δ<1
66((c))i. then vm ch[ mi,vi ]!onL(fhi,li,f+δ,thi) ;
66((c))i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
66((c))ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

66((c))iiA. vm ch[ mi,vi ]!atH(li,thi,li′);
66((c))iiB. veh(vi)(v)(atH(li,thi,li′)) end end

67. ⌈⌉
68. stop
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2.8.7. The Monitor Behaviour

69. The monitor behaviour evolves around the attributes of an own
“state”, m:M, a table of traces of vehicle positions, while accepting
messages about vehicle positions and otherwise progressing
“in[de]finitely”.

70. Either the monitor “does own work”

71. or, internally non-deterministically accepts messages from vehicles.

(a) A vehicle position message, vp, may arrive from the vehicle
identified by vi.

(b) That message is appended to that vehicle’s movement trace,

(c) whereupon the monitor resumes its behaviour —

(d) where the communicating vehicles range over all identified
vehicles.
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69. mon(mi)(m)(rtf) ≡
70. mon(mi)(own mon work(m))(rtf)
71. ⌈⌉
71(a). ⌈⌉⌊⌋ { let ((vi,vp),t) = (vm ch[ vi ]?,clk ch?) in

71(b). let rtf′ = rtf † [ t 7→ rtf(max dom rtf) † [ vi 7→ vp ] ] in

71(c). mon(mi)(m)(rtf′) end

71(d). end | vi:VI • vi ∈ vis }

70. own mon work: M → dRTF → M

• We do not describe the clock behaviour by other than stating that
it continually offers the current time on channel clkm ch.
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See You in 30 Minutes — Thanks !
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