
i

Domain Models • A Compendium

Dines Bjørner
early draft: incomplete texts, incomplete formalizations ...

The Domain Models are according to the revision, [63, 2023], of this book !
March 12, 2024: 10:48 am

ii

Dines Bjørner
Technical University of Denmark
Fredsvej 11. DK-2840 Holte, Denmark

• This is a vastly incomplete version.

• Chapter 1 lacks several small sections.

• Chapter 2 is relatively “complete”.

• Chapter 3 is relatively “complete”.

• Chapter 4 is yet to be written.

• The models of the appendix have all been edited.
Some text should be either removed or edited.

• This document is not intended for book publication.

• It will, instead, be “published” on the Internet:

• https://www.imm.dtu.dk/~dibj/2024/models/domain-models.pdf

c© Dines Bjørner. March 12, 2024: 10:48 am

Preface

We present a collection or more-or-less “complete” domain models.
These were worked out in the period 1993–2023.

The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R

In proofs of Software correctness,
with respect to Requirements,
assumptions are made with respect to the Domain.

iii

iv

Contents

I Foundations 1

1 Introduction 3

1.1 A Completely New Approach to Software Development 3

1.2 Aims & Objectives . 4

1.3 The Method . 4

1.4 Caveats . 5

1.5 Have a Good Read ! . 7

2 Domains 9

2.1 Domains: What are They ? . 10

2.2 A Domain Analysis & Description Ontology . 12

2.3 The Name, Type and Value Concepts . 14

2.4 Phenomena and Entities . 14

2.5 Endurants and Perdurants . 15

2.6 Phases, Stages and Steps of Domain Study . 16

2.7 External and Internal Endurant Qualities . 17

– Tangibles and Intangibles . 17

2.8 Perdurant Concepts . 30

2.9 Perspectives . 36

3 The AMoL Language 37

3.1 A Resumé of Domains . 39

3.2 Values, Types and Sorts, Axioms . 39

3.3 Expressions, Statements, Clauses . 40

3.4 Specification Units . 40

3.5 Types and Values . 45

3.6 Expressions . 46

3.7 Statements . 52

3.8 Concurrency . 55

3.9 Summary . 61

II Conclusion 63

4 Conclusion 65

5 Bibliography 67

v

vi CONTENTS

III APPENDIX 79

APPENDIX 79

IV Conceptual Domain Models 81

A A Graph Domain 83

A.1 Introduction . 85

A.2 Examples of Networks . 86

A.3 Classical Mathematical Models . 90

A.4 Our General Graph Model . 94

A.5 The Nets Domain . 112

B Rivers 113

B.1 Introduction . 113

B.2 External Qualities – The Endurants . 115

B.3 Internal Qualities . 116

B.4 Conclusion . 120

C Canals 121

C.1 Introduction . 122

C.2 Visualisation of Canals . 122

C.3 The Endurants . 123

C.4 Conclusion . 153

D The 7 Seas 155

D.1 Introduction . 156

D.2 Endurants . 156

D.3 Perdurants . 167

D.4 Conclusion . 167

V Concrete Domain Models 169

E Road Transport 171

E.1 The Road Transport Domain . 172

E.2 External Qualities . 172

E.3 Internal Qualities . 174

E.4 Perdurants . 182

E.5 System Initialisation . 188

F Rail Systems 191

F.1 Endurants – Rail Nets and Trains . 192

F.2 Transcendental Deduction . 204

F.3 Perdurants . 206

F.4 Closing . 209

G Simple Credit Card Systems 211

G.1 Introduction . 211

G.2 Endurants . 212

G.3 Perdurants . 215

CONTENTS vii

H A Simple Retailer System 223
H.1 Two Approaches to Modeling . 224
H.2 The Retailer Market Case Study . 225
H.3 Endurants: External Qualities . 229
H.4 Endurants: Internal Qualities . 232
H.5 Merchandise . 242
H.6 Perdurants . 243
H.7 Conclusion . 258

I Pipelines 261
I.1 Endurants: External Qualities . 262
I.2 Endurants: Internal Qualities . 263
I.3 Perdurants . 272
I.4 Review . 276

J Shipping 277
J.1 Informal Sketches of the Shipping Domain . 279
J.2 Endurants: External Qualities . 283
J.3 Endurants: Internal Qualities . 286
J.4 Perdurants . 294
J.5 Review . 303

K Container Terminals 305
K.1 Introduction . 308
K.2 Some Pictures . 309
K.3 SECT . 313
K.4 Main Behaviours . 315
K.5 Endurants . 317
K.6 Perdurants . 335
K.7 Conclusion . 360

L The Blue Skies 361
L.1 Introdution . 361
L.2 Endurants . 362
L.3 Perdurants . 362
L.4 Conclusion . 362

M Document Systems 363
M.1 Introduction . 364
M.2 Managing, Archiving and Handling Documents 365
M.3 Principal Endurants . 365
M.4 Unique Identifiers . 365
M.5 Mereology . 366
M.6 Documents: A First View . 366
M.7 Behaviours: An Informal, First View . 367
M.8 Channels, A First View . 368
M.9 An Informal Graphical System Rendition . 369
M.10Behaviour Signatures . 369
M.11Time . 369
M.12Behaviour “States” . 370
M.13Inter-Behaviour Messages . 371
M.14A General Discussion of Handler and Document Interactions 373
M.15Channels: A Final View . 373
M.16An Informal Summary of Behaviours . 373

viii CONTENTS

M.17The Behaviour Actions . 376
M.18Documents in Public Government . 383
M.19Documents in Urban Planning . 383

N Swarms of Drones 385
N.1 An Informal Introduction . 387
N.2 Entities, Endurants . 388
N.3 Operations on Universe of Discourse States . 401
N.4 Perdurants . 402
N.5 Conclusion . 415

O Automobile Assembly Lines 417
O.1 Introduction . 419
O.2 A Domain Analysis & Description . 419
O.3 Discussion . 451
O.4 Conclusion . 451

P Nuclear Power Plants 455
P.1 Introduction . 457
P.2 Informal Characterisation . 457
P.3 Sketch of a Conceptual Domain Model . 459
P.4 System Domains . 489
P.5 Varieties of Generation III-IV Reactors . 495
P.6 Closing . 495
P.7 Bibliography . 497

VI System Models 499

Q Urban Planning 501
Q.1 Structures and Parts . 504
Q.2 Unique Identifiers . 508
Q.3 Mereologies . 512
Q.4 Attributes . 515
Q.5 The Structure Translators . 525
Q.6 Channel Analysis and Channel Declarations . 526
Q.7 The Atomic Part Translators . 530
Q.8 Initialisation of The Urban Space Analysis & Planning System 545
Q.9 Further Work . 546

R Weather Systems 551
R.1 On Weather Information Systems . 552
R.2 Major Parts of a Weather Information System 553
R.3 Endurants . 554
R.4 Perdurants . 559
R.5 Conclusion . 565

S The Tokyo Stock Exchange, 2009 567
S.1 Introduction . 568
S.2 The Problem . 568
S.3 A Domain Description . 568
S.4 Conclusion . 573
S.5 Tetsuo Tamai’s Paper . 575
S.6 Tokyo Stock Exchange arrowhead Announcements 583

CONTENTS ix

T XVSM: An Extensible Virtual Shared Memory 591
T.1 Introduction . 592
T.2 XVSM Trees . 595
T.3 XTree Operations . 598
T.4 Indexing . 603
T.5 Queries . 604
T.6 Conclusion . 606

x CONTENTS

Part I

Foundations

1

2

Chapter 1

Introduction

The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R

Contents

1.1 A Completely New Approach to Software Development 3

1.2 Aims & Objectives . 4

1.2.1 Aims . 4

1.2.2 Objectives . 4

1.3 The Method . 4

1.4 Caveats . 5

1.4.1 Definitions versus Characterizations . 5

1.4.2 The Bases . 5

1.4.2.1 Type and Values · Identifiers and Names 5

1.4.2.1.1 Type and Values. 5

1.4.2.1.2 Identifiers and Names. 5

1.4.2.2 Two Languages . 6

1.4.2.2.1 Presentation Language 6

1.4.2.2.2 Specification Language 6

1.4.3 Unfolding an Ontology, Unfolding a Method, Unfolding Domain Models 7

1.5 Have a Good Read ! . 7

This chapter sets the stage for the compendium.

1.1 A Completely New Approach to Software Development

I feel obliged to inform the reader that this compendium and its predecessor publications [51,55–
58,61–63], represent a rather different approach to software development than the reader may be
acquainted with.

Traditionally software development “grew” out in the “shadow” of the first von Neumann
computers – around 1946. The focus was on “taming” the behaviour of the hardware computer:
exploiting the intricacies of its instruction set. From that grew Fortran [136] from around 1954.
Then Algol 60 [121]. And so forth.

3

4 CONTENTS

For many years computer scientists were concerned, first with programming styles, then with
correctness of programs. Around late 1970s there then emerged the concept of requirements en-
gineering . But nobody took the full step – as expressed in the Triptych Dogma, cf. top og Page
3.

With domain science & engineering we are, in a sense, turning the software development matter,
“the right side up” !

We start where, as we obviously think that everybody should be thinking, with the domains
from which applications of computing arise.1

1.2 Aims & Objectives

1.2.1 Aims

The aim of this compendium is to present a number (4+11+42) domain models. That is: informal,
narrated, and formal descriptions of segments of “the world ‘out’ there” !

1.2.2 Objectives

The objective of this compendium is to help the reader get started on their own domain modelling.
By seeing how the author of the method himself would model a domain, the stage- and stepwise
approach, it is hoped that the reader will have courage to start !

1.3 The Method

By a method we shall understand a set of principles3 and procedures4 for selecting and applying
a set of techniques5 and tools6 to a problem7 in order to achieve an orderly construction of a
solution8, i.e., an artefact.

By methodology we shall understand the study & application of one or more methods.

By a formal method we shall understand a method whose principles include that of (i) con-
sidering models of its artefacts as mathematical quantities, of (ii) abstraction, etc.; whose decisive
procedures include that of the sequential analysis & description of first endurants, then perdurants,
and, within the analysis & description of endurants, the sequential analysis & description of first
their external qualities and then their internal qualities, whose techniques include those of specific
ways of specifying properties; and whose tools include those of one or more formal languages.

By a language we shall here understand a set of strings of characters, i.e., sentences, sen-
tences which are structured according to some syntax, i.e., grammar, are given meaning by some
semantics, and are used according to some pragmatics.

1So did John von Neumann and his colleagues some 70 years ago: Their applications were, domain description-
wise rather well described and sufficiently well understood. It was the mathematics domain of PDEs: partial
differential equations.

2Four models are of “conceptual” domains; 11 of reasonably realistic [“application”] domains; and four of
“systems”, i.e., domains with a high degree of computing.

3By a principle we mean: a principle is a proposition or value that is a guide for behavior or evaluation [Wikipedia],
i.e., code of conduct

4By a procedure we mean: instructions or recipes, a set of commands that show how to achieve some result, such
as to prepare or make something [Wikipedia], i.e., an established way of doing something

5By a technique we mean: a technique, or skill, is the learned ability to perform an action with determined results
with good execution often within a given amount of time, energy, or both [Wikipedia], i.e., a way of carrying out a
particular task

6By a tool we mean: a tool is an object that can extend an individual’s ability to modify features of the surrounding
environment [Wikipedia]

7By a problem we shall here understand such as wishing to understand a domain, or such as obtaining a precise
description of a domain from which to develop softare.

8By a solution – to a problem of the kind “footnoted” kind – we shall here understand a domain description.

1.4. CAVEATS 5

By a formal language we shall here understand a language whose syntax and semantics can
both be expressed mathematically and for whose sentences one can rationally reason (argue,
prove) properties.

The method for analyzing and describing domains has been researched for many year. Several
“generations” of domain models have been worked out and their experimental development has
led to refinements and simplifications of the method. This compendium records some of these
examples in Chapters A–P. The specific method deployed in this compendium took its initial
steps around 2009. Since then many versions have been documented [38,41,51,55–58,61,62]. The
current status of the method is documented in [63].

Chapter 2 (pages 9–36) summarizes the domain modelling method.

1.4 Caveats

1.4.1 Definitions versus Characterizations

Readers with a background in [theoretical] computer science need, perhaps, be warned. We shall, in
the next chapter, Chapter 2, present a number of “characterizations”. They are characterizations
of an informal world. A world that has not [yet] been formalized. Our domain analysis and
description may aim at formalizing, in AMOL, in a domain model, segments of that world. But
still, before such a model exists, the world we shall analyze and describe, is informal. Therefore one
cannot in the conventional style of [theoretical] computer science give a so-called precise definition.
Therefore we use the term ‘characterization’.

1.4.2 The Bases

The author, i.e., me (!), embarks, with You, the reader/student, on this enterprise: the writing,
presentation, respectively, the study, reading, of this compendium on two bases: mine and Yours. I
shall in this section, ‘The Bases’, very briefly outline the [two] bases on which I started researching
and developing the domain analysis and description approach, ‘the method’, outlined in [38,41,51,56,
58]. In outlining these two bases You, the student/reader, should be, somehow, “brought-in-line”,
that is, understand and “synchronized” with the author’s intentions. They underlie the rest of
this compendium, that is, is a foundation for what is presented.

1.4.2.1 Type and Values · Identifiers and Names

Hand-in-hand with types and values go identifiers naming these.

1.4.2.1.1 Type and Values. Very briefly.

Types are [special] classes, “like” sets, of values.

Values are, in this compendium, mathematical quantities.

Examples of values are: Boolean truth values, numbers, ..., sets, Cartesians, lists, maps and
functions. Elements of sets, Cartesians, lists and maps are such values. Arguments and results of
functions, are in this compendium, are truth values, numbers, ..., sets, Cartesians, lists and maps.

More on this in Chapter 3.

1.4.2.1.2 Identifiers and Names. Very briefly: Identifiers are sequences of alphabetic lower-
and uppercase letters sometimes with infix ‘–’ and/or a suffix digit: ‘0, 1, ..., 9’, Names are
identifiers naming

• (i) values: value id:T = ...,
such as Boolean truth values, (natural, integer, real) numbers, ..., sets, Cartesians, lists,
maps and functions;

6 CONTENTS

• (ii) types: type T or type T = ...,
where a defining right-hand side (...) may be Bool, Nat, Int, Real, ..., T-set (sets), (Carte-
sians) T×T×...×T, T∗ (lists), T→m T (maps) and T→T (functions);

• (iii) variables: variable v:T; and

• (iv) channels: channel ch[...]:T.

where id, T, v, ch are identifiers; Bool, Nat, Int, Real are ground names of atomic types; -set,
×, ∗, →m and → are type constructors (i.e., operators); and value, type, variable. channel are
literals.

More on this in Chapter 3.

1.4.2.2 Two Languages

Two completely separate languages are “at play” here. (α) The language in which we formally
describe domains, the specification or description language.9 (β) And the language in which we
explain (the presentation language) AMOL as well as the language in which we “narrate”, i.e.,
informally, describe domains.

1.4.2.2.1 Presentation Language The general presentation language of this compendium is
English. We present a domain modelling method: its principles, techniques and tools in English.
We also “narrate”, “tell-the-story”, of each and every specific domain in English.

The narration text denotes, refers to, designates, the domain being told about.

We also use English to explain the specification language, here AMOL. Finally we “adorn”
our English presentation language with a number of domain analysis “predicates”: is entity,

is endurant, is perdurant, is solid, is fluid, is part, is atomic, is compound, is -

Cartesian, is part set, etc., and analysis “functions”: record Cartesian part type names,
record part set part type names, etc. These predicates and functions are informal. They rep-
resent ideas by which the domain analyzer cum describers proceed in their work. Consider them
prompts issued by the brain of the domain analyzer cum describer. Prompts, similar to cues issued
by a theater play prompter to the actors who may have forgotten “their next line”.10

1.4.2.2.2 Specification Language The specification language of this compendium is AMOL.

AMOL is basically an applicative, i.e., a functional language. It is a simple mathematics-based
language. It is formal, that is: it has a well-defined syntax, semantics, and proof system.11 It de-
rives from RSL, the RAISE Specification Languge, [100], where RAISE stands for Rigorous Approach
to Industrial Software Enginering [101]. RSL “derives from”, i.e., was inspired by applicative lan-
guages LISP [137], AE [124], VDM [5–7, 15], and ML [105, 106]. AMOL is not the only possible,
formal language for describing domains. We suggest that others could be used. For example
VDM, Z [138, 148, 173, 174, 182], RSL and Alloy [115]. Also algebraic specification languages like
cafeOBJ [86, 99] or CASL [141].

The formal text denotes a mathematical object.

The relation between the domain and the mathematical object of “its’ description is that of a
transcendental deduction.12

The mathematics of AMOL specifications allows the rigorous “derivation” of domain descrip-
tions into requirements prescriptions [58, Chapter 8], and these into “executable” software [26–28].

The AMOL language is outlined in Chapter 3.

9We shall, in this compendium, call (refer to this) this language (by) AMOL: for ‘a modelling language’.
10French: signal , German: stichwort.
11We shall not present the proof system in this compendium.
12See Sect. 2.8.2 on page 30

1.5. HAVE A GOOD READ ! 7

1.4.3 Unfolding an Ontology, Unfolding a Method, Unfolding Domain Models

We are “riding three horses” in this compendium.

• First and foremost we are presenting a new way of looking at the phenomenon of domains.

• Secondly we are presenting a method, with its principles, procedures, techniques and tools, for
analyzing & describing [such] domains.

• Thirdly we are presenting a sizable number (19 !) of domain models, several of these developed
according to ‘the method’.

The new way of looking at the phenomenon of domains is manifested in two ways: (i) in our focus
on domains, not on requirememtns, not on software; and (ii) in our novel way at analyzing &
describing domains – as outlined in Chapter 2.

The method for analyzing & describing domains is manifested as follows: (i) in taking the term
method serious; (ii) in endowing that term with principles, procedures, techniques and tools; and
(iii) in justifying a domain analysis & description ontology as inevitable – with reference to Kai
Sørlander’s philosophy [167–172]

The presentation of domain models is manifested as follows: (i) as the method is “unravelled”,
in Chapter 2, we likewise “unravel” a [specific] domain analysis & description, i.e., a model; and (ii)
we present, as the main purpose of this compendium, in Appendix Chapters A–T, 18 more-or-less
detailed doman models – pages 83–606 – some 520 pages !.

So we beg the reader’s patience and ability to distinguish which compendium texts represent
one or another of these three facets.

1.5 Have a Good Read !

Holte, Denmark

March 12, 2024: 10:48 am

8 CONTENTS

Chapter 2

Domains

Contents

2.1 Domains: What are They ? . 10

2.1.1 A Characterization . 11

2.1.2 Endurants and Perdurants . 11

2.1.3 A Discussion of Our Characterization of a Concept of Domain 12

2.2 A Domain Analysis & Description Ontology 12

2.2.1 The Chosen Ontology . 12

2.2.2 Discussion of The Chosen Ontology . 13

2.3 The Name, Type and Value Concepts . 14

2.3.1 Names . 14

2.3.2 Types . 14

2.3.3 Values . 14

2.4 Phenomena and Entities . 14

2.5 Endurants and Perdurants . 15

2.5.1 Endurants . 15

2.5.2 Perdurants . 15

2.5.3 Ontological Choice . 16

2.6 Phases, Stages and Steps of Domain Study 16

2.7 External and Internal Endurant Qualities 17

– Tangibles and Intangibles . 17

2.7.1 External Qualities – Tangibles . 17

2.7.1.1 The Universe of Discourse . 17

2.7.1.2 Solid and Fluid Endurants . 18

2.7.1.2.1 Discrete or Solid Endurants. 18

2.7.1.2.2 Fluids. 18

2.7.1.3 Parts and Living Species Endurants 18

2.7.1.3.1 Parts. 19

2.7.1.3.1.1 Atomic Parts. 19

2.7.1.3.1.2 Compound Parts. 19

2.7.1.3.1.3 Cartesians. 19

2.7.1.3.1.4 Part Sets. 20

2.7.1.4 Compound Observers. 21

2.7.1.5 Example Domain Models: External Qualities 22

2.7.1.6 States. 22

2.7.1.7 Validity of Endurant Observations. 22

2.7.1.8 Summary of Analysis Predicates. 22

9

10 CONTENTS

2.7.2 Internal Qualities – Intangibles . 23

2.7.2.1 Unique Identity. 23

2.7.2.1.1 Uniqueness of Parts 24

2.7.2.1.2 Example Domain Model Unique Identifiers: 24

2.7.2.2 Mereology. 25

2.7.2.2.1 Example Domain Model Mereologies: 25

2.7.2.3 Attributes. 26

2.7.2.3.1 General . 26

2.7.2.3.2 Michael A. Jackson’s Attribute Categories. 27

2.7.2.3.2.1 A Presentation 27

2.7.2.3.2.2 A Revision . 27

2.7.2.3.3 Analytic Attribute Extraction Functions: 28

2.7.2.3.4 Example Domain Model Attributes: 29

2.7.3 Intentional Pull . 29

2.7.4 Summary of Endurants . 30

2.8 Perdurant Concepts . 30

2.8.1 “Morphing” Parts into Behaviours . 30

2.8.2 Transcendental Deduction . 30

2.8.3 Actors – A Synopsis . 31

2.8.3.1 Action. 31

2.8.3.2 Event. 31

2.8.3.3 Behaviour. 31

2.8.4 Channel . 31

2.8.5 Behaviours . 32

2.8.5.1 Behaviour Signature. 32

2.8.5.2 Inert Arguments: Some Examples. 33

2.8.5.3 Behaviour Invocation. 33

2.8.5.4 Argument References . 33

2.8.5.4.1 Evaluation of Monitorable Attributes 34

2.8.5.4.2 Update of Biddable Attributes 34

2.8.5.5 Behaviour Description – Examples 35

2.8.5.5.1 Example Domain Model Behaviours: 35

2.8.5.6 Behaviour Initialization. 36

2.9 Perspectives . 36

The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R1

This chapter presents a method , its principles, procedures, techniques and tools, for analyzing &2

describing domains [38, 41, 51, 56, 58].

2.1 Domains: What are They ?

But what do we mean by ‘domain’ ?

1In proofs of Software correctness, with respect to Requirements, assumptions are made with respect to the
Domain.

2We use here the ampersand, ‘&’, as in A&B, to emphasize that we are treating A and B as one concept.

2.1. DOMAINS: WHAT ARE THEY ? 11

2.1.1 A Characterization

Characterization 1 Domain: By a domain we shall understand a rationally describable segment
of a discrete dynamics fragment of a human assisted reality: the world that we daily observe – in
which we work and act, a reality made significant by human-created entities. The domain embody
endurants and perdurants

Example 1 Some Domain Examples: A few, more-or-less self-explanatory examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-made
dams, harbours, locks, etc. – and their conveyage of materials (ships etc.), cf. Chapter B.

• Road nets – with street segments and intersections, traffic lights and automobiles – and the
flow of these, cf. Chapter E.

• Pipelines – with their wells, pipes, valves, pumps, forks, joins and wells and the flow of
fluids, cf. Chapter I. and

• Container terminals – with their container vessels, containers, cranes, trucks, etc. – and the
movement of all of these, cf. Chapter K.

Characterization 1 relies on the understanding of the terms ‘rationally describable’, ‘discrete dy-
namics’, ‘human assisted’, ‘solid’ and ‘fluid’. The last two will be explained later. By rationally
describable we mean that what is described can be understood, including reasoned about, in a
rational, that is, logical manner – in other words logically tractable.3 By discrete dynamics we
imply that we shall basically rule out such domain phenomena which have properties which are
continuous with respect to their time-wise, i.e., dynamic, behaviour. By human-assisted we mean
that the domains – that we are interested in modelling – have, as an important property, that
they possess man-made entities.

2.1.2 Endurants and Perdurants

The above characterization hinges on the characterizations of endurants and perdurants.

Characterization 2 Endurants: Endurants are those quantities of domains that we can observe
(see and touch), in space, as “complete” entities at no matter which point in time – “material”
entities that persists, endures – capable of enduring adversity, severity, or hardship [Merriam
Webster]

Endurants are either natural [“God-given”] or artefactual [“man-made”]. Endurants may be either
solid (discrete) or fluid, and solid endurants, called parts, may be considered atomic or compound
parts; or, as in this compendium solid endurants may be further unanalysed living species: plants
and animals – including humans.

Characterization 3 Perdurants: Perdurants are those quantities of domains for which only a
fragment exists, in space, if we look at or touch them at any given snapshot in time [Merriam
Webster]

Perdurants are here considered to be actions, events and behaviours.

• • •

We exclude, from our treatment of domains, issues of ethics, biology and psychology.

3Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describable
in terms of the method of this chapter !

12 CONTENTS

2.1.3 A Discussion of Our Characterization of a Concept of Domain

Characterization 1 on the preceding page is our attempt to delineate the subject area. That is,
“our” concept of ‘domain’ is ‘novel’: new and not resembling something formerly known or used . As
such it may be unfamiliar to most readers. So it takes time to digest that characterization. So
the reader may have to return to the page, Page 11, to be reminded of the definition.

2.2 A Domain Analysis & Description Ontology

2.2.1 The Chosen Ontology

Figure 2.1 expresses an ontology4 for our analysis of domains. Not a taxonomy5 for any one specific
domain.

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic
Transcendense

Figure 2.1: A Domain Analysis & Description Ontology

The idea of Fig. 2.1 is the following:

• It presents a recipe for how to analyze a domain.

• You, the domain analyzer cum describer , are ‘confronted’6 with, or by a domain.

4An ontology is the philosophical study of being. It investigates what types of entities exist, how they are
grouped into categories, and how they are related to one another on the most fundamental level (and whether there
even is a fundamental level) [Wikipedia].

5A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classification, in
which things are organized into groups or types [Wikipedia].

6By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it,
talking with domain stakeholders: professional people working “in” the domain; You may, yourself, “be an entity”
of that domain !

2.2. A DOMAIN ANALYSIS & DESCRIPTION ONTOLOGY 13

• You have Fig. 2.1 on the facing page in front of you, on a piece of paper, or in Your mind,
or both.

• You are then asked, by the domain analysis & description method of this chapter, to “start”
at the uppermost •, just below and between the ‘r’ and the first ‘s’ in the main title,
Phenomena of Natural and Artefactual Universes of Discourse.

• The analysis & description ontology of Fig. 2.1 then directs You to inquire as to whether
the phenomenon – whichever You are ”looking at/reading about/...” – is either rationally
describable, i.e., is an entity (is entity) or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α, “below” which there may
be two alternative bullets, one, β, to the right and one to the left, γ.

• It is Your decision whether the answer to the “query” that each such situation warrants, is
yes, is β, or no, is γ.

• The characterizations of the concepts whose names, α, β, γ etc., are attached to the •s of
Fig. 2.1 are given in the following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers, “yes”
or “no”, to the •ed queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually indicated
by “yes” or “no” answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining the
phenomena You set out to analyze.

• If it is not a leaf, then further analysis is required.

• (We shall, in this compendium, leave out the analysis and hence description of living species.)

• If an analysis of a phenomenon has reached one of the (only) two ’s, then the analysis at
that • results in the domain describer describing some of the properties of that phenomenon.

• That analysis involves “setting aside”, for subsequent analysis & description, one or more
[thus analysis etc.-pending] phenomena (which are subsequently to be tackled from the
“root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has
been “set aside”.

2.2.2 Discussion of The Chosen Ontology

We shall in the following motivate the choice of the ontological classification reflected in Fig 2.1 on
the preceding page. We shall argue that this classification is not “an accidental choice”. In fact,
we shall try justify the classification with reference to the philosophy of Kai Sørlander [167–172]7.
Kai Sørlander’s aim in these books is to examine that which is absolutely necessary, inevitable, in
any description of the world. In [58, Chapter 2] we present a summary of Sørlander’s philosophy.
In paragraphs, in the rest of this chapter, marked Ontological Choice, we shall relate Sørlander’s
philosophy’s “inevitability” to the ontology for studying domains.

7The 2022 book, [171], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme of
the earlier, 1994–2016 books. [172] is an English translation of [171]

14 CONTENTS

2.3 The Name, Type and Value Concepts

Domain modelling , as well as programming , depends, in their specification, on separation of concerns:
which kind of values are subjectable to which kinds of operations, etc., in order to achieve ease
of understanding a model or a program, ease of proving properties of a model, or correctness of a
program.

2.3.1 Names

We name things in order to refer to them in our speech, models and programs. Names of types and
values in models and programs are usually not so-called “first-citizens”, i.e., values that can be
arguments in functions, etc. The “science of names” is interesting.8 In botanicalsociety.org.-

za/the-science-of-names-an-introduction-to-plant-taxonomy the authors actually speak
of a “science of names” in connection with plant taxonomy: the “art” of choosing such names that
reflect some possible classification of what they name.

2.3.2 Types

The type concept is crucial to programming and modelling.

Characterization 4 Type: A type is a class of values (“of the same kind”)

We name types.

Example 2 Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London Road Transport, the
US Federal Freeway System, etc.

• RN – the class of all road net instances (within a road transport).

• SA – the class of all automobiles (within a road transport)

You, the domain describer, choose type names. Choosing type names is a “serious affair”. It must
be done carefully. You can choose short (as above) or long names: Road Transport, Road Net, etc.
We prefer short, but not cryptic names, like X, Y, Z, Names that are easy to memorize, i.e.,
mnemonics.

2.3.3 Values

Values are what programming and modelling, in a sense, is all about”. In programming, values
are the data “upon” which the program code specifies computations. In modelling values are, for
example, what we observe: the entities in front of our eyes.

2.4 Phenomena and Entities

Characterization 5 Phenomena: By a phenomenon we shall understand a fact that is observed
to exist or happen

Some phenomena are rationally describable – to some degree9 – others are not.

8The study of names is called onomastics or onomatology . Onomastics covers the naming of all things, including
place names (toponyms) and personal names (anthroponyms).

9That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable
phenomena to select for analysis & description. Also in this sense one practices abstraction by “abstracting away”
[the analysis & description of] phenomena that are irrelevant for the “current” (!) domain description.

2.5. ENDURANTS AND PERDURANTS 15

Characterization 6 Entities: By an entity By an entity we shall understand a more-or-less
rationally describable phenomenon

We introduce the informal presentation language predicate is entity to hold for phenomena φ if
is entity(φ) holds.

Example 3 Phenomena and Entities: Some, but not necessarily all aspects of a river can be
rationally described, hence can be still be considered entities. Similarly, many aspects of a road
net can be rationally described, hence will be considered entities

If You are not happy with this ‘characterization’, then substitute “rationally describable” with: de-
scribable in terms of the endurants and perdurants brought forward in this chapter: their external
and internal qualities, unique identifiers, mereologies amd attributes, channels and behaviours !

Ontological Choice: We choose to “initialize” our ontological “search” to a question of whether
a phenomenon is rationally describable – based on the tenet of Kai Sørlander’s philosophy, namely
that “whatever” we postulate is either true or false and that a principle of contradiction holds:
whatever we so express can not both hold and not hold

Kai Sørlander then develops his inquiry – as to what is absolutely necessary in any description of
the world – into the rationality of such descriptions necessarily be based on time and space and,
from there, by a series of transcendental deductions, into a base in Newton’s physics. We shall, in
a sense, stop there. That is, in the domain concept, such as we have delineated it, we shall not
need to go into Einsteinian physics.

2.5 Endurants and Perdurants

2.5.1 Endurants

We repeat characterization 2 on page 11.

Characterization 2 Endurant: Endurants are those quantities of domains that we can observe
(see and touch), in space, as “complete” entities at no matter which point in time – “material”
entities that persists, endures – capable of enduring adversity, severity, or hardship [Merriam
Webster]

Example 4 Endurants: Examples of endurants are: a street segment [link], a street intersection
[hub], an automobile

We introduce the informal presentation language predicate is endurant to hold for entity e if
is endurant(e) holds.

2.5.2 Perdurants

We repeat characterization 3 on page 11.

Characterization 3 Perdurant: Perdurants are those quantities of domains for which only a
fragment exists, in space, if we look at or touch them at any given snapshot in time [Merriam
Webster]

Example 5 Perdurant: A moving automobile is an example of a perdurant

We introduce the informal presentation language predicate is perdurant to hold for entity e if
is perdurant(e) holds.

16 CONTENTS

2.5.3 Ontological Choice

The ontological choice of entities being “viewed” as either endurants or perdurants is motivated
as follows: The concept of endurants can be justified in terms of Newton’s physics without go-
ing into kinematics, i.e., without including time considerations. The concept of perdurants can
then, on one hand, be justified in terms of Newton’s physics now taking time into consideration,
hence kinematics, and from there causality, etc.; and, on the other hand, and as we shall see, by
transcendentally deducing perdurants from solid endurants

2.6 Phases, Stages and Steps of Domain Study

We shall next outline recommended phases, stages, sub-stages and steps of domain analysis &
description. That outline will refer [forward] to a number of [domain ontology] concepts. These
will be characterized in the following sections.

• An initial phase of domain analysis and description is that of focusing, for a while, on the
study of domain endurants.

• That phase consists, as will transpire from the next sections, of stages of studying

– first the so-called external qualities of domain endurants,

– then the so-called internal qualities of domain endurants.

• The stage of studying external qualities consists of a number of steps.

– These steps analyze and describe the so-called

∗ atomic and

∗ compound

endurants of the domain.

– The number of steps of studying, analyzing and describing the external qualities of
domains, depends of the taxonomy of the endurants of the domain, that is, of how
many different kinds, that is: sorts, of endurants the studied domain exhibits.10

• The stage of studying internal qualities consists of a number of sequentially ordered sub-stages.

– There is first the sub-stage of studying the so-called unique identification of endurant
parts.

– Then there is the sub-stage of studying the so-called mereologies of endurant parts.

– Following there is the sub-stage of studying the so-called attributes of endurant parts.

– Finally there is the optional sub-stage of studying the so-called intentional pull of en-
durant parts.

Each of these sub-stages have one or more steps.11

• The second phase of domain analysis and description is that of focusing, for a while, on the
study of domain perdurants. That phase consists of several, sequentially ordered stages.

– The first stage is that of declaring the channels by means of which domain behaviours
interact.

– The second stage is that of associating with each part the signature of the transcenden-
tally deduced part behaviours.

10 Section 2.7.1 (pages 17–23) both unveils our ontology of external qualities of endurants and elements of our
method for describing these. It is necessary to keep these two separate aspects in mind: The first “broadens Your
mind” ! The second “hones Your engineering skills” !

11A remark, as that of footnote 10 likewise applies here, to cover Sect. 2.7.2 (pages 23–29)

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 17

– The third stage is that of defining the body of the behaviour definitions – and all their
subsidiary and auxiliary functions.

– The fourth stage, finally, is that of describing the initialization of the described do-
main.12

2.7 External and Internal Endurant Qualities
– Tangibles and Intangibles

The main contribution of this section is that of a calculus of domain analysis and description
prompts. Two facets are being presented. Aspects of a domain science: of how we suggest
domains can, and should, be viewed – ontologically. And aspects of a domain engineering: of how
we suggest domains can, and should, be analyzed and described.

We begin by characterizing the two concepts: external and internal qualities.

Characterization 4 External Qualities: External qualities of endurants of a manifest domain
are, in a simplifying sense, those we can see, touch and have spatial extent. They, so to speak,
take form.

Characterization 5 Internal Qualities: Internal qualities are those properties [of endurants] that
do not occupy space but can be measured or spoken about

Perhaps we should instead label these two qualities tangible and intangible qualities.

Ontological Choice: The rational, analytic philosophy issues of the inevitability of these qualities
is this: (i) can they be justified as inevitable, and (ii) can they be suitably “separated”, i.e., both
disjoint and exhaustive ? Or are they merely of empirical nature ?

more to come

The choice here is also that we separate our inquiry into examining both external and internal
qualities of endurants [not ‘either or’]

2.7.1 External Qualities – Tangibles

Example 6 External Qualities: An example of external qualities of a domains is: the Cartesian13

of sets of solid atomic street intersections, and of sets of solid atomic street segments, and of sets of
solid automobiles of a road transport system where Cartesian, sets, atomicity, and solidity reflect
external qualities

2.7.1.1 The Universe of Discourse

The most immediate external quality of a domain is the “entire” domain – “itself” ! So any domain
analysis starts by identifying that “entire” domain ! By giving it a name, say UoD, for universe
of discourse, Then describing it, in narrative form, that is, in natural language containing terms
of professional/technical nature, the domain. And, finally, formalizing just the name: giving the
name “status” of being a type name, that is, of the type of a class of domains whose further
properties will be described subsequently.

Narration:
The name, and hence the type, of the domain] is UoD
The UoD domain can be briefly characterized by ...

Formalization:
type UoD

12A remark, as those of footnotes 10 on the preceding page and 11 on the facing page, likewise applies here, to
cover Sect. 2.8 (pages 30–36)

13Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)

18 CONTENTS

2.7.1.2 Solid and Fluid Endurants

Given then that there are endurants we now postulate that they are either [mutually exclusive]
solid (i.e., discrete) or fluid.

Ontological Choice: Here we [seem to] make a practical choice, not one based on a philosophical
argument, one of logical necessity, but one based on empirical evidence. It is possible for endurants
to either be solid or fluid; and here we shall not consider the case where solid [fluid] endurants,
due to being heated [cooled], enters a fluid state [or vice versa]

2.7.1.2.1 Discrete or Solid Endurants.

Characterization 6 Discrete or Solid Endurants: By a solid [or discrete] endurant we shall
understand an endurant which is separate, individual or distinct in form or concept, or, rephrasing:
have ‘body’ [or magnitude] of three-dimensions: length, breadth and depth [127] [OED, Vol. II,
pg. 2046]

Example 7 Solid Endurants: Examples of solid endurants are wells, pipes, valves, pumps, forks,
joins and sinks of pipelines. [These units may, however, and usually will, contain fluids, e.g., oil,
gas or water]

We introduce the informal presentation language predicate is solid to hold for endurant e if
is solid(e) holds.

2.7.1.2.2 Fluids.

Characterization 7 Fluid Endurants: By a fluid endurant we shall understand an endurant which
is prolonged, without interruption, in an unbroken series or pattern; or, rephrasing: a substance
(liquid, gas or plasma) having the property of flowing, consisting of particles that move among
themselves [127] [OED, Vol. I, pg. 774]

Example 8 Fluid Endurants: Examples of fluid endurants are: water, oil, gas, compressed air,
smoke

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular14, or plant products, i.e., chopped
sugar cane, threshed, or otherwise15, et cetera. Fluid endurants will be analyzed and described in
relation to solid endurants, viz. their “containers”.

We introduce the informal presentation language predicate is fluid to hold for endurant e if
is fluid(e) holds.

2.7.1.3 Parts and Living Species Endurants

Given then that there are solid endurants we now postulate that they are either [mutually exclusive]
parts or living species.

Ontological Choice: With Sørlander, [172, Sect. 5.7.1, pages 71–72] we reason that one can dis-
tinguish between parts and living species

14 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modelling
purposes it is convenient to “compartmentalise” them as fluids !

15See footnote 14.

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 19

2.7.1.3.1 Parts.

Characterization 8 Parts: The non-living species solids are what we shall call parts

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned with
the analysis and description of endurants into parts.

Example 9 Parts: Example 7, of solids, is an example of parts

We introduce the informal presentation language predicate is part to hold for solid endurants e
if is part(e) holds.

We distinguish between atomic and compound parts.

Ontological Choice: It is an empirical fact that parts can be composed from parts. That possibility
exists. Hence we can [philosophy-wise] reason likewise

2.7.1.3.1.1 Atomic Parts.

Characterization 9 Atomic Part: By an atomic part we shall understand a part which the
domain analyzer considers to be indivisible in the sense of not meaningfully consist of sub-parts

Example 10 Atomic Parts: Examples of atomic parts are: hubs, H, i.e., street intersections;
links, L, i.e., the stretches of roads between two neighbouring hubs; and automobiles, A:

type H, L, A

We introduce the informal presentation language predicate is atomic to hold for parts p if
is atomic(p) holds.

2.7.1.3.1.2 Compound Parts.

Characterization 10 Compound Part: Compound parts are those which are observed to [po-
tentially] consist of several parts

Example 11 Compound Parts: An example of a compound parts is: a road net consisting of
a set of hubs, i.e., street intersections or “end-of-streets”, and a set of links, i.e., street segments
(with no contained hubs), is a Cartesian compound; and the sets of hubs and the sets of links are
part set compounds

We introduce the informal presentation language predicate is compound to hold for parts p if
is compound(p) holds.

We, pragmatically, distinguish between Cartesian product- and set-oriented parts.

Ontological Choice: The Cartesian versus set parts is an empirical choice. It is not justified in
terms of philosophy, but in terms of mathematics – of mathematical expediency !

2.7.1.3.1.3 Cartesians. Cartesians are product-like types – and are named after the French
philosopher, scientist and mathematician René Descartes (1596–1640) [Wikipedia].

Characterization 11 Cartesians: Cartesian parts are those compound parts which are observed
to consist of two or more distinctly sort-named endurants (solids or fluids)

Example 12 Cartesians: Road Transport: A road transport, rt:RT, is observed to consist of an
aggregate of a road net, rn:RN, and a set of automobiles, SA, where the road net is observed,
i.e., abstracted, as a Cartesian of a set of hubs, ah:AH, i.e., street intersections (or specifically
designated points segmenting an otherwise “straight” street into two such), and a set of links,
al:AL, i.e., street segments between two “neighbouring” hubs.

20 CONTENTS

type
RT, RN, SA, AH = H-set, AL = L-set

value
obs RN: RT → RN, obs SA: RT → SA,, obs AH: RN → AH, obs AL: RN → AL

We introduce the informal presentation language predicate is Cartesian to hold for compound
parts p if is Cartesian(p) holds.

Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to the type names of
the endurants16 of which it consists. The inquiry: record Cartesian part type names(p:P), we
decide, then yields the type of the constituent endurants.

Schema 1 record-Cartesian-part-type-names

value
record Cartesian part type names: P → T-set
record Cartesian part type names(p) as {ηE1,ηE2,...,ηEn}

Here T is the name of the type of all type names, and ηEi is the name of type Ei.

Please note the novel introduction of type names as values. Where a type identifier, say T, stands
for, denotes, a class of values of that type, ηT denotes the name of type T.

Please also note that record Cartesian part type names is not a description language con-
struct. It is an analysis language, i.e., an informal natural language, here English, construct. As
such it is being used by the domain analyzer cum describer who “applies” in to an observed en-
durant and notes down, in her mind or jots it on a scratch of paper, her decision as to appropriate
[new] type names.

Example 13 Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus observed to
consists of

• an aggregate of a road net, rn:RN, and

• an aggregate set of automobiles, sa:SA:

that is:

• record Cartesian part type names(rt:RT) = {ηRN,ηSA}

where the type name ηRT was – and the type names ηRN and ηSA are – coined, i.e., more-or-less
freely chosen, by the domain analyzer cum describer

2.7.1.3.1.4 Part Sets.

Characterization 12 Part Sets: Part sets are those compound parts which are observed to
consist of an indefinite number of zero, one or more parts

We introduce the informal presentation language predicate is part set to hold for compound
parts e if is part set(e) holds.

Once a part, say e:E, has been analyzed into a part set we inquire as to the set of parts and
their type of which it consists. The inquiry: record part set part type names, we decide, then
yields the (single) type of the constituent parts.

Schema 2 record-part-set-part-type-names

16We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 21

value
record part set part type names: E → TPs×TP
record part set part type names(e:E) as (η Ps,η P)

Here the name of the value, e, and the type names η Ps and η P are coined, i.e., more-or-less freely
chosen, by the domain analyzer cum describer

Please also note that record part set part type names is not a description language construct.
It is an analysis language, i.e., an informal natural language, here English, construct. As such it is
being used by the domain analyzer cum describer who “applies” in to an observed endurant and
notes down, in her mind or jots it on a scratch of paper, her decision as to appropriate [new] type
names.

Example 14 Part Sets: Road Transport: The road transport contains a set of automobiles. The
part set type name has been chosen to be SA. It is then determined (i.e., analyzed) that SA is a
set of Automobile of type A

• record part set part type names(sa:SA) = (η As,η A)

2.7.1.4 Compound Observers.

Once the domain analyzer cum describer has decided upon the names of atomic and compound
parts, obs erver functions can be applied to Cartesian and part set, e:E, parts:

Schema 3 Describe-Cartesians-and-Part-Set-Parts

value
let {η P1,η P2,...,η Pn} = record Cartesian part type names(e:E) in
“type

P1, P2, ..., Pn;
value

obs P1: E→P1, obs P2: E→P2,...n obs Pn: E→Pn ”
[respectively:]

let (η Ps,η P) = record part set part type names(e:E) in
“type

P, Ps = P-set,
value

obs Ps: E→Ps ”
end end

The “...” texts are the RSL texts “generated”, i.e., written down, by the domain describer. They
are domain model specification units. The “surrounding” RSL-like texts are not written down as
phrases, elements, of the domain description. They are elements of the domain describers’ “notice
board”, and, as such, elements of the development of domain models. We have introduced a core
domain modelling tool the obs ... observer function, one to be “applied” mentally by the domain
describer, and one that appears in (AMOL) domain descriptions The obs ... observer function is
“applied” by the domain describer, it is not a computable function.

Please also note that Describe-Cartesians-and-Part-Set-Parts schema, 3, is not a de-
scription language construct. It is an analysis language, i.e., an informal natural language, here
English, construct. As such it is being used by the domain analyzer cum describer who “applies”
in to an observed endurant and notes down, but now in a final form, elements, that is domain
description units.

• • •

22 CONTENTS

A major step of the development of domain models has now been presented: that of the analysis
& description of the external qualities of domains.

Schema ?? on page ?? is the first manifestation of the domain analysis & description method
leading to actual domain description elements.

From unveiling a science of domains we have “arrived” at an engineering of domain descriptions.

2.7.1.5 Example Domain Models: External Qualities

These are now the models of external qualities of domains illustrated in Part V’s Chapters E–P:

• Road Transport Sect. E.2, pp 172–174

• Rail Systems Sect. F.1.1, pp 192–194

• Credit Cards Sect. G.2.1, pp 212–212

• Market Systems Sect. H.3.1, pp 229–232

• Pipelines Sect. I.1, pp 262–263

• Shipping Sect. J.2, pp 283–286

• Container Terminals Sect. K.5.1, pp 317–321

• Document Systems Sect. M.3, pp 365–365

• Swarms of Drones Sect. N.2.1.1, pp 389–390

• Assembly Lines Sect. O.2.2.1.7, pp 428–429

• Nuclear Power Plants Sect. P.3.1.1, pp 459–463

2.7.1.6 States.

Characterization 13 States: By a state we shall mean any subset of the parts of a domain

Example 15 Road Transport State:

variable
hs:AH := obs AH(obs RN(rt)),
ls:AL := obs AL(obs RN(rt)),
as:SA := obs SA(rt),
σ:(H|L|A)-set := hs∪ls∪as

We have chosen to model domain states as variables rather than as values. The reason for this is
that the values of monitorable, including biddable part attributes17 can change, and that domains
are often extended and “shrunk” by the addition, respectively removal of parts:

Example 16 Road Transport Development: adding or removing hubs, links and automobiles

We omit coverage of the aspect of bidding changes to monitorable part attributes.

2.7.1.7 Validity of Endurant Observations.

We remind the reader that the obs erver functions, as all later such functions: uid -, mereo - and
attr -functions, are applied by humans and that the outcome of these “applications” is the result of
human choices, and possibly biased by inexperience, taste, preference, bias, etc. How do we know
whether a domain analyzer & describer’s description of domain parts is valid ? Whether relevantly
identified parts are modeled reasonably wrt. being atomic, Cartesians or part sets Whether all
relevant endurants have been identified ? Etc. The short answer is: we never know. Our models
are conjectures and may be refuted [147]. A social process of peer reviews, by domain stakeholders
and other domain modelers is needed – as may a process of verifying18 properties of the domain
description held up against claimed properties of the (real) domain.

2.7.1.8 Summary of Analysis Predicates.

Characterizations 6–12 imply the following analysis predicates (Defn.: δ, pageπ):

17The concepts of monitorable, including biddable part attributes is treated in Sect. 2.7.2.3.2.
18testing, model checking and theorem proving

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 23

• Endurant Ontology:

– is entity, δ6π 15

– is entity, δ6π 15

– is entity, δ6π 15

– is endurant, δ2π 15

– is perdurant, δ3 π 15

– is solid, δ6π 18

– is fluid, δ7 π 18

– is part, δ8 π 19

– is atomic, δ9π 19

– is compound, δ10π 19

– is Cartesian, δ11π 19

– is part set, δ12π 20

We remind the reader that the above predicates represent “formulas” in the presentation, not
the description, language. They are not AMOL clauses. They are in the mind of the domain
analyzers cum describers. They are “executed” by such persons. Their result, whether true, false
or chaos19, are noted by these persons and determine their next step of domain analysis.

2.7.2 Internal Qualities – Intangibles

The previous section has unveiled an ontology of the external qualities of endurants. The unveiling
consisted of two elements: a set of analysis predicates, predicates 6–12, and analysis functions,
schemas 1–2, and a pair of description functions, schema ?? on page ??

The application of description functions result in AMOL text.
That text conveys certain properties of domains: that they consists of such-and-such endurants,

notably parts, and that these endurants “derive” from other endurants. But the AMOL description
texts do not “give flesh & blood” to these endurants. Questions like: ‘what are their spatial extents ?’,
‘how much do the weigh ?’, ‘what colour do they have ?’, et cetera, are left unanswered. In the present
section we shall address such issues. We call them internal qualities.

Characterization 14 Internal Qualities: Internal qualities are those properties [of endurants]
that do not occupy space but can be measured or spoken about

Example 17 Internal qualities: Examples of internal qualities are the unique identity of a part,
the mereological relation of parts to other parts, and the endurant attributes such as temperature,
length, colour, etc.

This section therefore introduces a number of domain description tools:

• uid : the unique identifier observer of parts;

• mereo : the mereology observer of parts;

• attr : (zero,) one or more attribute observers of endurants; and

• attributes : the attribute query of endurants.

2.7.2.1 Unique Identity.

Ontological Choice: We postulate that separately discernible parts have unique identify. The
issue, really, is a philosophical one. We refer to [58, Sects. 2.2.2.3–2.2.2.4, pages 14–15] for a
discussion of the existence and uniqueness of entities

Characterization 15 Unique Identity : A unique identity is an immaterial property that distin-
guishes any two spatially distinct solids20

19The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for its
application does not hold.

24 CONTENTS

The unique identity of a part p of type P is obtained by the postulated observer uid P:

Schema 4 Describe-Unique-Identity-Part-Observer

“type
P,PI

value
uid P: P → PI”

Here PI is the type of the unique identifiers of parts of type P.

Example 18 Unique Road Transport Identifiers: The unique identifierss of a road transport, rt:RT,
consists of the unique identifiers of the

• road transport – rti:RTI,

• (Cartesian) road net – rni:RNI,

• (set of) automobiles – sa:SAI,

• automobile, ai:AI,

• (set of) hubs, hai:AHI,

• (set of) links, lai:LAI,

• hub, hi:HI, and

• link, li:LI,

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer cum
describer – though, as You can see, these names were here formed by “suffixing” Is to relevant
part names

We have thus introduced a core domain modelling tool the uid ... observer function, one to be
“applied” mentally by the domain describer, and one that appears in (AMOL) domain descriptions
The uid ... observer function is “applied” by the domain describer, it is not a computable function.

2.7.2.1.1 Uniqueness of Parts No two parts have the same unique identifier.

Example 19 Road Transport Uniqueness:

variable
hsuids:HI-set := { uid H(h) | h:H•u∈σ }
lsuids:LI-set := { uid L(l) | l:L•u∈σ }
asuids:AI-set := { uid A(a) | a:A•u∈σ }
σuids:(HI|LI|AI)-set := { uid (H|L|A)(u) | u:(H|L|A)•u∈σ }

axiom
� card σ = card σuids For σ see Sect. 2.7.1.6 on page 22.

We have chosen, for the same reason as given in Sect. 2.7.1.6, to model a unique identifier state.
The � [always] prefix in the axiom then expresses that changes of parts or addition of parts to
and deletions of parts from the domain shall maintain their uniqueness over time (i.e., always).

2.7.2.1.2 Example Domain Model Unique Identifiers: These are now the models of unique
identification of domain parts illustrated in Part V’s Chapters E–P:

• Road Transport Sect. E.3.1, pp 174–176

• Rail Systems Sect. F.1.2.1, pp 194–195

• Credit Cards Sect. G.2.2.1, pp 213–213

• Market Systems Sect. H.4.1, pp 232–233

• Pipelines Sect. I.2.1, pp 263–264

• Shipping Sect. J.3.1, pp 286–288

• Container Terminals Sect. K.5.3, pp 322–323

• Document Systems Sect. M.4, pp 365–365

20For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique
identity. The pragmatics is that we, in our extensive modelling experiments have not found a need for such
ascription !

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 25

• Swarms of Drones Sect. N.2.2, pp 390–392

• Assembly Lines Sect. O.2.2.2.1, pp 429–435

• Nuclear Power Plants Sect. P.3.1.2.1, pp 463–465

2.7.2.2 Mereology.

The concept of mereology is due to the Polish mathematician, logician and philosopher Stanis law
Leśniewski (1886–1939) [47, 54, 68, 135, 179].

Characterization 16 Mereology : Mereology is a theory of [endurant] part-hood relations: of
the relations of an [endurant] parts to a whole and the relations of [endurant] parts to [endurant]
parts within that whole

Ontological Choice: Stanis law Leśniewski was not satisfied with Bertrand Russell’s “repair” of
Gottlob Frege’s axiom systems for set theory. Instead he put forward his axiom system for, as he
called it, mereology. Both as a mathematical theory and as a philosophical reasoning

Example 20 Mereology : Examples of mereologies are that a link is topologically connected to
exactly one or, usually, two specific hubs, that hubs are connected to zero, one or more specific
links, and that links and hubs are open to the traffic of specific subsets of automobiles

Mereologies can be expressed in terms of unique identifiers.

Example 21 Mereology Representation: For our ‘running road transport example’ the mereologies
of links, hubs and automobiles can thus be expressed as follows:

• mereo L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the link
connects, i.e., are in hsuids;

• mereo H(h) = {li1,li2,...,lin} where li1,li2,...,lin are the unique identifiers of the links that are
imminent upon (i.e., emanates from) the hub, i.e., are in lsuids; and

• mereo A(a) = {ri1,ri2,...,rim} where ri1,ri2,...,rim are unique identifiers of the road (hub and
link) elements that make up the road net, i.e., are in hsuids∪lsuids

Once the unique identifiers of all parts of a domain has been described we can analyses and describe
their mereologies. The inquiry: mereo P(p) yields a mereology type (name), say PMer, and its
description21:

Schema 5 Describe-Mereology

“type
PMer = M(PI1,PI2,...,PIm)

value
mereo P: P → PMer

axiom
A(pm:PMer)”

where M(PI1,PI2,...,PIm) is a type expression over unique identifier types of the domain; mereo P
is the mereology observer function for parts p:P; and A(pm:PMer) is an axiom that secures that
the unique identifiers of any part are indeed of parts of the domain.

2.7.2.2.1 Example Domain Model Mereologies: These are now the models of mereologies of
domain parts illustrated in Part V’s Chapters E–P:

21Cf. Sect. 2.7.1.4

26 CONTENTS

• Road Transport Sect. E.3.2, pp 176–178

• Rail Systems Sect. F.1.2.2, pp 195–200

• Credit Cards Sect. G.2.2.2, pp 213–215

• Market Systems Sect. H.4.2, pp 233–236

• Pipelines Sect. I.2.2, pp 264–265

• Shipping Sect. J.3.2, pp 288–292

• Container Terminals Sect. K.5.5, pp 325–330

• Document Systems Sect. M.5, pp 366–366

• Swarms of Drones Sect. N.2.3, pp 392–395

• Assembly Lines Sect. O.2.2.2.2, pp 435–445

• Nuclear Power Plants Sect. P.3.1.2.2, pp 465–472

2.7.2.3 Attributes.

Attributes are what finally gives “life” to endurants: The external qualities “only” named and gave
structure to their atomic or compound types. The internal qualities of uniqueness and mereology
are intangible quantities. The internal quality of attributes gives “flesh & blood” to endurants:
they let us express endurant properties that we can more easily, i.e., concretely, relate to.

2.7.2.3.1 General

Characterization 17 Attributes: Attributes are properties of endurants that can be measured
either physically (by means of length (ruler) and spatial quantity measuring equipment, electron-
ically, chemically, or otherwise) or can be objectively spoken about

Ontological Choice: First some empirical observation: in reasoning about “the world around us”
we express its properties in terms of predicates. These predicates, for example: “that building’s
wall is red”, building refers to an endurant part whereas wall and red refers to attributes. Now the
“rub”: endurant attributes is what give “flesh & blood” to domains 22

Attributes are of types and, accordingly have values.
We postulate an informal domain analysis function, record attribute type names: The do-

main analyzer, in observing a part, p:P , analyzes it into the set of attribute names of parts p:P

Schema 6 record-attribute-type-names

value
record attribute type names: P → ηT-set
record attribute type names(p:P) as ηT-set

Example 22 Road Net Attributes, I : Examples of attributes are: hubs have states, hσ:HΣ: the
set of pairs of link identifiers, (f li,tli), of the links from and to which automobiles may enter,
respectively leave the hub; and hubs have state spaces, hω:HΩ: the set of hub states “signaling”
which states are open/closed, i.e., green/red; links that have lengths, LEN; and automobiles have
road net positions, APos, either at a hub, atH, or on a link , onL, some fraction, f:Real, down a link,
identified by li, from a hub, identified by fhi, towards a hub, identified by thi. Hubs and links have
histories: time-stamped, chronologically ordered sequences of automobiles entering and leaving
links and hubs, with automobile histories similarly recording hubs and links entered and left.

type
HΣ = (LI×LI)-set
HΩ = HΣ-set
LEN = Nat m
APos = atH | onL
atH :: HI
onL :: LI × (fhi:HI × f:Real × thi:HI)

HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗
value

attr HΣ: H → HΣ
attr HΩ: H → HΩ
attr LEN: L → LEN
attr APos: A → APos

22Editorial remark: I am not yet satisfied with this reasoning. The issue is: to force the concept of attributes to
be justified philosophically, as an inevitable element of any world description, and not being forced upon us solely
from empirical evidence.

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 27

attr HHis: H → HHis
attr LHis: L → LHis
attr AHis: A → AHis

axiom
∀ (li,(fhi,f,thi)):onL • 0<f<1

∧li∈lsuids∧{fhi,thi}⊆hsuids∧...

Schema 7 Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record attribute type names(e:E) in
“ type

A1, A2, ..., An
value

attr A1: E → A1, attr A2: E → A2, ..., attr An: E → An
axiom

∀ a1:A1, a2:A2, ..., an:An: A(a1,a2,...,an) ”
end

2.7.2.3.2 Michael A. Jackson’s Attribute Categories.

2.7.2.3.2.1 A Presentation Michael A. Jackson [116] has suggested a hierarchy of attribute
categories: from static (is static23) to dynamic (is dynamic24) values – and within the dy-
namic value category: inert values (is inert25), reactive values (is reactive26), active values
(is active27) – and within the dynamic active value category: autonomous values (is autono-

mous28), biddable values (is biddable29), and programmable values (is programmable30) . We
postulate informal domain analysis predicates, “performed” by the domain analyzer:

value
is static,is autonomous,is biddable,is programmable [etc.]: ηT→Bool

We refer to [116] and [58] [Chapter 5, Sect. 5.4.2.3] for details. We summarize Jackson’s attribute
categorization in Fig. 2.2.

2.7.2.3.2.2 A Revision We suggest a minor revision of Michael A. Jackson’s attribute catego-
rization, see Fig. 2.3 on the following page.

We single out the inert from the ontology of Fig. 2.2 on the next page
Inert attributes seem to be “set externally” to the endurant. So we now distinguish between

is external and is internal dynamic attributes.
This distinction has [pragmatic] consequences for how we treat arguments of the behaviours

of parts, cf. Sect. 2.8.5.1 (page 32).

Example 23 Road Net Attributes, II : The link length and hub state space attributes are static,
hub states and automobile positions programmable. Automobile speed and acceleration attributes,
which we do not model, are monitorable

The attributes categorization determines, in the next major section on perdurants, the treatment
of hub, link and automobile behaviours.

23static: values are constants, cannot change
24dynamic: values are variable, can change
25inert: values can only change as the result of external stimuli where these stimuli prescribe new values
26reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from

outside the domain of interest or from other endurants.
27active: values can change (also) on their own volition
28autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law

onto themselves and their surroundings”.
29biddable: values are prescribed but may fail to be observed as such
30programmable: values can be prescribed

28 CONTENTS

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

Figure 2.2: Michael Jackson’s Attribute Categories

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Figure 2.3: Revised Attribute Categories

2.7.2.3.3 Analytic Attribute Extraction Functions: For later purpose we need characterize
three specific attribute category extraction functions: static attributes, monitorable attri-

butes, and programmable attributes:

value
p:P
tns = record attribute type names(p)

static attributes: ηT -set → ηT -set
static attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is static(tn) }

inert attributes: ηT -set → ηT -set
inert attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is inert(tn) }

monitorable attributes ηT -set → ηT -set
monitorable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is monitorable(tn) }

programmable attributes ηT -set → ηT -set
programmable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is programmable(tn) }

is monitorable: T → Bool
is monitorable(t) ≡ ∼is static(t) ∧ ∼is inert(t) ∧ ∼is programmble(t)

2.7. EXTERNAL AND INTERNAL ENDURANT QUALITIES 29

Please be reminded that these functions are informal. They are part of the presentation language.
Do not be cofused by their AMOL-like appearance.

2.7.2.3.4 Example Domain Model Attributes: These are now the models of attributes of
domain endurants illustrated in Part V’s Chapters E–P:

• Road Transport Sect. E.3.3, pp 178–181

• Rail Systems Sect. F.1.2.3, pp 200–203

• Credit Cards Sect. G.2.2.4, pp 215–215

• Market Systems Sect. H.4.3, pp 236–242

• Pipelines Sect. I.2.4, pp 267–272

• Shipping Sect. J.3.3, pp 292–294

• Container Terminals Sect. K.5.6, pp 330–335

• Document Systems Sect. M.6.6, pp 366–367

• Swarms of Drones Sect. N.2.4, pp 395–400

• Assembly Lines Sect. O.2.2.2.3, pp 445–449

• Nuclear Power Plants Sect. P.3.1.2.3, pp 472–479

2.7.3 Intentional Pull

Ontological Choice: In [170, pages 167–168] Sørlander argues wrt. “how can entities be the source
of forces ?” and thus reasons for gravitational pull . That same kind of reasoning, with proper
substitution of terms, leads us to the concept of intentional pull

Two or more parts of different sorts, but with overlapping sets of intents31 may excert an intentional
“pull” on one another. This intentional “pull” may take many forms. Let px : X and py : Y be two
parts of different sorts (X,Y), and with common intent, ι. Manifestations of these, their common
intent must somehow be subject to constraints, and these must be expressed predicatively .

When a compound artifact models “itself” as put together with a number of other endurants
then it does have an intentionality and the components’ individual intentionalities does, i.e., shall
relate to that.

Example 24 Road Transport Intentionality : Automobiles include the intent of ’transport’, and
so do hubs and links. Manifestations of "transport" are reflected in hubs, links and automobiles
having the history attribute. The intentional “pull” of these manifestations is this: For every
automobile, if it records being in some hub or on some link at time τ , then the designated hub,
respectively link, records exactly that automobile; and vice versa: for every hub [link], if it records
the visit of some automobile at time τ , then the designated automobile records exactly that hub
[link]. We leave the formalization of the above to the reader

Example 25 Double-entry Bookkeeping : Another example of intentional “pull” is that of double-
entry bookkeeping. Here the income/expense ledger must balance the actives/passives ledger

Example 26 The Henry George Theorem.: The Henry George theorem states that under certain
conditions, aggregate spending by government on public goods will increase aggregate rent based
on land value (land rent) more than that amount, with the benefit of the last marginal investment
equaling its cost 32,33

31Intent: purpose; God-given or human-imposed !
32Stiglitz, Joseph (1977). “The Theory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The

Economics of Public Services. Palgrave Macmillan, London. pp. 274333. doi:10.1007/978-1-349-02917-4 12. ISBN
978-1-349-02919-8.

33Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist. His
writing was immensely popular in 19th-century America and sparked several reform movements of the Progressive
Era. He inspired the economic philosophy known as Georgism, the belief that people should own the value they
produce themselves, but that the economic value of land (including natural resources) should belong equally to all
members of society. George famously argued that a single tax on land values would create a more productive and
just society.

30 CONTENTS

2.7.4 Summary of Endurants

We have completed our treatment of endurants. That treatment was based on an ontology for
the observable phenomena of domains – such as we have delineated the concept of domains. The
treatment was crucially based on an ontology for the structure of domain phenomena, and, in
a sense, “alternated” between analysis predicates, analysis functions, and description functions.
The question of whether the postulated ontology, cf. Fig. 2.1, is the only possible ontology for the
analysis & description of domains, we shall presently defer.

2.8 Perdurant Concepts

The main contribution of this section is that of transcendentally deducing perdurants from endurant
parts, in particular behaviours “of” parts.

Major perdurants are those of actions, events and behaviours with behaviours generally being
sets of sequences of actions, events and behaviours.

2.8.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those (en-
durant) parts which we, as domain analyzers cum describers, have endowed with all three kinds
of internal qualities: unique identifiers, mereologies and attributes. We shall use the CSP [110]
constructs of AMOL (derived from RSL [100]) to model concurrent behaviours.

2.8.2 Transcendental Deduction

Characterization 18 Transcendental : By transcendental we shall understand the philosophical
notion: the a priori or intuitive basis of knowledge, independent of experience

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but also
determines rational thought.

Characterization 19 Transcendental Deduction: By a transcendental deduction we shall un-
derstand the philosophical notion: a transcendental “conversion” of one kind of knowledge into
a seemingly different kind of knowledge

Example 27 Transcendental Deductions – Informal Examples: We give some intuitive examples of
transcendental deductions. They are from the “domain” of programming languages. There is the
syntax of a programming language, and there are the programs that supposedly adhere to this
syntax. Given that, the following are now transcendental deductions.

The software tool, a syntax checker, that takes a program and checks whether it satisfies the
syntax, including the statically decidable context conditions, i.e., the statics semantics – such a
tool is one of several forms of transcendental deductions.

The software tools, an automatic theorem prover and a model checker, for example SPIN

[113], that takes a program and some theorem, respectively a Promela statement, and proves,
respectively checks, the program correct with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.

Yes, indeed, any abstract interpretation [82, 83] reflects a transcendental deduction: firstly,
these examples show that there are many transcendental deductions; secondly, they show that
there is no single-most preferred transcendental deduction

Ontological Choice: So this, then, is, in a sense, our “final” ontological choice: that of transcen-
dentally deduce behaviours from, or of, parts

2.8. PERDURANT CONCEPTS 31

2.8.3 Actors – A Synopsis

This section provides a summary overview.

Characterization 20 Actors: An actor is anything that can initiate an action, event or
behaviour

2.8.3.1 Action.

Characterization 21 Actions: An action is a function that can purposefully change a state

Example 28 Road Net Actions: These are some road transport actions: an automobile leaving
a hub, entering a link; leaving a link, entering a hubs; entering the road net; and leaving the road
net

2.8.3.2 Event.

Characterization 22 Events: An event is a function that surreptitiously changes a state

Example 29 Road Net Events: These are some road net events: The blocking of a link due to a
mud slide; the failing of a hub traffic signal due to power outage; an automobile failing to drive;
and the blocking of a link due to an automobile accident

We shall not formalize events.

2.8.3.3 Behaviour.

Characterization 23 Behaviours: Behaviours are sets of sequences of actions, events and be-
haviours

Concurrency is modeled by the sets of sequences. Synchronization and communication of be-
haviours are effected by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.
Example 30 Road Net Traffic : Road net traffic can be seen as a behaviour of all the behaviours
of automobiles, where each automobile behaviour is seen as sequence of start, stop, turn right,
turn left, etc., actions; of all the behaviours of links where each link behaviour is seen as a set
of sequences (i.e., behaviours) of “following” the link entering, link leaving, and movement of
automobiles on the link; of all the behaviours of hubs (etc.); of the behaviour of the aggregate of
roads, viz. The Department of Roads, and of the behaviour of the aggregate of automobiles, viz,
The Department of Vehicles.

2.8.4 Channel

Characterization 24 Channel : A channel is anything that allows synchronization and com-
munication of values between behaviours

Schema 8 Channel

We suggest the following schema for describing channels:

“channel { ch[{ui,uj}] | ui,ij:UI • ... } M

where ch is the describer-chosen name for an array of channels, ui,uj are channel array indices of
the unique identifiers, UI, of the chosen domain

Example 31 Road Transport Interaction Channel :

channel { ch[{ui,uj}] | {ui,ij}:(HI|LI|AI)-set • ui 6=uj∧{ui,uj}⊆σuids } M

Channel array ch is indexed by a “pair” of distinct unique part identifiers of the domain. We shall
later outline M, the type of the “messages” communicated between behaviours

32 CONTENTS

2.8.5 Behaviours

We single out the perdurants of behaviours – as they relate directly to the parts of Sect. 2.7. The
treatment is “divided” into three sections.

2.8.5.1 Behaviour Signature.

Schema 9 Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name of the behaviour,
Bp, and a function type expression as indicated:

value
Bp: Uidp→34 Mereop→Sta Valsp→Inert Valsp→Mon Refsp→Prgr Valsp → { ch[{i,j}] | ... } Unit

We explain:

• Uidp is the type of unique identifiers of part p, uid P(p) = Uidp;

• Mereop is the type of the mereology of part p, mereo P(p) = Mereop;

• Sta Valsp is a Cartesian of the type of inert attributes of part p. Given record attribute -

type names(p) static attributes(record attribute type names(p)) yields Sta Valsp;

• Inert Valsp is a Cartesian of the type of static attributes of part p. Given record attribute -

type names(p) inert attributes(record attribute type names(p)) yields Inert Valsp;

• Mon Refsp is a Cartesian of the attr ibute observer functions of the types of monitorable at-
tributes of part p. Given record attribute type names(p) analysis function monitorable -

attributes(record attribute type names(p)) yields Mon Valsp;

• Prgr Valsp is a Cartesian of the type of programmable attributes of part p. Given record at-

tribute type names(p) analysis function programmable attributes(record attribute -

type names(p)). yields Prgr Valsp;

• { ch[{i,j}] | ... } specifies the channels over which part p behaviours, Bp, may communicate;

and:

• Unit is the type name for the () value35

The Cartesian arguments may “degenerate” to the non-Cartesian of no, or just one type identifier,
In none, i.e., (), then () may be skipped. If one, e.g., (a), then (a) is listed.

Example 32 Road Transport Behaviour Signatures:

value
hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)

→{ch[{uid H(p),ai}]|ai:AI•ai∈asuid} Unit
link: LI→MereoL→(LEN×...)→(...)→(LHist×...)

→{ch[{uid L(p),ai}]|ai:AI•ai∈asuid} Unit
automobile: AI→MereoA→(...)→(attr AVel×attr HAcc×...)→(APos×AHist×...)

→{ch[{uid H(p),ri}]|ri:(HI|LI)•ri∈hsuid∪lsuid} Unit

Here we have suggested additional part attributes: monitorable automobile velocity and acceler-
ation, AVel, AAcc, and omitted other attributes

34We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses Schönfinkel#Further reading (Curried
https://en.wikipedia.org/wiki/Currying) the function type

35– You may “read’ () as the value yielded by a statement, including a never-terminating function

2.8. PERDURANT CONCEPTS 33

2.8.5.2 Inert Arguments: Some Examples.

Let us give some examples of inert attributes of automobiles. (i) Driving uphill, one a level road, or
downhill, excert some inert “drag” or “pull”. (ii) Velocity can be treated as a reactive attribute
– but it can be [approximately] calculated on the basis of, for example, these inert attributes:
drag/pull and accelerator pedal pressure, and the static engine power attribute.

2.8.5.3 Behaviour Invocation.

Schema 10 Behaviour Invocation

Behaviours are invoked as follows:

“Bp(uid p(p))
36

(mereo P(p))
(attr staA1(p),...,attr staAs(p))

(attr inertA1(p),...,attr inertAi(p))
(attr monA1,...,attr monAm)

(attr prgA1(p),...,attr prgAp(p))”

• All arguments are passed by value.

• The uid value is never changed.

• The mereology value is usually not changed.

• The static attribute values are fixed, never changed.

• The inert attribute values are fixed, but can be updated by receiving explicit input commu-
nications.

• The monitorable attribute values are functions, i.e., it is as if the “actual” monitorable values
are passed by name !

• The programmable attribute values are usually changed, “updated”, by actions described in
the behaviour definition

2.8.5.4 Argument References

Within behaviour descriptions, see next section, references are made to the behaviour arguments.
References, a, to unique identifier, mereology, static and progammable attribute arguments yield
their value. References, a, to monitorable attribute arguments also yield their value. This value is
an attr A observer function. To yield, i.e., read, the monitorable attribute value this function is
applied to that behaviour’s uniquely identified part, puid, in the global part state, σ. To update,,
i.e., write, say, to a value v, for the case of a biddable, monitorable attribute, that behaviour’s
uniquely identified part, puid, in the global part state, σ, shall have part puid’s A attribute changed
to v – with all other attribute values of puid unchanged. Common to both the read and write
functions is the retrieve part function:

1. Given a unique part identifier, pi, assumed to be that of an existing domain part,

2. retr part reads the global [all parts] variable σ to retrieve that part p whose unique part
identifier is pi.

36We show the arguments of the invocation on separate lines only for readability. That is: normally we show the
invocation arguments as B(...)(...)(...)(...)(...).

34 CONTENTS

value
2. retr part: PI → P read
2. retr part(pi) ≡ let p:P • p ∈ c σ ∧ uid P(p)=pi in p end
1. pre: ∃ p:P • p ∈ cσ ∧ uid P(p)=pi

You may think of the functions being illustrated in this section, Sect. 2.8.5.4, retr part, read A from P
and update P with A, as “belonging” to the description language, but here suitably expressed for
any domain, that is, with suitable substitutions for A and P.

2.8.5.4.1 Evaluation of Monitorable Attributes

3. Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A be a
monitorable attribute of p, and let ηA be the name of attribute A.

4. Evaluation of the [current] attribute A value of p is defined by function read A from P.

value
3. pi:PI, a:A, ηA:ηT
4. read A from P: PI × T → read σ A
4. read A(pi,ηA) ≡ attr A(retr part(pi))

2.8.5.4.2 Update of Biddable Attributes

5. The update of a monitorable attribute A, with attribute name ηA of part p, identified by pi,
to a new value writes to the global part state σ.

6. Part p is retrieved from the global state.

7. A new part, p′ is formed such that p′ is like part p:

(a) same unique identifier,

(b) same mereology,

(c) same attributes values,

(d) except for A.

8. That new p′ replaces p in σ.

value
3. σ, a:A, pi:PI, ηA:ηT

5. update P with A: PI × A × ηT → write σ
5. update P with A(pi,a,ηA) ≡
6. let p = retr part(pi) in
7. let p′:P •

7a. uid P(p′)=pi
7b. ∧ mereo P(p)=mereo P(p′)
7c. ∧ ∀ ηA′ ∈ record attribute type names(p)\{ηA} ⇒ attr A′(p)=attr A′(p′)
7d. ∧ attr A(p′)=a in
8. σ := c σ \ {p} ∪ {p′}
5. end end
6. pre: ∃ p:P • p ∈ cσ ∧ uid P(p)=pi

2.8. PERDURANT CONCEPTS 35

2.8.5.5 Behaviour Description – Examples

Behaviour descriptions rely strongly on CSPs’ [110] expressivity. Leaving out some details (, ‘...’),
and without “further ado”, we exemplify.

Example 33 Automobile Behaviour at Hub:

9. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,

(b) or, internally non-deterministically,

(c) leaves the hub entering a link,

(d) or, internally non-deterministically,

(e) stops.

9 automobile(ai)(ris)(...)(atH(hi),ahis,) ≡
9a automobile remains in hub(ai)(ris)(...)(atH(hi),ahis,)
9b ⌈⌉
9c automobile leaving hub(ai)(ris)(...)(atH(hi),ahis,)
9d ⌈⌉
9e automobile stop(ai)(ris)(...)(atH(hi),ahis,)

10. [9a] The automobile remains in the hub:

(a) time is recorded,

(b) the automobile remains at that hub, “idling”,

(c) informing (“first”) the hub behaviour.

10 automobile remains in hub(ai)(ris)(...)(atH(hi),ahis,) ≡
10a let τ = record TIMEin
10c ch[{ai,hi}] ! τ ;
10b automobile(ai)(ris)(...)(atH(hi),〈(τ ,hi)〉̂ahis,) end

11. [9c] The automobile leaves the hub entering link li:

(a) time is recorded;

(b) hub is informed of automobile leaving and link that it is entering;

(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the vehicle
behaviour positioned at the very beginning (0) of that link.

11 automobile leaving hub(ai)({li}∪ris)(...)(atH(hi),ahis,) ≡
11a let τ = record TIME in
11b (ch[{ai,hi}] ! τ ‖ ch[{ai,li}] ! τ) ;
11c automobile(ai)(ris)(...)(onL(li,(hi,0,)),〈(τ ,li)〉̂ahis,) end
11 pre: [hub is not isolated]

The choice of link entered is here expressed (11) as a non-deterministic choice37. One can model
the leave hub/enter link otherwise.

12. [9e] Or the automobile “disappears — off the radar” !

12 automobile stop(ai)(ris),(...)(atH(hi),ahis,) ≡ stop

2.8.5.5.1 Example Domain Model Behaviours: These are now the models of domain be-
haviours illustrated in Part V’s Chapters E–P:

37– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can
never leave isolated hubs.

36 CONTENTS

• Road Transport Sect. E.4.2.2, pp 185–188

• Rail Systems Sect. F.3.2, pp 207–209

• Credit Cards Sect. G.3.4, pp 218–221

• Market Systems Sect. H.6.2, pp 244–258

• Pipelines Sect. I.3.4, pp 273–276

• Shipping Sect. J.4.5.2, pp 296–303

• Container Terminals Sect. K.6.9, pp 350–360

• Document Systems Sect. M.16, pp 373–382

• Swarms of Drones Sect. N.4.4, pp 408–415

• Assembly Lines Sect. O.2.3.3.2, pp 451–451

• Nuclear Power Plants Sect. P.3.2.3.2, pp 483–488

2.8.5.6 Behaviour Initialization.

For every manifest part it must be described how its behaviour is initialized.

Example 34 Road Transport Initialization: We “wrap up” the main example of this paper: We
omit treatment of monitorable attributes.

13. Let us refer to the system initialization as an action.

14. All hubs are initialized,

15. all links are initialized, and

16. all automobiles are initialized.

value
13. rts initialisation: Unit → Unit
13. rts initialisation() ≡
14. ‖ { hub(uid H(l))(mereo H(l))(attr HΩ(l),...)(attr HΣ(l),...)| h:H • h ∈ hs }
15. ‖ ‖ { link(uid L(l))(mereo L(l))(attr LEN(l),...)(attr LΣ(l),...)| l:L • l ∈ ls }
16. ‖ ‖ { automobile(uid A(a))(mereo A(a))(attr APos(a)attr AHis(a),...) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls, as we refer to Sect. 2.7.1.6

2.9 Perspectives

We have summarized a method to be used by [human] domain analyzers cum describers in studying
and modelling domains. The next chapter steps “back” to review the description language AMOL.
Appendix Chapters A–T present a variety of models of “more-or-less” domains ! (We refer to pages
79, 81, 169, and 499, for introductions to their “variety”.) Domain models can be developed for
either of a number of reasons:

• (i) in order to understand a human-artifact domain;

• (ii) in order to re-engineer the business processes of a human-artifact domain; or

• (iii) in order to develop requirements prescriptions and, subsequently software application
“within” that domain.

[(ii)] We refer to [103, 104, 117] and [28, Chapter 19, pages 404–412] for the concept of business
process engineering . [(iii)] We refer to [58, Chapter 9] for the concept of requirements engineering .

Chapter 3

The AMoL Language

Contents

3.1 A Resumé of Domains . 39

3.1.1 Endurants . 39

3.1.1.1 External Qualities: . 39

3.1.1.2 Internal Qualities: . 39

3.1.2 Perdurants . 39

3.2 Values, Types and Sorts, Axioms . 39

3.2.1 Values . 39

3.2.2 Types and Sorts . 39

3.2.2.1 Two Kinds of Values and Types/Sorts 40

3.2.3 Axioms . 40

3.3 Expressions, Statements, Clauses . 40

3.4 Specification Units . 40

3.4.1 Two Forms of Type Specification Units 41

3.4.2 Value Specification Units . 41

3.4.3 Axiom Specification Units . 42

3.4.4 Variable Specification Units . 42

3.4.5 Channel Specification Units . 42

3.4.6 Intentional Pull . 42

3.4.7 Domain Initialization . 42

3.4.8 Special Forms of Combined Specification Units 42

3.4.8.1 Type and Value Specification Units 43

3.4.8.1.1 Cartesians: . 43

3.4.8.1.2 Set Parts: . 43

3.4.8.1.3 Unique Identification: 43

3.4.8.1.4 Type, Value and Axiom Specification Units 44

3.4.8.1.4.1 Mereologies: 44

3.4.8.1.4.2 Attributes: . 44

3.5 Types and Values . 45

3.5.1 Informal Summary of Type Expressions 45

3.5.2 Semi-Formal Summary of Type Expressions and Definitions 45

3.5.3 Informal Meaning of Type Expressions 45

3.5.4 Some Comments of Type Definitions 46

3.6 Expressions . 46

3.6.1 Atomic Expressions . 46

37

38 CONTENTS

3.6.1.1 Base Constants: . 46

3.6.1.2 Value Identifiers . 47

3.6.1.3 TIME and Time Interval Values 47

3.6.1.4 POINT Values . 47

3.6.2 Enumerated Expressions . 48

3.6.3 Quantified Expressions . 48

3.6.4 Definite Expressions . 48

3.6.5 Comprehended Expressions . 48

3.6.6 Operator/Operand Expressions . 49

3.6.6.1 Prefix Operators, op . 49

3.6.6.2 Infix Operators, oi . 49

3.6.7 The let ... in ... end Expressions . 49

3.6.8 Non-function Bindings . 50

3.6.9 Patterns . 50

3.6.10 Function Bindings . 52

3.6.11 Structured Expressions . 52

3.7 Statements . 52

3.7.1 Statements – a Motivation . 53

3.7.2 Imperative Variable Declarations . 53

3.7.3 Imperative Variable Expressions . 53

3.7.4 Atomic Statements . 54

3.7.4.1 The Assignment Statement 54

3.7.4.2 Statement Interpretation. 54

3.7.4.3 The skip Statement . 54

3.7.4.4 The stop Statement . 54

3.7.5 Enumerated Statements . 55

3.7.6 Conditional Statements . 55

3.7.6.1 The “if ... then ... else ... end” Statement 55

3.7.6.2 The “case ... of ... end” Statement 55

3.7.6.3 The McCarthy Statement . 55

3.8 Concurrency . 55

3.8.1 AMoL Behaviours . 56

3.8.2 AMoL Behaviour Specification Units . 56

3.8.3 AMoL Behaviour Invocation . 58

3.8.4 AMoL Channel Specification Units . 58

3.8.5 AMoL Concurrency Initialization . 58

3.8.6 AMoL Concurrency Clauses . 59

3.8.7 Output . 59

3.8.8 Input . 59

3.8.9 More on Behaviour Definition Bodies 59

3.8.10 Parallel Composition . 61

3.9 Summary . 61

Language, in spoken and/or written form, is the primary means for communication between
humans. In order to communicate knowledge about a domain, between humans, we use language,
both informal, and, since it is possible, also formal, that is, as here, in AMOL. In order to
communicate request for calculations, between humans and computers, we use formal language,
typically some programming language. AMOL is an “abstract programming” language. In this
section we shall unfold the AMOL language.

3.1. A RESUMÉ OF DOMAINS 39

3.1 A Resumé of Domains

From Chapter. 2 we summarize.

A domain consists of endurants and perdurants.

3.1.1 Endurants

Endurants are manifest: can be seen and touched, that is, have external qualities, and have intan-
gible, we shall call them, internal qualities.

3.1.1.1 External Qualities:

Endurants are either solid (i.e., discrete) or fluids. Solid endurants are either parts or are living
species. Solids and fluids can be characterized by their external and by their internal qualities. The
external qualities of solid parts are that they are either atomic or compound . External qualities
of compound parts are that they are either Cartesians or sets of endurants.

3.1.1.2 Internal Qualities:

The internal qualities of endurants are that parts have unique identification, have mereologies, and
have distinctly named attributes and attribute values.

3.1.2 Perdurants

Perdurants are related to endurant parts by transcendental deductions — considered to reflect the
behaviour of parts. Behaviours are functions, i.e., values; syntactically expressed they have signa-
tures, i.e., names and types, have behaviour [body] definitions. Behaviours, operationally speaking,
communicate and synchronize [over channels] and may share common, i.e., global variables.

3.2 Values, Types and Sorts, Axioms

This section serves to remind the reader of some fundamental concepts of specifications. Which
are the values that we are analyzing and describing ? The corresponding type concept: that of
“compartmentalizing” classes of domain values; and And axioms: the expression of constraints on
values.

3.2.1 Values

With endurants we can therefore associate values of the following kinds: external qualities, unique
identifiers, mereologies, and attributes.

3.2.2 Types and Sorts

We then “impose” on these endurant values that they are of decidable types. That is, that atomic
and compound parts (Cartesians and sets) as well as fluid values have types, and that unique
identifiers, mereologies and attributes are of distinct types.

We shall use the term ‘sort’ in lieu of the term ‘type’ of the external qualities of endurants.
The reason is that we shall not define these ‘sorts’ in terms of [mathematical] sets, Cartesians,
lists, maps, etc.

By a type and sort we shall understand a class, a collection, of values [“of the same kind”] —
whether these values are those manifest in the domain or denoted by a formal domain description.

40 CONTENTS

We try to avoid using the term ‘set’, and uses instead ‘class’ or ‘collection’. The reason is that
“types are not sets” [140, 160, 166].1

3.2.2.1 Two Kinds of Values and Types/Sorts

When You and the domain analyzer cum describer is facing, i.e., observing the domain, the values
of what You see and informally describe — or as we shall say: narrate — are those of the manifest
endurants and perdurants, their external and internal qualities, et cetera.

In contrast, when You formally describe, in AMOL, the values, types and sorts – of what You
have first informally described – are now abstract mathematical quantities.

In the “transition”, from informal to formal description what has “occurred” is a transcen-
dental deduction.

3.2.3 Axioms

Among our [formal] definitions of types and values we may have to “insert” axioms, that is,
predicates over types or over values that restrict the range of these.

3.3 Expressions, Statements, Clauses

Expressions, statements and clauses are main textual units of AMOL.
Expressions denote values.
Statements denote [possible] state changes – where states are expressed in terms of declared

variables.
Clauses are either:

(i) expressions, or (ii) statements, or (iii) expressions with statements,

with the latter, (iii), also being, hence (iv), a statement sequence ending with an expression
including AMOL’s rendition of CSP constructs: the output: ch[{i, j}] ! val – which we consider to
be a statement – effecting no state change, or the input: ch[{i, j}] ? – which we consider to be an
expression.

3.4 Specification Units

The above view of domains justifies, we claim, the following.
Description of a domain, in AMOL, is in the form of a sequence of specification units.2 Each

specification unit introduces one or more (i) types and sorts, or (ii) values, or (iii) axioms, or (iv)
variables, or (v) channels, or expresses an (vi) intentional pull , or the (vii) domain initialization. The
latter two (vi,vii) are optional.

Each specification unit relates to one or more domain entities: endurants or perdurants, or
external endurant quality, or internal endurant quality: unique identification, or mereology, or
attribute.

Several specification units may relate to the same domain entities. We therefore suggest five
kinds of specification units. The main specification units are of the form:

• type TypeName and/or • type TypeName = TypeExpression

• value id:TypeName and/or • value id:TypeName = ValueExpression

1In [166] ‘types’ are referred to as ‘domains’. Scott’s Domain Theory thus “conflicts” with our use of that term.
Please accept that !

2We saw, in Chapter 2, how the domain modeller can proceed in stages and steps, and, within each step, being
able to describe “chunks, bits and pieces”, of a subject domain.

3.4. SPECIFICATION UNITS 41

We shall in the following abbreviate TypeName and TypeExpression into respectively T and T E .
We shall similarly abbreviate ValueExpression into E .

Three further specification units are of the form:

• axiom PredicateExpression abbreviated A

• variable v:T := E

• channnel ch[{uii, uij}]:T

In the following sub-sections we shall briefly elaborate on these five kinds of specification units.

3.4.1 Two Forms of Type Specification Units

There are two kinds of type specification units:

• type T • type T = T E

The former introduces a type, named T, without further defining “details” about this type. The
latter introduces a type, named T, and further defines “details” about this type in the form of the
type expressions T E , see Sect. 3.5 on page 45.

These kinds of specification units are used, in formal domain descriptions, in the following
contexts.

The “type T” form is typically used when introducing endurant sorts and unique identifiers.
They are then typically paired with value and/or grouped with value and axiom specification
units. See Sect. 3.4.8.1 below.

The “type T = T E” form is typically used when introducing endurant mereologies and at-
tributes – and are usually paired with value and/or grouped with value and axiom specification
units. See Sect. 3.4.8.1.4 below. And see Sect. 3.5 for forms of type expressions T E .

3.4.2 Value Specification Units

There are two, actually three (!), kinds of value specification units:

• value id:T • value id:T=C • value f:A→B, f(a)≡C(f,a)

The third form is a specialization of the second form.

The first form introduces a value named id to be of type T. The specific value ascribed (=) to
id is left undefined.

The second form also introduces a value named id to be of type T. The specific value ascribed
(=) to id is to be the value of clause C – whose elaboration “ends” in that of an expression. The
value of C must be of type T. If not, then the specification unit, and the whole specification, is
erroneous. All is chaos ! AMOL is designed so that it can be statically decided whether specification
units are type-incorrect. That is, AMOL is a strongly typed formal language.

The third form introduces a function of type A→B, i.e., from arguments a:A into results b:B
and defines f(a) by its equality, ≡, to the value of clause C(f,a). The function may be partial i
which case we use

∼→. Clause C(f,a) shall be understood to contain [free] occurrences of identifiers
f and a. They are now, in the third form, bound to the left-hand side of f(a)≡C(f,a).3

3We shall restrict the introduction of identifiers in AMOL texts such that we need not “deploy” the λ-Calculus
notion of free and bound identifiers.

42 CONTENTS

3.4.3 Axiom Specification Units

Axioms are predicates over domain entities which have been introduced in [other] specification
units, whether [concrete, mathematical] types or values. Their purpose is [usually] to constrain,
to limit, the range of values (of types).

• axiom A

Predicate A is thus an expression. Usually such predicates evolve around quantified expressions.
These contain identifiers, type names and variables introduced in [other] specification units. See
Sect. 3.6.3 on page 48 for more on quantified expressions.

3.4.4 Variable Specification Units

Variables denote “storage cells”. That is: capabilities for remembering values that can be updated.
AMOL variables are “global”, that is: only a definite number of them can be defined in any
specification and they can all be “accessed”, i.e., referred to, “read” in any expression of any
specification units, cf. Sect. 3.7.3 on page 53. Further, the value contained in the [storage cell of
the] variable, can be “updated” [written, re-assigned] in any statement of any specification units,
cf. Sect. 3.7.4 on page 54.

• variable v:T := C

We say that the declared variable, v, is initialized to some initial value [the value of clause C]. The
value of C must be of type T. If not, then the specification unit, and the whole specification, is
erroneous. All is chaos ! AMOL is designed so that it can be statically decided whether specification
units are type-incorrect. That is, AMOL is a strongly typed formal language.

3.4.5 Channel Specification Units

AMOL behaviours, and individual AMOL behaviours consist of an expression or a sequence of two
or more clauses — expressions and statements. Elaboration of of a set of two or more AMOL

behaviours may result in the synchronization and communication between two AMOL behaviours.
Communication between any pair of behaviours is said to take place in a “medium” which we shall
rephrase, by transcendental deduction, into to take place over a channel. This concept of channel
is purely an abstraction.

• channnel { ch[{uii, uij} | uii, uij:UI∧ uii, uij ∈ uiset]:T

The above channel declaration specifies a name, ch, and considers the “medium” to be “matrix”-like:
“two-dimensional”, over distinct indices uii, uij where uii and uij are the uniqe identifiers of dis-
tinct domain parts, and where UI is the type name for all such uniqe identifiers. The communicated
messages are of type T introduced in some type specification unit.

We refer to Sect. 3.8 on page 55 for more on channels and channel output/input.

3.4.6 Intentional Pull

to be written

3.4.7 Domain Initialization

to be written

3.4.8 Special Forms of Combined Specification Units

We schematize some forms of combined domain specification units.

3.4. SPECIFICATION UNITS 43

3.4.8.1 Type and Value Specification Units

We illustrate this kind of [paired] specification units for the description of compound parts (p:P)
and part (p:P) identification.

3.4.8.1.1 Cartesians: [Cf. Sect. 2.7.1.3.1.3 on page 19] Some solid endurants are compound
parts, p:P , and in the form of “containing” a definite number of two or more distinguishable
part types. We do not model them as [real] Cartesians, e.g.E1×E2×...×Em. The reason is that
“the whole, i.e., p:P , is more than the “sum” [here Cartesian, (e1:E1×e2:E2×...×em:Em)], of its
constituents. That which is “more” is that the Cartesian-like parts, p : P , have unique identity,
mereology and attributes separate from those of its constituents.

So this is the schema form of a combined type and obs erver function value specification unit
for Cartesians.

Narration:

t Cartesian parts, p:P , include m endurant
sorts, E1,...,Em. E1 stands for ...; E2
stands for ...; ...; and Em stands for

o From these parts p:P one can obs erve
these.

Formalization:

t type
E1,...,Em

o value
obs E1: P→E1,...,obs Em: P→Em

Sort names E1,...,Em are all distinct. And distinct from any other type and sort names introduced
in other type specification units. Usually they are mnemonics of more descriptive (composite)
names. The obs Ei observer functions are not defined. Their type, obs Ei: P→Ei, is given. They
cannot be defined. They are observed by the domain analyzer cum describer. That person, or
those persons,

3.4.8.1.2 Set Parts: [Cf. Sect. 2.7.1.3.1.4 on page 20] Some solid endurants are compound
parts, p:P , and in the form of “containing” an indefinite number of zero or more parts of the same
part, one, type.

So this is the schema form of a combined type and obs erver function value specification unit
for part sets.

Narration:

t Solid endurants, p:P , consists of an in-
definite set of endurants, e:E. We name
the type of such sets PS. And we define
the concrete, mathematical type ofPS by
PS=E-set.

o From solid endurants, p:P , we can observe

the set parts ps:PS.

Formalization:

t type
E, PS=E-set

o value
obs PS: E→PS

The usually mnemonic type names E and PS are distinct and distinct from any other type names
introduced in any other type specification units.

3.4.8.1.3 Unique Identification: [Cf. Sect. 2.7.2.1 on page 23] Manifest parts have distinct,
i.e., unique identification. There is but one simple, atomic sort of unique identifiers, UI. With each
part, of any type, P, we can then associate a unique identifier observer function, uid UI:P→UI. That
function cannot be defined. It is, as one may colloquially say it, “built-in”. The domain analysis &
description method mandates it. The functions, uid UI:Pi→UI, uid UI:Pj→UI, ..., uid UI:Pk→UI,
one for each part sort P, are, in a sense, pre-defined once a part sort P has been introduced.

44 CONTENTS

Narration:

t Parts p:P can be ascribed a unique iden-
tifier type.

o From parts p:P one can observe their
unique identifiers.

Formalization:

t type

PI

o value

uid P: P → PI

3.4.8.1.4 Type, Value and Axiom Specification Units We illustrate this kind of [grouped]
specification units for the description of endurant mereologies and attributes.

3.4.8.1.4.1 Mereologies: [Cf. Sect. 2.7.2.2 on page 25] With most manifest parts we can as-
sociate how such parts relate, or associate, topologically or conceptually, to other parts. These
mereological relationships can be expressed in terms of the set(s) of unique identifiers of these
other parts – with which a part is related. We can model these mereological relationships in a
number of ways: (i) as simple set; (ii) as a pair of sets: one set referring to the parts to which
output is offered, the other set referring to the parts from which input is accepted; (iii) or any
other such structure, as convenient for subsequent use of mereologies.

Narration:

(t) The type, M, of the mereology of parts
p : P relates [to] the Unique Identifiers,
i.e., UI types, of the [other] parts, p1 :
P1, ..., pm : Pm, to which p is topologically
or conceptually “connected”.

(o) From parts p : P one can observe,
mereo M.

(a) The mereology of parts p : P may be or is

constrained, etc.

Formalization:

(t) type
M = M(UI)

(o) value
mereo M: P → M

(a) axiom
A(M)

3.4.8.1.4.2 Attributes: [Cf. Sect. 2.7.2.3 on page 26] Manifest parts and fluids posses further
intangible properties in the form of attributes. These are either those of physically measurable
quantities having distinct attribute type names and physical unit dimensions. Attribute type
names, usually mnemonics, are freely chosen, distinct identifiers, by the domain analyzer cum
describer. Besides the attribute type name one can advisably adorn them with so-called SI

Units4 such as m (meters), kg (kilograms), sec (seconds), speed (speed: m/sec), etc. Or the
attributes are of conceptual concepts typically of “historical” nature, can be “spoken about” as
events that have or are occurring. Again these attribute type names are freely chosen, distinct
identifiers, by the domain analyzer cum describer. Occasionally they

Narration:

(t) Endurants e : E have a number, n, of
attributes,Ai. Attribute Ai is of the form,
i.e., type,

(o) From endurants e : E one can observe,
attr Ai, attributes Ai.

(a) The defined attribute types are, or may
be, constrained as follows:

Formalization:

(t) type
A1=TE1,...,An=TEn

(o) value
attr A1:P→A1,...,attr An:P→An

4https://en.wikipedia.org/wiki/International System of Units

3.5. TYPES AND VALUES 45

(a) axiom A(A1,...,An)

3.5 Types and Values

Most of the specification units show the specification of types. Hence, let us take a brief look at
types.

So, really, the main concepts of a formal domain description, as in AMOL, are those of types
and values. To put Your understanding of this at ease: Values in AMOL are either “like” that
of data of a computer program, or of program procedures. Types are then, with reference to
computer programming in some reasonably “high-level” language, like Java, “like” the integer,
float, record, array, etc. types of that computer programming language.

Whereas types in “ordinary” computer programming are “geared” to the data types and storage
structure of the hardware computers on which compiled programs shall be “executed”, AMOL types
are “geared” to discrete mathematics, incl. mathematical logic, and recursive function theory.

3.5.1 Informal Summary of Type Expressions

We now summarize the type concept of AMOL. There are atomic types. They are named Bool,
Nat, Int, Real, Char, TIME,POINT for Booleans (truth values), numbers (natural, integers and
reals), characters, times and spatial points. There are abstract, algebraic types – which we refer
to as sorts. They are given names, for example T. Their further “structure” is not defined but
transpires from their being subject to various observer functions (obs T1,..., uid T, mereo T,
attr T, ...). And there are composite types, that is concrete mathematical structures. They are
types which denote finite or potentially infinite sets, Cartesians, finite or potentially infinite length
lists, maps and functions. These are defined using AMOL’s type operators: -set, -infset, ×, ∗, ω,
→m , →, and

∼→. There are “alternative” types, defined using AMOL’s type operator |. And there
are types which are (proper) sub-types of elsewhere defined types.

3.5.2 Semi-Formal Summary of Type Expressions and Definitions

We now, informally, illustrate how these type expressions or type definitions (=) may occur in
AMOL type specification units:

type
Bool, Nat, Int, Real, Char, TIME,POINT

T, Ti, Tj
T = TE, T = Ti | Tj| ... | Tk
where: TE = T-set | T-infset| (Ti×...×Tn) | Tj∗ | Tiω | Ti→m Tj | Ti→Tj | Ti∼→Tj
T={| ti | ti:Ti • B(ti) |}

– where n≥2, T, Ti, Tj, ..., Tk, Tn are type names, and B(ti) is a predicate.

3.5.3 Informal Meaning of Type Expressions

We explain, again informally, these type clauses:

(i) Bool denotes the three valued type of truth values: true, false, chaos.

(ii) Nat denotes the infinite number of natural number values: 0, 1, 2, ...

(iii) Int denotes the infinite number of integer number values: ..., -2, -1, 0, 1, ...

(iv) Real denotes the infinite number of real number values.

(v) Char denotes the finite number of character values: ‘a’, ‘b’, ..., ‘z’, ‘A’, ‘B’, ..., ‘Z’.

(vi) TIME denotes the infinite number of time values, e.g.: March 12, 2024: 10:48 am.

(vii) POINT denotes the infinite number of spatial point values, for example in some global co-

46 CONTENTS

ordinate system: longitude, latitude and altitude.

(viii) Ti-set denotes the indefinite set of finite sets of Ti values.

(ix) T-infset denotes the potentially infinite set of finite and possibly infinite sets of Ti values.

(x) (Ti×...×Tm) denotes the potentially infinite set of Cartesian values (tia, tjb, ..., tkz) where
individual tics range over type Ti values.

(xi) Tj∗ denotes the potentially infinite set of finite length lists of Tj values.

(xii) Tiω denotes the potentially infinite set of finite and infinite length lists of Tj values.

(xiii) Ti→m Tj denotes the set of maps, i.e., finite definition set discrete functions, from Ti to Tj
values.

(xiv) Ti→Tj denotes the set of total functions from (subset of) Ti to (subset of) Tj values.

(xv) Ti
∼→Tj denotes the set of partial functions from (subset of) Ti to (subset of) Tj values.

(xvi) {| ti | ti:Ti • B(ti) |} denotes the sub-type of Ti values that satisfy predicate B(stv).

3.5.4 Some Comments of Type Definitions

Please note that we do not suggest using type expressions, other than identifiers of atomic types
and [general] type identifiers, in type expressions involving the type constructors -set, -infset, ×,
∗, ω, →m , →,

∼→, | and {|...|}.
Please observe that domain endurants are not recursive ! That is, a set of type specification units

over domain endurants do not refer recursively to one another, that is, they can be sequentially
ordered — most general endurants first, then immediately “contained” next, and so forth.

• • •

Most of the specification units show the specification of expressions. Some of axioms. Really,
the expressions should be “generalized” to clauses. Clauses are either expressions, or “final”
expressions of statements, or are “final” expressions of concurrency clauses. The next three sections
cover the AMOL concepts of expressions, statements and concurrency.

3.6 Expressions

Applicative clauses, i.e., expressions, describe values. Functions are [also] values.
The applicative, or functional, programming version of AMOL, is the base AMOL.

3.6.1 Atomic Expressions

There are four kinds of atomic expressions. They denote base constants, values in general, TIME

(and TIme intervals), respectively POINTs.

3.6.1.1 Base Constants:

There are constants:

• c– constants

Constants come in four forms, all name values,
These are examples of AMOL constants:

* true, false: Booleans;

* 0, 1, 2, ..., -1, -2, ...: Integers; and

* ’a’, ’b’, ..., ’z’, ’A’, ’B’, ..., ’Z’, ...: Characters.

* “ab...c”, “AB...C”, ...: Text

3.6. EXPRESSIONS 47

3.6.1.2 Value Identifiers

There are [‘function’] variables:

• id – ‘variables’

These [function] variables denote values, The use of variables assume that there is a context, we
shall call such contexts for enviρnments, ρ for ‘rho’. Enviρnments, ρ, map variable identifiers to
values:

* ρ:ENV: [id 17→v 1,id 27→v 2,...,id n 7→v n]:(ID→m VAL)

If an function variable id is expressed in a context, an environment, where id is not [defined] in ρ,
then the value is chaos – and the whole specification “blows up”, i.e., is chaos.

The function variable id may denote any value as unveiled below: Booleans, numbers, charac-
ters, texts, sets, Cartesians, lists and map – and also functions (over these).

3.6.1.3 TIME and Time Interval Values

Domains exist is TIME. Time is not an attribute. It is a universal, unique property of any domain.
There is but one kind, i.e., type, of TIME – so named !

The (“functional”) atomic expression:

• record TIME

[with or without argument “()s”] evaluates to whichever TIME it is at the time this expression is
evaluated.

TIME Interval values, TI, arise as the result of subtracting a smaller TIME from a larger time:

• -: TIME×TIME → TI

Other operations on TIMEs and TIME Intervals are postulated:

• +,–: TIME×TI → TIME

• +,–: TI×TI → TI

• *,/: TI×Real → TI

• =, 6=,<,≤,>,≥: (TIME×TIME|TI×TI) → Bool

The zero TIME Interval is expressed by τ0.

3.6.1.4 POINT Values

Domains exist in SPACE. SPACE consist of a dense set of POINTs. SPACE and POINTs, also,
are not attributes of entities. It and they are all-pervading.

The (“functional”) atomic expression:

• record POINT(e)

evaluates to some POINT in SPACE of the entity e. The following operations on POINTs are
postulated:

• δ: POINT×POINT → DISTANCE

• =, 6=: POINT×POINT → Bool

where we shall presently not go into the spatial concepts of DISTANCE, CURVE, PLANE,
LENGTH, VOLUME, AREA, etc.

We shall rarely model spatial properties of domain entities.

48 CONTENTS

3.6.2 Enumerated Expressions

Let ei, dei, rei stand for expressions. These are some enumerated expressions:

{e1,e2,...,en}, for n=0: {} set enumerations
(e1,e2,...,en), for n>1: Cartesian enumerations
〈e1,e2,...,en〉, for n=0: 〈〉 list enumerations
[de1 7→re1,de2 7→re2,...,den 7→ren], for n=0: [] set enumerations

In explaining their semantics let us [somewhat loosely] introduce, in text, the following semantics
types:

type

VAL=Bool|Int|Char|Text|SET|CART|LIST|MAP
SET=VAL-set, CART=VAL×VAL×...×VAL, LIST=VAL∗, MAP=VAL→m VAL

Let us refer to the expression semantics evaluation function as E. The “single quoted” texts below,
to the left of the →, stand for syntactic phrases. Informally E can be expressed as follows:

E(e)(ρ) ≡
case e of
‘{e1,e2,...,en}’ → {E(e1)(ρ),E(e2)(ρ),...,E(en)(ρ)},
‘(e1,e2,...,en)’ → (E(e1)(ρ),E(e2)(ρ),...,E(en)(ρ)),
‘〈e1,e2,...,en〉’ → 〈E(e1)(ρ),E(e2)(ρ),...,E(en)(ρ)〉,
‘[de17→re1,de27→re2,...,den 7→ren]’ →

[E(de1)(ρ) 7→E(re1)(ρ),E(de2)(ρ) 7→E(re1)(ρ),...,E(den)(ρ) 7→E(re1)(ρ)],
...

end

3.6.3 Quantified Expressions

There are three forms of quantified expressions:

• ∀ a:A•B(a), ∃ a:A•B(a), ∃ ! a:A•B(a)

These are the universally, existentially and unique existentially quantified expressions. The former
holds, i.e., evaluates to true, if it holds for all elements a in A. The existential quantification holds
if B(a) holds for at least one a in A. The unique existential quantification holds if B(a) holds for
at exactly one a in A.

3.6.4 Definite Expressions

• ι v:V • P(v)

This expression definitively describe the unique value v, of type V, for which a property P(v) holds,
that is, for which no other v′, of type V, has P(v′) hold. If no value – or if more than one value –
v can be found for which P(v) holds, then the value is chaos.

3.6.5 Comprehended Expressions

There are comprehended set, list and map expressions:

• { f(a) | a:A • a ∈ as }
• 〈 g(i,a) | i:Nat,a:A • i ∈ is ∧ a ∈ as 〉
• [p(a)7→q(a) | a:A • a ∈ as]

3.6. EXPRESSIONS 49

The set comprehension expresses the set of all elements f(a) where a, of type A, is in some set as,
and f is some function. The list comprehension expresses the list of all elements f(i,a) where i is in
an index set is, of type Int, a is of type A, is in some set as, and g is some function – and where
the ordering of the list elements is the ordering of the integers. The map comprehension expresses
a map, i.e., a discrete, definite definition set function, from definition set elements p(a) to range
set elements q(a), etc.

3.6.6 Operator/Operand Expressions

Operator/operand Expressions are either prefix or infix operator5 expressions:

• op expr, expr oi expr

3.6.6.1 Prefix Operators, op

The prefix operators are:

• Boolean: ∼ negation;

• Number: - (minus);

• Set: cardinality;

• List: length, elements, indices;

• Map: domain (defn. set), rng (range).

3.6.6.2 Infix Operators, oi

The infix operators are:

• Boolean: ∧, ∨, =, 6=, ≡;

• Number: +, -, *, /, =, 6=, >, ≥, <, ≤,
(+, -, *, / [addition, subtraction, multiplication, division] yield numbers —
=, 6=, >, ≥, <, ≤ [equality, non-equality, greater than, greater than or equal, less than, less
than or equal] yield Booleans);

• Character: =, 6=;

• TIME: =, 6=, >, ≥, <, ≤;

• POINT: =, 6=;

• Set: ∪, ∩, ⊂, ⊆, ⊃, ⊇, =, 6=,
(∪, ∩, [union, intersection] yield sets –
⊂, ⊆, ⊃, ⊇, = [proper subset, subset, proper superset, superset, equality, non-equality] yield
Booleans);

• List: ̂, =, 6=,
(̂ concatenation yields lists, =, 6= yield Booleans);

• Map: ∪, †, \, =, 6=,
(∪ [union], † [map override] and \ [map restriction] yields maps; = [equality] and 6= [non-
equality] yields Booleans).

3.6.7 The let ... in ... end Expressions

There are several forms of this expression.

5We omit treatment [and use] of suffix operators, viz.: ! factorial, etc.

50 CONTENTS

3.6.8 Non-function Bindings

• let id:T = Ed in Eb end

The above is the simplest form.
A more general form of the above is:

• let P :T = Ed in Eb end,

The repeated form is:

• let P1:T1 = Ed1, P2:T2 = Eds, ..., Pn:Tn = Edn,in Eb end,

3.6.9 Patterns

P is a Pattern. The identifiers of patterns are free identifiers, i.e., identifiers not bound otherwise.
Patterns are either:

18. “id”

19. “{id} ∪ set”

20b. “(in1, ..., inm)′′,m ≥ 2

21. “〈id〉 ̂ list”

22. “[did7→rid]∪map”

To explain the single occurrence of general form pattern-binding form let us formalize the syntax
of left-hand side Patterns:

17. A pattern is either

18. an identifier, id, or

19. an arbitrary set element identifier, {id},
and the identifier. set, of the “remaining”
set, or

20. an n-tuple grouping of

(a) distinct identifiers

(b) or “nils”, injs, for example con-
cretely designated by ” ”6 –

(c) such that at least one is an identifier,
or

21. an identifier for the first element of a list,
〈id〉, and the identifier, list, of the “re-
maining” list, or

22. the identifiers for an arbitrary mapping,
[did7→rid], and the identifier, map, of the
“remaining” map.

23. Identifiers are further undefined.

type
17. P = ID | SET1 | CARn | LIST1 | MAP1
18. ID :: Id
19. SET1 :: Id × Id
20. CARn :: IN×IN×...×IN
20b. IN = Id | ′′nil′′

21. LIST1 :: Id × Id
22. MAP1 :: (Id × Id) × Id
23. Id [left further undefined]
axiom
20c. ∀ mkCARn(in1,in2,...,inm):CARn • {in1,in2,...,inm}\{′′nil′′}6={}

Similarly the abstract syntax of values: yielded by evaluation of the right-hand side Ed:

24. Expression values are either

25. Base values, like Booleans, Reals, Charac-
ters, Texts, TIMEs, TIs, POINTs or are

26. sets of values, or

27. Cartesians of values, or

6– but here abstracted as ”nil”

3.6. EXPRESSIONS 51

28. lists of values, or 29. maps, generally, from values to values.

type
24. VAL = BASE | VSET | VCAR | VLIST | VMAP
25. BASE :: (Bool|Real|Char|Text|TIME|TI|POINT)
26. VSET :: VAL-set
27. VCAR :: VAL×VAL×...×VAL
28. VLIST :: VAL∗

29. VMAP :: VAL→m VAL

We wish to illustrate the binding of values to pattern identifiers. We do so by, somewhat informally,
explaining the semantics, Eval, of a “patterned” let clause. The general idea is that set-oriented
patterns require non-empty set values, Cartesian-oriented patterns require Cartesian values, and
so forth.

30. A let clause consists of two texts: the let
definition: a pattern and an expression,
and a body expression.

31. A let clause evaluation function takes a
let clause and an environment and yields
a value.

32. Evaluation of the

33. let clause body is to take place in an ex-
tended environment, ρ′ which is obtained
as follows (34.–34e).

34. We “pair” the let clause pattern with the
evaluated let definition value, p,v.

In successive “tests” we inquire as to
whether pattern p may “match” value v:

(a) If the pattern is [just] an identifier,
id, then a match is made, and that
identifier bound to that value extends
the environment.

(b) If the pattern is “{id}∪set” and if the
value is a non-empty set, then iden-
tifier id is bound to an arbitrary set
element and set to the “remaining”
set.

(c) If the pattern is “(in1, in2, ..., inm)”
and if the value is an m-tuple
Cartesian, then identifiers in
“(in1, in2, ..., inm)” are bound to
[“matching”] Cartesian element val-
ues – except for ”nil” (or underscore)
identifiers.

(d) If the pattern is “〈id〉 ̂ list” and if
the value is a non-empty list, then
identifier id is bound to an the first
list element (the head) and list to the
“remaining” (the tail) list.

(e) If the pattern is “[did7→rid]∪map”
and if the value is a non-empty map,
then an arbitrary map pair: [dv 7→rv]
is selected, and did is bound to dv,
rid to rv, and map to the remaining
map.

(f) If no match can be found then “the
whole thing blows up”, the AMOL

specification is erroneous, chaos en-
sues !

35.

type
30. Let :: (P × Expr) × Expr
value
31. Eval: Let → ENV → VAL
31. Eval(mkLet((p,d),e))ρ ≡
32. let v = Eval(d)ρ in
33. let ρ′ = ρ †
34. case (p,v) of
34a. (mkId(id),) → [id 7→v],
34b. (mkSET1(id1,id2),mkVSET(vs)) → (axiom vs 6={})
34b. let se:VAL•se ∈ vs in [id1 7→se,id2 7→vs\{se}] end,

52 CONTENTS

34c. (mkCARn(id1,id2,...,idn),mkVCAR(v1,v2,...,vm)) → (axiom n,m≥2 ∧ n=m)
34c. [id1 7→v1,id2 7→v2,...,idn 7→vm]\{′′nil′′},
34d. (mkLIST1(id1,id2),mkLIST(vl)) → (axiom len vl≥1)
34d. [id1 7→hd vl,id2 7→tl vl],
34e. (mkMAP1((id1,id2),id3),mkMAP(vm)) → (axiom card dom vm≥1)
34e. let d:VAL•d ∈ dom vm in [id1 7→d,id2 7→vm(d),id3 7→vm\{d}] end,
34f. → chaos
33. Eval(e)ρ′

31. end end end

Note that patterns are not recursively defined, i.e., patterns may contain proper sub-patterns
(other than identifiers). The explicit binding of patterns to T can be omitted.

3.6.10 Function Bindings

Functions can be defined in let clauses:

• let f(a) = Ed(f,a) in Eb(f) end same as: let f = λa.Ed(f,a) in Eb(f) end

Function f is possibly recursively defined. Occurrences of f (and its argument a) are in Ed(f,a)
bound to the f and a to the left of the ‘=’. And f in Eb(f) is bound to the f to the left of the
‘=’. The function being defined, when applied to an argument expr, in Eb(f), yields a value as
prescribed in Ed(f,a) where expr is substituted for a.

3.6.11 Structured Expressions

• if B then Ec else Ea end,

Evaluation of this, the Boolean valued expression if ... then ... else ... end expression proceeds
as follows. First B is evaluated. If it yields a value other than a Boolean, either chaos or else,
the whole evaluation yields chaos. If it yields the truth value, true, then evaluation of the entire
expression is just the evaluation of Ec, the consequence, else Ea, the alternative.

The generalized conditional, also referred to as the McCarthy7 conditional, has the form:

• B1 → E1, B2 → E2, ..., Bm → Em, → En,

The above “abbreviates” if B1 then E1 else if B2 then E2 else ... end end. If none of the Bi holds,
then the value of the entire expression is that of En. This last clause is optional. Then, if none of
the Bi holds, then the value of the entire expression is chaos.

• case E of P1 → E1, P2 → E2, ..., Pm → Em, → En end

Expression E is first evaluated. If chaos, then the evaluation “blows up”: chaos ! Otherwise the
value of E is matched against patterns Pi, sequentially, from 1 to m. If a match can be found
then that pattern’s identifiers are bound to corresponding values in E and Ei is evaluated. If none
can be matched then the value of the entire expression is that of En. This last clause is optional.
Then, if the “catch all”, the ‘ ’ alternative, is absent, and if none of the Bi holds, then the value
of the entire expression is chaos.

3.7 Statements

Statements serve to effect state changes.

7https://en.wikipedia.org/wiki/John McCarthy (computer scientist)

3.7. STATEMENTS 53

3.7.1 Statements – a Motivation

The provision of statements in AMOL is motivated primarily by the need to express concurrency, by
means of CSP [110], see Sect. 3.8. Concurrency is needed in order to model the concurrent behaviour
of multiple domain part behaviours, in particular their synchronization and communication. In
AMOL:

• ch[$uii, uij}] ! val ; E and

• let v = ch[{uii, uij}] ? in E(v)

are expressions ! ch[{uii, uij}] ! val is an AMOL concurrency (an output) clause, a la CSP, of
a description of a behaviour identified by uii offering to synchronize and communicated with
behaviour identified by uij. Its evaluation, in the context of behaviours identified by uii and uij,
is expected to lead to behaviour uii sending its message, val, to behaviour uij. Once communicated
ch[{uii, uij}] ! val evaluates to the “void” state, denoted by (). Thereafter, “;”, E is evaluated. And
the value of ch[{uii, uij}] ! val ; E is then that of E – “plus” the side-effect of the synchronization
and communication !

Imperative AMOL clauses, i.e., statements, [otherwise] designate state changes.
That is, it is the presence of the “;” that prompts the issue of “imperativeness”, i.e., of

statements. Once we allow “;” we may, as well, open the (“flood”) gate for statements ! But, in
domain modelling we shall use statements very sparingly !

3.7.2 Imperative Variable Declarations

The imperative programming version of AMOL, extends base AMOL with one or more specification
units of the form:

• variable v:T := C

Variable v designates a state: something that associates variable names with [contained] values.
Clause C (with :=) may be absent in which case the value of state variable v is left undefined,
otherwise it is ‘initialized’ to the value of C.

3.7.3 Imperative Variable Expressions

Imperative variables extend expressions, as defined above, with the atomic:

• c v

We assume, now, not only a context, the environment, ρ, but also a state, σ. Environments bind
globally [specification unit] declared variables to what we shall call references, i.e., addresses, in
the [storage] state. States, then, bind state variable references to values.

type ENV = ID →m VAL|REF, Σ = REF →m VAL

Note the use of slanted text. It is to signal that this text is in a meta-language, here some
mathematics, different from AMOL. The imperative atomic expression c v is now analyzed into
v which stands for, denotes, a “value”, REF, of type refT (where T is the type of the declared
variable). The [proverbial] environment, ρ, maps v into some reference, and the state, σ, maps
that reference into a value:

• σ(ρ(v)).

The imperative atomic expression c v may occur anywhere where an expression may occur.
That is, also in applicative AMOL expressions.

The state variable v may denote any value as unveiled below: Booleans, numbers, characters,
texts, sets, Cartesians, lists and map – and also functions (over these).

54 CONTENTS

In domain modelling we shall use variables very sparingly.
Basically domain models need only two variables: one for holding all parts, and another for

holder the unique identifier of all parts. The first variable, σps, will be used to “implement”
monitorable, including biddable part attributes, cf. Sect. 2.7.2.3.2 on page 27. The second variable,
σuis, will be used express part mereologies and the axiom that all parts have unique identifiers.

3.7.4 Atomic Statements

There are three kinds of atomic statements: assignment, skip and stop.

3.7.4.1 The Assignment Statement

has the form:

• v := C,

This is the AMOL ‘assignment’ statement. Clause C is evaluated and [should] result in a value [of
type T. That value then replaces whatever value “was contained” in v.

3.7.4.2 Statement Interpretation.

Statements are interpreted: “one by one, one after the other’, sequentially.”
That is, one way of, simplifying, looking at AMOL texts is by considering their elaboration.

The elaborator, E, applies to AMOL texts, environment and states:

• type E: ”AMOL” → ENV → Σ → ((VAL|”nil”) × Σ)

• E(txt)(ρ)(σ) ≡ ...

If the txt is a constant or a variable or an assignment then the semantics specification is:

* E(”id”)(ρ)(σ) ≡ (ρ(id), σ)

* E(”v”)(ρ)(σ) ≡ (σ(ρ(v)), σ)

* E(”v := C”)(ρ)(σ) ≡ (, σ†[ρ(v)7→E(C)(ρ)(σ])

3.7.4.3 The skip Statement

has the form:

• skip

Interpreting skip results in no change, i.e., “nothing happens”, interpretation “control” skips to
the next, if any, statement:

* E(”skip”)(ρ)(σ) ≡ (ρ, σ)

3.7.4.4 The stop Statement

has the form:

• stop

Interpreting stop means to “abort” specification elaboration:

* E(”stop”)(ρ)(σ) ≡ (,)

3.8. CONCURRENCY 55

3.7.5 Enumerated Statements

Enumerated statements are of the form:

• S1;S2; ...,Sn

One way of explaining the statement list is as follows: First statement S1 is interpreted, i.e.,
“executed” in some state σ. It may abort, i.e., ending up in chaos. Then all is chaos and
elaboration of the AMOL specification in which it occurs is “abandoned”. If interpretation of S1

does not abort then its “execution” results in a state change – into σ′. Then statement S2 is
interpreted in state σ′. Same as for S1. And so forth, through an intended sequence of state
changes, from σ, via σ′, ..., to a final state σ′ · · ·′.

Below, in a slight informal manner, we suggest a “formalization” of statement list interpreta-
tion.

E(stmtl)(ρ)(σ) ≡
case stmtl of

〈〉 → (ρ,σ),
〈stmt〉̂stl → let (ρ,σ′) = E(stmt)(ρ)(σ) in E(stl)(ρ)(σ′) end

end

3.7.6 Conditional Statements

There are three forms of conditional statements.

3.7.6.1 The “if ... then ... else ... end” Statement

• if B then Sc else Sa end,

This is the simplest AMOL ‘conditional’ statement. [It “parallels” the AMOL conditional expres-
sion.] Boolean expression B is evaluated. If true then ‘consequence’ statement Sc is elaborated.
If false ‘alternative’ statement Sa is elaborated. If B evaluates to other than a Boolean value,
including chaos, then chaos ensues !

3.7.6.2 The “case ... of ... end” Statement

• case E of P1 → S1, P2 → S2, ..., Pm → Sm, → Sn end,

Pi are Patterns, cf. Sect. 3.6.9 on page 50. The pattern clauses are elaborated “sequentially”.
If none of the patterns can be made to fit the value of E then the escape statement, ‘ →Sm’ is
elaborated.

3.7.6.3 The McCarthy Statement

• B1 → S1, B2 → S2, ..., Bm → Sm, → Sn,

Bi are Boolean expressions. The Boolean clauses are elaborated “sequentially”. If none of the
Booleans hold the escape statement ‘ →Sm’ is elaborated.

3.8 Concurrency

Domain behaviours need to interact, i.e., to synchronize and communicate. The AMOL concur-
rency constructs serve this purpose.

Domain behaviours cannot make do with interaction via buffers. In “real life” they synchronize
and communicate instantaneously. If some or another form of behaviour interaction via some or

56 CONTENTS

another form of, say, buffers is required, then the domain modeller shall model such interaction,
hence these “buffers” etc., explicitly.

AMOL contains a number of clauses “derived/inspired” from CSP. CSP stands for Communicating
Sequential Processes. CSP was first proposed by Tony Hoare in 1978 [108]. Several textbooks have
since been published, e.g., [110, 111, 161, 164].

3.8.1 AMoL Behaviours

We shall distinguish between two concepts:

• domain behaviours and • processes.

The concept of behaviour is associated with that of domains, whereas the concept of processes is
associated with that of the formal, mathematical interpretation or computerized “execution” of
AMOL-specified behaviours.

By an AMOL-specified behaviour we shall understand the “execution”, i.e., elaboration, of
a named function as introduced in an AMOL function specification unit, such that that spec-
ification unit function when invoked “becomes” a uniquely named process. Two or more, i.e.,
m, invocations of the same AMOL function specification unit, through their unique identifier,
ui1, ui2, ..., uim,m ≥ 2, invocation argument, thus “become” uniquely distinguishable processes.
They can, in AMOL/CSP, be referred to by these unique identifiers.

You may therefore conceive an AMOL induced process as the sequential “execution” (elabora-
tion) of the AMOL function specification unit’s function body appropriately initialized with the
function invocations’ arguments.

3.8.2 AMoL Behaviour Specification Units

(We refer to Sect. 3.8.3 on page 58.) There is the general form of function value specification
units, cf. Sect. 3.4.2 on page 41:

• value f:A→B, f(a)≡C(f,a);

and there is now the special function value specification form for domain behaviours.

value
behaviour: UI → Mereo → Stat Attrs → Mon Attrs → Progr Attrs ... Unit
behaviour(ui)(m)(sta)(mon)(prgr) ≡ C(ui,m,sta,mon,prgr)

The first line above specifies, defines, the signature of the behaviour. The second line above
specifies the detailed definition of the behaviour, i.e., the definition body .

We shall now describe that form in some detail.

[1] Behaviour (function)s are given names, one distinct name for each part sort. [] Behaviour
functions have a number of arguments. These are linked directly to the internal qualities of manifest
parts. Cf. Sect. 2.7.2 on page 23. These arguments are shown in Schönfinckel/Curry8 form.

[2] We choose as first argument the unique identifier of part, p:P . This means that we can, and will,
apply the behaviour function for parts, p:P , to all such parts of sort P. If more than one there will
then by several instances of that behaviour, each uniquely distinguishable. The unique identifier
argument of an invoked behaviour, i.e., a process, will remain “constant”, that is, will not be
modified in recursive invocations (“calls”) of, i.e., within that behaviour. We refer to Sect. 2.7.2.1
on page 23.

[3] The second argument is then the mereology of part, p:P . The value of this mereology expresses
the unique identities of the [other, invoked] behaviours with which invocations of this defined

8 [165] https://en.wikipedia.org/wiki/Moses Schönfinkel and https://en.wikipedia.org/wiki/Currying

and https://en.wikipedia.org/wiki/Haskell Curry

3.8. CONCURRENCY 57

behaviour can interact. These identifiers are therefore mentioned in output/input clauses of the
behaviour definition body , [9]. If the defined behaviour “creates” or “destroys” domain parts, then
the mereologies, of part behaviours, that refer to the “destroyed”, or should refer to the newly
“created” parts must be updated ! We refer to Sect. 2.7.2.2 on page 25.

[4,5,6] The third, fourth and fifth arguments are then those of static, monitorable and pro-
grammable attributes of part p:P . We refer to Sect. 2.7.2.3 on page 26.

[4] Static arguments are passed (”called”) by value, that is, in invocations, the corresponding
argument expressions are evaluated and then treated as constants in the behaviour definition
body [9].

[5] Monitorable arguments are passed (”called”) by name, that is, in invocations, the corresponding
argument expressions are evaluated only when encountered during elaboration of the behaviour
definition body [9].

[6] Programmable arguments are passed (”called”) by value, that is, in invocations, the corre-
sponding argument expressions are evaluated and become initial values. They are then treated
as possibly changeable/updateable, i.e., programmed values, in the behaviour definition body
[9]. Such updates are manifest within the definition body as well in the more-or-less mandated
tail-recursive invocation (‘continuation’) of the invoked behaviour, see below, Sect. 3.8.3 on the
following page.

[7] This line specifies two separate things.

First it specifies the sub-channels, {ch[{uii, uij}]|uii, uij:UI•...}, over which behaviours,
i.e., “their invoked process” may interact with other processes.

Then it specifies, Unit, that invocation of the behaviour leaves no value, but [possibly]
a state change. We write “state change”. If the behaviour process stops then that
state change is denoted by ‘()’. If it goes on, forever, then that is what the literal Unit
[also] means.

[8–9] These lines define the functionality, the detailed behaviour.

[8] This line expresses the abstract invocation, i.e., “call”, of the behaviour.

[9] And this line expresses the “body” of the behaviour definition, that is, how it should evaluate
any invocation.

value
[1] behaviourp:P :
[2] UIp:P →
[3] Mereop:P →
[4] Static Attrsp:P →
[5] Monitorable Attrsp:P →
[6] Programmable Attrsp:P
[7] { ch[{uii, uij}] | uii, uij:UI • ... } Unit
[8] behaviourp:P (uip:P)(merp:P)(stap:P)(monp:P)(prgrp:P) ≡
[9] Cp:P (uip:P ,mp:P ,stap:P ,monp:P ,prgrp:P)

Usually line [9] is of the schematic form:

[10] Cp:P (uip:P ,mp:P ,stap:P ,monp:P ,prgrp:P) ≡
[11] let (m′

p:P ,prgr
′
p:P) = Ep:P (uip:P ,mp:P ,stap:P ,monp:P ,prgrp:P) in

[12] behaviourp:P (uip:P)(mer′p:P)(stap:P)(monp:P)(prgr
′
p:P) end

That is, a so-called tail-recursive invocation [12] of the [“same”] behaviour, but with possibly
updated mereology (rarely), programmable attributes and, not immediately observable from the
definition, monitorable attributes.

More specifically:

58 CONTENTS

• [10] Elaboration (i.e., colloquially: “execution”) of the behaviour definition body, i.e., of
Cp:P (...) first

– [11] elaborates the “auxiliary” function Ep:P (...). It may [or may not necessarily] “up-
date” the mereology, mer (of part p:P) and may, usually, update one or more pro-
grammable attributes, prgr.

– [12] Once Cp:P (...) is so elaborated “elaboration [control]” passes on to the invoking
behaviour, behaviour(ui)(mer′)(sta)(mon)(prgr′).

3.8.3 AMoL Behaviour Invocation

One thing is the definition, in AMOL specification units, of Behaviours. Another thing is their
invocation (i.e., application) in AMOL clauses. Invocations, for manifest parts p:P , are of the
form:

• behaviour(uidp)(mereop)(sta attrs(p))(mon attrs(p))(prg attrs(p))

where sta attrs(p), mon attrs(p) and prg attrs(p) are of the forms:

• sta attrs(p): A1sta,A2sta,...,Assta
where A1sta,A2sta,...,Assta are the static attributes of parts p:P .

• mon attrs(p): . attr A1mon,attr A2mon,...,attr Ammon

where A1mon,A2mon,...,Ammon are the monitorable attributes of parts p:P .

• prg attrs(p): A1prg,A2prg,...,Apprg
where A1prg,A2prg,...,Apprg are the programmable attributes of parts p:P .

that is, sequences of zero, one or more arguments.
The presence of the attr s, prefixing monitorable attribute type identifiers expresses that mon-

itorable attributes are “called by ηname !
If an argument sequence is zero, i.e., (), it may be left out, omitted.

3.8.4 AMoL Channel Specification Units

Behaviours interact. In AMOL domain modelling behaviour interaction is expressed in terms of
output/inputs between two distinct behaviours such that the induced behaviours synchronize their
output/inputs, that is, their rendez-vous, while at the same time communicating a value: one
process outputs the value, the other process, inputs that value. We say that the rendez-vous takes
place over channels.

The concurrent, or parallel programming version of AMOL, thus extends base AMOLwith a
specification unit:

channel { ch[{uii, uij}] | uii, uij:UI • B(uii, uij) } T

ch names an array of {uii, uij} indexed [sub-]channels, one for each possible pair of (uii, uij) of
distinct behaviours, whether or not such distinctly named behaviours exist. The set of all uiks
are the unique identifiers of all manifest domain parts. B(uii, uij) specifies possible constraints on
{uii, uij}. The type of the values communicated over ch is T , where T is specified in some AMOL

specification unit.

3.8.5 AMoL Concurrency Initialization

There is a behaviour initialization specification unit:

• ‖ {F(p) | p:P•p∈ps}

3.8. CONCURRENCY 59

The F(p) refer to behaviour invocations, cf. Sect. 3.8.3 on the preceding page. The ‖{F(p) |
p:P•p∈ps} describes the comprehended initialization of a number of processes, one for each part p
in a set of parts ps. ps usually refers to a “global” value of, or a global variable which contains, all
the parts (and sub-parts, etc.) of a domain. That is, behaviours can only be invoked in domain
initialization units.9 Usually it suffices that a domain description contains just one such behaviour
initialization specification unit.

3.8.6 AMoL Concurrency Clauses

There are several forms of AMOL concurrency clauses.
Base, applicative, and imperative AMOL is extended with a subset of CSP [110] clauses, P .

These may occur wherever an AMOL clause, expression, E , or statement, S, may occur:

• ch[{i,j}] ! E – output, statement;

• ch[{i,j}] ? – input, expressions;

• C ⌈⌉ C – non-det. internal choice, , any clause; and

• C ⌈⌉⌊⌋ C – non-det. external choice, any clause.

Here C is any expression, statement and concurrency Clause of AMOL.

3.8.7 Output

We assume behaviours identified by their unique identifiers uii, uij. The AMOL output clause:

• ch[{uii, uij}] ! E

expresses that the behaviour, identified by uii, offers the value of expression E to behaviour
uij. The ch[{uii, uij}] ! E clause is a statement. Once elaborated, that is: once accepted by
behaviour uij, interpretation [“execution” [control]] control “passes on” to whichever clause “fol-
lows” ch[{uii, uij}] ! E . That is, the elaborated semantic value of output is “()”. If not accepted
by behaviour uij the “rendez-vous” between behaviours uii, uij does not take place, i.e., they are
not synchronized, and behaviour uii “stalls”, “stands still, does not progress” !

3.8.8 Input

We assume behaviours identified by their unique identifiers uii, uij. The AMOL input clause:

• ch[{uii, uij}] ?

ch[{uii, uij}] ? clause is an expression. It expresses that behaviour uii offers to accept a value
from the behaviour, identified by uij. Once elaborated, that is: once accepted by behaviour uij,
the value of ch[{uii, uij}] ? is the value “received”, i.e., input from behaviour uij. If output from
behaviour uij is not offered, the “rendez-vous” between behaviours uii, uij does not take place,
i.e., they are not synchronized, and behaviour uii “stalls”, “stands still, does not progress” !

3.8.9 More on Behaviour Definition Bodies

We refer to items [10–12], Page 58, Sect. 3.8.2:

[10] C(ui,m,sta,mon,prgr) ≡
[11] let (m′,prgr′) = E(ui,mer,sta,mon,prgr) in
[12] behaviour(ui)(mer′)(sta)(mon)(prgr′) end

The above illustrates but a simplest form of domain behaviour definition body. Instead of by lines
[11–12] C(ui,m,sta,mon,prgr) may be defined in basically either of three forms [13, 14, 15] using
the ⌈⌉⌊⌋ and ⌈⌉ behaviours operators. These operators will be explained next. Fist we summarize,
illustratively, three forms of composing deterministic external choice, ⌈⌉⌊⌋, and non-deterministic
internal choice, ⌈⌉, clauses: Then we explain, “narrate”, these.

9This is a restriction of the use of the ‖ behaviour composition operator wrt. to “general” CSP.

60 CONTENTS

value
[13] C(ui,me,sta,mon,prgr) ≡
[13.1] ⌈⌉⌊⌋ { KD1

(ui,me,sta,mon,prgr)
[13.2] KD2

(ui,me,sta,mon,prgr),
...,

[13.m] KDm
(ui,me,sta,mon,prgr) } or:

value
[13] C(ui,me,sta,mon,prgr) ≡
[14.1] ⌈⌉ { KN1

(ui,me,sta,mon,prgr),
[14.2] KN2

(ui,me,sta,mon,prgr),
...,

[14.n] KNn
,(ui,me,sta,mon,prgr) }

or:

[15] C(ui,me,sta,mon,prgr) ≡
[13.1] ⌈⌉⌊⌋ { KD1

(ui,me,sta,mon,prgr),
[13.2] KD2

(ui,me,sta,mon,prgr),
...,

[13.m] KDm
(ui,me,sta,mon,prgr) }

[15] ⌈⌉
[14.1] ⌈⌉ { KN1

(ui,me,sta,mon,prgr),
[14.2] KN2

(ui,me,sta,mon,prgr),
...,

[14.n] KNn
(ui,me,sta,mon,prgr) }

where: KDi
(ui,m,sta,mon,prgr) is, typically10, of the form:

value
[16] ... ; let v = ch[{ui x,ui+y}] ? in
[16.1] let (me′,prgr′) = CDi

(ui,me,sta,mon,prgr) in
[16.2] behaviour(ui)(me′)(sta)(mon)(prgr′) end end

and where: KNj
(ui,m,sta,mon,prgr) is, typically11, of the form:

[17] ... ; ch[{ui x,ui+y}] ! CON|
(ui,me,sta,mon,prgr)

[17.1] let (me′,prgr′) = CNj
(ui,me,sta,mon,prgr) in

[17.2] behaviour(ui)(me′)(sta)(mon)(prgr′) end

To understand the [next] explanation of the above (three) forms of deterministic and non-deter-
ministic choices we must remind the readers that behaviours progress in time. Time enters our
understanding of AMOL specifications when concurrency is at stake. It is really not time, as such,
e.g., “March 12, 2024: 10:48 am”, but “sequencing”: that elaboration of [some] clauses of different
behaviour descriptions take place “at the same time, or at different times”.

• [13] Here C(ui,me,sta,mon,prgr) is expressed in terms of the external deterministic choice, ⌈⌉⌊⌋,
between m “possibilities”: KDi

(ui,me,sta,mon,prgr): [13.1], [13.2], ..., [13.m]. KDi
, for i =

1, ...,m, are clauses. The selected “choice” is determined ‘externally’, that is, not by C(ui,me,-
sta,mon,prgr), but by an, or the, context, i.e., environment, in which “other” behaviours offer
to synchronize and communicate, either by means of offering output to, or offering to accept
input from the behaviour, ui, which C(ui,me,sta,mon,prgr) represents. C(ui,me,sta,mon,prgr)
is elaborated. That is, we must assume that there are a number of behaviours which offer
so and that each KDi

(ui,me,sta,mon,prgr) contains corresponding output or input clauses,
i.e., [16–17]. If no ‘other behaviours’, external to behaviour ui, offers to synchronize and
communicate “at the time KDi

“is first” elaborated, then behaviour ui is “stalled” until
some such external behaviour is ready to offer. If more than one external behaviour offers,
then a non-deterministic choice [arbitrarily] selects one of these. The textual, i.e., linear,
ordering of the K clauses, [13.1–m], is (thus) immaterial.

• [14] Here C(ui,me,sta,mon,prgr) is expressed in terms of the internal non-deterministic choice,
⌈⌉, between n “possibilities”: KNi

(ui,me,sta,mon,prgr): [14.1], [14.2], ..., [14.m]. KNi
, for

i = 1, ..., n, are clauses. The selected “choice” is determined ‘internally’, that is, by C(ui,me,-
sta,mon,prgr). The KNi

clauses are expected to offer output or input clauses, i.e., [16–17]. If

10KDi
can also be of the form KNj

11KNj
can also be of the form KDi

3.9. SUMMARY 61

no ‘behaviours’, external to behaviour ui, offers to synchronize and communicate “at the time
KNi

“is first” elaborated, then behaviour ui is “stalled” until some such external behaviour
is ready to offer. If more than one external behaviour offers, then a non-deterministic choice
[arbitrarily] selects one of these. The textual, i.e., linear, ordering of the K clauses, [14.1–n],
is (thus) immaterial.

• [15] Here C(ui,me,sta,mon,prgr) is expressed in terms of an ordered “pair” of sets, each of
one or more, either external non-deterministic choices, respectively internal non-deterministic
choices. The two pair sets may be interchanged without changing meaning of the while clause.
The idea here is that C(ui,me,sta,mon,prgr) offers to engage both (α) non-deterministically
external and (β) non-deterministically internal choice “rendez-vous” with other behaviours.
The choice as to whether α or β is “a-flip-of-the-coin”: non-deterministic internal.

• [13–15] [13] is a special case of [15] for m=0, [14] is a special case of [15] for n=0.

• [16–17] [16] and [17] shows that in order to engage in a “rendez-vous” there must be a mutual
pair of output/input clauses in the two synchronizing & communicating processes: where
one offers to output, the other offers to accept an input.

3.8.10 Parallel Composition

A restricted form of the AMOL parallel composition, i.e., ‖, clause may be useful anywhere a simple
AMOL [imperative] clause may appear:

• ‖ {C1, C2, ..., Cn} or C1‖C2‖...‖Cn, n ≥ 2

The restriction is typically this: The C clause is an output clause: ch[{uii, uij}] ! expr.

3.9 Summary

We have surveyed the main AMOL syntax: (i) the specification units, (ii) the AMOL type and value
concept, (iii) the applicative expressions, (iv) the imperative statements, and (v) the concurrency
clauses.

62 CONTENTS

Part II

Conclusion

63

64

Chapter 4

Conclusion

to be written

65

66 CHAPTER 4. CONCLUSION

Chapter 5

Bibliography

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer–Verlag, New York, NY, USA, August 1996.

[2] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B:
System and Software Engineering. Cambridge University Press, Cambridge, England, 1996 and
2009.

[3] Mordecai Avriel, Michal Penn, and Naomi Shpirer. Container ship stowage problem: complexity
and connection to the coloring of circle graphs. Discrete Applied Mathematics, 103(1–3):271–
279, 15 July 2000. Faculty of Industrial Engineering and Management, Technion, Israel Institute
of Technology, Haifa 3200, Israel.

[4] Mordecai Avriel, Michal Penn, Naomi Shpirer, and Smadar Witteboon. Stowage planning for
container ships to reduce the number of shifts. Annals of Operations Research, 76(9):55–71,
January 1998.

[5] H. Bekič, D. Bjørner, W. Henhapl, C. B. Jones, and P. Lucas. A Formal Definition of a PL/I
Subset. Technical Report 25.139, IBM Laboratory, Vienna, December 1974.

[6] Hans Bekič. On the Formal Definition of Programming Languages. In International Computing
Symposium, ACM Europe, Bonn, Nov. 1970. GDM.

[7] Hans Bekič. Programming Languages and Their Definition. In Cliff B. Jones, editor, Lecture
Notes in Computer Science, Vol. 177. Springer, 1984.

[8] Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version
I. Technical report, IBM Laboratory, Vienna, 1966.

[9] Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version
II. Technical report, IBM Laboratory, Vienna, 1968.

[10] Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version
III. IBM Laboratory, Vienna, 1969.

[11] Claude Berge. Théorie des Graphes et ses Applications. Collection Universitaire de Mathema-
tiques. Dunod, Paris, 1958. See [12].

[12] Claude Berge. Graphs, volume 6 of Mathematical Library. North-Holland Publ. Co., second
revised edition of part 1 of the 1973 english version edition, 1985. See [11].

[13] Sandford Bessler, Eva Kühn, Richard Mordinyi, and Slobodanka Tomic. Using tuple-spaces to
manage the storage and dissemination of spatial-temporal content. Journal of Computer and
System Sciences, page 10, February 2010. Link: http://dx.doi.org/10.1016/j.jcss.2010.01.010.

67

68 BIBLIOGRAPHY

[14] D. Bjørner. Stepwise Transformation of Software Architectures. In [73], chapter 11, pages
353–378. Prentice-Hall, 1982.

[15] D. Bjørner and C. B. Jones. Formal Specification and Software Development. Prentice-Hall,
1982.

[16] Dines Bjørner. Software Development Graphs — A Unifying Concept for Software Development?
In K.V. Nori, editor, Vol. 241 of Lecture Notes in Computer Science: Foundations of Software
Technology and Theoretical Computer Science, pages 1–9. Springer–Verlag, Dec. 1986.

[17] Dines Bjørner. The Stepwise Development of Software Development Graphs: Meta-Programming
VDM Developments. In See [74], volume 252 of LNCS, pages 77–96. Springer-Verlag, Heidelberg,
Germany, March 1987.

[18] Dines Bjørner. Specification and Transformation: Methodology Aspects of the Vienna Devel-
opment Method. In TAPSOFT’89, volume 352 of Lab. Note, pages 1–35. Springer-Verlag,
Heidelberg, Germany, 1989.

[19] Dines Bjørner. Software Systems Engineering— From Domain Analysis to Requirements Capture:
An Air Traffic Control Example. In 2nd Asia-Pacific Software Engineering Conference (APSEC
’95). IEEE Computer Society, 6–9 December 1995. Brisbane, Queensland, Australia.

[20] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor,
9th IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical University,
Braunschweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisiering-
stechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

[21] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction
Systems. In Practical Foundations of Business and System Specifications (Eds.: Haim
Kilov and Ken Baclawski), The Netherlands, December 2002. Kluwer Academic Press.
www2.imm.dtu.dk/ dibj/themarket.pdf.

[22] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and
Software Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems,
Oxford, UK, August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors:
S. Tsugawa and M. Aoki. www2.imm.dtu.dk/ dibj/ifac-dynamics.pdf.

[23] Dines Bjørner. New Results and Trends in Formal Techniques for the Development of Software for
Transportation Systems. In FORMS2003: Symposium on Formal Methods for Railway Operation
and Control Systems. Institut für Verkehrssicherheit und Automatisierungstechnik, Techn.Univ.
of Braunschweig, Germany, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary.
Editors: G. Tarnai and E. Schnieder, Germany. www2.imm.dtu.dk/ dibj/dines-amore.pdf.

[24] Dines Bjørner. The Grand Challenge – FAQs of the R&D of a Railway Domain Theory. In IFIP
World Computer Congress, Topical Days: TRain: The Railway Domain, IFIP, Amsterdam, The
Netherlands, 2004. Kluwer Academic Press.

[25] Dines Bjørner. Towards a Formal Model of CyberRail. In Building the Information Society, IFIP
18th World Computer Congress, Tpical Sessions, 22–27 August, 2004, Toulouse, France — Ed.
Renéne Jacquart, pages 657–664. Kluwer Academic Publishers, August 2004.

[26] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006. See [31, 34].

[27] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily
authored by Christian Krog Madsen. See [32, 35].

BIBLIOGRAPHY 69

[28] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006. See [33, 36].

[29] Dines Bjørner. A Container Line Industry Domain. www.imm.dtu.dk/ db/container-paper.pdf.
Techn. report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, June
2007.

[30] Dines Bjørner. Domain Engineering. In The 2007 Lipari PhD Summer School, Dds. E. Börger and
A. Ferro, pages 1–102. University of Catanaia, Sicily, Italy, 2007. www.imm.dtu.dk/ dibj/lipari-
paper.pdf.

[31] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University
Press, 2008.

[32] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua
University Press, 2008.

[33] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Qinghua University Press, 2008.

[34] Dines Bjørner. Chinese: Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua
University Press. Translated by Dr Liu Bo Chao et al., 2010.

[35] Dines Bjørner. Chinese: Software Engineering, Vol. 2: Specification of Systems and Languages.
Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

[36] Dines Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software
Design. Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

[37] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods:
State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London,
UK, 2010. Springer.

[38] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of
Informatics, Part I of II: The Engineering Part. Kibernetika i sistemny analiz, 2(4):100–116, May
2010.

[39] Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas
and Suggestions. Technical, Technical University of Vienna, August–October 2010.
www.imm.dtu.dk/ dibj/wfdftp.pdf.

[40] Dines Bjørner. The Tokyo Stock Exchange Trading Rules www.imm.dtu.dk/ db/todai/tse-1.pdf,
www.imm.dtu.dk/ db/todai/tse-2.pdf. R&D Experiment, Techn. Univ. of Denmark, Fredsvej 11,
DK-2840 Holte, Denmark, 2010.

[41] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of
Informatics Part II of II: The Science Part. Kibernetika i sistemny analiz, 2(3):100–120, June
2011.

[42] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas
and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on the
Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma),
pages 167–183. Springer, Heidelberg, Germany, January 2011. www.imm.dtu.dk/ dibj/maurer-
bjorner.pdf.

[43] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas
and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on the
Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma),
pages 167–183. Springer, Heidelberg, Germany, January 2011. www.imm.dtu.dk/ dibj/maurer-
bjorner.pdf.

70 BIBLIOGRAPHY

[44] Dines Bjørner. Documents – a Domain Description. Experimental Research Report 2013-3, DTU
Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[45] Dines Bjørner. Pipelines – a Domain www.imm.dtu.dk/ dibj/pipe-p.pdf. Experimental Research
Report 2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[46] Dines Bjørner. Road Transportation – a Domain Description www.imm.dtu.dk/ dibj/road-p.pdf.
Experimental Research Report 2013-4, DTU Compute and Fredsvej 11, DK-2840 Holte, Den-
mark, Spring 2013.

[47] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. In
Mereology and the Sciences, Synthese Library (eds. Claudio Calosi and Pierluigi
Graziani), pages 323–357, Amsterdam, The Netherlands, October 2014. Springer.
https://www.imm.dtu.dk/ dibj/2011/urbino/urbino-colour.pdf.

[48] Dines Bjørner. A Credit Card System: Uppsala Draft
www.imm.dtu.dk/ dibj/2016/credit/accs.pdf. Technical Report: Experimental Research,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November 2016.

[49] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas
and Suggestions. Extensive revision of [42]. www.imm.dtu.dk/ dibj/2016/demos/faoc-demo.pdf.
Technical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, 2016.

[50] Dines Bjørner. Weather Information Systems: Towards a Domain Description
www.imm.dtu.dk/ dibj/2016/wis/wis-p.pdf. Technical Report: Experimental Research, Tech-
nical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November 2016.

[51] Dines Bjørner. Manifest Domains: Analysis & Description
www.imm.dtu.dk/ dibj/2015/faoc/faoc-bjorner.pdf. Formal Aspects of Computing, 29(2):175–
225, March 2017. Online: 26 July 2016.

[52] Dines Bjørner. Domain analysis & description - the implicit and explicit semantics problem
www.imm.dtu.dk/ dibj/2017/bjorner-impex.pdf. In Régine Laleau, Dominique Méry, Shin Naka-
jima, and Elena Troubitsyna, editors, Proceedings Joint Workshop on Handling IMPlicit and
EXplicit knowledge in formal system development (IMPEX) and Formal and Model-Driven Tech-
niques for Developing Trustworthy Systems (FM&MDD), Xi’An, China, 16th November 2017,
volume 271 of Electronic Proceedings in Theoretical Computer Science, pages 1–23. Open Pub-
lishing Association, 2018.

[53] Dines Bjørner. Domain Facets: Analysis & Description. Extensive revision of [37].
www.imm.dtu.dk/ dibj/2016/facets/faoc-facets.pdf. Technical report, Technical University of
Denmark, Fredsvej 11, DK-2840 Holte, Denmark, May 2018.

[54] Dines Bjørner. To Every Manifest Domain a CSP Expression
www.imm.dtu.dk/ dibj/2016/mereo/mereo.pdf. Journal of Logical and Algebraic Meth-
ods in Programming, 1(94):91–108, January 2018.

[55] Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modeling Languages.
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering
and Methodology, 28(2):66 pages, March 2019.

[56] Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modelling Lan-
guages. www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software En-
gineering and Methodology, 28(2):1–67, April 2019. 68 pages.

[57] Dines Bjørner. Domain Analysis & Description: Sorts, Types, Intents.
www.imm.dtu.dk/ dibj/2019/ty+so/HavelundFestschriftOctober2020.pdf. Technical re-
port, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November 2019.
Paper for Klaus Havelund Festschrift, October 2020.

BIBLIOGRAPHY 71

[58] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg, Germany, 2021. A revised
version of this book is [64].

[59] Dines Bjørner. Rigorous Domain Descriptions. A compendium of draft domain descrip-
tion sketches carried out over the years 1995–2021. Chapters cover: Graphs, Railways,

Road Transport The “7 Seas”, The “Blue Skies”, Credit Cards Weather Information, Documents,

Urban Planning, Swarms of Drones, Container Terminals, A Retailer Market, Shipping, Rivers,

Canals, Stock Exchangew, and Web Transactions. This document is currently being edited. Own:
www.imm.dtu.dk/ dibj/2021/dd/dd.pdf, Fredsvej 11, DK-2840 Holte, Denmark, November
15, 2021.

[60] Dines Bjørner. Shipping. www.imm.dtu.dk/~dibj/2021/ral/ral.pdf. Technical Report,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, April 2021.

[61] Dines Bjørner. Domain Modelling. Research report, Technical University of Denmark, DK-2800
Lyngby, Denmark, 2023.

[62] Dines Bjørner. Domain Modelling – A Foundation for Software Development. In Jonathan Bowen
et al., editor, Theories of Programming and Formal Methods: Essays Dedicated to Jifeng
He on the Occasion of His 80th Birthday, Lecture Notes in Computer Science, Festschrift.
Springer, Heidelberg, Germany, August 2023. https://www.imm.dtu.dk/ dibj/2023/FEA/hjf.pdf
and https://www.imm.dtu.dk/ dibj/2023/final/HeJiFeng.pdf.

[63] Dines Bjørner. Domain Modelling – A Primer. A short version of [64]. xii+202 pages1, May
2023.

[64] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. Revised
edition of [58]. xii+346 pages2, January 2023.

[65] Dines Bjørner. [67] Chap. 10: Towards a Family of Script Languages – – Licenses and Contracts
– Incomplete Sketch, pages 283–328. JAIST Press, March 2009.

[66] Dines Bjørner. [67] Chap. 7: Documents – A Rough Sketch Domain Analysis, pages 179–200.
JAIST Press, March 2009.

[67] Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. A
JAIST Press Research Monograph #4, 536 pages, March 2009.

[68] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clar-
ifying Observations in the Context of Software Engineering in July 2008, eds. Martin Steffen,
Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de Roever Concur-
rency, Compositionality, and Correctness, volume 5930 of Lecture Notes in Computer Science,
pages 22–59, Heidelberg, July 2010. Springer.

[69] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A
Rôle for Domain Engineering. Relations to Requirements Engineering and Software for Control
Applications. In Integrated Design and Process Technology. Editors: Bernd Kraemer and John
C. Petterson, P.O.Box 1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society
for Design and Process Science. www2.imm.dtu.dk/ dibj/pasadena-25.pdf.

[70] Dines Bjørner, Christian Gram, Ole N. Oest, and Leif Rystrøm. Dansk Datamatik Center. In 3rd
IFIP WG 9.7 Working Conference on History of Nordic Computing, IFIP Advances in Information
and Communication Technology, pages 2–34. Springer, 2010.

1This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS, Beijing and into Russian
by Dr. Mikhail Chupilko, ISP/RAS, Moscow

2Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version,
omitting certain chapters, is [63]

72 BIBLIOGRAPHY

[71] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978. This was the first monograph on Meta-IV.

[72] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, Heidelberg, Germany, 1978.

[73] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, London, England, 1982.

[74] Dines Bjørner, Cliff B. Jones, Micheal Mac an Airchinnigh, and Erich J. Neuhold, editors. VDM
– A Formal Method at Work. Proc. VDM-Europe Symposium 1987, Brussels, Belgium, Springer,
Lecture Notes in Computer Science, Vol. 252, March 1987.

[75] Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway Systems: Domains.
Technical report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800 Lyngby,
Denmark, September 23 1999. Presented at the FMERail Workshop on Formal Methods in
Railway Systems, FM’99 World Congress on Formal Methods, Toulouse, France. Avaliable on
CD ROM.

[76] Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway Systems: Require-
ments. Technical report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800
Lyngby, Denmark, September 23 1999. Presented at the FMERail Workshop on Formal Methods
in Railway Systems, FM’99 World Congress on Formal Methods, Toulouse, France. Avaliable on
CD ROM.

[77] Nikolaj Bjørner, Maxwell Levatich, Nuno P. Lopes, Andrey Rybalchenko, and Chandrasekar
Vuppalapati. Supercharging plant configurations using Z3. In Peter J. Stuckey, editor, Integration
of Constraint Programming, Artificial Intelligence, and Operations Research - 18th International
Conference, CPAIOR 2021, Vienna, Austria, July 5-8, 2021, Proceedings, volume 12735 of
Lecture Notes in Computer Science, pages 1–25. Springer, 2021.

[78] Dines Bjørner. Urban Planning Processes. www.imm.dtu.dk/ dibj/2017/up/urban-planning.pdf.
Research Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, July
2017.

[79] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. American Elsevier, N.Y. and
MacMillan, London, 1976.

[80] Bram Borgman, Eelco van Asperen, and Rommert Dekker. Online rules for container stacking.
OR Spectrum, 32:687–716, 19 March 2010.

[81] Roberto Casati and Achille C. Varzi. Parts and Places: the structures of spatial representation.
MIT Press, 1999.

[82] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press, 2021.

[83] Patrick Cousot and Rhadia Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In 4th POPL: Principles
of Programming and Languages, pages 238–252. ACM Press, 1977.

[84] Stefan Craß. A Formal Model of the Extensible Virtual Shared Memory (XVSM) and its Imple-
mentation in Haskell – Design and Specification. M.sc., Technische Universität Wien, A-1040
Wien, Karlsplatz 13, Austria, Febrauary 5 2010.

[85] Steran Craß, Eva Kühn, and Gernot Salzer. Algebraic Foundation of a Data Model for an
Extensible Space-based Collaboration Protocol. In Bipin C. Desai, editor, IDEAS 2009, pages
301–306, Cetraro, Calabria, Italy, September 16–18 2009.

BIBLIOGRAPHY 73

[86] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing
- Vol. 6. World Scientific Publishing Co., Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, July
1998. 196pp, ISBN 981-02-3513-5, US$30.

[87] Opher Dubrovsky, Gregory Levitin, and Michal Penn. A genetic algorithm with a compact solution
encoding for the container ship stowage problem. Journal of Heuristics, 8(6):585–599, November
2002.

[88] S. Even. Graph Algorithms. Computer Science Press, Md., USA, 1979.

[89] Bureau Export. A-Z Dictionary of Export, Trade and Shipping Terms. www.exportbureau.com/-
trade shipping terms/dictionary.html, 2007.

[90] Peter Fettke and Wolfgang Reisig. Modelling service-oriented systems and cloud services with
Heraklit. CoRR, abs/2009.14040, 2020.

[91] Peter Fettke and Wolfgang Reisig. Heraklit – epistemologically motivated modeling
of computer-integrated systems. Heraklit working paper, v1, December 15, 2020,
http://www.heraklit.org, 2020.

[92] Peter Fettke and Wolfgang Reisig. Heraklit case study: 8-second hell. Heraklit working
paper, v1, December 12, 2020, http://www.heraklit.org, 2020.

[93] Peter Fettke and Wolfgang Reisig. Heraklit case study: adder. Heraklit working paper,
v1, December 5, 2020, http://www.heraklit.org, 2020.

[94] Peter Fettke and Wolfgang Reisig. Heraklit case study: parallel adder. Heraklit working
paper, v1, December 5, 2020, http://www.heraklit.org, 2020.

[95] Peter Fettke and Wolfgang Reisig. Heraklit case study: retailer. Heraklit working paper,
v1, December 21, 2020, http://www.heraklit.org, 2020.

[96] Peter Fettke and Wolfgang Reisig. Heraklit case study: service system. Heraklit working
paper, v1, November 20, 2020, http://www.heraklit.org, 2020.

[97] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in
Software Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK, 1998. ISBN 0-521-62348-0.

[98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in
Software Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK, 1998. ISBN 0-521-62348-0.

[99] Kokichi Futatsugi. Advances of proof scores in CafeOBJ. Science of Computer Programming,
224, December 2022.

[100] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Lan-
guage. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[101] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn,
and Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1995.

[102] Jean-Yves Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7. Cambridge Univ. Press,
Cambridge, UK, Cambridge Tracts in Theoretical Computer Science edition, 1989.

74 BIBLIOGRAPHY

[103] Michael Hammer and James A. Champy. Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. HarperCollinsPublishers, 77–85 Fulham Palace Road, Hammersmith, London
W6 8JB, UK, May 1993. 5 June 2001, Paperback.

[104] Michael Hammer and Stephen A. Stanton. The Reengineering Revolutiuon: The Handbook.
HarperCollinsPublishers, 77–85 Fulham Palace Road, Hammersmith, London W6 8JB, UK, 1996.
Paperback.

[105] Michael Reichhardt Hansen and Hans Rischel. Functional Programming in Standard ML. Addison
Wesley, 1997.

[106] R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical Report ECS-LFCS-86-2, Lab.
f. Found. of Comp. Sci., Dept. of Comp. Sci., Univ. of Edinburgh, Scotland, 1986.

[107] Frank Harrary. Graph Theory. Addison Wesley Publishing Co., 1972.

[108] Charles Anthony Richard Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8), Aug. 1978.

[109] Charles Anthony Richard Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8), Aug. 1978.

[110] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in
Computer Science. Prentice-Hall International, London, England, 1985. Published electronically:
usingcsp.com/cspbook.pdf (2004).

[111] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in
Computer Science. Prentice-Hall International, 1985.

[112] Charles Anthony Richard Hoare. Communicating Sequential Processes. Published electronically:
usingcsp.com/cspbook.pdf, 2004. Second edition of [111]. See also usingcsp.com/.

[113] Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts, 2003.

[114] Akio Imai, Kazuya Sasaki, Etsuko Nishimura, and Stratos Papadimitriou. Multi-objective simul-
taneous stowage and load planning for a container ship with container rehandle in yard stacks.
European Journal of Operational Research, 171:373–389, 2006.

[115] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-
bridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[116] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[117] Michael A. Jackson and Graham Twaddle. Business Process Implementation — Building Work-
flow Systems. Addison-Wesley, 1997.

[118] C. B. Jones. Software Development: A Rigorous Approach. Prentice-Hall, 1980.

[119] C. B. Jones. Systematic Software Development — Using VDM. Prentice-Hall, 1986.

[120] C. B. Jones. Systematic Software Development — Using VDM, 2nd Edition. Prentice-Hall,
1989.

[121] J.W. Backus and F.L. Bauer and J.Green and C. Katz and J. McCarthy and P. Naur and A.J.
Perlis and H. Rutishauser and K. Samelson and B. Vauquois and J.H. Wegstein and A. van
Wijngaarden and M. Woodger. Revised Report on the Algorithmic Language Algol 60 – edited
by P. Naur. The Computer Journal, 5(4):349367, 1963.

BIBLIOGRAPHY 75

[122] Eva Kühn, Richard Mordinyi, László Keszthelyi, and Christian Schreiber. Introducing the Con-
cept of Customizable Structued Space for Agent Coordination in the Production of Automa-
tion Domain. In Sierra Decker, Sichman and Castelfranchi, editors, 8th Intl. Conf. on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2009), volume 625–632 of Proceedings of
Autonomous Agents and Multi-Agent Systems, Budapest, Hungary, May 10–15 2009. 8.

[123] Eva Kühn, Richard Mordinyi, László Keszthelyi, Christian Schreiber, Sandford Bessler, and Slo-
bodanka Tomic. Aspect-oriented Space Containers for Efficient Publish/Subscribe Scenarios in
Intelligent Transportation Systems. In T. Dillon and P. HereroR. Meersmann, editors, OTM
2009, Part I, volume 5870 of LNCS, pages 432–448. Springer, 2009.

[124] Peter J. Landin. The Next 700 Programming Languages. Communications of the ACM, 9(3):157–
166, 1966.

[125] J.A.N. Lee and W. Delmore. The Vienna Definition Language, a generalization of instruction
definitions. In SIGPLAN Symp. on Programming Language Definitions, San Francisco, Aug.
1969.

[126] Morten Lind. An introduction to multilevel flow modeling. Internatiomal Journal of Nuclear
Safety and Simulation, 2(2):22–32, 2011.

[127] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary on
Historical Principles. Clarendon Press, Oxford, England, 1973, 1987. Two vols.

[128] P. Lucas. Formal Definition of Programming Languages and Systems. In Proc. IFIP’71. IFIP
World Congress Proceedings, Springer, 1971.

[129] P. Lucas. On the Semantics of Programming Languages and Software Devices. In Rustin, editor,
Formal Semantics of Programming Languages. Prentice-Hall, 1972.

[130] P. Lucas. On the formalization of programming languages: Early history and main approaches.
In D. Bjørner and C. B. Jones, editors, [71]. Springer, 1978.

[131] P. Lucas. Formal Semantics of Programming Languages: VDL. IBM Journal of Devt. and Res.,
25(5):549–561, 1981.

[132] P. Lucas. Main approaches to formal specification. In [14], chapter 1, pages 3–24. Prentice-Hall,
1982.

[133] P. Lucas. Origins, hopes, and achievements. In [74], pages 1–18. Springer, 1987.

[134] P. Lucas and K. Walk. On the Formal Description of PL/I. Annual Review Automatic Program-
ming Part 3, 6(3), 1969.

[135] E.C. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The Netherlands,
1962.

[136] ANSI X3.9-1966. The Fortran programming language. Technical report, American National
Standards Institute, Standards on Computers and Information Processing, 1966.

[137] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and Michael I. Levin.
LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge, Mass., 1962.

[138] J. A. McDermid and P. Whysall. Formal System Specification and Implementation using Z.
International Series in Computer Science. Prentice Hall, Hemel Hempstead, Hertfordshire, UK,
1992. Withdrawn.

[139] Usama Mehmood, Radu Grosu, Ashish Tiwari, Nicola Paoletti, Shan Lin, Yang JunXing, Dung
Phan, Scott D. Stoller, and Scott A. Smolka. Declarative vs Rule-based Control for Flocking
Dynamics. In Proceedings of ACM/SIGAPP Symposium on Applied Computing (SACC 2018).
ACM Press, April 9–13, 2018. 8 pages.

76 BIBLIOGRAPHY

[140] J. H. Morris. Types are not Sets. In Proc. ACM Symposium on Principles of Proramming
Languages (PoPL), pages 120–124. ACM, Boston, 1973.

[141] Peter D. Mosses, editor. CASL Reference Manual, volume 2960 of LNCS, IFIP Series. Speinger–
Verlag, Heidelberg, Germnay, 2004. Part I (Summary) and Part II (Syntax): Peter Mosses; Part
III (Semantics): Don Sannella, and Andrzej Tarlecki; Parts IV (Logic), V (Refinement) and VI
(Libraries): Till Mossakowski.

[142] Lev Nachmanson. Microsofts Automated Layout Tool. Technical report, MS Research, 2021.
https://github.com/microsoft/automated-graph-layout.

[143] Reza Olfati-Saber. Flocking for Multi-agent Dynamic Systems: Algorithms and The-
ory. IEEE Transactions on Automatic Control, 51(3):401–420, 13 March 2006.
http://ieeexplore.ieee.org/document/1605401/; DOI: 10.1109/TAC.2005.864190; Thayer
School of Engineering, Dartmouth College, Hanover, NH, USA.

[144] Oystein Ore. Graphs and their Uses . The Mathematical Association of America, 1963.

[145] International Labour Organisation. Portworker Development Programme: PDP Units. Enumerate
PDP units. , April 2002.

[146] Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002.

[147] Karl R. Popper. Conjectures and Refutations. The Growth of Scientific Knowledge. Routledge
and Kegan Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD, London, England (New
York, NY, USA), 1963,. . . ,1981.

[148] B. F. Potter, J. E. Sinclair, and D. Till. An Introduction to Formal Specification and Z. Prentice
Hall International Series in Computer Science, 1991.

[149] Martin Pěnička and Dines Bjørner. From Railway Resource Planning to Train Operation — a
Brief Survey of Complementary Formalisations. In Building the Information Society, IFIP 18th
World Computer Congress, Topical Sessions, 22–27 August, 2004, Toulouse, France — Ed.
Renéne Jacquart, pages 629–636. Kluwer Academic Publishers, August 2004.

[150] Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing.
In FORMS’2003: Symposium on Formal Methods for Railway Operation and Control Systems.
L’Harmattan Hongrie, 15–16May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors:
G. Tarnai and E. Schnieder, Germany. www2.imm.dtu.dk/ dibj/martin.pdf.

[151] K.V. Ramani. An interactive simulation model for the logistics planning of container operations
in seaports. SIMULATION, 66(5):291–300, 1996.

[152] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical
Computer Science. Springer Verlag, May 1985.

[153] Wolfgang Reisig. A Primer in Petri Net Design. Springer Verlag, March 1992. 120 pages.

[154] Wolfgang Reisig. The Expressive Power of Abstract State Machines. Computing and Informatics,
22(1–2), 2003.

[155] Wolfgang Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der
Informatik. Vieweg+Teubner, 1st edition, 15 June 2010. 248 pages; ISBN 978-3-8348-1290-2.

[156] Wolfgang Reisig. Understanding Petri Nets Modeling Techniques, Analysis Methods, Case Stud-
ies. Springer, 2013. 230+XXVII pages, 145 illus.

[157] Craig Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model . SIGGRAPH
Computer Graphics, 21(4), August 1987. https://doi.org/10.1145/37402.37406.

BIBLIOGRAPHY 77

[158] Craig Reynolds. Steering Behaviors for Autonomous Characters. In Proceedings of Game Devel-
opers Conference, pages 763–782, 1999.

[159] Craig Reynolds. OpenSteer, Steering Behaviours for Autonomous Characters, 2004.
http://opensteer.sourceforge.net.

[160] John C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Mason, editor,
Proc. IFIP World Computer Congress, pages 512–523. Elsevier Sci.Publ. (North-Holland), 1983.

[161] A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer Sci-
ence. Prentice-Hall, 1997. http://www.comlab.ox.ac.uk/people/bill.roscoe/publica-

tions/68b.pdf.

[162] Douglas T. Ross. Toward foundations for the understanding of type. In Proceedings of the 1976
conference on Data: Abstraction, definition and structure, pages 63–65, New York, NY, USA,
1976. ACM. http://doi.acm.org/10.1145/800237.807120.

[163] David A. Schmidt. The Structure of Typed Programming Languages. MIT Press, 1994. ISBN
0262193493.

[164] Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series in
Computer Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD,
England, January 2000.

[165] M. Schönfinkel. On the Building Blocks of Mathematical Logic. In [178]. Harvard University
Press, 1967.

[166] D.S. Scott. Lattice theory, data types and semantics. In R. Rustin, editor, Symposium on Formal
Semantics, pages 67–106. Prentice-Hall, 1972.

[167] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical
Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard · Rosinante, Copenhagen,
Denmark, 1994. 168 pages.

[168] Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eternity]. Munksgaard ·
Rosinante, Copenhagen, Denmark, 1997. 200 pages.

[169] Kai Sørlander. Den Endegyldige Sandhed [The Final Truth]. Rosinante, Copenhagen, Denmark,
2002. 187 pages.

[170] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag,
Copenhagen, Denmark, 2016. 233 pages.

[171] Kai Sørlander. Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær, Slagelse,
Denmark, 2022. See [172].

[172] Kai Sørlander. The Structure of Pure Reason. Publisher to be decided, 2023. This is an English
translation of [171] – done by Dines Bjørner in collaboration with the author.

[173] J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics, volume 3 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, January 1988.

[174] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in
Computer Science, 2nd edition, 1992.

[175] Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation and operations
research - a classification and literature review. OR Spectrum, 26(1):3–49, January 2004.

78 BIBLIOGRAPHY

[176] Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering.
In FORMS2003: Symposium on Formal Methods for Railway Operation and Control Systems.
L’Harmattan Hongrie, 15–16May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors:
G. Tarnai and E. Schnieder, Germany. www2.imm.dtu.dk/ dibj/albena.pdf.

[177] Tetsuo Tamai. Social Impact of Information System Failures. Computer, IEEE Computer Society
Journal, 42(6):58–65, June 2009.

[178] J. van Heijenoort. From Frege to Gödel — a Source Book in Mathematical Logic. Harvard
University Press, 1967.

[179] Achille C. Varzi. On the Boundary between Mereology and Topology, pages 419–438. Hölder-
Pichler-Tempsky, Vienna, 1994.

[180] I.D. Wilson and P.A. Roach. Container stowage planning: a methodology for generating comput-
erised solutions. Journal of the Operational Research Society, 51(11):1248–1255, 1 November
2000. Palgrave Macmillan. University of Glamorgan, UK.

[181] I.D. Wilson, P.A. Roach, and J. A. Ware. Container stowage pre-planning: using search to
generate solutions, a case study. Knowledge-Based Systems, 14(3–4):137–145, June 2001.

[182] J. C. P. Woodcock. Using Standard Z. International Series in Computer Science. Prentice Hall,
Hemel Hempstead, Hertfordshire, UK, 1993. In preparation.

[183] James Charles Paul Woodcock and James Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, London, England, 1996.

Part III

APPENDIX

• The appendix constains three kinds of descriptions:

– In part IV on page 81 four conceptual models.

– In part V on page 169 eleven concrete models.

– In part VI on page 499 four “system” models.

• We refer to these parts’ introductories.

79

80

Part IV

Conceptual Domain Models

In Chapters A–D we present models of four conceptual models. By a model of a
conceptual domain we mean a description which abstracts properties of a number of
concrete domains – or of a natural domain, that is, some non-man-made domain.

We briefly characterize these here.

• ChapterA: Graphs pages 83–112

Draft from February 2021. We cover some aspects, in “our” style of domain
modelling, of “classical” graph theory. This chapter overlaps with chapters B, C,
and D.

• ChapterB: Rivers pages 113–120

Draft from April 2021. Having drafted chapter A, I singled out ‘rivers’ for a
separate inquiry.

• ChapterC: Canals pages 121–153

First drafts from 2007. Having drafted chapters A and B, I singled out ‘canals’
for a separate inquiry.

• ChapterD: The 7 Seas pages 155–167

Draft from August 2021. Having drafted chapters A, B and C, I singled out “the
7 seas” for a separate inquiry.

81

82

Appendix A

A Graph Domain

Contents

A.1 Introduction . 85

A.1.1 Critique of Classical Mathematical Modeling of Nets 85

A.1.2 The Thesis . 85

A.1.3 Structure of This Report . 85

A.2 Examples of Networks . 86

A.2.1 Overland Transport Nets . 86

A.2.1.1 Road Nets . 86

A.2.1.2 Rail Nets . 86

A.2.1.3 Pipeline Nets . 87

A.2.2 Natural Trees with Roots . 87

A.2.3 Waterways . 87

A.2.3.1 Canals . 87

A.2.3.2 Rivers . 87

A.2.3.3 General . 88

A.2.3.4 Visualisation of Rivers and Canals 89

A.2.3.4.1 Rivers . 89

A.2.3.4.2 Deltas . 89

A.2.3.4.3 Canals and Water Systems 89

A.2.3.4.4 Locks . 90

A.2.4 Conclusion . 90

A.3 Classical Mathematical Models . 90

A.3.1 Graphs . 91

A.3.1.1 General Graphs . 91

A.3.1.1.1 Some Mathematics ! 91

A.3.1.1.2 Some Graphics ! . 92

A.3.1.2 Unique Identification of Vertices and Edges 92

A.3.1.3 Paths . 92

A.3.1.4 Directed Graphs . 92

A.3.1.5 Acyclic Graphs . 93

A.3.1.6 Connected Graphs and Trees 93

A.3.1.7 Vertex In- and Out-Degrees of Directed Graphs 93

A.4 Our General Graph Model . 94

A.4.1 The External Qualities . 94

A.4.1.1 A “Global” Graph . 94

83

84 CONTENTS

A.4.1.2 Varieties of Endurants . 94

A.4.1.2.1 Road Net Endurants 95

A.4.1.2.2 Rail Endurants . 95

A.4.1.2.3 Pipeline Endurants 95

A.4.1.2.4 River Net Endurants 96

A.4.2 Internal Qualities . 97

A.4.2.1 Unique Identifiers . 97

A.4.2.2 Auxiliary Functions . 98

A.4.2.2.1 Extraction Functions: Unique Identifies 98

A.4.2.2.2 Retrieval Functions 98

A.4.2.3 Wellformedness . 98

A.4.2.4 Unique Identifier Examples . 98

A.4.2.4.1 Road Net Identifiers 98

A.4.2.4.2 Rail Net Identifiers 99

A.4.2.4.3 Pipeline Net Identifiers 99

A.4.2.4.4 River Net Identifiers 99

A.4.2.5 Mereologies . 100

A.4.2.5.1 Mereology of Undirected Graphs 100

A.4.2.5.2 Wellformedness of Mereologies 100

A.4.2.5.3 Mereology of Directed Graphs 100

A.4.2.5.4 In- and Out-Degrees 101

A.4.2.5.5 Paths of Undirected Graphs 101

A.4.2.5.6 Paths of Directed Graphs 102

A.4.2.5.7 Connectivity . 102

A.4.2.5.8 Acyclic Graphs, Trees and Forests 103

A.4.2.5.9 Forest . 103

A.4.2.5.10 Mereology Examples 103

A.4.2.6 Attributes . 107

A.4.2.6.1 Graph Labeling . 107

A.4.2.6.2 General Net Attributes 108

A.4.2.6.3 Road Net Attributes 108

A.4.2.7 Summing Up . 110

A.4.2.7.1 A Summary of The Example Endurant Models 110

A.4.2.7.2 Initial Conclusion on Labeled Graphs and Example
Domains . 111

A.5 The Nets Domain . 112

A.5.1 Some Introductory Definitions . 112

We study formalisations of graphs as they are found in the conventional Graph Theory literature,
but formalisations as we would formalise graphs in the style of this compendium. The title of
this chapter, A Graph Domain, shall indicate that we shall present graphs, not in the conventional
mathematical style, but according to the principles, techniques and tools of [58]. That is, both
as mathematical entities and as, albeit abstract, i.e., not necessarily manifest, phenomena of the
world. As such we shall endow vertices and edges of graphs with unique identifiablity, mereology
– to model the edge/vertex relations, and attributes – to model vertex and edge labeling, i.e., to
model properties of vertices and edges, including directedness !

A.1. INTRODUCTION 85

A.1 Introduction

A.1.1 Critique of Classical Mathematical Modeling of Nets

Classical mathematical modeling of (road and rail) transport nets, river systems, canal systems,
etc., misses some, to us, important points.

The point being that the more-or-less individual elements of these systems, the links (edges)
and hubs (nodes, vertices) each have their unique identity, their mereology and their attributes,
and that it is these internal qualities of edges and nodes that capture the “real” meaning of the
nets.

In the mathematical models graph edges and vertices have no internal qualities: they are
treated merely as syntactic entities.

We strive, in domain analysis & description [58], to model first the syntactic properties of
manifest phenomena, then the semantic properties. Naturally we cannot model their pragmatics !

A.1.2 The Thesis

The thesis of this compendium is that the domain analysis & description principles, techniques

and tools as brought forward in [51, 54, 55, 57, 58] is a more proper way to model nets.

A.1.3 Structure of This Report

• In Sect. A.2 we casually pictorialise a number of domains whose compositions basically
amount to graphs. These examples are:

– Road Nets [Sect. A.2.1.1 on the next page],

– Railways [Sect. A.2.1.2 on the following page],

– Pipelines [Sect. A.2.1.3 on page 87],

– Rivers [Sect. A.2.3.4.1 on page 89] and

– Canals [Sect. A.2.3.4.3 on page 89].

• In Sect. A.3 we prepare the ground by presenting a minimum account of graphs as they are
usually first introduced in textbooks.

Correlated narratives and formalisations for these domains are shown, spread all over this com-
pendium as follows:

• Road Nets: Sections:

– A.2.1.1 [Pictures],

– A.4.1.2.1 [Endurants],

– A.4.2.4.1 [Unique Identifiers],

– A.4.2.5.10 [Mereology] and

– A.4.2.6.3 [Attributes].

• Railways: In the compendium-proper we pictorialise railways in Sect. refnets-ex:Rail Nets
[Pictures]. In all:

– A.2.1.2 [Pictures],

– F.1 [Endurants],

– A.4.2.4.2 [Unique Identifiers], and

– F.1.2.2 [Mereology].

• Pipelines: Sections:

86 CONTENTS

– A.2.1.3 [Pictures],

– A.4.1.2.3 [Endurants],

– A.4.2.4.3 [Unique Identifiers], and

– A.4.2.5.10 [Mereology].

• Rivers: Sections:

– A.2.3.4.1 [Pictures],

– A.4.1.2.4 [Endurants],

– A.4.2.4.4 [Unique Identifiers], and

– A.4.2.5.10 [Mereology].

• Canals: Other than Sects. A.2.3.4.3 this compendium does not yet illustrate a systematic
canal system description.

A.2 Examples of Networks

We shall consider a widest set of networks,

A.2.1 Overland Transport Nets

By overland transport nets we mean such which are either placed on the ground, or underground,
as tunnels, or through mountains, also as tunnels, or placed on bridges over valleys, etc.

A.2.1.1 Road Nets

Road nets are for the conveyance of automobiles: private cars, buses, trucks, etc.

Figure A.1: Left: The Netherlands. R: Scotland

Figure A.2: L & R: European Road Infrastructure

A.2.1.2 Rail Nets

Rail nets are for the conveyance of passenger and freight trains.
Rail nets and train traffic on these are narrated and formalised in Chapter F:

A.2. EXAMPLES OF NETWORKS 87

Figure A.3: Example Railway Nets

A.2.1.3 Pipeline Nets

Pipelines are for the conveyance of fluids: water, natural gas, hydrogen, oil, etc.

Figure A.4: Oil or Gas Field; European Gas and Hydrogen Pipelines

A.2.2 Natural Trees with Roots

Figures A.6 on the following page, A.7 on page 89, and A.8 on page 89 illustrate our point.

A.2.3 Waterways

By waterways we mean rivers, canals, lakes and oceans – such as are navigable by vessels: barges,
boats and ships.

A.2.3.1 Canals

Canals are artificial or human-made channels or waterways. They are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are constructed to connect existing rivers, seas, or lakes and to
explicitly convey barges etc.

A.2.3.2 Rivers

Rivers, on the other hand, are naturally flowing watercourses, and typically flow until discharging
their water into a lake, sea, ocean, or another river. However, occasionally some rivers do not
discharge their water into lakes, seas, oceans, or other rivers. Rivers that do not empty into
another body of water might flow into the ground or simply dry up before reaching another body
of water. Additionally, small rivers can also be referred to as streams, rivulets, creeks, rills, or
brooks.

• • •

88 CONTENTS

*

D’

L
L"

* L
L

Pipe Unit Fork Unit Join Unit

Redirector Unit

D

L’

L

L"

L’

*
D

D"

D’

D

D"

L

D

D

A"

A’

A

A’

A"

Pump Unit

D

L

D

L

Valve Unit

Well Unit

Sink Unit

Pump

Join

Well

Well

Pump

 Valve

Valve

Pump

Sink

Join

Fork Fork Valve

 Valve

Sink

RedirectorRedirector

Redirector

Figure A.5: Oil unit graphics; a simple oil pipeline.
A pump; a valve; the Trans-Alaska Pipeline System (TAPS); TAPS pipes, re-directors and ‘heat pipes’.

Figure A.6: A Japanese Maple [Portland, OR, US] and an Angel Oak Tree [SC, US]

Disclaimer: At present (“great”) lakes and the oceans (there are two !) are not included in this
modeling effort.

A.2.3.3 General

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are
used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

Rivers, on the other hand, are naturally flowing watercourses, and typically flow until discharg-
ing their water into a lake, sea, ocean, or another river, while canals are constructed to connect
existing rivers, seas, or lakes. However, occasionally some rivers do not discharge their water into
lakes, seas, oceans, or other rivers. Rivers that do not empty into another body of water might
flow into the ground or simply dry up before reaching another body of water. Additionally, small
rivers can also be referred to as streams, rivulets, creeks, rills, or brooks.

The natural water system of the earth includes 71% ocean with land continents being traversed
by brooks, rivers, lakes and river deltas.

A.2. EXAMPLES OF NETWORKS 89

Figure A.7: Drawings of Banyan Trees

Figure A.8: A Dragon Tree [Yemen] and an Aspen Tree Root [Colorado, US]

Headwaters are streams and rivers (tributaries) that are the source of a stream or river.

A tributary is a river or stream that flows into another stream, river, or lake.

A delta is a large, silty area at the mouth of a river at which the river splits into many different
slow-flowing channels that have muddy banks. New land is created at deltas. Deltas are often
triangular-shaped, hence the name (the Greek letter ’delta’ is shaped like a triangle).

The trunk is the main course of river.

Confluence: In geography, a confluence (also: conflux) occurs where two or more flowing bodies
of water join together to form a single flow. A confluence can occur in several configurations: at
the point where a tributary joins a larger river (main stem); or where two streams meet to become
the source of a river of a new name; or where two separated channels of a river (forming a river
island) rejoin at the downstream end.

Towns and Harbours: In this report we model towns. That is, we therefore also model that
towns have harbours – allowing river (and canal) vessels to berth (a place for mooring in a harbour)
for cargo loading, unloading and resting.

A.2.3.4 Visualisation of Rivers and Canals

A.2.3.4.1 Rivers Figures A.9 on the next page and A.10 on the following page illustrate a
number of rivers.

A.2.3.4.2 Deltas We illustrate four deltas, Fig. A.11 on page 91:

A.2.3.4.3 Canals and Water Systems We illustrate just four ship/barge/boat and water level
control canal systems, Figs. A.12, A.13, A.14 on page 92 and A.14 on page 92.

The rightmost figure of Fig. A.14 is from the Dutch Rijkswaaterstaat: www.rijkswaterstaat.nl/-
english/.

90 CONTENTS

Figure A.9: The Congo and the US Rivers

Figure A.10: The Amazon and The Danube Rivers

A.2.3.4.4 Locks A lock is a device used for raising and lowering boats, ships and other water-
craft between stretches of water of different levels on river and canal waterways. The distinguishing
feature of a lock is a fixed chamber in which the water level can be varied. Locks are used to make
a river more easily navigable, or to allow a canal to cross land that is not level. Later canals used
more and larger locks to allow a more direct route to be taken.1

We illustrate a number of locks: Figs. A.15 on page 93 and A.16 on page 93.

A.2.4 Conclusion

A.3 Classical Mathematical Models

We refer to standard textbooks in Graph Theory:

• Claude Berge: Graphs [11, 12, 1958–1978, 1st–2nd ed.]

• Oystein Ore: Graphs and their Uses [144, 1963]

• Frank Harrary: Graph Theory [107, 1972]

• J.A. Bondy and U.S.R. Murty: Graph Theory with Applications [79, 1976]

• S. Even: Graph Algorithms [88, 1979]

1https://en.wikipedia.org/wiki/Lock (water navigation)

A.3. CLASSICAL MATHEMATICAL MODELS 91

Figure A.11: The Ganges, Mississippi, Pearl and the Nile Deltas

Figure A.12: UK Canals and The Panama Canal

or these Wikipedia Web pages:

a. Graph Theory
en.m.wikipedia.org/wiki/Graph theory

b. Graphs: Discrete Mathematics
en.m.wikipedia.org/wiki/Graph (discrete mathematics)

c. The Hamiltonian Path Problem
en.m.wikipedia.org/wiki/Hamiltonian path problem

d. Glossary of Graph Theory
en.wikipedia.org/wiki/Glossary of graph theory terms

A.3.1 Graphs

A.3.1.1 General Graphs

We refer to en.wikipedia.org/wiki/Glossary of graph theory terms#A.

A.3.1.1.1 Some Mathematics ! From (a.): in one restricted but very common sense of the
term,a graph is an ordered pair

• G = (V,E), where

• V , is a set of vertices (also called nodes or points), and

• E ⊆ {{x, y} | x, y ∈ V } is a set of edges (also called links or lines), which are unordered
pairs of vertices.

92 CONTENTS

Figure A.13: The Swedish Göta Kanal

Figure A.14: French and Dutch Rivers and Canals

• If x = y then the edge s a 1-loop, cf. upper leftmost edge of G0 of Fig. A.17 on page 94.

To avoid ambiguity, this type of object may be called precisely an undirected simple graph, cf.
graph G0 of Fig. A.17.

A.3.1.1.2 Some Graphics ! Figure A.17 shows five similarly “shaped” graphs. Figure A.18
shows how these could have been drawn differently.

A.3.1.2 Unique Identification of Vertices and Edges

There is no way it can be avoided2. It simply makes no sense to not bring in that vertices and
edges are uniquely identified. So we identify vertices and edges, cf. graph G1 of Fig. A.17 on
page 94. When, in classical graph theory, labeling of vertices and edges is introduced it is either
for convenience of reference or for property attribution, as we shall later see.

With unique identification there is no problem with multiple edges between any pair of vertices.

A.3.1.3 Paths

A vertex path is a sequence, 〈vi,vj ,...,vk,vk+1,...,v,〉, of two or more vertices such that vertex vk
is adjacent to vertex vk+1 if there is an edge between them. Similar notion of edge paths and
vertex-edge-vertex paths can be defined.

Graphs thus define possibly infinite sets of possibly infinite paths.

A.3.1.4 Directed Graphs

Directed graphs have directed edges, shown, in graph pictures, by affixing arrows to edges, see
graph G2 of Fig. A.17 on page 94.

2Sections 2.2.2.1 and 2.2.2.2 of [58, Bjørner] makes this clear: Unique identifiablity is an unavoidable fact of any
world.

A.3. CLASSICAL MATHEMATICAL MODELS 93

Figure A.15: Inland Canal Locks

Figure A.16: Harbour Canal Locks

• G and V is as before, but • E ⊆ {(x, y) | x, y ∈ V, }.

Directed graphs still define possibly infinite sets of possibly infinite paths. The vertex sequence
〈va,vc,vd,vf ,vf 〉 is a path of graph G2 of Fig. A.17 on the next page.

A.3.1.5 Acyclic Graphs

An acyclic graph is a graph none of whose vertex paths contain any vertex at most once. Graph
G3 of Fig. A.17 on the following page is an acyclic graph.

A.3.1.6 Connected Graphs and Trees

A graph is connected if and only if for any two its vertices vi, vj there exists a path from vi to vj .
A graph that is connected and is acyclic is a tree, cf. graph G4 of Fig. A.17 on the next page.

A.3.1.7 Vertex In- and Out-Degrees of Directed Graphs

By the in-degree of a vertex of a [directed] graph is meant the number of edges incident upon that
vertex. By the out-degree of a vertex of a [directed] graph is meant the number of edges emanating
from that vertex. In an un-directed graph the in- and out-degrees of any vertex are identical. In
an acyclic graph there necessarily must be one or more vertices whose in-degrees are zero. And in
an acyclic graph there necessarily must be one or more vertices whose out-degrees are zero.

94 CONTENTS

G0

e7

e6 e5

e3e4

e2 e1

vd

ve

vc vb

va

vf

G1

e7

e6 e5

e3e4

e2 e1

vd

ve

vc vb

va

vf

G2

e6 e5

e3e4

e2 e1

vd

ve

vc vb

va

vf

G3 G4

Figure A.17: Graphs

va vb

vf vc

ve vd

va vb vc vd ve vf

Figure A.18: Graphs

A.4 Our General Graph Model

A.4.1 The External Qualities

We refer to [58, Chapter 4].

36. Our domain is that of graphs.

37. From graphs one can observe sets of vertices,

38. and edges.

type
36. G
37. V
38. E
value
37. obs Vs: G → V-set
38. obs Es: G → E-set

Please notice that nothing is said about how vertices and edges relate. That is an issues of
mereology, cf. [58, Sect. 5.3.1].

A.4.1.1 A “Global” Graph

39. For ease of reference we can postulate a[n arbitrary] graph.

value
39. g:G

A.4.1.2 Varieties of Endurants

Some domains warrant explication (e.g., renaming) of the vertices and edges or “collapsing” these
into sets over a variety of units.

A.4. OUR GENERAL GRAPH MODEL 95

A.4.1.2.1 Road Net Endurants

40. A road as a pair of hubs and links.

41. Substitute vertices for hubs, H , i.e., street intersections,

42. and edges for links, L, i.e., street segment with no intersections.

type
40. RN = H-set × L-set [≃ G for Graphs]
41. H [≃ V for Graphs]
42. L [≃ E for Graphs]

A.4.1.2.2 Rail Endurants

43. So a graph, i.e., a railway net, RN, consists of a set of rail units.

44. A rail units is

(a) either a simple, linear [or curved] unit, LU,

(b) or a switch, SU,

(c) or a cross-over, XU,

(d) or a cross-over switch, CS,

(e) or ...

We refer to Fig. F.1 on page 193 of Sect. F.1.1.1 on page 192.

type
43. RN = RU-set [≃ G for Graphs]
44. RU == LU | SU | XU | XS | SC
44a. LU :: LiU
44b. SU :: SiU
44c. XU :: XiU
44d. CS :: CiS
44e. ...

Again; here we say nothing more about these units.

A.4.1.2.3 Pipeline Endurants

45. So a graph, i.e., a pipeline net, PN, consists of a set of pipeline units, PLU.

46. A pipeline units is

(a) either a source (a well), WU,

(b) or a pump, PU,

(c) or a pipe, LU,

(d) or a valve, VU,

(e) or a fork, FU,

(f) or a join, JU,

(g) or a sink, SU.

47. All pipeline units are distinct.

96 CONTENTS

type
45. PN
46. PLU == WU | PU | LU | VU | FU | JU | SU
46a. WU :: W
46b. PU :: P
46c. LU :: L
46d. VU :: V
46e. FU :: F
46f. JU :: J
46g. SU :: S
value
46. obs PLUs: PN → PLU-set
axiom
47. WU

⋂
PU={} ∧ WU

⋂
LU={} ∧ WU

⋂
LU={} ∧ WU

⋂
VU={}∧ WU

⋂
FU={} ∧ WU

⋂
JU={} ∧ WU

⋂
SU={} ∧

47. PU
⋂
LU={} ∧ PU

⋂
VU={}∧ PU

⋂
FU={} ∧ PU

⋂
JU={} ∧ PU

⋂
SU={} ∧

47. LU
⋂
VU={} ∧ LU

⋂
FU={} ∧ LU

⋂
JU={} ∧ LU

⋂
SU={} ∧

47. VU
⋂
FU={} ∧ VU

⋂
JU={} ∧ VU

⋂
SU={} ∧

47. FU
⋂
JU={} ∧ FU

⋂
SU={} ∧

47. JU
⋂
SU={}

Again; here we say nothing more about these units.

A.4.1.2.4 River Net Endurants

48. A river net is modeled as a graph, more specifically as a tree. The root of that river net tree
is the mouth (or delta) of the river net. The leaves of that river net tree are the sources of
respective trees. Paths from leaves to the root define flows of water.

49. We can thus, from a river net observe vertices

50. and edges.

51. River vertices model either a source: so:SO, a mouth: mo:MO, or possibly some confluence:
ko:KO.

A river may thus be “punctuated” by zero or more confluences, k:KO.

A confluence defines the joining a ‘main’ river with zero3 or more rivers into that ‘main’
river.

We can talk about the “upstream” and the “downstream” of rivers from their confluence.

52. River edges model stretches: st:ST.

A stretch is a linear sequences of simple, se:SE, or composite ce:CE, river elements.

53. River elements are either simple: (ch) river channels, which we shall call river channels: CH,
or (la) lakes: LA, or (lo) locks: LO, or (wa) waterfalls (or rapids): WA, or (da) dams: DA, or
(to) towns (cities, villages): to:TO4; or composite, ce:CE: a dam with a lock, (da:DA,la:LA),
a town with a lake, (to:TO,la:LA), etcetera; even a town with a lake and a confluence,
to:TO,la:LA,ko:KO. Etcetera.

type
48. RiN
49. V
50. E
51. SO, MO, KO
52. ST = (SE|CE)∗
53. CH, LA, LO, WA, KO, DA, TO

3Normally, though, one would expect, not zero, but one
4Towns is here really a synonym for river harbours, places along the river (or a canal) where river vessels can

stop (moor) for the loading and unloading of cargo and for resting.

A.4. OUR GENERAL GRAPH MODEL 97

53. SE = CH | LA | LO | WA | DA | TO
53. DaLo, WaLo, ToLa, ToLaKo, ...
53. CE = DaLo | WaLo | ToLa | ToLaKo | ...
value
51. obs Vs: RiN → V-set
51. axiom
51. ∀ g:G,vs:V-set•vs ∈ obs Vs(g) ⇒ vs 6={}
51. ∧ ∀ v:V•v ∈ vs ⇒ is SO(v) ∨ is KO(v) ∨ is MO(v)
52. obs Es: RiN → E-set
52. axiom
52. ∀ g:G,es:E-set•es ∈ obs Es(g) ⇒ es 6={}
52. ∧ ∀ e:E•e ∈ es ⇒ is ST(e)
52. obs ST: E → ST
48. xtr In Degree 0 Vertices: RiN → SO-set
48. xtr Out Degree 0 Vertex: RiN → MO

SO

CH

LO

CH

LA

CH

WA

CH

KO
CH CH

CH

CH

SO

CH

SO

CH

SO

MO

CH

CH

DA
CH

SO

ToKo:(TO,KO)

WaLo:(WA,LO)

DaLo:(DA,LO)
ToLaKo:(TO,LA,KO)

Source

Simple or composite river element

Confluence

Mouth

Figure A.19: The “Composition” of a River Net: Right Tree is an abstraction of the Left Tree

A.4.2 Internal Qualities

We refer to [58, Chapter 5]

A.4.2.1 Unique Identifiers

We refer to [58, Sect. 5.2]

54. Each vertex has a unique identifier.

55. Each edge has a unique identifier.

type
54. V UI
55. E UI
value
54. uid V: V → V UI
55. uid E: E → E UI

98 CONTENTS

A.4.2.2 Auxiliary Functions

A.4.2.2.1 Extraction Functions: Unique Identifies

56. We can calculate the set of all unique vertex identifiers of a graph,

57. and all unique edge identifiers of a graph,

58. and all unique identifiers of vertices and edges of a graph.

value
56. xtr V UIs: G → V UI-set, xtr V UIs(g) ≡ { uid v(v) | v:V•v ∈ obs Vs(g) }
57. xtr E UIs: G → EI-set, xtr E UIs(g) ≡ { uid E(e) | e:E•e ∈ obs Es(g) }
58. xtr U UIs: G → (VI|EI)-set, xtr UIs(g) ≡ xtr V UIs(g) ∪ xtr E UIs(g)

A.4.2.2.2 Retrieval Functions

59. Given a unique vertex identifier of a graph one can retrieve, from the graph, the vertex of
that identification.

60. Given a unique edge identifier of a graph one can retrieve, from the graph, the edge of that
identification.

value

59. retr V: V UI → G
∼→ V

59. retr V(v ui)(g) ≡ let v:V • v ∈ obs Vs(g) ∧ v ui = uid V(v) in v end, pre: e ui ∈ xtr E UIs(g)

60. retr E: EI → G
∼→ E

60. retr E(ei)(g) ≡ let e:E • e ∈ obs Es(g) ∧ e ui = uid E(e) in e end, pre: e ui ∈ xtr E UIs(g)

A.4.2.3 Wellformedness

61. Vertex and edge identifiers are all distinct.

62. Each vertex and each edge has a distinct unique identifier.

axiom
61. ∀ g:G • xtr V UIs(g) ∩ xtr E UIs(g) = {}
62. card obs Vs(g)=card xtr V UIs(g) ∧ card obs Es(g)=card xtr E UIs(g)

A.4.2.4 Unique Identifier Examples

We giver four examples: roads, rails, pipelines and rivers.

A.4.2.4.1 Road Net Identifiers Very simple,

63. substitute vertex identifiers, VI, with hub identifiers, HI, and

64. substitute edge identifiers, EI, with link identifiers, LI,

in type and unique observer function definitions.

type
63. HI [≡ VI for Graphs]
64. LI [≡ EI for Graphs]

A.4. OUR GENERAL GRAPH MODEL 99

A.4.2.4.2 Rail Net Identifiers

65. With every rail net unit we associate a unique identifier.

66. That is, no two rail net units have the same unique identifier.

type
65. UI
value
65. uid NU: NU → UI
axiom
66. ∀ ui i,ui j:UI • ui i = ui j ≡ uid NU(ui i)=uid NU(ui j)

A.4.2.4.3 Pipeline Net Identifiers

67. With pipeline units a type WU, PU, LU, VU, FU, JU and SU we associate a single unique
identifier sort: UI.

67. UI == WU UI | PU UI | LU UI | VU UI | FU UI | JU UI | SU UI

A.4.2.4.4 River Net Identifiers We shall associate unique identifiers both with vertices, edges
and vertex and edge elements.

68. River net vertices and edges have unique identifiers.

69. River net sources, confluences and mouths have unique identifiers.

70. River net stretches have unique identifiers.

71. River net channels, lakes, locks, waterfalls, dams and towns as well as combinations of these,
that is, simple and composite river entities have unique identifiers.

type
68. V UI, E UI
69. SO UI, KO UI, MO UI
70. ST UI
71. CH UI, LA UI, LO UI, WA UI, DA UI, TO UI, DaLo UI, WaLo UI, ToLa UI, ToLaKo UI, ...
value
68. uid V: V→V UI, uid E: E→ E U
69. uid SO: SO→SO UI, uid KO: KO→KO UI, uid MO: MO→MO UI,
70. uid ST: ST→ST UI
71. uid CH: CH→CH UI, uid LA: LA→LA UI, uid LO: LO→LO UI, uid WA: WA→WA UI,
71. uid DA: DA→DA UI, uid TO: TO→TO UI,
71. uid DaLo: DaLo→DaLo UI, uid WaLo: WaLo→WaLo UI, uid ToLa: ToLa→ToLa UI,
71. uid ToLaKo: ToLaKo→ToLaKo UI, ...

72. All these identifiers are distinct.

The ⋓ operator takes the pairwise intersection of the types in its argument list and examines them
for disjointedness.

axiom
72. ⋓(V UI,E UI,SO UI,KO UI,MO UI,ST UI,CH UI,
72. LA UI,LO UI,WA UI,DA UI,TO UI,DaLo UI,WaLo UI,ToLa UI,ToLaKo UI)

73. There are [many] other constraints, please state them !

73. [left as exercise to the reader !]

100 CONTENTS

A.4.2.5 Mereologies

We refer to [58, Sect. 5.3]. We shall formalise a number of mereologies:

• of undirected graphs — typically road, air and sea transport nets,

• and “general” directed graphs —

A.4.2.5.1 Mereology of Undirected Graphs

74. The mereology of a vertex is the set of unique identifiers of the edges incident upon the
vertex.

75. The mereology of an edges is the one-or two element set of the unique identifiers of the
[1-loop] vertex, respectively the vertices which the edge is connecting.

type
74. V Mer = E UI-set
75. E Mer = V UI-set
value
74. mereo V: V → V Mer
75. mereo E: E → E Mer
axiom
74. ∀ g:G,v:V • v ∈ obs Vs(g) ⇒ mereo V(v)⊆xtr E UIs(g)
75. ∀ g:G,e:E • e ∈ obs Es(g) ⇒ mereo E(e)⊆xtr V UIs(g)

A.4.2.5.2 Wellformedness of Mereologies

76. The vertex mereology must record unique edge identifiers of the graph.

77. The edge mereology must record unique vertex identifiers of the graph.

78. If a vertex mereology identify edges then these edge mereologies must identify that vertex,
and, vice versa

79. If an edge mereology identify vertices then these vertex mereologies must identify that edge.

axiom
76. ∀ g:G,v:V • v ∈ obs Vs(g) ⇒ mereo V(v)⊆xtr EIs(g)
77. ∀ g:G,e:E • e ∈ obs Es(g) ⇒ mereo E(e)⊆xtr VIs(g)
78. ∀ g:G,v:V • v ∈ obs Vs(g) ⇒ ∀ ei ∈ mereo V(v) ⇒ uid V(v) ∈ mereo E(e)
79. ∀ g:G,e:E • e ∈ obs Es(g) ⇒ ∀ vi ∈ mereo E(e) ⇒ uid E(e) ∈ mereo V(v)

A.4.2.5.3 Mereology of Directed Graphs

80. The mereology of a vertex is a pair of the set of unique identifiers of the edges incident upon
the vertex and the set of unique identifiers of the edges emanating from the vertex –

81. and these must all be of the graph.

82. The mereology of an edge is a one or two element set of pairs of vertex identifiers –

83. and these must all be of the graph.

A.4. OUR GENERAL GRAPH MODEL 101

type
80. V Mer = E UI-set × E UI-set
82. E Mer = (V UI × V UI)-set
value
80. mereo V: V → G → V Mer
82. mereo E: E → G → E Mer
axiom
81. ∀ g:G,v:V • v ∈ obs Vs(g) ⇒
81. let (e ui s i,e ui s e) = V Mer(v) in e ui s i ∪ e ui s e ⊆ xtr E UIs(g) end
83. ∀ g:G,e:E • e ∈ obs Es(g) ⇒
83. let p v ui s = V Mer(e) in
83. let v ui s = { v ui i,v ui e | (v ui i,v ui e):(V UI×V UI)•(v ui i,v ui e)∈p v ui s } in
83. v ui s ⊆ xtr V UIs(g) end end

A.4.2.5.4 In- and Out-Degrees

84. The in-degree of a vertex of a directed graph is the number of edges incident upon that
vertex.

85. The out-degree of a vertex of a graph is the number of edges emanating that vertex.

84. in degee V: V → G
∼→ Nat

84. in degree(v)(vs,es) ≡ let (uis i,)=mereo V(v) in card uis i end, pre v ∈ vs

85. out degee V: V → G
∼→ Nat

85. out degree(v)(vs,es) ≡ let (,uis e)=mereo V(v) in card uis e end, pre v ∈ vs

A.4.2.5.5 Paths of Undirected Graphs We shall only illustrate vertex-edge-vertex paths for
given graphs, g.

86. A vertex-edge-vertex path is a sequence of zero or more edges.

87. That is, the empty sequence, 〈〉, is a vertex-edge-vertex path, [the first basis clause].

88. If e is an edge of g, then the two elements 〈(vi, ej, vk)〉, 〈(vk, ej, vi)〉, where ej is the unique
identifier of e whose mereology is {vi, vj}, are vertex-edge-vertex paths.

89. In 〈(vi, ej, vk)〉 we refer to vi is the first vertex identifier and vk as the second. Vice versa
in 〈(vk, ej, vi)〉.

value
89. fVIfEP: EP → VI, fVIfEP(ep:〈(vi,ej,vk)〉̂ep′) ≡ vi, pre: ep 6=〈〉
89. lVIlEP: EP → VI, lVIlEP(ep:ep′̂〈(vi,ej,vk)〉) ≡ vk, pre: ep 6=〈〉

90. If p and p′ are paths of g such that the last vertex identifier of the last element of p is the
same as the first vertex identifier of the first element of p′, then the sequence p followed by
the sequence p′ is a vertex-edge-vertex path of g [the inductive clause].

91. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type
86. EP = Eω

86. edge paths: G → EP-set
86. edge paths(g) ≡

102 CONTENTS

87. let ps = {〈〉}
88. ∪ {〈(vi,uid E(e),vk)〉,〈(vk,uid E(e),vi)〉|e:E•e ∈ xtr Es(g)∧{vi,vk}⊆mereo E(e)}
90. ∪ {p̂p′|p,p′:EP•{p,p′}⊆ps∧lVIlEP(9)=fVIfEP(p′)} in
91. ps end

A.4.2.5.6 Paths of Directed Graphs

86. A vertex-edge-vertex path is a sequence of zero or more edges.

87. That is, the empty sequence, 〈〉, is a vertex-edge-vertex path, [the first basis clause].

92. If e is an edge of g, and if (vi,vj) is in the mereology of e, then the 〈(vi, ej, vk)〉, where ej is
the unique identifier of e is a vertex-edge-vertex path.

90. If p and p′ are paths of g such that the last vertex identifier of the last element of p is the
same as the first vertex identifier of the first element of p′, then the sequence p followed by
the sequence p′ is a vertex-edge-vertex path of g [the inductive clause].

91. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type
86. EP = Eω

86. edge paths: G → EP-set
86. edge paths(g) ≡
87. let ps = {〈〉}
92. ∪ {〈(vi,uid E(e),vk)〉|e:E•e ∈ xtr Es(g)∧(vi,vk)∈mereo E(e)}
90. ∪ {p̂p′|p,p′:EP•{p,p′}⊆ps∧lVIlEP(9)=fVIfEP(p′)} in
91. ps end

Notice that the difference in the two definitions of (overload-named) edge paths differ only in in
the last terms of items 88 and 92.

A.4.2.5.7 Connectivity

93. For every pair of vertices we can calculate the set of all paths connecting these in a graph.

93. all connected paths: (V×V) → G → EP-set
93. all connected paths(vi,vj) ≡
93. { ep | ep:EP • ep ∈ edge paths(g) • ep[1] = (uid V(vi), ,), ep[len ep] = (, ,uid V(vj)) }

94. Two vertices, vi,vj , of a graph, g, are connected if there is a path from vi to vj in g.

value

94. are connected: (V×V) → G
∼→ Bool

94. are connected(vi,vj)(g) ≡ all connected paths(vi,vj) 6= {}

95. A graph is connected if there is a path from every vertex to every other vertex.

value
95. is connected: G → Bool
95. is connected(g) ≡ ∀ vi,vj:V • {vi,vj} ∈ obs Vs(g) • are connected(vi,vj)(g)

A.4. OUR GENERAL GRAPH MODEL 103

A.4.2.5.8 Acyclic Graphs, Trees and Forests

96. A cycle is a path which begins and ends at the same vertex.

97. An acyclic graph is a graph having no graph cycles.

98. A bipartite graph (or bi-graph) is a graph whose vertices can be divided into two disjoint
and independent sets, V ′, V ′′, such that every edge connects a vertex in V ′ to one in V ′′.
Acyclic graphs are bipartite.

99. By a tree we5 shall understand a connected, acyclic graph such that there are no two distinct
paths from any given pair of in-degree-0 and out-degree-0 vertices.

100. A disjoint graph is a set of two or more graphs such that no two of these graphs, G, g′, have
vertices in g with edges to g′.

101. A forest is a disconnected set of trees, hence form a disjoint graph of distinct trees.

97. is a cycle: EP → Bool
97. is a cycle(ep) ≡ let (vi, ,)=ep[1], (, ,vi′)=ep[len ep] in vi = vi′ end
97. is acyclic: G → Bool
97. is acyclic(g) ≡ !∃ ep:EP • ep ∈ edge paths(g) ∧ is a cycle(ep)
98. is bipartite: G → Bool
98. is bipartite(g) ≡ ... [exercise for the reader]
99. is a tree: G → Bool
99. is a tree(g) ≡ ... [exercise for the reader]
100. is disjoint graph: G → Bool
100. is disjoint graph(g) ≡ ... [exercise for the reader]
101. is a forest: G → Bool
101. is a forest(g) ≡ ... [exercise for the reader]

Figure A.20: Undirected, Directed, Acyclic, Bipartite, Tree and Disjoint Graphs

A.4.2.5.9 Forest A forest is an undirected graph without cycles (a disjoint union of un-rooted
trees), or a directed graph formed as a disjoint union of rooted trees.

A.4.2.5.10 Mereology Examples We present mereology examples of both undirected and di-
rected graphs.

Mereology of Undirected Graph Examples: We present mereology examples of road nets and
railway tracks.

• Road Nets

5Our definition is OK, but there are more encompassing definitions of trees.

104 CONTENTS

The mereology of road nets follow that of undirected graphs:

102. substitute V for H and VI for HI, and

103. substitute E for L and EI for LI.

We refer to Sect. A.4.2.5.10.

102. H Mer = L UI-set × L UI-set
103. L Mer = (H UI × H UI)-set, axiom ∀ lm:L Mer•cardlm∈{0,1,2}

• Rail Nets

We refer to Chapter F.

Mereology of directed Graph Examples: In some circumstances we may model mereologies of
directed graphs in terms of attributes. An example is that of road nets. Road nets, usually, can be
considered undirected graphs. But discrete dynamically set and reset traffic signals as well as road
signs may render streets and their intersection, i.e., links and hubs, “directed”. We then model
this “directedness”, as we shall see, in Sect. A.4.2.6.3 on page 108, in terms of programmable
attributes.

• Pipeline Nets

We refer to Sects. A.2.1.3 on page 87, A.4.1.2.3 on page 95 and A.4.2.4.3 on page 99.

104. Wells have exactly one connection to an output unit – which is usually a pump.

105. Pipes, pumps, valves and re-directors have exactly one connection from an input unit and
one connection to an output unit.

106. Forks have exactly one connection from an input unit and exactly two connections to distinct
output units.

107. Joins have exactly two connections from distinct input units and one connection to an output
unit.

108. Sinks have exactly one connection from an input unit – which is usually a valve.

109. Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline
unit identifiers.

type
109 PM′=(UI-set×UI-set), PM={|(iuis,ouis):PM′•iuis ∩ ouis={}|}
value
109 mereo PE: PE → PM

The well-formedness inherent in narrative lines 104–108 are formalised:

axiom [Well−formedness of Pipeline Systems, PL (0)]
∀ pl:PL,pe:PE • pe ∈ all pipeline uits(pl) ⇒

let (iuis,ouis)=mereo PE(pe) in
case (card iuis,card ouis) of

104 (0,1) → is We(pe),
105 (1,1) → is Pi(pe)∨is Pu(pe)∨is Va(pe),
106 (1,2) → is Fo(pe),
107 (2,1) → is Jo(pe),
108 (1,0) → is Si(pe), → false

end end

A.4. OUR GENERAL GRAPH MODEL 105

To express full well-formedness we need express that pipeline nets are acyclic. To do so we first
define a function which calculates all routes in a net.

Two pipeline units, pei with unique identifier πi, and pej with unique identifier πj , that are
connected, such that an outlet marked πj of pi “feeds into” inlet marked πi of pj , are said to share
the connection (modeled by, e.g., {(πi, πj)})

110. The observed pipeline units of a pipeline system define a number of routes (or pipelines):

Basis Clauses:

111. The null sequence, 〈〉, of no units is a route.

112. Any one pipeline unit, pe, of a pipeline system forms a route, 〈pe〉, of length one.

113.] Inductive Clauses:

114. Let rî〈pei〉 and 〈pej〉̂rj be two routes of a pipeline system.

115. Let peiui
and pejui

be the unique identifiers pei, respectively pej.

116. If one of the output connectors of pei is peiui

117. and one of the input connectors of pej is pejui
,

118. then rî〈pei, pej〉̂rj is a route of the pipeline system.

Extremal Clause:

119. Only such routes which can be formed by a finite number of applications of the clauses form
a route.

type
110. R = PEω

value

110 routes: PL
∼→ R-infset

110 routes(ps) ≡
110 let cpes = pipeline units(pl) in
111 let rs = {〈〉}
112 ∪ {〈pe〉|pe:PE•pe ∈ cpes} ∪
118 ∪ {rî〈pe i〉̂〈pe j〉̂rj | pei,pej:PE • {pe i,pe j}⊆cpes
114 ∧ rî〈pe i〉,〈pe j〉̂rj:R • {rî〈pe i〉,〈pe j〉̂rj}⊆rs
115,116 ∧ pe i ui = uid PE(pe i) ∧ pe i ui ∈ xtr oUOs(pe i)
115,117 ∧ pe j ui = uid PE(pe j) ∧ pe j ui ∈ xtr iUIs(pe j)} in
119 rs end end

xtr iUIs: PE → UI-set, xtr iUIs(u) ≡ let (iuis,)=mereo PE(pe) in iuis end
xtr oUIs: PE → UI-set, xtr oUIs(u) ≡ let (,ouis)=mereo PE(pe) in ouis end

120. The observed pipeline units of a pipeline system forms a net subject to the following con-
straints:

(a) unit output connectors, if any, are connected to unit input connectors;

(b) unit input connectors, if any, are connected to unit output connectors;

(c) there are no cyclic routes;

(d) nets has all their connectors connected, that is, “starts” with wells

(e) and “ends” with sinks.

106 CONTENTS

value
120. wf Net: PL → Bool
120. wf Net(pl) ≡
120. let cpes = all pipeline units{pl} in
120. ∀ pe:PE • pe ∈ cpes ⇒ let (iuis,ouis) = mereo PE(pe) in
120. axiom 104.–108.
120a. ∧ ∀ pe :UI•pe ui ∈ iuis ⇒
120a. ∃ pe′:PE•pe′6=pe∧pe′isin cpes∧uid PE(pe′)=pe ui∧pe ui∈xtr iUIs(pe′)
120b. ∧ ∀ pe ui:UI•pe ui ∈ ouis ⇒
120b. ∃ pe′:PE•pe′6=pe∧pe′isin cpes∧uid PE(pe′)=pe ui∧pe ui∈xtr oUIs(pe′)
120c. ∧ ∀ r:R•r ∈ routes(pl) ⇒
120c. ∼∃ i,j:Nat•i 6=j∧{i,j}∈ inds r∧r(i)=r(j)
120d. ∧ ∃ we:We • we ∈ us ∧ r(1) = mkWe(we)
120e. ∧ ∃ si:Si • si ∈ us ∧ r(len r) = mkSi(si)
110. end end

• River Nets

121. The mereology of a river vertex is a pair: a set of unique identifiers, E UI, of river edges, i.e.,
stretches, linear sequences of simple and composite river elements, incident upon the vertex,
and a set of unique identifiers, E UI, of river edges emanating from the vertex. If the vertex
is a source then the first element of this pair is empty. If the vertex is a mount then the
second element of this pair is empty. For a confluence vertex both elements of the pair are
non-empty.

122. The mereology of a river edge, that is, the linear sequence of simple and composite river
elements between two adjacent vertices, is a pair: the first element is a unique identifier of
a river vertex and so is the second element of the pair.

We present the river net mereology in two forms. The first was with respect to its graph rendition.
The second is with respect to its river element rendition.

123. The mereology of a source is just the single unique identifier of the first simple or composite
river element of the stretch emanating from the source.

124. The mereology of a confluence is a triplet: the single unique identifier of the last simple
or composite river element of the stretch of the main river incident upon the source, a set
of unique identifier of the last simple or composite river element of the stretches of the
tributary rivers incident upon the source, and the single unique identifier of the first simple
or composite river element of the main river stretch emanating from the confluence.

125. The mereology of a mouth is just the single unique identifier of the last simple or composite
river element of the stretch incident upon the mouth

126. The mereologies of simple and composite river elements are pairs: of the unique identifier of
the river elements, including sources and confluences, upstream adjacent to the river element
being “mereologised”, and of the unique identifier of the river elements, including confluences
and mouths, downstream adjacent to the river element being “mereologised”.

121. Mer V = E UI-set × E UI-set
122. Mer E = V UI × V UI
123. Mer SO = SE UI | CE UI
124. Mer KO = (SE UI|CE UI) × (SE UI|CE UI)-set × (SE UI|CE UI)
125. Mer MO = SE UI | CE UI
126. Mer RE = (SO UI|CO UI|SE UI|CE UI) × (SE UI|CE UI|CO UI|MO UI)

A.4. OUR GENERAL GRAPH MODEL 107

127. The unique vertex and edge identifiers must be identifiers of the vertices and edges of a
graph.

128. Similarly, the unique source, confluence and mouth identifiers must be identifiers of respective
sources, confluences and mouths of a graph.

129. And likewise for simple and composite element identifiers.

130. No two sources, confluences, mouths, simple and composite elements have identical unique
identifiers.

131. There are other constraints, please state them !

axiom
127. [left as exercise to the reader !]
128. [left as exercise to the reader !]
129. [left as exercise to the reader !]
130. [left as exercise to the reader !]
131. [left as exercise to the reader !]

A.4.2.6 Attributes

We refer to [58, Sect. 5.4]

Attributes of discrete endurants ascribe to them such properties that endow these, typical manifest
entities with substance. External qualities of endurants allow us to reason about atomicity and
compositions, whether as Cartesian-like products, as sets or as sequences; but not much more !
The internal quality of unique identification allows us to speak of, i.e., analyze and describe
multiplicities of same sort endurants. The internal quality of mereology allows us to relate discrete
endurants either topologically or otherwise. But it is the internal quality of possessing one or more
attributes, i.e., properties — usually many more than we may actually care to define, that really
sets different sort parts “apart” (!) and allows us to reason more broadly, more domain-specifically,
about endurants.

A.4.2.6.1 Graph Labeling It is quite common, in fact usually normal, to so-called “label”
vertices and edges of graphs; that is, either none, or all, rarely only some proper subset. Such
labeling is used for two distinct purposes: Either such labeling occur in only one of these forms,
sometimes, though, in both; the situation is confusing. In our approach we clearly analyze labeling
into two separate forms: the unique identification of distinct parts, and the ascription of attributes,
sometimes the same, or “overlapping”6 to more than one part, or even part sort. One should take
care of the following: whereas distinct parts “receive” distinct unique identification, such distinct
parts may be ascribed the same attribute value.

One may classify attributes in two different ways: into either static, monitorable and program-
mable as introduced by M.A. Jackson, [116], and as slightly “simplified” in [58, Sect. 5.4.2.3]; or as
either measurable (by for example electro-, chemical or mechanical instruments) or referable (one
can talk about histories of events) or both ! Anyone part may be ascribed attributes of any mix
and composition of these classifications.

If you sense some uneasiness about the issue of graph labeling as it is treated in for example
operations, where graphs are a stable work horse, then you are right !

6By “overlapping” assignment of attribute to different parts we mean that two or more parts may be assigned
the same attribute type.

108 CONTENTS

A.4.2.6.2 General Net Attributes Let us informally recall some general facts about the con-
cept of attributes such as we introduce them in [58, Sect. 5.4].

132. We can speak of the set of names of attribute types. If A is the type of an attributes, the
ηA is the name of that type.

133. For every part sort, P, we can thus speak of the set, or a suitably chosen, to be modeled,
subset of attributes types in terms of their names.

134. Of course, different attribute names must designate distinct, i.e., non-overlapping attribute
values of that type.

Likewise informally:

type
132. ηA, A
value
132. name of attribute: A → ηA,ηAname of attribute(A) ≡ ηA
133. attributes: P → ηA-set
133. attributes(p) ≡ {ηAi,ηAj ,...,ηAk}
axiom
134. ∀ p:P, anms:{ηAi,ηAj ,...,ηAk}:ηA-set:anms⊆attributes(p)⇒∀i,j,...,k•Ai∩Aj={}∧Aj∩Aj={}∧...

A.4.2.6.3 Road Net Attributes

Link Attributes:

135. Standard “bookkeeping” link attributes are road name, length, name of administrative au-
thority and others. These are static attributes.

136. Standard “control” attributes model the dynamically settable direction of flow along a link:
its current link state as well as the space of all such link states.

137. Standard “event history” attributes model the time-stamped chronologically ordered se-
quence, for example latest first, of automobiles entering, stopping along (say parking) and
leaving a link. A first element in such a list denotes “entering”. The last element “leav-
ing”. Any element in-between, pairwise, “stopping” (for example for parking) and “starting”
(resume driving).

Hub Attributes:

138. Standard “bookkeeping” hub attributes are road intersection name, name of administrative
authority and others. These are static attributes.

139. Standard “control” attributes model the dynamically settable direction of flow along into
and out of a hubs: its current hub state as well as the space of all such hub states.

140. Standard “event history” attributes model the time-stamped chronologically ordered se-
quence, for example latest first, of automobiles entering, stopping along (say parking) and
leaving a hub. A first element in such a list denotes “entering”. The last element “leav-
ing”. Any element in-between, pairwise, “stopping” (for example for parking) and “starting”
(resume driving).

141. We assume a sort of automobile identifiers.

A.4. OUR GENERAL GRAPH MODEL 109

type
135. Road Name, Length, Admin Auth, ...
136. LΣ = (H UI×H UI)-set; axiom ∀ lσ:LΣ•card lσ ∈ {0,1,2}; LΩ = LΣ-set
137. L History = A UI →m TIME

∗

138. Intersection Name, Admin Auth, ...
139. HΣ = (L UI×L UI)-set
139. HΩ = HΣ-set
140. H History = A UI →m TIME∗

141. A UI
value
135. attr Road Name:: L→Road Name, attr Length: L→Length, attr Admin Auth: L→Admin Auth, ...
136. attr LΣ: L→LΣ, attr LΩ: L→LΩ
137. attr L History: L→L History
138. attr Intersection name:: H→Intersection name, attr Admin Auth: H→Admin Auth, ...
139. attr HΣ: H→HΣ, attr HΩ: H→HΩ
140. attr H History: H→H History

We omit narrating and formalizing attributes for Road Surface Temperature, Road Mainte-

nance Condition, etc., etc.

Elucidation of Road Net History Attributes
The above was a terse rendition. Below we elucidate, in two steps.

• All Events are Historized !

The above “story” on road net history attributes was a “lead-in” ! To get you started on the
notion of event histories. They are not recorded by anyone. They do occur. That is a fact. We can
talk about them. So they are attributes. But they occur without our consciously talking about
them. So they are chronicled.

• More Detailed Road Unit Histories

Also, the “story” was simplified. Here is a slightly more detailed history rendition of:

142. Attributed vents related to automobiles on roads.

143. Automobiles enter a link.

144. Automobiles stop along the link at a

145. fraction of the distance between the entered and the intended destination hubs.

146. Automobiles Restart.

147. Automobiles may make U-turns along a link at fraction of the distance between the entered
and the originally intended destination hubs.

148. Eventually automobiles leave a link, entering a hub.

149. Same story for automobiles at a hub.

type
142. L Hist = A UI →m (A L Event × TIME)∗

142. A L Event == Enter | Stop | ReStart | U Turn | Leave
143. Enter :: H UI
144. Stop :: H UI × Frac × H UI
145. Frac = Real; axiom ∀ f:Frac • 0<f<1
146. ReStart :: ...
147. U Turn :: H UI × Frac × H UI
148. Leave :: H UI

110 CONTENTS

• Requirements: Recording Events

So all events are chronicled. Not by the intervention of any device, but by “the sheer force of
fate” ! So be it — in the domain. But if you are to develop software for a road net application: be
it a road pricing system, or a traffic control system, or other – something related to automobile and
road events, then recording these events may be necessary. If so, you have to develop requirements
from, for example, a domain description of this kind. We refer to [58, Chapter 9: Requirements].
More specifically you have to extend the domain, [58, Sect. 9.4.4: Domain Extension] – sensors
that record the position of cars7. And this sensing may fail, and thus and implementation of the
recording of hub and link histories may leave “holes” – and the requirements must then prescribe
which kind of safeguards the thus extended road net system must provide.

A.4.2.7 Summing Up

A.4.2.7.1 A Summary of The Example Endurant Models We summarise “the tip of the
icebergs” by recording here the main domains, but now in a concrete form; that is, with concrete
types for main sorts instead of abstract types with observers.

River nets form graphs. Similarly can be done for all the examples. First we recall graphs.

• Graphs: See Items. 36 on page 94, 37 on page 94, 38 on page 94, 54 on page 97, 55 on
page 97, 74 on page 100, 80 on page 100, 75 on page 100 and 82 on page 100.

type [Endurants]
36. G = V-set × E-set
37. V
38. E
type [Unique Identifiers]
54. V UI
55. E UI
type [Mereology]
74. V Mer = E UI-set; 80. V Mer = E UI-set × E UI-set [Un−directed; Directed Graphs]
75. E Mer = V UI-set; 82. E Mer = (V UI × V UI)-set [Un−directed; Directed Graphs]

• Roads: See Items 43 on page 95, 40 on page 95, 42 on page 95, 102 on page 104 and 103 on
page 104.

type [Endurants]
40. RN = H-set × L-set [≃ G for Graphs]
41. H [≃ V for Graphs]
42. L [≃ E for Graphs]
type [Unique Identifiers]
63. HI [≡ VI for Graphs]
64. LI [≡ EI for Graphs]
type [Mereology]
102. H Mer = LI-set × LI-set [≃ V Mer for Graphs]
103. L Mer = (HI × HI)-set, axiom ∀ lm:L Mer•cardlm∈{0,1,2} [≡ E Mer for Graphs]

• Rails: See Chapter F.

• Pipelines: See Items 45 on page 95, 46 on page 95, 67 on page 99 and 109 on page 104.

7These sensors may be photo-electric or electronic and placed at suitable points along the road net, or they
may be satellite borne. To work properly we assume that automobiles emit such signals that let their identity be
recorded.

A.4. OUR GENERAL GRAPH MODEL 111

type [Endurants]
45. PN = PLU-set [≃ G for Graphs]
46. PLU == WU | PU | LU | VU | FU | JU | SU [≃ (V|E) for Graphs]
type [Unique Identifiers]
67. UI == WU UI | PU UI | LU UI | VU UI | FU UI | JU UI | SU UI
type [Mereology]
109 PM′=(UI-set×UI-set), PM={|(iuis,ouis):PM′•iuis ∩ ouis={}|} [≃ V Mer∪E Mer for Graphs]

• Rivers: See Items 48 on page 96, 49 on page 96, 50 on page 96, Sect. A.4.2.4.4 on page 99, 121
on page 106 and 122 on page 106.

type [Endurants]
48. RiN
49. V
50. E
type [Unique Identifiers]
68. V UI, E UI
type [Mereology]
121. Mer V = E UI-set × E UI-set
122. Mer E = V UI × V UI

A.4.2.7.2 Initial Conclusion on Labeled Graphs and Example Domains We have shown basic
models of abstract undirected and directed graphs. And we have shown four examples:

• road nets,

• rail nets,

• pipeline nets and

• river nets.

Road, rail, pipeline and river elements are all uniquely identified. The road and river nets were
basically modeled as as graphs with vertices (hubs, respectively sources, confluences and mouths)
and edges (links, respectively stretches of simple and composite river elements). The rail and
pipeline nets we modeled as sets of rail and pipeline units with the mereology implying edges.

Labels, such as they are “practiced” in conventional graph theory, are introduced by may of
attributes. Attributes were also used to model dynamically varying “directedness” of edges.

We can conclude the following

• There is now a firm foundation for the labeling of graphs:

– the origin of vertex and edge labeling is

∗ the unique identifiers and/or

∗ the attributes

of the endurant parts that vertices and edges designate; and

– there really can be no vertex or edge labeling unless the origin is motivated in

∗ the unique identification and/or

∗ the attribution

of the vertex and edge parts.

112 CONTENTS

A.5 The Nets Domain

A.5.1 Some Introductory Definitions

Definition: By a net domain, or, for short, just a net, we shall understand a domain of the kind
illustrated in Sect. A.4, that is, a domain the mereology of whose main parts model graphs

Definition: By a dynamic net domain, or, for short, just a dynamic net, we shall understand
a net whose mereology – or a corresponding attribute notion – may change

Definition: By a nets domain, or, for short, just nets, (notice the suffix ‘s’, we shall understand
a domain each of whose instances is a dynamic net domain

more to come

Appendix B

Rivers

Contents

B.1 Introduction . 113

B.1.1 Waterways . 113

B.1.2 Visualization of Rivers . 114

B.1.2.1 Rivers . 114

B.1.2.2 Deltas . 114

B.1.3 Structure of This Report . 114

B.2 External Qualities – The Endurants . 115

B.3 Internal Qualities . 116

B.3.1 Unique Identifiers . 116

B.3.2 Mereologies . 117

B.3.3 Routes . 118

B.3.4 Attributes . 119

B.4 Conclusion . 120

Presently this document represents a technical-scientific note. It is technical in that much of the
material can be found in other technical notes of mine. It is – perhaps – scientific in that I am
searching for a nice, well, beautiful, way of modeling rivers.

B.1 Introduction

B.1.1 Waterways

By waterways we mean rivers, canals, lakes and oceans – such as are navigable by vessels: barges,
boats and ships.

Rivers are naturally flowing watercourses, and typically flow until discharging their water into
a lake, sea, ocean, or another river, while canals are constructed to connect existing rivers, seas,
or lakes. However, occasionally some rivers do not discharge their water into lakes, seas, oceans,
or other rivers. Rivers that do not empty into another body of water might flow into the ground
or simply dry up before reaching another body of water. Additionally, small rivers can also be
referred to as streams, rivulets, creeks, rills, or brooks.

The natural water system of the earth includes 71% ocean with land continents being traversed
by brooks, rivers, lakes and river deltas.

Headwaters are streams and rivers (tributaries) that are the source of a stream or river.
A tributary is a river or stream that flows into another stream, river, or lake.
A delta is a large, silty area at the mouth of a river at which the river splits into many different

slow-flowing channels that have muddy banks. New land is created at deltas. Deltas are often
triangular-shaped, hence the name (the Greek letter ’delta’ is shaped like a triangle).

113

114 CONTENTS

The trunk is the main course of river.
Confluence: In geography, a confluence (also: conflux) occurs where two or more flowing bodies

of water join together to form a single flow. A confluence can occur in several configurations: at
the point where a tributary joins a larger river (main stem); or where two streams meet to become
the source of a river of a new name; or where two separated channels of a river (forming a river
island) rejoin at the downstream end.

Towns and Harbours: In this report we model towns. That is, we therefore also model that
towns have harbours – allowing river (and canal) vessels to berth (a place for mooring in a harbour)
for cargo loading, unloading and resting.

B.1.2 Visualization of Rivers

B.1.2.1 Rivers

Figures B.1 and B.2 illustrate a number of rivers.

Figure B.1: The Congo and the US Rivers

Figure B.2: The Amazon and The Danube Rivers

B.1.2.2 Deltas

We illustrate four deltas, Fig. B.3 on the next page:

B.1.3 Structure of This Report

Rivers are narrated and formalized in Sects.:

B.2. EXTERNAL QUALITIES – THE ENDURANTS 115

Figure B.3: The Ganges, Mississippi, Pearl and the Nile Deltas

• B.2 [Endurants],

• B.3.1 [Unique Identifiers],

• B.3.2 [Mereology], and

• B.3.4 [Attributes].

We omit from this compendium references to a
number of ‘River Terminologies’.

B.2 External Qualities – The Endurants

150. A river net is modeled as a graph, more specifically as a tree. The root of that river net tree
is the mouth (or delta) of the river net. The leaves of that river net tree are the sources of
respective trees. Paths from leaves to the root define flows of water.

151. We can thus, from a river net observe vertices

152. and edges.

153. River vertices model either a source: so:SO, a mouth: mo:MO, or possibly some confluence:
ko:KO.

A river may thus be “punctuated” by zero or more confluences, k:KO.

A confluence defines the joining a ‘main’ river with zero1 or more rivers into that ‘main’
river.

We can talk about the “upstream” and the “downstream” of rivers from their confluence.

154. River edges model stretches: st:ST.

A stretch is a linear sequences of simple, se:SE, or composite ce:CE, river elements.

155. River elements are either simple: (ch) river channels, which we shall call river channels: CH,
or (la) lakes: LA, or (lo) locks: LO, or (wa) waterfalls (or rapids): WA, or (da) dams: DA, or
(to) towns (cities, villages): to:TO2; or composite, ce:CE: a dam with a lock, (da:DA,la:LA),
a town with a lake, (to:TO,la:LA), etcetera; even a town with a lake and a confluence,
to:TO,la:LA,ko:KO. Etcetera.

type
150. RiN
151. V
152. E
153. SO, MO, KO
154. ST = (SE|CE)∗
155. CH, LA, LO, WA, KO, DA, TO

1Normally, though, one would expect, not zero, but one
2Towns is here really a synonym for river harbours, places along the river (or a canal) where river vessels can

stop (moor) for the loading and unloading of cargo and for resting.

116 CONTENTS

155. SE = CH | LA | LO | WA | DA | TO
155. DaLo, WaLo, ToLa, ToLaKo, ...
155. CE = DaLo | WaLo | ToLa | ToLaKo | ...
value
153. obs Vs: RiN → V-set
153. axiom
153. ∀ g:G,vs:V-set•vs ∈ obs Vs(g) ⇒ vs 6={}
153. ∧ ∀ v:V•v ∈ vs ⇒ is SO(v) ∨ is KO(v) ∨ is MO(v)
154. obs Es: RiN → E-set
154. axiom
154. ∀ g:G,es:E-set•es ∈ obs Es(g) ⇒ es 6={}
154. ∧ ∀ e:E•e ∈ es ⇒ is ST(e)
154. obs ST: E → ST
150. xtr In Degree 0 Vertices: RiN → SO-set
150. xtr Out Degree 0 Vertex: RiN → MO

SO

CH

LO

CH

LA

CH

WA

CH

KO
CH CH

CH

CH

SO

CH

SO

CH

SO

MO

CH

CH

DA
CH

SO

ToKo:(TO,KO)

WaLo:(WA,LO)

DaLo:(DA,LO)
ToLaKo:(TO,LA,KO)

Source

Simple or composite river element

Confluence

Mouth

Figure B.4: The “Composition” of a River Net: Right Tree is an abstraction of the Left Tree

B.3 Internal Qualities

We refer to [58, Chapter 5]

B.3.1 Unique Identifiers

We shall associate unique identifiers both with vertices, edges and verteax and edge elements.

156. River net vertices and edges have unique identifiers.

157. River net sources, confluences and mouths have unique identifiers.

158. River net stretches have unique identifiers.

159. River net channels, lakes, locks, waterfalls, dams and towns as well as combinations of these,
that is, simple and composite river entities have unique identifiers.

type
156. V UI, E UI

B.3. INTERNAL QUALITIES 117

157. SO UI, KO UI, MO UI
158. ST UI
159. CH UI, LA UI, LO UI, WA UI, DA UI, TO UI, DaLo UI, WaLo UI, ToLa UI, ToLaKo UI, ...
value
156. uid V: V→V UI, uid E: E→ E U
157. uid SO: SO→SO UI, uid KO: KO→KO UI, uid MO: MO→MO UI,
158. uid ST: ST→ST UI
159. uid CH: CH→CH UI, uid LA: LA→LA UI, uid LO: LO→LO UI, uid WA: WA→WA UI,
159. uid DA: DA→DA UI, uid TO: TO→TO UI,
159. uid DaLo: DaLo→DaLo UI, uid WaLo: WaLo→WaLo UI, uid ToLa: ToLa→ToLa UI,
159. uid ToLaKo: ToLaKo→ToLaKo UI, ...

160. All these identifiers are distinct.

The ⋓ operator takes the pairwise intersection of the types in its argument list and examines them
for disjointness.

axiom
160. ⋓(V UI,E UI,SO UI,KO UI,MO UI,ST UI,CH UI,
160. LA UI,LO UI,WA UI,DA UI,TO UI,DaLo UI,WaLo UI,ToLa UI,ToLaKo UI)

161. There are [many] other constraints, please state them !

161. [left as exercise to the reader !]

B.3.2 Mereologies

162. The mereology of a river vertex is a pair: a set of unique identifiers, E UI, of river edges, i.e.,
stretches, linear sequences of simple and composite river elements, incident upon the vertex,
and a set of unique identifiers, E UI, of river edges emanating from the vertex. If the vertex
is a source then the first element of this pair is empty. If the vertex is a mount then the
second element of this pair is empty. For a confluence vertex both elements of the pair are
non-empty.

163. The mereology of a river edge, that is, the linear sequence of simple and composite river
elements between two adjacent vertices, is a pair: the first element is a unique identifier of
a river vertex and so is the second element of the pair.

We present the river net mereology in two forms. The first was with respect to its graph rendition.
The second is with respect to its river element rendition.

164. The mereology of a source is just the single unique identifier of the first simple or composite
river element of the stretch emanating from the source.

165. The mereology of a confluence is a triplet: the single unique identifier of the last simple
or composite river element of the stretch of the main river incident upon the source, a set
of unique identifier of the last simple or composite river element of the stretches of the
tributary rivers incident upon the source, and the single unique identifier of the first simple
or composite river element of the main river stretch emanating from the confluence.

166. The mereology of a mouth is just the single unique identifier of the last simple or composite
river element of the stretch incident upon the mouth

118 CONTENTS

167. The mereologies of simple and composite river elements are pairs: of the unique identifier of
the river elements, including sources and confluences, upstream adjacent to the river element
being “mereologised”, and of the unique identifier of the river elements, including confluences
and mouths, downstream adjacent to the river element being “mereologised”.

162. Mer V = E UI-set × E UI-set
163. Mer E = V UI × V UI
164. Mer SO = SE UI | CE UI
165. Mer KO = (SE UI|CE UI) × (SE UI|CE UI)-set × (SE UI|CE UI)
166. Mer MO = SE UI | CE UI
167. Mer RE = (SO UI|CO UI|SE UI|CE UI) × (SE UI|CE UI|CO UI|MO UI)

168. The unique vertex and edge identifiers must be identifiers of the vertices and edges of a
graph.

169. Similarly, the unique source, confluence and mouth identifiers must be identifiers of respective
sources, confluences and mouths of a graph.

170. And likewise for simple and composite element identifiers.

171. No two sources, confluences, mouths, simple and composite elements have identical uinque
identifiers.

172. There are other constraints, please state them !

axiom
168. [left as exercise to the reader !]
169. [left as exercise to the reader !]
170. [left as exercise to the reader !]
171. [left as exercise to the reader !]
172. [left as exercise to the reader !]

B.3.3 Routes

173. A vertex-edge-vertex path is a sequence of zero or more edges. We define the edge paths
function – recursively.

174. That is, the empty sequence, 〈〉, is a vertex-edge-vertex path, [the first basis clause].

175. If e is an edge of g, and if (vi,vj) is in the mereology of e, then the 〈(vi, ej, vk)〉, where ej is
the unique identifier of e is a vertex-edge-vertex path.

176. If p and p′ are paths of g such that the last vertex identifier of the last element of p is the
same as the first vertex identifier of the first element of p′, then the sequence p followed by
the sequence p′ is a vertex-edge-vertex path of g [the inductive clause].

177. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type
173. EP = Eω

173. edge paths: G → EP-set
173. edge paths(g) ≡
174. let ps = {〈〉}
175. ∪ {〈(vi,uid E(e),vk)〉|e:E•e ∈ xtr Es(g)∧(vi,vk)∈mereo E(e)}
176. ∪ {p̂p′|p,p′:EP•{p,p′}⊆ps∧lVIlEP(9)=fVIfEP(p′)} in
173. ps end

B.3. INTERNAL QUALITIES 119

B.3.4 Attributes

This author is not “an expert” on neither geograhical matters relating to rivers, lakes, etc., nor
on the management of rivers: flood control, river taffic, etc. So, please, do not expect a very
illuminating set of river attribute examples. All the attribute specifications are “tuned” to the
purpose of the ensuing domain desription: whether for one or another form of river system study
or eventual software system realisation.

178. River entities have geodetical positions –

179. all three dimensions: longitude, latitude
and altitude3.

180. River entities cover geodetical areas4.

181. River entities have normal, low, high and
overflow water levels5.

182. River channels have “extent” in the form,
for example of a precise description6 of its
course.7

183. Lakes have a precise [three dimensional]
description of their form, ...

184. Locks have ... et cetera

185. Waterfalls ...

186. Dams ...

187. Towns ...

188. Sources ...

189. Confluences ...

190. Mouths ...

191. Compositions of these have respective
unions of these attributes.

type
178. GeoPos = Long × Lat × Alt
179. Long, Lat, Alt
181. Area
181. LoWL = ..., NoWL = ..., HiWL = ..., OfWL = ...
182. Course = ...
183. LakeForm = ...
185. ...; 186. ...; 187. ...;188. ...; 189. ...; 190. ...; 191. ...
value
178. attr GeoPos: (SO|KO|MO|SE|CE) → GeoPos
179. attr Long: GeoPos → ..., attr lat: GeoPos → ...,attr Alt: GeoPos → ...
181. attr Area: (SO|KO|MO|SE|CE) → Area
181. attr (LoWL|NoWL|HiWL|OfWL): (SO|KO|MO|SE|CE) → LoWL|NoWL|HiWL|OfWL
182. attr CH: CH → Course
183. attr LakeForm: LA → LakeForm
184. attr ...: LO → ...; 185. attr ...: WF → ...; 186. attr ...: DA → ...; 187. attr ...: TO → ...;
188. attr ...: SO → ...; 189. attr ...: KO → ...; 190. attr ...: MO → ...; 191. attr ...: ... → ...

We illustrate the issue of river attributes primarily to show you the sheer size and complexity of
the task !

192. River entities have positions “within” their areas8.

193. No two distinct river entities have conflicting (?) areas9.

3These are facts: How we represent them is a matter for geographers. Also: What is really mean by the ‘position’
of a source, or a river channel, etc. ? Also that is left for others to care about !

4See Footnote 3.
5See Footnote 3.
6See Footnote 3. In any domain description, yes, a precise description – whether “computable” [i.e., realizable]

or not !
7– in a subsequent requirements prescription the domain description’s “precise” form is replaced

by, for example, a reasonably detailed [and computable] three dimensional Bézier curve specification
[en.wikipedia.org/wiki/B%C3%A9zier curve].

8See Footnote 3.
9For example: their areas do not overlap. See Footnote 3.

120 CONTENTS

194. Two mereologically immediately adjacent river entities have bordering areas10.

195.

196.

Axiom 193 is rather “sweeping”. It implies, of course, that river channels do not cross one another;
that two or more non-channel river entities similarly do not “interfere” with one another, i.e., are
truly “separate”.

B.4 Conclusion

to be written

10See Footnote 3.

Appendix C

Canals

Contents

C.1 Introduction . 122

C.2 Visualisation of Canals . 122

C.2.1 Canals and Water Systems . 122

C.2.2 Locks . 122

C.3 The Endurants . 123

C.3.1 Some Introductory Remarks . 123

C.3.1.1 The Dutch Polder System . 123

C.3.1.2 Natural versus Artefactual Domains 124

C.3.1.3 Editorial Remarks . 124

C.3.1.4 A Broad Sketch Narrative of Canal System Entities 125

C.3.1.5 A Plan for The Canal System Description 126

C.3.1.6 No Structures . 127

C.3.1.7 Sequences of Presentation . 128

C.3.1.8 Naming Conventions . 128

C.3.2 External Qualities . 128

C.3.2.1 Endurant Sorts . 128

C.3.2.2 Some Calculations . 131

C.3.3 Internal Qualities . 134

C.3.3.1 Unique Identifiers . 134

C.3.3.1.1 Unique Identifier Sorts 134

C.3.3.1.2 Some Calculations . 134

C.3.3.1.3 An Axiom . 136

C.3.3.1.4 Another Representation of UI Values 136

C.3.3.1.5 An Extract Function 137

C.3.3.2 Mereologies . 137

C.3.3.2.1 Mereology Types . 137

C.3.3.2.2 The Mereology Axiom 141

C.3.3.2.3 Well-formed Mereologies 141

C.3.3.3 Routes . 147

C.3.3.3.1 Preliminaries . 147

C.3.3.3.2 All Routes . 148

C.3.3.3.3 Connected Canal Systems 148

C.3.3.3.4 A Canal System Axiom 149

C.3.3.4 Attributes . 149

C.3.3.4.1 Spatial and Temporal Attributes 149

121

122 CONTENTS

C.3.3.4.2 Canal System, Net and Polder Attributes 151

C.3.3.4.3 Canal Hub and Link Attributes 151

C.3.3.5 Well-formedness of Attributes 153

C.3.4 Speculations . 153

C.4 Conclusion . 153

Presently this document represents a technical-scientific note. It is technical in that much of the
material can be found in other technical notes of mine. It is – perhaps – scientific in that I am
searching for a nice, well, beautiful, way of modeling canals, such as for example those of the Dutch
Rijkswaterstaat1. I am fascinated with Holland’s tackling of their land/water/river/ocean levels.

C.1 Introduction

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are
used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

C.2 Visualisation of Canals

C.2.1 Canals and Water Systems

We illustrate just four ship/barge/boat and water level control canal systems, Figs. C.1, C.2,
and C.3 on the facing page.

Figure C.1: UK Canals and The Panama Canal

The rightmost figure of Fig. C.3 is from the Dutch Rijkswaaterstaat: www.rijkswaterstaat.nl/-
english/.

C.2.2 Locks

A lock is a device used for raising and lowering boats, ships and other watercraft between stretches
of water of different levels on river and canal waterways. The distinguishing feature of a lock is a
fixed chamber in which the water level can be varied. Locks are used to make a river more easily
navigable, or to allow a canal to cross land that is not level. Later canals used more and larger
locks to allow a more direct route to be taken.2

1https://www.rijkswaterstaat.nl/ The Dutch canal system is first and foremost, it appears, for the control of
water levels, secondly for ship/barge/boat navigation.

2https://en.wikipedia.org/wiki/Lock (water navigation)

C.3. THE ENDURANTS 123

Figure C.2: The Swedish Göta Kanal

Figure C.3: French and Dutch Rivers and Canals

We illustrate a number of locks: Figs. C.4 and C.5 on the following page.

Figure C.4: Inland Canal Locks

C.3 The Endurants

As an example we wish our model to include the Dutch system of polders, pumps, canals, locks,
dikes, flood barriers, lakes, storm barriers and the ocean.3

C.3.1 Some Introductory Remarks

C.3.1.1 The Dutch Polder System

We refer to Figs. C.7 to C.10 on pages 125–127.

3www.fao.org/fileadmin/templates/giahs/PDF/Dutch-Polder-System 2010.pdf

124 CONTENTS

Figure C.5: Harbour Canal Locks

Figure C.6: The Dutch Polder System

C.3.1.2 Natural versus Artefactual Domains

In contrast to river nets modeled earlier in this compendium, a system of mostly natural endurants,
canal systems of polders, pumps, canals, locks, dikes, flood barriers, lakes, storm barriers and the
ocean are, in a sense, dominated by man-made, i.e., artefactual endurants.

C.3.1.3 Editorial Remarks

In order to develop an appropriate domain analysis & description of a reasonably comprehensive
and representative canal domain I need answers to the following questions – and may more that
can be derived from answer to these questions:

• Canal Flow: Are canals generally stagnant, or do canal water flow, that is, do canal flow
have a preferred direction ?

• Canal Graphs: Do a canal form a[n undirected] graph, i.e., can canals be confluent with
other canals ?

• Canals and Rivers: It is assumed that canals can be confluent with rivers. When canals join
a river is it always with a lock of the canal onto the river – and the river flow is basically
not interfered with by that canal, or otherwise ?

• Canal Levels: Can a canal pass a river overhead ? Or otherwise ? Same for canals and roads.
Do canals run through mountains or over valleys ?

• Canal Locks: It is assumed that an otherwise “unhindered” stretch of canal can have one
or more locks. Yes or no ?

C.3. THE ENDURANTS 125

Figure C.7: A Polder Schematic and The De Cruquius Pump

Figure C.8: A Polder. Another Polder Schematic

• Canal Pumps: It is assumed that there are two kinds of canal pumps: those in connection
with locks, and those not in connection wit any locks. Yes or no ? I need information about
the latter.

• Polders and Pumps: Are polders predominantly characterisable in terms of their land area
and the pumps that keep these dry ?

• Pumps and Canals: Do polder pumps always operate in the context of canals ?

C.3.1.4 A Broad Sketch Narrative of Canal System Entities

• We take our departure point in the polders: So a polder-etc.-canal system contains polders
and polder pumps take the water out of the polders and “puts” it in higher level canals.

• Canals are modeled as an undirected [general] graph whose vertices are canal entities and
whose edges are given by the mereology of these entities – as to how they are topologically
connected.

• The following are canal entities:

– canal channels: like river channels, only artefactual;

– canal locks: the locks as illustrated earlier;

– canal pumps: pumps water into locks – rather than using water from higher level
canals;

– canal gates: protects the interior from ocean storm surges.

126 CONTENTS

Figure C.9: A Barrier. A Final Polder Schematic

C.3.1.5 A Plan for The Canal System Description

Our plan is to analyse & describe

• external qualities of canal system endurants, Sect. C.3.2.

• internal qualities of canal system, Sect. C.3.3.1

• internal qualities of canal system, Sect. C.3.3.2

• internal qualities of canal system, Sect. C.3.3.4

For each of these categories we analyse & describe

• sorts and types of these entities: endurants, unique identifiers, mereologies and attributes;

• observer functions, i.e., obs · · ·, uid · · · and attr · · · for the observance of endurants, their
unique identifiers, their mereologies and their attributes;

• auxiliary functions and

• well-formedness predicates is wf · · ·.

The external and internal quality definitions should be so conceived by the domain analyser &
describer as to capture an essence, if not “the essence”, of endurants. But they can never capture
the essence “completely”. As for the relation between context free grammars and context sensi-
tive grammars, we must therefore introduce the notion of well-formedness axioms. The axioms
constrain the relations between external and the various categories of internal qualities. More
specifically:

197. The well-formedness of a canal system, is wf CS [197] is the conjunction of the well-
formedness of canal system identifiers, is wf CS Identities [259 on page 135], mereologies,
is wf CS Mereology [301a on page 141], and attributes, is wf CS Attributes [363 on page 153].

type
197. CS
value
197. is wf CS: CS → Bool
197. is wf CS(cs) ≡ is wf CS Identifiers(cs)∧is wf CS Mereologies(cs)∧ is wf CS Attributes(cs)

C.3. THE ENDURANTS 127

Figure C.10: The Land-Water Levels of The Netherlands

C.3.1.6 No Structures

In this (long and detailed) example domain analysis & description I shall not use the pragmatic
“device” of structures [cf, [58, Sect.4.10]]. Everything will be painstakingly analysed and described.

Some clarifying comments are in order:

• Compound endurants are either

– Cartesian4 or

– sets.

• In analysing Cartesians, say c, into composite endurants, we analyse c into a number of
components, ci, cj , ..., ck, of respective sorts, Ci, Cj , ..., Ck, by means of observers obs Ci,
obs Cj, ..., obs Ck.

– The Cartesians, C, in this report, all have:

∗ unique identifiers,

4Cartesian is spelled with a large ‘C’, after René Descartes, the French mathematician (1596–1650)
https://da.wikipedia.org/wiki/René Descartes.

128 CONTENTS

∗ mereologies and

∗ attributes.

– So do each of the Ci, Cj , ..., Ck.

• In analysing an endurant, E, into sets, say s or sort S, we first analyses E into a separately
observable endurant Ss, i.e., obs Ss, which we then, at the same time define as Ss = S-set.

• An Ss endurant thus has all the internal qualities:

– a unique identifier,

– a mereology

– and attributes.

C.3.1.7 Sequences of Presentation

The sequence in which endurant sorts are introduced is “repeated” in the sequences in which
unique identifier sorts and mereology types are introduced. Thus the sequences of narrative and
formal

• endurant items,

– sort items, Items 198–212 on page 130,

– value items, Items 219–238 on pages 131–133 and

– “alternative” value items, Items ν219–ν238 on pages 133–134,

are “repeated” in

• unique identifier

– sort items, Items 239–257 on page 134,

– value items, Items 259–274 on pages 135–136 and

– “alternative” value items, Items ν212–ν226 on pages 136–137,

and in

• mereology

– type items, Items 283 to 299 on pages 137–141 and

– well-formedness items, Items 301 to 318 on pages 141–147.

C.3.1.8 Naming Conventions

Some care has been taken in order to name endurants, including sets of and predicates and
functions over these; their unique identifiers and typed sets and values of and predicates and
functions over these; their mereologies and typed sets and values of and predicates and functions
over these; and their attributes and typed sets and values of and predicates and functions over
these.

C.3.2 External Qualities

C.3.2.1 Endurant Sorts

The narrative(s) that follow serves two purposes:

• a formal purpose: the identification of endurants, and

• an informal purpose: in “casually familiarising” the reader as the the rôle of these endurants.

C.3. THE ENDURANTS 129

The former purpose is the only one to formalise. The latter purpose informally “herald” things
to come – motivating, in a sense, theses “things”, the internal qualities and, if we had included a
treatment of canal perdurants, the behaviours of these canal elements seen as behaviours.

All the elements mentioned below consist of both discrete endurants and fluids, i.e., water. In
contrast to the treatment of such conjoins in [58, Sect. 4.13.3] we shall, in an informal digression
from the principles, techniques and tool of the analysis & description calculi of [58, Chapters 4–5],
omit “half the story” ! It will be partly “restored” in out treatment of canal attributes, Sect. C.3.3.4.

In this section we shall narrate all the different endurant sorts, Items 198–218 (Pages 129–130),
before we formalise them (Pages 130–130). We beg the readers forebearance in possibly having to
thumb between narrative (page)s and formalisations (page)s.

198. Canal systems, CS, are given.

199. From a canal system one can observe a canal net, CN.

200. From a canal system one can observe a polder aggregate, PA.

Observing two endurants of a composite endurant is as if the composite is a Cartesian product of
two. Hence the “(...,...)” of Fig. C.11 on page 131.

201. From canal nets one can observe canal hub aggregates, CA HA, and

202. canal link aggregates, CA LA.

203. From a polder aggregate one can observe a polder set, Ps, of polders, P. One observes the
set, not its elements.

204. From a canal hub aggregate one can observe a hub set, CA Hs, of hubs, CA H. One observes
the set, not its elements.

205. From a canal link aggregate one can observe a canal link set, CA Ls, of canal links, CA L.
One observes the set, not its elements.

206. Polders are considered atomic. A polder is a low-lying tract of land that forms an artificial
hydrological entity, enclosed by embankments known as dikes. The three types of polder5

are:

• Land reclaimed from a body of water, such as a lake or the seabed.

• Flood plains separated from the sea or river by a dike.

• Marshes separated from the surrounding water by a dike and subsequently drained;
these are also known as koogs.

207. Canal hubs are considered atomic and are:

208. either canal begin/ends (that is, where there is no continuation of a canal: where it ends
“blind’, or where begins “suddenly’6), CA BE,

5The ground level in drained marshes subsides over time. All polders will eventually be below the surrounding
water level some or all of the time. Water enters the low-lying polder through infiltration and water pressure of
groundwater, or rainfall, or transport of water by rivers and canals. This usually means that the polder has an
excess of water, which is pumped out or drained by opening sluices at low tide. Care must be taken not to set the
internal water level too low. Polder land made up of peat (former marshland) will sink in relation to its previous
level, because of peat decomposing when exposed to oxygen from the air.

Polders are at risk from flooding at all times, and care must be taken to protect the surrounding dikes. Dikes
are typically built with locally available materials, and each material has its own risks: sand is prone to collapse
owing to saturation by water; dry peat is lighter than water and potentially unable to retain water in very dry
seasons. Some animals dig tunnels in the barrier, allowing water to infiltrate the structure; the muskrat is known
for this activity and hunted in certain European countries because of it. Polders are most commonly, though not
exclusively, found in river deltas, former fenlands, and coastal areas.

6A canal “end” is a canal channel which is “connected” only at one end to a canal channel.

130 CONTENTS

209. or canal confluences (of three or more canals7), CA CO,

210. or canal outlets, CA OU (where canals join a river , or a lake, or an ocean). These sorts are
all considered atomic.

211. Canal links are aggregates.

212. From canal links we choose to observe a set of canal link elements, CA LE8. (Canal links
are such, through their mereology, see Sect. C.3.3.2, that they form two reversible sequences
between connecting edges.)

213. Canal link elements are considered atomic and are

214. either canal channels, CA CH9,

215. or canal locks, CA LO10,

216. or canal lock pumps, CA LO PU11,

217. or canal polder pumps, CA PO PU12.

218. We do not further describe canal outlets, rivers, lakes and oceans.

type
198. CS
199. CN
200. PA
201. CA HA
202. CA LA
203. Ps = P-set, P
204. CA Hs = CA H-set
205. CA Ls = CA L-set
206. P
207. CA H == CA BE|CA CO|CA OU
208. CA BE :: ...
209. CA CO :: ...
210. CA OU :: ...
211. CA L

212. CA LEs = CA LE-set
213. CA LE == CA CH|CA LO|CA LO PU|CA PO PU
214. CA CH :: ...
215. CA LO :: ...
217. CA PO PU :: ...
value
199. obs CN: CS → CN
200. obs PA: CS → PA
201. obs CA HA: CS → CA HA
202. obs CA LA: CN → CA LA
203. obs Ps: PA → Ps
204. obs CA Hs: CA HA → CA Hs
205. obs CA Ls: CA LA → CA Ls
212. obs CA LEs: CA L → CA LEs

Figure C.11 on the facing page shows the taxonomy of a wide class of canal systems.
Figure C.12 on page 132 shows the schematisation of a specific canal system.
Figure C.13 on page 132 shows the individual endurants of a canal system for that shown in

Fig. C.12 on page 132. Given what we have formalised so far, i.e., formula 198–205, this is really
all we can “diagram”. The “part” list of Fig. C.13 on page 132 cannot show other than that there
are these parts, but not how they are connected – that is first revealed when we ascribe mereologies
– and that there are canal channels, not, for example, their length – that is first revealed when we
ascribe attributes, such as length.

7Without loss of generality we model only confluences of three canals.
8We could have chosen other abstractions, for example, to observe a sequence of elements. More on this later.
9A canal channel offers a “straight”, un-interrupted “stretch” of water – like does a river channel.

10A canal lock) is always connected to two distinct canal link elements. Canal locks still act like a waterway, as
does a canal channel.

11Canal lock pumps are like canal locks, but with pumps. A canal lock pump is connected to a canal lock and the
two canal link elements connected by the lock. It takes takes water either from the lower lying canal link element
and pumps it up into the lock chamber, or from the lock chamber and pumps it up to the higher level canal link
element. Canal locks are without pumps. The canal link elements mentioned here are usually canal channels.

12A canal polder pump is a pump that takes water from a polder and deposits it in a canal which is at a higher
level than the polder.

C.3. THE ENDURANTS 131

CS

CA_H :: CA_BE

PA

Ps

CA_LE CA_LE CA_LE

CA_LE

CA_LEs

CA_H

CA_H :: CA_CO

CA_H :: CA_OU

CA_LE :: CA_CH

CA_LE :: CA_LO

CA_H CA_L CA_L CA_L CA_L

P PP P

CA_LsCA_Hs

CA_H

{ } { ,

{ , }

{

},
CA_H

, ... ,

, ... , , ... ,

, ... , , ... , , ... ,

,..., ,...,

,

,()

CA_HA(CA_LA

CN

)

, }

CA_LE :: CA_PO_PU

Figure C.11: Canal System Ontology

C.3.2.2 Some Calculations

We refer to Fig. C.14 on page 133. We shall list the endurant parts – and later on their unique
identifierss in the left-to-right order of a breadth-first traversal of the canal ontology.

219. Let cs be a “global” canal system.13

220. Canal nets and polders can be seen as consisting of the following endurants, modeled as a
map, map ends:

221. the canal system, csend,

222. the canal net, cnend,

223. the polder aggregate, paend,

224. the canal net hub aggregate, ca haend, ,

225. the canal net link aggregate, ca laend,

226. the set of polders, psend,

227. the set of hubs, ca hsend,

228. the set of canal links, ca lsend,

229. the set of polders, posend,

13Introducing cs allows us to refer to it and its “derivatives”, “all over”, and thus “universally prefix quantify”
many axioms.

132 CONTENTS

River

River Source

Canal Net

Polders

River

Lake

CA_BE

CA_CH

CA_PO_PU

C
A

_
P

O
_
P

U

PO

CA_CH

PO

C
A

_
P

O
_
P

U

CA_CH

CA_CO

CA_BE

CA_CH

CA_CH

CA_OU

CA_CH

CA_CH

CA_CH

Ocean

CA_CO

CA_CO

CA_CH

C
A

_
L

O

Figure C.12: A Schematised Specific Canal System: Canal Net + Polders

CA_BE

CA_BE

CA_CO

CA_OU

CA_CO

CA_CO

CA_CO

P

P

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_PO_PU

CA_PO_PU

CA_PO_PU CA_LO

Figure C.13: Component Endurants of the Canal System of Fig. C.12

230. the set of hubs, ca hsend, have the following kinds of hubs:

231. canal begin/ends, ca besend, ,

232. canal confluences, ca cosend, and

233. canal outlets, ca ousend, ,

234. the set of canal link elements, ca lesend ,

235. the canal link elements are of the following kinds:

236. canal channels, ca chsend,

237. canal locks, ca losend,

238. canal polder pumps, ca po pusend .

value

C.3. THE ENDURANTS 133

CS

PACN

CA_HA

CA_H

...
CA_L

CA_Ls

CA_H :: CA_BE

CA_Hs

PPPP

......

CA_LA Ps

CA_H CA_LCA_H

CA_LE :: CA_LO

CA_LE :: CA_CH

CA_LE :: CA_LO_PU

CA_LE :: CA_PO_PU

CA_LE

CA_LEs

CA_LECA_LE

CA_LE

CA_H :: CA_CO

CA_H :: CA_OU

CA_L CA_LCA_H

.. ..

Figure C.14: A Breadth-first Left-to-Right [Top-down] Canal Ontology Traversal

219. cs:CS
220. map ends: MAP END14

220. map ends = []
221. csend 7→ {cs},
222. cnend 7→ {obs CN(map ends(csend))},
223. paend 7→ {obs PA(map ends(cs))},
224. ca haend 7→ {obs CA HA(map ends(cs))},
225. ca laend 7→ {obs CA LA(map ends(cnend))},
226. psend 7→ obs Ps(map ends(paend),
227. ca hsend 7→ obs CA Hs(map ends(ca paend)),
228. ca lsend 7→ obs CA Ls(map ends(ca psend)),
229. posend 7→ map ends(ca psend)),
231. ca besend 7→ map ends(ca hsend) \ CA BE,
232. ca cosend 7→ map ends(ca hsend) \ CA CO,
233. ca ousend 7→ map ends(ca hsend) \ CA OU,
234. ca lesend 7→ obs CA Ls(map ends(ca psend)),
236. ca chsend 7→ ∪map ends(ca lesend) \ CA CH,
237. ca losend 7→ ∪map ends(ca lesend) \ CA LO,
238. ca po pusend 7→ ∪map ends(ca les psend) \ CA PO PU

We, in a name-overloading fashion, define – note the ν prefix of the formula item numbers:

value
ν221. csend = cs,
ν222. cnend = obs CN(map ends(csend)),
ν223. paend = obs PA(map ends(cs)),

14We invite the reader to formulate the MAP END type. As you can see from Items 209–220, it is a map from
some sort of names to sets of endurants.

134 CONTENTS

ν224. ca haend = obs CA HA(map ends(cs)),
ν225. ca laend = obs CA LA(map ends(cnend)),
ν226. psend = obs Ps(map ends(paend)),
ν227. ca hsend = obs CA Hs(map ends(ca paend)),
ν228. ca lsend = obs CA Ls(map ends(ca laend)),
ν229. posend = map ends(ca psend),
ν231. ca besend = map ends(ca hsend) \ CA BE,
ν232. ca cosend = map ends(ca hsend) \ CA CO,
ν233. ca ousend = map ends(ca hsend) \ CA OU,
ν234. ca clesend = obs CA LEs(map ends(ca lsend)),
ν236. ca chsend = ∪map ends(ca lesend) \ CA CH,
ν237. ca losend = ∪map ends(ca lesend) \ CA LO,
ν238. ca po pusend = ∪map ends(ca les psend) \ CA PO PU,

C.3.3 Internal Qualities

C.3.3.1 Unique Identifiers

C.3.3.1.1 Unique Identifier Sorts

239. Canal systems have unique identifiers .

240. Canal nets have unique identifiers .

241. Polder aggregates have unique identifiers .

242. Canal hub aggregates have unique identifiers .

243. Canal link aggregates have unique identifiers .

244. Polder sets (of polders) have unique identifiers .

245. Canal hub sets have unique identifiers .

246. Canal link sets have unique identifiers .

247. Polders have unique identifiers.

248. Canal hubs have unique identifiers:

249. canal begin/ends ,

250. canal confluences and

251. canal outlets .

252. Canal links have unique identifiers .

253. Canal link element sets have unique identifiers .

254. Canal link elements have unique identifiers:

255. canal channels ,

256. canal locks and

257. canal polder pumps .

type
239. CS UI
240. CN UI
241. PA UI
242. CA HA UI
243. CA LA UI
244. Ps UI
245. CA Hs UI
246. CA Ls UI
247. P UI
248. CA H UI =
248. CA BE UI|CA CO UI|CA OU
249. CA BE UI
250. CA CO UI
251. CA OU UI
252. CA L UI
253. CA LEs UI
254. CA LE UI = CA CH UI
254. |CA LO UI|CA LO PU UI|CA PO PU UI
255. CA CH UI

256. CA LO UI
257. CA PO PU UI
value
239. uid CS: CS→ CS UI
240. uid CN: CN − > CN UI
241. uid PA: PA → PA UI
242. uid CA HA: CA HA → CA HA UI
243. uid CA LA: CA LA → CA LA UI
244. uid Ps: Ps → Ps UI
245. uid CA Hs: CA Hs → CA Hs UI
246. uid CA Ls: CA Ls → CA Ls UI
247. uid P: P → P UI
249. uid CA BE: CA BE → CA BE UI
250. uid CA CO: CA CO → CA CO UI
251. uid CA OU: CA OU → CA OU UI
252. uid CA L: CA L → CA L UI
253. uid CA LEs: CA LEs → CA LEs UI
255. uid CA CH: CA CA CH → CA CH UI
256. uid CA LO: CA CA LO → CA CA LO UI
257. uid CA PO PU: CA LE → CA PO PU UI

C.3.3.1.2 Some Calculations

C.3. THE ENDURANTS 135

ui_2

ui_3 ui_4

ui_6

ui_8

ui_7 u
i_

9

ui_10

ui_11

u
i_

1
2

ui_13

ui_14

ui_15

ui_16

ui_17

ui_18

ui_19 u
i_

2
0

ui_21

ui_5

ui_1
ui_22

ui_1

ui_6
ui_4

ui_11

ui_2
ui_5
ui_7
ui_8

ui_10
ui_13
ui_15

ui_17

ui_19
ui_21

ui_14

u_16
ui_18

ui_22
ui_3
ui_9

ui_12
ui_20

Figure C.15: Unique Identifiers of the Canal System of Figs. C.12 and C.13

258. We can calculate the following sets of unique identifiers, seen as a map from some kind of
RSL names to sets of unique identifiers:

259. the canal system singleton set of its unique identifier, ,

260. the canal net singleton set of its unique identifier, ,

261. the polder aggregate singleton set of its unique identifier, ,

262. the canal hub aggregate singleton set of its unique identifier, ,

263. the canal link aggregate singleton set of its unique identifier, ,

264. the polder set singleton set of its unique identifier, ,

265. the hub set singleton set of its unique identifier, ,

266. the link set singleton set of its unique identifier, ,

267. the set of polder unique identifiers, ,

268. the set of canal begin/end unique identifiers, ,

269. the set of canal confluence unique identifiers, ,

270. the set of canal outlet unique identifiers, ,

271. the set of canal link set unique identifiers, ,

272. the set of canal link unique identifiers, ,

273. the set of canal channel unique identifiers, ,

274. the set of canal lock unique identifiers, ,

275. the set of canal lock pump unique identifiers, and

276. the set of canal polder pump unique identifiers, .

To define the next map we make use of the following generic function:

277. It applies to a set of endurants of sort X and yields the set of unique identifiers of the
members of that set.

136 CONTENTS

type
277. uid X: X-set → X UI-set
value
277. uid X(xs) ≡ {uid X(x)|x:X•x ∈ xs}

value
258. map uids: MAP UI15

258. map uids = [
259. csuid 7→ uid CS(map end(csend)),
260. cnuid 7→ uid CN(map ends(cnend)),
261. pauid 7→ uid PA(map ends(paend)),
262. ca hauid 7→ uid CA HA(map ends(ca haend)) ,
263. ca lauid 7→ uid CA LA(map ends(ca laend)) ,
264. psuid 7→ uid P(map ends(psend)),
265. ca hsuid 7→ uid CA Hs(map ends(ca hsend)) ,
266. ca lsuid 7→ uid CA Ls(map ends(ca lsend)) ,
267. posuid 7→ uid P(map ends(psend)) ,
268. ca besuid 7→ uid BE(map ends(ca besend)),
269. ca cosuid 7→ uid CO(map ends(ca cosend)),
270. ca ousuid 7→ uid OU(map ends(ca ousend)),
271. ca lesuid 7→ uid CA LEs(map ends(ca lsend)),
273. ca chsuid 7→ uid CA CH(map ends(ca chsend)),
274. ca losuid 7→ uid CA LO(map ends(ca losend)),
276. ca po pusuid 7→ uid PO PU(map ends(ca po pusend))]

C.3.3.1.3 An Axiom

278. Let endparts stand for the set of all composite and atomic canal system endurants,

279. and enduids the set of all their unique identifiers.

280. The number of endurants parts equals the number of endurant part unique idenifiers, is wf CS Identities(cs).

value
278. endparts = ∪ rng proper map ends
279. enduids = ∪ rng map uids
axiom
280. is wf CS Identities: CS → Bool
280. is wf CS Identities(cs) ≡ card endparts = card enduids

C.3.3.1.4 Another Representation of UI Values We, in a somewhat name-overloading fash-
ion, similarly define:

value
ν259. csuid = uid CS(csend),
ν260. cnuid = uid CN(cnend),
ν261. pauid = uid PA(paend),
ν262. ca hauid = uid CA HA(ca haend) ,
ν263. ca lauid = uid CA LA(ca laend) ,
ν264. psuid = uid Ps(psend),

15We invite the reader to formulate the MAP UI type. As you can see from Items 209–220, it is a map from some
sort of names to sets of unique identifiers.

C.3. THE ENDURANTS 137

ν265. ca hsuid = uid Hs(ca paend),
ν266. ca lsuid = uid Ls(ca psend),
ν267. posuid = uid P(psend),
ν268. ca besuid = uid BE(ca besend),
ν269. ca cosuid = uid CO(ca cosend),
ν270. ca ousuid = uid OU(ca ousend),
ν271. ca clesuid = uid CA LEs(ca lesend),
ν272. ca chsuid = uid CA CH(ca chsend),
ν273. ca losuid = uid CA LO(ca losend),
ν275. ca po pusuid = uid PO PU(ca po pusend)

C.3.3.1.5 An Extract Function

281. Given 278. endparts and 279. enduids, we can, from any known unique identifier obtain its
corresponding part:

value
281. get part: UI → END
281. get part(ui) ≡ let p:P • p ∈ endparts • uid P(p)=ui in p end; pre: ui ∈ rng enduids

C.3.3.2 Mereologies

C.3.3.2.1 Mereology Types We shall focus only on the topological mereologies of canal sys-
tem endurants. These can be “read off” the ontology tree of Fig. C.11 on page 131. Had we
included the modeling of vessels that ply the waters of canals, then the mereologies of most canal
endurants wouldalso include sets of vessel identifiers.

As for the definitions of endurants, cf. Items 198 on page 129 to 217 on page 130, and the
unique identifiers, cf. Items 239 on page 134 to 257 on page 134, we define the mereologies for each
category of endurants. These mereologies are defined using the unique identifiers of the endurants
immediately “above” and “below” them in the ontology “tree” of Fig. C.11 on page 131.

Common Hub and Link Types: From the unique identifier section we take over types defined in
Items 241 and 242 on page 134

282. while introducing a set of their identifiers:

type
241. CA HE UI = CA BE UI|CA CO UI|CA OU UI
242. CA LE UI = CA CH UI|CA LO UI|LO PU UI|PO PU UI
282. CA LE UI H = (CL HE UI|CP LE UI)-set

Canal Systems:

283. The mereology of a canal system is a pair of the unique identifiers of the canal net and of
the polder aggregate.

type
283. CS Mer = CN UI × PA UI
value
283. mereo CS: CS → mereo CS

Canal Nets:

138 CONTENTS

284. The mereology of a canal net aggregate is a pair of the unique identifier of the canal system,
of which it is a part, and a pair of the set of the unique identifiers of the canal hub agregate
and the canal link aggregate of the net.

type
value
284. CN Mer = CS UI × (CA HA × CA LA)
value
284. mereo CN: CN → CN Mer

Polder Aggregates:

285. The mereology of a polder aggregate is a pair of the unique identifier of the canal system, of
which it is a part, and the unique identifier of the polder set it “spawns”.

type
285. PA Mer = CS UI × Ps UI
value
285. mereo PA: PA → = PA Mer

Canal Hub Aggregates:

286. The mereology of a hub aggregate is a pair of the unique identifier of the canal net it belongs
to and the hub set it “spawns”.

type
286. CA HA Mer = CN UI × CA Hs
value
286. mereo CA HA: HA → CA HA Mer

Canal Link Aggregates:

287. The mereology of a link aggregate is a pair of the unique identifier of the canal net it belongs
to and a set of the unique identifiers of the links that it “spawns”.

type
287. CA LA Mer = CN UI × CA Ls
value
287. mereo CA LA: LA → CA LA Mer

Sets of Polders:

288. The mereology of a polder set is a pair of the unique identifier of the polder aggregate it
belongs to and a set of the unique identifiers of the polders that it “spawns”.

type
288. Ps Mer = PA UI × P UI-set
value
288. mereo Ps: Ps → Pa Mer

Sets of Hubs:

289. The mereology of a hub set is a pair of the unique identifier of the hub aggregate it belongs
to and a set of the unique identifiers of the hubs that it “spawns”.

C.3. THE ENDURANTS 139

type
289. CA Hs Mer = CA HA UI × CA H UI-set
value
289. mereo CA Hs: CA Hs → CA Hs Mer

Sets of Links:

290. The mereology of a link set is a pair of the unique identifier of the link aggregate it belongs
to and a set of the unique identifiers of the links that it “spawns”.

type
290. CA Ls Mer = CS LA UI × CA L UI-set
value
290. mereo CA Ls: Ls → CA Ls Mer

Polders:

291. The mereology of apolder is a pair of the unique identifier of the polder aggregate and a set
of unique identifiers of canal polder pumps.

type
291. P Mer = Ps UI
value
291. mereo P: P → P Mer

Hubs:

• Hubs are not individually “recognisable” as such. They are either begin/ends, confluences
or outlets; cf. Item 207 on page 129.

• The mereologies of hubs thus “translates” into the mereology of either begin/ends, conflu-
ences or outlets.

– Begin/End

292. The mereology of a canal begin/end is a pair: the unique identifier of the canal hub
set it belongs to and the singleton set of the unique identifier of the first canal link
element for which it is the begin/end.

type
292. CA BE Mer = CA Hs UI × s:CA LE UI-set axiom ∀ (,s):CA BE Mer • card s=1
value
292. mereo CA BE: CA BE → CA BE Mer

– Confluence

293. The mereology of a canal confluence is a pair: the unique identifier of the canal hub
set it belongs and set of two or more canal element unique identfiers, one for each
canal link incident upon the canal confluence.

type
293. CA CO Mer = CA Hs UI × s:CL E UI-set axiom ∀ (,s):CA CO Mer • card s≥2
value
293. mereo CA CO: CA CO → mereo CA CO

140 CONTENTS

– Outlet

294. The mereology of an outlet is a pair: the unique identifier of the canal hub set it
belongs and the singleton set of the unique identifier of the last canal link element
for which it is the outlet.

type
294. CA OU Mer = CA Hs UI × s:CL E UI-set axiom ∀ (,s):CA OU Mer • card s=1
value
294. mereo CA OU: CA OU → CA OU Mer

Canal Links:

295. The mereology of a canal link are triples: the unique identifier of the canal link set to which
it belongs, a two element set of the canal hubs that the link is linking, and a list (i.e., an
ordered sequence) of the unique identifiers of the one or more canal link elements of the link.

type
295. CA L Mer = CA Ls UI × CA H UI-set × s:CA LE UI∗

295. axiom ∀ (,s,l):CA L Mer • card s=2 ∧ len l ≥ 1
value
295. mereo CA L: CA L → CA L Mer

Sets of Canal Link Elements:

296. The mereology of any canal link element includes a pair: the unique identifier of the canal
link to which it belongs and a two element set, one element is the unique identifier of either
a canal hub or a[another] canal link element, the second element is the unique identifier of
either a [next] canal link element or a canal hub – these we call CLE UI P.

type
296. CA LE Mer Common = CL UI × seuis:(CA H UI|CA LE UI)-set
296. axiom ∀ (clui,chluis):CA LE Mer • card chluis = 2

Canal Link Elements:

• Canal link elements are not individually “recognisable” as such. They are either canal
channels, canal locks, canal locks with pumps or are canal polder pumps; cf. Item 213 on
page 130.

– Canal Channels

297. The mereology of any canal channel is as the mereology included in any canal
element mereology, cf. Item 296.

type
297. CA CH Mer = se:CA LE Mer Common
value
297. mereo CA CH: CA CH → CA CH Mer

– Canal Locks

298. The mereology of any canal lock is as the mereology included in any canal element
mereology, cf. Item 296.

C.3. THE ENDURANTS 141

type
298. CA LO Mer = se:CA LE Mer Common
value
298. mereo CA LO: CA LO → CA LO Mer

– Canal Polder Pumps

299. The mereology of any canal polder pump, is a pair: in addition to the mereology
of any canal link element – which is now first element of the pair, has the second
element being the unique identifier of a polder.

type
299. CA PO PU Mer = se:CA LE Mer Common × P UI
value
299. mereo CA PO PU: CA PO PU → CA PO PU Mer

C.3.3.2.2 The Mereology Axiom It is You, the domain analysers & describers, who decide
on the mereologies of a domain ! You may wish to emphasize topological aspects of a domain; or
you may wish to emphasize “co-ordination” relations between topologically “unrelatable” parts;
or you may choose a mix of these; it all, also, depends on which aspects You wish to emphasize
when transcendentally deducing [certain] parts into behaviours. Therefore the mereology axiom
to be expressed reflects Your choice. Here we have chosen to emphasize the topological aspects of
the canal domain. We use the term well-formedness of the mereology of an endurant. But do not
be mislead ! It is not a property that we impose on the domain endurant. It is a fact. We cannot
escape from that fact. Later, in the requirements engineering of a possible software product for a
domain, You may decide to implement data structures to reflect mereologies, in which case you
shall undoubtedly need to prove that your choice of data structures, their initialisation and update
does indeed satisfy the axioms of the domain model.

300. For a canal system to be mereologically, cum topologically well-formed means that the canal
system mereology is well-formed.

axiom
300. is wf CS Mereology(csend)

C.3.3.2.3 Well-formed Mereologies Canal Systems:

301. Canal system well-formednes, is wf CS Mereology,

(a) besides the appropriateness of its own mereology,

(b) is secured by the well-formedness of the canal net aggregate and polder aggregate,
is wf CN Mereology and is wf PA Mereology.

value
301. is wf CS Mereology: CS → Bool
301. is wf CS Mereology(csend) ≡
301a. let (cn ui,pa ui) = mereo CS(csend) in
301a. cn ui = cnuid ∧ pa ui = pauid end ∧
301b. is wf CN Mereology(cnend)∧is wf PA Mereology(paend)

Canal Nets:

302. Well-formedness of canal nets, is wf CN Mereology,

142 CONTENTS

(a) besides the appropriateness of its own mereology, is wf CS Mereology,

(b) is secured by the well-formedness of link and the hub aggregates, is wf CA LA Mereology,
and all links, is wf CA HA Mereology.

value
302. is wf CN Mereology: CN → Bool
axiom
302. is wf CN Mereology(cnend) ≡
302a. let (cn ui,ca ha ui,ca la ui) = mereo CN(cnend) in
302a. cn ui = cnuid ∧ ca ha ui = ca hauid ∧ ca la ui = ca lauid end ∧
302b. is wf CA HA Mereology(ca haend)∧is wf CA LA Mereology(ca laend)

Polder Aggregates:

303. Well-formedness of polder aggregates, is wf PA Mereology,

(a) besides the appropriateness of its own mereology,

(b) is secured by the well–formedness of the polder set is wf Ps Mereology.

type
value
303. is wf PA Mereology: PA → Bool
303. is wf PA Mereology(paend) ≡
303a. let (cs ui,ps ui) = mereo PA(paend) in
303a. cs ui = csuid ∧ ps ui = psuid end ∧
303b. is wf Ps Mereology(psend)

Canal Hub Aggregates:

304. Well-formedness of canal hub aggregates, is wf CA HA Mereology,

(a) besides the appropriateness of its own mereology,

(b) is secured by the well-formedness of its set of hubs.

value
304. is wf CA HA Mereology: CA HA → Bool
304. is wf CA HA Mereology(hub) ≡
304a. let (cnui,cahsui) = mereo CA HA(hub) in
304a. cnui = cnuid ∧ cahsui = ca hsuid end ∧
304b. is wf CA Hs(ca hsend)

Canal Link Aggregates:

305. Well-formedness of canal hub aggregates, is wf CA HA Mereology,

(a) besides the appropriateness of its own mereology,

(b) is secured by the well-formedness of its set of links.

value
305. is wf CA LA Mereology: CA HA → Bool
305. is wf CA LA Mereology(la) ≡
305a. let (cnui,clsui) = mereo CA LA(la) in
305a. cnui = cnuid ∧ clsui = clsuid end ∧
305b. is wf CA Ls(clsend)

C.3. THE ENDURANTS 143

Sets of Polders:

306. Well-formedness of sets of polders, is wf Ps Mereology,

(a) besides the appropriateness of its own mereology,

(b) is secured by the well-formedness of its individual polders.

value
306. is wf Ps Mereology: Ps → Bool
306. is wf Ps Mereology(ps) ≡
306a. let (paui,puis) = mereo Ps(psend) in
306a. paui = ca pauid ∧ puis = ca posuid end ∧
306b. ∀ po:PO • po ∈ posend ⇒ is wf P(po)

Sets of Hubs:

307. Well-formedness of a hub set is wf CA Hs Mereology,

(a) besides the appropriateness of its own mereology,

(b) is secured by the well-formedness of its individual hubs.

value
307. is wf CA Hs Mereology: CA Hs → Bool
307. is wf CA Hs Mereology(ca hsend) ≡
307. let (cahaui,cahuis) = mereo CA Hs(ca besend∪ca cosend∪ca ousend) in
307. cahaui = ca hauid ∧ cahuis = ca hsuid end ∧
307a. ∀ hub:CA H • hub ∈ ca hsend ⇒ is wf CA H(hub)

Sets of Links:

308. Well-formedness of sets of links

(a) besides the appropriateness of its own mereology,

(b) is secured by the well-formedness of all of its individual links.

value
308. is wf CA Ls Mereology: mereo CA Ls → Bool
308. is wf CA Ls Mereology(ca lsend) ≡
308a. let (cs la ui,ca ls ui) = mereo CA Ls(ca lsend) in
308a. cs la ui = ∧ ca ls ui = ca lsuid end ∧
308b. ∀ link:CA L • link ∈ ca lsend ⇒ is wf CA L(link)

Polders:

309. Well-formedness of polders, is wf P Mereology, depends jst on the appropriateness of its own
mereology.

value
309. is wf Mereology Polder: mereo P → Bool
309. is wf Mereology Polder(p) ≡
309. let ps ui = mereo P(p) in
309. ps ui = psuid end ≡

Hubs:

144 CONTENTS

207 Hubs are not individually “recognisable” as such. They are either begin/ends, confluences
or outlets; cf. Item 207 on page 129.

310. The well-formedness of hubs thus “translates” into the well-formedness of either begin/ends,
confluences or outlets.

type
207. CA H == CA BE|CA CO|CA OU
value
310. is wf Mereology H: H → Bool
310. is wf Mereology H(h) ≡
310. is CA BE(h) → is wf Mereology CA BE(h),
310. is CA CO(h) → is wf Mereology CA CO(h),
310. → is wf Mereology CA OU(h)

• Begin/End

311. Well-formedness of the mereology of begin/end hubs, is wf Mereology CA BE, depends
just on the appropriateness of their own mereology.

value
311. is wf Mereology CA BE: CA BE → Bool
311. is wf Mereology CA BE(be) ≡ ≡
311. let (cahsui,cleuis) = mereo CA BE(be) in
311. cahsui ∈ ca hsuid ∧ cleuis ∈ ca lesuid end

• Confluence

312. Well-formedness of the mereology of confluence hubs, is wf Mereology CA CO, depends
just on the appropriateness of their own mereology.

value
312. is wf Mereology CA CO: CA CO → Bool
312. is wf Mereology CA CO(co) ≡
312. let (cahsui,cleuis) = mereo CA CO(co) in
312. cahsui ∈ ca hsuid ∧ cleuis ∈ ca lesuid end

• Outlet

313. Well-formedness of the mereology of outlet hubs, is wf Mereology CA OU, depends just
on the appropriateness of their own mereology.

313. is wf Mereology CA OU: CA CO → Bool
313. is wf Mereology CA OU(ou) ≡
313. let (cahsui,cleuis) = mereo CA OU(ou) in
313. cahsui ∈ ca hsuid ∧ cleuis ∈ ca lesuid end

Canal Links:

314. The well-formedness of canal links depends on

(a) the appropriateness of its own mereology, that is, that its unique identifier references
are indeed to canal system identifiers,

C.3. THE ENDURANTS 145

(b) the well-formedness of the set of link elements that can be observed from a canal link,
that is, that they form a sequence of canal link elements – connecting two canal hubs,
and

(c) the (“remaining”) well-formedness of the canal link elements.

314. is wf Mereology CA L: CA L → Bool
314. is wf Mereology CA L(link) ≡
314a. let (calsui,cahuis,caleuil) = mereo CAL L(link) in
314a. calsui = ∧ cahuis = ∧ caleuil = ∧
314b. wf Link Es(obs CA LEs(link))(cahuis)(caleuil) ∧
314c. ∀ le:CA LE•le ∈ obs CA LEs(link) ⇒ is wf Mereology CA LE(le) end

Well-formed Sets of Canal Link Elements:
The introduction of the wf Link Es predicate represents a slight deviation from the introduction

of the usual is wf Mereology predicates.

315. The wf Link Es predicate applies to a set of link elements, link, and a unique identifier list,
uil, of unique link element identifiers. The predicate holds if the set, link: CA LE-set, of link
elements not only can be ordered in the sequence indicated by uil.

(a) The length of the unique identifier list, uil, must match the cadinality of the set link.

(b) Let linkl be the list of link elements prescribed by uil.

i. The elements of a list “alternate” as follows:

A. canal locks have either canal hubs or canal channels as immediate neighbours16;

B. Canal locks and polder pumps cannot be adjacent.

C. It is allowed for two or more canal channels to be adjacent.

D. Thus canal links may have either canal channels of canal locks as first/last
elements.

ii. Now there are the following cases of “neighbour” mereologies to observe:

iii. For a singleton list, linkl, its only element must connect the two distinct hubs
identified in cahuis.

iv. for a two-element unique identifier list, 〈luil,ruil〉 one of their common mereology
identifiers are shared, i.e., their elements are connected, and the other common
mereology identifiers are those of canal hubs, i.e. end-points.

v. For lists of length three or more elements

A. the first and last elements must have end-points,

B. and for all elements in-between it must be the case that the neighbour identifiers

C. of the previous and the following link elements

D. must share identifiers with the quantified element

E. and share identifier with

value
315. wf Link Es: CA LE-set → CA H UI-set × CA LE UI∗ → Bool
315. wf Link Es(link)(euis:{l ca h ui,r ca h ui})(uil) ≡ [axiom card euis = 2]
315a. card link = len uil ∧
315b. let linkl = 〈 le | i:Nat, ce:C LE•

315b. 1≤i≤len uil∧le∈link∧uid CA LE(le)=uil[i]〉 in
315(b)i. is wf neighbours(linkl) ∧
315(b)ii. case linkl of

16That is, a sequence of locks, such as illustrated in Fig. C.4 on page 123, is here considered a single lock whose
attributes “reveals” its “multiplicity”.

146 CONTENTS

315(b)iii. 〈ui〉 →
315(b)iii. cahauis = seuis(mereo LE(get part(ui))),
315(b)iii. axiom: let {lui,rui}=seuis(mereo LE(get part(ui))) in
315(b)iii. wf end points(lui,rui)(euis) end
315(b)iv. 〈lui,rui〉 →
315(b)iv. wf end points(lui,rui)(euis),
315(b)v. 〈lui〉̂link̂〈rui〉 → [axiom: len linkl ≥ 3, i.e., link 6=〈〉]
315(b)vA. wf end points(lui,rui)(euis) ∧
315(b)vB. ∀ i:Nat • 1<i<len linkl ⇒
315(b)vC. let {uim1,uim1}=seuis(mereo CA LE(get part(linkl[i−1]))),
315(b)vC. {uip1,uip1}=seuis(mereo CA LE(get part(linkl[i+1]))) in
315(b)vD. axiom: lui∈{uim1,uim1} ∧ rui∈{uip1,uip1}
315(b)vE. let uism1={uim1,uim1}\{lui}, uisp1={uip1,uip1}\{rui} in
315(b)vE. link[i] = uism1 = uisp1 end
315. end end end

315(b)i. is wf neighbours: CA LE∗ → Bool
315(b)i. is wf neighbours(linkl) ≡
315(b)i. ∀ i:Nat • {i,i+1} ⊆ inds linkl ⇒
315(b)iA. is CA LO UI(linkl[i]) ⇒ ∼(is CA LO UI(linkl[i+1])∨is PO PU UI(linkl[i+1]))

315(b)iv. is shared: UI × UI-set × UI-set → Book
315(b)iv. is shared(ui,luis,ruis) ≡ ui ∈ luis ∩ ruis
315(b)iv.
315(b)iv. shared: UI-set × UI-set → UI
315(b)iv. shared(luis,ruis) ≡ luis ∩ ruis
315(b)iv. pre: ∃ ui:UI • is shared(ui,luis,ruis)
315(b)iv.
315(b)iv. wf end points: (UI×UI) → CA H UI-set → Bool
315(b)iv. wf end points(lui,rui)(euis) ≡ [axiom: card euis = 2]
315(b)iv. let {llui,lrui} = seuis(mereo LE(get part(lui))),
315(b)iv. {rlui,rrui} = seuis(mereo LE(get part(rui))) in
315(b)iv. if ∃ ui:CA LE UI • is shared(ui,{llui,lrui},{rlui,rrui})
315(b)iv. then let ui = shared({llui,lrui},{rlui,rrui}) in
315(b)iv. {llui,lrui,rlui,rrui}\{ui}=euis ∧
315(b)iv. euis⊆ca besuid∪ca cusuid∪ca ousuid end
315(b)iv. else false end end,

Canal Link Elements:
...

more to come

• Canal Channels

316. is wf CA CH Mereology,

(a)

(b)

(c)

316.
316.

C.3. THE ENDURANTS 147

316a.
316b.
316c.

• Canal Locks

317. is wf CA LO Mereology,

(a)

(b)

(c)

317.
317.
317a.
317b.
317c.

• Canal Polder Pumps

318. (a)

(b)

(c)

318.
318.
318a.
318b.
318c.

C.3.3.3 Routes

C.3.3.3.1 Preliminaries

319. By an end-identifier we mean the unique identifier of a begin/end or an outlet.

320. By a middle-identifier we mean the unique identifier of a confluence, channel, lock, lock with
pump or a polder pump.

321. By a unit identifier we mean either an end-identifier or a middle-identifier.

322. By a canal route we mean a sequence of one or more unique identifiers of atomic canal
entities, two if one of the identifiers is that of a begin/end or an outlet unit.

Notice that adjacent canal route identifiers be distinct. But a triplet of adjacent canal route
identifiers may have the same first and last elements. It is allowed that a route, so-to-speak, goes
forward and backward. There is, in a sense, no preferred directions in canal systems.

type
319. E UI = CA BE UI|CA OU UI
320. M UI = CA CO UI|CA CH UI|CA LO UI|CA LO PU UI|CA PO PU UI
321. UI = E UI|M UI
322. CR = UI∗

axiom
322. ∀ cr:CR,i:Nat • {i,i+1}⊆inds cr ⇒ cr[i] 6=cr[i+1]

148 CONTENTS

323. Let uid MU be a “common” unique identifier observer of middle units.

324. Let mereo MU be a “common” mereology observer of middle units other than polder pumps.

325. From middle units, i.e., confluences, channels, locks, lock with pumps and polder pumps we
can extract simple, one-, two- or three element canal routes.

type
323. uid MU = uid CA CO|uid CA CH|uid CA LO|uid CA LO PU|uid CA PO PU
324. mereo MU = mereo CA CO|mereo CA CH|mereo CA LO|uid CA LO PU
325. MU = CA CO|CA CH|CA LO|CA LO PU|CA PO PU
value
325. xtr M UI CRs: MU → CR-set
325. xtr M UI CRs(mu) ≡
325. let mu ui = uid MU(mu),
325. {ui1,ui2} =
325. is CA PO PU(mu) →
325. let (,cuis,) = mereo CA PO PU(mu) in cuis end
325. → let (,cuis) = mereo MU(mu) in cuis end
325. {〈mu ui〉,〈ui1,mu ui〉,〈ui2,mu ui〉,〈mu ui,ui1〉,〈mu ui,ui2〉,〈ui1,mu ui,ui2〉,〈ui2,mu ui,ui1〉}
325. end

C.3.3.3.2 All Routes

326. By means of xtr M UI CRs we can extract, xtr CRs(mus), the infinite set of canal routes from
any set, mus, of middle canal elements.

327. First we calculate initial, i.e., simple routes.

328. Then for every two routes, a “left” and a “right” route, in the set of routes beng recursively
defined, such that the last element of the left route is identical to the first element of the
right route, the route formed by concatenating the left and right routes “around” the shared
element is a route.

329. The set of routes of a canal system is the least fix-point soluion the the equation of Item 328.

330. No two adjacent identifiers are the same.

type
325. MU = CA CO|CA CH|CA LO|CA LO PU|CA PO PU
value
326. xtr CRs: MU-set → CR-infset
326. xtr CRs(mus) ≡
327. let icrs = ∪{xtr M UI CRs(mu)|mu:MU•mu ∈ mus} in
328. let crs = icrs ∪ {lr̂〈ui〉̂rl|lr,〈ui〉,rr:CR•{lr̂〈ui〉,〈ui〉̂rr}∈crs} in
329. crs
330. axiom: ∀ cr:CR, i:Nat • cr isn crs ∧ {i,i+1}⊆inds cr ⇒ cr[i] 6=cr[i+1]
326. end end

C.3.3.3.3 Connected Canal Systems

331. Canal systems, such as we shall understand them, are connected.

332. That is, there is a route from any canal element to any other other canal element.

333. Let mus be the set of all middle elements of a canal system.

C.3. THE ENDURANTS 149

334. Let rs be the infinite set of all routes of mus.

335. Now, for any two unique identifiers of middle elements there must be a route in rs.

value
331. is connected CS: CS → Bool
332. is connected CS(cs) ≡ in
333. let mus = ca cosend∪ca chsend∪ca losend∪ca lo pusend∪ca po pusend in
334. let rs = xtr CRs(mus) in
335. ∀ ui:M UI • {fui,tui}⊆uid MU(mus) ⇒ ∃ r:R • r ∈ rs and r[1]=r[len r]
332. end end

C.3.3.3.4 A Canal System Axiom

336. Canal systems are connected.

axiom
336. ∀ cs:CS • is connected CS(cs)

C.3.3.4 Attributes

We shall treat the issue of canal part attributes, not, as is usual, one-by-one, sort-by-sort, but
more-or-less “collectively”, across canal hubs and links. And we do so category-by-category of
attribute kinds: spatial, temporal and other.

C.3.3.4.1 Spatial and Temporal Attributes Spatial Attributes:
Natural and artefactual, that is, mane-made endurants reside in space. We have dealt with

space, i.e., SPACE, in [58, Sects. 2.2 and 3.4]. Subsidiary spatial concepts are those of VOLUME,
AREA, CURVE (or LINE), and POINT. All canal system endurants possess, whether we choose to
model them or not, such spatial attributes. We shall not here be bothered by any representation,
let alone computational representations, of spatial attributes. They are facts. Any properties that
two AREAs, ai and aj may have in common – like bordering, overlapping disjoint or properly
contained – are facts and should, as such be expressed in terms of axioms. They are not properties
that can, hence must, be proven. Once a domain description, involving spatial concepts is the
base for a requirements prescription, then, if these spatial concepts are not projected out of the
evolving requirements, they must, eventually, be prescribed – or assumed to have – computable
representations. In that case axioms concerning spatial quantities are turned into proof obligations
that must, eventually, be discharged.

Let us establish the following spatial attributes, common to all canal parts:

337. Location: A single POINT in SPACE characterised by its longitude, latitude and altitude,
the latter height above or depth below sea level, including 0. How these are measured is of
no concern in this model.

338. Extent: An AREA, i.e., a plane in SPACE, i.e., a dense set of POINTs according to some
topology.

339. Volume: A proper subset SPACE, i.e., a three dimensional dense set of POINTs SPACE,
according to some topology.

340. The Location of a canal part is always embedded in its Extent.

341. The Extent of a canal part is always embedded in its Volume

150 CONTENTS

type
337. Location
338. Extent
339. Volume
value
337. attr Location: CS|CN|PA|CA HA|CA LA|CA LE → Location
338. attr Extent: CS|CN|PA|CA HA|CA LA|CA LE → Extent
339. attr Volume: CS|CN|PA|CA HA|CA LA|CA LE → Volume
339. is embedded: Location × Extent → Bool, is embedded: Extent × Volume → Bool
axiom
340. ∀ e:(CS|CN|PA|CA HA|CA LA|CA LE)•is embedded(attr Location(e),attr Extent(e))
341. ∀ e:(CS|CN|PA|CA HA|CA LA|CA LE)•is embedded(attr Extent(e),attr Volume(e))

Let us establish the following ***s, common to some canal parts:

342. Let us addume the sort notions of Latitude, Longitude and Altitude,

343. And let us assume “sea level” Altitude value ”0”.

344. A projected extent is an extent all of whose altiude elements are zero (0), i.e., “at sea level”.

345. We assume functions, latitude, logitude, altitude, that extract respective elements of a point.

346. No two distinct hubs and link elements can share neither location, area nor volume – so they
are disjoint.

Canal channels may share projected extents.

type
342. Latitude, Longitude, Altitude
value
343. ′′0′′: Altitude
344. projected Extent: Extent → Extent
345. latitude: POINT → Latitude, longitude: POINT → Longitude, altitude: POINT → Altitude
axiom
346. ∀ e,e′:(CS|CN|PA|CA HA|CA LA|CA LE): e 6=e′ ⇒ disjoint(attr Volume(e),attr Volume(e′))
342. ∀ e,e′:CA CH •

343.
344.

Temporal Attributes:
Natural and artefactual, that is, mane-made endurants reside in time. We have dealt with

space, i.e., TIME, in [58, Sects. 2.2 and 3.5]. Subsidiary spatial concepts are those of TIME and
TIME INTERVALs. All canal system endurants possess, whether we choose to model them or
not, such temporal attributes. We shall not here be bothered by any representation, let alone
computational representations, of temporal attributes. They are facts. Any properties that two
TIME INTERVALs, tii and tij may have in common, like bordering or overlapping, are facts and
should, as such be expressed in terms of axioms17. They are not properties that can, hence must,
be proven. Once a domain description, involving temporal concepts is the base for a requirements
prescription, then, if these temporal concepts are not projected out of the evolving requirements,
they must, eventually, be prescribed – or assumed to have – computable representations. In
that case axioms concerning temporal quantities are turned into proof obligations that must,
eventually, be discharged.

Event Attributes

17We refer here to the TIME and TIME INTERVAL operators of [58, Sects. 2.2 and 3.5]

C.3. THE ENDURANTS 151

Some events can, for example, be talked about, by humans. They, so-to-speak, belong to an
event-category: “von hörensagen”. Examples are: “a canal lock opened at time τ ”; “a polder pump
stopped pumping at time τ ′ ”; and “a canal vessel passed a certain canal channel point at time τ ′′ ”.
Let refer to the event as e:E. If, for an endurant, p of sort P, they are relevant to an analysis &
description of a domain, then they must be noted, for example in the form of an attribute named,
say, history E:

type history E = TIME →m E

Continuous Time Attributes
Mostly one models discrete time phenomena. But often phenomena are continuous time vary-

ing. Examples are: “the canal water level”, “the canal water temperature”, and “the position of a
vessel along a canal”. If, for an endurant, p of sort P, such a phenomenon, e:E, is relevant to an
analysis & description of a domain, then it must be noted, for example in the form of an attribute
named, say, history E:

type history E = TIME → E

C.3.3.4.2 Canal System, Net and Polder Attributes

347. Canal systems have location and extent.

348. So do canal nets and

349. polder aggregates.

350. Canal nets and polder aggregates are bordering18.

351. Canal nets and polder aggregates are properly embedded19 in canal systems.

352. Etc.

value
347. attr Location: CS → Location; attr Extent: CS → Extent
348. attr Location: CN → Location; attr Extent: CN → Extent
349. attr Location: PA → Location; attr Extent: PA → Extent
axiom
350. ∀ cs:CS • are bordering(attr Extent(obs CN(cs)),attr Extent(obs PA(cs)))
351. ∀ cs:CS • is embedded(attr Extent(obs CN(cs)),cs)∧is embedded(cs,attr Extent(obs PA(cs)))
352. ...

C.3.3.4.3 Canal Hub and Link Attributes Two kinds of attributes shared across hubs and
links, therefore their elements, stand out: water levels and ambient and water temperatures.

Water Temperatures:

353. Let there be given a notion of water temperature.

Generally, over time, one can associate with any canal hub and link element,

354. high,

355. normal and

18We leave it to a chosen Topology to define the are bordering predicate
19We leave it to a chosen Topology to define the is embedded predicate

152 CONTENTS

356. low water

water temperatures, and specifically, at any time,

357. current water temperatures.

type
353. Wa Temp
354. Hi Temp = TIME → Wa Temp
355. No Temp = TIME → Wa Temp
356. Lo Temp = TIME → Wa Temp
357. Cu Temp = Wa Temp
value
354. attr Hi Temp: H → Hi Temp, attr LE Temp: LE → Hi Temp
355. attr No Temp: H → No Temp, attr LE Temp: LE → No Temp
356. attr Lo Temp: H → Lo Temp, attr LE Temp: LE → Lo Temp
357. attr Cu Temp: H → Cu Temp, attr LE Temp: LE → Cu Temp

The Hi Temp, No Temp and Lo Temp attributes are normally continuous functions over time.
They are facts. One does not have to “go out” and measure them ! We do not have to think of
representations for the Hi Temp, No Temp and Lo Temp attributes.

Water Levels:

358. Let there be given a notion of water level.

Generally, over time, one can associate with any canal hub and link element,

359. high,

360. normal and

361. low

water levels, and specifically, at any time,

362. current water level.

type
358. Wa Lev
359. Hi WL = TIME → Wa Lev
360. No WL = TIME → Wa Lev
361. Lo WL = TIME → Wa Lev
362. Cu WL = Wa Lev
value
359. attr Hi WL: H → Hi WL, attr LE WL: LE → Hi WL
360. attr No WL: H → No WL, attr LE WL: LE → Hi WL
361. attr Lo WL: H → Lo WL, attr LE WL: LE → Hi WL
362. attr Cu WL: H → Cu WL, attr LE WL: LE → Hi WL

The Hi WL, No WL and Lo WL attributes are normally continuous functions20 over time. Remarks
on Hi WL, No WL and Lo WL attributes similar to those of the Hi Temp, No Temp and Lo Temp
attributes as to continuity and representations apply.

more to come

20– barring cyclones, tornados and the like !

C.4. CONCLUSION 153

C.3.3.5 Well-formedness of Attributes

363. There is a predicate, is wf CS Attributes.

364.

365.

366.

367.

more to come

C.3.4 Speculations

to be written

C.4 Conclusion

to be written

154 CONTENTS

Appendix D

The 7 Seas

Contents

D.1 Introduction . 156

D.2 Endurants . 156

D.2.1 External Qualities . 156

D.2.1.1 Informal Introduction . 156

D.2.1.2 Formal Introduction . 156

D.2.1.2.1 Parts and Fluids . 157

D.2.1.2.2 The 7 Seas State . 158

D.2.2 Internal Qualities . 159

D.2.2.1 Unique Identifiers . 159

D.2.2.1.1 Observers . 159

D.2.2.1.2 All Unique Identifiers 159

D.2.2.1.3 Axiom . 160

D.2.2.1.4 Extraction of Atomic Elements 160

D.2.2.2 Mereology . 161

D.2.2.2.1 Types, Observers and Axioms 161

D.2.2.2.2 A Remark . 163

D.2.2.2.3 A Domain Axiom . 163

D.2.2.3 Attributes . 163

D.2.2.3.1 Seas . 164

D.2.2.3.2 Rivers . 164

D.2.2.3.3 Canals and Straits . 165

D.2.2.3.4 Continents . 165

D.2.2.3.5 Harbours . 166

D.2.2.3.6 Vessels . 166

D.3 Perdurants . 167

D.3.1 Channels . 167

D.3.2 Behaviours . 167

D.3.2.1 Signatures . 167

D.3.2.2 Definitions . 167

D.3.2.3 System . 167

D.4 Conclusion . 167

155

156 CONTENTS

D.1 Introduction

In this model we shall treat waterways, not as fluids, but as solids ! That is, we may considers
waterways as parts, and hence, by transcendental deductions, as possibly having behaviours.
Similarly we shall consider many composite endurants, not as elements of structures, but as parts,
while not considering their internal qualities, that is, not considering their possible behaviours.

D.2 Endurants

D.2.1 External Qualities

D.2.1.1 Informal Introduction

Waterways include seas, rivers and navigable “k”anals. One can take the view that there are the
following eight seas: the Arctic Ocean, the North Atlantic Ocean, the South Atlantic Ocean, the
Indian Ocean, the North Pacific Ocean, the South Pacific Ocean, the Southern (or Antarctic) Ocean,
and the Kaspian Sea. Another view “collapses” the north and south into one, leaving just 6 oceans
and seas. Yet a third view is that there are just 2 oceans and seas: The Kaspian Sea and the others
– since they are all “tightly” connected ! The Kaspian Sea cannot be reached by ship or boat from
the ocean[s] ! The Mediterranean and The Black Seas are both considered segments of The Atlantic
Ocean. The Arab Sea is considered a segment of The Indian Ocean. Etcetera.

Figure D.1: A World Map of Oceans and Seas

By navigable rivers, “k”anals and status mean such rivers, “k”anals and straits that are connected
to the seas and can be navigated by boats and ships. Such areas of rivers and “k”anals that are
not navigable by ocean-going boats and ships are area-wise elements of “their” continents. Notice
that we “lump” “k”anals and straits:

By continents we loosely mean some connected land area.
By harbours we mean places at the edge of continents, seas, rivers, “k”anals and straits where

vessels can berth, unload and load cargo and/or passengers.
By vessels we mean ocean-going ships and boats. Without loss of generality we omit consider-

ation of such vessels as floats, barges, etc.

D.2.1.2 Formal Introduction

D.2. ENDURANTS 157

Figure D.2: The Mediterranean and Arab Seas

Figure D.3: The Black Sea and the Kaspian Ocean

D.2.1.2.1 Parts and Fluids

368. “The 7 Seas” is a structure composite of the waterways, the continents, the harbours and
the vessels.

369. The waterways aggregate consists of an structure composite of a fluids: seas, rivers and
“k”anal/straits aggregates.

370. The seas aggregate is a set of seas.

371. The rivers aggregate is a set of [atomic] rivers.

372. The “k”anal/straits aggregate is a set of [atomic] “k”anals and straits.

373. The continents aggregate is a set of [atomic] continents.

374. The harbour aggregate is a set of [atomic] harbours.

375. The Vessel aggregate is a set of [atomic] vessels.

type
368. 7Seas, WA, CA, HA, VA
369. SA, RA, KA
370. Ss = S-set
371. Rs = R-set
372. Ks = K-set
373. Cs = C-set
374. Hs = H-set
375. Vs = V-set
value

158 CONTENTS

Figure D.4: The Mississippi and the Amazon Rivers

Figure D.5: The Yang Tse and the Danube Rivers

368. obs WA: 7Seas→WA, obs CA: 7Seas→CA, obs HA: 7Seas→HA, obsVA: 7Seas→VA
369. obs SA: WA → SA, obs RA: WA → RA, obs KA: WA → KA
370. obs Ss: SA → Ss
371. obs Rs: RA → Rs
372. obs Ks: KA → Ks
373. obs Cs: CA → Cs
374. obs Hs: HA → Hs
375. obs Vs: VA → Vs

D.2.1.2.2 The 7 Seas State

376. By “The 7 Seas state” we mean the collection of all atomic “The 7 Seas” endurants – a
collection which is the distributed union of all continents, rivers, canals, continents, harbours
and vessels.

value
368. 7seas:7Seas
370. ss:Ss = obs Ss(obs SA(obs WA(7seas)))
371. rs:Rs = obs Rs(obs RA(obs WA(7seas)))
372. ks:Ks = obs Ks(obs KA(obs WA(7seas)))
373. cs:Cs = obs Cs(obs CA(7seas))
374. hs:Hs = obs Hs(obs HA(7seas))

D.2. ENDURANTS 159

Figure D.6: The Mediterranean and Arab Seas

Figure D.7: Continents: Central America, The Caribbean and Middle East

375. vs:Vs = obs Vs(obs VA(7seas))
376. 7σ:(S|R|K|C|H|V)-set = ss ∪ rs ∪ ks ∪ cs ∪ hs ∪ vs

Please not the type font names for the state values.

D.2.2 Internal Qualities

D.2.2.1 Unique Identifiers

D.2.2.1.1 Observers

377.

type
377. SI, RI, KI, CI, HI, VI
value
377. uid S: S→SI, uid R: R→RI, uid K: K→KI, uid C: C→CI, uid H: H→HI, uid V: V→VI

D.2.2.1.2 All Unique Identifiers

378. We can calculate the sets of all sea, river, canal, continent, harbor and vessel identifiers,

379. as well as the set of all atomic part and fluid identifiers of the 7 Seas domain.

value
378. sis:SI-set = {uid S(s)|s:S•s ∈ ss}
378. ris:RI-set = {uid R(r)|r:R•r ∈ rs}
378. kis:KI-set = {uid K(k)|k:K•k ∈ ks}
378. cis:CI-set = {uid C(c)|c:C•c ∈ cs}
378. his:HI-set = {uid H(h)|h:H•h ∈ hs}
378. vis:VI-set = {uid V(v)|v:V•v ∈ vs}
379. 7is:(SI|RI|KI|CI|HI|VI)-set = sis∪ris∪kis∪cis∪his∪vis

160 CONTENTS

Figure D.8: The Panama and Suez Canals. The Gibraltar and Malacca Straits

Figure D.9: Singapore and Los Angeles Harbours

D.2.2.1.3 Axiom

380. All atomic parts and separate fluids have unique identifiers.

axiom
380. card 7σ = card ais

D.2.2.1.4 Extraction of Atomic Elements

381. From a sea identifier we can, via the domain state ss, obtain the seal.

382. From a river identifier we can, via the domain state rs, obtain the river.

383. From a canal identifier we can, via the domain state ks, obtain the canal.

384. From a continent identifier we can, via the domain state cs, obtain the continent.

385. From a harbour identifier we can, via the domain state hs, obtain the harbour.

386. From a vessel identifier we can, via the domain state vs, obtain the vessel.

value
381. xtr S: SI→S; xtr S(si) ≡ let s:S • s ∈ ss ∧ uid S(s) = si in s end
382. xtr R: RI→R; xtr R(ri) ≡ let r:R • r ∈ rs ∧ uid R(r) = ri in r end
383. xtr K: KI→K; xtr K(ki) ≡ let k:K • k ∈ ks ∧ uid K(k) = ki in k end
384. xtr C: CI→C; xtr C(ci) ≡ let c:C • c ∈ cs ∧ uid C(c) = ci in c end
385. xtr H: HI→H; xtr H(hi) ≡ let h:H • h ∈ hs ∧ uid H(h) = hi in h end
386. xtr V: VI→V; xtr V(vi) ≡ let v:V • v ∈ vs ∧ uid V(v) = vi in v end

D.2. ENDURANTS 161

Figure D.10: Rotterdam and Shanghai Harbours

Figure D.11: Miscellaneous Vessels, I

D.2.2.2 Mereology

D.2.2.2.1 Types, Observers and Axioms Seas

387. The mereology of a sea is a triplet of the sets of unique identifiers of

• the vessels that may sail on it,

• the continents that borders it and

• the harbours that confront it.

type
387. MS = VI-set × CI-set × HI-set
value
387. mereo S: S → MS
axiom
387. ∀ s:S: s ∈ ss ⇒ let (vis,cis,his) = mereo S(s) in vis ⊆ vis ∧ cis ⊆ cis ∧ his ⊆ his end

Rivers

388. The mereology of a river is the triplet of

• the non-empty set of unique identifiers of the continents it is embedded in,

• the [one] unique identifier of the sea (or ocean) it is connected to, and

• the set of unique identifiers of the vessels that may sail on that river.

type
388. MR = CI-set × SI × VI-set
value
388. mereo R: R → MR
axiom
388. ∀ r:R: r ∈ rs ⇒ let (cis,si,vis) = mereo R(r) in {} 6= cis ⊆ cis ∧ si ∈ sis ∧ vis ⊆ vis end

Canals and Straits

162 CONTENTS

Figure D.12: Miscellaneous Vessels, II

Figure D.13: Miscellaneous Vessels, III

389. The mereology of a canal or a strait is the triplet of

• a set of one or two unique identifiers of the seas that the canal or strait connects,

• the set of unique identifiers of the harbours it offers,

• the set of unique identifiers of the vessels that may sail through the canal or strait.

type
389. MK = SI-set × HI set × VI-set
value
389. mereo K: K → MK
axiom
389. ∀ r:K: k ∈ ks ⇒ let (sis,cis,vis) =
mereo K(k) in 1 ≤card sis ≤ 2 ∧ sis ⊆ sis ∧ his ∈ his ∧ vis ⊆ vis end

Continents

390. The mereology of a continent is the triplet of

• the set of unique identifiers of the [other1] continents that the continent borders with,

• the set of unique identifiers of the harbours on that continent, and

• the set of unique identifiers of the rivers flowing through that continent.

type
390. MC = CI-set × HI set × RI-set
value
390. mereo C: C → MC
axiom
390. ∀ c:C: c ∈ cs ⇒ let (cis,his,ris) = mereo C(c) in cis ⊆ cis ∧ his ⊆ his ∧ ris ⊆ ris end

Harbours

391. The mereology of a harbour is the triplet of

1The axiom (389) does not model “the other” clause !

D.2. ENDURANTS 163

• the unique identifier of the continent to which the harbour belongs, and

• the set of unique identifiers of the vessels that may berth at that harbour.

type
391. MH = CI × VI-set
value
391. mereo H: H → MH
axiom
391. ∀ h:H • h ∈ hs ⇒ let (ci,vis) = mereo H(j) in ci ∈ cis ∧ vis ∈ vis end

Vessels

392. The mereology of a vessel is the pair of

• the set of unique identifiers of the seas on which the vessel may sail, and

• the set of unique identifiers of the harbours at which the vessel may berth,

type
392. MV = SI-set × HI-set
value
392. mereo V: V → MV
axiom
392. ∀ v:V • v ∈ vis ⇒ let (sis,his) = mereo V(v) in sis ⊆ sis ∧ his ⊆ his end

D.2.2.2.2 A Remark Please note that we have not [yet] had a need to describe the sea and
land AREAs of seas and continents.

D.2.2.2.3 A Domain Axiom The axioms of Sect. D.2.2.2.1 pertains to the individual atomic
elements of the domain, not to their occurrence in the context of the aggregates to which they are
elements.

393. The mereology of a sea of a domain states the unique identifiers of the vessels that may
sail on it, so we must, vice-versa, expect that the mereology of the identified vessels likewise
identify that sea as one on which it may sail.

axiom
393. ∀ s:S • s ∈ ss ⇒
393. let (vis,cis,his) = mereo S(s) in
393. ∀ vi:VI • vi ∈ vis ⇒
393. let v:V • v = xtr V(vi) in
393. let (sis,his) = mereo V(v) in
393. uid S(s) ∈ sis end end end

We leave it to the reader to narrate and formalise similar “cross-mereology” axioms for [all other]
relevant “pairs” of different sort atomic elements of the domain.

D.2.2.3 Attributes

Seas, rivers, canals, continents and harbours have spatial attributes of kind SURFACE, LINE and
POINT. We refer to [58, Sect. 3.4].

164 CONTENTS

D.2.2.3.1 Seas

394. We ascribe names to seas.

395. Seas spread over contiguous surface (SURFACE).

396. Seas have borders/edges (LINE).

397.

398.

399.

400.

type
394. SeaName
395. SeaSurface = SURFACE

396. SeaBorder = LINE

397.
398.
399.
value
394. attr SeaName: S → SeaName
395. attr SeaSurface: S → SeaSurface
396. attr SeaBorder: S → SeaBorder
397. attr : →
398. attr : →
399. attr : →

D.2.2.3.2 Rivers

401.

402.

403.

404.

405.

406.

407.

type
401.
402.
403.
404.
405.
406.
value
401. attr : →
402. attr : →
403. attr : →

D.2. ENDURANTS 165

404. attr : →
405. attr : →
406. attr : →

D.2.2.3.3 Canals and Straits

408.

409.

410.

411.

412.

413.

414.

type
408.
409.
410.
411.
412.
413.
value
408. attr : →
409. attr : →
410. attr : →
411. attr : →
412. attr : →
413. attr : →

D.2.2.3.4 Continents

415.

416.

417.

418.

419.

420.

421.

type
415.
416.
417.
418.
419.

166 CONTENTS

420.
value
415. attr : →
416. attr : →
417. attr : →
418. attr : →
419. attr : →
420. attr : →

D.2.2.3.5 Harbours

422.

423.

424.

425.

426.

427.

428.

type
422.
423.
424.
425.
426.
427.
value
422. attr : →
423. attr : →
424. attr : →
425. attr : →
426. attr : →
427. attr : →

D.2.2.3.6 Vessels

429. Vessels have names.

430. Vessels have kind: passenger, ordinary freight, crude oil, container, ...

431. Vessels, at any one “point” in time has a position.

432. Vessels, when sailing, follow a route.

433. Vessel positions are well-formed if they are on the current route.

434. Vessels have a speed

435. and a velocity.

436. A vessel is on course if its position (at some time) is on that vessel’s route.

D.3. PERDURANTS 167

type
429. VesselName
430. VesselKind = ...
431. VesselPos = TIME × POSITION

432. VesselRoute = BezierCurve
434. VesselSpeed
434. VesselVelocity
value
429. attr VesselName: V → VesselName
430. attr VesselKind: V → VesselKind
431. attr VesselPos: V → VesselPos
432. attr VesselRoute: V → VesselRoute
434. attr VesselSpeed: V → Speed
435. attr VesselVelocity: V → Velocity
436. Vessel on course: V → Bool
436. Vessel on course(v) ≡ let (vp,) = attr VesselPos(v) in Position on curve(vp,attr VesselRoute(v)) end
436. Position on curve: POSITION × Bezier → Bool

D.3 Perdurants

D.3.1 Channels

D.3.2 Behaviours

D.3.2.1 Signatures

D.3.2.2 Definitions

D.3.2.3 System

D.4 Conclusion

168 CONTENTS

Part V

Concrete Domain Models

In Chapters E–P we present 11 concrete domain models. By a concrete domain we
mean a domain which primarily covers properties of a man-made domain.

We briefly characterize these here.

• Chapter E: Road Transport pages 171–189

Chapter is based on drafts from as early as 20 years ago. Chapter 2 has already
brought many excerpts of this domain model.

• Chapter F: Rail Systems pages 191–209

First drafts from 1993 ! This, obviously, goes back many years. The first railway
domain modelling was done by the late Søren Prehn.2

• ChapterG: Simple Credit Card Systems pages 211–221

This draft model was worked out, with PhD students at a two week course in
May 2016 at Uppsala University, Sweden.

• ChapterH: Simple Consumer Market Systems pages 223–260

Draft from January 2021. See the first text of chapter H, page 224. Haim Kilov
challenged me, in 2001/2002, to work out a first model of the market, [21]. Haim
then kindly published it.

• Chapter I: Pipelines pages 261–276

Draft from 2008. At a PhD course, in November 2008, I asked the students to
select a domain and they chose this, a pipeline domain.3

• Chapter J: Shipping pages 277–303

I worked out an early draft for an Isola Lipari PhD Summer School in Italy in 2007
[30] www.imm.dtu.dk/˜dibj/lipari-paper.pdf, http://www.imm.dtu.dk/˜dibj/con-
tainer-paper.pdf. In April 2022 I worked out, from scratch, a much simpler do-
main model [60] www.imm.dtu.dk/˜dibj/2021/ral/ral.pdf based, illustratively on
the Royal Arctic Lines (hence the file name ral.pdf), a Danish/Greenland shipping
line.

2Søren was an M.Sc. student of mine, one of the first I hired into the Dansk Datamatik Center (1980–1989).
A brilliant software engineer and a fine computer scientist. My first choice of staff to join me (1992–1994) at the
UN University’s International Institute for Software Technology, UNU/IIST in Macau – of which I was the first and
founding UN Director (1992–1997). Søren sadly passed away in the Spring of 2006. God Bless his soul.

3It later transpired that one of the PhD students was the son of a top director at the Austrian Mineral oil
Company ÖMG.

169

170

• ChapterK: Container Terminals pages 305–360

Draft from a PhD course at ECNU: East China Normal University, Shanghai, Fall
2018. Students actually got to visit SECT (Shanghai East Container Terminal) of
the Danish A.P.Møller Maersk company.

• ChapterM: Document Systems pages 363–384

Draft from summer 2017.

• ChapterN: Swarms of Drones pages 385–415

Draft from November 2017.

• ChapterO: Assembly Lines pages 417–453

Draft from Summer 2021.

• ChapterP: Nuclear Power Plants pages 455–497

Draft from July 2023.

Appendix E

Road Transport

Contents

E.1 The Road Transport Domain . 172

E.1.1 Naming . 172

E.1.2 Rough Sketch . 172

E.2 External Qualities . 172

E.2.1 A Road Transport System, II – Abstract External Qualities 172

E.2.2 Transport System Structure . 173

E.2.3 Atomic Road Transport Parts . 173

E.2.4 Compound Road Transport Parts . 173

E.2.4.1 The Composites . 173

E.2.4.2 The Part Parts . 174

E.2.5 The Transport System State . 174

E.3 Internal Qualities . 174

E.3.1 Unique Identifiers . 174

E.3.1.1 Extract Parts from Their Unique Identifiers 175

E.3.1.2 All Unique Identifiers of a Domain 175

E.3.1.3 Uniqueness of Road Net Identifiers 176

E.3.2 Mereology . 176

E.3.2.1 Mereology Types and Observers 176

E.3.2.2 Invariance of Mereologies . 177

E.3.2.2.1 Invariance of Road Nets 177

E.3.2.2.2 Possible Consequences of a Road Net Mereology . . 178

E.3.2.2.3 Fixed and Varying Mereology 178

E.3.3 Attributes . 178

E.3.3.1 Hub Attributes . 178

E.3.3.2 Invariance of Traffic States . 179

E.3.3.3 Link Attributes . 179

E.3.3.4 Bus Company Attributes . 179

E.3.3.5 Bus Attributes . 180

E.3.3.6 Private Automobile Attributes 180

E.3.3.7 Intentionality . 181

E.4 Perdurants . 182

E.4.1 Channels and Communication . 182

E.4.1.1 Channel Message Types . 182

E.4.1.2 Channel Declarations . 183

171

172 CONTENTS

E.4.2 Behaviours . 183

E.4.2.1 Road Transport Behaviour Signatures 183

E.4.2.2 Behaviour Definitions . 185

E.4.2.2.1 Automobile Behaviour at a Hub 185

E.4.2.2.2 Automobile Behaviour On a Link 186

E.4.2.2.3 Hub Behaviour . 187

E.4.2.2.4 Link Behaviour . 187

E.5 System Initialisation . 188

E.5.1 Initial States . 188

E.5.2 Initialisation . 188

E.1 The Road Transport Domain

Our universe of discourse in this chapter is the road transport domain.

E.1.1 Naming

type RTS

E.1.2 Rough Sketch

The road transport system that we have in mind consists of a road net and a set of vehicles such
that the road net serves to convey vehicles. We consider the road net to consist of hubs, i.e., street
intersections, or just street segment connection points, and links, i.e., street segments between
adjacent hubs. e consider vehicles to additionally include departments of motor vehicles (DMVs),
bus companies, each with zero, one or more buses, and vehicle associations, each with zero, one
or more members who are owners of zero, one or more vehicles1

E.2 External Qualities

A Road Transport System, I – Manifest External Qualities:Our intention is that the manifest
external qualities of a road transport system are those of its roads, their hubs2i.e., road (or street)
intersections, and their links, i.e., the roads (streets) between hubs, and vehicles, i.e., automobiles
– that ply the roads – the buses, trucks, private cars, bicycles, etc.

E.2.1 A Road Transport System, II – Abstract External Qualities

Examples of what could be considered abstract external qualities of a road transport domain
are: the aggregate of all hubs and all links, the aggregate of all buses, say into bus companies,
the aggregate of all bus companies into public transport, and the aggregate of all vehicles into a
department of vehicles. Some of these aggregates may, at first be treated as abstract. Subsequently,
in our further analysis & description we may decide to consider some of them as concretely
manifested in, for example, actual departments of roads.

1This “rough” narrative fails to narrate what hubs, links, vehicles, DMVs, bus companies, buses and vehicle
associations are. In presenting it here, as we are, we rely on your a priori understanding of these terms. But that
is dangerous ! The danger, if we do not painstakingly narrate and formalise what we mean by all these terms, then
readers (software designers, etc.) may make erroneous assumptions.

2We have highlighted certain endurant sort names – as they will re-appear in rather many upcoming examples.

E.2. EXTERNAL QUALITIES 173

E.2.2 Transport System Structure

A transport system is modeled as structured into a road net structure and an automobile structure.
The road net structure is then structured as a pair: a structure of hubs and a structure of links.
These latter structures are then modeled as set of hubs, respectively links.

We could have modeled the road net structure as a composite part with unique identity, mereology
and attributes which could then serve to model a road net authority. And we could have
modeled the automobile structure as a composite part with unique identity, mereology and attributes
which could then serve to model a department of vehicles

E.2.3 Atomic Road Transport Parts

From one point of view all of the following can be considered atomic parts: hubs, links3, and
automobiles.

E.2.4 Compound Road Transport Parts

E.2.4.1 The Composites

437. There is the universe of discourse, UoD.

It is structured into

438. a road net, RN, and

439. a fleet of vehicles, FV.

Both are structures. .

type
437 UoD axiom ∀ uod:UoD • is structure(uod).
438 RN axiom ∀ rn:RN • is structure(rn).
439 FV axiom ∀ fv:FV • is structure(fv).

value
438 obs RN: UoD → RN
439 obs FV: UoD → FV

sLsH

RN

SH SL

FV

SBC

sA

PABCs

h1:H

h2:H

hm:H

l1:L

ln:L

l2:L

b11:B

b1p:B

bs1:B

bsq:B

a1:A

a2:A

ar:A

bs2:Bb12:B

bc1:sBC bc_s:sBC

Figure E.1: A Road Transport System: Compounds and Structures

3Hub ≡ street intersection; link ≡ street segments with no intervening hubs.

174 CONTENTS

E.2.4.2 The Part Parts

440. The structure of hubs is a set, sH, of atomic hubs, H.

441. The structure of links is a set, sL, of atomic links, L.

442. The structure of buses is a set, sBC, of composite bus companies, BC.

443. The composite bus companies, BC, are sets of buses, sB.

444. The structure of private automobiles is a set, sA, of atomic automobiles, A.

type
440 H, sH = H-set axiom ∀ h:H • is atomic(h)
441 L, sL = L-set axiom ∀ l:L • is atomic(l)
442 BC, BCs = BC-set axiom ∀ bc:BC • is composite(bc)
443 B, Bs = B-set axiom ∀ b:B • is atomic(b)
444 A, sA = A-set axiom ∀ a:A • is atomic(a)
value
440 obs sH: SH → sH
441 obs sL: SL → sL
442 obs sBC: SBC → BCs
443 obs Bs: BCs → Bs
444 obs sA: SA → sA

E.2.5 The Transport System State

445. Let there be given a universe of discourse, rts. It is an example of a state.

From that state we can calculate other states.

446. The set of all hubs, hs.

447. The set of all links, ls.

448. The set of all hubs and links, hls.

449. The set of all bus companies, bcs.

450. The set of all buses, bs.

451. The set of all private automobiles, as.

452. The set of all parts, ps.

value
445 rts:UoD
446 hs:H-set ≡:H-set ≡ obs sH(obs SH(obs RN(rts)))
447 ls:L-set ≡:L-set ≡ obs sL(obs SL(obs RN(rts)))
448 hls:(H|L)-set ≡ hs∪ls
449 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
450 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
451 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
452 ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as

E.3 Internal Qualities

E.3.1 Unique Identifiers

E.3. INTERNAL QUALITIES 175

453. We assign unique identifiers to all parts.

454. By a road identifier we shall mean a link
or a hub identifier.

455. By a vehicle identifier we shall mean a bus
or an automobile identifier.

456. Unique identifiers uniquely identify all
parts.

(a) All hubs have distinct [unique] iden-
tifiers.

(b) All links have distinct identifiers.

(c) All bus companies have distinct iden-
tifiers.

(d) All buses of all bus companies have
distinct identifiers.

(e) All automobiles have distinct identi-
fiers.

(f) All parts have distinct identifiers.

type
453 H UI, L UI, BC UI, B UI, A UI
454 R UI = H UI | L UI
455 V UI = B UI | A UI
value

456a uid H: H → H UI
456b uid L: H → L UI
456c uid BC: H → BC UI
456d uid B: H → B UI
456e uid A: H → A UI

E.3.1.1 Extract Parts from Their Unique Identifiers

457. From the unique identifier of a part we can retrieve, ℘, the part having that identifier.

type
457 P = H | L | BC | B | A
value
457 ℘: H UI→H | L UI→L | BC UI→BC | B UI→B | A UI→A
457 ℘(ui) ≡ let p:(H|L|BC|B|A)•p∈ps∧uid P(p)=ui in p end

E.3.1.2 All Unique Identifiers of a Domain

We can calculate:

458. the set, huis, of unique hub identifiers;

459. the set, luis, of unique link identifiers;

460. the map, hluim, from unique hub identifiers to the set of unique link iidentifiers of the links
connected to the zero, one or more identified hubs,

461. the map, lhuim, from unique link identifiers to the set of unique hub iidentifiers of the two
hubs connected to the identified link;

462. the set, ruis, of all unique hub and link, i.e., road identifiers;

463. the set, bcuis, of unique bus company identifiers;

464. the set, buis, of unique bus identifiers;

465. the set, auis, of unique private automobile identifiers;

466. the set, vuis, of unique bus and automobile, i.e., vehicle identifiers;

467. the map, bcbuim, from unique bus company identifiers to the set of its unique bus identifiers;
and

468. the (bijective) map, bbcuibm, from unique bus identifiers to their unique bus company
identifiers.

176 CONTENTS

value
458 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}
459 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}
462 ruis:R UI-set ≡ huis∪luis
460 hluim:(H UI→m L UI-set) ≡
460 [h ui 7→luis|h ui:H UI,luis:L UI-set•h ui∈huis∧(,luis,)=mereo H(η(h ui))] [cf. Item 475]
461 lhuim:(L+UI→m H UI-set) ≡
461 [l ui 7→huis | h ui:L UI,huis:H UI-set • l ui∈luis ∧ (,huis,)=mereo L(η(l ui))] [cf. Item476]
463 bcuis:BC UI-set ≡ {uid BC(bc)|bc:BC•bc ∈ bcs}
464 buis:B UI-set ≡ ∪{uid B(b)|b:B•b ∈ bs}
465 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}
466 vuis:V UI-set ≡ buis ∪ auis
467 bcbuim:(BC UI→m B UI-set) ≡
467 [bc ui 7→ buis | bc ui:BC UI, bc:BC • bc∈bcs ∧ bc ui=uid BC(bc) ∧ (, ,buis)=mereo BC(bc)]
468 bbcuibm:(B UI→m BC UI) ≡
468 [b ui 7→ bc ui | b ui:B UI,bc ui:BC ui • bc ui=dombcbuim∧b ui∈bcbuim(bc ui)]

E.3.1.3 Uniqueness of Road Net Identifiers

We must express the following axioms:

469. All hub identifiers are distinct.

470. All link identifiers are distinct.

471. All bus company identifiers are distinct.

472. All bus identifiers are distinct.

473. All private automobile identifiers are distinct.

474. All part identifiers are distinct.

axiom
469 cardhs = cardhuis
470 card ls = card luis
471 card bcs = card bcuis
472 card bs = card buis
473 card as = card auis
474 card {huis∪luis∪bcuis∪buis∪auis}
474 = cardhuis+card luis+card bcuis+card buis+cardauis

E.3.2 Mereology

E.3.2.1 Mereology Types and Observers

475. The mereology of hubs is a pair: (i) the set of all bus and automobile identifiers4, and (ii)
the set of unique identifiers of the links that it is connected to and the set of all unique
identifiers of all vehicles (buses and private automobiles).5

476. The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii) the
set of the two distinct hubs they are connected to.

477. The mereology of a bus company is a set the unique identifiers of the buses operated by that
company.

E.3. INTERNAL QUALITIES 177

478. The mereology of a bus is a pair: (i) the set of the one single unique identifier of the bus
company it is operating for, and (ii) the unique identifiers of all links and hubs6.

479. The mereology of an automobile is the set of the unique identifiers of all links and hubs7.

type
475 H Mer = V UI-set×L UI-set
476 L Mer = V UI-set×H UI-set
477 BC Mer = B UI-set
478 B Mer = BC UI×R UI-set
479 A Mer = R UI-set
value
475 mereo H: H → H Mer
476 mereo L: L → L Mer
477 mereo BC: BC → BC Mer
478 mereo B: B → B Mer
479 mereo A: A → A Mer

E.3.2.2 Invariance of Mereologies

For mereologies one can usually express some invariants. Such invariants express “law-like proper-
ties”, facts which are indisputable.

E.3.2.2.1 Invariance of Road Nets The observed mereologies must express identifiers of the
state of such for road nets:

axiom
475 ∀ (vuis,luis):H Mer • luis⊆luis ∧ vuis=vuis
476 ∀ (vuis,huis):L Mer • vuis=vuis ∧ huis⊆huis ∧ cardhuis=2
477 ∀ buis:H Mer • buis = buis
478 ∀ (bc ui,ruis):H Mer•bc ui∈bcuis∧ruis=ruis
479 ∀ ruis:A Mer • ruis=ruis

480. For all hubs, h, and links, l, in the same road net,

481. if the hub h connects to link l then link l connects to hub h.

axiom
480 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls ⇒
480 let (,luis)=mereo H(h), (,huis)=mereo L(l)
481 in uid L(l)∈luis ≡ uid H(h)∈huis end

482. For all links, l, and hubs, ha, hb, in the same road net,

483. if the l connects to hubs ha and hb, then ha and hb both connects to link l.

axiom
482 ∀ h a,h b:H,l:L • {h a,h b} ⊆ hs ∧ l ∈ ls ⇒
482 let (,luis)=mereo H(h), (,huis)=mereo L(l)
483 in uid L(l)∈luis ≡ uid H(h)∈huis end

4This is just another way of saying that the meaning of hub mereologies involves the unique identifiers of all the
vehicles that might pass through the hub is of interest to it.

5The link identifiers designate the links, zero, one or more, that a hub is connected to is of interest to both
the hub and that these links is interested in the hub.

6— that the bus might pass through
7— that the automobile might pass through

178 CONTENTS

E.3.2.2.2 Possible Consequences of a Road Net Mereology

484. are there [isolated] units from which one can not “reach” other units ?

485. does the net consist of two or more “disjoint” nets ?

486. et cetera.

We leave it to the reader to narrate and formalise the above properly.

E.3.2.2.3 Fixed and Varying Mereology Let us consider a road net. If hubs and links never
change “affiliation”, that is: hubs are in fixed relation to zero one or more links, and links are in
a fixed relation to exactly two hubs then the mereology is a fixed mereology . f, on the other hand
hubs may be inserted into or removed from the net, and/or links may be removed from or inserted
between any two existing hubs, then the mereology is a varying mereology .

E.3.3 Attributes

E.3.3.1 Hub Attributes

We treat some attributes of the hubs of a road net.

487. There is a hub state. It is a set of pairs, (lf ,lt), of link identifiers, where these link identifiers
are in the mereology of the hub. The meaning of the hub state in which, e.g., (lf ,lt) is an
element, is that the hub is open, “green”, for traffic from link lf to link lt. If a hub state
is empty then the hub is closed, i.e., “red” for traffic from any connected links to any other
connected links.

488. There is a hub state space. It is a set of hub states. The current hub state must be in its
hub state space. The meaning of the hub state space is that its states are all those states
that the hub can attain.

489. Since we can think rationally about it, it can be described, hence we can model, as an
attribute of hubs, a history of its traffic: the recording, per unique bus and automobile
identifier, of the time ordered presence in the hub of these vehicles. Hub history is an event
history .

type
487 HΣ = (L UI×L UI)-set
axiom
487 ∀ h:H • obs HΣ(h) ∈ obs HΩ(h)
type
488 HΩ = HΣ-set
489 H Traffic
489 H Traffic = (A UI|B UI) →m (TIME × VPos)∗

axiom
489 ∀ ht:H Traffic,ui:(A UI|B UI) •

489 ui ∈ dom ht ⇒ time ordered(ht(ui))
value
487 attr HΣ: H → HΣ
488 attr HΩ: H → HΩ
489 attr H Traffic: H → H Traffic
value
489 time ordered: (TIME × VPos)∗ → Bool
489 time ordered(tvpl) ≡ ...

In Item 489 we model the time-ordered sequence of traffic as a discrete sampling, i.e., →m , rather
than as a continuous function, →.

E.3. INTERNAL QUALITIES 179

E.3.3.2 Invariance of Traffic States

490. The link identifiers of hub states must be in the set, luis, of the road net’s link identifiers.

axiom
490 ∀ h:H • h ∈ hs ⇒
490 let hσ = attr HΣ(h) in ∀ (luii,liuii

′):(L UI×L UI) • (luii,luii
′) ∈ hσ ⇒ {luii ,l′uii} ⊆ luis end

E.3.3.3 Link Attributes

We show just a few attributes.

491. There is a link state. It is a set of pairs, (hf ,ht), of distinct hub identifiers, where these hub
identifiers are in the mereology of the link. The meaning of a link state in which (hf ,ht) is
an element is that the link is open, “green”, for traffic from hub hf to hub ht. Link states
can have either 0, 1 or 2 elements.

492. There is a link state space. It is a set of link states. The meaning of the link state space is
that its states are all those the which the link can attain. The current link state must be
in its state space. If a link state space is empty then the link is (permanently) closed. If it
has one element then it is a one-way link. If a one-way link, l, is imminent on a hub whose
mereology designates that link, then the link is a “trap”, i.e., a “blind cul-de-sac”.

493. Since we can think rationally about it, it can be described, hence it can model, as an attribute
of links a history of its traffic: the recording, per unique bus and automobile identifier, of
the time ordered positions along the link (from one hub to the next) of these vehicles.

494. The hub identifiers of link states must be in the set, huis, of the road net’s hub identifiers.

type
491 LΣ = H UI-set
axiom
491 ∀ lσ:LΣ•card lσ=2
491 ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
type
492 LΩ = LΣ-set
493 L Traffic
493 L Traffic = (A UI|B UI) →m (T×(H UI×Frac×H UI))∗

493 Frac = Real, axiom frac:Fract • 0<frac<1
value
491 attr LΣ: L → LΣ
492 attr LΩ: L → LΩ
493 attr L Traffic: : → L Traffic
axiom
493 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht ⇒ time ordered(ht(ui))
494 ∀ l:L • l ∈ ls ⇒
494 let lσ = attr LΣ(l) in ∀ (huii,huii

′):(H UI×K UI) •

494 (huii,huii
′) ∈ lσ ⇒ {huii ,h′uii} ⊆ huis end

E.3.3.4 Bus Company Attributes

Bus companies operate a number of lines that service passenger transport along routes of the road
net. Each line being serviced by a number of buses.

180 CONTENTS

495. Bus companies create, maintain, revise and distribute [to the public (not modeled here), and
to buses] bus time tables, not further defined.

type
495 BusTimTbl
value
495 attr BusTimTbl: BC → BusTimTbl

There are two notions of time at play here: the indefinite “real” or “actual” time; and the definite
calendar, hour, minute and second time designation occurring in some textual form in, e.g., time
tables.

E.3.3.5 Bus Attributes

We show just a few attributes.

496. Buses run routes, according to their line number, ln:LN, in the

497. bus time table, btt:BusTimTbl obtained from their bus company, and and keep, as inert
attributes, their segment of that time table.

498. Buses occupy positions on the road net:

(a) either at a hub identified by some h ui,

(b) or on a link , some fraction, f:Fract, down an identified link, l ui , from one of its identified
connecting hubs, fh ui, in the direction of the other identified hub, th ui.

499. Et cetera.

type
496 LN
497 BusTimTbl
498 BPos == atHub | onLink
498a atHub :: h ui:H UI
498b onLink :: fh ui:H UI×l ui:L UI×frac:Fract×th ui:H UI
498b Fract = Real, axiom frac:Fract • 0<frac<1
499 ...
value
497 attr BusTimTbl: B → BusTimTbl
498 attr BPos: B → BPos

E.3.3.6 Private Automobile Attributes

We illustrate but a few attributes:

500. Automobiles have static number plate registration numbers.

501. Automobiles have dynamic positions on the road net:

[498a] either at a hub identified by some h ui,

[498b] or on a link , some fraction, frac:Fract down an identified link, l ui , from one of its
identified connecting hubs, fh ui, in the direction of the other identified hub, th ui.

E.3. INTERNAL QUALITIES 181

type
500 RegNo
501 APos == atHub | onLink
498a atHub :: h ui:H UI
498b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI
498b Fract = Real, axiom frac:Fract • 0<frac<1
value
500 attr RegNo: A → RegNo
501 attr APos: A → APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or
backward movement, turning right, left or going straight, etc. The acceleration, deceleration, even
velocity, or turning right, turning left, moving straight, or forward or backward are seen as command
actions. As such they denote actions by the automobile — such as pressing the accelerator, or
lifting accelerator pressure or braking , or turning the wheel in one direction or another, etc. As
actions they have a kind of counterpart in the velocity, the acceleration, etc. attributes. Observe
that bus companies each have their own distinct bus time table, and that these are modeled as
programmable, Item 495 on the facing page, page 180. Observe then that buses each have their
own distinct bus time table, and that these are model-led as inert, Item 497 on the preceding page,
page 180. In Items pp. 178 and pp. 179, we illustrated an aspect of domain analysis & description
that may seem, and at least some decades ago would have seemed, strange: namely that if we can
think, hence speak, about it, then we can model it “as a fact” in the domain. The case in point is
that we include among hub and link attributes their histories of the timed whereabouts of buses
and automobiles.8

E.3.3.7 Intentionality

502. Seen from the point of view of an automobile there is its own traffic history, A Hist, which
is a (time ordered) sequence of timed automobile’s positions;

503. seen from the point of view of a hub there is its own traffic history, H Traffic Item pp. 178,
which is a (time ordered) sequence of timed maps from automobile identities into automobile
positions; and

504. seen from the point of view of a link there is its own traffic history, L Traffic Item pp. 179,
which is a (time ordered) sequence of timed maps from automobile identities into automobile
positions.

The intentional “pull” of these manifestations is this:

505. The union, i.e. proper merge of all automobile traffic histories, AllATH, must now be identical
to the same proper merge of all hub, AllHTH, and all link traffic histories, AllLTH.

type
502 A Hi = (T × APos)∗

489 H Trf = A UI →m (TIME × APos)∗

493 L Trf = A UI→m (TIME×APos)∗

505 AllATH=TIME→m (AUI→m APos)
505 AllHTH=TIME→m (AUI→m APos)
505 AllLTH=TIME→m (AUI→m APos)
axiom
505 let allA=mrg AllATH({(a,attr A Hi(a))|a:A•a ∈ as}),

8In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so
strange: We now know, at least in principle, of technologies that can record approximations to the hub and link
traffic attributes.

182 CONTENTS

505 allH=mrg AllHTH({attr H Trf(h)|h:H•h ∈ hs}),
505 allL=mrg AllLTH({attr L Trf(l)|l:L•h ∈ ls}) in
505 allA = mrg HLT(allH,allL) end

We leave the definition of the four merge functions to the reader ! We endow each automobile
with its history of timed positions and each hub and link with their histories of timed automobile
positions. These histories are facts ! They are not something that is laboriously recorded, where
such recordings may be imprecise or cumbersome9. The facts are there, so we can (but may not
necessarily) talk about these histories as facts. It is in that sense that the purpose (‘transport’)
for which man let automobiles, hubs and link be made with their ‘transport’ intent are subject
to an intentional “pull”. It can be no other way: if automobiles “record” their history, then hubs and
links must together “record” identically the same history !.

Intentional Pull – General Transport: These are examples of human intents: they create roads
and automobiles with the intent of transport, they create houses with the intents of living, offices,
production, etc., and they create pipelines with the intent of oil or gas transport

E.4 Perdurants

In this section we transcendentally “morph” parts into behaviours. We analyse that notion and
its constituent notions of actors, channels and communication, actions and events.

The main transcendental deduction of this chapter is that of associating with each part a
behaviour. This section shows the details of that association. Perdurants are understood in terms
of a notion of state and a notion of time.

State Values versus State Variables: Item 452 on page 174 expresses the value of all parts of a
road transport system:

452. ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as.

506. We now introduce the set of variables, one for each part value of the domain being modeled.

506. { variable vp:(UoB|H|L|BC|B|A) | vp:(UoB|H|L|BC|B|A) • vp∈ps }

Buses and Bus Companies A bus company is like a “root” for its fleet of “sibling” buses. But a
bus company may cease to exist without the buses therefore necessarily also ceasing to exist. They
may continue to operate, probably illegally, without, possibly. a valid bus driving certificate. Or
they may be passed on to either private owners or to other bus companies. We use this example
as a reason for not endowing a “block structure” concept on behaviours.

E.4.1 Channels and Communication

E.4.1.1 Channel Message Types

We ascribe types to the messages offered on channels.

507. Hubs and links communicate, both ways, with one another, over channels, hl ch, whose
indexes are determined by their mereologies.

508. Hubs send one kind of messages, links another.

509. Bus companies offer timed bus time tables to buses, one way.

510. Buses and automobiles offer their current, timed positions to the road element, hub or link
they are on, one way.

9or thought technologically in-feasible – at least some decades ago!

E.4. PERDURANTS 183

type
508 H L Msg, L H Msg
507 HL Msg = H L Msg | L F Msg
509 BC B Msg = T × BusTimTbl
510 V R Msg = T × (BPos|APos)

E.4.1.2 Channel Declarations

511. This justifies the channel declaration which is calculated to be:

channel
511 { hl ch[h ui,l ui]:H L Msg
511 | h ui:H UI,l ui:L UI•i ∈ huis∧j ∈ lhuim(h ui) }
511 ∪
511 { hl ch[h ui,l ui]:L H Msg
511 | h ui:H UI,l ui:L UI•l ui ∈ luis∧i ∈ lhuim(l ui) }

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus
companies need communicate to all its buses, but not the buses of other bus companies. Buses of
a bus company need communicate to their bus company, but not to other bus companies.

512. This justifies the channel declaration which is calculated to be:

channel
512 { bc b ch[bc ui,b ui] | bc ui:BC UI, b ui:B UI
512 • bc ui ∈ bcuis ∧ b ui ∈ buis }: BC B Msg

We shall argue for vehicle to road element channels based on the mereologies of those parts.
Buses and automobiles need communicate to all hubs and all links.

513. This justifies the channel declaration which is calculated to be:

channel
513 { v r ch[v ui,r ui] | v ui:V UI,r ui:R UI
513 • v ui∈ vuis∧r ui∈ ruis }: V R Msg

E.4.2 Behaviours

E.4.2.1 Road Transport Behaviour Signatures

We first decide on names of behaviours. In the translation schemas we gave schematic names
to behaviours of the form MP . We now assign mnemonic names: from part names to names of
transcendentally interpreted behaviours and then we assign signatures to these behaviours.

Hub Behaviour Signature

514. hubhui
:

(a) there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

(b) then there are the programmable attributes;

(c) and finally there are the input/output channel references: first those allowing commu-
nication between hub and link behaviours,

(d) and then those allowing communication between hub and vehicle (bus and automobile)
behaviours.

184 CONTENTS

value
514 hubhui

:
514a h ui:H UI×(vuis,luis,):H Mer×HΩ
514b → (HΣ×H Traffic)
514c → in,out { h l ch[h ui,l ui] | l ui:L UI•l ui ∈ luis }
514d { ba r ch[h ui,v ui] | v ui:V UI•v ui∈vuis } Unit
514a pre: vuis = vuis ∧ luis = luis

Link Behaviour Signature

515. linklui
:

(a) there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

(b) then there are the programmable attributes;

(c) and finally there are the input/output channel references: first those allowing commu-
nication between hub and link behaviours,

(d) and then those allowing communication between link and vehicle (bus and automobile)
behaviours.

value
515 linklui

:
515a l ui:L UI×(vuis,huis,):L Mer×LΩ
515b → (LΣ×L Traffic)
515c → in,out { h l ch[h ui,l ui] | h ui:H UI:h ui ∈ huis }
515d { ba r ch[l ui,v ui] | v ui:(B UI|A UI)•v ui∈vuis } Unit
515a pre: vuis = vuis ∧ huis = huis

Bus Company Behaviour Signature

516. bus companybcui
:

(a) there is here just a “doublet” of arguments: unique identifier and mereology;

(b) then there is the one programmable attribute;

(c) and finally there are the input/output channel references allowing communication be-
tween the bus company and buses.

value
516 bus companybcui

:
516a bc ui:BC UI×(, ,buis):BC Mer
516b → BusTimTbl
516c in,out {bc b ch[bc ui,b ui]|b ui:B UI•b ui∈buis} Unit
516a pre: buis = buis ∧ huis = huis

Bus Behaviour Signature

517. busbui
:

(a) there is here just a “doublet” of arguments: unique identifier and mereology;

(b) then there are the programmable attributes;

(c) and finally there are the input/output channel references: first the input/output allow-
ing communication between the bus company and buses,

(d) and the input/output allowing communication between the bus and the hub and link
behaviours.

E.4. PERDURANTS 185

value
517 busbui

:
517a b ui:B UI×(bc ui, ,ruis):B Mer
517b → (LN × BTT × BPOS)
517c → out bc b ch[bc ui,b ui],
517d {ba r ch[r ui,b ui]|r ui:(H UI|L UI)•ui∈vuis} Unit
517a pre: ruis = ruis ∧ bc ui ∈ bcuis

Automobile Behaviour Signature

518. automobileaui
:

(a) there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

(b) then there is the one programmable attribute;

(c) and finally there are the input/output channel references allowing communication be-
tween the automobile and the hub and link behaviours.

value
518 automobileaui

:
518a a ui:A UI×(, ,ruis):A Mer×rn:RegNo
518b → apos:APos
518c in,out {ba r ch[a ui,r ui]|r ui:(H UI|L UI)•r ui∈ruis} Unit
518a pre: ruis = ruis ∧ a ui ∈ auis

E.4.2.2 Behaviour Definitions

We only illustrate automobile, hub and link behaviours.

E.4.2.2.1 Automobile Behaviour at a Hub We define the behaviours in a different order
than the treatment of their signatures. We “split” definition of the automobile behaviour into
the behaviour of automobiles when positioned at a hub, and into the behaviour automobiles when
positioned at on a link. In both cases the behaviours include the “idling” of the automobile, i.e.,
its “not moving”, standing still.

519. We abstract automobile behaviour at a Hub (hui).

520. The vehicle remains at that hub, “idling”,

521. informing the hub behaviour,

522. or, internally non-deterministically,

(a) moves onto a link, tli, whose “next” hub, identified by th ui, is obtained from the
mereology of the link identified by tl ui;

(b) informs the hub it is leaving and the link it is entering of its initial link position,

(c) whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning
(0) of that link,

523. or, again internally non-deterministically,

524. the vehicle “disappears — off the radar” !

186 CONTENTS

519 automobileaui
(a ui,({},(ruis,vuis),{}),rn)

519 (apos:atH(fl ui,h ui,tl ui)) ≡
520 (ba r ch[a ui,h ui] ! (record TIMEatH(fl ui,h ui,tl ui));
521 automobileaui

(a ui,({},(ruis,vuis),{}),rn)(apos))
522 ⌈⌉
522a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in
522a assert: fh ui=h ui ∧ ruis=ruis′

519 let onl = (tl ui,h ui,0,th ui) in
522b (ba r ch[a ui,h ui] ! (record TIMEonL(onl)) ‖
522b ba r ch[a ui,tl ui] ! (record TIMEonL(onl))) ;
522c automobileaui

(a ui,({},(ruis,vuis),{}),rn)
522c (onL(onl)) end end)
523 ⌈⌉
524 stop

E.4.2.2.2 Automobile Behaviour On a Link

525. We abstract automobile behaviour on a Link.

(a) Internally non-deterministically, either

i. the automobile remains, “idling”, i.e., not moving, on the link,

ii. however, first informing the link of its position,

(b) or

i. if if the automobile’s position on the link has not yet reached the hub, then

A. then the automobile moves an arbitrary small, positive Real-valued increment
along the link

B. informing the hub of this,

C. while resuming being an automobile ate the new position, or

ii. else,

A. while obtaining a “next link” from the mereology of the hub (where that next
link could very well be the same as the link the vehicle is about to leave),

B. the vehicle informs both the link and the imminent hub that it is now at that
hub, identified by th ui,

C. whereupon the vehicle resumes the vehicle behaviour positioned at that hub;

(c) or

(d) the vehicle “disappears — off the radar” !

525 automobileaui
(a ui,({},ruis,{}),rno)

525 (vp:onL(fh ui,l ui,f,th ui)) ≡
525(a)ii (ba r ch[thui,aui]!atH(lui,thui,nxt lui) ;
525(a)i automobileaui

(a ui,({},ruis,{}),rno)(vp))
525b ⌈⌉
525(b)i (if not yet at hub(f)
525(b)i then
525(b)iA (let incr = increment(f) in
519 let onl = (tl ui,h ui,incr,th ui) in
525(b)iB ba−r ch[l ui,a ui] ! onL(onl) ;
525(b)iC automobileaui

(a ui,({},ruis,{}),rno)
525(b)iC (onL(onl))
525(b)i end end)
525(b)ii else

E.4. PERDURANTS 187

525(b)iiA (let nxt lui:L UI•nxt lui ∈ mereo H(℘(th ui)) in
525(b)iiB ba r ch[thui,aui]!atH(l ui,th ui,nxt lui) ;
525(b)iiC automobileaui

(a ui,({},ruis,{}),rno)
525(b)iiC (atH(l ui,th ui,nxt lui)) end)
525(b)i end)
525c ⌈⌉
525d stop
525(b)iA increment: Fract → Fract

E.4.2.2.3 Hub Behaviour

526. The hub behaviour

(a) non-deterministically, externally offers

(b) to accept timed vehicle positions —

(c) which will be at the hub, from some vehicle, v ui.

(d) The timed vehicle hub position is appended to the front of that vehicle’s entry in the
hub’s traffic table;

(e) whereupon the hub proceeds as a hub behaviour with the updated hub traffic table.

(f) The hub behaviour offers to accept from any vehicle.

(g) A post condition expresses what is really a proof obligation: that the hub traffic, ht′

satisfies the axiom of the endurant hub traffic attribute Item pp. 178.

value
526 hubhui

(h ui,(,(luis,vuis)),hω)(hσ,ht) ≡
526a ⌈⌉⌊⌋
526b { let m = ba r ch[h ui,v ui] ? in
526c assert: m=(,atHub(,h ui,))
526d let ht′ = ht † [h ui 7→ 〈m〉̂ht(h ui)] in
526e hubhui

(h ui,(,(luis,vuis)),(hω))(hσ,ht′)
526f | v ui:V UI•v ui∈vuis end end }
526g post: ∀ v ui:V UI•v ui ∈ dom ht′⇒time ordered(ht′(v ui))

E.4.2.2.4 Link Behaviour

527. The link behaviour non-deterministically, externally offers

528. to accept timed vehicle positions —

529. which will be on the link, from some vehicle, v ui.

530. The timed vehicle link position is appended to the front of that vehicle’s entry in the link’s
traffic table;

531. whereupon the link proceeds as a link behaviour with the updated link traffic table.

532. The link behaviour offers to accept from any vehicle.

533. A post condition expresses what is really a proof obligation: that the link traffic, lt′ satisfies
the axiom of the endurant link traffic attribute Item pp. 179.

188 CONTENTS

527 linklui
(l ui,(,(huis,vuis),),lω)(lσ,lt) ≡

527 ⌈⌉⌊⌋
528 { let m = ba r ch[l ui,v ui] ? in
529 assert: m=(,onLink(,l ui, ,))
530 let lt′ = lt † [l ui 7→ 〈m〉̂lt(l ui)] in
531 linklui

(l ui,(huis,vuis),hω)(hσ,lt′)
532 | v ui:V UI•v ui∈vuis end end }
533 post: ∀ v ui:V UI•v ui ∈ dom lt′⇒time ordered(lt′(v ui))

E.5 System Initialisation

E.5.1 Initial States

value
hs:H-set ≡ ≡ obs sH(obs SH(obs RN(rts)))
ls:L-set ≡ ≡ obs sL(obs SL(obs RN(rts)))
bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

E.5.2 Initialisation

We are reaching the end of this domain modeling example. Behind us there are narratives and
formalisations. Based on these we now express the signature and the body of the definition of a
“system build and execute” function.

534. The system to be initialised is

(a) the parallel compositions (‖) of

(b) the distributed parallel composition (‖{...|...}) of all hub behaviours,

(c) the distributed parallel composition (‖{...|...}) of all link behaviours,

(d) the distributed parallel composition (‖{...|...}) of all bus company behaviours,

(e) the distributed parallel composition (‖{...|...}) of all bus behaviours, and

(f) the distributed parallel composition (‖{...|...}) of all automobile behaviours.

value
534 initial system: Unit → Unit
534 initial system() ≡
534b ‖ { hubhui

(h ui,me,hω)(htrf,hσ)
534b | h:H•h ∈ hs, h ui:H UI•h ui=uid H(h), me:HMetL•me=mereo H(h),
534b htrf:H Traffic•htrf=attr H Traffic H(h),
534b hω:HΩ•hω=attr HΩ(h), hσ:HΣ•hσ=attr HΣ(h)∧hσ ∈ hω }
534a ‖
534c ‖ { linklui

(l ui,me,lω)(ltrf,lσ)
534c l:L•l ∈ ls, l ui:L UI•l ui=uid L(l), me:LMet•me=mereo L(l),
534c ltrf:L Traffic•ltrf=attr L Traffic H(l),
534c lω:LΩ•lω=attr LΩ(l), lσ:LΣ•lσ=attr LΣ(l)∧lσ ∈ lω }
534a ‖
534d ‖ { bus companybcui

(bcui,me)(btt)
534d bc:BC•bc ∈ bcs, bc ui:BC UI•bc ui=uid BC(bc), me:BCMet•me=mereo BC(bc),
534d btt:BusTimTbl•btt=attr BusTimTbl(bc) }

E.5. SYSTEM INITIALISATION 189

534a ‖
534e ‖ { busbui

(b ui,me)(ln,btt,bpos)
534e b:B•b ∈ bs, b ui:B UI•b ui=uid B(b), me:BMet•me=mereo B(b), ln:LN:pln=attr LN(b),
534e btt:BusTimTbl•btt=attr BusTimTbl(b), bpos:BPos•bpos=attr BPos(b) }
534a ‖
534f ‖ { automobileaui

(a ui,me,rn)(apos)
534f a:A•a ∈ as, a ui:A UI•a ui=uid A(a), me:AMet•me=mereo A(a),
534f rn:RegNo•rno=attr RegNo(a), apos:APos•apos=attr APos(a) }

190 CONTENTS

Appendix F

Rail Systems

Contents

F.1 Endurants – Rail Nets and Trains . 192

F.1.1 External Qualities . 192

F.1.1.1 Rail Nets . 192

F.1.1.1.1 The Endurants . 192

F.1.1.1.2 All Net Units . 193

F.1.1.2 Trains . 193

F.1.1.2.1 The Endurants . 193

F.1.1.2.2 All Trains . 194

F.1.2 Internal Qualities . 194

F.1.2.1 Unique Identifiers . 194

F.1.2.1.1 Rail Units . 194

F.1.2.1.2 All Net Unit Unique Identifiers 194

F.1.2.1.3 Trains . 194

F.1.2.1.4 Retrieve Net Units 195

F.1.2.2 Mereology . 195

F.1.2.2.1 Rail Units . 195

F.1.2.2.2 Well-formed Mereologies 196

F.1.2.2.3 Trains . 196

F.1.2.2.4 Routes . 196

F.1.2.2.4.1 Route Types 196

F.1.2.2.4.2 Initial Routes 197

F.1.2.2.4.3 Next Route Elements 197

F.1.2.2.4.4 Previous Route Elements 197

F.1.2.2.4.5 All Routes . 198

F.1.2.2.4.6 Isolated Rail Net Units 198

F.1.2.2.4.7 A Delineation: Train Stations 198

F.1.2.2.4.8 All Stations of a Railway System 199

F.1.2.2.4.9 Rail Lines . 199

F.1.2.3 Attributes . 200

F.1.2.3.1 Rail Nets . 200

F.1.2.3.2 Open Routes . 202

F.1.2.3.3 Station Names . 202

F.1.2.3.4 Trains . 202

F.1.2.3.5 An Intentional Pull 203

191

192 CONTENTS

F.1.2.3.6 History Attributes . 203

F.1.2.3.7 The Intentional Pull Revisited 204

F.2 Transcendental Deduction . 204

F.2.1 General . 204

F.2.2 A Note on TIME . 205

F.2.3 Train Traffic . 205

F.2.3.1 Well-formed Train Traffics . 205

F.3 Perdurants . 206

F.3.1 Channels . 207

F.3.2 Behaviour Signatures . 207

F.3.3 Behaviour Definitions . 208

F.3.3.1 Rail Unit Behaviours . 208

F.3.3.2 Train Behaviour . 208

F.4 Closing . 209

This model evolved over many years. A first, beautiful model was developed in 1993 by the late
Søren Prehn1. Over the years variations of this model went into several papers [20, 22–25, 69,
75, 76, 149, 150, 176]. We refer to Railways – a compendium imm.dtu.dk/~dibj/train-book.pdf.
The current model is a complete rewrite of earlier models. These earlier models were not based on
the endurant/perdurant, the atomic/compound [set and composite] externalities and the unique
identifier, mereology and attribute paradigms. The present model is.

The example is quite extensive. Anything smaller really makes no sense: does not bring across
the issues of what it takes to describe a domain nor the scale of domain descriptions.

The example is that of a railway system’s net of rail units and trains.

F.1 Endurants – Rail Nets and Trains

F.1.1 External Qualities

F.1.1.1 Rail Nets

F.1.1.1.1 The Endurants

535. The example is that of a railway system.

536. We focus on the railway net [and, later, trains]. They can be observed from the railway
system.

537. The railway net embodies a set of [railway] net units.

538. A net unit is either a straight or curved linear unit, or a simple switch, i.e., a turnout, unit2

or a simple cross-over, i.e., a rigid crossing unit, or a single switched cross-over, i.e., a single
slip unit, or a double switched cross-over, i.e., a double slip unit, or a terminal unit.

We refer to Figure F.1 on the next page.

type
535. RS
536. RN
value

1Søren Prehn was a brilliant student of mine 1975–1980. He became a leading member of Dansk Datamatik
Center [70], and later the CR company in Denmark, from 1980 onward. He spent a 2 year sabbatical from CR with
me at the UNU/IIST, the United Nations International Institute for Software Technology in Macau, 1992–1994. Sadly
he passed away in the spring of 2006.

2https://en.wikipedia.org/wiki/Railroad switch

F.1. ENDURANTS – RAIL NETS AND TRAINS 193

[L]

Track / Line / Segment

/ Switch Unit

Switchable Crossover

Connectors − in−between are Units

Simple Crossover Unit

/ Linear
Turnout /

/ Rigid Crossing Unit / Double Slip

Unit
Point

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

[R]

Figure F.1: Left: Four net units; Right: A railway net

536. obs RN: RS → RN
type
537. NUs = NU-set
537. NU = LU | PU | RU | SU | DU | TU
value
538. obs NUs: RN → NU-set

F.1.1.1.2 All Net Units

539. From a railway system net one can observe, i.e., extract, all the rail net units.

540. We let rs denote the value of of an arbitrary chosen railway system,

541. and we let nus denote the value of the set of all railway units.

value
539. xtr NUs: RS → NU-set
539. xtr NUs(rs) ≡ obs NUs(obs RN(rs))

540. rs:RS
541. nus = obs NUs(rs)

F.1.1.2 Trains

F.1.1.2.1 The Endurants

542. We shall, simplifying, consider trains as atomic parts.

543. From a railway system one can observe a finite, let us decide, non-empty set of trains.

type
542. Train
543. TS = Train-set
value
543. obs TS: RS → TS
axiom
543. ∀ rs:RS • obs TS(rs)6={}

194 CONTENTS

F.1.1.2.2 All Trains

544. We let trains denote the value of the set of all trains.

value
544. trains = { t | t:Train • obs TS(rs) }

F.1.2 Internal Qualities

F.1.2.1 Unique Identifiers

F.1.2.1.1 Rail Units

545. With every rail net unit we associate a unique identifier.

546. That is, no two rail net units have the same unique identifier.

type
545. UI
value
545. uid NU: NU → UI
axiom
546. ∀ ui i,ui j:UI • ui i = ui j ≡ uid NU(ui i)=uid NU(ui j)

F.1.2.1.2 All Net Unit Unique Identifiers

547. From a railway system net one can observe, i.e., extract, the set of all the unique rail unit
identifiers of all the rail net units.

548. We let uis denote the set of all railway units of the arbitrarily chosen railway system cum
railway net.

value
547. xtr UIs: RS → UI-set
547. xtr UIs(rs) ≡ { uid NU(nu) | nu:NU • nu ∈ obs NUs(obs RN(rs)) }
548. uis = xtr UIs(rs)

F.1.2.1.3 Trains

549. Trains have unique identifiers.

550. We let tris denote the set of all train identifiers.

551. No two distinct trains have the same unique identifier.

552. Train identifiers are distinct from rail net unit identifiers.

type
549. TI
value
549. uid Train: Train → TI
550. tris = { uid Train(t) | t:Train • t ∈ trains }
axiom
551. either: card trains = card tris
551. or: ∀ rs:RS •

551. ∀ train a,train b:Train • {train a,train b}⊆obs TS(rs) ⇒
551. train a 6=train b ⇒ uid Train(train a)6=uid Train(train b)
552. uis ∩ tris = {}

F.1. ENDURANTS – RAIL NETS AND TRAINS 195

F.1.2.1.4 Retrieve Net Units

553. Given a net unit unique identifier and a railway net one can retrieve the net unit with that
identifier.

value

553. retr NU: UI → RS
∼→ NU

553. retr NU(ui)(rs) ≡ let nu:NU • nu ∈ xtr NUs(rs) ∧ uid NU(nu)=ui in nu end
553. pre: ui ∈ xtr UIs(rs)

F.1.2.2 Mereology

F.1.2.2.1 Rail Units The mereology of a rail net unit expresses its topological relation to other
rail net units and trains.

554. Every rail unit is conceptually related to every train.

555. A linear rail unit is connected to exactly two distinct other rail net units of any given rail
net.

556. A point unit is connected to exactly three distinct other rail net units of any given rail net.

557. A rigid crossing unit is connected to exactly four distinct other rail net units of any given
rail net.

558. A single and a double slip unit is connected to exactly four distinct other rail net units of
any given rail net.

559. A terminal unit is connected to exactly one distinct other rail net unit of any given rail net.

560. So we model the mereology of a railway net unit as a pair of sets of rail net unit unique
identifiers distinct from that of the rail net unit.

561. Trains can run on every rail unit of any rail system.

ui

ui
ui ui

({ux,uy},{ua})

({ua},{ux,uy})
({ux},{ua})
({ua},{ux})

({ux,uy},{ua,ub})
({ua,ub},{ux,uy})

({ux,uy},{ua,ub})
({ua,ub},{ux,uy})

uy

ux

ua

uxua

ua

ub

ux

uy

ua

ub

ux

uy

Linear Point

Rigid
Crossinng

Double
Slip

Figure F.2: Four Symmetric Mereologies

type
560. Unit Mereo = (UI-set×UI-set) × TI-set
value
560. mereo NU: NU → Unit Mereo
axiom
560. ∀ nu:NU •

560. let ((uis i,uis o),tris)=mereo NU(nu) in
554. tris = tris ∧
560. case (card uis i,card usi o) =
555. (is LU(nu) → (1,1),

196 CONTENTS

556. is PU(nu) → (1,2) ∨ (2,1),
557. is RU(nu) → (2,2),
558. is SU(nu) → (2,2), is DU(nu) → (2,2),
559. is TU(nu) → (1,0) ∨ (0,1),
560. → chaos) end
560. ∧ uis i∩uis o={}
560. ∧ uid NU(nu) 6∈ (uis i ∪ uis o)
560. end

F.1.2.2.2 Well-formed Mereologies

562. The unique identifiers of any rail unit mereology of a rail net must be of rail units of that
net and

563. the set of train identifiers of any rail unit mereology of a rail net must be the set of all train
identifiers of that railway system.

value
562. wf Mereology: RS → Bool
562. wf Mereology(rs) ≡
562. let (nus,uis) = (xtr NUs,xtr UIs)(rs) in
562. ∀ nu:NU • nu ∈ nus •

562. let ui = uid NU(nu), ((iuis,ouis),tris) = mereo NU(nu) in
562. ui 6∈ iuis∪ ouis∧ iuis∩ ouis={}∧ iuis∪ ouis⊆ uis
563. ∧ tris= tris
562. end end

F.1.2.2.3 Trains

564. Trains can run on every rail unit of any rail system.

We omit consideration of trains communicating with other trains as well as with net management.
We leave such “completions” to the reader.

type
564. Train Mereo = UI-set
value
564. mereo Train Mereo: Train → Train Mereo
axiom
564. ∀ rs:RS • ∀ train:Train
564. ∀ train:Train • train ∈ obs TS(rs) ⇒ mereo Train Mereo(train)=retr UIs(rs)

F.1.2.2.4 Routes We decompose the analysis into several preparatory steps.

F.1.2.2.4.1 Route Types

565. A route is a finite or infinite sequence of one or more route elements.

566. A route element is a [route] triple of three distinct net unit identifiers, the net unit identifier
of an immediately preceding rail unit, the net unit identifier of the present rail unit, the net
unit identifier of an immediately succeeding rail unit, irrespective of whether the preceding
and succeeding units are actually in the route as analysed.

F.1. ENDURANTS – RAIL NETS AND TRAINS 197

type
565. R = TUIω

566. TUI = UI×UI×UI
axiom
566. ∀ (pui,ui,sui):TUI • card{pui,ui,sui}=3
565. ∀ r:R • ∀ i:Nat • {i,i+1}⊆inds r ⇒
565. let (pui,ui,sui)=r[i], (pui′,ui′,sui′)=r[i+1] in
565. sui = pui′ ∧ ui 6=ui′ ∧ pui 6= ... end

F.1.2.2.4.2 Initial Routes

567. We define an auxiliary function which, for any given railway system, calculates the finite set
of all its initial routes – where an initial route is a one element route triplet of a non-terminal
net unit.

value
567. initial routes: RS → R-set
567. initial routes(rs) ≡
567. let (nus,uis) = (retr NUs,retr UIs)(rs) in
567. { 〈(pui,ui,sui)〉, 〈(sui,ui,pui)〉
567. | nu:NU • nu ∈ nus ∧ ∼is TU(nu) ∧
567. let (ui,(puis,suis)) = (uid NU,mereo NU)(nu) in
567. pui ∈ puis ∧ sui ∈ suis end }
567. assert: [there are up to eight triplets in the above set]
567. end

F.1.2.2.4.3 Next Route Elements

568. Give a route element, i.e., a triplet (pui,ui,sui), one can calculate the set of one or two next
route triplet designating the net unit with identifier sui.

value
568. next route elements: TUI → RS → R-set
568. next route elements(,ui,sui)(rs) ≡
568. let (puis ∪ {ui},suis) = mereo NU(retr NU(sui)(rs)) in
568. { 〈(pui,uid NU(retr NU(sui)(rs)),sui′)〉 | pui:UI•pui∈puis∧sui′∈suis }
568. assert: [there are either one or two triplets in the set above.]
568. end

F.1.2.2.4.4 Previous Route Elements

569. Give a route element, i.e., a triplet (pui,ui,sui), one can calculate the set of one or two previous
route triplet designating the net unit with identifier sui.

value
569. previous route elements: TUI → RS → R-set
569. previous route elements(pui,ui,)(rs) ≡
569. let (puis,suis ∪ {ui}) = mereo NU(retr NU(pui)(rs)) in
569. { 〈(pui′,uid NU(retr NU(pui)(rs)),pui)〉 | pui′ ∈ puis ∪ suis }
569. assert: [there are either one or two triplets in the set above]
569. end

198 CONTENTS

F.1.2.2.4.5 All Routes

570. A route is a finite or infinite sequence of triplets.

571. The analysis function routes calculates a potentially infinite set of routes.

572. The set rs is recursively defined.
It is the smallest set, i.e., fix-point, satisfying the equation.
rs is initialised, i.e., the base step, with the set of initial routes of the railway system.

573. The induction step (573–576) ”adds”

574. next, nr, and

575. previous, pr, triplets

576. to an arbitrarily selected route (so far calculated).

577. The pr̂udr̂nr element of formula line 573 need not be included as it will be calculated in
some subsequent recursion.

value
571. routes: RS → R-infset
571. routes(rs) ≡
572. let all routes = irs ∪
573. { udr̂nr, pr̂udr, pr̂udr̂nr
574. | nr ∈ next route elements(udr[len udr])(rs) ∧
575. pr ∈ previous route elements(udr[1])(rs) ∧
576. udr:R • udr ∈ all routes } end

F.1.2.2.4.6 Isolated Rail Net Units We wish to analyse a rail net for the following property:
can one reach every rail unit from any given rail unit ? The analysis function isolated decides on
that !

578. Given two distinct net unit identifiers, ui′ and ui′′, of a railway net, ui′′ is isolated from ui′

if there is no route in the railway net from ui′ to ui′′.

value
578. isolated: UI × UI → RS → Bool
578. isolated(uif,uit)(rs) ≡
578. let all routes = routes(rs) in
578. ∼∃ r:Route•r∈all routes⇒∃ i,j:Nat•{i,j}⊆inds r∧i<j∧r(i)=(,uif,)∧r(j)=(,uit,) end
578. pre {uif,uit}⊆xtr UIs(rs)

F.1.2.2.4.7 A Delineation: Train Stations In preparation for our later introduction of a notion
of trains we shall attempt to delineate a notion of train station. By a train station we shall
understand a largest set of connected rail units all designated as being in that station.

579. We shall therefore, presently, introduce a predicate: in station that applies to a rail unit and
yields true if it is a designated train station, false otherwise.

580. Based on a rail unit, nu, that satisfies in station, i.e., in station(nu) and on the mereology
of stations, i.e., the connected rail units, beginning with nu, we define an analysis function
which calculates the “full” station from nu.

F.1. ENDURANTS – RAIL NETS AND TRAINS 199

581. Finally we define an analysis function station which, given a station rail unit calculates the
largest set of rail units belonging to the same station.

type
581. Station = NU-set
value
579. in station: NU → Bool
axiom
581. ∀ st:Station, ∀ nu:NU•nu ∈ st ⇒ in station(nu)
value
580. station: NU → RS → NU-set
580. station(inu)(rs) ≡
580. let st = {inu} ∪
580. { nu |
580. stnu:NU • stnu ∈ st ∧
580. let (iuis,ouis) = mereo NU(stnu) in
580. let cnus = { get NU(ui)(rs) | ui:UI • ui ∈ iuis ∪ ouis } in
580. nu ∈ cnus ∧ in station(nu) end end }
580. in st end
580. pre: in station(nu)

How we may determine whether a rail unit is a station is left undefined. That is, we refrain from
any (speculation) as to whether stations can be characterised by certain topological features of
rail unit connections.

F.1.2.2.4.8 All Stations of a Railway System

582. We define an analysis function, all stations, which calculates, from a railway system its set
of two or more stations.

583. We calculate, snus, the set of all station rail units.

584. For each of these we calculate the station to which these station rail units belong.

value
582. all stations: RS → Station-set
582. all stations(rs) ≡
583. let snus = { nu | nu:NU • nu ∈ xtr NUs(rs) ∧ in station(nu) } in
584. { station(nu)(rs) | nu:NU • nu ∈ snus } end
axiom
582. card all stations(rs) ≥ 2

Two or more rail units, nu, of line 584 may calculate the same station.

F.1.2.2.4.9 Rail Lines

585. By a trail line we mean a route that connects two neighbouring stations.

586. is connected stations: Given two stations it may be that there are no routes connecting them.

587. connecting line: We can calculate a line, ln, that does connect two connected stations.

Given two stations that are connected there will be a number of rail units in both stations
that can serve as end points of their connecting rail line. We would then say that these
end point rail units designate respective station platforms from and to where trains depart,
respectively arrive.

200 CONTENTS

588. is immediately connecting line: We can inquire as to whether there is an immediately con-
necting line between two given stations of a railway system.

type
585. LN = R
axiom
585. ∀ rs:RS • ∀ ln:LN • ln ∈ routes(rs) ⇒
585. let (,1ui,) = hd ln, (,nui,) = ln[len ln] in
585. let 1nu = get NU(1ui)(rs), nnu = get NU(nnu)(rs) in
585. in station(1nu) ∧ in station(nni) end end
value
586. is connected stations: Station × Station → RS → Bool
586. is connected stations(fs,ts)(rs) ≡
586. let all routes = routes(rs) in
586. ∃ ln:R • ln ∈ all routes •

585. let (,1ui,) = hd ln, (,nui,) = ln[len ln] in
585. let 1nu = get NU(1ui)(rs), nnu = get NU(nnu)(rs) in
585. fs = 1nu ∧ ts = nnu end end
586. end
586. pre: {fs,ts}⊆all stations(rs)

587. connecting line: Station × Station → RS → LN
587. connecting line(fs,ts)(rs) ≡
586. let all routes = routes(rs) in
587. let ln:R • ln ∈ all routes •

585. let (,1ui,) = hd ln, (,nui,) = ln[len ln] in
585. let 1nu = get NU(1ui)(rs), nnu = get NU(nnu)(rs) in
585. fs = 1nu ∧ ts = nnu end end
587. ln end end
587. pre: is connected stations(fs,ts)(rs)

588. is immediately connecting line: Station × Station → RS → Bool
588. is immediately connecting line(fs,ts)(rs) ≡
588. let ln = connecting line(fs,ts)(rs) in
588. ∀ (,ui,):TUI • (,ui,) ∈ inds ln ⇒
588. let s = get RU(ui)(rs) in
588. s ∈ fs ∪ ts ∨ ∼in station(s) end end
588. pre: is connected stations(fs,ts)(rs)

We leave it to the reader to define analysis functions that yield the set of all [immediately] con-
necting lines between two stations of a railway system.

F.1.2.3 Attributes

Attributes are either static, or monitorable, or programmable.

F.1.2.3.1 Rail Nets We treat attributes of rail units.

589. A rail unit is either in a station or is not, STA.

590. A rail unit is in some state – where a state is a possibly empty set of pairs of unique identifiers
of connected rail units – with these being in respective set of the pair of sets making up the
mereology of the rail unit, PRG.

Figure F.3 shows the twelve possible state of a point.

F.1. ENDURANTS – RAIL NETS AND TRAINS 201

 unlocked point blades

Closed

Figure F.3: The 12 Possible States of a Turnout Point

If a switch in unlocked, a train coming from either of the converging directs will pass through
the points onto the narrow end, regardless of the position of the points, as the vehicle’s
wheels will force the points to move. Passage through a switch in this direction is known as
a trailing-point movement.

axiom
∀ pu:PU • pu ∈ xtr NUs(ps) ⇒ let ({i},{o1,o2})=mereo RU(pu), ω=attr RUΩ(pu) in
ω = {{}, {{(i,o1)}}, {(o1,i)}, {{(i,o1),(o1,i)}},

{{(i,o2)}}, {(o2,i)}, {(i,o2),(o2,i)}, {(i,o2),(o2,i),(o1,i)},
{{(i,o1),(o1,i),(o2,i)}}, {{(i,o2),(o2,i),(o1,i)}}, {{(i,o1),(o2,i)}}, {{(i,o2),(o2,i)}}}

end

591. A rail unit has a state space – consisting of all the states that a rail unit may attain, STA.

592. A point or a slip is either un-locked or locked, that is, its blades can be pressed to move, or
cannot.

593. A rail unit has a length, STA.

594. A rail unit is either occupied by (a section of) an identified train or is not, PRG.

595. Et cetera.

type
589. RU In St = Bool static
590. RUΣ = (UI×UI)-set programmable
591. RUΩ = RΣ-set static
591. Lock Status = ′′un-locked′′ | ′′locked′′ programmable

593. RU Len static

594. RU Train == TI | `̀nil′′ programmable

595. ...
value
589. attr RU In st: RU → RU In St
590. attr RUΣ: RU → RUΣ
591. attr RUΩ: RU → RUΩ
591. attr (PU|RU|SU|DU) Lock Status: (PU|RU|SU|DU)→Lock Status
593. attr RU Len: RU → RU Len
594. attr Train: RU → RU Train
axiom

202 CONTENTS

590. ∀ rs:RS,ru:RU • ru∈retr NUs(rs) ⇒
590. let uis = retr UIs(rs), (iuis,ouis) = mereo RU(ru), σ = attr Σ(ru) in
590. ∀ (iui,oui):(UI×UI) • (iui,oui)∈σ ⇒ iui∈iuis∧oui∈ouis∧{iui,oui}⊆uis
591. ∧ σ ∈ attr Ω(ru) end
594. ∧ (attr Train(ru) ∈ tris ∨ attr Train(ru) = `̀nil

′′)
595. ...

For any given switch the state space may be a proper subset of the set of all possible states.

F.1.2.3.2 Open Routes

596. A route is said to be open if all pairs of the first and last element of route triplets are in the
current state of the rail unit designated by the second element of these route triplets.

value
596. is open route: R → RS → Bool
596. is open route(r)(rs)
596. ∀ (iu,ui,ou):TUI • (iu,ui,ou) ∈ elems r ⇒
596. let ru = get RU(ui)(rs) in let σ = attr RUΣ(ru) in (iu,ou) ∈ σ end end
596. pre: r ∈ routes(rs)

F.1.2.3.3 Station Names

597. All rail units of a station has the same station name.

598. No two distinct stations have the same name.

value
598. station name: Station → Station Name
598. station name(st) ≡ let ru:RU • ru ∈ st in attr Name(ru) end
axiom
597. ∀ rs:RS • let rn = obs RN(rs) in
597. ∀ st,st′:Station • {st,st′}⊆stations(rn) ⇒
597. ∀ ru,ru′:RU • {ru,ru′}⊆ ∈ st ⇒ attr Name(ru) = attr Name(ru′)
598. st 6=st′ ⇒ station name(st)6=station name(st′)
598. end

F.1.2.3.4 Trains

599. Trains have length with those of a given name having not necessarily the same length.

600. Trains [are expected to] follow a route, Train Route, and to be, at any time, at a Train Posi-
tion.
A Train Route is a sequence of zero, one or more timed triplets, TUIT, of rail unit identifiers.
A Train Position is a train attribute. It consists of three elements. Two train routes, ptr
(past train route) and ntr (next train route), and a [current] timed triplet, TUIT, of rail unit
identifiers. The meaning of a Train Position is that the train has passed the past route, is at
the current timed triplet, and can next enter the next route.

601. No two distinct trains occupy overlapping routes on the net.

602. Trains have a speed and acceleration (or deceleration).

603. ...

F.1. ENDURANTS – RAIL NETS AND TRAINS 203

type
599. Train Length static

600. TUIT = TUI×TIME

600. Train Route = TUIT∗

600. Train Position = ptr:Train Route × TUIT × ntr:Train Route programmable
602. Train Speed, Train Acceleration, Train Deceleration monitorable

603. ...
value
599. attr Train Length: Train → Train Length
600. attr Train Position: Train → Train Position
602. attr Train Speed: Train → Train Speed
602. attr Train Acceleration: Train → Train Acceleration
602. attr Train Deceleration: Train → Train Deceleration
603. ...
axiom
600. ∀ rs:RS •

600. ∀ tr,tr′:Train • {tr,tr′} ⊆ obs TS(rs) ∧ tr 6= tr′

600. ⇒ is open route(attr Train Position(train))(rs)
600. ∧ let (trp,trp′) = attr Train Position(tr,tr′) in
600. {rui|(,(rui,),):TTUIT•(,(rui,),) ∈ elemens trr}
600. ∩
600. {rui|(,(rui′,),):TUI•(,(rui′,),) ∈ elemens trr′} = {}
600. end

F.1.2.3.5 An Intentional Pull

604. For every railway system it is the case that

605. for every rail unit in that system which “records”, as an attribute, a train, there is exactly
one train that in its route position records exactly that rail unit,

606. and vice versa.

axiom
604. ∀ rs:RS •

605. ∀ ru:RU • ru ∈ retr NUs(rs) ⇒
605. if attr RU Train(ru) 6= `̀nil

′′ ⇒
605. ∃! tr:Train • tr ∈ trains(rs) ∧
605. uid NU(ru) ∈ {ui|(,ui,):TUI • (,ui,) ∈ elems attr Train Position(tr)}
604. ∧
606. ∀ tr:Train • tr ∈ trains(rs) ⇒
606. ∀ (,ui,):TUI • (,ui,) ∈ elems attr Train Position(tr) ⇒
606. attr RU Train(get NU(ui)(rs)) = uid Train(tr)
604. end

F.1.2.3.6 History Attributes The attributes and axioms over them – covered above do not
relate to time; they are time-independent. We now treat time-dependent attributes and axioms
over them. By TIME we mean absolute times, like March 12, 2024: 10:48 am, and by TI we man
time intervals, like two hours, three minutes and five seconds. We shall here consider TIME to
span a definite “period” of time, say from January 1, 2020, 00:00am to December 31, 2020, 24:00.

607. Of a road unit we can speak of its history as a time-decreasing, ordered sequence of time-
stamped train identifiers.

204 CONTENTS

608. Of a train we can speak of its history as a time-decreasing, ordered sequence of time-stamped
rail unit identifiers.

We could have considered other properties to form or be included in event histories, but abstain.

type
607. RU Hist = (TIME × TI)∗ programmable

608. TR Hist = (TIME × UI)∗ programmable

value
607. attr RU Hist: RU → RU Hist
608. attr TR Hist: Train → TR Hist
axiom
607. [descending times in rail unit history]
608. [descending times in train history]

F.1.2.3.7 The Intentional Pull Revisited

609. For every railway system it is the case that

610. for every rail unit,

611. if at any time it records a train,

612. then that train’s event history records that rail unit in the route it is occupying at that time,
and

613. for every train, if at any time it records a route

614. then exactly the rail units of that route record that train.

... below function has to be redefined ...

axiom
609. ∀ rs:RS •

610. ∀ ru:RU • ru ∈ retr NUs(rs) ⇒
610. let ruh = attr RU Hist(ru) in
611. ∀ time:dom ruh • ruh(time) 6= {} ⇒
612. let {ti} = ruh(time) in
612. let trh = attr TR Hist(get Train(ti)(rs)) in
612. trh(time) 6= {} ∧
612. let {r} = trh(time) in
612. ∃ (,ui,):TUI • (,ui,) ∈ elems(r) ⇒ ruh = get RU(ui)(rs)
612. end end end end
613. et cetera
614. et cetera

F.2 Transcendental Deduction

F.2.1 General

By a transcendental deduction parts can be “morphed” into behaviours. We consider the following
railway system parts:

• all the railway net units and

• all the trains.

That is, we shall not here consider the railway net management, the train operator, the passenger
and [freight] shipper parts as behaviours.

F.2. TRANSCENDENTAL DEDUCTION 205

F.2.2 A Note on TIME

615. We shall consider TIME to stand for a time in a definite interval of times, for example from
January 1, 2020, 00:00 am to December 31, 2020, 23:59:59.

616. That is, TIME-interval, is the set of all the designated times in the interval.

617. The operators F [irst] and L[ast] applied to the TIME-interval interval yields the first and
last times of the interval TIME-interval.

618. We shall introduce a time interval quantity, δτ :TI – and shall consider δτ to be, if not
infinitesimal small, then at least “small”, say, in the context of train traffic, 1 second !

619. We shall, loosely, introduce the operator D, applied to the interval TIMEinterval, to yield
the definite set of times such that if τ is in TIME-interval and τ is not L(TIME-interval)then
the next time in TIMEinterval is τ+δτ .

type
615. TIME

616. TIME−interval
617. F : TIME−interval → TIME

617. L: TIME−interval → TIME

value
618. δτ :TI [say 1 second]
619. D: TIME−interval → TIME-set

F.2.3 Train Traffic

620. By train traffic we shall understand a discrete function, in RSL [100] expressed as a map,
over a closed interval of time from time to trains and their route position.

We model this as shown in formula line 620.

Here we have taken the liberty of modeling the traffic as being discrete over infinitesimal
small time intervals δτ .

type
620. TrainTraffic = TI →m (TIME →m R)

F.2.3.1 Well-formed Train Traffics

621. For every railway system a train traffic is well-formed

(a) if all trains cover the same time period;

(b) if all train traffics occur on routes of the railway system;

(c) if two or more trains do not have overlapping routes at any time; and

(d) if each train traffic progresses monotonically.

axiom
621. ∀ rs:RS •

621. ∀ trtr:TrainTraffic •

621a. same time period(trtr)
621b. ∧ routes of rs(trtr)(rs)
621c. ∧ disjoint routes(trtr)(rs)
621d. ∧ monotonic(trtr)(rs)

206 CONTENTS

621a. same time period: TrainTraffic → Bool
621a. same time period(trtr) ≡ ∀ time,time′:TIME • DOMAIN(time)=DOMAIN(time′)

value
621b. routes of rs: TrainTraffic → RS → Bool
621b. routes of rs(trtr)(rs)
621b. ∀ ti:TI • ti ∈ dom trtr ⇒
621b. ∀ time:TIME • time ∈ dom ti
621b. route of((trtr(ti))(time))(rs)
621b. route of: R → RS → Bool
621b. route of(r)(rs) ≡ r ∈ routes(rs)

value
621c. disjoint routes: TrainTraffic → RS → Bool
621c. disjoint routes(trtr)(rs) ≡
621c. ∀ ti,ti′:TI • {ti,ti′}≤=dom trtr ∧ ti 6=ti′ ⇒
621c. ∀ time:TIME • time ∈ dom ti ⇒
621c. disjoint routes((trtr(ti))(time),(trtr(ti′))(time))
621c. disjoint routes: R × R → Bool
621c. disjoint routes(r,r′) ≡
621c. {ui|(,ui,):TUI•(,ui,)∈ elems r}∩{ui|(,ui,):TUI•(,ui,)∈ elems r′} = {}

For a traffic to be monotonic it must be the case that

622. for all trains

623. for two “closely adjacent” times in the domain of that train’s traffic

624. the route positions, r, r′ of any train (at these times) must

625. either be the same. i.e. r = r′,

626. or truncated by at most the first element, i.e. r′=tl r (being a route of the system),

627. or amended by at most one element, i.e., r′=r̂〈tui〉 (being a route of the system),

628. or both, i.e., r′=tl r̂〈tui〉 (being a route of the system).

value
621d. monotonic: TrainTraffic → RS → Bool
621d. monotonic(trtr)(rs) ≡
623. ∀ ti:TI • ti ∈ dom trtr ⇒ in
623. ∀ time,time′:TIME •

623. {time,time′} ⊆ DOMAIN(trtr(ti))
623. time′>time ∧ time′−time=δτ ∧
624. let (r,r′) = ((trtr(ti))(time),(trtr(ti))(time′)) in
625. (r′= r) ∨
626. (r′= tl r ∧ tl r ∈ routes(rs)) ∨
627. (r′= r̂〈tui〉 ∧ r̂〈tui〉 ∈ routes(rs)) ∨
628. (r′= tl r̂〈tui〉 ∧ tl r̂〈tui〉 ∈ routes(rs))
624. end

F.3 Perdurants

To every part, that is,

F.3. PERDURANTS 207

629. linear unit,

630. turn out,

631. rigid crossing,

632. slip (crossing),

633. double (crossing),

634. terminal unit, and

635. train

we associate, by a transcendental deduction, a never ending train behaviour which, as a function,
takes some arguments ...→... and otherwise goes on forever (Unit).

value
629. linear unit: ... → ... Unit
630. turn out: ... → ... Unit
631. rigid: ... → ... Unit

632. slip: ... → ... Unit
633. double: ... → ... Unit
634. terminal: ... → ... Unit
635. train: ... → ... Unit

The Unit does not refer to the railway units of the domain, but is an RSL ... in effect designating
never ending processes.

F.3.1 Channels

636. Trains and rail net units exchange messages, NT Msg.
These message will eventually be further defined.

637. Trains potentially communicate with all rail net units.
Rail net units potentially communicate with all trains.

type
636. NT Msg
channel
637. { ch[{ui,tri}]:NT Msg | ui:UI, tri:TRI • ui ∈ uis ∧ tri ∈ trus }

In a more realistic railway system domain description a rail net management would monitor trains
and control (set) switches etc.

F.3.2 Behaviour Signatures

We continue sketching some of the railway system behaviour signatures. Rail net unit and train
identifiers become [first] parameters; mereology attributes become [second set of] parameters;
static attributes become [third set of] parameters; programmable attributes become [fourth] pa-
rameters; and channel references become “last” parameters.

value
629. linear unit: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len) → (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
630. turn out: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len) → (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
631. rigid: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len) → (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
632. slip: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len) → (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
633. double: ui:UI × (,tris):Unit Mereo × (R̀ UOmega×RU Le) → (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
634. terminal: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len) → (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit

635. train: ti:TI× uis:Train Mereo × (TRΩ×Train Length) → (Train Position×(TRΣ×TR Hist))
→ in,out {ch[{ui,ti}]|ui:UI•ii∈uis} Unit

208 CONTENTS

F.3.3 Behaviour Definitions

We shall illustrate only a narrow aspect of trains on rails. Namely that of the “simulation” of train
traffic as per pre-planned routes. That is we shall not model actual train traffic as per set time
tables – that would entail numerous more formulas than we now show. So it is only an illustration
of how rail and train behaviours might look.

F.3.3.1 Rail Unit Behaviours

We shall only exemplify linear rail unit behaviours.

638. Rail unit behaviours all have in common what we now model as the linear rail unit behaviour.

639. Non-deterministically, external choice, the rail units offers to accept communication from
passing trains, ti, as to the time they are passing by –

640. with this information being added to the rail unit history as the rail unit behaviour resumes.

value
638. linear unit(ui,(ruω,...),(,tris))(ruσ,ruh) ≡
639. let Msg TR RU(time,ti) = ⌈⌉⌊⌋ {ch[{ui,ti}] ? | ti ti:TI • ti ∈ tris} in
640. linear unit(ui,(ruω,...),(,tris))(ruσ,〈(time,ti)〉̂ruh)
638. end
638. pre: ruσ ∈ ruω

F.3.3.2 Train Behaviour

We focus, in our description of train behaviours sôlely on the un-aided movement of trains and,
further, on an “idealised” description.

641. There are two train positions of interest when describing train movement:

(a) the general situation where the train has not yet reached its final destination, and

(b) the special situation where the train has indeed reached its final destination

642. In the former (Item 641a.) the train position, at time τ , is at rail unit ui, with the first next
unit being ui′ (and where aui=aui′).

643. If elapsed time is less than planned time τ ,

644. then the train informs the rail unit behaviour designated by ui that it is currently passing
it.

645. and moves on within the current unit ui, having updated its history;

646. else, when elapsed time is up, i.e., equals planned time τ , the train informs the rail unit it
is now entering that it is so,

647. updates its history accordingly and moves on to the next unit, ui′

value
642. train(ti,sta,uis)(pr,((bui,ui,aui),τ),〈((aui′,ui′,nui),τ ′)〉̂nr),(trσ,trh) ≡
642. let time = record TIME in
643. if time < τ
644. then ch[{ui,ti}] ! Msg TR RU(time,ti) ;
645. train(ti,sta,uis)(pr,((bui,ui,aui),τ),〈((aui′,ui′,nui),τ ′)〉̂nr),(trσ,〈(time,ui)〉̂trh)
646. else ch[{aui′,ti}] ! Msg TR RU(time,ti) ; assert: time = τ
647. train(ti,sta,uis)(tp̂〈(τ ,(bui,ui,aui))〉,((aui′,ui′,nui),τ ′),nr),(trσ,〈(time,ui′)〉trh)
642. end end
642. pre: trσ ∈ trω ∧ aui=aui′ ∧ τ < τ ′

F.4. CLOSING 209

648. In the other position (Item 641b.) the train, at time τ , is at rail unit ui, with their bing no
next units to enter.

649. If elapsed time is less than planned time, τ ,

650. then the train informs the rail unit behaviour designated by ui that it is currently passing it

651. and moves on within the current unit ui, having updated its history;

652. else the train journey has ended and the train behaviour “stops”, i.e., ceases to exist !

648. train(ti,sta,uis)((pr,((bui,ui,aui),τ),〈〉),(trσ,trh)) ≡
648. let time = record TIME in
649. if time < τ
650. then ch[{ui,ti}] ! Msg TR RU(time,ti) ;
651. train(ti,sta,uis)((pr,((bui,ui,aui),τ),〈〉),(trσ,〈(time,ui)〉̂trh))
652. else skip assert: time = τ
648. end end
648. pre: trσ ∈ trω

F.4 Closing

We end our example here. To analyse & describe a proper railway system we would have to
introduce some rail net and train management. Rail net management would monitor the rails,
and, according to train time tables issued by train management, set switches. Train management
would establish train time tables, pass these onto rail net management, and would monitor and
control trains. We have given, we think, enough clues as how to analyse & describe such railway
systems.

210 CONTENTS

Appendix G

Simple Credit Card Systems

Contents

G.1 Introduction . 211

G.2 Endurants . 212

G.2.1 External Qualities . 212

G.2.2 Internal Qualities . 213

G.2.2.1 Unique Identification . 213

G.2.2.2 Mereologies . 213

G.2.2.3 Mereologies . 214

G.2.2.3.1 Banks: . 214

G.2.2.3.2 Shops: . 215

G.2.2.4 Attributes . 215

G.3 Perdurants . 215

G.3.1 Behaviours . 215

G.3.2 Channels . 216

G.3.3 Behaviour Interactions . 216

G.3.4 Credit Card . 218

G.3.5 Banks . 219

G.3.6 Shops . 221

We present an attempt at a model of a simple credit card system of credit card holders, shops and
banks.1

No Model of Temporal History
This model, and we apologise profusely, does not model the time-stamed history of transactions.

Left as a suitable exercise for the reader !

G.1 Introduction

We present a domain description of an abstracted credit card system. The narrative part of the
description is terse, perhaps a bit too terse.

Credit cards are moving from simple plastic cards to smart phones. Uses of credit cards move
from their mechanical insertion in credit card terminals to being swiped. Authentication (hence
not modelled) moves from keying in security codes to eye iris “prints”, and/or finger prints or
voice prints or combinations thereof.

1This model evolved during a PhD course at the University of Uppsala, Sweden.

211

212 CONTENTS

This document abstracts from all that in order to understand a bare, minimum essence of
credit cards and their uses. Based on a model, such as presented here, the reader should be able
to extend/refine the model into any future technology – for requirements purposes.

G.2 Endurants

G.2.1 External Qualities

653. Credit card systems, ccs:CCS, 2consists of three kinds of parts:

654. an assembly, cs:CS, of credit cards4,

655. an assembly, bs:BS, of banks, and

656. an assembly, ss:SS, of shops.

type
653 CCS
654 CS
655 BS
656 SS
value
654 obs CS: CCS → CS
655 obs BS: CCS → BS
656 obs SS: CCS → SS

657. There are credit cards, c:C, banks b:B, and shops s:S.

658. The credit card part, cs:CS, abstracts a set, soc:Cs, of card.

659. The bank part, bs:BS, abstracts a set, sob:Bs, of banks.

660. The shop part, ss:SS, abstracts a set, sos:Ss, of shops.

type
657 C, B, S
658 Cs = C-set
659 Bs = B-set
660 Ss = S-set
value
658 obs CS: CS → Cs, obs Cs: CS → Cs
659 obs BS: BS → Bs, obs Bs: BS → Bs
660 obs SS: SS → Ss, obs Ss: SS → Ss

2The composite part CS can be thought of as a credit card company, say VISA3. The composite part BS can be
thought of as a bank society, say BBA: British Banking Association. The composite part SS can be thought of as the
association of retailers, say bira: British Independent Retailers Association. The model does not prevent “shops” from
being airlines, or car rental agencies, or dentists, or consultancy firms. In this case SS would be some appropriate
association.

4We “equate” credit cards with their holders.

G.2. ENDURANTS 213

G.2.2 Internal Qualities

G.2.2.1 Unique Identification

661. Assembliers of credit cards, banks and shops have unique identifiers, csi:CSI, bsi:BSI, and
ssi:SSI.

662. Credit cards, banks and shops have unique identifiers, ci:CI, bi:BI, and si:SI.

663. One can define functions which extract all the

664. unique credit card,

665. bank and

666. shop identifiers from a credit card system.

661 CSI, BSI, SSI
662 CI, BI, SI
value
661 uid CS: CS→CSI, uid BS: BS→BSI, uid SS: SS→SSI,
662 uid C: C→CI, uid B: B→BI, uid S: S→SI,
664 xtr CIs: CCS → CI-set
664 xtr CIs(ccs) ≡ {uid C(c)|c:C•c ∈ obs Cs(obs CS(ccs))}
665 xtr BIs: CCS → BI-set
665 xtr BIs(ccs) ≡ {uid B(s)|b:B•b ∈ obs Bs(obs BS(ccs))}
666 xtr SIs: CCS → SI-set
666 xtr SIs(ccs) ≡ {uid S(s)|s:S•s ∈ obs Ss(obs SS(ccs))}

667. For all credit card systems it is the case that

668. all credit card identifiers are distinct from bank identifiers,

669. all credit card identifiers are distinct from shop identifiers,

670. all shop identifiers are distinct from bank identifiers,

axiom
667 ∀ ccs:CCS •

667 let cis=xtr CIs(ccs), bis=xtr BIs(ccs), sis = xtr SIs(ccs) in
668 cis ∩ bis = {}
669 ∧ cis ∩ sis = {}
670 ∧ sis ∩ bis = {} end

G.2.2.2 Mereologies

671. A credit card has a mereology which “connects” it to any of the shops of the system and to
exactly one bank of the system,

672. and some attributes — which we shall presently disregard.

673. The wellformedness of a credit card system includes the wellformedness of credit card mere-
ologies with respect to the system of banks and shops:

674. The unique shop identifiers of a credit card mereology must be those of the shops of the
credit card system; and

214 CONTENTS

675. the unique bank identifier of a credit card mereology must be of one of the banks of the
credit card system.

type
671. CM = SI-set × BI
value
671. mereo CM: C → CM
673 wf CM of C: CCS → Bool
673 wf CM of C(ccs) ≡
671 let bis=xtr BIs(ccs), sis=xtr SIs(ccs) in
671 ∀ c:C•c ∈ obs Cs(obs CS(ccs)) ⇒
671 let (ccsis,bi)=mereo CM(c) in
674 ccsis ⊆ sis
675 ∧ bi ∈ bis
671 end end

G.2.2.3 Mereologies

G.2.2.3.1 Banks: Our model of banks is (also) very limited.

676. A bank has a mereology which “connects” it to a subset of all credit cards and a subset of
all shops,

677. and, as attributes:

678. a cash register, and

679. a ledger.

680. The ledger records for every card, by unique credit card identifier,

681. the current balance: how much money, credit or debit, i.e., plus or minus, that customer is
owed, respectively has borrowed from the bank,

682. the dates-of-issue and -expiry of the credit card, and

683. the name, address, and other information about the credit card holder.

684. The wellformedness of the credit card system includes the wellformedness of the banks with
respect to the credit cards and shops:

685. the bank mereology’s

686. must list a subset of the credit card identifiers and a subset of the shop identifiers.

type
676 BM = CI-set × SI-set
678 CR = Bal
679 LG = CI →m (Bal×DoI×DoE×...)
681 Bal = Int
value
676 mereo B: B → BM
678 attr CR: B → CR
679 attr LG: B → LG
684 wf BM B: CCS → Bool
684 wf BM B(ccs) ≡
684 let allcis = xtr CIs(ccs), allsis = xtr SIs(ccs) in

G.3. PERDURANTS 215

684 ∀ b:B • b ∈ obs Bs(obs BS(ccs)) in
685 let (cis,sis) = mereo B(b) in
686 cis ⊆ ∀ cis ∧ sis ⊆ allsis end end

G.2.2.3.2 Shops:

687. The mereology of a shop is a pair: a unique bank identifiers, and a set of unique credit card
identifiers.

688. The mereology of a shop

689. must list a bank of the credit card system,

690. band a subset (or all) of the unique credit identifiers.

We omit treatment of shop attributes.

type
687 SM = CI-set × BI
value
687 mereo S: S → SM
688 wf SM S: CCS → Bool
688 wf SM S(ccs) ≡
688 let allcis = xtr CIs(ccs), allbis = xtr BIs(ccs) in
688 ∀ s:S • s ∈ obs Ss(obs SS(ccs)) ⇒
688 let (cis,bi) mereo S(s) in
689 bi ∈ allbis
690 ∧ cis ⊆ allcis
688 end end

G.2.2.4 Attributes

to be written

G.3 Perdurants

G.3.1 Behaviours

691. We ignore the behaviours related to the CCS, CS, BS and SS parts.

692. We therefore only consider the behaviours related to the Cs, Bs and Ss parts.

693. And we therefore compile the credit card system into the parallel composition of the parallel
compositions of all the credit card, crd, all the bank, bnk, and all the shop, shp, behaviours.

value
691 ccs:CCS
691 cs:CS = obs CS(ccs),
691 uics:CSI =uid CS(cs),
691 bs:BS = obs BS(ccs),
691 uibs:BSI =uid BS(bs),
691 ss:SS = obs SS(ccs),
691 uiss:SSI =uid SS(ss),
692 socs:Cs = obs Cs(cs),
692 sobs:Bs = obs Bs(bs),
692 soss:Ss = obs Ss(ss),

216 CONTENTS

value
693 sys: Unit → Unit,
691 sys() ≡
693 cardsuics(mereo CS(cs),...)
693 ‖ ‖ {crduid C(c)(mereo C(c))|c:C•c ∈ socs}
693 ‖ banksuibs(mereo BS(bs),...)
693 ‖ ‖ {bnkuid B(b)(mereo B(b))|b:B•b ∈ sobs}
693 ‖ shopsuiss(mereo SS(ss),...)
693 ‖ ‖ {shpuid S(s)(mereo S(s))|s:S•s ∈ soss},
691 cardsuics(...) ≡ skip,
691 banksuibs(...) ≡ skip,
691 shopsuiss(...) ≡ skip

axiom skip ‖ behaviour(...) ≡ behaviour(...)

G.3.2 Channels

694. Credit card behaviours interact with bank (each with one) and many shop behaviours.

695. Shop behaviours interact with bank (each with one) and many credit card behaviours.

696. Bank behaviours interact with many credit card and many shop behaviours.

The inter-behaviour interactions concern:

697. between credit cards and banks: withdrawal requests as to a sufficient, mk Wdr(am), balance
on the credit card account for buying am:AM amounts of goods or services, with the bank
response of either is OK() or is NOK(), or the revoke of a card;

698. between credit cards and shops: the buying, for an amount, am:AM, of goods or services:
mk Buy(am), or the refund of an amount;

699. between shops and banks: the deposit of an amount, am:AM, in the shops’ bank account:
mk Depost(ui,am) or the removal of an amount, am:AM, from the shops’ bank account:
mk Removl(bi,si,am)

channel
694 {ch cb[ci,bi]|ci:CI,bi:BI•ci ∈ cis ∧ bi ∈ bis}:CB Msg
695 {ch cs[ci,si]|ci:CI,si:SI•ci ∈ cis ∧ si ∈ sis}:CS Msg
696 {ch sb[si,bi]|si:SI,bi:BI•si ∈ sis ∧ bi ∈ bis}:SB Msg
697 CB Msg == mk Wdrw(am:aM) | is OK() | is NOK() | ...
698 CS Msg == mk Buy(am:aM) | mk Ref(am:aM) | ...
699 SB Msg == Depost | Removl | ...
699 Depost == mk Dep((ci:CI|si:SI),am:aM) |
699 Removl == mk Rem(bi:BI,si:SI,am:aM)

G.3.3 Behaviour Interactions

700. The credit card initiates

(a) buy transactions

i. [1.Buy] by enquiring with its bank as to sufficient purchase funds (am:aM);

ii. [2.Buy] if NOK then there are presently no further actions; if OK

G.3. PERDURANTS 217

1.B
uy

2.B
uy

3.Buy

4
.B

u
y

1.Refund

NOK OK

Credit Card

Bank

Shop

2.Refund
3.Refund

Figure G.1: Credit Card, Bank and Shop Behaviours

iii. [3.Buy] the credit card requests the purchase from the shop – handing it an appro-
priate amount;

iv. [4.Buy] finally the shop requests its bank to deposit the purchase amount into its
bank account.

(b) refund transactions

i. [1.Refund] by requesting such refunds, in the amount of am:aM, from a[ny] shop;
whereupon

ii. [2.Refund] the shop requests its bank to move the amount am:aM from the shop’s
bank account

iii. [3.Refund] to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as sketched in Fig. G.1.

218 CONTENTS

[1.Buy] Item706, Pg.218 card ch cb[ci,bi]!mk Wdrw(am) (shown as ... three lines down) and
Item 715, Pg.219 bank mk Wdrw(ci,am)=⌈⌉⌊⌋{ch cb[bi,bi]?|ci:CI•ci ∈ cis}.

[2.Buy] Items 708-709, Pg.218 bank ch cb[ci,bi]!is [N]OK() and
Item 706, Pg.218 shop (...;ch cb[ci,bi]?).

[3.Buy] Item708, Pg.218 card ch cs[ci,si]!mk Buy(am) and
Item 730, Pg.221 shop mk Buy(am)=⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci∈ cis}.

[4.Buy] Item731, Pg.221 shop ch sb[si,bi]!mk Dep(si,am) and
Item 720, Pg.220 bank mk Dep(si,am)=⌈⌉⌊⌋{ch cs[ci,si]?|si:SI•si∈sis}.

[1.Refund] Item712, Pg.219 card ch cs[ci,si]!mk Ref((ci,si),am) and
Item731, Pg.221 shop (si,mk Ref(ci,am))=⌈⌉⌊⌋{si′,ch sb[si,bi]?|si,si′:SI•{si,si′}⊆sis∧si=si′}.

[2.Refund] Item735, Pg.221 shop ch sb[si,cbi]!mk Ref(cbi,(ci,si),am and
Item724, Pg.220 bank (si,mk Ref(cbi,(ci,am)))=⌈⌉⌊⌋{(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}.

[3.Refund] Item736, Pg.221 shop ch sb[si,sbi]!mk Wdr(si,am)) end and
Item725, Pg.220 bank (si,mk Wdr(ci,am))=⌈⌉⌊⌋{(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}

G.3.4 Credit Card

701. The credit card behaviour, crd, takes the credit card unique identifier, the credit card mere-
ology, and attribute arguments (omitted). The credit card behaviour, crd, accepts inputs
from and offers outputs to the bank, bi, and any of the shops, si∈sis.

702. The credit card behaviour, crd, non-deterministically, internally “cycles” between buying and
getting refunds.

value
701 crdci:CI : (bi,sis):CM → in,out ch cb[ci,bi],{ch cs[ci,si]|si:SI•si ∈ sis} Unit
701 crdci(bi,sis) ≡ (buy(ci,(bi,sis)) ⌈⌉ ref(ci,(bi,sis))) ; crdci(ci,(bi,sis))

703. By am:AM we mean an amount of money, and by si:SI we refer to a shop in which we have
selected a number or goods or services (not detailed) costing am:AM.

704. The buyer action is simple.

705. The amount for which to buy and the shop from which to buy are selected (arbitrarily).

706. The credit card (holder) withdraws am:AM from the bank, if sufficient funds are available5.

707. The response from the bank

708. is either OK and the credit card [holder] completes the purchase by buying the goods or
services offered by the selected shop,

709. or the response is “not OK”, and the transaction is skipped.

type
703 AM = Int
value
704 buy: ci:CI × (bi,sis):CM →
704 in,out ch cb[ci,bi] out {ch cs[ci,si]|si:SI•si ∈ sis} Unit
704 buy(ci,(bi,sis)) ≡
705 let am:aM • am>0, si:SI • si ∈ sis in
706 let msg = (ch cb[ci,bi]!mk Wdrw(am);ch cb[ci,bi]?) in
707 case msg of

5First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes
place, otherwise not – and the credit card holder is informed accordingly.

G.3. PERDURANTS 219

708 is OK() → ch cs[ci,si]!mk Buy(am),
709 is NOK() → skip
704 end end end

710. The refund action is simple.

711. The credit card [handler] requests a refund am:AM

712. from shop si:SI.

This request is handled by the shop behaviour’s sub-action ref , see lines 728.–737. page
221.

value
710 rfu: ci:CI × (bi,sis):CM → out {ch cs[ci,si]|si:SI•si ∈ sis} Unit
710 rfu(ci,(bi,sis)) ≡
711 let am:AM • am>0, si:SI • si ∈ sis in
712 ch cs[ci,si]!mk Ref(bi,(ci,si),am)
710 end

G.3.5 Banks

713. The bank behaviour, bnk, takes the bank’s unique identifier, the bank mereology, and the
programmable attribute arguments: the ledger and the cash register. The bank behaviour,
bnk, accepts inputs from and offers outputs to the any of the credit cards, ci∈cis, and any
of the shops, si∈sis.

714. The bank behaviour non-deterministically externally chooses to accept either ‘withdraw’al
requests from credit cards or ‘deposit’ requests from shops or ‘refund’ requests from credit
cards.

value
713 bnkbi:BI : (cis,sis):BM → (LG×CR) →
713 in,out {ch cb[ci,bi]|ci:CI•ci ∈ cis} {ch sb[si,bi]|si:SI•si ∈ sis} Unit
713 bnkbi((cis,sis))(lg:(bal,doi,doe,...),cr) ≡
714 wdrw(bi,(cis,sis))(lg,cr)
714 ⌈⌉⌊⌋ depo(bi,(cis,sis))(lg,cr)
714 ⌈⌉⌊⌋ refu(bi,(cis,sis))(lg,cr)

715. The ‘withdraw’ request, wdrw, (an action) non-deterministically, externally offers to accept
input from a credit card behaviour and marks the only possible form of input from credit
cards, mk Wdrw(ci,am), with the identity of the credit card.

716. If the requested amount (to be withdrawn) is not within balance on the account

717. then we, at present, refrain from defining an outcome (chaos), whereupon the bank behaviour
is resumed with no changes to the ledger and cash register;

718. otherwise the bank behaviour informs the credit card behaviour that the amount can be with-
drawn; whereupon the bank behaviour is resumed notifying a lower balance and ‘withdraws’
the monies from the cash register.

220 CONTENTS

value
714 wdrw: bi:BI × (cis,sis):BM → (LG×CR) → in,out {ch cb[bi,ci]|ci:CI•ci ∈ cis} Unit
714 wdrw(bi,(cis,sis))(lg,cr) ≡
715 let mk Wdrw(ci,am) = ⌈⌉⌊⌋ {ch cb[ci,bi]?|ci:CI•ci ∈ cis} in
714 let (bal,doi,doe) = lg(ci) in
716 if am>bal
717 then (ch cb[ci,bi]!is NOK(); bnkbi(cis,sis)(lg,cr))
718 else (ch cb[ci,bi]!is OK(); bnkbi(cis,sis)(lg†[ci 7→(bal−am,doi,doe)],cr−am)) end
713 end end

The ledger and cash register attributes, lg,cr, are programmable attributes. Hence they are mod-
eled as separate function arguments.

719. The deposit action is invoked, either by a shop behaviour, when a credit card [holder] buy’s
for a certain amount, am:AM, or requests a refund of that amount. The deposit is made
by shop behaviours, either on behalf of themselves, hence am:AM, is to be inserted into the
shops’ bank account, si:SI, or on behalf of a credit card [i.e., a customer], hence am:AM, is
to be inserted into the credit card holder’s bank account, si:SI.

720. The message, ch cs[ci,si]?, received from a credit card behaviour is either concerning a buy
[in which case i is a ci:CI, hence sale, or a refund order [in which case i is a si:SI].

721. In either case, the respective bank account is “upped” by am:AM – and the bank behaviour
is resumed.

value
719 deposit: bi:BI × (cis,sis):BM → (LG×CR) →
720 in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit
719 deposit(bi,(cis,sis))(lg,cr) ≡
720 let mk Dep(si,am) = ⌈⌉⌊⌋ {ch cs[ci,si]?|si:SI•si ∈ sis} in
719 let (bal,doi,doe) = lg(si) in
721 bnkbi(cis,sis)(lg†[si 7→(bal+am,doi,doe)],cr+am)
719 end end

722. The refund action

723. non-deterministically externally offers to either

724. non-deterministically externally accept a mk Ref(ci,am) request from a shop behaviour, si,
or

725. non-deterministically externally accept a mk Wdr(ci,am) request from a shop behaviour, si.

The bank behaviour is then resumed with the

726. credit card’s bank balance and cash register incremented by am and the

727. shop’ bank balance and cash register decremented by that same amount.

value
722 rfu: bi:BI × (cis,sis):BM → (LG×CR) → in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit
722 rfu(bi,(cis,sis))(lg,cr) ≡
724 (let (si,mk Ref(cbi,(ci,am))) = ⌈⌉⌊⌋ {(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in
722 let (balc,doic,doec) = lg(ci) in
726 bnkbi(cis,sis)(lg†[ci 7→(balc+am,doic,doec)],cr+am)
722 end end)

G.3. PERDURANTS 221

723 ⌈⌉⌊⌋
725 (let (si,mk Wdr(ci,am)) = ⌈⌉⌊⌋ {(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in
722 let (bals,dois,does) = lg(si) in
727 bnkbi(cis,sis)(lg†[si 7→(bals−am,dois,does)],cr−am)
722 end end)

G.3.6 Shops

728. The shop behaviour, shp, takes the shop’s unique identifier, the shop mereology, etcetera.

729. The shop behaviour non-deterministically, externally

either

730. offers to accept a Buy request from a credit card behaviour,

731. and instructs the shop’s bank to deposit the purchase amount.

732. whereupon the shop behaviour resumes being a shop behaviour;

733. or

734. offers to accept a refund request in this amount, am, from a credit card [holder].

735. It then proceeds to inform the shop’s bank to withdraw the refund from its ledger and cash
register,

736. and the credit card’s bank to deposit the refund into its ledger and cash register.

737. Whereupon the shop behaviour resumes being a shop behaviour.

value
728 shpsi:SI : (CI-set×BI)×...→in,out: {ch cs[ci,si]|ci:CI•ci ∈ cis},{ch sb[si,bi′]|bi′:BI•bi′isin bis} Unit
728 shpsi((cis,bi),...) ≡
730 (sal(si,(bi,cis),...)
733 ⌈⌉⌊⌋
734 ref(si,(cis,bi),...)):

728 sal: SI×(CI-set×BI)×...→in,out: {cs[ci,si]|ci:CI•ci ∈ cis},sb[si,bi] Unit
728 sal(si,(cis,bi),...) ≡
730 let mk Buy(am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in
731 ch sb[si,bi]!mk Dep(si,am) end ;
732 shpsi((cis,bi),...)

728 ref: SI×(CI-set×BI)×...→in,out: {ch cs[ci,si]|ci:CI•ci ∈ cis},{ch sb[si,bi′]|bi′:BI•bi′isin bis} Unit
734 ref(si,(cis,sbi),...) ≡
734 let mk Ref((ci,cbi,si),am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in
735 (ch sb[si,cbi]!mk Ref(cbi,(ci,si),am)
736 ‖ ch sb[si,sbi]!mk Wdr(si,am)) end ;
737 shpsi((cis,sbi),...)

222 CONTENTS

Appendix H

A Simple Retailer System

Contents

H.1 Two Approaches to Modeling . 224

H.1.1 Domain Science & Engineering . 224

H.1.2 HERAKLIT: http://heraklit.dfki.de/ 225

H.2 The Retailer Market Case Study . 225

H.2.1 Three Rough Sketches . 225

H.2.1.1 Identification of “Main Players” 225

H.2.1.2 Main Transaction Sequences 226

H.2.1.3 Detailed Sketch . 226

H.2.1.4 Transitions . 228

H.3 Endurants: External Qualities . 229

H.3.1 Main Decompositions . 229

H.3.2 Aggregates as Sets . 230

H.3.3 The Retailer . 230

H.3.3.1 The HERAKLIT View . 230

H.3.4 The Market System State . 231

H.4 Endurants: Internal Qualities . 232

H.4.1 Unique Identifiers . 232

H.4.2 Mereology . 233

H.4.2.1 Customer Mereology . 234

H.4.2.2 Order Management Mereology 234

H.4.2.3 Inventory Mereology . 234

H.4.2.4 Warehouse Mereology . 235

H.4.2.5 Supplier Mereology . 235

H.4.2.6 Courier Service Mereology . 236

H.4.3 Attributes . 236

H.4.3.1 Transactions . 236

H.4.3.2 Customer Attributes . 237

H.4.3.3 Order Management Attributes 238

H.4.3.4 Inventory Attributes . 239

H.4.3.5 Warehouse Attributes . 240

H.4.3.6 Supplier Attributes . 241

H.4.3.7 Courier Attributes . 242

H.5 Merchandise . 242

H.5.1 “Unique Identity” . 243

223

224 CONTENTS

H.5.2 “Mereology” . 243

H.5.3 “Attributes” . 243

H.5.4 Representation . 243

H.6 Perdurants . 243

H.6.1 Channels . 244

H.6.2 Behaviours . 244

H.6.2.1 Customer Behaviour . 244

H.6.2.2 Order Management Behaviour 245

H.6.2.3 Inventory Behaviour . 248

H.6.2.4 Warehouse Behaviour . 251

H.6.2.5 Supplier Behaviour . 255

H.6.2.6 Courier Service Behaviour . 257

H.6.3 System Initialisation . 258

H.7 Conclusion . 258

H.7.1 Critique of the domain analysis & description Model 258

H.7.2 Proofs about Models . 259

H.7.3 Comparison of Models . 259

H.7.3.1 “Minor” Discrepancies . 259

H.7.3.2 Use of Diagrams . 260

H.7.3.3 Interleave versus “True” Concurrency 260

H.7.4 What Next ? . 260

We report an exercise in modeling a retail system such as outlined in both [21, Bjørner, 2002]
and [95, Fettke & Reisig, Dec. 21, 2020]. In the present exercise we try follow [95, Fettke & Reisig]
– but we do so slavishly following the domain analysis & description method of [58, Domain Science
& Engineering, Chapters 3–6, Bjørner 2021]1 (domain science & engineering).2

H.1 Two Approaches to Modeling

In this chapter we present a model of a customer/retailer/supplier/... market. We do it in
the more-or-less classical style which emanated from the denotational-like formal specification of
programming languages and lead to VDM [72,73,97] – and from there to RAISE [101]. There are other
approaches to modeling discrete systems. One is by means of symbolic Petri nets [152–156].

H.1.1 Domain Science & Engineering

At the center of domain science & engineering stands a domain analysis & description method.
Domain analysis & description is first outlined in [38, 41, Bjørner, 2010]. Domain analysis &
description found a more final form in [51, 56, Bjørner, 2016-2019]. [56] form the core chapters,
Chapters 3–6, of [58]. That forthcoming Springer monograph, [58], covers the domain science &
engineering concept: domain science & engineering .

In this report we shall slavishly follow the doctrines of the domain analysis & description method.
First we consider endurants3 and “within” our analysis & description of endurants we first focus on
their so-called external qualities (“form, but not content”), then on internal qualities: unique iden-
tifiers, mereology and attributes. Then, by transcendental deduction, we “morph” some endurants
into perdurants4, that is, behaviours. Here we first consider the channels and the messages sent

1 [58] is scheduled to be published by Springer in their EATCS Monographs in Theoretical Com-
puter Science series, Winter/Spring of 2021. Till such a time you may fund an electronic copy at
www.imm.dtu.dk/~dibj/2020/mono/mono.pdf. That electronic copy may, from time to time, be updated as I “im-
prove” on its text.

2Work on this document started December 28, 2020.
3Endurants, colloquially speaking, “end up” as data in the computer.
4Perdurants, colloquially speaking, “end up” as processes in the computer.

H.2. THE RETAILER MARKET CASE STUDY 225

over channels between behaviours, before we consider these latter. We do so in the style of
[RSL’s [100]] CSP [109–111,161, 164].

It may seem a long beginning before we get to “process-oriented” modeling.
But a worthwhile thing is worth doing right, hence carefully !
It seems to this author that the HERAKLIT approach, in keeping with its name, from the first

beginning, considers “all as flowing”, that is, as [Petri net-like] processes.

H.1.2 HERAKLIT: http://heraklit.dfki.de/

Based on Petri net ideas [152–156] Wolfgang Reisig has conceived and researched HERAKLIT.
In a number of reports and papers, [90–96], Peter Fettke and Wolfgang Reisig has developed the
HERAKLIT theory & practice of modeling, what they call service systems.

The present report “mimics” [95, HERAKLIT case study: retailer] in providing a Domain

Analysis & Description-oriented model of “the same” domain !
The HERAKLIT retailer case study [95] straddles three concerns: presenting the HERAKLIT

methodology, its mathematical foundation and the retailer case study. The domain analysis &
description case study presented in this chapter makes use of RSL, the RAISE Specification Language
[100] – and can thus concentrate on the case study. The semantics of the RSL-expressed case study
is that derived from the semantics of RSL, notably its CSP [109–111,161, 164] “subset”.

H.2 The Retailer Market Case Study

The following case study is based on [95]. It does not, in the present version, follow the domain
of [95] strictly. But I am quite sure that any discrepancies can be easily incorporated into the
present model.

H.2.1 Three Rough Sketches

It is good domain modeling development practice to start a domain modeling project with one or
more alternative rough sketch informal descriptions. But they are to be just such rough sketches.
No formal meaning is to be attached to these rough sketches. They are meant to get the domain
modeling project team “aligned”.

We present three, obviously “overlapping”, rough sketches.

H.2.1.1 Identification of “Main Players”

We rough sketch narrate a description of the domain.
The domain is that of a set of customers, a set of retailers, a set of suppliers, a set of courier

services. Retailers each embody three sub-components: an order management, an inventory;
and a warehouse.

See Fig. H.1 on the next page

Customers order merchandise from retailers’ order management. They in tern order that
merchandise from their inventory [management]. If inventory [management] judges that they have
the needed quantity in their warehouse, they acknowledge the order management. If inventory
[management] judges that they do not have the needed quantity in their warehouse, they proceed
to order a sufficient quantity of the desired merchandise from a supplier. The supplier eventually
deliver a quantity to the warehouse of the ordering retailer. That warehouse acknowledges receipt
to its inventory which eventually acknowledges that receipt to its order management. The order
management acknowledges the customer order and notifies its warehouse of a proper dispatch.

5None of the figures in this report, Figs. H.1 on the following page, H.2 on page 227, H.3 on page 229, H.4 on
page 230 and H.5 on page 231, are formal. That is, they do not add to or detract from the meaning of the formulas
otherwise shown in this report. They merely “support”, by graphics, the narrative text.

226 CONTENTS

Retailer

Order Mgt.

Warehouse

Courier Service

Inventory

SupplierCustomer

order order order

delivery

delivery

delivery

acknow. dispatch

acknow. acknow.

Figure H.1: A Market System
5

The warehouse delivers the desired merchandise quantity to a courier service which subsequently
delivers that desired merchandise quantity to the customer.

It is thus we see that there are essentially three four kinds of transactions between market
“players”: orders, acknowledgments, dispatches and deliveries.

In the formalisations to follow we shall refer to customers as c:C, order managements as om:OM,
inventories as iv:IV, suppliers as s:S and courier services as cs:CS.6

H.2.1.2 Main Transaction Sequences

Customers issue purchase orders for merchandise from retailers’ order management; receive
order acknowledgments from retailers’ order management; and receive customer delivered mer-
chandise (via retailers’ warehouses) from courier services.

Retailers’ order management inquire with its inventory as to the availability of ordered mer-
chandise; await acknowledgment of availability (of merchandise) from its inventory; informs
customer of availability (order acknowledgment); and and dispatch order to warehouse when
available.

Retailers’ inventory issues acknowledgment of merchandise to order management; issues
wholesale orders for supply of merchandise, “when out-of-stock”, from suppliers; and receive
acknowledgment of supplies from suppliers.

Retailers’ warehouse receive merchandise deliveries from suppliers; informs inventory man-
agement of merchandise availability; accepts dispatch orders from order management; and for-
ward merchandise for such customer merchandise dispatches to courier services.

Etcetera.

H.2.1.3 Detailed Sketch

We refer to Fig. H.2 on the next page.

• A It all starts with a customer issuing a purchase order. It is date-time stamped with the
customers unique identifier.

6We shall, corresponding, prefix the transaction names: C OM Order, OM I Order, IV S Order, IV WH Delivery,
WH CS Delivery, CS C Delivery, WH IV Ack, IV OM Ack, OM C Ack, OM WH Dispatch, or some suitable variants
thereof.

H.2. THE RETAILER MARKET CASE STUDY 227

Retailer

GHI

M N
O

P Q R

S
T

δ

U

Y

B

Z

V

W

No

αis_available ?

Y
es

C
D

γ
L K

εε

ε

ε

ε

ε

ε

A F

X

ε

order orderorder

delivery

delivery

delivery

dispatch

E

J

acknow.

acknow. acknow.

Yes Yes

β

IV: InventoryOM: Order Mgt.

C: Customer

WH: Warehouse

S: Supplier

CS: Courier Serv.

Figure H.2: Transaction Sequences

Since no customer can issue more than one such order at a time, such date-time-customer
identification is unique and can serve as the unique customer order identification across the
market.

Once the customer has issued the order request it either O awaits replies from some retailer’s

order management or T some courier service’s delivery (of otherwise ordered products) or

U resumes other business !

• B The customer order is received by some retailer’s order management. That order man-
agement makes a note of the incoming order and posits that note in a ‘work-to-do’ dossier.

• ǫB At some time the order management selects an arbitrary “what-to-do-next” note from

its dossier. If it is that if an customer order – arising from B – then it

• C issues an inquiry to its inventory as to the availability of the quantity of the named
product of the customer order.

• D The inventory receives an inventory inquiry. The inventory makes a note of the incoming
order and deposits that note in its ‘work-to-do’ dossier.

• ǫD At some time the inventory selects an arbitrary “what-to-do-next” note from its dossier.

If it is that if an inventory inquiry – arising from D – then it

• α examines whether the quantity of the named product of the customer order is “on-hand”
(in the retailer’s warehouse, as recorded in the inventory).

• E If not the inventory issues a wholesale order to a supplier.

• F The supplier receives a wholesale order. The supplier makes a note of the wholesale
order and deposits that note in its ‘work-to-do’ dossier.

• β It may take same time to respond to the wholesale request. For example, if the supplier

first has to manufacture or otherwise get hold of the requested supply.

228 CONTENTS

• G Eventually the supplier transfers the requested quantity of named merchandise to the
requesting retailer’s warehouse.

• H The warehouse receives this delivery and – eventually - stores it –

• I while notifying its inventory (management) of availability of the [previously] requested
merchandise.

• J The inventory receives this notification. It make a note thereof and deposits it in its
‘work-to-do’ dossier.

• γ Either inquiry α lead to a positive result, or, as now (M) such an inquiry would be

positive.

• K Eventually the inventory can inform order management of order availability.

• L Order management receives positive acknowledgment and deposits notes in its ‘work-to-
do’ dossier as to acknowledging the customer of its order and informing the warehouse of its
delivery.

• M Eventually order management gets around to service this note:

– (D,α,Yes) and (D,α,No,E,F,G,J,I,J) order management informs the customer of

upcoming order delivery

– N while also, “at the same time”, issuing an order dispatch to its warehouse.

• O The customer receives this information.

• P The warehouse receives this dispatch and makes a note thereof in its ‘work-to-do’ dossier.

• Q The warehouse eventually issues a delivery order, with ordered merchandise, to a courier
service.

• R The courier service receives this delivery and makes a note thereof in its ‘work-to-do’
dossier.

• S The courier service eventually dispatches the delivery to the customer.

• T The customer, finally, receives the ordered quantity of merchandise.

H.2.1.4 Transitions

In the technical terms of Petri nets, the ten (10) horisontal arrows of Fig. H.2 on the preceding
page represent transitions as in Place-Transition nets. They are labeled by pairs of upper case
alphabetic characters: A–B, C–D, E–F, G–H, I–J, K–L, M–N, O–P, Q–R, and S–T. In the
technical terms of CS, these ten transitions correspond to pairs of CSP input [ch[...] ?] and output
[ch[...] ! msg] clauses. You will find these clauses highlighted in blue in Sect. H.6.2:

• A–B: Items 834 Page 245 and 849 Page 246

• C–D: Items 855 Page 246 and 877 Page 249

• E–F: Items 898 Page 251 and 944 Page 256

• G–H: Items 913 Page 252 and 952 Page 256

• I–J: Items 932 Page 254 and 880 Page 249

• K–L: Items 904 Page 251 and 858 Page 247

• M–O: Items 865 Page 248 and 836 Page 245

• N–P: Items 866 Page 248 and 916 Page 253

• Q–R: Items 938 Page 255 and 958 Page 257
and

• S–T: Items 963 Page 258 and 838 Page 245.

H.3. ENDURANTS: EXTERNAL QUALITIES 229

The pairs of formulas listed in each • above represents the transition. The formula text from the
behaviour definition parameter line up up to the “transition” line defines the place. Thus the
RSL/CSP definition that we shall present, in a sense, corresponds to place-transition nets where
each transition has exactly two inputs and two outputs. The other way around: Place-transition
nets where transitions have different numbers of inputs, respectively outputs, can be likewise
“mimicked” by appropriate RSL/CSP definitions.

H.3 Endurants: External Qualities

We now begin the proper, methodical description of the retailer, i.e., the market system. That
description is presented in Sects. H.3–H.6.

We refer to [58, Chapter 3].

H.3.1 Main Decompositions

Narrative

738. Our market system comprises

739. a customer aggregate,

740. a retailer aggregate,

741. a supplier aggregate and

742. a courier service aggregate.

We consider all these aggregates to be structures in the sense of [58, Sect. 4.10].

Formalization

type
738. MKT
739. CSTa
740. RETa
741. SUPa
742. CSa
value
739. obs CSTa: MKT → CSTa
740. obs RETa: MKT → RETa
741. obs SUPa: MKT → SUPa
742. obs CSa: MKT → CSa

Customer Retailer Supplier

Courier Service

Figure H.3: A Simplified Market System

230 CONTENTS

H.3.2 Aggregates as Sets

Narrative

743. The customer aggregate form a set of one or more customers.

744. The retailer aggregate form a set of one or more retailers.

745. The supplier aggregate form a set of one or more suppliers.

746. The courier service aggregate form a set of one or more courier services.

We consider all these sets to be structures and the customers, suppliers and courier services to be
atoms in the sense of [58, Sects. 4.10 and 4.13].

Formalization

type
743. CSTs = C-set, axiom ∀ csts:CSTs • csts 6={}
744. RETs = R-set, axiom ∀ rets:CSTs • rets 6={}
745. SUPs = S-set, axiom ∀ sups:CSTs • sups 6={}
746. CSs = CS-set, axiom ∀ cts:CSs • trss 6={}
value
743. obs CSTs: CSTa → CSTs
744. obs RETs: RETa → RETs
745. obs SUPs: SUPa → SUPs
746. obs CSs: CSa → CSs

Courier Services

SuppliersRetailersCustomers

Figure H.4: Aggregates as Sets

H.3.3 The Retailer

H.3.3.1 The HERAKLIT View

We focus on retailers. We treat retailers as structures7,8 of three separately observable parts:

7We refer to [95, Sect. 3.10].
8We dash the retailer boxes to indicate their “structure”-ness.

H.3. ENDURANTS: EXTERNAL QUALITIES 231

Narrative

747. an order management,

748. an inventory9 and

749. a warehouse.

We consider order managements, inventory managements and warehouses to be atoms in the sense
of [58, Sects. 4.13].

Formalization

type
747. OM
748. IV
749. WH
value
747. obs OM: R → OM
748. obs IV: R → IV
749. obs WH: R → WH

Customer Retailer Supplier

Order Mgt. Inv.Mgt.

Warehouse

Courier Service

Figure H.5: The Retailer

The domain science & engineering View
Following the DS&E “approach”, i.e., “dogma”, retailers might normally have been decom-

posed into just two components: The order management and the warehouse. Inventory would
then become a programmable attribute of order management.

H.3.4 The Market System State

We refer to [58, Sect. 3.18]. We postulate some market system mkt. It consists of

Narrative

750. the market, mkt;

751. all customers cs;

752. all retailer order managements oms;

9We might have modeled a retailer inventory as an attribute of the composite part retailer.

232 CONTENTS

753. all retailer inventories ivs; and

754. all retailer warehouses whs;

755. all suppliers ss; and

756. all courier services css.

To obtain these we define respective extraction functions.

Formalization

value
750. mkt:MKT

751. xtr Cs: MKT → C-set
751. xtr Cs(mkt) ≡ obs CSTs(obs CSTa(mkt))
751. cs:C-set := xtr Cs(mkt)

752. xtr OMs: MKT → OM-sett
752. xtr OMs(mkt) ≡ {om|r:RET,om:OM•r ∈ obs RETs(obs RETa(mkt))∧om=obs OM(r)}
752. oms:OM-set := xtr OMs(mkt)

753. xtr IVS: MKT → IV-set
753. xtr IVS(mkt) ≡ {iv|r:RET,iv:IV•r ∈ obs RETs(obs RETa(mkt))∧iv=obs IV(r)}
753. ivs:IV-set := xtr IVS(mkt)

754. xtr WHs: MKT → WH-set
754. xtr WHs(mkt) ≡ {wh|r:RET,wh:WH•r ∈ obs RETs(obs RETa(mkt))∧wh=obs WH(r)}
754. whs:WH-set := xtr WHs(mkt)

755. xtr Ss: MKT → S-set
755. xtr Ss(mkt) ≡ obs SUPs(obs SUPa(mkt))
755. ss:S-set := xtr Ss(mkt)

756. xtr CSs: MKT → CS-set
756. xtr CSs(mkt) ≡ obs CSs(obs CSa(mkt))
756. css:CS-set := xtr CSs(mkt)

H.4 Endurants: Internal Qualities

H.4.1 Unique Identifiers

We refer to [58, Sect. 5.2].
The concept of parts having unique identifiability, that is, that two parts, if they are the

same, have the same unique identifier, and if they are not the same, then they have distinct
identifiers, that concept is fundamental to our being able to analyse and describe internal qualities
of endurants. So we are left with the issue of “sameness” !

Narrative

757. Customers, retailer order managements, retailer inventories, retailer warehouses, suppliers
and courier services all have distinct unique identifiers.

758. By UI we designate the sort of all unique identifiers.

H.4. ENDURANTS: INTERNAL QUALITIES 233

759. We define auxiliary functions which observe the unique identifiers of all customers, retailers,
suppliers and courier services of a market system.

760. uis name the set of all unique identifiers.

Formalization

type
757. C UI, OM UI, IV UI, WH UI, S UI, CS UI
758. UI = C UI | OM UI | IV UI | WH UI | S UI | CS UI
value
757. uid C: C → C UI
757. uid OM: OM → OM UI
757. uid IV: IN → IV UI
757. uid WH: WH → WH UI
757. uid S: S → S UI
757. uid CS: CS → CS UI
axiom
757. ∀ c,c′:C•{c,c′}⊆cs ∧ c 6=c′ ⇒ uid C(c)6=uid C(c′),
757. ∀ om,om′:OM•{om,om′}⊆oms ∧ om 6=om′ ⇒ uid OM(om)6=uid OM(om′),
757. ∀ iv,iv′:IV•{iv,iv′}⊆ivs ∧ iv6=iv′ ⇒ uid IV(iv)6=uid IV(iv′),
757. ∀ wh,wh′:WH•{wh,wh′}⊆whs ∧ wh 6=wh′ ⇒ uid WH(wh)6=uid WH(wh′),
757. ∀ s,s′:S•{s,s′}⊆ss ∧ s 6=s′ ⇒ uid S(s)6=uid S(s′),
757. ∀ cs,cs′:CS•{cs,cs′}⊆css ∧ cs 6=cs′ ⇒ uid CS(cs)6=uid CS(cs′).
value
759. xtr C UIs: MKT → CI-set
759. xtr C UIs(mkt) ≡ {uid C(c)|c:C•c ∈ cs}
759. xtr OM UIs: MKT → OMI-set
759. xtr OM UIs(mkt) ≡ {uid OM(om)|om:OM•om ∈ oms}
759. xtr IV UIs: MKT → IVI-set
759. xtr IV UIs(mkt) ≡ {uid IV(iv)|iv:IV•iv ∈ ivs}
759. xtr WH UIs: MKT → WHI-set
759. xtr WH UIs(mkt) ≡ {uid WH(wh)|wh:WH•wh ∈ whs}
759. xtr S UIs: MKT → SI-set
759. xtr S UIs(mkt) ≡ {uid S(s)|s:S•s ∈ ss}
759. xtr CS UIs: MKT → CSI-set
759. xtr CS UIs(mkt) ≡ {uid CS(cs)|cs:CS•cs ∈ css}

759. cuis:CUI-set = xtr C UIs(mkt)
759. omuis:OMUI-set = xtr OM UIs(mkt)
759. ivuis:IVUI-set = xtr IV UIs(mkt)
759. whuis:WHUI-set = xtr WH UIs(mkt)
759. suis:SUI-set = xtr S UIs(mkt)
759. csuis:CSUI-set = xtr CS UIs(mkt)
760. uis:UI-set = cuis ∪ omuis ∪ ivuis ∪ whuis ∪ suis ∪ csuis
axiom
759. card cuis + card omuis + card ivuis + card whuis + card suis + card csuis = card uis

H.4.2 Mereology

We refer to [58, Sect. 5.3].
Mereology, as a logical/philosophical discipline, can perhaps best be attributed to the Polish

mathematician/logician Stanis law Leśniewski [47, 81].

234 CONTENTS

Which are the relations that can be relevant for “endurant-hood” ? There are basically two
relations: (i) physical ones, and (ii) conceptual ones.

(i) Physically two or more endurants may be topologically either adjacent to one another, like
rails of a line, or within an endurant, like links and hubs of a road net, or an atomic part is
conjoined to one or more materials, or a material is conjoined to one or more parts. The latter
two could also be considered conceptual “adjacencies”.

(ii) Conceptually some parts, like automobiles, “belong” to an embedding endurant, like to an
automobile club, or are registered in the local department of vehicles, or are ‘intended’ to drive
on roads

H.4.2.1 Customer Mereology

Narrative

761. The mereology of a customer is a pair:

• the set of all retail order management identifiers and

• the set of all courier service identifiers.

Formalization

type
761. C Mer = OM UI-set × CSU I-set
value
761. mereo C: C → C Mer
761. mereo C(c) ≡ (omuis,csuis)

H.4.2.2 Order Management Mereology

Narrative

762. The mereology of an order management is the triplet of

• the set of all customer identifiers,

• the unique identifier of the retailer’s inventory and

• the unique identifier of the retailer’s warehouse.

Formalization

type
762. OM Mer = C UI-set × IV UI × WH UI
value
762. mereo OM: OM → OM Mer
762. mereo OM(om) ≡
762. let r:R • r ∈ obs RETs(obs RETa(mkt))∧om=obs OM(r) in
762. (cis,uid IV(obs IV(r)),uid WH(obs WH(r))) end
762. pre: ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧om=obs OM(r)

H.4.2.3 Inventory Mereology

Narrative

763. The mereology of an inventory is a triplet of

• the unique identifier of that inventory’s order management,

• the unique identifier of that inventory’s warehouse and

• the set of all supplier identifiers.

H.4. ENDURANTS: INTERNAL QUALITIES 235

Formalization

type
763. IV Mer = OM UI × WH UI × S UI-set
value
763. mereo IV: IV → IV Mer
763. mereo IV(iv) ≡
763. let r:R • r ∈ obs RETs(obs RETa(mkt))∧iv=obs IV(r) in
763. (uid OM(obs OM(r)),uid WH(obs WH(r)),suis) end
763. pre: ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧iv=obs IV(r)

H.4.2.4 Warehouse Mereology

narrative

764. The mereology of a warehouse is a quadruplet of

• the warehouse retailer’s order management identifier,

• the warehouse retailer’s inventory identifier,

• the set of all supplier identifiers, and

• the set of all courier service identifiers,

Formalization

type
764. WH Mer = OM UI × IV UI × SUI-set × CS UI-set
value
764. mereo WH: WH → WH Mer
764. mereo WH(wh) ≡
764. let r:R • r ∈ obs RETs(obs RETa(mkt))∧iv=obs WH(wh) in
764. (uid OM(obs OM(r)),uid IV(obs IV(r)),suis,csuis) end
764. pre: ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh=obs WH(r)

H.4.2.5 Supplier Mereology

Narrative

765. The mereology of a supplier is a pair:

• the set of all inventory identifiers and

• the set of all warehouse identifiers.

Formalization

type
765. S Mer = IV UI-set × WH UI-set
value
765. mereo S: S → S Mer
765. mereo S(s) ≡ ({uid IV(iv)|iv:IV • iv ∈ ivuis},{uid WI(wh)|wh:WH • wh ∈ whs})

236 CONTENTS

H.4.2.6 Courier Service Mereology

Narrative

766. The mereology of a courier service is a pair

• the set of all warehouse identifiers and

• the set of all customer identifiers.

Formalization

type
766. CS Mer = WH UI-set × CS UI-set
value
766. mereo CS: CS → CSMer
766. mereo CS(t) ≡ ({uid WI(wh)|wh:WH • wh ∈ whs},cuis)

H.4.3 Attributes

We refer to [58, Sects. 5.4–5.5].

To recall: there are three sets of internal qualities: unique identifiers, part mereology and
attributes. Unique identifiers and mereology are rather definite kinds of internal endurant qualities;
attributes form more “free-wheeling” sets of internal qualities.

Since one can talk about transaction events between the six “players”, i.e., the customers,
order managements, inventories, warehouses, suppliers and courier services of the ‘market’ we
must, really, consider their transaction histories as [programmable] attributes.

In order to deal with the attributes of these six “players” we really need first consider what
they are all focused on: namely the merchandise, i.e., products, they order, store, supply and
deliver. For this we refer to Sect. H.5 on page 242.

H.4.3.1 Transactions

The ‘market’ is a typical transaction-oriented system. By a transaction we shall mean an event
involving two or more “exchanges” of messages between two behaviours. Behaviours will be
defined as the result of transcendental deductions of part endurants. With part endurants we
associate attributes.

Since we can “talk” about events that “occur to parts”, that is, as behaviour properties, we
shall attribute some of these events to parts. So parts are attributed the transactions in which
their behaviours engage (with other behaviours).

Since we can “talk” about “such-and-such” a transaction having been initiated by a behaviour
at such-and-such a time ,we shall provide, with each transaction, a prefix of one or more time-
stamped unique identifiers of the part/behaviour issuing the transaction.

767. DaTi refers to TIME. We refer to [58, Sect. 2.5]. The expression record TIME yields a TIME.
You should think of TIMEs, for example, as of the form March 12, 2024: 10:48 am and
32 seconds (day, month, year, hour, minute, second).

768. A transaction prefix is either a pair of a customer identifier and a date-time, or is a pair of
a pair of order management, inventory, warehouse, supplier or courier service identifier and
a date-time, and a transaction prefix.
The specific details of the pairings of unique identifiers and data-times is given in Items 769–
778.

H.4. ENDURANTS: INTERNAL QUALITIES 237

Formalization

type
767. DaTi = TIME

768. UI Pref = ...
axiom
768. [...]

768. More specifically the prefixes are the:

769. purchase order,

770. order inquiry,

771. wholesale order,

772. merchandise delivery,

773. merchandise availability,

774. acknowledge availability,

775. order acknowledgment,

776. dispatch order,

777. forward merchandise and the

778. customer delivery prefixes.

Formalization

type
768. UI Pref = C OM Pref | OM IV Pref | IV S Pref | S WH Pref | WH IV Pref | IV OM Pref
768. | OM C Pref | OM WH Pref | WH CS Pref | CS C Pref
769. C OM Pref = (CUI×DaTi)
770. OM IV Pref = (OMUI×DaTi)×C OM Pref
771. IV S Pref = (IVUI×DaTi)×OM IV Pref
772. S WH Pref = (SUI×DaTi)×IV S Pref
773. WH IV Pref = (WHUI×DaTi)×S WH Pref
774. IV OM Pref = (IVUI×DaTi)×(OM IV Pref|WH IV Pref)
775. OM C Pref = (OMUI×DaTi)×IV OM Pref
776. OM WH Pref = (OMUI×DaTi)×OM C Pref
777. WH CS Pref = (WHUI×DaTi)×OM WH Pref
778. CS C Pref = (CSUI×DaTi)×WH CS Pref

Two customer to order management to inventory etc. transaction prefixes might then schemat-
ically be:

H.4.3.2 Customer Attributes

In order to go about their business of being customers, customers maintain, somehow or other, in
their mind, on paper, or otherwise, a number of notes – which we shall refer to as attributes.

To express some of these attributes we need first introduce some auxiliary types.

Narrative

779. Customers, besides unique identity, have further information: customer names, addresses,
telephone nos., e-mail addresses, etc.

780. Customers have bank/credit card, i.e., payment refs.

781. An order comprises a product name, a quantity, the total price, and a payment reference.

For simplicity we shall carry this ‘order’ information forward in all market transactions.

238 CONTENTS

782. Customers transact with retailer order managements and courier Services:

783. send purchase order to retailers;

784. receive positive acknowledgment on these orders; and

818. accept customer deliveries: a set of merchandise.

Transactions sent by customers are time-stamped with customers identity. Transactions received
by customers are time-stamped [with a time-ordered, latest transaction first] grouping of handler
identifications (ui:UI) – where order managements, inventories, suppliers, warehouses and courier
services are the handlers.

Formalization

type
779. CustName, CustAddr, CustPhon, CustEmail, ...
779. CustInfo = CustName × CustAddr × CustPhon × CustEmail × ...
780. PayRef
781. Order = (ProdNm × Quant × Price × PayRef)
782. C−Trans = C OM Order | OM C Ack | CS C Del
783. C OM Order :: C OM Pref × Order
784. OM C Ack :: OM C Pref × Order
818. CS C Del :: CS C Pref × Order× (M-set|MI-set)

Now the attributes.

Narrative

785. Customers keep a catalog of merchandise: from whom to order, price, etc. [Simplifying we
consider this a static attribute.]

786. Customers keep all the merchandise they have acquired. [A programmable attribute.]

787. Customers can recall [a programmable attribute] the time-stamped transactions it has taken
part in wrt. retailer order managements and courier services.

Formalization

type
785. C−Catalog = ...
786. C−Merchandise = M-set
787. C TransHist = C Trans∗

axiom
787. ∀ cth:C TransHist • [list is time-ordered]
value
785. attr C Catalog: C → C Catalog
786. attr C Merchandise: C → C Merchandise
787. attr C TransHist: C → CustTransHist

H.4.3.3 Order Management Attributes

Narrative

788. Order management partakes in several transactions:

783. accepting customer purchase orders;

H.4. ENDURANTS: INTERNAL QUALITIES 239

789. passing on that order to its inventory;

798. accepting product availability acknowledgment from the inventory;

784. informing customer of product availability; and,

790. when available, directing a dispatch order to its warehouse.

791. Order management makes note of accepted, i.e., incoming messages, (B and L) by keeping
a [programmable attribute] ‘Work-to-do’ “notice board” [a “basket”, a “dossier”].

788. OM Trans = C OM Order | OM IV Order | IV OM Ack | OM C Ack | OM WH Dispatch
783. C OM Order :: C OM Pref × Order
789. OM IV Order :: OM IV Pref × Order
798. IV OM Ack :: IV OM Pref × Order
784. OM C Ack :: OM C Pref × Order
790. OM WH Dispatch :: OM WH Pref × Order

Now the attributes.

Narrative

792. An order management ‘work-to-do’ dossier keeps a set of zero or more notes: customer orders
and inventory acknowledgments.

793. Order management records [a static attribute] which suppliers supply which products.

794. Order management also records the programmable order management transaction history
OMTransHist attribute records a time-stamped list of all order management transactions, be
they vis-a-vis customers, and its retailer’s inventory.

Formalization

type
792. OM WorkToDo = (C OM Order|IV OM Ack)-set
793. OM ProdSupp = ProdNm →m SUI-set
794. OM TransHist = OM Trans∗

value
792. attr OM WorkToDo: OM → OrdrMgtWorkToDo
793. attr OM ProdSupp: OM → ProdSupp
794. attr OM TransHist: OM → OM TransHist

H.4.3.4 Inventory Attributes

Narrative

795. Inventories partakes in several transactions:

789. accepting merchandise orders from their order management,

796. issuing wholesale order requests to a designated supplier,

797. accepting order acknowledgments from their warehouse, and

798. issuing merchandise availability messages to their order management.

240 CONTENTS

Formalization

795. IV Trans = OM IV Order | IV OM Ack | IV S Order | WH IV Ack
796. IV S Order :: IV S Pref × Order × S UI
797. WH IV Ack :: WH IV Pref × Order × WH UI
798. IV OM Ack :: IV OM Pref × Order

Narrative

799. An inventory ‘work-to-do’ dossier (a programmable attribute) keeps a set of zero or more
notes: inventory (merchandise availability) inquiry and merchandise availability.

800. The inventory (a programmable attribute) records, for every product name, its information
(as listed in Items 824–829 Page 243), the name of the supplier, and the stock-in-hand.

801. The inventory also records the programmable inventory transaction history IVTransHist at-
tribute records a time-stamped list of all inventory transactions, be they vis-a-vis order
management, its retailer’s warehouse or a supplier.

Formalization

type
799. IV WorkToDo = (IV S Order|IV OM Ack)-set
800. IV Inventory = ProdNm →m (WhoSalPrice×SugRetPrice×SalPrice×MInfo×SupNm×IV Stock)
799. IV Stock = Nat
801. IV TransHist = IVTrans∗

value
799. attr IV WorkToDo: IV → IV WorkToDo
800. attr IV Inventory: IV → Inventory
801. attr IV TransHist: IV → IV TransHist

H.4.3.5 Warehouse Attributes

Narrative

802. Warehouses partake in four kinds of transactions:

803. being delivered sets of a product named merchandise from suppliers,

804. informing its inventory of (wholesale) supplier delivery,

805. being ordered by its order management, to dispatch merchandise to customers and

806. delivering merchandise to couriers (for them to deliver to customers).

Formalization

802. WH Trans = S WH Del | WH IV Ack | OM WH Del | WH CS Del
803. S WH Del = S WH Pref × Order × M-set
804. WH IV Ack = WH IV Pref × Order
805. OM WH Dispatch = OM WH Pref × Order
806. WH CS Del = WH CS Pref × Order × M-set

H.4. ENDURANTS: INTERNAL QUALITIES 241

Narrative

807.

808. The programmable warehouse Store attribute reflects, for every product name the zero, one
or more merchandise of that name.

809. The programmable warehouse WHTransHist attribute records a time-stamped list of all ware-
house transactions, be they vis-a-vis suppliers, its retailer’s inventory, its retailer’s order
management, and customers.

Formalization

type
807. WH WorkToDo = (S WH Del|OM WH Dispatch)-set
808. WH Store = ProdName →m M-set
809. WH TransHist = WH Trans∗

value
807. attr WH WorkToDo: WH → WH WH WorkToDo
808. attr WH Store: WH → WH Store
809. attr WH TransHist: WH → WH TransHist

H.4.3.6 Supplier Attributes

Narrative

810. Suppliers, in this model, partake in two transactions:

811. accepting wholesale orders for merchandise from retailers’ inventories, and

812. delivering such merchandise orders to retailers’ warehouses.

Formalization

810. S Trans = IV S Order | S WH Del
811. IV S Order = IV S Pref × Order
812. S WH Del = S WH Pref × Order × M-set

Narrative

813. The programmable supplier attribute S WorkToDo temporarily contains ‘replicas’ of “incom-
ing” IV S Orders.

814. The programmable supplier attribute S Products reflects, for every product name a suffi-
cient10 number of merchandise of that name.

815. The programmable supplier attribute S TransHist records a time-stamped list of all supplier
transactions, be they vis-a-vis retailers’ inventory, and retailers’ warehouses.

10

242 CONTENTS

Formalization

type
813. S WorkToDo = IV S Order-set
814. S Products = ProdNm →m M-set
815. S TransHist = S Trans∗

value
813. attr S WorkToDo: S → S WorkToDo
814. attr S Products: S → S Products
815. attr S TransHist: S → S TransHist

H.4.3.7 Courier Attributes

Narrative

816. Courier services, in this model, partake in two transactions:

817. accepting merchandise delivery orders to customers from retailers’ order management, and

818. delivering merchandise to customers

Formalization

type
816. CS Trans = WH CS Del | CS C Del
817. WH CS Del = WH CS Pref × Order × M-set
818. CS C Del = CS C Pref × Order× M-set

Narrative

819. The programmable courier service attribute CS WorkToDo reflects current, “live” deliveries,
and

820. the programmable attribute CS TransHist the time stamped history of transactions.

Formalization

type
819. CS WorkToDo = CS C Del-set
820. CS TransHist = CS Trans∗

value
819. attr CS WorkToDo: CS → CS WtD
820. attr CS TransHist: CS → CS TransHist

H.5 Merchandise

Merchandise (in [95]: Goods) are, using DS&E, modeled as parts. In [95] they are not considered
beyond being somehow identified. It is not clear.

821. We shall model merchandise as atomic parts.

type
821. M

H.6. PERDURANTS 243

H.5.1 “Unique Identity”

822. As parts merchandise have unique identity.

823. Although we shall treat merchandise as behaviours we shall assume that merchandise iden-
tities are distinct from any other unique identities of the market.

type
822. MI
value
822. uid M: M → MI
axiom
823. ∀ m:M • uid M(m) 6∈ cuis ∪ omuis ∪ ivuis ∪ whuis ∪ suis ∪ tuis

H.5.2 “Mereology”

Although merchandise, throughout its lifetime, can be related to suppliers, warehouses, courier
services and customers we shall omit modeling the mereology of merchandise.

H.5.3 “Attributes”

We suggest the following merchandise attributes:

824. product name;

825. wholesale price;

826. suggested retail price;

827. sales price;

828. actual price;

829. further product information: goods category, weight, packaging measures, volume, man-
ufacturer (with place-of-origin), manufacturing date, sale-by-date, an “how-to-use” guide,
guarantee, etc., etc.

type
824. ProdNm
825. WhoSalPrice
826. SugRetPrice
827. SalPrice
828. ActPrice
829. ProdInfo

H.5.4 Representation

We shall not be concerned with the representation of attributes.

H.6 Perdurants

We refer to [58, Chapters 6–7].
By transcendental deduction we now “morph” endurants into perdurants. Parts “morph” into

behaviours, here modeled in the style of CSP. Their mereology determine the channels between
part processes.

244 CONTENTS

H.6.1 Channels

We refer to [58, Sect. 7.5].
In this report we shall postulate a channel array indexed by pairs (expressed as two-element

sets) of unique identifiers. These identifiers are prescribed in the mereology of the relevant parts.

830. So there is a channel whose index sets allow the expression of communication between
customers, order management, inventories, warehouses, suppliers and courier services.

831. The type of the messages communicated is the union type of the customer, order manage-
ment, inventory [management], warehouse, supplier and courier service transactions.

channel
830. {ch[{ui,ui′}]|ui,ui′:UI•ui 6=ui′∧{ui,ui′}⊆uis}:Channel Trans
type
831. Channel Trans = C Trans|OM Trans|IV Trans|WH Trans|S Trans|CS Trans

H.6.2 Behaviours

We refer to [58, Sects. 7.6–7.8].
There now follows a sequence of informal narrative and formal specification texts. The formal

texts, in a sense, are a culmination of all the previous formal definitions. The formulas involve
rather may identifiers. Some are defined locally, some as behaviour function definition parameters,
others in previous formal definitions.

H.6.2.1 Customer Behaviour

Narrative

832. Customers alternate between retailer shopping and otherwise going about their daily life.

Shopping manifests itself in three related events:

• A the customer issuing a purchase order;

• O the receiving of acknowledgment of upcoming delivery;

• T the final acceptance of delivery.

Daily life is “modeled” by T . Customers alternate, internal don-deterministically, ⌈⌉, be-
tween these four events.

A When internal non-deterministically choosing to order merchandise, the customer must
decide on which retailer, product, how many and at what cost.

833. The customer then assembles a purchase order

834. which it sends to some retailer’s order management.

We refer to [58, Sect. 2.5.3] for understanding the rôle of record TIME.

We presently omit defining date.

835. Whereupon the customer resumes being a customer, however with updated transaction his-
tory.

836. O At some time the customer receives an acknowledgment from a retailer’s order man-
agement as to the [positive] acceptance of an order which was purchased some while ago
(omui,dati).

H.6. PERDURANTS 245

837. The customer records this in its transaction history while resuming being a customer

838. T At some time the customer receives the delivery of previously ordered merchandise.

839. The customer records the identities (as well as the merchandise) and

840. resumes being a customer.

841. U Et cetera.11

value
832. C: c ui:CUI×c mer:(omuis, csuis):C Mer×C Catalog → (C Merchandise×C TransHist)
832. in out { ch[{c ui,om ui}] | om ui:OMUI • om ui ∈ omuis }
832. in { ch[{c ui,cs ui}] | cs ui:CSUI • cs ui ∈ csuis } Unit
832. C Beh(c ui,c mer:(omuis, csuis),c ctlg)(c merch,c hist) ≡
832. A let (om ui,order) = decide on purchase((custinfo,mertbl),c hist) in

834. A–B ch[{c ui,om ui}] ! ordr:C OM Order(((c ui,record TIME())),order) ;
835. C(c ui,c mer,c ctlg)(c merch,〈ordr〉̂c hist) end

836. ⌈⌉ O let M–O ack:OM C Ack(prefix,order) = ch[{om ui,c ui}] ? in
837. C(cui,cmer,c ctlg)(merch,〈ack〉̂c hist) end

838. ⌈⌉ T let S–T del:CS C Del(prefix,order,ms) = ch[{cs ui,c ui}] ? in
839. let ms uis = {uid MI(m)|m:M•m ∈ ms} in
840. C(c ui,c mer,c ctlg)(merch ∪ ms,〈CS C Del(prefix,order,ms uis)〉̂c hist) end end

841. ⌈⌉ U ... C(cui,cmer,ctlg′)(merch′,c hist)

H.6.2.2 Order Management Behaviour

Narrative

842. Being order management, OM, manifests itself in six events:

843. B accepting customer order,

844. C offering inventory order,

845. L accepting inventory acknowledgment,

846. M offering OM acknowledgment acknowledgment to customer, and

N offering dispatch order to warehouse, and

847. V doing other OM business.

848. The OM behaviour internal non-deterministically (843., 844., 845., 846. and 847.) alternates
between B, C, L, M, N and V:

842. OM: om ui:OM UI × (ommer:(cuis,ivui,whui)):OM Mer × OM ProdSupp →
842. (OM WorkToDo × OM TransHist)
842. in out { ch[{c ui,om ui}] | c ui:CUI•c ui ∈ cuis }
842. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
842. OM(om ui,om mer:(cuis,iv ui,wh ui),om prodsupp)(om wtd,om hist) ≡
843. B OM.C OM Order(om ui,om mer,om prodsupp)(om wtd,om hist)

844. ⌈⌉ C OM.OM IV Order(om ui,om mer, om prodsupp)(om wtd,om hist)

11We leave it to the reader to be more specific. The “etcetera” could, for example, describe possible updates to
the catalog and merchandise repository.

246 CONTENTS

845. ⌈⌉ L OM.IV OM Ack(om ui,om mer,om prodsupp)(om wtd,om hist)

846. ⌈⌉ M,N OM.Handle Input(om ui,om mer,om prodsupp)(om wtd,om hist)

847. ⌈⌉ V ... OM(om ui,om mer,om prodsupp)(om wtd,om hist)

849. B OM.C OM Order external non-deterministically offers to accept purchase orders from
customers.

850. In response, OM.C OM Order makes a note of this request in its work-to-do dossier, that
is, of eventually issuing an inventory order.

851. Thereupon OM.C OM Order resumes being ‘order management’ with an appropriately up-
dated work-to-do state.

Formalization

value
843. COM. OM Order: om ui:OM UI × (om mer:(cuis,iv ui,wh ui)):OM Mer × OM ProdSupp →
843. (OM WorkToDo × OM TransHist)
843. in out { ch[{c ui,om ui}] | c ui:CUI•c ui ∈ cuis }
843. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
843. COM. OM Order(omui,om mer:(cuis,ivui,whui),om prodsupp)(om wtd,om hist) ≡
849. B ⌈⌉⌊⌋ { let A–B ordr:C OM Ordr(((c ui,dati)),order)=ch[{c ui,om ui}] ? in
850. let om wtd′ = om wtd ∪ {OM IV Ordr(((c ui,dati)),order,)} in
851. OM(om ui,om mer,om prodsupp)(om wtd′,〈ordr〉̂omhist)
843. | c ui:C UI • c ui ∈ cuis end end }

Narrative

852. C OM.OM IV Order inquires as to whether order management has a ‘work-to-do’ note on
ordering a quantity of a named product.

853. If so, it selects that note.

854. It then selects a suitable product supplier and a sufficient quantity of the named product.

855. Finally it offers an inquiry to the inventory.

856. Whereupon it resumes being OM.

857. If OM.OM IV Order finds no such note it resumes being OM.

Formalization

value
844. OM.OM IV Order: om ui:OMUI × (om mer:(cuis,ivui,whui)):OM Mer × OM ProdSupp →
844. (OM WorkToDo × OM TransHist)
844. in out { ch[{c ui,om ui}] | c ui:C UI•c ui ∈ cuis }
844. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
844. OM.OM IV Order(om ui,om mer:(cuis,iv ui,wh ui),om prodsupp)(om wtd,om hist) ≡
852. C if OM IV Ordr(((c ui,dati)),order,) ∈ wtd
853. then let ordr:OM IV Ordr(((c ui,dati)),order,) • ordr ∈ wtd in
854. let s ui:S UI • find supplier(order)(om prodsupp), dati′ = record TIME() in

855. C–D ch[{om ui,iv ui}] ! ordr′:OM IV Ordr(((om ui,dati′),(c ui,dati)),order) ;
856. OM(om ui,om mer,om prodsupp)(om wtd \ {ordr},〈ordr〉̂om hist) end end

H.6. PERDURANTS 247

857. else OM(om ui,om mer,om prodsupp)(om wtd,om hist) end

854. find supplier: Order × OM ProdSupp → S UI, find supplier(order)(om prodsupp) ≡ ...

Narrative

858. L OM.IV OM Ack offers to accept an order acknowledgment from the retailer inventory.

859. It places this acknowledgment in the OM’s ‘work-to-do’ “basket” as a “matching” pair of
customer acknowledgment and warehouse order dispatch notes.

860. And resumes being OM.

Formalization

value
845. OM.IV OM Ack: OM UI × OM Mer × OM ProdSupp →
845. (OM WorkToDo × OM TransHist)
845. in out { ch[{c ui,om ui}] | c ui:C UI•c ui ∈ cuis }
845. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
845. OM.IV OM Ack(om ui,om mer:(cuis,iv ui,wh ui),m prodsupp)(om wtd,om hist) ≡
858. L let K–L iv om ack:IV OM Ack(pref,ordr) = ch[{om ui,iv ui}] ? in
859. let om wtd′ = om wtd ∪ {OM C Ack(((om ui,),pref),ordr),
859. OM WH Dispatch(((om ui,),pref),ordr)} in
860. OM(om ui,om mer,om prodsupp)(om wtd′,〈iv om ack〉̂om hist) end end

Narrative

861. M,N If a suitable, i.e., “matching”, pair of customer acknowledgment and warehouse order
dispatch notes, can be found in the ‘work-to-do’ dossier,

862. then time is recorded,

863. the pair of to-do notes identified and

864. that pair removed from the work-to-do basket, whereupon

865. the customer is notified of the acknowledgment, and

866. the warehouse is notified of the order dispatch;

867. an updated order management transaction history is prepared, and

868. the OM.OM C Ack OM WH Desp resumes being OM Beh;

869. else OM.OM C Ack OM WH Desp resumes being OM.

Formalization

value
846. OM.Handle Input: OM UI×OM Mer×OM ProdSupp→(OM WorkToDo×OM TransHist) Unit
846. (OM WorkToDo × OM TransHist)
846. in out { ch[{c ui,om ui}] | c ui:CUI•c ui ∈ cuis }
846. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
846. OM.Handle Input(om ui,om mer:(cuis,iv ui,wh ui),om prodsupp)(om wtd,om hist) ≡
861. M if ∃ two:{IV OM Ack(((om ui,),pref),ordr),OM WH Dispatch(((om ui,),pref),ordr)} • two ⊆ om wtd

248 CONTENTS

862. then let dati′ = record TIME(),
863. iv om ack = OM C Ack(((om ui,),pref),ordr) • iv om ack ∈ om wtd,
863. om wh dis = OM WH Dispatch(((om ui,),pref),ordr) • om wh dis ∈ wtd,
864. om wtd′ = om wtd \ {iv om ack,om wh dis} in

865. { M–O ch[{om ui,c ui}] ! om c ack′:OM C Ack(((om ui,dati′),pref),ordr) ‖
866. N–P ch[{om ui,wh ui}] ! om wh dis′:OM WH Dispatch(((om ui,dati′),pref),ordr) } ;
867. let om hist′ = 〈om c ack′,om wh dis′〉̂om hist in
868. OM(om ui,om mer,om prodsupp)(om wtd′,om hist′) end end
869. else OM(om ui,om mer,om prodsupp)(om wtd,om hist) end

Narrative

870. V We leave this behaviour further undefined.

Formalization

870. V ...

H.6.2.3 Inventory Behaviour

Narrative

871. The IV (inventory) behaviour communicates with the order management and the warehouse
of the retailer to which it belongs, and with a variety of suppliers.

The IV behaviour alters between External non-deterministically offering to accept

872. D order input communications from its order management;

873. J order acknowledgment input communications from its warehouse; and

874. α while internal non-deterministically handling incoming orders;

875. E internal non-deterministically offering order output communications to a designated sup-
plier; or

876. K internal non-deterministically offering acknowledgment communications to its order man-
agement.

Formalization

value
871. IV: IV UI × (om ui,wh ui,suis):IV Mer → (IV WtD×IV Inventory×IV TransHist) Unit
871. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
871. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit
871. IV(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡
872. D IV.OM IV Order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

873. J ⌈⌉ IV.WH IV Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)
874. α ⌈⌉ IV.Handle Input(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

875. E ⌈⌉ IV.IV S Order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

876. K ⌈⌉ IV.IV OM Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)
871. pre: iv ui ∈ ivuis ∧ om ui ∈ omuis ∧ wh ui ∈ whuis
871. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧iv ui=uid IV(r)∧om ui=uid OM(r)∧wh ui=uid WH(r)

H.6. PERDURANTS 249

Narrative

877. D The IV.OM IV Order behaviour offers to accept an order [input] communication from
its order management, which, when received, that order is put in the inventory ‘work-to-do’
basket –

878. to eventually be handled.

879. Whereupon the IV.OM IV Order resumes being the IV behaviours.

Formalization

type
878. Handle OM IV Order :: Prefix × Order
value

877. D IV.OM IV order: IV UI × IV Mer → (IV WorkToDo×IV Inventory×IV TransHist) Unit
877. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
877. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit

877. D IV.OM IV order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡
877. let C–D OM IV Order(prefix,order) = ch[{om ui,iv ui}] ? in
878. let iv wtd′ = {Handle OM IV Order(prefix,order)} ∪ iv wtd in
879. IV(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd′,iv inv,iv hist) end end

Narrative

880. J The IV.WH IV Ack behaviour offers to accept a supply availability acknowledgment
[input] communication from its warehouse.

881. When received that acknowledgment is put in the inventory ‘work-to-do’ basket.

882. Whereupon the IV.OM IV Order resumes being the IV behaviours.

Formalization

value

873. J IV.WH IV Ack: IV UI × IV Mer → (IV Inventory × IV TransHist) Unit
873. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
873. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit

873. J IV.WH IV Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv inv,iv hist) ≡
880. let I–J WH IV ack(prefix,order) = ch[{wh ui,iv ui}] ? in
881. let iv wtd′ = {} ∪ iv wtd in
882. IV(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd′,iv inv,iv hist) end end

Narrative

883. α If there exists, in the ‘work-to-do’ basket, a handle OM IV order, cf. Item 878.,

884. then observe that order’s product name, pn, quantity, q, price, p and payment reference, ref,
and

885. observe that product’s entry (its wholesale price, wp, suggested retail price, srp, sales price,
sp, a recommended supplier, s ui, and the quantity at hand in the warehouse stock) in the
inventory [catalog].

886. If the order quantity is lower than the warehouse stock for that product,

250 CONTENTS

887. then choose a suitable re-order quantity, q′,

888. concoct an inventory-to-supplier order,

889. add that to, and remove the handle order from the ‘work-to-do’ basket, and

890. adjust the stock quantity in the inventory catalog,

891. before resuming being the inventory behaviour;

892. else update the ‘work-to-do’ basket with an inventory-to-order management acknowledgment
to, and remove the handle order from the ‘work-to-do’ basket

893. and resume being the inventory behaviour.

894. If there does not exists, in the ‘work-to-do’ basket, a handle OM IV order, then resume being
the inventory behaviour.

Formalization

type
878. Handle OM IV Order :: Prefix × Order
value
874. α IV.Handle Input: IV UI × IV Mer → (IV WorkToDo × IV Inventory × IV TransHist)
874. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
874. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit
874. α IV.Handle Input(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡
883. if ∃ ho:Handle OM IV Order(prefix,order) • ho ∈ iv wtd
883. then let ho:Handle OM IV Order(prefix,order) • ho ∈ iv wtd
884. let (pn,q,p,ref) = ho in axiom pn ∈ dom iv inv
885. let (wp,srp,sp,mi,s ui,stock) = iv inv(pn) in axiom [p ∈ {srp,sp}]
886. if q < stock
887. then let q′:Nat • q′>q ∧ ... in
888. let iv s order = IV S Order(prefix,(pn,q′,wp,iv ref)) in
889. let iv wtd′ = {iv s order} ∪ iv wtd \ {ho},
890. iv inv′ = iv inv † [pn 7→(wp,srp,sp,mi,s ui,stock − q)] in
891. IV(iv ui,iv mer)(iv wtd′,iv inv′,iv hist) end end end
892. else let iv wtd′ = {IV OM Ack(prefix,order)} ∪ iv wtd \ {ho} in
893. IV(iv ui,iv mer)(iv wtd′,iv inv,iv hist) end end
894. else IV(iv ui,iv mer)(iv wtd,iv inv,iv hist) end end end end

Narrative

895. E If there exists, in the ‘work-to-do’ basket, a handle OM IV order,

896. then retrieve that order

897. and remove it from the ‘work-to-do’ basket while

898. communicating the order, updated with a date-timed prefix, to a designated supplier,

899. and resuming being the inventory behaviour.

900. If no handle OM IV order is in the basket, then resume being “an unchanged” inventory
behaviour.

H.6. PERDURANTS 251

Formalization

875. E IV.IV S Order: IV UI × IV Mer → (IV WorkToDo × IV Inventory × IV TransHist)
871. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
871. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit

875. E IV.IV S Order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡
895. if ∃ o:IV S Order(prefix,order,s ui) • o ∈ iv wtd axiom s ui ∈ suis
896. then let o:IV S Order(prefix,order,s ui) • o ∈ iv wtd in
897. let iv wtd′ = iv wtd \ {o}, dati = record TIME() in
898. E–F ch[{iv ui,s ui}] ! msg:IV S Order(((iv ui,dati),prefix),order,wh ui) ;
899. IV(iv ui,iv mer)(iv wtd′,iv inv,〈msg〉̂iv hist)
875. end end
899. else IV(iv ui,iv mer)(iv wtd,iv inv,iv hist) end

Narrative

901. K If there exists, in the ‘work-to-do’ basket, an IV OM Ack(prefix,order),

902. then retrieve that order

903. and remove it from the ‘work-to-do’ basket while

904. communicating the order, updated with a date-timed prefix, to a designated supplier,

905. and resuming being the inventory behaviour.

906. If no handle OM IV order is in the basket, then resume being “an unchanged” inventory
behaviour

Formalization

value
876. IV.IV OM Ack: IV UI × IV Mer → (IV Inventory × IV TransHist)
876. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
876. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit
876. IV.IV OM Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv inv,iv hist)
901. if ∃ a:IV OM Ack(prefix,order) • a ∈ iv wtd
902. then let a:IV OM Ack(prefix,order) • a ∈ iv wtd in
903. let iv wtd′ = iv wtd \ {a}, dati = record TIME() in

904. K–L ch[{iv ui,om ui}] ! msg:IV OM Ack(((iv ui,dati),prefix),order) ;
905. IV(iv ui,iv mer)(iv wtd′,iv inv,〈msg〉̂iv hist)
875. end end
906. else IV(iv ui,iv mer)(iv wtd,iv inv,iv hist) end

H.6.2.4 Warehouse Behaviour

Narrative

907. The WH (warehouse) behaviour accepts supplies from any supplier, provides supply acknowl-
edgments to its inventory, accepts dispatch order from its order management and provides
merchandise to any courier service.

Internal non-deterministically the WH behaviour alternates between

908. H external non-deterministically accepting deliveries from suppliers,

252 CONTENTS

909. P accepting order dispatches from its order management,

910. H,P handling deferred [but accepted] inputs,

911. I offering acknowledgments of supplies to its inventory, and

912. Q delivering merchandise (orders) to any one of a number of designated courier services.

Formalization

value
907. WH: wh ui:WH UI × (om ui,iv ui,suis,csuis):WH Mer →
907. (WH WorkToDo×WH Store×WH TransHist)
907. in { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis }
907. out ch[{wh ui,iv ui}] in ch[{wh ui,om ui}]
907. out { ch[{wh ui,c ui}] | c ui:C UI•c ui ∈ cuis } Unit
907. WH(wh ui,wh mer:(wh ui,om ui,iv ui,suis,csuis))(wh wtd,wh store,wh hist) ≡
908. H WH.S WH Del(wh ui,wh mer)(wh wtd,wh store,wh hist)

909. P ⌈⌉ WH.OM WH Disp(wh ui,wh mer)(wh wtd,wh store,wh hist)

910. H,P ⌈⌉ WH.Handle Input(wh ui,wh mer)(wh wtd,wh store,wh hist)

911. I ⌈⌉ WH.WH IV Ack(wh ui,wh mer)(wh wtd,wh store,wh hist)

912. Q ⌈⌉ WH.WH CS Deliv(whui,whmer)(wh wtd,wh store,wh hist)

907. pre: wh ui ∈ whuis ∧ om ui ∈ omuis ∧ iv ui ∈ ivuis
907. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧om ui=uid OM(r)∧iv ui=uid IV(r)

Narrative

913. H The WH.S WH Del behaviour external non-deterministically offers to accept a supplier
to warehouse delivery message.

914. When received the WH.S WH Del behaviour deposits this message in its ‘work-to-do’ bas-
ket.

915. It then resumes being the WH behaviour.

Formalization

value

908. H WH.S WH Del: wh ui:WH UI × (, ,suis,):WH Mer →
908. (WH WorkToDo×WH Store×WH TransHist)
908. in { ch[{s ui,wh ui}] | s ui:S UI•s ui ∈ suis } Unit

908. H WH.S WH Del(wh ui,wh mer:(, ,suis,))(wh wtd,wh store,wh hist) ≡
913. { let G–H delivery:S WH Del(prefix,order,ms) = ch[{s ui,wh ui}] ? in
914. let wh wtd′ = wh wtd ∪ {delivery} in
915. WH(wh ui,wh mer)(wh wtd′,wh store,wh hist)
913. end end | s ui:S UI•s ui ∈ suis }
908. pre: wh ui ∈ whuis ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)

H.6. PERDURANTS 253

Narrative

916. P The WH.OM WH Disp behaviour offers to accept an order management to warehouse
[order] dispatch message.

917. When received the WH.OM WH Disp behaviour deposits this message in its ‘work-to-do’
basket.

918. It then resumes being the WH behaviour.

Formalization

value

909. P WH.OM WH Disp: wh ui:WH UI×(om ui, , ,):WH Mer →
909. (WH WorkToDo×WH Store×WH TransHist)
909. in ch[{om ui,wh ui}] Unit

909. P WH.OM WH Disp(wh ui,wh mer:(om ui, , ,))(wh wtd,wh store,wh hist) ≡
916. let N–P dispatch:OM WH Dis(prefix,order) = ch[{om ui,wh ui}] ? in
917. let wh wtd′ = wh wtd ∪ {dispatch} in
918. WH(wh ui,wh mer)(wh wtd′,wh store,wh hist)
916. end end
907. pre: wh ui ∈ whuis ∧ om ui ∈ omuis ∧ iv ui ∈ ivuis
907. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧om ui=uid OM(r)∧iv ui=uid IV(r)

Narrative

919. H,P The rôle of the WH.Handle Input behaviour is to service either of the two kinds of
inputs received by the warehouse, from suppliers, S, and from its order management, OM.

920. There are two possible kinds of “deferred” messages.

921. If there is a supplier-to-warehouse, S WH Del(prefix,order,ms), delivery message,

922. then that message is “converted” into a warehouse-to-inventory delivery acknowledgment
message in, the ‘work-to-do’ basket,

923. and the WH.Handle Input behaviour reverts to being the WH behaviour;

924. else if there is an order management-to-warehouse, OM WH Dis(prefix,order), message,

925. then that message is “converted” into a warehouse-to-courier service delivery message,
WH CS Del(prefix,order), in the ‘work-to-do’ basket,

926. and the WH.Handle Input behaviour reverts to being the WH behaviour;

927. if there are no messages in the basket then the WH.Handle Input behaviour reverts to being
the WH behaviour.

928.

254 CONTENTS

Formalization

value

919. H,P WH.Handle Input: wh ui:WH UI × (,iv ui, ,):WH Mer →
919. (WH WorkToDo×WH Store×WH TransHist)
919. out ch[{wh ui,iv ui}] Unit

919. H,P WH.Handle Input(wh ui,wh mer:(,iv ui, ,))(wh wtd,wh store,wh hist) ≡
920. case wh wtd of
921. {S WH Del(prefix,order,ms)} ∪ wh wtd′ →
922. let wh wtd′′ = wh wtd′ ∪ {WH IV Ack(prefix,order,ms)} in
923. WH(wh ui,wh mer)(wh wtd′′,wh store,wh hist) end
924. {OM WH Dis(prefix,order)} ∪ wh wtd′ →
925. let wh wtd′′ = wh wtd′ ∪ {WH CS Del(prefix,order)} in
926. WH(wh ui,wh mer)(wh wtd′′,wh store,wh hist) end
927. → WH(wh ui,wh mer)(wh wtd,wh store,wh hist)
920. end
920. pre: wh ui ∈ whuis ∧ iv ui ∈ ivuis
920. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧iv ui=uid IV(r)
920. axiom: [there can only at most be the two kinds of messages as ‘cased’ in the wtd basket.]

Narrative

929. I If there exists a warehouse-to-inventory [supplier] delivery acknowledgment message in
the ‘work-to-do’ basket,

930. then select and remove that message from the basket,

931. record the current time, and

932. communicate the acknowledgment message to the inventory,

933. and resume being the appropriately updated WH behaviour;

934. else resume being the otherwise unchanged WH behaviour.

Formalization

value

911. I WH.WH IV Ack: wh ui:WH UI × (,iv ui, ,):WH Mer →
911. (WH WorkToDo×WH Store×WH TransHist)
911. out ch[{wh ui,iv ui}] Unit

911. I WH.WH IV Ack(wh ui,wh mer)(wh wtd,wh store,wh hist) ≡
929. if ∃ a:WH IV Ack(prefix,order,ms) • d ∈ om wtd
930. then let a:WH IV Ack(prefix,order,ms) • a ∈ om wtd in
930. let wh wtd′ = wh wtr \ {a},
931. dati = record TIME() in

932. I–J ch[{wh ui,iv ui}] ! ack:WH IV Ack(((wh ui,dati),prefix),order) ;
933. WH(wh ui,wh mer)(wh wtd′,wh store,〈ack〉̂wh hist) end end
934. else WH(wh ui,wh mer)(wh wtd,wh store,wh hist) end
907. pre: wh ui ∈ whuis ∧ iv ui ∈ ivuis
907. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧iv ui=uid IV(r)

H.6. PERDURANTS 255

Narrative

935. Q If there exists a order management to warehouse [supplier] delivery message in the
‘work-to-do’ basket,

936. then select and remove that message from the basket,

937. record the current time, and

938. communicate the acknowledgment message to the inventory,

939. and resume being the appropriately updated WH behaviour;

940. else resume being the otherwise unchanged WH behaviour.

Formalization

value

912. Q WH.WH CS Deliv: wh ui:WH UI × (, , ,csuis):WH Mer →
912. (WH WorkToDo×WH CS Dire×WH Store×WH TransHist)
912. out { ch[{wh ui,c ui}] | c ui:C UI•c ui ∈ cuis } Unit

912. Q WH.WH CS Deliv(wh ui,wh mer:(, , ,csuis))(wh wtd,wh store,wh hist) ≡
935. if ∃ a:OM WH Disp(prefix,order,cs ui) • a ∈ om wtd
936. then let d:OM WH Disp(prefix,order,cs ui) • a ∈ om wtd in
936. let wh wtd′ = wh wtr \ {d},
937. dati = record TIME(),
937. os:M-set • os⊆wh store ∧ card os = q in

938. Q–R ch[{wh ui,cs ui}] ! ack:WH CS Disp(((wh ui,dati),prefix),order,os) ;

939. WH(wh ui,wh mer)(wh wtd′,wh store \ {os},〈ack〉̂wh hist) end end
940. else WH(wh ui,wh mer)(wh wtd,wh store,wh hist) end
907. pre: wh ui ∈ whuis ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)

H.6.2.5 Supplier Behaviour

Narrative

941. The Supplier behaviour internal non-deterministically “alternates” between

942. F accepting orders from any retailers’ inventory, and

943. G delivering such orders to retailers’ warehouses.

Formalization

value
941. S: S UI × (ivuis, whuis):S Mer → (S WorkToDo×S Products×S TransHist)
941. in { ch[{iv ui,s ui}] | iv ui:IV UI•iv ui ∈ ivuis }
941. out { ch[{s ui,wh ui}] | wh ui:WH UI•wh ui ∈ whuis } Unit
941. S(s ui,s mer:(ivuis, whuis))(s wtd,s products,s hist) ≡
942. F S.IV S Order(s ui,s mer:(ivuis, whuis))(s wtd,s products,s hist)

943. G ⌈⌉ S.S WH Deliv(s ui,s mer:(ivuis, whuis))(s wtd,s products,s hist)
941. pre: s ui ∈ suis ∧ ∃ s:S • r ∈ obs Ss(obs Sa(mkt))∧sui=uid UI(r)

Please note that we have omitted the “intermediary” behaviour of the Supplier handling inputs.
We suggest that such handling is taken care of directly by the S.S WH Delivery behaviour. Also
note that we do not describe payment aspects.

256 CONTENTS

Narrative

944. The S.IV S Order behaviour external non-deterministically offers to accept merchandise
orders from any retailer’s inventory behaviour.

945. Having received such an order it proceeds to record it in its ‘work-to-do’ basket –

946. whereupon it resumes being the S behaviour (with the updated basket).

Formalization

value

942. F S.IV S Order(s ui,s mer:(ivuis,))(s wtd,s products,s hist) ≡
944. ⌈⌉⌊⌋ { let E–F IV S Order(prefix,order) = ch[{iv ui,s ui}] ? in
945. let s wtd′ = s wtd ∪ {IV S Order(prefix,order)} in
946. S(s ui,s mer)(s wtd′,s products,s hist)
944. | iv ui:IV UI•iv ui ∈ ivuis end end }

Narrative

947. If there exists a IV S Order(prefix,order) message in the ‘work-to-do’ basket,

948. then select such a message,

949. examine the order,

950. select the quantified number of merchandise of the ordered product,

951. ascertain the current time,

952. and deliver the message to the warehouse of the requesting retailer;

953. then resume being the Supplier behaviour with appropriately updated programmable at-
tributes.

954. If there does not exists a IV S Order(prefix,order) message in the ‘work-to-do’ basket, then
revert to being the Supplier behaviour.

Formalization

value

943. G S.S WH Deliv(s ui,s mer:(ivuis, whuis))(s wtd,s products,s hist) ≡
947. if ∃ h:IV S Order(prefix,order,wh ui) • h ∈ s wtd
948. then let h:IV S Order(prefix,order,wh ui) • h ∈ s wtd in
949. let (pn,q,cost,payref) = order in
950. let ms:M-set • ms ⊆ s products(pn)∧card ms = q,
951. dati = record TIME() in

952. G–H ch[{s ui,wh ui}] ! d:S WH Deliv(((s ui,dati),pref),order,ms) ;
953. S(s ui,s mer)(s wtd \ {h},s products†[pn 7→s products(pn) \ ms],〈d〉̂s hist)
948. end end end
954. else S(s ui,s mer)(s wtd,s products,s hist) end

H.6. PERDURANTS 257

H.6.2.6 Courier Service Behaviour

Narrative

955. The CS, courier service, behaviour internal non-deterministically alternates between

956. R offering to accept a warehouse to [customer directed] courier service delivery of merchan-
dise and

957. S offering a courier service to customer delivery.

Formalization

value
955. CS: CS UI × CS Mer → (CS WorkToDo × CS TransHist) Unit
955. CS(cs ui,csmer:(whis, cuis))(cs wtd,cs hist) ≡
956. R CS.WH CS Deliv(cs ui,csmer:(whis, cuis))(cs wtd,cs hist)

957. S ⌈⌉ CS.CS C Deliv(cs ui,csmer:(whis, cuis))(cs wtd,cs hist)
955. pre: csui ∈ csuis

Narrative

958. R The CS.WH CS Deliv behaviour external non-deterministically offers to accept a cus-
tomer directed delivery request from any retailer’s warehouse.

959. Receiving such a request it updates its ‘work-to-do’ basket accordingly,

960. and reverts to being the courier service CS.

Formalization

value

956. R CS.WH CS Deliv: CS UI × CS Mer → (CS WorkToDo × CS TransHist) Unit

956. R CS.WH CS Deliv(cs ui,csmer:(whis,))(cs wtd,cs hist) ≡
958. ⌈⌉⌊⌋ { let Q–R r:WH CS Deliv(((wh ui,dati),prefix),order,os) = ch[{wh ui,s ui}] ? in

959. let cs wtd′ = cs wtd ∪ {r} in
960. CS(cs ui,cs mer)(cs wtd′,cs hist)
958. | wh ui:WH UI•wh ui ∈ whuis end end }
956. pre: cs ui ∈ csuis

961. S If there exists a WH CS Del(prefix,order,ms,c ui) dispatch in the ‘work-to-do’ basket of a
courier service

962. then retrieve this dispatch

963. pass it on to the designated customer

964. and revert to being the courier service, CS, behaviour with appropriately updated arguments.

965. Otherwise continue being the CS behaviour.

258 CONTENTS

Formalization

value

957. S CS.CS C Deliv: CS UI × CS Mer → (CS WorkToDo × CS TransHist) Unit

957. S CS.CS C Deliv(cs ui,cs mer)(cs wtd,cs hist) ≡
961. if ∃ whd:WH CS Del(prefix,order,ms,c ui) • whd ∈ cs wtd
962. then let d:WH CS Deliv(prefix,order,ms,c ui) • whd ∈ cs wtd in

963. S–T ch[{cs ui,c ui}] ! cd:CS C Del(((cs ui,record TIME),prefix),order,ms) ;
964. CS(cs ui,csmer)(cs wtd \ {d},〈cd〉̂cs hist) end
965. else CS(cs ui,csmer)(cs wtd,cs hist) end
962. pre: cs ui ∈ csuis

H.6.3 System Initialisation

We refer to [58, Sect. 7.8].

966. Given a market, cf., mkt Item 750 on page 231, we can “synthesize” an RSL clause that
stands for the total behaviour of this market.

We refer to the system state as “generated” in Sect. H.3.4 on page 231.

967. The market behaviour is the parallel composition of

968. the distributed parallel compositions of all customers,

969. the distributed parallel compositions of all order managements,

970. the distributed parallel compositions of all inventories,

971. the distributed parallel compositions of all warehouses,

972. the distributed parallel compositions of all suppliers and

973. the distributed parallel compositions of all courier services.

value
966. mkt, cs, oms, ivs, whs, ss and css.
968. ‖ {C(uid C(c),mereo C(c),attr C Catalog(c))(attr C Merhandise(c),〈〉)|c:C•c∈cs}
967. ‖
969. ‖ {OM(uid OM(om),mereo OM(c),attr OM ProdSupp(om))(attr OM WorkToDo(om),〈〉)|om:OM•om∈coms}
967. ‖
970. ‖ {IV(uid IV(iv),mereo IV(iv))(attr IV WorkToDo(iv),attr IV Inventory(iv),〈〉)|iv:IV•iv∈ivs}
967. ‖
971. ‖ {WH(uid WH(wh),mereo WH(wh))(attr WH WorkToDo(wh),attr WH Store(wh),〈〉)|wh:WH•wh∈whs}
967. ‖
972. ‖ {S(uid S(s),mereo S(s))(attr S WorkToDo(s),attr S Products(s),〈〉)|s:S•s∈ss}
967. ‖
973. ‖ {CS(uid CS(cs),mereo CS(cs))(attr CS WorkToDo(cs),〈〉)|cs:CS•cs∈css}

H.7 Conclusion

H.7.1 Critique of the domain analysis & description Model

I am, today, approx. Spring 2021, not quite happy with my description.

H.7. CONCLUSION 259

• It was developed too quickly. I started on this model on Dec. 28, 2020. I was the only one
to develop this model.

• Along the “road” I did not take time to carefully consider the naming of types, values,
functions and behaviours.

• Also: the individual definitions of order management, inventory, warehouse, supplier and
courier service behaviours (OM, II, WH, S, CS) into their , as of Jan. 21, 2021, is/was
uneven.

– In the C (customer) behaviour description (Items 832 on page 244.– 841 on page 245.)
“all” is expressed in that one behaviour description, whereas in the OM, IV, WH, S
and CS behaviour descriptions the descriptions are decomposed into separate internal
non-deterministic behaviours, but not quite consistently.

– I have yet to check that the mereologies and attributes of parts are consistently used
in respective behaviour definitions.

– And I have yet to check that the indexing of all defined types, sorts, unique identifiers,
mereologies, attributes, channel and behaviours is consistent.

• But, on the whole, the model gives a reasonably adequate picture of how a model in the
domain science & engineering style would express the HERAKLIT retailer “challenge”.

• All I can say, not in any defense, is: “I am too12 old for this game these days !”

H.7.2 Proofs about Models

Models are developed, carefully, and honed, “perpetually, for several reasons. One is to be able to
prove properties of the domain being modeled but where these properties are not explicitly stated.
We speculate on a few – with more to come !

• “The sum total of merchandise, in the market as modeled, is constant: no merchandise “arise out
of the blue” (for example at suppliers), no merchandise “disappears mysteriously” (for example
in warehouses, courier services or at customers).”

• “Product quantity on hands in a retailer’s inventory (catalog) is always less than or equal to that
retailer’s corresponding quantities at hand in its warehouse.”

• With the ideal assumption that suppliers can always deliver requested numbers of any prod-
uct: “Customers are eventually delivered their ordered merchandise.”

• Etcetera !

We do not show any such proofs in this technical report.

H.7.3 Comparison of Models

We compare our model to that of [95].

H.7.3.1 “Minor” Discrepancies

• It seems, but this has to be checked, that orders, in the domain analysis & description model,
are for any number of one particular merchandise product, whereas the HERAKLIT model
allows the mixing of several products and of different quantities of these.

• It also seems that ...

more to come

12I was born Oct. 4, 1937

260 CONTENTS

H.7.3.2 Use of Diagrams

• Somewhere, in Footnote 5 on page 225, it is said that none of the figures in this report play
any rôle in the formal aspects of the ‘retailer market’ description.

– That is intended to be so.

– But is it really true ?

∗ When I first worked as an M.Sc. graduated engineer in designing data communica-
tions “gear” and computers for IBM (1962–1965, 1969) we all drew diagrams !

∗ When I then studied computer science (1965-1968) diagrams of software systems
(except for “trivial” program flowcharts) were frowned upon.

∗ Petri nets (around 1962–1963) are based almost exclusively on two-dimensional
diagrams. They are easy to grasp,

∗ The diagrams of HERAKLIT are likewise appealing.

– Figure H.2 on page 227 of this report is rather crucial, I found, in keeping track, while
I was developing the description, of all the various segments of that description – in
particular in making sure that the interfaces between behaviours “fitted”.

– I can imagine that some readers will find, especially Fig. H.2 on page 227 useful when
reading the description.

• So, perhaps, diagrams, of the kind that Fig. H.2 on page 227 represents, ought be “woven”
into the domain analysis & description analysis & description, into its principles, techniques
and tools.

H.7.3.3 Interleave versus “True” Concurrency

The reader is assumed to be quite familiar with these two kinds of semantic terms and their
meaning.

• As such, the HERAKLIT-based model, appears to be at an advantage – in that it expresses
“true concurrency”.

• But, before you get all too excited, the domain science & engineering/domain analysis &
description model, as its behaviours are defined, “do not lack far behind”, if-at-all !

– On one hand you can read the basically CSP clauses as if actions in separate behaviours
do indeed occur “truly concurrent”.

– On the other hand, by “splitting” up, as in the behaviour definitions of C, OM, IV,
WH, S and CS, these into separate actions, such as input, handling , etc., an as full
“measure” of local “true concurrency” seems to be achieved.

H.7.4 What Next ?

• It is my sincere hope that Messrs Fettke and Reisig will comment on the present report.

• I need to know where I have misunderstood the [intentions of the] HERAKLIT model [95].

• I need to know where my model fails in modeling what [95] achieves.

• etcetera !

Appendix I

Pipelines

Contents

I.1 Endurants: External Qualities . 262

I.1.1 Parts . 262

I.1.2 An Endurant State . 263

I.2 Endurants: Internal Qualities . 263

I.2.1 Unique Identification . 263

I.2.2 Mereology . 264

I.2.2.1 PLS Mereology . 264

I.2.2.2 Unit Mereologies . 264

I.2.3 Pipeline Concepts, I . 265

I.2.3.1 Pipe Routes . 265

I.2.3.2 Well-formed Routes . 265

I.2.3.3 Embedded Routes . 266

I.2.3.4 A Theorem . 266

I.2.3.5 Fluids . 267

I.2.4 Attributes . 267

I.2.4.1 Unit Flow Attributes . 267

I.2.4.2 Unit Metrics . 268

I.2.4.3 Wellformed Unit Metrics . 269

I.2.4.4 Summary . 269

I.2.4.5 Fluid Attributes . 270

I.2.4.6 Pipeline System Attributes . 271

I.2.5 Pipeline Concepts, II: Flow Laws . 271

I.3 Perdurants . 272

I.3.1 State . 272

I.3.2 Channel . 272

I.3.3 Actions . 272

I.3.4 Behaviours . 273

I.3.4.1 Behaviour Kinds . 273

I.3.4.2 Behaviour Signatures . 273

I.3.4.2.1 Behaviour Definitions 274

I.3.4.2.2 The Pipeline System Behaviour 274

I.3.4.2.3 The Pump Behaviours 275

I.3.4.2.4 The Valve Behaviours 275

I.3.4.3 Sampling Monitorable Attribute Values 276

I.3.4.4 System Initialisation . 276

I.4 Review . 276

261

262 CONTENTS

I.1 Endurants: External Qualities

I.1.1 Parts

Pump

Valve

Join

Fork

Pipe

Join

Fork

Pump

Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Figure I.1: An example pipeline system

974. A pipeline system contains a set of pipeline units and a pipeline system monitor.

975. The well-formedness of a pipeline system depends on its mereology (cf. Sect. I.2.2) and the
routing of its pipes (cf. Sect. I.2.3.2).

976. A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a join, a plate1, or a sink
unit.

977. We consider all these units to be distinguishable, i.e., the set of wells, the set pipe, etc., the
set of sinks, to be disjoint.

type
974. PLS′, U, M
975. PLS = {| pls:PLS′•wf PLS(pls) |}
value
975. wf PLS: PLS → Bool
975. wf PLS(pls) ≡
975. wf Mereology(pls)∧wf Routes(pls)∧wf Metrics(pls)2

974. obs Us: PLS → U-set
974. obs M: PLS → M
type
976. U = We | Pi | Pu | Va | Fo | Jo | Pl | Si
977. We :: Well
977. Pi :: Pipe
977. Pu :: Pump
977. Va :: Valv
977. Fo :: Fork
977. Jo :: Join

1A plate unit is a usually circular, flat steel plate used to “begin” or “end” a pipe segment.

I.2. ENDURANTS: INTERNAL QUALITIES 263

977. Pl :: Plate
977. Si :: Sink

I.1.2 An Endurant State

978. For a given pipeline system

979. we exemplify an endurant state σ

980. composed of the given pipeline system and all its manifest units, i.e., without plates.

value
978. pls:PLS
variable
979. σ := collect state(pls)
value
980. collect state: PLS
980. collect state(pls) ≡ {pls}∪ obs Us(pls) \ Pl

I.2 Endurants: Internal Qualities

I.2.1 Unique Identification

981. The pipeline system, as such,

982. has a unique identifier, distinct (different) from its pipeline unit identifiers.

983. Each pipeline unit is uniquely distinguished by its unit identifier.

984. There is a state of all unique identifiers.

type
982. PLSI
983. UI

value
981. pls:PLS
982. uid PLS: PLS → PLSI
983. uid U: U → UI

variable
984. σuid := { uid PLS(pls) } ∪ xtr UIs(pls)

axiom
983. ∀ u,u′:U•{u,u′}⊆obs Us(pls)⇒(u 6=u′⇒uid UI(u)6=uid UI(u′))
983. ∧ uid PLS(pls) 6∈ {uid UI(u)|u:U•u ∈ obs Us(pls)}

985. From a pipeline system one can observe the set of all unique unit identifiers.

value
985. xtr UIs: PLS → UI-set
985. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

2wf Mereology, wf Routes and wf Metrics will be explained in Sects. I.2.2.2 on the next page, I.2.3.2 on page 266,
and I.2.4.3 on page 269.

264 CONTENTS

986. We can prove that the number of unique unit identifiers of a pipeline system equals that of
the units of that system.

theorem:
986. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

I.2.2 Mereology

I.2.2.1 PLS Mereology

987. The mereology of a pipeline system is the set of unique identifiers of all the units of that
system.

type
987. PLS Mer = UI-set
value
987. mereo PLS: PLS → PLS Mer
axiom
987. ∀ uis:PLS Mer • uis = card xtr UIs(pls)

I.2.2.2 Unit Mereologies

988. Each unit is connected to zero, one or two other existing input units and zero, one or two
other existing output units as follows:

(a) A well unit is connected to exactly one output unit (and, hence, has no “input”).

(b) A pipe unit is connected to exactly one input unit and one output unit.

(c) A pump unit is connected to exactly one input unit and one output unit.

(d) A valve is connected to exactly one input unit and one output unit.

(e) A fork is connected to exactly one input unit and two distinct output units.

(f) A join is connected to exactly two distinct input units and one output unit.

(g) A plate is connected to exactly one unit.

(h) A sink is connected to exactly one input unit (and, hence, has no “output”).

type
988. MER = UI-set × UI-set

value
988. mereo U: U → MER

axiom
988. wf Mereology: PLS → Bool
988. wf Mereology(pls) ≡
988. ∀ u:U•u ∈ obs Us(pls)⇒
988. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
988. case (u,(card uius,card ouis)) of
988a. (mk We(we),(0,1)) → true,
988b. (mk Pi(pi),(1,1)) → true,
988c. (mk Pu(pu),(1,1)) → true,
988d. (mk Va(va),(1,1)) → true,
988e. (mk Fo(fo),(1,1)) → true,
988f. (mk Jo(jo),(1,1)) → true,
988f. (mk Pl(pl),(0,1)) → true, “begin”
988f. (mk Pl(pl),(1,0)) → true, “end”
988h. (mk Si(si),(1,1)) → true,
988. → false end end

I.2. ENDURANTS: INTERNAL QUALITIES 265

I.2.3 Pipeline Concepts, I

I.2.3.1 Pipe Routes

989. A route (of a pipeline system) is a sequence of connected units (of the pipeline system).

990. A route descriptor is a sequence of unit identifiers and the connected units of a route (of a
pipeline system).

type
989. R′ = Uω

989. R = {| r:Route′•wf Route(r) |}
990. RD = UIω

axiom
990. ∀ rd:RD • ∃ r:R•rd=descriptor(r)

value
990. descriptor: R → RD
990. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

991. Two units are adjacent if the output unit identifiers of one shares a unique unit identifier
with the input identifiers of the other.

value
991. adjacent: U × U → Bool
991. adjacent(u,u′) ≡ let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in ouis ∩ iuis 6= {} end

992. Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly infinite)
routes of that pipeline system.

(a) The empty sequence, 〈〉, is a route of pls.

(b) Let u, u′ be any units of pls, such that an output unit identifier of u is the same as an
input unit identifier of u′ then 〈u, u′〉 is a route of pls.

(c) If r and r′ are routes of pls such that the last element of r is the same as the first
element of r′, then r̂tlr′ is a route of pls.

(d) No sequence of units is a route unless it follows from a finite (or an infinite) number of
applications of the basis and induction clauses of Items 992a–992c.

value
992. Routes: PLS → RD-infset
992. Routes(pls) ≡
992a. let rs = 〈〉 ∪
992b. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
992c. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}
992d. in rs end

I.2.3.2 Well-formed Routes

993. A route is acyclic if no two route positions reveal the same unique unit identifier.

value
993. is acyclic Route: R → Bool
993. is acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i 6=j ∧ r[i]=r[j]

266 CONTENTS

994. A pipeline system is well-formed if none of its routes are circular (and all of its routes
embedded in well-to-sink routes).

value
994. wf Routes: PLS → Bool
994. wf Routes(pls) ≡
994. non circular(pls) ∧ are embedded Routes(pls)

994. is non circular PLS: PLS → Bool
994. is non circular PLS(pls) ≡
994. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

995. We define well-formedness in terms of well-to-sink routes, i.e., routes which start with a well
unit and end with a sink unit.

value
995. well to sink Routes: PLS → R-set
995. well to sink Routes(pls) ≡
995. let rs = Routes(pls) in
995. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

996. A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

996. are embedded Routes: PLS → Bool
996. are embedded Routes(pls) ≡
996. let wsrs = well to sink Routes(pls) in
996. ∀ r:R • r ∈ Routes(pls) ⇒
996. ∃ r′:R,i,j:Nat •

996. r′ ∈ wsrs
996. ∧ {i,j}⊆inds r′∧i≤j
996. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

I.2.3.3 Embedded Routes

997. For every route we can define the set of all its embedded routes.

value
997. embedded Routes: R → R-set
997. embedded Routes(r) ≡ {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

I.2.3.4 A Theorem

998. The following theorem is conjectured:

(a) the set of all routes (of the pipeline system)

(b) is the set of all well-to-sink routes (of a pipeline system) and

(c) all their embedded routes

theorem:
998. ∀ pls:PLS •

998. let rs = Routes(pls),
998. wsrs = well to sink Routes(pls) in

I.2. ENDURANTS: INTERNAL QUALITIES 267

998a. rs =
998b. wsrs ∪
998c. ∪ {{r′|r′:R • r′ ∈ is embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
997. end

I.2.3.5 Fluids

999. The only fluid of concern to pipelines is the gas3 or liquid4 which the pipes transport5.

type
999. GoL [= M]

value
999. obs GoL: U → GoL

I.2.4 Attributes

I.2.4.1 Unit Flow Attributes

1000. A number of attribute types characterise units:

(a) estimated current well capacity (barrels of oil, etc.),

(b) pump height (a static attribute),

(c) current pump status (not pumping, pumping; a programmable attribute),

(d) current valve status (closed, open; a programmable attribute) and

(e) flow (barrels/second, a biddable attribute).

type
1000a. WellCap
1000b. Pump Height
1000c. Pump State == {|not pumping,pumping|}
1000d. Valve State == {|closed,open|}
1000e. Flow

1001. Flows can be added and subtracted,

1002. added distributively and

1003. flows can be compared.

value
1001. ⊕,⊖: Flow×Flow → Flow
1002. ⊕: Flow-set → Flow
1003. <,≤,=, 6=,≥,>: Flow × Flow → Bool

1004. Properties of pipeline units include

(a) estimated current well capacity (barrels of oil, etc.) [a biddable attribute],

(b) pipe length [a static attribute],

3Gaseous materials include: air, gas, etc.
4Liquid materials include water, oil, etc.
5The description of this document is relevant only to gas or oil pipelines.

268 CONTENTS

(c) current pump height [a biddable attribute],

(d) current valve open/close status [a programmable attribute],

(e) current [Laminar] in-flow at unit input [a monitorable attribute],

(f) current Laminar] in-flow leak at unit input [a monitorable attribute],

(g) maximum [Laminar] guaranteed in-flow leak at unit input [a static attribute],

(h) current [Laminar] leak unit interior [a monitorable attribute],

(i) current [Laminar] flow in unit interior [a monitorable attribute],

(j) maximum Laminar] guaranteed flow in unit interior [a monitorable attribute],

(k) current [Laminar] out-flow at unit output [a monitorable attribute],

(l) current [Laminar] out-flow leak at unit output [a monitorable attribute] and

(m) maximum guaranteed Laminar out-flow leak at unit output [a static attribute.

type
1004e In Flow = Flow
1004f In Leak = Flow
1004g Max In Leak = Flow
1004h Body Flow = Flow
1004i Body Leak = Flow
1004j Max Flow = Flow
1004k Out Flow = Flow
1004l Out Leak = Flow
1004m Max Out Leak = Flow
value
1004a attr WellCap: We → WellCap

1004b attr LEN: Pi → LEN
1004c attr Height: Pu → Height
1004d attr ValSta: Va → VaSta
1004e attr In Flow: U → UI → Flow
1004f attr In Leak: U → UI → Flow
1004g attr Max In Leak: U → UI → Flow
1004h attr Body Flow: U → Flow
1004i attr Body Leak: U → Flow
1004j attr Max Flow: U → Flow
1004k attr Out Flow: U → UI → Flow
1004l attr Out Leak: U → UI → Flow
1004m attr Max Out Leak: U → UI → Flow

1005. Summarising we can define a two notions of flow:

(a) static and

(b) monitorable.

type
1005a Sta Flows = Max In Leak×In Max Flow>Max Out Leak
1005b Mon Flows = In Flow×In Leak×Body Flow×Body Leak×Out Flow×Out Leak

I.2.4.2 Unit Metrics

Pipelines are laid out in the terrain. Units have length and diameters. Units are positioned in
space: have altitude, longitude and latitude positions of its one, two or three connection PoinTs6.

1006. length (a static attribute),

1007. diameter (a static attribute) and

1008. position (a static attribute).

type
1006. LEN
1007. ©
1008. POS == mk One(pt:PT) | mk Two(ipt:PT,opt:PT)
1008. | mk OneTwo(ipt:PT,opts:(lpt:PT,rpt:PT))

61 for wells, plates and sinks; 2 for pipes, pumps and valves; 1+2 for forks, 2+1 for joins.

I.2. ENDURANTS: INTERNAL QUALITIES 269

1008. | mk TwoOne(ipts:(lpt:PT,rpt:PT),opt:PT)
1008. PT = Alt × Lon × Lat
1008. Alt, Lon, Lat = ...
value
1006. attr LEN: U → LEN
1007. attr ©: U → ©
1008. attr POS: U → POS

We can summarise the metric attributes:

1009. Units are subject to either of four (mutually exclusive) metrics:

(a) Length, diameter and a one point position.

(b) Length, diameter and a two points position.

(c) Length, diameter and a one+two points position.

(d) Length, diameter and a two+one points position.

type
1009. Unit Sta = Sta1 Metric | Sta2 Metric | Sta12 Metric | Sta21 Metric
1009a Sta1 Metric = LEN × Ø × mk One(pt:PT)
1009b Sta2 Metric = LEN × Ø × mk Two(ipt:PT,opt:PT)
1009c Sta12 Metric = LEN × Ø × mk OneTwo(ipt:PT,opts:(lpt:PT,rpt:PT))
1009d Sta21 Metric = LEN × Ø × mk TwpOne(ipts:(lpt:PT,rpt:PT),opt:PT)

I.2.4.3 Wellformed Unit Metrics

The points positions of neighbouring units must “fit” one-another.

1010. Without going into details we can define a predicate, wf Metrics, that applies to a pipeline
system and yields true iff neighbouring units must “fit” one-another.

value
1010. wf Metrics: PLS → Bool
1010. wf Metrics(pls) ≡ ...

I.2.4.4 Summary

We summarise the static, monitorable and programmable attributes for each manifest part of the
pipeline system:

type
PLS Sta = PLS net×...
PLS Mon = ...
PLS Prg = PLS Σ×...
Well Sta = Sta1 Metric×Sta Flows×Orig Cap×...
Well Mon = Mon Flows×Well Cap×...
Well Prg = ...
Pipe Sta = Sta2 Metric×Sta Flows×LEN×...
Pipe Mon = Mon Flows×In Temp×Out Temp×...
Pipe Prg = ...
Pump Sta = Sta2 Metric×Sta Flows×Pump Height×...
Pump Mon = Mon Flows×...
Pump Prg = Pump State×...

270 CONTENTS

Valve Sta = Sta2 Metric×Sta Flows×...
Valve Mon = Mon Flows×In Temp×Out Temp×...
Valve Prg = Valve State×...
Fork Sta = Sta12 Metric×Sta Flows×...
Fork Mon = Mon Flows×In Temp×Out Temp×...
Fork Prg = ...
Join Sta = Sta21 Metric×Sta Flows×...
Join Mon = Mon Flows×In Temp×Out Temp×...
Join Prg = ...
Sink Sta = Sta1 Metric×Sta Flows×Max Vol×...
Sink Mon = Mon Flows×Curr Vol×In Temp×Out Temp×...
Sink Prg = ...

1011. Corresponding to the above three attribute categories we can define “collective” attribute
observers:

value
1011. sta A We: We → Sta1 Metric×Sta Flows×Orig Cap×...
1011. mon A We: We → ηMon Flows×ηWell Cap×ηIn Temp×ηOut Temp×...
1011. prg A We: We → ...
1011. sta A Pi: Pi → Sta2 Metric×Sta Flows×LEN×...
1011. mon A Pi: Pi → NMon Flows×ηIn Temp×ηOut Temp×...
1011. prg A Pi: Pi → ...
1011. sta A Pu: Pu → Sta2 Metric×Sta Flows×LEN×...
1011. mon A Pu: Pu → NMon Flows×ηIn Temp×ηOut Temp×...
1011. prg A Pu: Pu → Pump State×...
1011. sta A Va: Va → Sta2 Metric×Sta Flows×LEN×...
1011. mon A Va: Va → NMon Flows×ηIn Temp×ηOut Temp×...
1011. prg A Va: Va → Valve State×...
1011. sta A Fo: Fo → Sta12 Metric×Sta Flows×...
1011. mon A Fo: Fo → NMon Flows×ηIn Temp×ηOut Temp×...
1011. prg A Fo: Fo → ...
1011. sta A Jo: Jo → Sta21 Metric×Sta Flows×...
1011. mon A Jo: Jo → Mon Flows×ηIn Temp×ηOut Temp×...
1011. prg A Jo: Jo → ...
1011. sta A Si: Si → Sta1 Metric×Sta Flows×Max Vol×...
1011. mon A Si: Si → NMon Flows×ηIn Temp×ηOut Temp×...
1011. prg A Si: Si → ...

1011. NMon Flows ≡ (ηIn Flow,ηIn Leak,ηBody Flow,ηBody Leak,ηOut Flow,ηOut Leak)

Monitored flow attributes are [to be] passed as arguments to behaviours by reference so that their
monitorable attribute values can be sampled.

I.2.4.5 Fluid Attributes

Fluids, we here assume, oil, as it appears in the pipeline units have no unique identity, have not
mereology, but does have attributes: hydrocarbons consisting predominantly of aliphatic, alicyclic
and aromatic hydrocarbons. It may also contain small amounts of nitrogen, oxygen, and sulfur
compounds

1012. We shall simplify, just for illustration, crude oil fluid of units to have these attributes:

(a) volume,

I.2. ENDURANTS: INTERNAL QUALITIES 271

(b) viscosity,

(c) temperature,

(d) paraffin content (%age),

(e) naphtenes content (%age),

type
1012. Oil
1012a. Vol
1012b. Visc
1012c. Temp
1012d. Paraffin
1012e. Naphtene

value
1012b. obs Oil: U → Oil
1012a. attr Vol: Oil → Vol
1012b. attr Visc: Oil → Visc
1012c. attr Temp: Oil → Temp
1012d. attr Paraffin: Oil → Paraffin
1012e. attr Naphtene: Oil → Naphtene

I.2.4.6 Pipeline System Attributes

The “root” pipeline system is a compound. In its transcendentally deduced behavioral form it
is, amongst other “tasks”, entrusted with the monitoring and control of all its units. To do so it
must, as a basically static attribute possess awareness, say in the form of a net diagram of how
these units are interconnected, together with all their internal qualities, by type and by value.
Next we shall give a very simplified account of the possible pipeline system attribute.

1013. We shall make use, in this example, of just a simple pipeline state, pls ω.

The pipeline state, pls ω, embodies all the information that is relevant to the monitoring and
control of an entire pipeline system, whether static or dynamic.

type
1013. PLS Ω

I.2.5 Pipeline Concepts, II: Flow Laws

1014. “What flows in, flows out !”. For Laminar flows: for any non-well and non-sink unit the
sums of input leaks and in-flows equals the sums of unit and output leaks and out-flows.

Law:
1014. ∀ u:U\We\Si •

1014. sum in leaks(u) ⊕ sum in flows(u) =
1014. attr body LeakL(u) ⊕
1014. sum out leaks(u) ⊕ sum out flows(u)

value
sum in leaks: U → Flow
sum in leaks(u) ≡ let (iuis,) = mereo U(u) in ⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end
sum in flows: U → Flow
sum in flows(u) ≡ let (iuis,) = mereo U(u) in ⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end
sum out leaks: U → Flow
sum out leaks(u) ≡ let (,ouis) = mereo U(u) in ⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end
sum out flows: U → Flow
sum out flows(u) ≡ let (,ouis) = mereo U(u) in ⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

1015. “What flows out, flows in !”. For Laminar flows: for any adjacent pairs of units the out-
put flow at one unit connection equals the sum of adjacent unit leak and in-flow at that
connection.

272 CONTENTS

Law:
1015. ∀ u,u′:U•adjacent(u,u′) ⇒
1015. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in
1015. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

1015. attr Out FlowL(u)(uid U(u′)) =
1015. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u

′)(uid U(u)) end

These “laws” should hold for a pipeline system without plates.

I.3 Perdurants

We follow the ontology of Fig. 2.1 on page 12, the right-hand dashed box labeled Perdurants and
the right-hand vertical and horisontal lines.

I.3.1 State

We introduce concepts of manifest and structure endurants. The former are such compound
endurants (Cartesians of sets) to which we ascribe internal qualities; the latter are such compound
endurants (Cartesians of sets) to which we do not ascribe internal qualities. The distinction is
pragmatic.

1016. For any given pipeline system we suggest the state to consist of the manifest endurants of
all its non-plate units.

value
1016. σ = obs Us(pls)

I.3.2 Channel

1017. There is a [global] array channel indexed by a “set pair” of distinct manifest endurant part
identifiers – signifying the possibility of the syncharonisation and communication between
any pair of pipeline units and between these and the pipeline system.

channel
1017. { ch[{i,j}] | {i,j}:(PLSI|UI) • {i,j}⊆σid }

I.3.3 Actions

These are, informally, some of the actions of a pipeline system:

1018. start pumping: from a state of not pumping to a state of pumping “at full blast !”.7

1019. stop pumping: from a state of (full) pumping to a state of no pumping at all.

1020. open valve: from a state of a fully closed valve to a state of fully open valve.8

1021. close valve: from a state of a fully opened valve to a state of fully closed valve.

We shall not define these actions in this paper. But they will be referred to in the pipeline system
(Items 1040a, 1040b, 1040c), the pump (Items 1043a, 1043b) and the valve (Items 1046a, 1046b)
behaviours.

7– that is, we simplify, just for the sake of illustration, and do not consider “intermediate” states of pumping.
8– cf. Footnote 7.

I.3. PERDURANTS 273

I.3.4 Behaviours

I.3.4.1 Behaviour Kinds

There are eight kinds of behaviours:

1022. the pipeline system behaviour;9

1023. the [generic] well behaviour,

1024. the [generic] pipe behaviour,

1025. the [generic] pump behaviour,

1026. the [generic] valve behaviour,

1027. the [generic] fork behaviour,

1028. the [generic] join behaviour,

1029. the [generic] sink behaviour.

I.3.4.2 Behaviour Signatures

1030. The pipeline system behaviour, pls,

1031. The well behaviour signature lists the unique well identifier, the well mereology, the static
well attributes, the monitorable well attributes, the programmable well attributes and the
channels over which the well [may] interact with the pipeline system and a pipeline unit.

1032. The pipe behaviour signature lists the unique pipe identifier, the pipe mereology, the static
pipe attributes, the monitorable pipe attributes, the programmable pipe attributes and the
channels over which the pipe [may] interact with the pipeline system and its two neighbouring
pipeline units.

1033. The pump behaviour signature lists the unique pump identifier, the pump mereology, the
static pump attributes, the monitorable pump attributes, the programmable pump attributes
and the channels over which the pump [may] interact with the pipeline system and its two
neighbouring pipeline units.

1034. The valve behaviour signature lists the unique valve identifier, the valve mereology, the
static valve attributes, the monitorable valve attributes, the programmable valve attributes
and the channels over which the valve [may] interact with the pipeline system and its two
neighbouring pipeline units.

1035. The fork behaviour signature lists the unique fork identifier, the fork mereology, the static
fork attributes, the monitorable fork attributes, the programmable fork attributes and the
channels over which the fork [may] interact with the pipeline system and its three neigh-
bouring pipeline units.

1036. The join behaviour signature lists the unique join identifier, the join mereology, the static join
attributes, the monitorable join attributes, the programmable join attributes and the chan-
nels over which the join [may] interact with the pipeline system and its three neighbouring
pipeline units.

1037. The sink behaviour signature lists the unique sink identifier, the sink mereology, the static
sing attributes, the monitorable sing attributes, the programmable sink attributes and the
channels over which the sink [may] interact with the pipeline system and its one or more
pipeline units.

value
1030. pls: plso:PLSI → pls mer:PLS Mer → PLS Sta → PLS Mon →
1030. PLS Prg → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit

9This “PLS” behaviour summarises the either global, i.e., SCADA10-like behaviour, or the fully distributed, for
example, manual, human-operated behaviour of the monitoring and control of the entire pipeline system.

10Supervisory Control And Data Acquisition

274 CONTENTS

1031. well: wid:WI → well mer:MER → Well Sta → Well mon →
1031. Well Prgr → { ch[{plsi,ui}] | wi:WI • ui ∈ σui } Unit
1032. πipe: UI → pipe mer:MER → Pipe Sta → Pipe mon →
1032. Pipe Prgr → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
1033. pump: pi:UI → pump mer:MER → Pump Sta → Pump Mon →
1033. Pump Prgr → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
1034. valve: vi:UI → valve mer:MER → Valve Sta → Valve Mon →
1034. Valve Prgr → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
1035. fork: fi:FI → fork mer:MER → Fork Sta → Fork Mon →
1035. Fork Prgr → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
1036. join: ji:JI → join mer:MER → Join Sta → Join Mon →
1036. Join Prgr → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
1037. sink: si:SI → sink mer:MER → Sink Sta → Sink Mon →
1037. Sink Prgr → { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit

I.3.4.2.1 Behaviour Definitions We show the definition of only three behaviours:

• the pipe line system behaviour,

• the pump behaviour and

• the valve behaviour.

I.3.4.2.2 The Pipeline System Behaviour

1038. The pipeline system behaviour

1039. calculates, based on its programmable state, its next move;

1040. if that move is [to be] an action on a named

(a) pump, whether to start or stop pumping, then the named pump is so informed, where-
upon the pipeline system behaviour resumes in the new pipeline state; or

(b) valve, whether to open or close the valve, then the named valve is so informed, where-
upon the pipeline system behaviour resumes in the new pipeline state; or

(c) unit, to collect its monitorable attribute values for monitoring, whereupon the pipeline
system behaviour resumes in the further updated pipeline state;

(d) et cetera;

value
1038. pls(plsi)(uis)(pls msta)(pls mon)(pls ω) ≡
1039. let (to do,pls ω′) = calculate next move(plsi,pls mer,pls msta,pls mon,pls prgr) in
1040. case to do of
1040a mk Pump(pi,α) →
1040a ch[{plsi,pi}] ! α assert: α ∈ {stop pumping,pump};
1040a pls(plsi)(pls mer)(pls msta)(pls mon)(pls ω′),
1040b mk Valve(vi,α) →
1040b ch[{plsi,vi}] ! α assert: α ∈ {open valve,close valve};
1040b pls(plsi)(pls mer)(pls msta)(pls mon)(pls ω′),
1040c mk Unit(ui,monitor) →
1040c ch[{plsi,ui}] ! monitor;
1040c pls(plsi)(pls mer)(pls msta)(pls mon)(update pls ω(ch[{plsi,ui}] ?,ui)(pls ω′)),
1040d ... end
1038 end

We leave it to the reader to define the calculate next move function !

I.3. PERDURANTS 275

I.3.4.2.3 The Pump Behaviours

1041. The [generic] pump behaviour internal non-deterministically alternates between

1042. doing own work (...), or

1043. accepting pump directives from the pipeline behaviour.

(a) If the directive is either to start or stop pumping, then that is what happens – where-
upon the pump behaviour resumes in the new pumping state.

(b) If the directive requests the values of all monitorable attributes, then these are gath-
ered , communicated to the pipeline system behaviour – whereupon the pump behaviour
resumes in the “old” state.

value
1041. pump(π)(pump mer)(pump sta)(pump mon)(pump prgr) ≡
1042. ...
1043. ⌈⌉ let α = ch[{plsi,π}] ? in
1043. case α of
1043a. stop pumping ∨ pump
1043a. → pump(π)(pump mer)(pump sta)(pump mon)(α)11end,
1043b. monitor
1043b. → let mvs = gather monitorable values(π,pump mon) in
1043b. ch[{plsi,π}] ! mvs;
1043b. pump(π)(pump mer)(pump sta)(pump mon)(pump prgr) end
1043. end

We leave it to the reader to defined the gather monitorable values function.

I.3.4.2.4 The Valve Behaviours

1044. The [generic] valve behaviour internal non-deterministically alternates between

1045. doing own work (...), or

1046. accepting valve directives from the pipeline system.

(a) If the directive is either to open or close the valve, then that is what happens – where-
upon the pump behaviour resumes in the new valve state.

(b) If the directive requests the values of all monitorable attributes, then these are gath-
ered , communicated to the pipeline system behaviour – whereupon the valve behaviour
resumes in the “old” state.

value
1044. valve(vi)(valv mer)(valv sta)(valv mon)(valv prgr) ≡
1045. ...
1046. ⌈⌉ let α = ch[{plsi,π}] ? in
1046. case α of
1046a. open valve ∨ close valve
1046a. → valve(vi)(val mer)(val sta)(val mon)(α)12end,
1046b. monitor
1046b. → let mvs = gather monitorable values(vi,val mon) in
1046b. ch[{plsi,π}] ! (vi,mvs);
1046b. valve(vi)(val mer)(val sta)(val mon)(val prgr) end
1046. end

11Updating the programmable pump state to either stop pumping or pump shall here be understood to mean
that the pump is set to not pump, respectively to pump.

276 CONTENTS

I.3.4.3 Sampling Monitorable Attribute Values

Static and programmable attributes are, as we have seen, passed by value to behaviours. Moni-
torable attributes “surreptitiously” change their values so, as a technical point, these are passed
by reference – by passing attribute type names.

1047. From the name, ηA, of a monitorable attribute and the unique identifier, ui, of the part
having the named monitorable attribute one can then, “dynamically”, “on-the-fly”, as the
part behaviour “moves-on”, retrieve the value of the monitorable attribute. This can be
illustrated as follows:

1048. The unique identifier ui is used in order to retrieve, from the global parts state, σ, that
identified part, p.

1049. Then attr A is applied to p.

value
1047. retr U: UI → Σ → U
1047. retr U(ui)(σ) ≡ let u:U • u ∈ σ∧uid U(u)=ui in u end
1048. retr AttrVal: UI × ηA → Σ → A
1049. retr AttrVal(ui)(ηA)(σ) ≡ attr A(retr U(ui)(σ))

retr AttrVal(...)(...)(...) can now be applied in the body of the behaviour definitions, for example
in gather monitorable values.

I.3.4.4 System Initialisation

System initialisation means to “morph” all manifest parts into their respective behaviours, initial-
ising them with their respective attribute values.

1050. The pipeline system behaviour is initialised
and “put” in parallel with the parallel
compositions of

1051. all initialised well ,

1052. all initialised pipe,

1053. all initialised pump,

1054. all initialised valve,

1055. all initialised fork ,

1056. all initialised join and

1057. all initialised sink behaviours.13

value
1050. pls(uid PLS(pls))(mereo PLS(pls))((pls))((pls))((pls)) pls-init-1700
1051. ‖ ‖ { well(uid U(we))(mereo U(we))(sta A We(we))(mon A We(we))(prg A We(we)) | we:Well • w ∈ σ }
1052. ‖ ‖ { pipe(uid U(pi))(mereo U(pi))(sta A Pi(pi))(mon A Pi(pi))(prg A Pi(pi)) | pi:Pi • pi ∈ σ }
1053. ‖ ‖ { pump(uid U(pu))(mereo U(pu))(sta A Pu(pu))(mon A Pu(pu))(prg A Pu(pu)) | pu:Pump • pu ∈ σ }
1054. ‖ ‖ { valv(uid U(va))(mereo U(va))(sta A Va(va))(mon A Va(va))(prg A Va(va)) | va:Well • va ∈ σ }
1055. ‖ ‖ { fork(uid U(fo))(mereo U(fo))(sta A Fo(fo))(mon A Fo(fo))(prg A Fo(fo)) | fo:Fork • fo ∈ σ }
1056. ‖ ‖ { join(uid U(jo))(mereo U(jo))(sta A Jo(jo))(mon A J(jo))(prg A J(jo)) | jo:Join • jo ∈ σ }
1057. ‖ ‖ { sink(uid U(si))(mereo U(si))(sta A Si(si))(mon A Si(si))(prg A Si(si)) | si:Sink • si ∈ σ }

The sta ..., mon ..., and prg A... functions are defined in Items 1011 on page 270.
Note: ‖ { f(u)(...) | u:U • u ∈ {} } ≡ ().

I.4 Review

to be written

12Updating the programmable valve state to either open valve or close valve shall here be understood to mean
that the valve is set to open, respectively to closed position.

13Plates are treated as are structures, i.e., not “behaviourised” !

Appendix J

Shipping

Contents

J.1 Informal Sketches of the Shipping Domain 279

J.1.1 The Purpose of A Domain Model for Shipping 279

J.1.2 A First Sketch . 279

J.1.3 A Second Sketch . 280

J.1.3.1 Strands of Interacting Sets of Behaviours 280

J.1.3.2 Freight . 280

J.1.3.2.1 Freight as Endurants 280

J.1.3.2.2 Freight as Behaviours 280

J.1.3.3 Freight Forwarder Behaviour 281

J.1.3.4 Shipping Line Behaviour . 281

J.1.4 Some Comments . 282

J.1.4.1 Caveat Concerning Sketches 282

J.1.4.2 The Insufficiency of Narrative Descriptions 282

J.1.4.3 What Do Formal Descriptions Contribute ? 283

J.1.4.4 Limitations of Domain Models 283

J.1.4.5 Families of Domain Models . 283

J.1.4.6 There is No “Standard Model” 283

J.2 Endurants: External Qualities . 283

J.2.1 Freight . 283

J.2.2 Endurant Sorts & Observers . 283

J.2.3 Endurant Values . 285

J.3 Endurants: Internal Qualities . 286

J.3.1 Unique Identifiers . 286

J.3.1.1 Unique Identifier Types and Observers 286

J.3.1.2 Domain Unique Identifiers . 287

J.3.1.3 An Axiom . 288

J.3.1.4 Retrieve Endurant Values . 288

J.3.2 Mereologies . 288

J.3.2.1 A Shift in Modeling . 288

J.3.2.2 Mereology Types and Observers 288

J.3.2.2.1 Harbour Mereology 288

J.3.2.2.2 Vessel Mereology . 289

J.3.2.2.3 Shipping Line Mereology 290

J.3.2.2.4 Freight Forwarder Mereology 290

277

278 CONTENTS

J.3.2.2.5 Freight Mereology . 291

J.3.2.2.6 Passenger Mereology 291

J.3.2.2.7 Waterways Mereology 292

J.3.2.2.8 Landmass Mereology 292

J.3.3 Attributes . 292

J.3.3.1 Attribute Types and Observers 292

J.3.3.1.1 Freight Forwarder Attributes 293

J.3.3.1.2 Shipping Line Attributes 293

J.3.3.1.3 Vessel Attributes . 293

J.3.3.1.4 Harbour Attributes 294

J.3.3.1.5 Freight Attributes . 294

J.3.3.2 Attribute Wellformedness . 294

J.4 Perdurants . 294

J.4.1 Freight as Endurants and as Behaviours 295

J.4.2 Actions, Events and Behaviours . 295

J.4.3 Global Freight Variable . 295

J.4.4 Channels . 295

J.4.5 Behaviours . 296

J.4.5.1 Behaviour Signatures . 296

J.4.5.1.1 Freight Forwarder Signature 296

J.4.5.1.2 Shipping Line Signature 296

J.4.5.1.3 Vessel Signature . 296

J.4.5.1.4 Harbour Signature . 296

J.4.5.1.5 Freight Signature . 296

J.4.5.2 Behaviour Definitions . 296

J.4.5.2.1 Freight Forwarder Definition 296

J.4.5.2.2 Shipping Line Behaviour Definition 301

J.4.5.2.3 Vessel Behaviour Definition 301

J.4.5.2.4 Harbour Behaviour Definition 301

J.4.5.2.5 Freight Behaviour Definition 302

J.5 Review . 303

This chapter reports on an experiment: that of modeling a domain of shipping lines1

The purposes of the experiment are (i) to further test the methodology of domain analysis &
description as outlined in [58], and (ii) to add yet an, as we think it, interesting domain model to
a growing series of such [59].

The report is currently in the process of being written, that is, the domain is still being studied,
analysed and tentatively described. Please expect that later versions of this document may have
sections that are removed, renumbered and/or rewritten wrt. the present March 12, 2024: 10:48 am
version.

The author regrets not having had contact to real professionals of the shipping line industry.
This is most obvious in our treatment of freight forwarder and shipping line behaviours. Here
we used simple reasoning to come up with plausible behaviours. The behaviours that we define
should convince the reader that whichever similarly reasonable, but now actual, real behaviours
can be likewise defined.

The author hopes, even at his advanced age, today he is 83 years old, to be able, somehow,
to learn from such contacts.

1with the Greenland Royal Arctic Line, https://www.royalarcticline.com, as a leading inspiration.

J.1. INFORMAL SKETCHES OF THE SHIPPING DOMAIN 279

J.1 Informal Sketches of the Shipping Domain

We shall, as a necessary element in the analysis of a domain to be rigorously analysed & described,
first, and informally, delineate that domain.

This initial step of a full development is typically iterative. One outlines a first sketch. If one
is not quite happy with that one either improves on that sketch or, throws it away and, produces
another sketch – until “satisfied”.

J.1.1 The Purpose of A Domain Model for Shipping

Any undertaking of modeling a specific domain has a purpose. The purpose of the shipping
domain model of this report is to understand some of the properties of shipping, say such as those
expected by people who have freight transported. What these properties are will evolve as the
domain model evolves.

J.1.2 A First Sketch

We structure the sketch in itemized points.

• The name of the domain is Shipping .

• The overall context of the domain is that

– there is a continuous “stretch” of navigable waterways, an ocean;

∗ on which vessels can sail;

– there is a concept of landmasses with coasts onto the waterways;

∗ with harbours at which

∗ the vessels can dock

∗ to unload and load freight and/or passengers.

– There are shipping lines which operate these vessels;

∗ with these shipping lines accepting requests for and actual freight and/or passengers
to be transported;

– and there are freight forwarders which

∗ either act as go-between those who wishes freight or passenger transport,

∗ or are those freight “owners”, respectively passengers,

∗ and requests and services accepted requests, i.e., order, for transport.

• The closer details of the domain [of shipping further] involve that

– harbours have management and staff (including stevedores) – which is ignored in the
present domain model;

– vessels have staff (captains, mates, engineers and seamen) – which is (are) ignored
in the present domain model;

– freight forwarders and shipping lines have management and staff – whose education,
training, hiring, rostering2, laying-off and pensioning which is (are) ignored in the
present domain model;

– harbours, freight forwarders and shipping lines need financial capital in order to estab-
lish, maintain, renew and operate – which is ignored in the present domain model; and
that

– all of these have to operate in the context of local, state and international rules &
regulations (i.e., laws) – which is ignored in the present domain model

We justify the omissions as they are common to many [other] domains and thus do not specifically
characterise the chosen domain.

2– assignment, per day, to time-slots and places of work

280 CONTENTS

J.1.3 A Second Sketch

We assume a notion of state. The programmable attributes, typically, of endurants are bases for
states. States [thus] have values.

• Actions are intended phenomena that potentially changes state values instantaneously .

• Events are un-intended phenomena which [thus surreptitiously] may instantaneously change
a state.

• Behaviours are sets of sequences of actions, events and behaviours. Behaviours change
states, one change after another and several changes potentially “at the same time”, i.e.,
concurrently , in parallel .

J.1.3.1 Strands of Interacting Sets of Behaviours

We shall focus primarily on the behaviours of two “main players”: those of freight forwarders and
those of shipping lines. We shall consider the behaviours of freight, vessels and harbours to be
subsidiary, i.e., subservient, to the main behaviours.

The two sets of behaviours each “operate, i.e., behave, on their own”, concurrently, but inter-
acting.

Freight forwarders, in an interleaved fashion, on behalf of many customers, using many ship-
ping lines, place orders, accept offers (or refusals), deliver freight and passengers to vessel
sides (‘alongside’), fetch freight and passengers from vessel sides (‘alongside’) and and handle all
related “paper-work” (‘bill-of-ladings’) and finances.

Shipping lines, also in an interleaved fashion, serving many freight forwarders, co-sailing,
possibly, with other shipping lines, accept or reject orders, issue offers, sees to it that vessels
fetch freight (and passengers) from vessel sides (‘alongside’), sees to it that vessels deliver freight
and passengers to vessel sides (‘alongside’), and handle all related “paper-work” (‘bill-of-ladings’)
and finances.

J.1.3.2 Freight

From Middle English freight, from Middle Dutch vracht, Middle Low German vrecht

(“cost of transport”), ultimately from Proto-Germanic *fra- (intensive prefix) + Proto-

-Germanic *aihtiz (“possession”), from Proto-Indo-European *h2eyḱ (“to possess”), equiv-

alent to for- + aught. Cognate with Old High German frēht (“earnings”), Old English

æht (“owndom”), and a doublet of fraught [https://en.wiktionary.org/wiki/freight].

J.1.3.2.1 Freight as Endurants Freight is both a singular and a plural term. So, by freight we
shall understand one or more items of discrete endurants or any amount of and liquid endurant.
That is, for example, one or more 20 or 40 feet containers may be considered one freight item, and
any amount of bunker oil may be considered one freight item.

J.1.3.2.2 Freight as Behaviours Freight are also considered behaviours: created as both en-
durants and as behaviours by the freight forwarder at the instant of a freight forwarder’s first
booking inquiry, and dismantled by the freight forwarder at the completion of that freight’s trans-
port.3

We shall further sketch two behaviours. The servicing of freight transports, seen from a freight
forwarder and the servicing of freight transports, seen from a shipping line. Each of these be-
haviours if expressible as the composition of several actions. Were we here to also sketch a vessel’s
freight transport, then we would have to introduce such events as the vessel being delayed due to
unforeseen weather conditions, the vessel being ship-wrecked ()

3We shall, without loss of generality, only model that freight undergo one vessel transport.

J.1. INFORMAL SKETCHES OF THE SHIPPING DOMAIN 281

J.1.3.3 Freight Forwarder Behaviour

The freight forwarder behaviour basically consists of the following freight forwarder actions.

(i) [FC] Freight Creation: The freight is “created” ! We do not [have to] define the circumstances
of creation.4

(ii) [FB] Freight Being Booked: There is the action of booking space and time for freight
between two harbours. It is directed at a shipping company by a freight forwarder. How that
freight forwarder came to book at that shipping company is left undefined. The shipping line
either says no thanks, another time, perhaps !”, or propose a sailing (i.e., a vessel and times of
departure and arrival), costs, etc., i.e., a bill-of-lading. The freight forwarder accepts “refusals”,
and either accepts the proposed bill-of-lading, or does not accept proposals.

(iii) [FD] Freight Delivery: In due time, if proposed bill-of-lading is accepted, the freight for-
warder receives notification from the shipping line that the vessel has arrived at designated harbour
of departure and the freight forwarder therefore delivers the freight at that harbour.

(iv) [FT] Freight Transport: The freight forwarder can now trace the freight transport.

(v) [FR] Freight Return: In due time, the freight forwarder receives notification from the
shipping line that the vessel has arrived at designated harbour of arrival and the freight forwarder
therefore fetches the freight at that harbour.

(vi) [FE] Freight Dismantlement: At some [short] time after the freight has been collected it
ceases to exist as freight !

(vii) [FM] Freight Management: And all the time the freight forwarder manages “paperwork”
and finances.

End of that story !

The above sequence of characteristic freight forwarder actions can therefore be interpreted as
actions for one particular item of freight with these actions being interleaved with those for other
freight items also being handled by a freight forwarder. To distinguish between different freight
handlings freight forwarders naturally uses the unique freight identifier obtained in action [FC].

J.1.3.4 Shipping Line Behaviour

The shipping line behaviour basically consists of the following shipping line actions.

(i) [SQ] Booking Inquiry: The shipping line, at any time, accepts inquiries, from freight for-
warders, as to freight transport. The inquiries states freight essentials, whether inflammable/explosive,
whether a container or otherwise packaged (dimensions, weight, etc.), from and to harbours, de-
sirable shipping dates, etc. The shipping line decides, upon acceptance, whether to respond
immediately, or after some processing time, say minutes or hours, to the inquiry.

(ii) [SQH] Query Handling: The shipping line responds to inquiries either instantly or after
some [other] processing time. Either the line can satisfy, i.e., accepts, the request and sends the
inquiring freight forwarder a transport proposal, tentatively reserves space and time (i.e., vessel)
for the subject freight, and then awaits its acceptance or refusal, or the line cannot satisfy, i.e.,
must refuse, the request and sends the inquiring freight forwarder a polite negative response –
and “closes” that inquiry.

(iii) [SR] Booking Reaffirmation: The shipping line, at any time, accepts acceptance of accepted
orders. It does so, for example, by reaffirming, to the freight forwarder, the now mutually accepted
order, while initiating a physical order handling “process”, i.e., changes the order from tentative
to definite.

(iv) [SV1] Vessel Co-ordination, 1: The shipping line, at some time thereafter, informs the
vessel of its cargo for specific sailings, while assuring itself of that vessel’s availability.

(v) [SH1] Harbour Co-ordination, 1: The shipping line, at some time thereafter, informs desig-
nated harbours of its plans for the vessel in question to indeed arrive at, unload and load freight,
and depart from that harbour, while ensuring that the harbour in question is indeed prepared for
that. [We omit treatment of no or negative response from harbours.]

4Technically the freight forwarder behaviour “spawns” off a henceforth concurrently operating freight behaviour.

282 CONTENTS

(vi) [SFA] Freight Acceptance: At the appointed date and time the shipping line observes, by
communication from the vessel that the freight forwarder delivers the designated freight alongside
the vessel.

(vii) [SV2] Vessel Co-ordination, 2: Eventually the shipping line is informed that the vessel
departs freight origin harbour.

(viii) [SV3] Vessel Co-ordination, 3: Eventually the shipping line is informed that the vessel
arrives at freight destination harbour.

(ix) [SH2] Harbour Co-ordination, 2: The shipping line informs that harbour of the imminent
arrival of one of its vessels.

(x) [SF] Freight Forwarder Notification: The shipping line informs the freight forwarder of the
arrival of “its” freight.

(xi) [SFD] Freight Delivery: And the freight forwarder informs the shipping line of its receipt
of freight.

(xii) [SFM] Freight Management: All the while the shipping line keeps track of all the “paper-
work” and financial matters, and other freight related matters.

End of that story !

• • •

Shipping lines handle much freight. The above sequence of twelve characteristic shipping line
actions can therefore be interpreted as actions for one particular item of freight, sometimes, like
[SV1-2-3,SH1-2,SFM], merged with those for “similarly” transported freight. with these ac-
tions being interleaved with those for other freight items To distinguish between different freight
handlings shipping lines naturally uses the unique freight identifier obtained in action [SQ].

• • •

As the reader will have observed: The “workhorse” of the described domain is the shipping line –
as one should indeed expect it to be !

• • •

The stories narrated above are as yet not in their final form. Language, clarification and other
improvements will eventually find their way into the above text.

J.1.4 Some Comments

J.1.4.1 Caveat Concerning Sketches

In the informal language sketching of a domain there is, however, a serious problem. One way of
illustrating the problem is as follows: Replace all domain specific nouns and verbs with α, β, γ, ...,
respectively x, y, z, Now you see the problem: What does the sketch now “describe” ? By using
nouns and verbs of a domain that may be known to the reader, and for which the reader may have
some understanding, but for which any two readers may usually have different understandings,
the readers are being “lured” into a possible trap ! Only a proper narrative description that is
strongly linked to a formal specification – one where the αs, βs, γs, ..., respectively xs, ys, zs, ... are
given mathematical meanings – may be satisfactory – provided, of course, that the mathematics
is consistent and relatively complete5.

J.1.4.2 The Insufficiency of Narrative Descriptions

Why is it not sufficient with just narrative, i.e., informal, descriptions ? The answer is simple.
For the shipping domain, just sketched, it might seem sufficient. But assume that you, the reader
of this sketch, come from somewhere where there is no “nearby” notion of waterways, hence of

5– where ‘consistent and relative complete’ are well-defined notion of mathematical logic

J.2. ENDURANTS: EXTERNAL QUALITIES 283

vessels, etc. The fact that our sketches uses many terms from the shipping domain does not make
them understandable, in-and-by-themselves. Take another example: You are from some Pacific
island. There are no railways there. And you sketch a railway domain. The Pacific islander, really,
have no clue as to the meaning of such terms as a railway track, a railway switch, etc. So the
meaning of terms – such as presented in the above sketches – are far from clear. The danger in
this is that these terms many be understood to possess properties that were not sketched.

J.1.4.3 What Do Formal Descriptions Contribute ?

Conjoining a narrative, informal text with formal, mathematical text is meant to “fill-the-gap”:
to allow the user of domain model to asset properties beyond what has been explicitly described
and, based on such formalisations, reason that a postulated domain property holds, or does not
hold.

J.1.4.4 Limitations of Domain Models

But we cannot possibly, neither informally narrate nor formally specify a “complete domain”, that
is, “all” domain properties. Our domain descriptions must necessarily focus on some properties
while ignoring other properties. That is, every domain model has a purpose.

J.1.4.5 Families of Domain Models

So, for the domain of shipping, we can thus expect a set of domain models. One like the one
presented in this report. Another which focus of vessels: their loading and unloading. Yet another
which focus on vessel navigation: on the ocean and into and out from harbours. Etetera.

J.1.4.6 There is No “Standard Model”

Just like for physics, there is not standard model. But, as for physics, there is now, with [58], a
“standard” way of developing and presenting domain models. With Newton’s Classical Mechanics6

described in terms of differential equations etc. there is a “standard” approach to analysing &
describing mechanics (etc.). For every heretofore not described classical mechanics domain problem
the physicists and engineers now know how to tack the analysis & description of that domain.
Similarly for every human-assisted discrete dynamics and primarily artifact “populated” domain
the computer scientists and software engineers now know how to tack the analysis & description
of that domain.

J.2 Endurants: External Qualities

J.2.1 Freight

Although the notion of ‘freight’ is, indeed, a core concept of this report, it will not “play center
stage’.

J.2.2 Endurant Sorts & Observers

1058. We shall consider an aggregate of shipping in the context of

6Other contributors to the formal description of Classical Mechanics were Gottfried Wilhelm Leibniz, Joseph-
Louis Lagrange, Leonard Euler, etc.

284 CONTENTS

(a) an aggregate of navigable waterways, i.e., an ocean, rivers and canals7 with identifi-
cation of harbours;

(b) an aggregate of land masses, i.e., continents and islands, small and large;

(c) an aggregate of thus identified harbours;

(d) an aggregate of vessels that can carry freight and/or passengers;

(e) an aggregate of shipping lines – which commands (owns or operate) these vessels;

(f) an aggregate of freight forwarders8;

(g) an aggregate of freight; and

(h) an aggregate of passengers.

1059. The aggregate of harbours is here seen as a set of harbours –

1060. with harbours to be further defined.

1061. The aggregate of vessels is here seen as a set of vessels –

1062. with vessels to be further defined.

1063. The aggregate of shipping lines is here seen as a set of shipping lines –

1064. with shipping lines to be further defined.

1065. The aggregate of freight forwarders is here seen as a set of freight forwarders –

1066. with freight forwarders to be further defined.

1067. The aggregate of freight is here Sean’s as a set of freight –

1068. with freight to be further defined.

1069. The aggregate of passengers is here seen as a set of passengers –

1070. with passenger to be further defined.

The waterways and land masses are here further undefined. Harbours, vessels, shipping lines,
freight forwarders, freight and passengers will be further defined below.

type
1058. S
1058a. WV
1058b. LM
1058c. AH
1058d. AV
1058e. ASL
1058f. AFF
1058g. AF
1058h. AP
1059. Hs = H-set
1060. H

1061. Vs = V-set
1062. V
1063. SLs = SC-set
1064. SL
1065. FFs = FF-set
1066. FF
1067. Fs = F-set
1068. F
1069. Ps = P-set
1070. P
value
1058a. obs WV: S → WV

7There are but two oceans. [We do not exclude the Caspian Sea. Our model covers both that and “the other”
ocean, as the only two !] The “other”, the larger ocean is, for pragmatic reasons “divided” up into separately named
“oceans”: the Atlantics, North and South, the Pacific, the Indian, the Arabian Sea, the Barents Sea, the Arctic
Sea, the Anarctic Sea (Southern Ocean, Austral Ocean), etc. Basically two canals provide short-cuts between two
otherwise disperse areas of that one ocean: the Suez and the Panama.

8The borderline between freight forwarders and shipping lines is fuzzy. Some shipping lines offer freight for-
warding: the logistics of moving freight between end-customer and vessel, etc.

J.2. ENDURANTS: EXTERNAL QUALITIES 285

1058b. obs LM: S → LM
1058c. obs AH: S → AH
1058d. obs AV: S → AV
1058e. obs ASL: S → ASC
1058f. obs AFF: S → AFF
1058g. obs AF: S → AF
1058h. obs AP: SS → AP

1059. obs Hs: AH → Hs
1061. obs Vs: AV → Vs
1063. obs SLs: ASL → SL-set
1065. obs FFs: AFF → FF-set
1067. obs Fs: AF → F-set
1069. obs Ps: AP → P-set

The waterways with its harbours define an in[de]finite set of [circular] routes that can be sailed
by the vessels. There are vessels other than those owned or commanded by the company. The
company is also characterised by a definite set of routes sailed/serviced by its vessels. All this will
be clear as we proceed.

J.2.3 Endurant Values

From an aggregate of shipping one can extract all its subsidiary endurants – starting with that
aggregate:

1071. the aggregate of shipping,

(a) its aggregate of waterways,

(b) its aggregate of land masses,

(c) its aggregate of harbours,

(d) its aggregate of vessels,

(e) its aggregate of shipping lines,

(f) its aggregate of freight forwarders,

(g) its aggregate of freight and

(h) its aggregate of passengers;

and their

1072. set of harbours,

1073. set of vessels,

1074. set of shipping lines,

1075. set of freight forwarders,

1076. set of freight,

1077. set of passengers,

1078. harbours,

1079. vessels,

1080. shipping lines,

1081. freight forwarders,

1082. freight and

1083. passengers.

value
1071. se:SL
1071a. wve:WV = obs WV(se)
1071b. lme:LM = obs LM(se)
1071c. ahe:AH = obs AH(se)
1071d. ave:AV = obs AV(se)
1071e. asle:ASL = obs ASL(se)
1071f. affe:AFF = obs AFF(se)
1071g. afe:AF = obs AF(se)
1071h. ape:AP = obs AP(se)
1072. hse:Hs = obs Hs(ahe)
1073. vse:Vs = obs Vs(ave)
1074. slse:SLs = obs SLs(asle)
1075. ffse:FFs = obs FFs(afce)
1076. fse:Fs = obs Fs(afe)
1077. pse:Ps = obs Ps(ape)
1078. hes:H UI-set = {h|h:H•h ∈ obs Hs(ahe)}
1079. ves:V UI-set = {v|v:V•v ∈ obs Vs(ave)}
1080. sles:SC UI-set = {sl|sl:SL•sl ∈ obs SLs(slse)}

286 CONTENTS

1081. ffes:FF UI-set = {ff|ff:FF•ff ∈ obs FF(fcse)}
1082. fes:F UI-set = {f|f:F•f ∈ obs Fs(fse)}
1083. pes:P UI-set = {p|p:P•p ∈ obs Ps(pse)}

1084. We can define the set of all endurants.

value
1084. all ends = {se}∪{wve}∪{lme}∪{ahe}∪{ave}∪{asle}∪{affe}∪{ape}
1084. ∪hse∪vse∪slse∪ffse∪ffe∪pse∪hes∪ves∪sles∪ffes∪fes∪pes

J.3 Endurants: Internal Qualities

J.3.1 Unique Identifiers

J.3.1.1 Unique Identifier Types and Observers

We can associate unique identifiers with:

1085. The aggregate of shipping;

1086. the aggregate of waterways;

1087. the aggregate of land masses;

1088. the aggregate of harbours;

1089. the aggregate of vessels;

1090. the aggregate of shipping lines

1091. the aggregate of freight forwarders

1092. the aggregate of freight

1093. the aggregate of passengers

1094. the set of harbours;

1095. each individual harbour;

1096. the set of vessels;

1097. each individual vessel;

1098. the set of shipping lines;

1099. each individual shipping line;

1100. the set of freight forwarders;

1101. each individual freight forwarder;

1102. the set of freight;

1103. each individual freight;

1104. the set of passengers;

1105. each individual passenger;

type
1085. S UI
1086. WV UI
1087. LM UI
1088. AH UI
1089. AV UI
1090. ASC UI
1091. AFF UI
1092. AF UI
1093. AP UI
1094. Hs UI
1095. H UI
1096. Vs UI
1097. V UI
1098. SCs UI
1099. SC UI

1100. FFs UI
1101. FF UI
1102. Fs UI
1103. F UI
1104. Ps UI
1105. P UI
value
1085. uid S: S → S UI
1086. uid WV: WV → WV UI
1087. uid LM: LM → LM UI
1088. uid AH: AH → AH UI
1089. uid AV: AV → AV UI
1090. uid ASL: ASC → ASC UI
1091. uid AFF: AFF→ AFF UI
1092. uid AF: AF → AF UI
1093. uid AP: AP: → AP UI

J.3. ENDURANTS: INTERNAL QUALITIES 287

1094. uid Hs: Hs → Hs UI
1095. uid H: H → H UI
1096. uid Vs: Vs → Vs UI
1097. uid V: V → V UI
1098. uid SLs: SLs → SLs UI
1099. uid SL: SL → SL UI

1100. uid FFs: FFs → FFs UI
1101. uid FF: FF → FC UI
1102. uid Fs: Fs → Fs UI
1103. uid F: F → F UI
1104. uid Ps: Ps → Ps UI
1105. uid P: P → P UI

J.3.1.2 Domain Unique Identifiers

From an aggregate of shipping lines one can extract all the unique identifiers of its subsidiary
endurants – staring with that aggregate:

1106. the aggregate of shipping,

(a) its aggregate of waterways,

(b) its aggregate of land masses,

(c) its aggregate of harbours,

(d) its aggregate of vessels,

(e) its aggregate of shipping lines,

(f) its aggregate of freight forwarders,

(g) its aggregate of freight and

(h) its aggregate of passengers;

and their

1107. set of harbours,

1108. set of vessels,

1109. set of shipping lines,

1110. set of freight forwarders,

1111. set of freight,

1112. set of passengers,

1113. harbours,

1114. vessels,

1115. shipping lines,

1116. freight forwarders,

1117. freight and

1118. passengers.

value
1106. sui:S UI = uid S(se)
1106a. wvui:WV UI = uid WV(obs WV(se))
1106b. lmui:LM UI = uid LM(obs LM(se))
1106c. ahui:AH UI = uid AH(obs AH(se))
1106d. avui:AV UI = uid AV(obs AV(se))
1106e. aslui:ASL UI = uid ASC(obs ASL(se))
1106f. affui:AFF UI = uid AFF(obs AFF(se))
1106g. afui:AF UI = uid AF(obs AF(se))
1106h. apui:AP UI = uid AP(obs AP(se))
1107. hsui:Hs UI = uid Hs(obs Hs(ahe))
1108. vsui:Vs UI = uid Vs(obs Vs(ave))
1109. slsui:SLs UI = uid SLs(obs SLs(asle))
1110. ffsui:FFs UI = uid FFs(obs FFs(afce))
1111. fsui:Fs UI = uid Fs(obs Fs(afe))
1112. psui:Ps UI = uid Ps(obs Ps(ape))
1113. huis:H UI-set = {uid H(h)|h:H•h ∈ obs Hs(ahe)}
1114. vuis:V UI-set = {uid V(v)|v:V•v ∈ obs Vs(ave)}
1115. scuis:SL UI-set = {uid SL(sl)|sl:SL•sl ∈ obs SLs(slse)}
1116. ffuis:FF UI-set = {uid FF(ff)|ff:FF•ff ∈ obs FF(ffse)}
1117. fuis:F UI-set = {uid F(f)|f:F•f ∈ obs Fs(fse)}
1118. puis:P UI-set = {uid P(p)|p:P•p ∈ obs Ps(pse)}

1119. We can define the set of all endurant identifiers.

288 CONTENTS

value
1119. all uids = {sui}∪{wvui}∪{lmui}∪{ahui}∪{avui}∪{ascui}∪{affui}∪{apui}
1119. ∪hsui∪vsui∪scsui∪ffsui∪fsui∪psui∪hss∪vuis∪scuis∪ffuis∪fuis∪puis

J.3.1.3 An Axiom

1120. Endurants are uniquely identified.

axiom
1120. � card all ends = card all uids

The always operator, �, expresses that card all ends=card all uids holds at any time.

J.3.1.4 Retrieve Endurant Values

1121. Given a unique identifier, ui, in all uids and given the set of all endurants all ends we can
retrieve the endurant, e of identifier ui.

value
1121. get E: UI → E
1121. get E(ui) ≡ let e:E • e ∈ all ends ⇒ uid E(e)=ui in e end

J.3.2 Mereologies

J.3.2.1 A Shift in Modeling

Till now we have modeled the shipping line domain considering all its endurants to be non-
structures (cf. [58, Sects. 4.8 and 4.10]). From now on we shall consider all aggregates and sets of
endurants as structures. This means that we can dismiss our modeling of the unique identifiers
for all aggregates and set of endurants void and nil. Thus we shall only model the mereology of
what we basically treat as atomic endurants: freight forwarders, shipping lines, vessels, harbours,
freight and passengers.

J.3.2.2 Mereology Types and Observers

The mereology that we shall promote emphasises both topological and conceptual properties
of shipping line systems. They express topological properties when mandating unique identifiers
of spatially close/related endurants, And they express conceptual properties when mandating
unique identifiers of endurants with which shipping lines “do business” ! Further topological and
conceptual properties of shipping line systems will be expressed in Sect. J.3.3 where we treat
attributes of shipping line systems.

J.3.2.2.1 Harbour Mereology

1122. Harbour mereologies are

• the non-empty set of unique identifiers of vessels that may use the harbour,

• the pair of two possibly empty sets of unique identifiers of freight: one identifying freight
to be loaded (todo), the other having been unloaded (done),

• the unique identifier of the waterways and the

• the unique identifier of the landmass.

J.3. ENDURANTS: INTERNAL QUALITIES 289

type
1122. H Mer = V UI-set × (todo:F UI-set×done:F UI-set) × WV UI × LM UI
value
1122. mereo H: H → H Mer

1123. The well-formedness of a harbour mereology entails

• that its set of vessel identifiers is non-empty and included in the set of all vessel iden-
tifiers,

• the “to do” and the “done” freight does not “overlap” and are a subset of all freight.

• that its waterways identifier is that of the known waterway[s], and

• that its landmass identifier is that of the known landmass.

value
1123. wf H Mer: H Mer → Book
1123. wf H Mer(vuis,(todo,done),wvui,lmui) ≡
1123. {}6= vuis ⊆ vuis
1123. ∧ todo ∩ done = {} ∧ todo∪done⊆fuis
1123. ∧ wvui = wvui
1123. ∧ lmui = lmui

J.3.2.2.2 Vessel Mereology

1124. Vessel mereologies are

• the non-empty set of unique identifiers of harbours that it may use,

• the non-empty set of unique identifiers of shipping lines for which it sails, i.e., which
share an agreement to operate that vessel, and

• the unique identifier of the waterways.

type
1124. V Mer = H UI-set × SL UI-set × WV UI
value
1124. mereo V: V → V Mer

1125. The well-formedness of a vessel mereology entails

• that its set of harbour identifiers is non-empty and included in the set of all harbour
identifiers,

• that its set of shipping line identifiers is non-empty and included in the set of all shipping
line identifiers,

• and that its waterways identifier is that of the known waterways.

1125. wf V Mer: V Mer → Bool
1125. wf V Mer(huis,scuis,wvui) ≡
1125. {}6=huis⊆huis
1125. ∧ {}6= scuis=scuis
1125. ∧ wvui=wvui

290 CONTENTS

J.3.2.2.3 Shipping Line Mereology

1126. Shipping line mereologies are

• the non-empty set of unique identifiers of vessels that it operates,

• the non-empty set of unique identifiers of freight forwarders which it services and

• the non-empty set of identifiers of harbours that it uses,

type
1126. SL Mer = V UI-set × FF UI-set × H UI-set
value
1126. mereo SL: SL → SL Mer

1127. The well-formedness of a shipping line mereology entails

• that its set of vessel identifiers is non-empty and included in the set of all vessel iden-
tifiers,

• that its set of freight forwarder identifiers is non-empty and included in the set of all
freight forwarder identifiers, and that its set of harbour identifiers is non-empty and
included in the set of all harbour identifiers.

value
1127. wf SC Mer: SC Mer → Bool
1127. wf SC Mer(vuis,fcuis,huis) ≡
1127. {}6=vuis⊆vuis
1127. ∧ {}6=ffuis⊆ffuis
1127. ∧ {}6=huis⊆huis

Two or more shipping lines may co-sail one or more vessels9.

J.3.2.2.4 Freight Forwarder Mereology

1128. Freight forwarder mereologies are

• the non-empty set of unique identifiers of shipping lines that it uses,

• the non-empty set of unique identifiers of harbours to which it delivers and from which
it fetches freight, and the possibly empty set of unique identifiers of freight with which
it is involved.

type
1128. FF Mer = SL UI-set × H UI-set × F UI-set
value
1128. mereo FF: FF → FF Mer

1129. The well-formedness of a freight forwarder mereology entails

• the non-empty set of unique identifiers of known shipping lines that it uses and

• the non-empty set of unique identifiers of known harbours

value
1129. wf FF Mer: FF Mer → Bool
1129. wf FF Mer(sluis,huis,) ≡
1129. {}6=sluis⊆sluis
1129. ∧ {}6=huis⊆huis

9We shall not model the specifics, i.e., details of co-sailing.

J.3. ENDURANTS: INTERNAL QUALITIES 291

J.3.2.2.5 Freight Mereology

1130. Freight mereologies are

• the unique identifier of the freight forwarder,

• the unique identifier of the shipping line which is intended to ship, or which ships that
freight, and

• the pair of unique identifiers of the two harbour involved in the freight transport.

type
1130. F Mer = FF UI × SC UI × (H UI×H UI)
value
1130. mereo F: F → F Mer

1131. The well-formedness of a freight mereology entails

• that the freight forwarder identifier is known,

• that the shipping line identifier is known and

• that the two known harbours are different.

1131. is wf F Mer: F Mer → Book
1131. is wf F Mer(ffui,scui,(fhui,thui)) ≡
1131. ffui∈ffuis
1131. ∧ scui∈scuis
1131. ∧ fhui 6=thui ∧ {fhui,thui}⊆huis

J.3.2.2.6 Passenger Mereology

1132. Passenger mereologies are

• the identifier of the vessels with which they have traveled, are traveling or intend to
travel, and

• the unique identifier of the shipping lines with whom they have travel-led, are traveling
or intend to travel.

type
1132. P Mer = V UI-set × SC UI-set
value
1132. mereo P: P → P Mer

1133. The well-formedness of a passenger mereology entails

• that the set of vessel identifiers is known,

• that the set of shipping line identifiers is known, and

• that the shipping lines are indeed operating the identified vessels.

value
1133. wf P Mer: P Mer → Bool
1133. wf P Mer(vuis,scuis) ≡
1133. vuis⊆vuis ∧ scuis⊆scuis ∧
1133. ∀ v ui:V UI • v ui ∈ vuis, ∃ sc ui:SC UI • sc ui ∈ scuis ⇒
1133. let sc = get part(sc ui) in let (vuis′,) = mereo SC(sc) in v ui ∈ vuis′ end end

292 CONTENTS

J.3.2.2.7 Waterways Mereology

1134.

1135.

1136.

1137.

type
1134.
1135.
1136.
1137.
value
1134.
1135.
1136.
1137.

J.3.2.2.8 Landmass Mereology

1138.

1139.

1140.

1141.

type
1138.
1139.
1140.
1141.
value
1138.
1139.
1140.
1141.

J.3.3 Attributes

J.3.3.1 Attribute Types and Observers

We shall illustrate but a very few attributes. Those we choose to illustrate appear to be the ones
most relevant for the specific examples of freight forwarder, shipping line, vessel, harbour and freight
behaviours.

J.3. ENDURANTS: INTERNAL QUALITIES 293

J.3.3.1.1 Freight Forwarder Attributes

1142. For any one specific freight, the freight forwarder, undergoes a sequence of states. These are
sketched in Sect. J.1.3.3 on page 281. FFHΣ models the set of state names for these.

1143. Freight forwarder history is a freight identifier indexed, reverse-ordered chronological se-
quence of freight state labeled freight information.

1144. We leave FFInfo further undefined,

type
1142. FFHΣ = ′′FC′′ | ′′FBB′′ | ′′FB′′ | ′′FD′′ | ′′FT′′ | ′′FR′′ | ′′FE′′ | ′′FM′′

1143. FFHist = F UI →m (TIME × FFHΣ × FFInfo)∗

1143. FFInfo = ...
value
1143. attr FFHist: FF → FFHist

J.3.3.1.2 Shipping Line Attributes

1145.

1146.

1147.

1148.

type
1145.
1146.
1147.
1148.
value
1145.
1146.
1147.
1148.

J.3.3.1.3 Vessel Attributes

1149.

1150.

1151.

1152.

type
1149.
1150.
1151.
1152.
value
1149.
1150.
1151.
1152.

294 CONTENTS

J.3.3.1.4 Harbour Attributes

1153.

1154.

1155.

1156.

type
1153.
1154.
1155.
1156.
value
1153.
1154.
1155.
1156.

J.3.3.1.5 Freight Attributes

1157.

1158.

1159.

1160.

type
1157.
1158.
1159.
1160.
value
1157.
1158.
1159.
1160.

J.3.3.2 Attribute Wellformedness

to be written

J.4 Perdurants

By the transcendental deductions introduced in [58, Chapter 6] we now interpret some endurant
parts as behaviours. A behaviour is a set of sequences of actions, events and behaviours. Be-
haviours interact, here expressed in the style of CSP [109–111, C.A.R. Hoare] as embedded in
RSL [100].

J.4. PERDURANTS 295

J.4.1 Freight as Endurants and as Behaviours

The central entity of the shipping line domain is that of freight. Freight have, so far, been
considered as atomic endurants. We shall now transcendentally deduce freight into behaviours.
There is a dynamically varying number of uniquely identified freight. We suggest to model freight
as follows: Freight is created by the freight forwarder. At the moment of such creation the freight
“receives” its, i.e., a unique identifier, one that has not been used before, and one that will never
be used, in the creation of other freight, again. Once a freight has completed a full transport as
directed by the freight forwarder and carried out by a shipping line and one of its vessels, that
freight ceases to be a freight, that is, as an endurants and as a behaviour. Its unique identifier
will never be the identifier of other freight.

J.4.2 Actions, Events and Behaviours

to be written

J.4.3 Global Freight Variable

Freight occurs, appears, and freight disappears. In this model we assume a fixed number of freight
forwarders, shipping lines, vessels and harbours10. But we must model a varying number of freight.
We shall, for simplicity, and without loss of generality, assume that freight becomes so when in
the care of freight forwarders, and that freight ceases to be freight, i.e., to exist, one it has been
transported.

Although we shall model freight as behaviours we shall introduce, as a technicality,

1161. a global variable freight uids which is initialised to an empty set of unique freight identifiers.

At any time it contains the set of all unique identifiers of freight which have been created as freight,
When freight ceases to exist that freight’s unique identifier is not deleted from freight uids.

variable
1161. freight uids:F UI-set := {}
value
1162. get F UI: Unit → F UI
1162. get F UI() ≡
1162. let f ui:F UI • f UI 6∈ freight uids in
1162. freight uids := freight uids ∪ {f ui};
1162. f ui end

1162. get F UI is a value-returning action.

• It applies to the global state and returns a “new, hitherto unused” unique freight
identifier

• while updating the global state variable freight uids with that identifier.

J.4.4 Channels

In order for CSP-modeled behaviours to interact, they must communicate, and they do so over
the medium of, as here, channels.

We shall name the full ensemble of channels over which any of the shipping company, freight
forwarder, harbour and harbour behaviours communicate

• channel ch[{uii, uij}]: MSG

where indices uii and uij are unique identifiers of these behaviours – cum endurant parts, and
where MSG is the type of the communicated value.

10We also assume fixed waterways and land masses.

296 CONTENTS

J.4.5 Behaviours

J.4.5.1 Behaviour Signatures

J.4.5.1.1 Freight Forwarder Signature

1163. We introduce the notion of “the making of a freight behaviour skeleton” NewF:

• either there is not such skeleton, "nil",

• or there are the elements that make up a freight endurant: a unique freight identifier,
a freight mereology and the static attributes of a freight. What they are is really of no
consequence. The programmable attribute only becomes relevant as soon as the freight
endurant, and hence the freight behaviour is created.

1164.

type
1163. NewF = ′′nil′′ | F UI × F Mer × F Stat
value
1164. ff: ffui:FF UI × (sluis,vuis,fuis):FF Mer × ffstat:FF Stat → ffprgr:FF Prgr
1164. → { ch[{ffui,ui}] | ui:SL UI|F UI•slui∈sluis∪vuis∪fuis } Unit

J.4.5.1.2 Shipping Line Signature

1165.

value
1165. sl: slui:SL UI × (vuis,ffuis,huis):SL Mer × slstat:SL Stat → slprgr:SL Prgr
1165. → { ch[{slui,ui}] | ui:FF UI|V UI|H UI•ui∈ffuis∪huis } Unit

J.4.5.1.3 Vessel Signature

J.4.5.1.4 Harbour Signature

J.4.5.1.5 Freight Signature

J.4.5.2 Behaviour Definitions

J.4.5.2.1 Freight Forwarder Definition

1163. We have introduced, cf. Item 1163, the notion of “the making of a freight behaviour skeleton”
NewF. To repeat:

• either there is not such skeleton, "nil",

• or there are the elements that make up a freight endurant: a unique freight identifier,
a freight mereology and the static attributes of a freight, What they are is really of no
consequence. The programmable attribute only becomes relevant as soon as the freight
endurant, and hence the freight behaviour is created.

1166. The freight forwarder behaviour may

1167. [FC] non-deterministically internally, ⌈⌉, choose to [somehow] accept an item of freight, ...,
as expressed in the ffc behaviour, and, likewise non-deterministically internally, decide to
“convert” the skeleton into a behaviour.

J.4. PERDURANTS 297

1167a.–1167d. Non-deterministically internally the freight forwarder behaviour chooses among the former
alternative behaviour, ffc, or the following specific freight related alternatives.

(a) [FB] The freight forwarder communicates a booking order to a shipping line. The
shipping line either accepts this booking with a proposed bill-of-lading, or declines it.
The freight forwarder must accept declined bookings and must either accept or decline
a proposed bill-of-lading.

We assume that the time elapsed between the freight forwarder communicating its booking
and the shipping line responding to this booking is such that the booking and its response
can be modeled as a single behaviour composed from two CSP output/input actions.

[ffb stands for ‘freight forwarder booking’.]

(b) [FD] The freight forwarder is informed by the shipping line that the designated vessel
is ready to accept the freight for transport.

We assume that the time elapsed between the freight forwarder receiving this alert and the
freight forwarder being able to respond is such that the alert and its response can realistically
be modeled as a single behaviour composed from two CSP output/input actions. See next.

[ffd stands for ‘freight forwarder delivery alert (from shipping line)’.]

(c) [FR] The freight forwarder is informed by the shipping line that the designated vessel
is ready to return the freight it has transported.

We assume that the time elapsed between the freight forwarder receiving this alert and the
freight forwarder being able to respond is such that the alert and its response must most
realistically be modeled as two behaviours. See next.

[ffr stands for ‘freight forwarder freight return (message, from shipping line)’.]

(d) [FE] The freight forwarder collects the freight and its saga as ‘freight’ is over.

[ffe stands for ‘freight forwarder freight ending’.]

1168. [FM] In-between, before and after these specific freight related actions, the freight forwarder
“performs” management actions “of its own” !

[ff stands for ‘freight forwarder management’.]

[stands for]

type
1163. NewF = ′′nil′′ | F UI × F Mer × F Stat
value
1164. ff: fui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → ffhist:FF Hist
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1166. ff(ffui,(sluis,fuis),ffstat)(ffhist) ≡
1167. [FC] ffc(ffui,(sluis,fuis),ffstat)(ffhist)
1167a. [FB] ⌈⌉ (⌈⌉⌊⌋ ffb(ffui,(sluis,fuis),ffstat)(ffhist)
1167b. [FD] ⌈⌉⌊⌋ ffd(ffui,(sluis,fuis),ffstat)(ffhist)
1167c. [FR] ⌈⌉⌊⌋ ffr(ffui,(sluis,fuis),ffstat)(ffhist)
1167d. [FE] ⌈⌉⌊⌋ ffe(ffui,(sluis,fuis),ffstat)(ffhist))
1168. [FM] ⌈⌉ ffm(ffui,(sluis,fuis),ffstat)(ffhist)

Freight Creation:

1169. Freight forwarders

1170. non-deterministically internally, somehow, accept freight. Technically this is modeled by the
freight forwarder obtaining a hitherto unused unique identifier,

1171. and, from own attribute values and from the freight “customer”, ”...”, creating a freight
endurant, mkF(fui,fmer,fstat) –

298 CONTENTS

1172. which it transcendentally deduces into a freight behaviour

1173. which behaves concurrently, ‖,

1174. with a resumed freight forwarder behaviour with an augmented history that reflects the
creation of a freight (endurant and behaviour).

type
1163. mkF :: F UI × F Mer × F Stat
value
1164. ffc: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → ffprgr:FF Prgr
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1169. ffc(ffui,(sluis,fuis),ffstat)(ffhist) ≡
1170. let f ui = get F UI() in
1171. let mkF(fui,fmer,fstat) = heureka Freight(f ui,ffstat,...) in [axiom fui = f ui]
1172. f(mkF(fui,fmer,fstat))(〈(record TIME())〉) end
1173. ‖
1174. ff(ffui,(sluis,fuis),ffstat)([fui 7→〈(record TIME(),mkF(fui,fmer,fstat))〉]∪ffhist) end

1171. heureka Freight: F UI × F Stat × ... → mkF

Freight Booking:

1175. For the case that the freight forwarder history, for some freight, fui, records a singleton,
h, which designates the creation of that freight, the freight forwarder offers the following
transactions

(a) with a selected shipping line, slui, and for transport between specific harbours:

(b) I offers, to that shipping line, a booking request containing the description, mkF(...), of
the freight, and the from- and to harbours of requested transport.

(c) While awaiting a reply from the shipping line,

(d) the freight forwarder records the time, τ ′, and an element, h′, of the freight forwarder
history.

(e) Before resuming being the freight forwarder behaviour, ff, the freight forwarder

(f) records the time, τ ′, and an element, h′, of the freight forwarder history.

1176. For the case that the freight forwarder history, for some freight, fui, does not, for any freight
(fui), record a singleton, h:〈(τ ,mkF(fui,fmer,fstat))〉]∪fhist, which designates the creation of
some freight, the freight forwarder does not engage in this alternative of the freight forwarder,
ff, behaviour.

type
1175b. mkBooking :: SL UI × mkF(F UI,F Mer,F Stat) × (H UI×fd:TIME) × (H UI×td:TIME)
1175b. axiom ∀ mkb:mkBooking • fd(mkb)<td(mkb)
1175c. Reply == mk Decline Booking Request(SL UI,t:TIME,F UI)
1175c. | mk Accept Booking Request(SL UI,t:TIME,bol:BoL,(H UI×TIME),(H UI×TIME))
value
1164. ffb: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → ffhist:FF Hist
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1175. ffb(ffui,(sluis,fuis),ffstat)(ffhist:[fui 7→h:〈(τ ,mkF(fui,fmer,fstat))〉]∪ffhist′) ≡
1175a. freight booking(ffui,(sluis,fuis),ffstat)(mkF(fui,fmer,fstat))(ffhist)

1175a. freight booking: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → mkf:MkF → ffhist:FF Hist
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit

J.4. PERDURANTS 299

1175a. freight booking(ffui,(sluis,fuis),ffstat)(mkf)(ffhist) ≡
1175a. let (slui,(fh,fd),(th,td)) = select shipping line and time(ffstat,mkf,ffhist) in
1175b. ch[{ffui,slui}] ! mkBooking(slui,mkF(fui,fmer,fstat),(fh,fd),(th,td)) ;
1175d. let τ ′ = record TIME(), h′′ = 〈(τ ′,mkBooking(slui,mkF(fui,fmer,fstat),(fh,fd),(th,td)))〉 in
1175c. let reply = ch[{ffui,slui}] ? in
1175f. let τ ′′ = record TIME(), h′′′ = 〈(τ ′′,reply)〉 in
1175e. ff(ffui,(sluis,fuis),ffstat)([fui 7→h′′′̂h′′̂h]∪fhist)
1175. end end end end

1175a. select shipping line and time: mkF(F UI,F Mer,F Stat) × MkF × FF Hist
1175a. → SL UI × (H UI×fd:TIME) × (H UI×td:TIME)

Freight Acceptance and Delivery

1177. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a
most recent element which designates the booking acceptance, [fui 7→〈(τ ,mk Accept Book-
ing Request(slui,t,bol,(fh,fd),(th,td)))〉̂h]∪fhist, for a freight, the freight forwarder offers the
following transactions:

(a) initially it offers to accept a designated, previously booked freight delivery to harbour
of disembarkment;

(b) before delivering this freight

(c) the freight forwarder records the time, τ ′′, and an element, h′′, of the freight forwarder
history;

(d) before resuming being the freight forwarder behaviour, ff,

(e) and, concurrently informing the freight of its freight forwarder to harbour transfer,

(f) the freight forwarder records the time, τ ′′′, and an element, h′′′, of the freight forwarder
history.

type
1177. BoL [Bill-of-Lading]
1177. mk Accept Booking Request :: TIME × BoL × (H UI×fd:TIME) × (H UI×td:TIME)
1177a. mkPlsDelive :: F UI × H UI × TIME

1177a. mkDelivery :: F UI × H UI × V UI × TIME

value
1164. ffd: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → FF Hist
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1177. ffd(ffui,(sluis,fuis),ffstat)
1177. ([fui 7→h:〈(τ ,mk Accept Booking Request(slui,t,bol,(fh,fd),(th,td)))〉̂h′]∪fhist) ≡
1177a. let mkPlsDeliver(slui,fui,hui,vui,τ ′) = ch[{ffui,slui}] ? in
1177c. let τ ′′ = record TIME(), h′′ = 〈(τ ′′,mkPlsDeliver(slui,fui,hui,τ ′′))〉 in
1177b. ch[{ffui,hui}] ! mkDelivery(ffui,fui,hui,vui) ;
1177f. let τ ′′′ = record TIME(), h′′′ = 〈(τ ′′′,mkDelivery(slui,fui,hui,τ ′′))〉 in
1177d. ff(ffui,(sluis,fuis),ffstat)([fui 7→h′′′̂h′′̂h]∪fhist)
1177e. ‖ ch[{ffui,fui}] ! mkXferFFtoH(τ ′′′,ffui,hui)
1177. end end end

Freight Declination and Re-booking:

1178. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates a booking rejection mk Decline Booking Request(slui,t,fui),
the freight forwarder offers the transactions that are similar to those of Items 1175a–1175e
Page 299.

300 CONTENTS

value
1178. ffd(ffui,(sluis,fuis),ffstat)
1178. (ffhist:[fui 7→h:〈(τ ,mk Decline Booking Request(slui,t,fui,mkF(fui,fmer,fstat)))〉̂h′]∪ffhist′) ≡
1178. freight booking(ffui,(sluis,fuis),ffstat)(mkF(fui,fmer,fstat))(ffhist)

Freight Recovery:

1179. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates the delivery of freight, in its care: mkDelivery(slui,fui,hui,τ),
the freight forwarder offers the following transaction:

(a) it offers to accept an alert from the shipping line as to the impending vessel arrival at
destination port whereupon it

(b) informs the freight of its harbour to freight forwarder transfer,

(c) resumes being the freight forwarder behaviour now suitably updated with that knowl-
edge !

value
1164. ffr: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → ffhist:FF Prgr
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1179. ffr(ffui,(sluis,fuis),ffstat)([fui 7→hist:〈(τ ,mkDelivery(slui,fui,hui,τ ′))〉̂hist′]∪ffhist) ≡
1179a. let mkReturn(slui,fui,hui,vui,dat) = ch[{slui,ffui}] ?
1179a. τ ′′ = record TIME() in
1179b. ch[{ffui,fui}] ! mkXferHtoFF(τ ′′,ffui,hui)
1179c. ‖ ff(ffui,(sluis,fuis),ffstat)([fui 7→〈(τ ′′,mkReturn(slui,fui,hui,vui,dat))〉̂hist]∪fhist)
1179. end

Freight Termination:

1180. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates the return of freight, in its care: mkReturn(slui,fui,hui,vui,dat),
the freight forwarder offers the following transaction:

(a) the freight forwarder inquires with a designated return harbour, hui, as to the desig-
nated, returned freight, fui

(b) and resumes being the freight forwarder behaviour now suitably updated with that
knowledge !

(c) while, at the same time as resumption also informing the freight that it no longer has
freight status !

value
1164. ffe: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → hist:FF Hist
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1167d. ffe(ffui,(sluis,fuis),ffstat)([fui 7→hist:〈(τ ′′′,hist:mkReturn(slui,fui,hui,vui,dat))〉̂hist′]∪ffhist) ≡
1180a. let mkReturnedFreight(fui,...) = ch[{hui,ffui}] ? in
1180b. ff(ffui,(sluis,fuis),ffstat)([fui 7→〈mkReturnedFreight(fui,...)〉̂hist]∪fhist)
1180c. ‖ ch[{ffui,fui}] ! mkTerminateFreight(ffui,...)
1167d. end

Freight Forwarder Management:

1181.

1182.

J.4. PERDURANTS 301

1183.

value
1164. ffm: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat → ffprgr:FF Prgr
1164. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
1168. ffm(ffui,(sluis,fuis),ffstat)([fui 7→〈(τ ,[FC])〉]∪fhist) ≡
1181.
1182.
1183.

J.4.5.2.2 Shipping Line Behaviour Definition

1184.

1185.

1186.

1187.

1188.

1189.

1190.

1191.

1192.

1193.

value
1165. sl: slui:SL UI × (vuis,ffuis,huis):SL Mer × slstat:SL Stat → slprgr:SL Prgr → newf:NewF
1165. → { ch[{slui,ui}] | ui:FF UI|V UI|H UI•ui∈ffuis∪huis } Unit
1185. sl(slui,(vuis,ffuis,huis),slstat)(slprgr)(newf) ≡
1185.
1186.
1187.
1188.
1189.
1190.
1191.
1192.
1193.

J.4.5.2.3 Vessel Behaviour Definition

J.4.5.2.4 Harbour Behaviour Definition

1194.

1195.

1196.

1197.

302 CONTENTS

1198.

1199.

1200.

1201.

1202.

1203.

value
1194. harbour:
1194. harbour(hui,(ffuis,sluis),hstat)(hhist) ≡
1195.
1196.
1197.
1198.
1199.
1200.
1201.
1202.
1203.

J.4.5.2.5 Freight Behaviour Definition

1204.

1205.

1206.

1207.

1208.

1209.

1210.

1211.

1212.

1213.

value
1204. freight: fui:F UI × (ffui,(fhui,thui),vui,slui):F Met × F Stat → F Hist →
1204. in { ch[{fhui,ui}] | ui:(FH UI|V UI|SL UI)•ui ∈ {ffui,fhui,thui,vui,slui} } Unit
1204. freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(fhist) ≡
1205. let i:mkFFtoH(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1206. ⌈⌉⌊⌋ let i:mk(...) = ch[{vui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1207. ⌈⌉⌊⌋ let i:mk(...) = ch[{vui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1208. ⌈⌉⌊⌋ let i:mk(...) = ch[{thui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1209. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1211. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1212. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂fhist) end
1213. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in skip end

J.5. REVIEW 303

J.5 Review

to be written

304 CONTENTS

Appendix K

Container Terminals

Contents

K.1 Introduction . 308

K.1.1 Reference Literature on Container-related Matters 308

K.2 Some Pictures . 309

K.2.1 Terminal Port Container Stowage Area 309

K.2.2 Container Stowage Area and Quay Cranes 309

K.2.3 Container Vessel Routes . 310

K.2.4 Containers . 310

K.2.4.1 40 and 20 Feet Containers . 310

K.2.4.2 Container Markings . 310

K.2.5 Container Vessels . 311

K.2.6 Container Stowage Area: Bays Rows, Stacks and Tier 311

K.2.7 Stowage Software . 312

K.2.8 Quay Cranes . 312

K.2.9 Container Stowage Area and Stack Cranes 312

K.2.10 Container Stowage Area . 312

K.2.11 Quay Trucks . 313

K.2.12 Map of Shanghai and YangShan . 313

K.3 SECT . 313

K.4 Main Behaviours . 315

K.4.1 A Diagram . 316

K.4.2 Terminology - a Caveat . 316

K.4.3 Assumptions . 317

K.5 Endurants . 317

K.5.1 Parts . 317

K.5.1.1 Terminal Ports . 318

K.5.1.2 Quays . 319

K.5.1.3 Container Stowage Areas: Bays, Rows and Stacks 319

K.5.1.4 Vessels . 319

K.5.1.5 Functions Concerning Container Stowage Areas 320

K.5.1.6 Axioms Concerning Container Stowage Areas 320

K.5.1.7 Stacks . 321

K.5.2 Terminal Port Command Centers . 321

K.5.2.1 Discussion . 321

K.5.2.2 Justification . 321

K.5.3 Unique Identifications . 322

305

306 CONTENTS

K.5.3.1 Unique Identifiers: Distinctness of Parts 322

K.5.3.2 Unique Identifiers: Two Useful Abbreviations 322

K.5.3.3 Unique Identifiers: Some Useful Index Set Selection Functions 323

K.5.3.4 Unique Identifiers: Ordering of Bays, Rows and Stacks 323

K.5.4 States, Global Values and Constraints 323

K.5.4.1 States . 323

K.5.4.2 Unique Identifiers . 324

K.5.4.3 Some Axioms on Uniqueness 325

K.5.5 Mereology . 325

K.5.5.1 Physical versus Conceptual Mereology 325

K.5.5.2 Vessels . 325

K.5.5.2.1 Physical Mereology: 325

K.5.5.2.2 Conceptual Mereology: 326

K.5.5.3 Quay Cranes . 326

K.5.5.3.1 Physical Mereology: 326

K.5.5.3.2 Conceptual Mereology: 326

K.5.5.4 Quay Trucks . 327

K.5.5.4.1 Physical Mereology: 327

K.5.5.4.2 Conceptual Mereology: 327

K.5.5.5 Stack Cranes . 327

K.5.5.5.1 Physical Mereology: 327

K.5.5.5.2 Conceptual Mereology: 327

K.5.5.6 Container Stowage Areas . 328

K.5.5.6.1 Bays, Rows and Stacks: 328

K.5.5.7 Bay Mereology . 328

K.5.5.7.1 Physical Vessel Bay Mereology: 328

K.5.5.7.2 Conceptual Vessel Bay Mereology: 328

K.5.5.7.3 Physical Terminal Port Bay (cum Stack) Mereology: 329

K.5.5.7.4 Conceptual Terminal Port Bay (cum Stack) Mereology:329

K.5.5.8 Land Trucks . 329

K.5.5.8.1 Physical Mereology: 329

K.5.5.8.2 Conceptual Mereology: 329

K.5.5.9 Command Center . 329

K.5.5.10 Conceptual Mereology of Containers 330

K.5.6 Attributes . 330

K.5.6.1 States . 330

K.5.6.2 Actions . 330

K.5.6.3 Attributes: Quays . 330

K.5.6.4 Attributes: Vessels . 331

K.5.6.5 Attributes: Quay Cranes . 331

K.5.6.6 Attributes: Quay Trucks . 332

K.5.6.7 Attributes: Terminal Stack Cranes 332

K.5.6.8 Attributes: Container Stowage Areas 332

K.5.6.9 Attributes: Land Trucks . 333

K.5.6.10 Attributes: Command Center 333

K.5.6.11 Attributes: Containers . 334

K.6 Perdurants . 335

K.6.1 A Modelling Decision . 335

K.6.2 Virtual Container Storage Areas . 335

K.6.3 Changes to The Parts Model . 336

CONTENTS 307

K.6.4 Basic Model Parts . 336

K.6.5 Actions, Events, Channels and Behaviours 337

K.6.6 Actions . 337

K.6.6.1 Command Center Actions . 337

K.6.6.1.1 Motivating the Command Center Concept: 337

K.6.6.1.2 Calculate Next Transaction: 337

K.6.6.1.3 Command Center Action [A]: update mcc from vessel:339

K.6.6.1.4 Command Center Action [B]: calc ves pos: 339

K.6.6.1.5 Command Center Action [C-D-E]: calc ves qc . . . 339

K.6.6.1.6 Command Center Action [F-G-H]: calc qc qt 339

K.6.6.1.7 Command Center Action [I-J-K]: calc qt sc 340

K.6.6.1.8 Command Center Action [L-M-N]: calc sc stack . . 340

K.6.6.1.9 Command Center Action [N-M-L]: calc stack sc . . 340

K.6.6.1.10 Command Center Action [O-P-Q]: calc sc lt 341

K.6.6.1.11 Command Center Action [Q-P-O]: calc lt sc 341

K.6.6.1.12 Command Center: Further Observations 341

K.6.6.2 Container Storage Area Actions 341

K.6.6.2.1 The Load Pre-/Post-Condtions 342

K.6.6.2.2 The Unload Pre-/Post-Conditions 342

K.6.6.3 Vessel Actions . 343

K.6.6.3.1 Action [A]: calc next port: 343

K.6.6.3.2 Vessel Action [B]: calc ves msg: 344

K.6.6.4 Land Truck Actions . 344

K.6.6.4.1 Land Truck Action [R]: calc truck delivery: 344

K.6.6.4.2 Land Truck Action [S]: calc truck avail: 344

K.6.7 Events . 345

K.6.7.1 Active Part Initiation Events 345

K.6.7.2 Active Part Completion Events: 346

K.6.8 Channels . 346

K.6.8.1 Channel Declarations . 346

K.6.8.2 Channel Messages . 347

K.6.8.2.1 A,B,X,Y,C′: Vessel Messages 347

K.6.8.2.2 C,D,E,E′: Vessel/Container/Quay Crane Messages . 347

K.6.8.2.3 F,G,H,H′: Quay Crane/Container/Quay Truck Mes-
sages . 348

K.6.8.2.4 I,J,K,K′: Quay Truck/Container/Stack Crane Mes-
sages . 348

K.6.8.2.5 L,M,N,N′: Stack Crane/Container/Stack Messages . 349

K.6.8.2.6 O,P,Q,Q′: Land Truck/Container/Stack Crane Mes-
sages . 349

K.6.8.2.7 R,S,T,U,Q,V: Land Truck Messages 350

K.6.9 Behaviours . 350

K.6.9.1 Terminal Command Center . 350

K.6.9.1.1 The Command Center Behaviour: 351

K.6.9.1.2 The Command Center Monitor Behaviours: 351

K.6.9.1.3 The Command Center Control Behaviours: 352

K.6.9.2 Vessels . 353

K.6.9.2.1 Port Approach . 353

K.6.9.2.2 Port Arrival . 354

K.6.9.2.3 Unloading of Containers 354

K.6.9.2.4 Loading of Containers 355

308 CONTENTS

K.6.9.2.5 Port Departure . 355

K.6.9.3 Quay Cranes . 355

K.6.9.4 Quay Trucks . 356

K.6.9.5 Stack Crane . 356

K.6.9.6 Stacks . 356

K.6.9.7 Land Trucks . 357

K.6.9.8 Containers . 358

K.6.10 Initial System . 358

K.6.10.1 The Distributed System . 358

K.6.10.2 Initial Vessels . 358

K.6.10.3 Initial Land Trucks . 359

K.6.10.4 Initial Containers . 359

K.6.10.5 Initial Terminal Ports . 359

K.6.10.6 Initial Quay Cranes . 359

K.6.10.7 Initial Quay Trucks . 359

K.6.10.8 Initial Stack Cranes . 360

K.6.10.9 Initial Stacks . 360

K.7 Conclusion . 360

K.7.1 An Interpreation of the Behavioural Description 360

K.7.2 What Has Been Done . 360

K.7.3 What To Do Next . 360

K.7.4 Acknowledgements . 360

We present a recording of stages and steps of a development of a domain analysis & description
of an answer to he question: what, mathematically, is a container terminal ?

This is a report on an experiment. At any stage of development, and the present draft stage is
judged 2/3 “completed” it reflects how I view an answer to the question what is a container terminal
port ? mathematically speaking.

K.1 Introduction

to be written

K.1.1 Reference Literature on Container-related Matters

We refer to: [29, A Container Line Industry Domain, 2007], [89, A-Z Dictionary of Export, Trade
and Shipping Terms], [145, Portworker Development Programme: PDP Units], [151, An interactive
simulation model for the logistics planning of container operations in seaports,1996], [4, Stowage
planning for container ships to reduce the number of shifts, 1998], [180, Container stowage plan-
ning: a methodology for generating computerised solutions, 2000], [3, Container ship stowage prob-
lem: complexity and connection to the coloring of circle graphs, 2000], [181, Container stowage
pre-planning: using search to generate solutions, a case study, 2001], [87, A genetic algorithm with
a compact solution encoding for the container ship stowage problem, 2002], [114, Multi-objective ...
stowage and load planning for a container ship with container rehandle ..., 2004], [175, Container
terminal operation and operations research - a classification and literature review, 2004], [80, On-
line rules for container stacking, 2010],

K.2. SOME PICTURES 309

K.2 Some Pictures

K.2.1 Terminal Port Container Stowage Area

Analysis of the above picture:

• The picture shows a terminal .

• At bottom we are hinted (through shadows) at quay cranes serving (unshown) vessels.

• Most of the picture shows a container stowage area, here organized as a series of columns,
from one side of the picture to the other side, e.g., left-to-right, sequences (top-to-bottom)
of [blue] bays with rows of stacks of containers.

• Almost all columns show just one bay .

• Three “rightmost” columns show many [non-blue] bays.

• Most of the column “tops” and “bottoms” show stack cranes.

• The four leftmost columns show stack cranes at bays “somewhere in the middle” of a column.

K.2.2 Container Stowage Area and Quay Cranes

310 CONTENTS

K.2.3 Container Vessel Routes

K.2.4 Containers

K.2.4.1 40 and 20 Feet Containers

K.2.4.2 Container Markings

K.2. SOME PICTURES 311

K.2.5 Container Vessels

Quay cranes and vessel showing row of aft (rear) bay .

K.2.6 Container Stowage Area: Bays Rows, Stacks and Tier

Bay, Row, Tier Numbers. Row Numbers

Cross section of a Bay. Tier Numbers.

Bay Numbering

312 CONTENTS

K.2.7 Stowage Software

K.2.8 Quay Cranes

K.2.9 Container Stowage Area and Stack Cranes

K.2.10 Container Stowage Area

K.3. SECT 313

K.2.11 Quay Trucks

K.2.12 Map of Shanghai and YangShan

K.3 SECT

• Shanghai East Container Terminal

– is the joint venture terminal of

– APM Terminals and

– Shanghai International Port Group

– in Wai Gao Qiao port area of Shanghai .

• No.1 Gangjian Road, Pudong New District, Shanghai, China

314 CONTENTS

K.4. MAIN BEHAVIOURS 315

K.4 Main Behaviours

• From consumer/origin to consumer/final destination:

– container loads onto land truck;

– land truck travels to terminal stack;

– container unloads by means of terminal stack crane

from land truck onto terminal stack.

– Container moves from stack to vessel:

∗ terminal stack crane moves container

from terminal stack to quay truck,

∗ quay truck moves container

from terminal stack to quay,

∗ quay crane moves container

to top of a vessel stack;

– Container moves on vessel from terminal to terminal:

∗ Either container is unloaded at a next terminal port to a stack and from there to
a container truck

∗ or: container is unloaded at a next terminal port to a stack and from there to a
next container vessel.

316 CONTENTS

K.4.1 A Diagram

Bays, Rows, Stacks, Tiers

Containers

Ocean ...

Water

Bays
Rows
Stacks Bays

Rows
Stacks

Land and Quay Trucks

Quay Truck (QT)
move Containers (C)

and Quay Cranes (QC)

Land Truck (LT)
move Containers (C)
between Shipper (S)
and Terminal (TP)

Vessels (V) move
Containers (C)

Terminals (TP)

Quay

... Terminal... Land

Ground

between Stack Cranes (SC)

"Stacks"

Terminal (TP) ...

...

Stack and Quay Cranes

Container Vessels

between

Fig. 1: Container Terminal Ports, I
A “from the side” snapshot of terminal port activities

K.4.2 Terminology - a Caveat

Bay 1: contains indexed set of rows (of stacks of containers).

Container : smallest unit of central (i.e., huge) concern !

Container Stowage Area : An area of a vessel or a terminal where containers are stored, during voyage, respectively
awaiting to be either brought out to shippers or onto vessels.

Crane :

Stack Crane : moves containers between land or terminal trucks and terminal stacks.

Quay Crane : moves containers between [land or] terminal trucks and vessels.

Land : ... as you know it ...

Ocean : ... as you know it ...

Shipper : arranges shipment of containers with container lines

Quay : area of terminal next to vessels (hence water).

Row : contains indexed set of stacks (of containers).

Stack : contains indexed set of containers.

We shall also, perhaps confusingly, use the term stack referring to the land-based bays of a
terminal.

Terminal : area of land and water between land and ocean equipped with container stowage area, and
stack and quay cranes, etc.

Truck :

Land Truck : privately operated truck transport containers between shippers and stack cranes.

Quay Truck : terminal operated special truck transport containers between stack cranes and quay
cranes.

1The terms introduced in this section are mine. They are most likely not the correct technical terms of the
container shipping and stowage trade. I expect to revise this section, etc.

K.5. ENDURANTS 317

Tier : index of container in stack .

Vessel : contains a container stowage area.

K.4.3 Assumptions

Without loss of generality we can assume that there is exactly one stack crane per land-basederminal
stack; quay cranes each serve exactly one bay on a vessel; there are enough quay cranes to serve
all bays of any berthed vessel; quay trucks may serve any (quay and stack) crane; land trucks may
serve more than one terminal; et cetera.

K.5 Endurants

Fig. 2: Container Terminal Ports, II
A “from above” snapshot of terminal port activities

We refer to [56, Sects. 3., 4., and 5.].
Our model focuses initially on parts, that is, manifest, observable phenomena. Our choice of

these is expected to be subject to serious revision once we ... More to come ...

K.5.1 Parts

We refer to [56, Sect. 3.3].
Our model has, perhaps arbitrarily, focused on just some of the manifest, i.e., observable parts

of a domain of container terminal ports. We shall invariable refer to container terminal ports as
either container terminals, or terminal ports, tp:TP, or just terminals. We expect revisions to
the decomposition as shown as we learn more from professional stakeholders, e.g., APM Termi-
nals/SECT , Shanghai.

1. In the container line industry, CLI, we can observe

2. a structure, TPS, of all terminal ports, and from each such structure, an indexed set, TPs,
of two or more container terminal ports, TP;

318 CONTENTS

3. a structure, VS, of all container vessels, and from each such structure, an indexed set, Vs, of
one or more container vessels, V; and

4. a structure, LTS, of all land trucks, and from each such structure, a non-empty, indexed set,
LTs of land trucks, LT;

type
1 CLI
2 STPs, TPs = TP-set, TP
3 SVs, Vs = V-set, V
4 SLTs, LTs = LT-set, LT
value
2 obs STPs: CLI → STPs, obs TPs: STPs → TPs
3 obs SVs: CLI → SVs, obs Vs: SVs → Vs
4 obs SLTs: CLI → SLTs, obs LTs: SLTs → LTs
axiom
2 ∀ cli:CLI•card obs TPs(obs STPs(cli))≥2
3 ∧ card obs Vs(obs SVs(cli))≥1
4 ∧ card obs LTs(obs SLTs(cli))≥1

K.5.1.1 Terminal Ports

In a terminal port, tp:TP, one can observe

5. a [composite] container stowage area, csa:CSA;

6. a structure, sqc:SQC, of quay cranes, and from that, a non-empty, indexed set, qcs:QCs, of
one or more quay cranes, qc:QC;

7. structure, sqt:SQT, of quay trucks, and from that a non-empty, indexed set, qts:QTs, of quay
trucks, qt:QT;

8. a structure, Scs:SCS, of stack cranes, and from that a non-empty, indexed set, scs:SCs, of
one or more stack cranes, sc:SC;

9. a[n atomic] quay2, q:Q3; and

10. a[n atomic] terminal port monitoring and control center, mcc:MCC.

type
5 CSA
6 SQC, QCs = QC-set, QC
7 SQT, QTs = QT-set, QT
8 SCS, SCs = SC-set, SC
9 Q
10 MCC
value
5 obs CSA: TP → CSA
6 obs SQC: TP → SQC, obs QCs: SQC → QCs
7 obs SQT: TP → SQT, obs QTs: SQT → QTs
8 obs SCS: TP → SCS, obs SCs: SCS → SCs

2We can, without loss of generality, describe a terminal as having exactly one quay (!) – just as we, again
without any loss of generality, describe it as having exactly one container stowage area.

3Quay: a long structure, usually built of stone, where boats can be tied up to take on and off their goods.
Pronunciation: key.
Thesaurus: berth, jetty, key, landing, levy, slip, wharf

K.5. ENDURANTS 319

9 obs Q: TP → Q
10 obs MCC: TP → MCC
axiom
6 ∀ sqc:SQC•card obs QCs(sqc)≥1
7 ∀ sqt:SQT•card obs QTs(sqt)≥1
8 ∀ scs:SCS•card obs SCs(scs)≥1

K.5.1.2 Quays

Although container terminal port quays can be modelled as composite parts we have chosen to
describe them as atomic. We shall subsequently endow the single terminal port quay with such
attributes as quay segments, quay positions and berthing4.

K.5.1.3 Container Stowage Areas: Bays, Rows and Stacks

11. From a container stowage area one can observe a non-empty indexed set of bays,

12. From a bay we can observe a non-empty indexed set of rows.

13. From a row we can observe a non-empty indexed set of stacks.

14. From a stack we can observe a possibly empty indexed set of containers.

type
11 BAYS, BAYs = BAY-set, BAY
12 ROWS, ROWs = ROW-set, ROW
13 STKS, STKs = STK-set, STK
14 CONS, CONs = CON-set, CON
value
11 obs BAYS: CSA → BAYS, obs BAYs: BAYS → BAYs
12 obs ROWS: BAY → ROWS, obs ROWs: ROWS → ROWs
13 obs STKS: ROW → STKS, obs STKs: STKS → STKs
14 obs CONS: STK → CONS, obs CONs: CONS → CONs
axiom
11 ∀ bays:BAYs • card bays > 0
12 ∀ rows:ROWs • card rows > 0
13 ∀ stks:STKs • card stks > 0

K.5.1.4 Vessels

From (or in) a vessel one can observe

15. [5] a container stowage area

16. and some other parts.

type
5 CSA
16 ...
value
5 obs CSA: V → CSA
16 ...

4Berth: Sufficient space for a vessel to maneuver; a space for a vessel to dock or anchor; (whether occupied by
vessels or not). Berthing: To bring (a vessel) to a berth; to provide with a berth.

320 CONTENTS

K.5.1.5 Functions Concerning Container Stowage Areas

17. One can calculate

18. the set of all container storage areas:

19. of all terminal ports together with those

20. of all container lines.

value
17 cont stow areas: CLI → CSA-set
18 cont stow areas(cli) ≡
19 {obs CSA(tp)|tp:TP•tp ∈ obs TPs(obs TPS(cli))}
20 ∪ {obs CSA(cl)|cl:CL•cl ∈ obs CLs(obs CLS(cli))}

One can calculate the containers of

21. a stack,

22. a row,

23. a bay, and

24. a container stowage area.

value
21 extr cons stack: STK → CONs
21 extr cons stack(stk)≡obs CONs(obs CONS(stk))
22 extr cons row: ROW → CONs
22 extr cons row(row) ≡
22 {obs CONs(obs CONS(stk))|stk:STK•stk∈obs STKs(obs STKS(stk))}
23 extr cons bay: BAY → CONs
23 extr cons bay(bay) ≡
23 {obs CONs(obs CONS(row))|row:ROW•row∈obs ROWs(obs ROWS(bay))}
24 extr cons csa: CSA → CONs
24 extr cons csa(csa) ≡
24 {obs CONs(obs CONS(bay))|bay:BAY•bay∈obs BAYs(obs BAYS(csa))}

K.5.1.6 Axioms Concerning Container Stowage Areas

25. All rows contain different, i.e. distinct containers.

26. All bays contain different, i.e. distinct containers.

27. All container stowage areas contain different, i.e. distinct containers.

value
25 ∀ cli:CLI •

25 ∀ csa,csa′:CSA•{csa,csa′}⊆cont stow areas(cli) •

25 ∀ row,row′:ROW •

25 {row,row′}⊆obs ROWs(obs ROWS(csa))∪obs ROWs(obs ROWS(csa′))⇒
25 extr cons row(row) ∩ extr cons row(row′) = {} ∧
26 ∀ bay,bay′:BAY •

26 {bay,bay′}⊆obs ROWs(obs ROWS(csa))∪obs ROWs(obs ROWS(csa′))⇒
26 extr cons bay(bay) ∩ extr cons bay(bay′) = {} ∧
27 extr cons csa(csa) ∩ extr cons csa(csa′) = {}

K.5. ENDURANTS 321

K.5.1.7 Stacks

An aside: We shall use the term ‘stack’ in two senses: (i) as a component of container storage
area bays; and (ii) to refer to the collection of stacks in a bay of a terminal container storage area.

28. Stacks are created empty, and hence stacks can be empty.

29. One can push a container onto a stack and obtain a non-empty stack.

30. One can pop a container from a non-epmpty stack and obtain a pair of a container and a
possibly empty stack.

value
28 empty: () → STK, is empty: STK → Bool
29 push: CON × STK → STK

30 pop: STK
∼→ (CON × STK)

axiom
28 is empty(empty()), ∼is empty(push(c,stk))
29 pop(push(c,stk)) = (c,stk)
30 pre pop(stk),pop(push(c.stk)): ∼is empty(stk)
30 pop(empty()) = chaos

K.5.2 Terminal Port Command Centers

K.5.2.1 Discussion

We consider terminal port monitoring & control command centers to be atomic parts. The purpose
of a terminal port command center is to monitor and control the allocation and servicing (berthing)
of any visiting vessel to quay positions and by quay cranes, the allocation and servicing of vessels by
quay cranes, the allocation and servicing of quay cranes by quay trucks, the allocation and servicing of
quay trucks to quay cranes, containers and terminal stacks, the allocation and servicing of land trucks
to containers and terminal stacks, This implies that there are means for communication between
a terminal command center and vessels, quay cranes, stack cranes, quay trucks, land trucks,
terminal stacks and containers.

K.5.2.2 Justification

We shall justify the concept of terminal monitoring & control, i.e., command centers. First,
using the domain analysis & description approach of [56], we know that we are going, through a
transcendental deduction, to model certain parts as behaviours. These parts, we decide, after some
analysis that we forego, to be vessels, quay cranes, quay trucks, stack cranes stacks, land trucks,
and containers. Behaviours are usually like actors:they can instigate actions. But we decide, in
our analysis, that some of these behaviours, quay cranes, quay trucks, stack cranes and stacks,
are “passive” actors: are behaviourally not endowed with being able to initiate “own” actions.
Instead, therefore, of all these behaviours, being able to communicate directly, pairwise, as loosely
indicated by the figures of Pages 316 and 317, we model them to communicate via their terminal
command centers.

This is how we justify the introduction of the concept of terminal command centers. They are an
abstraction. In “ye olde days” you could observe, not one, but, perhaps, a hierarchy of terminal
port offices, staffed by people, [each office, each group of staff] with its set of duties: communicating
(by radio-phone) with approaching [and departing] vessels; scheduling quay positions, quay cranes
and quay trucks; managing the operation of cranes and trucks; and, on a large scale, calculating
stowage: on vessels and in terminals. Today, “an age of ubiquitous computing”, most of these offices
and their staff are replaced by electronics: sensors, actuators, communication and computing, and
with massive stowage data processing: where should containers be stowed on board vessels and in
terminals so as to near-optimise all operations.

322 CONTENTS

K.5.3 Unique Identifications

We refer to [56, Sect. 5.1].

31. Vessels have unique identifiers.

32. Quay cranes have unique identifiers.

33. Quay trucks have unique identifiers.

34. Stack cranes have unique identifiers.

35. Bays (“Stacks”) of terminal container
stowage areas have unique identifiers,
cf. Item 39.

36. Land trucks have unique identifiers.

37. Terminal port command centers have
unique identifiers.

38. Containers have unique identifiers.

39. Bays of container stowage areas have
unique identifiers.

40. Rows of a bay have unique identifiers.

41. Stacks of a row have unique identifiers.

42. The part unique identifier types are mu-
tually disjoint.

type
31 VI
32 QCI
33 QTI
34 SCI
35 TBI
36 LTI
37 MCCI
38 CI
39 BI
40 RI
41 SI
axiom
42 VI, QCI, QTI, SCI, TBI, LTI, MCCI, CI, RI and SI mutually disjoint
42 TBI ⊂ BI

value
31 uid V: V → VI
32 uid QC: QC → QCI
33 uid QT: QT → QTI
34 uid SC: SC → SCI
34 uid TBI: BAY → TBI
35 uid LT: LT → LTI
37 uid MCC: MCC → MCCI
37 uid CON: CON → CI
34 uid BAY: BAY → BI
35 uid ROW: ROW → RI
36 uid STK: STK → SI

K.5.3.1 Unique Identifiers: Distinctness of Parts

43. If two containers are different then their unique identifiers must be different.

axiom
43 ∀ con,con′:CON • con 6= con′ ⇒ uid CON(con) 6= uid CON(con′)

The same distinctness criterion applies to stacks, rows, bays, container storage areas, terminal
ports, cranes, vessels, etc.

K.5.3.2 Unique Identifiers: Two Useful Abbreviations

Container positions within a container stowage area can be represented in two ways:

44. by a triple of a bay identifier, a row identifier and a stack identifier, and

45. by these three elements and a tier position (i.e., position within a stack).

44 BRS = BI × RI × SI
45 BRSP = BI × RI × SI × Nat
axiom
45 ∀ (bu,ri,si,n):BRSP • n>0

K.5. ENDURANTS 323

K.5.3.3 Unique Identifiers: Some Useful Index Set Selection Functions

46. From a container stowage area once can observe all bay identifiers.

47. From a bay once can observe all row identifiers.

48. From a row once can observe all stack identifiers.

49. From a virtual container storage area, i.e., an icsa:iCSA, one can extract all the unique
container identifiers.

value
46 xtr BIs: CSA → BI-set
46 xtr BIs(csa) ≡ {uid BAY(bay)|bay:BAY•bay ∈ xtr BAYs(csa)}

46 xtr RIs: BAY → RI-set
47 xtr RIs(bay) ≡ {uid ROW(bay)|row:ROW•row ∈ obs ROWs(bay)}

46 xtr SIs: ROW → SI-set
48 xtr SIs(row) ≡ {uid STK(row)|stk:STK•stk ∈ obs STKs(row)}

49 xtr CIs: iCSA → CI-set
49 xtr CIs(icsa) ≡
49 ... [to come] ...

K.5.3.4 Unique Identifiers: Ordering of Bays, Rows and Stacks

The bays of a container stowage area are usually ordered. So are the rows of bays, and stacks of
rows. Ordering is here treated as attributes of container stowage areas, bays and stacks. We shall
treat attributes further on.

K.5.4 States, Global Values and Constraints

K.5.4.1 States

50. We postulate a container line industry cli:CLI.

From that we observe, successively, all parts:

51. the set, cs:C-set, of all containers;

52. the set, tps:TPs, of all terminal ports;

53. the set, vs:Vs, of all vessels; and

54. the set, lts:LTs, of all land trucks.

value
50 cli:CLI
51 cs:C-set = obs Cs(obs CS(cli))
52 tps:TP-set = obs TPs(obs TPS(cli))
53 vs:V-set = obs Vs(obs VS(cli))
54 lts:LTs = obs LTs(obs LTS(cli))

We can observe

55. csas:CSA-set, the set of all terminal port container stowage areas of all terminal ports;

324 CONTENTS

56. bays:BAY-set, the terminal port bays of all terminals;

57. the set, qcs:QC-set, of all quay cranes of all terminals;

58. the set, qts:QT-set, of all quay trucks of all terminal ports; and

59. the set, scs:SC-set, of all terminal (i.e., stack) cranes of all terminal ports.

value
55 csas:CSA-set = {obs CSA(tp)|tp:TP•tp ∈ tps}
55 bays:BAY-set = {obs BAY(csa)|csa:CSA•csa ∈ csas}
57 qcs:QC-set = {obs QCs(obs QCS(tp))|tp:TP•tp ∈ tps}
58 qts:QT-set = {obs QTs(obs QTS(tp))|tp:TP•tp ∈ tps}
59 scs:SC-set = {obs SCs(obs SCS(tp))|tp:TP•tp ∈ tps}

K.5.4.2 Unique Identifiers

Given the generic parts outlined in Sect. K.5.4.1 we can similarly define generic sets of unique
identifiers.

60. There is the set, c uis, of all container identifiers;

61. the set, tp uis, of all terminal port identifiers;

62. the set, mcc uis, of all terminal port command center identifiers;

63. the set, v uis, of all vessel identifiers;

64. the set, qc uis, of quay crane identifiers of all terminal ports;

65. the set, qt uis, of quay truck identifiers of all terminal ports;

66. the set, sc uis, of stack crane identifiers of all terminal ports;

67. the set, stk uis, of stack identifiers of all terminal ports;

68. the set, lt uis, of all land truck identifiers; and

69. the set, uis, of all vessel, crane and truck identifiers.

value
60 c uis:CI-set = {uid C(c)|c:C•c∈cs}
61 tp uis:TPI-set = {uid TP(tp)|tp:TP•tp∈tps}
62 mcc uis:TPI-set = {uid MCC(obs MCC(tp))|tp:TP•tp∈tps}
63 v uis:VI-set = {uid V(v)|v:V•v∈vs}
64 qc uis:QCI-set = {uid QC(qc)|qc:QC•qc∈qcs}
65 qt uis:QTI-set = {uid QT(qt)|qt:QT•qt∈qts}
66 sc uis:SCI-set = {uid SC(sc)|sc:SC•sc∈scs}
67 stk uis:BI-set = {uid BAY(stk)|stk:BAY•stk∈stks}
68 lt uis:LTI-set = {uid LL(lt)|lt:LT•lt∈lts}
69 uis:(VI|QCI|QTI|SCI|BI|LTI)-set = v uis∪qc uis∪qt uis∪sc uis∪stk uis∪ lt uis

70. the map, tpmcc idm, from terminal port identifiers into the identifiers of respective command
centers;

71. the map, mccqc idsm, from command center identifiers into the set of quay crane identifiers
of respective ports;

K.5. ENDURANTS 325

72. the map, mccqt idsm, from command center identifiers into the identifiers of quay trucks of
respective ports;

73. the map, mccsc idsm, from command center identifiers into the identifiers of quay trucks of
respective ports; and

74. the map, mccbays idsm, from command center identifiers into the set of bay identifiers (i.e.,
“stacks”) of respective ports;

value
70 tpmcc idm:(TI→m MCCI) = [uid TP(tp)7→uid MCC(obs MCC(tp))|tp:TP•tp ∈ tps]
71 mccqc idsm:(MCCI→m QCI-set)
71 = [tpmcc uim(uid TP(tp)) 7→ { uid QC(qc)
71 | qc:QC • qc ∈ obs QCs(obs QCS(tp)) } | tp:TP•tp ∈ tps]
72 mccqt idsm:(MCCI→m QTI-set) =
72 = [tpmcc uim(uid TP(tp)) 7→ { uid QT(qt)
72 | qt:QT • qt ∈ obs QTs(obs QTS(tp)) } | tp:TP•tp ∈ tps]
73 mccsc idsm:(MCCI→m SCI-set)
73 = [tpmcc uim(uid TP(tp)) 7→ { uid SC(sc)
73 | sc:SC • sc ∈ obs SCs(obs SCS(tp)) } | tp:TP•tp ∈ tps]
74 mccbays idsm:(MCCI→m BI-set)
74 = [tpmcc uim(uid TP(tp)) 7→ { uid B(b)
74 | b:BAY•b ∈ obs BAYs(obs BAYS(obs CSA(tp)))} | tp:TP•tp ∈ tps]

K.5.4.3 Some Axioms on Uniqueness

to be written

K.5.5 Mereology

We refer to [56, Sect. 5.2].

K.5.5.1 Physical versus Conceptual Mereology

We briefly discuss a distinction that was not made in [56]: whether to base a mereology on
physical connections or on functional or, as we shall call it, conceptual relations. We shall, for this
domain model, choose the conceptual view. The physical mereology view can be motivated, i.e.
justified, from the figures on pages 316 and 317. The conceptual view is chosen on the basis of
the justification of the terminal command centers, cf. Sect. K.5.2 on page 321. We shall model
physical mereology as attributes.5

K.5.5.2 Vessels

K.5.5.2.1 Physical Mereology:

75. Vessels are physically “connectable” to quay cranes of any terminal port.

type
75 Phys V Mer = QCI-set
value
75 attr Phys V Mer: V → Phys V mer

5Editorial note: Names of physical and of conceptual mereologies have to be “streamlined”. As now, they are a
“mess” !

326 CONTENTS

K.5.5.2.2 Conceptual Mereology:

76. Container vessels can potentially visit any container terminal port, hence have as [part of]
their mereology, a set of terminal port command center identifiers.

type
76 V Mer = MCCI-set
value
76 mereo V: V → V Mer
axiom
76 ∀ v:V • v ∈ vs ⇒ mereo V(v) ⊆ mcc uis

K.5.5.3 Quay Cranes

K.5.5.3.1 Physical Mereology: In modelling the physical mereology, though as an attribute,
of quay cranes, we need the notion of quay positions.

77. Quay cranes are, at any time, positioned at one or more adjacent quay positions of an
identified segment of such.

type
77 Phys QC Mereo = QPSId × QP∗

value
77 attr Phys QC: QC → Phys QC Mereo

78. The quay positions, qcmereo = (qpsid,qpl):QCMereo, must be proper quay positions of the
terminal,

79. that is, the segment identifier, qpsid, must be one of the terminal,

80. and the list, qpl, must be contiguously contained within the so identifier segment.

axiom ∀ tp:TP,
78 let q = obs Q(tp), qcs = obs QCs(obs QCS(tp)) in
79 ∀ q:Q • q ∈ qcs ⇒
79 let (qpsid,qpl) = obs Mereo(q), qps = attr QPSs(q) in
79 qpsid ∈ dom qps
80 ∧ ∃ i,j:Nat • {i,j} ∈ inds qpl ∧ 〈(qps(qpsi))[k]|i≤k≤j〉 = qpl
78 end end

K.5.5.3.2 Conceptual Mereology: The conceptual mereology is simpler.

81. Quay cranes are conceptually related to the command center of the terminal in which they
are located.

type
81 QC Mer = MCCI
value
81 mereo QC: QC → QC Mer

K.5. ENDURANTS 327

K.5.5.4 Quay Trucks

K.5.5.4.1 Physical Mereology:

82. Quay trucks are physically “connectable” to quay and stack cranes.

type
82 Phys QT Mer = QCI-set × QCI-set
value
82 attr Phys QT Mer: QT → Phys QT Mer

K.5.5.4.2 Conceptual Mereology:

83. Quay trucks are conceptually connected to the command center of the terminal port of which
they are a part.

type
83 QT Mer = MCCI
value
83 mereo QT: QT → QT Mer

K.5.5.5 Stack Cranes

K.5.5.5.1 Physical Mereology:

84. Terminal stack cranes are positioned to serve one or more terminal area bays, one or more
quay trucks and one or more land trucks.

85. The terminal stack crane positions are indeed positions of their terminal

86. and no two of them share bays.

type
84 Phys SCmereo = s bis:BI-set × s qtis:QTI-set × s ltis:LTI-set
axiom
84 ∀ (bis,qtis,ltis):Phys SCmereo•bis 6={} ∧ qtis 6={} ∧ ltis 6={}
value
84 Phys SCmereo: SC → Phys SCmereo
axiom
84 ∀ tp:TP •

84 let csa=obs CSA(tp), bays=obs BAYs(obs BAYS(csa)), scs=obs SCs(obs SCS(tp)) in
85 ∀ sc:SC•sc ∈ scs ⇒ Phys SCmereo(sc) ⊆ xtr BIs(csa)
86 ∧ ∀ tp′,tp′′:TP•{tc′,tc′′}⊆tcs ∧ tc′6=tc′′

86 ⇒ s bis(Phys SCmereo(tc′)) ∩ s bis(Phys SCmereo(tc′′))={} end

K.5.5.5.2 Conceptual Mereology: The conceptual stack crane mereology is simple:

87. Each stack is conceptually related to the command center of the terminal at which it is
located.

type
87 SC Mer = MCCI
value
87 mereo SC: SC → SC Mer

328 CONTENTS

K.5.5.6 Container Stowage Areas

K.5.5.6.1 Bays, Rows and Stacks: The following are some comments related to, but not
defining a mereology for container stowage areas.

88. A bay of a container stowage area

(a) has either a predecessor

(b) or a successor,

(c) or both (and then distinct).

(d) No row cannot have neither a predecessor nor a successor.

89. A row of a bay has a predecessor and a successor, the first stack has no predecessor and the
last stack has no successor.

90. A stack of a row has a predecessor and a successor, the first stack has no predecessor, and
the last stack has no successor.

value
88 BAY Mer: BAY → ({|’nil’|}|BI) × (BI|{|’nil’|})
89 ROW Mer: ROW → ({|’nil’|}|RI) × (RI|{|’nil’|})
90 STK Mer: STK → ({|’nil’|}|SI) × (SI|{|’nil’|})
axiom
88 ∀ csa:CSA • let bs = obs BAYs(obs BAYS(csa)) in
88 ∀ b:BAY • b ∈ bs ⇒
88 let (nb,nb′) = mereo BAY(b) in
88 case (nb,nb′) of
88a (’nil’,bi) → bi ∈ xtr BIs(csa),
88b (bi,’nil’) → bi ∈ xtr BIs(csa),
88d (’nil’,’nil’) → chaos,
88c (bi,bi′) → {bi,bi′} ⊆ xtr BIs(csa) ∧ bi 6=bi′

88 end end end
89 as for rows
90 as for stacks

K.5.5.7 Bay Mereology

K.5.5.7.1 Physical Vessel Bay Mereology:

91. A vessel bay is topologically related to the vessel on board of which it is placed and to the
set of all quay cranes of all terminal ports.

type
91 Phys VES BAY Mer = VI × QCI-set

K.5.5.7.2 Conceptual Vessel Bay Mereology:

92. A vessel bay is conceptually related to the set of all command centers of all terminal ports.

type
92 V BAY Mer = MCCI-set

K.5. ENDURANTS 329

K.5.5.7.3 Physical Terminal Port Bay (cum Stack) Mereology:

93. A terminal bay (cum stack) is topologically related to the stack cranes of a given terminal
port and all land trucks.

type
93 Phys STK Mer = SCI-set × LTI-set

K.5.5.7.4 Conceptual Terminal Port Bay (cum Stack) Mereology:

94. A terminal port bay is conceptually related to the command center of its port.

type
94 T BAY Mer = MCCI

K.5.5.8 Land Trucks

K.5.5.8.1 Physical Mereology:

95. Land trucks are physically “connectable” to stack cranes – of any port.

type
95 Phys LT Mer = SCI-set
value
95 attr Phys LT Mer: LT → Phys LT Mer

K.5.5.8.2 Conceptual Mereology:

96. Land trucks are conceptually connected to the command centers of any terminal port.

type
96 LT Mer = MCCI-set
value
96 mereo LT: LT → LT Mer

K.5.5.9 Command Center

Command centers are basically conceptual quantities. Hence we can expect the physical mereology
to be the conceptual mereology.

97. Command centers are physically and conceptually connected toall vessels, all cranes of the
terminal port of the command center, all quay trucks of the terminal port of the command
center, all stacks (i.e., bays) of the terminal port of the command center, and all land trucks,
and all containers.

type
97 MCC Mer = VI-set×QCI-set×QTI-set×SCI-set×BI-set×LTI-set×CI-set
value
97 mereo MCC: MCC → MCC Mer
axiom
97 ∀ tp:TP • tp ∈ tps •

97 let qcs:QC-set • qcs = obs QCs(obs QCS(tp)),
97 qts:QT-set • qts = obs QTs(obs QTS(tp)),

330 CONTENTS

97 scs:SC-set • scs = obs SCs(obs SCS(tp)),
97 bs:iBAY-set • bs = obs Bs(obs BS(obs CSA(tp))) in
97 let vis:VI set • vis = {uid VI(v)|v:V•v ∈ vs},
97 qcis:QCI set • qcis = {uid QCI(qc)|qc:QC•qc ∈ qcs},
97 qtis:QTI set • qcis = {uid QTI(qc)|qt:QT•qt ∈ qts},
97 scis:SCI-set • scis = {uid SCI(sc)|sc:SC•sc ∈ scs},
97 bis:iBAY-set • bis = {uid BI(b)|b:iBAY•b ∈ bs},
97 ltis:LTI-set • ltis = {uid LTI(lt)|lt:LT•lt ∈ lts},
97 cis:SCI-set • cis = {uid CI(c)|c:C•c ∈ cs} in
97 mereo MCC(obs MCC(tp)) = (vis,qcis,scis,sis,bis,ltis,cis) end end

K.5.5.10 Conceptual Mereology of Containers

The physical mereology of any container is modelled as a container attribute.

98. The conceptual mereology is modelled by containers being connected to all terminal com-
mand centers.

type
98 C Mer = MCCI-set
value
98 mereo C: C → C Mer
axiom
98 ∀ c:C • mereo C(c) = mcc uis

K.5.6 Attributes

We refer to [56, Sect. 5.3].

K.5.6.1 States

By a state we shall mean one or more parts such that these parts have dynamic attributes, in our
case typically programmable attributes.

K.5.6.2 Actions

Actions apply to states and yield possibly updated states and, usually, some result values.

We shall in this section, Sect. K.5.6, on attributes, outline a number of simple (usually called
primitive) actions of states. These actions are invoked by some behaviours either at their own
volition, or in response to events occurring in other behaviours. The action outcomes are simple
enough, but calculations resulting in these outcomes are not. Together the totality of the actions
performed by the terminal’s monitoring & control of vessels, cranes, trucks and the container
stowage area, reflect the complexity of stowage handling.

K.5.6.3 Attributes: Quays

99. Quays are segmented into one or more quay segments, qs:QS, each with a sequence of one
or more crane positions, cp:CP.

100. Quay segments and

101. crane positions are further unspecified.

K.5. ENDURANTS 331

type
99 QPOS = QS × CP∗ axiom ∀ (,cpl):QPOS•cpl 6=〈〉
100 QS
101 CP

K.5.6.4 Attributes: Vessels

102. A vessel is

(a) either at sea, at some programmable geographical location (longitude and latitude),

(b) or in some programmable terminal port – designated by the identifier of its command
center and its quay position.

103. We consider the “remainder” of the vessel state as a programmable attribute – which we
do not further define. The remainder includes all information about all containers, their
bay/row/stack/tier positions, their bill-of-ladings, etc.

104. There may be other vessel attributes.

type
102 V Pos == AtSea | InPort
102a Longitude, Latitude
102a AtSea :: Longitude × Latitude
102b InPort :: MCCI × QPOS
103 VΣ
104 ...
value
102 attr V Pos: V → V Pos
104 attr VΣ: V → VΣ
104 attr ...: V → ...
axiom
102b ∀ mkInPort(ti):InPort • ti ∈ tp uis

K.5.6.5 Attributes: Quay Cranes

105. At any one time a quay crane may programmably hold a container or may not. We model
the container held by a crane by the container identifier.

106. At any one time a quay crane is programmably positioned in a quay position within a quay
segment.

107. Quay cranes may have other attributes.

type
105 QCHold == mkNil(′nil′) | mkCon(ci:CI)
106 QCPos = QSId × QP
107 ...
value
105 attr QCHold: QC → QCHold
106 attr QCPos: QC → QCPos
107 ...

332 CONTENTS

K.5.6.6 Attributes: Quay Trucks

108. At any one time a land truck may programmably hold a container or may not. We model
the container held by a quay truck by the container identifier.

109. Quay trucks may have other attributes.

Note that we do not here model the position of quay trucks.

type
108 QTHold == mkNil(′nil′) | mkCon(ci:CI)
109 ...
value
108 attr QTHold: QT → QTHold
109 ...

K.5.6.7 Attributes: Terminal Stack Cranes

110. At any one time a stack crane may programmably hold a container or may not. We model
the container held by a crane by the container identifier.

111. Stack cranes are programmably positioned at a terminal bay.

112. Stack cranes may have other attributes.

type
110 SCHold == mkNil(′nil′) | mkCon(ci:CI)
111 SCPos = BI
111 ...
value
110 attr SCHold: SC → SCHold
111 attr SCPos: SC → SCPos
112 ...

K.5.6.8 Attributes: Container Stowage Areas

113. Bays of container storage areas statically have total order.

114. Rows of bays statically have total order.

115. Stacks of rows statically have total order.

We abstract orderings in two ways.

type
113 BOm = BI →m Nat, BOl = BI∗

114 ROm = RI →m Nat, ROl = RI∗

115 SOm = SI →m Nat, SOl = SI∗

axiom
113 ∀ bom:BOm•rng bom={1:card dom bom}, ∀ bol:BOl•inds bol={1:len bol}
114 ∀ rom:ROm•rng rom={1:carddom rom}, ∀ rol:ROl•inds rol={1:len rol}
115 ∀ som:SOm•rng som={1:card dom som}, ∀ sol:SOl•inds sol={1:len sol}
value
113 attr BOm: CSA → BOm, attr BOl: CSA → BOl
114 attr ROm: BAY → ROm, attr ROl: BAY → ROl
115 attr SOm: ROW → SOm, attr SOl: ROW → SOl

K.5. ENDURANTS 333

CSAs, BAYs, ROWs and STKs have (presently further) static descriptions6 and terminal and
vessel container stowage areas have definite numbers

116. of bays,

117. and any one such bay a definite number of rows,

118. and any one such row a definite number of stacks,

119. and any one such stack a maximum loading of containers.

type
116 CASd
117 BAYd
118 ROWd
119 STKd
value
116 attr CSAD: CSA → BI →m CSAd
117 attr BAYD: BAY → RI →m BAYd
118 attr ROWD: ROW → SI →m ROWd
119 attr STKD: STK → (Nat × STKd)

K.5.6.9 Attributes: Land Trucks

120. At any one time a land truck may programmably hold a container or may not. We model
the container held by a land truck by the container identifier.

121. Land trucks also possess a further undefined programmable land truck state.

122. Land trucks may have other attributes.

Note that we do not here model the position of land trucks.

type
120 LTHold == mkNil(′nil′) | mkCon(ci:CI)
121 LTΣ
122 ...
value
120 attr LTHold: LT → LTHold
121 attr LTΣ: LT → LTΣ
122 ...

K.5.6.10 Attributes: Command Center

123. The syntactic description7 of the spatial positions of quays, cranes and the container
storage area of a terminal, TopLogDescr, is a static attribute.

124. The syntactic description8 of the terminal state, i.e., the actual positions and deploy-
ment of vessels at quays, quay and stack cranes, quay and land trucks, and the actual
container “contents” of these, TermΣDescr, is a programmable attribute.

6Such descriptions include descriptions of for what kind of containers a container stowage area, a bay, a row and
a stack is suitable: flammable, explosives, etc.

7A syntactic description describes something, i.e., has some semantics, from which it is, of course, different.
8The syntactic description of the terminal state is, of course, not that state, but only its description. The

terminal state is the combined states of all cranes, trucks and the container storage area.

334 CONTENTS

type
123 TopLogDescr
124 MCCΣDescr
value
123 attr TopLogDescr: MCC → TopLogDescr
124 attr TermΣDescr: MCC → TermΣDescr

K.5.6.11 Attributes: Containers

125. A Bill-of-Lading9 is a static container attribute. 10

type
125 BoL
value
125 attr BoL: C → BoL

126. At any one time a container is positioned either

(a) in a stack on a vessel: at sea or in a terminal, or

(b) on a quay crane in a terminal port, being either unloaded from or loaded onto a vessel,
or

(c) on a quay truck to or from a quay crane, i.e., from or to a stack crane, in a terminal
port, or

(d) on a stack crane in a terminal port, being either unloaded from a quay truck onto a
terminal stack or loaded from a terminal stack onto a quay truck, or

(e) on a stack in a terminal port, or

(f) on a land truck, or

(g) idle.

A container position is a programmable attribute.

127. There are other container attributes. For convenience we introduce an aggregate attribute:
CAttrs for all attributes.

type
126 CPos == onV | onQC | onQT | onSC | onStk | onLT | Idle
126a onV :: VI × BRSP × VPos
126a VPos == AtSea | InTer
126a AtSea :: Geo
126a InTer :: QPSid × QP+

9https://en.wikipedia.org/wiki/Bill of lading: A bill of lading (sometimes abbreviated as B/L or BoL) is a document
issued by a carrier (or their agent) to acknowledge receipt of cargo for shipment. In British English, the term relates to ship
transport only, and in American English, to any type of transportation of goods. A bill of Lading must be transferable,
and serves three main functions: it is a conclusive receipt, i.e. an acknowledgment that the goods have been loaded; and
it contains or evidences the terms of the contract of carriage; and it serves as a document of title to the goods, subject to
the nemo dat rule. Bills of lading are one of three crucial documents used in international trade to ensure that exporters
receive payment and importers receive the merchandise. The other two documents are a policy of insurance and an invoice.
Whereas a bill of lading is negotiable, both a policy and an invoice are assignable. In international trade outside of the
USA, Bills of lading are distinct from waybills in that they are not negotiable and do not confer title. The nemo dat rule:

that states that the purchase of a possession from someone who has no ownership right to it also denies the purchaser any
ownership title.

10For waybills see https://en.wikipedia.org/wiki/Waybill: A waybill (UIC) is a document issued by a carrier giving
details and instructions relating to the shipment of a consignment of goods. Typically it will show the names of the
consignor and consignee, the point of origin of the consignment, its destination, and route. Most freight forwarders and
trucking companies use an in-house waybill called a house bill. These typically contain ”conditions of contract of carriage”
terms on the back of the form. These terms cover limits to liability and other terms and conditions

K.6. PERDURANTS 335

126b onQC :: MCCI × QCI
126c onQT :: MCCI × QTI
126d onSC :: MCCI × SCI
126e onStk :: MCCI × BRSP
126f onLT :: MCCI × LTI
126g Idle :: {|”idle”|}
127 CAttrs
value
126 attr CPos: C → CPos
127 attr CAttrs: C → CAttrs

K.6 Perdurants

We refer to [56, Sect. 7].

K.6.1 A Modelling Decision

In the transcendental interpretation of parts into behaviours we make the following modelling
decisions: All atomic and all composite parts become separate behaviours. But there is a twist.
Vessels and terminal stacks are now treated as “atomic” behaviours. Containers that up till
now were parts of container stowage areas on vessels and in terminal stacks are not behaviours
embedded in the behaviours of vessels and terminal stacks, but are “factored” out as separate,
atomic behaviours.

This modelling decision entails that container stowage areas, CSAs, of vessels and terminal
stacks are modelled by replacing the [physical] containers of these CSAs with virtual container
stowage areas, vir CSAs. Where there “before” were containers there are now, instead, descriptions
of these: their unique identifiers, their mereology, and their attributes.

K.6.2 Virtual Container Storage Areas

In our transition from endurants to perdurants we shall thus need a notion of container stowage
areas which, for want of a better word, we shall call virtual CSAs. Instead of stacks embodying
containers, they embody

128. container information: their unique identifier, mereology and attributes.

We must secure that no container is referenced more than once across the revised-model;

129. that is, that all ci:CIs are distinct.

type
5′ vir CSA
11′ vir BAY s = vir BAY-set, vir BAY
12′ vir ROW s = vir ROW-set, vir ROW = vir STK-set
13′ vir STK = vir STK-set, vir STK
14′ vir STK = CInfo∗

128 CInfo = CI × CMereo × CAttrs
value
5′ attr vir CSA: TP → vir CSA
11′ attr vir BAY s: vir CSA → vir BAY s, vir BAY s = vir BAY-set, vir BAY
11′ uid vir BAY: vir BAY → BI
12′ attr vir ROW s: vir BAY → vir ROW s
axiom
129 [all CIs of all vir CSAs are distinct]

336 CONTENTS

K.6.3 Changes to The Parts Model

We revise the parts model of earlier:

type
2 STPs, TPs = TP-set, TP
3 SVs, Vs = V-set, V
value
2 obs STPs: CLI → STPs, obs TPs: STPs → TPs
3 obs SVs: CLI → SVs, obs Vs: SVs → Vs

We treat the former CSAs of terminal ports as a composite, concrete part, vir BAY m consisting
of a set of atomic virtual bays, vir BAY.

type
11′ vir BAY s = vir BAY-set, vir BAY
value
5 obs BAY s: TP → vir BAY s
5 uid BAY: vir BAY → BI

And we treat the former CSAs of vessels as a programmable attribute of vessels:

attr vir CSA: V → vir CSA

K.6.4 Basic Model Parts

Command Monitoring & Control Center1

Containerscn

A

C D EB F G H I J K

ch_mcc_con[..] ..

α,ω
α,ω

X

C’ E’ H’F’ I’ K’ O’

L’

Q’
scn

Cranes
N’

vn

Legend: from root to arrow;

qcn
Quay
Cranes

qtn
Quay
Trucks tcn

Stacks

ltn Land
Trucks

first from unprimed (white head), then from primed (black head)

StackVessels

...

..ch_mcc[..]

L M N

V S

Y

O,o P,p Q,q

R

Fig. 3: The Container Terminal Behaviours11

There are cn container behaviours, where cn is the number of all containers of the system we are
modelling. For each terminal port there is 1 controller behaviour, vn vessel behaviours, where vn
is the number of vessels visiting that terminal port, qcn quay crane behaviours, where qcn is the
number of quay cranes of that terminal port, qtn quay truck behaviours, where qtn is the number
of quay trucks of that terminal port, ltn land truck behaviours, where ltn is the number of land
trucks (of that terminal port), and tbn terminal stack behaviours, where tsn is the number of
terminal bays of that terminal port.

The vessel, the land truck and the terminal monitoring & control [command] center behaviours
are pro-active: At their own initiative (volition), they may decide to communicate with other
behaviours. The crane, quay truck, stack and container behaviours are passive: They respond to
interactions with other behaviours.

11The labeling A, B, C, D, ..., X, Y may seem arbitrary, but isn’t !

K.6. PERDURANTS 337

K.6.5 Actions, Events, Channels and Behaviours

We refer to [56, Sect. 7.1].

In building up to the behavioral analysis & description of the terminal container domain we
first analyse the actions and events of that domain. These actions and events are the building
blocks of behaviours.

Actions, to remind the reader, are explicitly performed by an actor, i.e., a behaviour, calculates
some values and, usually, effect a state change.

Events “occur to” actors (behaviours), that is, are not initiated by these, but usually effect
state changes.

K.6.6 Actions

We refer to [56, Sects. 7.1.5, 7.3.1].

The unloading of containers from and the loading of container onto container stowage areas
are modelled by corresponding actions on virtual container stowage areas. Vessels, land trucks
and terminal monitoring & control centers, i.e., command centers, are here modelled as the only
entities that can initiate actions.

K.6.6.1 Command Center Actions

K.6.6.1.1 Motivating the Command Center Concept: We refer to the [A,B,...,U] labeled
arrows of the figure on Page 336.

Imagine a terminal port. It has several vessels berthed along quays. It also has quay space, i.e.,
positions, for more vessels to berth. Berthed vessels are being serviced by several, perhaps many
quay cranes. The totality of quay cranes are being serviced by [many more] quay trucks. The
many quay trucks service several terminal bays, i.e., stacks. Land trucks are arriving, attending
stacks and leaving. Quite a “busy scene”. So is the case for all container terminal ports.

The concept of a monitoring & control, i.e., a command center, is an abstract one; the figure
on Page 336 does not show a part with a ... center label. The actions of vessels and trucks,
and the events of cranes, terminal stacks and trucks are either hap-hazard, no-one interferes, they
somehow “just happen”, or they are somehow co-ordinated.

Whether “free-wheeling” or “more-or-less coordinated” we can think of a command center as
somehow monitoring and controlling actions and events.

Terminal monitoring & control centers, also interchangeably referred to as command centers,
are thus where the logistics of container handling takes place.

You may think of this command center as receiving notices from vessels and land trucks as to
their arrival and with information about their containers; thus building up awareness, i.e., a state,
of the containers of all incoming and arrived vessels and land trucks, the layout of the terminal
and the state of its container stowage area, the current whereabouts of vessels, cranes and trucks.
Quite a formidable “state”.

We shall therefore model the “comings” and “goings” of vessels, trucks, cranes and stacks as if
they were monitored and controlled by a command center, In our modelling we are not assuming
any form of efficiency; there is, as yet no notion of optimality, nor of freedom from mistakes and
errors. Our modelling – along these lines – is “hidden” in action pre- and post-conditions and
thus allows for any degree of internal non-determinism.

K.6.6.1.2 Calculate Next Transaction: The core action of the command center is calc nxt -

transaction. We shall define calc nxt transaction only by its signature and a pair of pre/post
conditions. In this way we do not have to consider efficiency, security, safety, etc., issues. These, i.e.,
the efficiency, security, safety, etc., issues can “always” be included in an requirements engineering
implementation of calc nxt transaction. Basically the calc nxt transaction has to consider
which of a non-trivially large number of possible actions have to be invoked. They are listed in

338 CONTENTS

Items 131 to 137 below. The calc nxt transaction occurs in time, and occur repeatedly, end-
lessly, i.e., “ad-infinitum”, At any time that calc nxt transaction is invoked the monitoring and
control command center (mcc) is in some state. That state changes as the result of both monitoring
actions and control actions. The calc nxt transaction therefore non-deterministically-internally
chooses one among several possible alternatives. If there is no alternative, then a skip action is
performed.

The command center, mcc, models the following actions and events: [A] the update of the
mcc state, mccσ, in response to the vessel action that inform the mcc of the vessel arrival.

130. The result of a calc nxt transaction is an transaction designator, MCCTrans and a state
change. There are several alternative designators. We mention some:

131. [B]: the calculation of vessel positions for [their] arrivals;

132. [CDE]: the calculation of vessel to quay crane container transfers;

133. [FGH]: the calculation of quay crane to quay truck container transfers;

134. [IJK]: the calculation of quay truck to stack crane container transfers;

135. [LMN]: the calculation of stack crane to stack container transfers;

136. [OPQ]: the calculation of land truck to stack crane container transfers;

137. [X]: the calculation that stowage, for a given vessel, has completed; and

138. the calculation that there is no next transaction that can be commenced.

139. The signature of the calc nxt transaction involves the unique identifier, mereology, static
and programmable attributes, i.e., the state of the command center, and indicates that a
command center transaction results and a next state “entered”.

140. For this, the perhaps most significant action of the entire container terminal port operation,
we “skirt” the definition and leave to a pair pf pre/post conditions that of characterising
the result and next state.

type
130 MCCTrans == QayPos | VSQC Xfer | QCQT Xfer | QTSC Xfer
130 | SCSTK Xfer | SCLT Xfer | LT Dept | VS Dept | Skip
131 [B]: QuayPos :: VI × QPos
132 [CDE]: VSQC Xfer :: VI × BRS × CI × QCI
133 [FGH]: QCQT Xfer :: QCI × CI × QTI
134 [IJK]: QTSC Xfer :: QTI × CI × SCI
135 [LMN]: SCSTK Xfer :: SCI × CI × BRS
136 [OPQ]: SCLT Xfer :: SCI × CI × LTI
137 [X]: VS Dept :: VI
138 Skip :: nil
value
139 calc nxt transaction: MCCI×mereoMCC×statMCC→MCCΣ→MCCTrans×MCCΣ
139 calc nxt transaction(mcci,mccmereo,mmstat)(mccσ) as (mcctrans,mccσ′)
140 pre: Pcalc nxt trans((mcci,mccmereo,mccstat)(mccσ))
140 post: Qcalc nxt trans((mcci,mccmereo,mccstat)(mccσ))(mcctrans,mccσ′)

The above mentioned actions are invoked by the command center in its endeavour to see containers
moved from vessels to customers. A similar set of actions affording movement of containers
customers to vessels, i.e., in the reverse direction: from land trucks to stack cranes, from stacks
to quay trucks, from quay trucks to quay cranes, and from quay cranes to vessels, round off the
full picture of all command center actions.

K.6. PERDURANTS 339

K.6.6.1.3 Command Center Action [A]: update mcc from vessel:

141. Command centers

142. upon receiving arrival information, v info, from arriving vessels, v i, can update their state
“accordingly”.

143. We leave undefined the pre- and post-conditions.

value
141 update mcc from vessel: VSMCC MSG × MCC Σ → MCC Σ
142 update mcc from vessel((vs i,vir csa,vs info),mcc σ) as mcc σ′

143 pre: Pupd mcc f v((vs i,vir csa,vs info),mcc σ)
143 post: Qupd mcc f v((vs i,vir csa,vs info),mcc σ)(mcc σ′)

K.6.6.1.4 Command Center Action [B]: calc ves pos:

144. Command centers

145. can calculate, q pos, the quay segment and quay positions for an arriving vessel, v i.

146. We leave undefined the pre- and post-conditions.

value
144 calc ves pos: MCCI×MCC mereo×TopLog×MCCΣ×VI → (QSId×QP∗)×MCCΣ
145 calc ves pos(mcc i,mcc mereo,toplog,mcc σ,v i) as (q pos,mcc σ′)
146 pre: Pcalc ves pos(mcc i,mcc mereo,toplog,mcc σ,v i)
146 post: Qcalc ves pos(mcc i,mcc mereo,toplog,mcc σ,v i)(q pos,mcc σ′)

K.6.6.1.5 Command Center Action [C-D-E]: calc ves qc

147. The command center non-deterministically internally calculates

148. a pair of a triplet: the bay-row-stack coordinates, brs, from which a top container, supposedly
ci, is to be removed by quay crane qci, and a next command center state reflecting that
calculation (and that the identified quay crane is being so alerted).

149. We leave undefined the relevant pre- and post-conditions

value
147 calc ves qc: MCCΣ → (BRS×CI×QCI) × MCCΣ
148 calc ves qc(mccσ) as ((brs,ci,qci),mccσ’)
149 pre: Pcalc ves qc(mccσ)
149 post: Qcalc ves qc(mccσ)((brs,ci,qci),mccσ’)

K.6.6.1.6 Command Center Action [F-G-H]: calc qc qt

150. The command center non-deterministically internally

151. calculates a pair of a triplet: the identities of the quay crane from which and the quay truck
to which the quay crane is to transfer a container, and an update command center state
reflecting that calculation (and that the identified quay crane, container and truck are being
so alerted).

152. We leave undefined the relevant pre- and post-conditions

340 CONTENTS

value
150 calc qc qt: MCCΣ → (QCI×CI×QTI) × MCCΣ
151 calc qc qt(mccσ) as ((qci,ci,qti),mccσ’)
152 pre: Pcalc qc qt(mccσ)
152 post: Qcalc qc qt(mccσ)((qci,ci,qti),mccσ’)

K.6.6.1.7 Command Center Action [I-J-K]: calc qt sc

153. The command center non-deterministically internally

154. calculates a pair of a triplet: the identities of a quay truck, a container, and a stack crane,
and an update command center state reflecting that calculation (and that the identified quay
truck, container and stack crane are being so alerted).

155. We leave undefined the relevant pre- and post-conditions

value
153 calc qt sc: MCCΣ → (QTI×CI>SCI) × MCCΣ
154 calc qt sc(mccσ) as ((qti,ci,sci),mccσ’)
155 pre: Pcalc qt sc(mccσ)
155 post: Qcalc qt sc(mccσ)((qti,ci,sci),mccσ’)

K.6.6.1.8 Command Center Action [L-M-N]: calc sc stack

156. The command center non-deterministically internally calculates a pair:

157. a triplet of the identities of a stack crane, a container and a terminal bay/row/stack triplet
and a new state that reflects this action.

158. We leave undefined the relevant pre- and post-conditions

value
156 calc sc stack: MCCΣ → (SCI×CI×BRS)×MCCΣ
157 calc sc stack(mccσ) as ((sci,ci,brs),mccσ′)
158 pre: Pcalc sc stack(mccσ)
158 post: Qcalc sc stack(mccσ)((sci,ci,brs),mccσ′)

K.6.6.1.9 Command Center Action [N-M-L]: calc stack sc

159. The command center non-deterministically internally calculates a pair:

160. a triplet of a terminal bay/row/stack triplet and the identities of a container and a stack
crane, and a new state that reflects this action.

161. We leave undefined the relevant pre- and post-conditions

value
159 calc stack sc: MCCΣ → (BRS×CI×SCI)×MCCΣ
160 calc stack sc(mccσ) as ((brs,ci,sci),mccσ′)
161 pre: Pcalc stack sc(mccσ)
161 post: Qcalc stack sc(mccσ)((brs,ci,sci),mccσ′)

K.6. PERDURANTS 341

K.6.6.1.10 Command Center Action [O-P-Q]: calc sc lt

162. The command center non-deterministically internally calculates a pair:

163. a triplet of the identities of a stack crane, a container and a land truck, and a new state that
reflects this action.

164. We leave undefined the relevant pre- and post-conditions.

value
162 calc sc lt: MCCΣ → (BRS×CI×SCI)×MCCΣ
163 calc sc lt(mccσ) as ((sci,ci,lti),mccσ′)
164 pre: Pcalc sc lt(mccσ)
164 post: Qcalc sc lt(mccσ)((sci,ci,lti),mccσ′)

K.6.6.1.11 Command Center Action [Q-P-O]: calc lt sc

165. The command center non-deterministically internally calculates a pair:

166. a triplet of the identities of a land truck, a container and a stack crane, and a new state that
reflects this action.

167. We leave undefined the relevant pre- and post-conditions.

value
165 calc lt sc: MCCΣ → (BRS×CI×SCI)×MCCΣ
166 calc lt sc(mccσ) as ((lti,ci,sci),mccσ′)
167 pre: Pcalc lt sc(mccσ)
167 post: Qcalc lt sc(mccσ)((lti,ci,sci),mccσ′)

K.6.6.1.12 Command Center: Further Observations Please observe the following: any ter-
minal command center repeatedly and non-deterministically alternates between any and all of
these actions. Observe further that: The intention of the pre- and post-conditions [Items 143,
146, 149, 152, 155, 158, 161, 167, and 164], express requirements to the command center states,
mccσ:mccΣ, w.r.t. the information it must handle. Quite a complex state.

K.6.6.2 Container Storage Area Actions

We define two operations on virtual CSAs:

168. one of stacking (loading) a container, referred to by its unique identifier in a virtual CSA,

169. and one of unstacking (unloading) a container;

170. both operations involving bay/row/stack references.

type
170 BRS = BI × RI × SI
value
168 load CI: vir CSA × BRS × CI → vir CSA
168 load CI(vir csa,(bi,ri,si),ci) as vir csa′

168 pre: Pload(vir csa,(bi,ri,si),ci)
168 post: Qload(vir csa,(bi,ri,si),ci)(vir csa

′)

169 unload CI: vir CSA × BRS
∼→ CI × vir CSA

169 unload CI(vir csa,(bi,ri,si)) as (ci,vir csa′)
169 pre: Punload(vir csa,(bi,ri,si))
169 post: Qunload(vir csa,(bi,ri,si))(ci,vir csa

′)

342 CONTENTS

K.6.6.2.1 The Load Pre-/Post-Condtions

171. The virtual vir CSA, i.e., vir csa, must be well-formed;

172. the ci must not be embodied in that vir csa; and

173. the bay/row/stack reference, (bi,ri,si) must be one of the [virtual] container stowage area.

value
168 Pload(vir csa,(bi,ri,si),ci) ≡
171 well formed(vir csa) cf. 25– 27 on page 320
172 ∧ ci 6∈ xtr CIs(vir csa) cf. 49 on page 323
174 ∧ valid BRS(bi,ri,si)(vir csa)

174 valid BRS: BRS → iCSA → Bool
174 valid BRS(bi,ri,si)(vir csa) ≡
174 bi∈ domvir csa∧ri∈ domvir csa(bi)∧si∈ dom(vir csa(bi))(ri)

174. The resulting vir CSA, i.e., vir csa′, must have the same bay, row and stack identifications,
and

175. except for the designated bay, row and stack, must be unchanged.

176. The designated “before”, i.e., the stack before loading, must equal the tail of the “after”,
i.e., the loaded stack, and

177. the top of the “after” stack must equal the “input” argument container identifier.,

value
169 Qload(vir csa,(bi,ri,si),ci)(vir csa

′) ≡
174 dom vir csa = dom vir csa′

174 ∧ ∀ bi′:BI•bi′∈ dom vir csa(bi′)
174 ⇒ dom vir csa(bi′)=dom vir csa′(bi′)
174 ∧ ∀ ri′:RI•bi′∈ dom (vir csa(bi′))()
174 ⇒ dom (vir csa(bi′))(ri′)=(dom vir csa′(bi′))(ri′)
174 ∧ ∀ si′:BI•bi′∈ dom vir csa(bi′)
174 ⇒ dom ((vir csa(bi′))(ri′))(si′)=dom((vir csa′(bi′))(ri′))(si′)
175 ∧ ∀ bi′:BI•bi′ ∈ dom vir csa \ {bi}
175 ⇒ vir csa \ {bi}=vir csa′ \ {bi}
175 ∧ ∀ ri′:RI•ri′ ∈ dom vir csa(bi) \ {ri}
175 ⇒ (vir csa(bi))(ri′)=(vir csa′(bi))(ri′)
175 ∧ ∀ si′:SI•si′ ∈ dom (vir csa)(ri′) \ {si}
175 ⇒ ((vir csa)(bi′))(si′)=((vir csa′)(bi′))(si′)
176 ∧ tl((vir csa′)(bi′))(si′)=((vir csa′)(bi′))(si′)
177 ∧ hd((vir csa′)(bi′))(si′)=ci

K.6.6.2.2 The Unload Pre-/Post-Conditions

178. The virtual vir csa, i.e., vir csa,

179. must be wellformed; and

180. the bay/row/stack reference, (bi,ri,si) must be one of the [virtual] container stowage area.

K.6. PERDURANTS 343

value
178 Punload(vir csa,(bi,ri,si)) ≡
179 well formed(vir csa)
180 ∧ valid BRS(bi,ri,si)(vir csa)

181.

182.

183.

184.

185.

value
169 Qunload(vir csa,(bi,ri,si))(ci,vir csa

′) ≡
181 dom vir csa = dom vir csa′

182 ∧ ∀ bi′:BI • bi′ ∈ dom vir csa \ {bi}
182 ⇒ vir csa \ {bi} = vir csa′ \ {bi}
183 ∧ ∀ ri′:RI • ri′ ∈ dom vir csa(bi) \ {ri}
183 ⇒ (vir csa(bi))(ri′) = (vir csa′(bi))(ri′)
184 ∧ ∀ si′:SI • si′ ∈ dom (vir csa)(ri′) \ {si}
184 ⇒ ((vir csa)(bi′))(si′) = ((vir csa′)(bi′))(si′)
185 ∧ ((vir csa′)(bi′))(si′)=tl((vir csa′)(bi′))(si′)
185 ∧ hd((vir csa)(bi′))(si′)=ci

K.6.6.3 Vessel Actions

Vessels (and land trucks) are in a sense, the primary movers in understanding the terminal con-
tainer domain. Containers are, of course, at the very heart of this domain. But without container
vessels (and land trucks) arriving at ports nothing would happen ! So the actions of vessels are
those of actively announcing their arrivals at and departures from ports, and participating, more
passively, in the unloading and loading of containers.

K.6.6.3.1 Action [A]: calc next port:

186. Vessels can calculate, calc next port, the unique identifier, mcc i, of that ports’ monitoring
& control center.

187. We do not further define the pre- and post-conditions of the calc next port action.

value
186 calc next port: VI×VS Mereo×VS Stat → vir CSA×VSΣ → MCCI×VSΣ
186 calc next port(vs i,vs mereo,vs stat)(vir csa,vσ) ia (mcc i,vsσ′)
187 pre: Pcalc−next−port(vsσ,vs mereo,vs stat)
187 post: Qcalc−next−port(vsσ,vs mereo,vs stat)(mcc i,vsσ′)

344 CONTENTS

K.6.6.3.2 Vessel Action [B]: calc ves msg:

188. Vessels can calculate, calc ves info, the vessel information, vs info:VS Info, to be handed
to the next ports’ command center.

189. This information is combined with the vessel identifier and its virtual CSA,

190. We leave undefined the pre- and post-conditions over vessel states and vessel information.

type
188 VS Info
189 VS MCC MSG :: VI×vir CSA×VS Info
value
188 calc ves msg: VI×VMereo×VStat → VS Pos×vir CSA×VSΣ → VS MCC MSG×VSΣ
188 calc ves msg(vs i,vs mereo,vs stat)(vpos,vir csa,vsσ) as (vs mcc msg,vsσ′)
190 pre: Pcalc ves mcc msg(vs i,vs mereo,vs stat)(vpos,vir csa,vsσ)
190 post: Qcalc ves mcc msg(vs i,vs mereo,vs stat)(vpos,vir csa,vσ)(vs mcc msg,vsσ′)

K.6.6.4 Land Truck Actions

Land trucks can initiate the following actions vis-a-vis a targeted terminal port command center:
announce, to a terminal command center, its arrival with a container; announce, to a terminal
command center, its readiness to haul a container. Land trucks furthermore interacts with stack
cranes – as so directed by terminal command centers.

K.6.6.4.1 Land Truck Action [R]: calc truck delivery:

191. Land trucks, upon approaching, from an outside, terminal ports, calculate

192. the identifier of the next port’s command center and a next land truck state.

We do not define the

193. pre- and

194. post conditions of this calculation.

value
191 calc truck delivery: CI × TRUCKΣ → MCCI × LTΣ
192 calc truck delivery(ci,ltσ) as (mcci,ltσ′)
193 pre: Pcalc truck deliv(ci,ltσ)
194 post: Qcalc truck deliv(ci,ltσ)(mcci,ltσ′)

K.6.6.4.2 Land Truck Action [S]: calc truck avail:

195. Land trucks, when free, i.e., available for a next haul, calculate

196. the identifier of a suitable port’s command center and a next land truck state.

We do not define the

197. pre- and

198. post conditions of this calculation.

value
195 calc truck avail: LTI × LTΣ → MCCI × LTΣ
196 calc truck avail(lti,ltσ) as (mcci,ltσ′)
197 pre: Pcalc truck avail(lti,ltσ)
198 post: Qcalc truck avail(lti,ltσ)(mcci,ltσ′)

K.6. PERDURANTS 345

K.6.7 Events

We refer to [56, Sect. 7.1.6 and 7.3.2]. Events occur to all entities. For reasons purely of presenta-
tion we separate events into active part initiation events and active part completion events. Active
part initiation events are those events that signal the initiation of actions. (Let [Θ] designate an
action, then [Θ′] designates the completion of that action.) Active part completion events are
those events that signal the completion of actions. We do not show the lower case [d, f, g, h, i, j,
k, l, m, n, o] in Fig. 3.

K.6.7.1 Active Part Initiation Events

Vessels:

199. [αvessel] approaching terminal port;

200. [A] informing the command center, mcc,
of a terminal port, of arrival;

201. [B] receiving from an mcc directions as to
quay berth positions;

202. [C] receiving from an mcc, for each con-
tainer to be unloaded or loaded, directions

as to these unloads and ladings – and these
actual unloads/ladings;

203. [X] receiving from an mcc directions
of completion of stowage (no more un-
loads/loads);

204. [Y] informing the mcc of its departure
from terminal port; or

205. [ωvessel] leaving a terminal port.

Land Trucks:

206. [αland truck] approaching a terminal port;

207. [W] informing its mcc of its arrival;

208. [V] being directed, by an mcc, as to the
stack (crane) of destination;

209. [S] the unloading, to a stack crane, of a

container;

210. [T] the loading of a container from a stack
crane;

211. [R] informing its mcc of its departure; or

212. [ωland truck] leaving a terminal port.

Containers: the transfers from

213. [D] vessel to quay crane;

214. [d] quay crane to vessel;

215. [G] quay crane to quay truck;

216. [g] quay truck to quay crane;

217. [J] quay truck to stack crane;

218. [j] stack crane to quay truck;

219. [M] stack crane to stack;

220. [m] stack to stack crane;

221. [P] stack crane to land truck; or from

222. [p] land truck to stack crane.

Quay Cranes: being informed, by the command center, mcc, of a container to be

223. [E] picked-up from a vessel;

224. [e] set-down on a vessel;

225. [F] set-down on a quay truck; or

226. [f] picked-up from a quay truck.

Quay Trucks: being informed, by the command center, mcc, of a container to be

346 CONTENTS

227. [H] loaded from a quay crane;

228. [h] picked-up by a quay crane;

229. [I] picked-up by a stack crane; or

230. [i] loaded from a stack crane.

[Terminal] Stack Cranes: being informed, by the command center, mcc, of a container to be

231. [K] picked-up from a quay truck;

232. [k] loaded on to a quay truck;

233. [L] picked-up from a stack;

234. [l] loaded on to a stack;

235. [O] picked-up from a land truck; or

236. [o] loaded on to a land truck.

[Terminal Bay] Stacks: being informed, by the command center, mcc, of a container to be

237. [N] set-down, of a container, from a stack
crane; or

238. [n] picked-up, of a container, by a stack
crane.

These events, in most cases, prompt interaction with the terminal command center.

K.6.7.2 Active Part Completion Events:

We do not show, in Fig. 3, the c’, e’, h’, o’, q’, t’ events.

239. [C’]

240. [E’]

241. [H’]

242. [O’]

243. [Q’]

244. [T’]

K.6.8 Channels

We refer to [56, Sect. 7.2], and we refer to Sect. K.5.2 and to Fig. 2 on Page 336.

K.6.8.1 Channel Declarations

There are channels between terminal port monitoring & control command center (mcci) and that
command centers and that terminal port’s

245. all the containers (ci), that might visit the terminal port; ch mcc con[mcci,ci]12;

246. vessels (vi) that might visit that port, ch mcc[mcci,vi]13;

247. quay cranes (qci) of that port, ch mcc[mcci,qci]14;

248. quay trucks (qti) of that port , ch mcc[mcci,qti]15;

249. stack cranes (sci) of that port, ch mcc[mcci,sci]16;

12cf. Item 98 on page 330
13cf. Item 76 on page 326
14cf. Item 81 on page 326
15cf. Item 83 on page 327
16cf. Item 87 on page 327

K.6. PERDURANTS 347

250. stacks [bays] (stki) of that port, ch mcc[mcci,stki]17; and

251. land trucks (lti) of, in principle, any port, ch mcc[mcci,lti]18.

252. We shall define the concrete types of messages communicated by these channels subsequently
(Sect. K.6.8.2).

channel
245 {ch mcc con[mcci,ci]|mcci:MCCI,ci:CI•mcci∈mcc uis∧ci∈c uis}:MCC Con Cmd
246-251 {ch mcc[mcci,ui]|mcci:MCCI,ui:(VI|QCI|QTI|SCI|STKI|LTI) • mcci∈mcc uis∧ui∈uis}:MCC Msg
type
252 MCC Con Msg, MCC Msg

K.6.8.2 Channel Messages

We present a careful analysis description, for the channels declared above, of the rather rich
variety of messages communicated over channels. All messages “goes to” (a few) or “comes from”
(the rest) the command center. Messages from quay cranes, quay trucks, stack cranes, and land
trucks – directed at the command center – are all in response to the events of their being loaded
or unloaded.

K.6.8.2.1 A,B,X,Y,C′: Vessel Messages

253. There are a number command center – vessel and vice-versa messages:

(a) A: Vessels announce their (forthcoming) arrival to the next destination terminal by
sending such information, VSArrv, to its monitoring & control (also referred to as com-
mand) center, that enables it to handle those vessels’ berthing, unloading and loading
(of container stowage).19

(b) B: The terminal command center informs such arriving vessels of their quay segment
positions, VSQPos.

(c) X: The terminal command center informs vessels of completion of stowage handling,
VSComp.

(d) Y: Vessels inform the terminal of their departure, VesDept.

type
253 MCC Cmd == VSArrv|VSQPos|VSComp|VSDept|...
253a A: VSArrv :: VI × vir CSA
253b B: VSQPos :: VI × (QSId × QP+)
253c X: VSComp :: MCCI × VI
253d Y: VSDept :: MCCI × VI

K.6.8.2.2 C,D,E,E′: Vessel/Container/Quay Crane Messages

254. The terminal command center, at a time it so decides, “triggers” the simultaneous transi-
tions, C,D,E, of

(a) C: unloading (loading) from (to) a vessel stack position of a container (surrogate),
VSQC Xfer, QCVS Xfer),

17cf. Item 94 on page 329
18cf. Item 96 on page 329
19What exactly that information is, i.e., any more concrete type model of Ves Info cannot be given at this early

stage in our development of what a terminal is.

348 CONTENTS

(b) D: notifying the physical, i.e., the actual container that it is being unloaded (loaded),
C VStoQC (C QCtoVS), and

(c) E: loading (unloading) the container (surrogate) onto (from) a quay crane, VStoQC
(QCtoVS).

255. C′,E′: The vessel and the quay crane, in response to their being unloaded, respectively
loaded with a container “moves” that load, from its top vessel bay/row/stack position to
the quay crane and notifies the terminal command center of the completion of that move,
VSQC Compl.

type
253 MCC Cmd == ... | VSQC Xfer | QCVS Xfer | C VtoQC | C QCtoV | VQC Compl
254a VSQC Xfer, QCVS Xfer :: VI × (BRS × CI) × QCI
254b C VStoQC, C QCtoVS :: VI × CI × QCI
254c VStoQC, QCtoVS :: VI × CI × QCI
255 VSQC Compl == VS UnLoad | VS Load
255 VS UnLoad, VS Load :: VI × CI × QCI

K.6.8.2.3 F,G,H,H′: Quay Crane/Container/Quay Truck Messages

256. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
F,G,H: QCtoQT, of

(a) F: the removal of the container from the quay crane,

(b) G: the notification of the physical container that it is now being transferred to a quay
truck, and

(c) H: the loading of that container to a quay truck.

(d) H′: The quay truck, in response to it being loaded notifies the terminal command center
of the completion of that move.

type
253 MCC Cmd == ... | QCtoQT | ...
256 QCtoQT == UnloadCQC | NowConQT | LoadCQT | QCtoQTCompl
256a UnloadCQC :: CI × QCI
256b NowConQT :: CI × QTI
256c LoadCQT :: CI × QTI
256d QCtoQTCompl :: ...

K.6.8.2.4 I,J,K,K′: Quay Truck/Container/Stack Crane Messages

257. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
I,J,K: QTtoSC, of

(a) I: the removal of a container from a quay truck,

(b) J: the notification of the physical container that it is now being transferred to a stack
crane, and

(c) K: the loading of that container to a stack crane.

258. K′: The stack crane, in response to it being loaded notifies the terminal command center of
the completion of that move.

K.6. PERDURANTS 349

type
257 MCC Cmd = ... | QTtoSC | ...
257 QTtoSC == UnLoadCQT | NowConSC | | QCQTCompl
257a UnLoadCQT :: CI × QRI
257b NowConSC :: CI × SCI
257c LoadCSC :: CI × SCI
258 QCSCCompl :: ...

K.6.8.2.5 L,M,N,N′: Stack Crane/Container/Stack Messages

259. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
L,M,N: SCtoStack, of

(a) L: the unloading of the container from a stack crane;

(b) M: the notification of the physical container that it is now being transferred to a stack,
and

(c) N: the loading of that container to a stack.

260. N′: The stack, in response to it being loaded, notifies the terminal command center of the
completion of that move.

type
259 MCC Cmd = ... | SCtoStack | ...
259 SCtoStack == UnLoadCSC | NowConSTK | LoadConSTK | SCStkCompl
259a UnLoadCSC :: CI × SCI
259b NowConSTK :: CI × BRS
259c LoadConSTK :: CI × BRS
260 SCStkCompl :: ...

K.6.8.2.6 O,P,Q,Q′: Land Truck/Container/Stack Crane Messages

261. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
O,P,Q: LTtoSC, of

(a) Q: the unloading of the container from a land truck to a stack crane;

(b) P: the notification of the physical container that it is now being transferred to a stack
crane, and

(c) O: the loading of that container to a stack crane.

(d) O′: The stack crane, in response to it being loaded, notifies the terminal command
center of the completion of that move.20

type
261 MCC Cmd = ... | LTtoSC | ...
261 LTtoSC == UnLoadCLT | NowConSC | LoadConSC | LTtoSCCompl
261a UnLoadCLT :: CI × LTI
261b NowConSC :: CI × SCI
261c LoadConSC :: CI × SCI
261d LTtoSCCompl :: ...

20The O′ event is “the same” as the K′ event.

350 CONTENTS

K.6.8.2.7 R,S,T,U,Q,V: Land Truck Messages

262. These are the messages that are communicated either from land trucks to command centers
or vice versa:

(a) R: Land trucks, when approaching a terminal port, informs that port of its offer to
deliver an identified container to stowage.

(b) S: Land trucks, when approaching a terminal port, informs that port of its offer to
accept (load) an identified container from stowage.

(c) T: Land trucks, at a terminal, are informed by the terminal of the stack crane at which
to deliver (unload) an identified container.

(d) U: Land trucks, at a terminal, are informed by the terminal of the stack crane from
which to accept an identified container.

(e) Q: Land trucks, at a termial, are informed by the terminal of the stack crane at which
to unload (deliver) an identified container.

(f) q: Land trucks, at a terminal, are informed by the terminal of the stack crane at which
to load (accept) an identified container.

(g) V: Land trucks, at a terminal, inform the terminal of their departure.

type
262 MCC Cmd = ... | LTCmd | ...
262 LTCmd == LTDlvr | LTFtch | LTtoSC | LTfrSC | LTDept
262a LTDlvr :: LTI × CI
262b LTFtch :: LTI × CI
262c LTtoSC :: LTI × CI
262d LTfrSC :: LTI × CI
262g LTDept :: LTI

K.6.9 Behaviours

We refer to [56, Sects. 7.1.7, 7.3.3-4-5, and 7.4].
To every part of the domain we associate a behaviour. Parts are in space: there are the manifest

parts, and there are the notion of their corresponding behaviours. Behaviours are in space and
time. We model behaviours as processes defined in AMOL. We cannot see these processes. We
can, however, define their effects.

Parts may move in space: vessels, cranes, trucks and containers certainly do move in space;
processes have no notion of spatial location. So we must “fake” the movements of movable parts.
We do so as follows: We associate with containers the programmable attribute of location, as
outlined in Items 126– 126g on page 334. We omit, for this model, the more explicit modelling of
vessels, cranes and trucks but refer to their physical mereologies.

In the model of endurants, cf. Page 319, we modelled vessel and terminal container stowage
areas as physically embodying containers, and we could move containers: push and pop them
onto, respectively from bay stacks. This model must now, with containers being processes, be
changed. The stacks, STACK, of container stowage areas, CAS, now embody unique container
identifiers ! We rename these stacks into cistack:CiSTACK

K.6.9.1 Terminal Command Center

The terminal command center is at the core of activities of a terminal port. We refer to the
figure on Page 336. “Reading” that figure left-to-right illustrates the movements of containers
from [C-D-E] vessels to quay cranes, [F-G-H] quay cranes to quay trucks, [I-J-K] quay trucks
to stack cranes, [L-M-N] stack cranes to stacks, and from [O-P-Q] land truck to stack cranes.

K.6. PERDURANTS 351

A similar “reading” of that figure from right-to-left would illustrate the movements of containers
from [q-p-o] stack cranes to land trucks; [n-m-l] stacks to stack cranes; [k-j-i] stack cranes to
quay trucks; [h-g-f] quay trucks to quay cranes; and from [e-d-c] quay cranes to vessels. We have
not show the [c-d-e-f-g-h-i-j-k-l-m-n-o-p-q] labels, but their points should be obvious (!).

K.6.9.1.1 The Command Center Behaviour: We distinguish between the command center
behaviour offering to monitor primarily vessels and land trucks, secondarily cranes, quay cranes
and stacks, and offering to control vessels, cranes, trucks and containers.

263. The signature of the command center behaviour is a triple of the command center identifier,
the conceptual command center mereology and the static command center attributes (i.e.,
the topological description of the terminal); the programmable command center attributes
(i.e., the command center state); and the input/output channels for the command center.

The command center behaviour non-deterministically (externallY) chooses between

264. either monitoring inputs from

265. or controlling (i.e., outputs to)

vessels, cranes, trucks, stacks and containers.

value
263 command center:
263 mcci:MCCI×(vis,qcis,qtis,scis,bis,ltis,cis):MCC Mer×MCC Stat
263 → MCCΣ →
263 in,out { ch mcc[mcci,ui]n
263 | mcci:MCCI,ui:(VI|QCI|QTI|SCI|BI|LTI)
263 • ui∈vis∪qcis∪qtis∪scis∪bis∪ltis }
263 out { ch mcc con[mcci,ci] | ci:CI•ci ∈ cis } Unit
263 command center(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ) ≡
264 monitoring(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ)
263 ⌈⌉⌊⌋
265 control(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ)

K.6.9.1.2 The Command Center Monitor Behaviours: The command center monitors the
behaviours of vessels, cranes and trucks: [A,Y′,C′,E′,F′,H′,I′,K′,L′,N′,O′,Q′]. The input message
thus received is typed:

type
VCT Info = ...

That information is used by the command center to update its state:

value
update MCCΣ: VCT Infor → MCCΣ → MCCΣ

The definition of monitoring is simple.

266. The signature of the monitoring behaviour is the same as the command center behaviour.

267. The monitor non-deterministically externally (⌈⌉⌊⌋) offers to accept any input, vct info, message
from any vessel, any land truck and from local terminal port quay trucks and cranes.

268. That input, vct info, enters the update of the command center state, from mccσ to mccσ′.

269. Whereupon the monitoring behaviour resumes being the command center behaviour with an
updated state.

352 CONTENTS

value
266 monitoring: mcci:MCCI × mis:MCC Mereo × MCC Stat
266 → MCCΣ
266 → in,out {chan mcc[mcci,i] | i ∈ mis} Unit
266 monitoring(mcci,mis,mcc stat)(mccσ) ≡
267 let vct info = ⌈⌉⌊⌋ { chan mcc[mcci,i] ? | i ∈ mis } in
268 let mccσ′ = update MCCΣ((vct info,ui))(mccσ) in
269 command center(mcci,mis,mcc stat)(mccσ′) end end

K.6.9.1.3 The Command Center Control Behaviours:

270. The command center control behaviour has the same signature as the command center be-
haviour (formula Items 263).

271. In each iteration of the command center behaviour in which it chooses the control alternative
it calculates21 a next [output] transaction. This calculation is at the very core of the overall
terminal port. We shall have more to say about this in Sect. K.7.1 on page 360.

Items, 272a–272j represent 10 alternative transactions.

272. They are “selected” by the case clause (Item 272).

So for each of these 10 alternatives there the command center offers a communication. For
the [CDE, FGH, IJK, LMN, OPQ, opq] cases there is the same triple of concurrently
synchronised events. For the [B,T,X] clauses there are only a single synchronisation effort.
The command center events communicates:

(a) [B] the quay positions to arriving vessels,

the transfer of containers

(b) [CDE] from vessel stacks to quay cranes,

(c) [FGH] quay cranes to quay trucks,

(d) [IJK] quay trucks to stack cranes,

(e) [LMN] stack cranes to stacks,

(f) [OPQ] stack cranes to land trucks, and

(g) [opq] land trucks to stack cranes.

We also illustrate

(h) [T] the bays to which a land truck is to deliver, or fetch a container, and

(i) [X] the “signing off” of a vessel by the command center.

(j) For the case that the next transaction cannot be determined [at any given point in
time] there is nothing to act upon.

273. After any of these alternatives the command center control behaviour resumes being the
command center behaviour with the state updated from the next transaction calculation.

value
270 control: mcci:MCCI×(vis,qcis,qtis,scis,bis,ltis,cis):MCC Mer×MCC Stat → MCCΣ →
263 in,out {ch mcc[mcci,ui]|mcci:MCCI,ui:(VI|QCI|QTI|SCI|BI|LTI)•ui∈vis∪qcis∪qtis∪scis∪bis∪ltis}
263 out { ch mcc con[mcci,ci] | ci:CI•ci ∈ cis } Unit
270 control(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ) ≡
271 let (mcc trans,mccσ′) = calc nxt transaction(mcci,mcc mereo,mcc stat)(mccσ) in
272 case mcc trans of
272a [B] mkVSQPos(vi,qp) → ch mcc[mcci,vi] ! mkVSQPos(vi,qp),

21For calc nxt transaction see Items 130 – 140 on page 338

K.6. PERDURANTS 353

272b [CDE] mkVSQC Xfer(vi,(brs,ci),qci) →
272b [C] ch mcc[mcci,vi] ! mkVes UnLoad(ci,brs)
272b [D] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,qci)
272b [E] ‖ ch mcc[mcci,qci] ! mkQC Load(ci),
272c [FGH] mkQCQT Xfer(qci,ci,qti) →
272c [F] ch mcc[mcci,qci] ! mkQC UnLoad(ci)
272c [G] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,qti)
272c [H] ‖ ch mcc[mcci,qti] ! mkQT Load(ci),
272d [IJK] mkQTSC Xfer(qti,ci,sci) →
272d [I] ch mcc[mcci,qci] ! mkQT UnLoad(ci)
272d [J] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,sci)
272d [K] ‖ ch mcc[mcci,qti] ! mkSC Load(ci),
272e [LMN] mkSCSTK Xfer(brs,ci,sci,sti) →
272e [L] ch mcc[mcci,sci] ! mkSC UnLoad(ci)
272e [M] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,brs)
272e [N] ‖ ch mcc[mcci,stki] ! mkSTK Load(ci,brs),
272f [OPQ] mkSCLT Xfer(sci,ci,lti) →
272f [O] ch mcc[mcci,sci] ! mkSC UnLoad(ci)
272f [P] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,lti)
272f [Q] ‖ ch mcc[mcci,lti] ! mkLT Load(ci),
272g [opq] mkLTSC Xfer(sci,ci,lti) →
272g [o] ch mcc[mcci,sci] ! mkSC Load(ci)
272g [p] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,cti)
272g [q] ‖ ch mcc[mcci,lti] ! mkLT UnLoad(ci),
272h [T] mkLT Dept(lti) → ch mcc[mcci,lti] ! LTDept(mcci,lti),
272i [Y] mkVSComp(mcci,vi) → ch mcc[mcci,vi] ! VSComp(mcci,vi),
272i [X] mkVSDept(mcci,vi) → ch mcc[mcci,vi] ! VSDept(mcci,vi),
272j → skip
272 end ; command center(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ′) end

K.6.9.2 Vessels

274. The signature of the vessel behaviour is a triple of the vessel identifier, the conceptual vessel mereology,
the static vessel attributes, and the programmable vessel attributes. [We presently leave static attributes
unspecified: ...]

Nondeterministically externally, ⌈⌉⌊⌋, the vessel decides between

275. [A] either approaching a port,

276. [] or [subsequently] arriving at that port,

or [subsequently] participating in the

277. [] unloading and

278. [] loading of containers of containers,

279. [] or [finally] departing from that port.

value
274 vessel: vi:VI×mccis:V Mereo×V Sta Attrs → (V Pos×vir CSA×VΣ)
274 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
274 vessel(vi,mccis,...)(vpos,vir csa,vσ) ≡
275 port approach(vi,mccis,...)(vpos,vir csa,vσ)
276 ⌈⌉⌊⌋ port arrival(vi,mccis,...)(vpos,vir csa,vσ)
277 ⌈⌉⌊⌋ unload container(vi,mccis,...)(vpos,vir csa,vσ)
278 ⌈⌉⌊⌋ load container(vi,mccis,...)(vpos,vir csa,vσ)
279 ⌈⌉⌊⌋ port departure(vi,mccis,...)(vpos,vir csa,vσ)

K.6.9.2.1 Port Approach

280. The signature of port approach behaviour is identical to that of vessel behaviour.

281. On approaching any port the vessel calculates the identity of that port’s command center.

282. Then, with an updated state, it calculates the information to be handed over to the designated terminal –

283. [A] which is then communicated from the vessel to the command center;

284. whereupon the vessel resumes being a vessel albeit with a doubly updated state.

354 CONTENTS

value
280 port approach: vi:VI×vs mer:VS Mereo×VS Stat→(VS Pos×vir CSA×VΣ)
280 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
280 port approach(vi,vs mer,vs stat)(vpos,vir csa,vσ) ≡
281 let (mcci,vσ′) = calc next port(vi,vs mer,vs stat)(vpos,vir csa,vσ) in
282 let (mkVInfo(vi,vir csa,vs info),vσ′′) = calc ves msg(vpos,vir csa,vσ′) in
283 ch mcc[mcci,vi] ! mkVS Info(vi,vir csa,vs info) ;
284 vessel(vi,vs mer,vs stat)(vpos,vir csa,vσ′′) end end

K.6.9.2.2 Port Arrival

285. The signature of port arrival behaviour is identical to that of vessel behaviour.

286. [B] Non-deterministically externally the vessel offers to accept a terminal port quay position from any
terminal port’s command center.

287. The vessel state is updated accordingly.

288. Whereupon the vessel resumes being a vessel albeit with a state updated with awareness of its quay position.

289. The vessel is ready to receive such quay position from any terminal port.

value
285 port arrival: vi:VI×mccis:V Mereo×V Sta Attrs → (V Pos×vir CSA×VΣ)
285 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
285 port arrival(vi,mccis,...)(vpos,vir csa,vσ) ≡
286 { let mkVSQPos(vi,(qs,cpl)) = ch mcc[mcci,vi] ? in
287 let vσ′ = upd ves state(mcci,(qs,cpl))(vσ) in
288 vessel(vi,mccis,...)(mkInPort(mcci,mkVSQPos(qs,cpl)),vir csa,vσ′) end end
289 | mcci:MCCI•mcci∈mccis }

K.6.9.2.3 Unloading of Containers

290. The signature of port arrival behaviour is identical to that of vessel behaviour.

291. [C] The vessel offers to accept, ch mcc v[mcci,vi] ?, a directive from the command center of the terminal
port at which it is berthed, to unload, mkUnload((bi,ri,si),ci). a container, identified by ci, at some container
stowage area location ((bi,ri,si)).

292. The vessel unloads the container – identified by ci′.

293. If the unloaded container identifier is different from the expected chaos erupts !

294. The vessel state, vσ′, is updated accordingly.

295. [C’] “Some time has elapsed since the unload directive, modelling” the completion, from the point of view
of the vessel, of the unload operation –

296. whereupon the command center is informed of this completion ([’]).

297. The vessel resumes being the vessel in a state reflecting the unload.

value
290 unload container: vi:VI × mccis:V Mereo × V Sta Attrs → (V Pos × iCSA × VΣ) →
290 in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
290 unload container(vi,mccis,...)(vpos,vir csa,vσ) ≡
291 let mkVes UnLoad(ci,(bi,ri,si)) = ch mcc[mcci,vi] ? in
292 let (ci′,vir csa′) = unload CI((bi,ri,si),vir csa) in
293 if ci′ 6= ci then chaos end;
294 let vσ′′ = unload update VΣ((bi,ri,si),ci)(vir csa′) in
295 wait sometime ;
296 ch mcc[mcci,vi] ! mkCompl(mkV UnLoad((bi,ri,si),ci)) ;
297 vessel(vi,mccis,...)(vpos,vir csa′,vσ′′) end end end

K.6. PERDURANTS 355

K.6.9.2.4 Loading of Containers
298. The signature of load container behaviour is identical to that of vessel behaviour.

299. [c] The vessel offers to accept, ch mcc v[mcci,vi] ?, a directive from the command center of the terminal port
at which it is berthed, to load, mkLoad((bi,ri,si),ci). a container, identified by ci, at some container stowage
area location ((bi,ri,si)).

300. The vessel (in co-operation with a quay crane, see later) then unloads the container – identified by ci.

301. The vessel state, vσ′, is updated accordingly.

302. [c’] “Some time has elapsed since the unload directive, modelling” the completion, from the point of view of
the vessel, of the unload operation – whereupon the command center is informed of this completion ([’]).

303. and the vessels resumes being the vessel in a state reflecting the load.

value
298 load container: vi:VI×mccis:V Mereo×V Sta Attrs → (V Pos×vir CSA×VΣ)
298 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
298 load container(vi,mccis,...)(vpos,vir csa,vσ) ≡
299 let mkV Load((bi,ri,si),ci) = ch mcc[mcci,vi] ? in
300 let vir csa′ = load CI(vir csa,(bi,ri,si),ci) in
301 let vσ′ = load update VΣ((bi,ri,si),ci) in
302 ch mcc[mcci,vi] ! mkCompl(mkV Load((bi,ri,si),ci)) ;
303 vessel(vi,mccis,...)(vpos,vir csa′,vσ′) end end end

K.6.9.2.5 Port Departure
304. The signature of port departure behaviour is identical to that of vessel behaviour.

305. [Y] At some time some command center informs a vessel that stowage, i.e., the unloading and loading of
containers has ended.

306. Vessels update their states accordingly.

307. [Y’] Vessels respond by informing the command center of their departure.

308. Whereupon vessels resume being vessels.

value
304 port departure: vi:VI×mccis:V Mereo×V Sta Attrs → (V Pos×vir CSA×VΣ)
304 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
304 port departure(vi,mccis,v sta)(vpos,vir csa,vσ) ≡
305 let mkStow Compl(mcci,vi) ⌈⌉⌊⌋ { ch mcc[mcci,vi] ? | mcci:MCCI•mcci∈mccis } in
306 let vσ′ = update vessel state(mkVes Dept(mcci,vi))(vσ) in
307 ch mcc[mcci,vi] ! mkVes Dept(mcci,vi) ;
308 vessel(vi,mccis,v sta)(vpos,vir csa,vσ′) end end

• • •

The next three behaviours: quay crane, quay truck and stack crane, are very similar. One substitutes, line-by-line,
command center/quay crane, quay crane/quay truck, quay truck/stack crane et cetera !

K.6.9.3 Quay Cranes

309. The signature of the quay crane behaviour is a triple of the quay crane identifier, the conceptual quay crane
mereology, the static quay crane attributes, the programmable quay crane attributes – and the ’command
center’/’quay crane’ channel.

310. The quay crane offers, non-deterministically externally, to

311. either, [E], accept a directive of a ‘container transfer from vessel to quay crane’.

(a) The quay crane then resumes being a quay crane now holding (a surrogate of) the transferred container.

312. or, [F] accept a directive of a transfer ‘container from quay crane to quay truck’.

(a) The quay crane then resumes being a quay crane now holding (a surrogate of) the transferred container.

value
309 quay crane: qci:QCI × mcci:QC Mer × QC Sta → (QCHold×QCPos)
309 → ch mcc[mcci,qci] Unit
309 quay crane(qci,mcci,qc sta)(qchold,qcpos) ≡
311 let mkVSQC(ci) = ch mcc[mcci,qci] ? in
311a quay crane(qci,mcci,qc sta)(mkCon(ci),qcpos) end
310 ⌈⌉⌊⌋
312 let mkQCVS(ci) = ch mcc[mcci,qci] ? in
312a quay crane(qci,mcci,qc sta)(mkCon(ci),qcpos) end

356 CONTENTS

K.6.9.4 Quay Trucks

313. The signature of the quay truck behaviour is a triple of the quay truck identifier, the conceptual quay truck
mereology, the static quay truck attributes, the programmable quay truck attributes – and the ’command
center’/’quay truck’ channel.

314. The quay truck offers, non-deterministically externally, to

315. either, [H], accept a directive of a ‘container transfer from quay crane to quay truck’.

(a) The quay truck then resumes being a quay truck now holding (a surrogate of) the transferred container.

316. or, [I], accept a directive of a ‘container transfer from quay truck to quay crane’.

(a) The quay truck then resumes being a quay truck now holding (a surrogate of) the transferred container.

value
313 quay truck: qti:QTI × mcci:QC Mer × QT Sta → (QTHold×QTPos)
313 → ch mcc[mcci,qci] Unit
313 quay truck(qti,mcci,qt sta)(qthold,qtpos) ≡
315 let mkQCQT(ci) = ch mcc[mcci,qti] ? in
315a quay crane(qti,mcci,qc sta)(mkCon(ci),qcpos) end
314 ⌈⌉⌊⌋
316 let mkQTQC(ci) = ch mcc[mcci,qti] ? in
316a quay crane(qti,mcci,qc sta)(mkCon(ci),qcpos) end

K.6.9.5 Stack Crane

317. The signature of the stack crane behaviour is a triple of the stack crane stack crane identifier, the conceptual
mereology, the static stack crane attributes, the programmable stack crane attributes – and the ’command
center’/’stack crane’ channel.

318. The stack crane offers, non-deterministically externally, to

319. either, [K], accept a directive of a ‘container transfer from quay truck to stack crane’.

(a) The stack crane then resumes being a stack crane now holding (a surrogate of) the transferred container.

320. or, [L], accept a directive of a ‘container transfer from stack crane to quay truck’.

(a) The stack crane then resumes being a stack crane now holding (a surrogate of) the transferred container.

value
317 stack crane: sci:SCI × mcci:SC Mer × SC Sta → (SCHold×SCPos)
317 → ch mcc[mcci,sci] Unit
317 stack crane(sci,mcci,sc sta)(schold,scpos) ≡
319 let mkQTSC(ci) = ch mcc[mcci,sci] ? in
319a stack crane(sci,mcci,sc sta)(mkCon(ci),scpos) end
318 ⌈⌉⌊⌋
320 let mkSCQT(ci) = ch mcc[mcci,sci] ? in
320a stack crane(sci,mcci,sc sta)(mkCon(ci),scpos) end

K.6.9.6 Stacks

The stack behaviour is very much like the unload container container behaviour of the vessel, cf. Items 290 – 294 on
page 354.

321. The signature of the stack behaviour is a triple of the stack, i.e. terminal port bay identifier, the conceptual
bay mereology, the static bay attributes, the programmable bay attributes and the ’command center’/’stack’
channel.

322. The stack offers, [N], to accept directive of a ‘container transfer from stack crane to stack’.

(a) The stack behaviour loads the container, identified by ci′, to the bay/row/stack top, identified by
(bi,ri,si).

(b) If the unloaded container identifier is different from the expected chaos erupts !

(c) The stack state, bay′, is updated accordingly.

(d) [N’] “Some time has elapsed since the load directive, modelling” the completion, from the point of
view of the vessel, of the unload operation –

(e) whereupon the command center is informed of this completion ([’]).

K.6. PERDURANTS 357

(f) The stack then resumes being a stack now holding (a surrogate of) the transferred container.

value
321 stack: tbi:TBI×mcci:STK Mer×Stk Sta Attrs → (iCSA × Stk Dir) →
321 in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
321 stack(tbi,mcci,stk sta)(bay,dir) ≡
322 let mkUnload((bi,ri,si),ci) = ch mcc[mcci,tbi] ? in
322a let (ci′,bay′) = unload CI((bi,ri,si),bay) in
322b if ci′ 6= ci then chaos end ;
322c let bay′′ = unload update BAY((bi,ri,si),ci)(bay′) in
322d wait sometime ;
322e ch mcc[mcci,tbi] ! mkCompl(mkUnload((bi,ri,si),ci)) ;
322f stack(tbi,mcci,stk sta)(bay′′,dir) end end end

K.6.9.7 Land Trucks

323. The signature of the land truck behaviour is a triple of the land truck identifier, the conceptual land truck
mereology and the static land truck attributes, and the programmable land truck attributes.

324. R

(a) The land truck calculates the identifier of the next port’s command center

(b) and communicates with this center as to its intent to deliver a container identified by ci,

(c) whereupon the land truck resumes being that.

325. T

(a) The command center informs the land truck of the bay (’stack’), brs, at which to deliver the container,

(b) whereupon the land truck resumes being that.

326. Q

(a) The command center informs the land truck of the delivery of a container from a stack crane,

(b) ...,

(c) whereupon the land truck resumes being that.

327. V

(a) The land truck informs the command center of its intent to depart from the terminal port,

(b) whereupon the land truck resumes by leaving the terminal port.

value
323 land truck:
323
323 land truck(lti,lt mer,lt sta)(lt pos,lt hold) ≡
324 next port(lti,lt mer,lt sta)(lt pos,lt hold)
325 ⌈⌉⌊⌋ stack location(lti,lt mer,lt sta)(lt pos,lt hold)
326 ⌈⌉⌊⌋ stack crane to land truck(lti,lt mer,lt sta)(lt pos,lt hold)
327 ⌈⌉⌊⌋ land truck departure(lti,lt mer,lt sta)(lt pos,lt hold)

value
324 next port(lti,lt mer,lt sta)(...,mkHold(ci,cσ)) ≡
324a let mcci = calc truck delivery(ci,cσ) in
324b ch mcc[mcci,lti] ! mkDlvr(ci,cσ) ;
324c land truck(lti,lt mer,lt sta)(...,...) end ???

value
325 stack location(lti,lt mer,lt sta)(...,mkHold(ci,cσ)) ≡
325a let mkLT Pos(mcci,brs) = { ch mcc[mcci,lti] ? | mcci:MCCI • mcci ∈ mcc uis }
325b land truck(lti,lt mer,lt sta)(...,lt hold) end ???

value
326 stack crane to land truck(lti,lt mer,lt sta)(lt pos,lt hold) ≡
326a
326b

358 CONTENTS

value
327 land truck departure(lti,lt mer,lt sta)(...,...) ???
327a ch mcc[mcci,lti] ! mkDept(lti) ;
327b land truck(lti,lt mer,lt sta)(...,...) ???

K.6.9.8 Containers

In RSL, as with all formal specification languages one cannot “move” values. So we model containers of vessels and
of terminal port stacks as separate behaviours and replace their “values”, C in vessel and terminal port stacks by
their unique identifications, CI.

328. The signature of the container behaviour is simple: the container identifier, its mereology, its static values,
its position and state22 , and its input channels.

329. [D,G,J,M,P] The container is here simplified to just, at any moment, accepting a new position from any
terminal ports command center;

330. whereupon the container resumes being that with that new position.

value
328 container: ci:CI×mcci uis:C Mer×C Stat → (CPos×CΣ)
328 → in { ch mcc con[mcci,ci]
328 | mcci:MCCI • mcci∈mcci uis } Unit
328 container(ci,mcci uis,...)(pos,sσ) ≡
329 let mkNewPos(p) = { ch mcc con[mcci,ci] ?
329 | mcci:MCCI•mcci∈mcci uis } in
330 container(ci,mcci uis,...)(mkNewPos(p),sσ) end

K.6.10 Initial System

K.6.10.1 The Distributed System

We remind ourselves that the container line industry includes a set of vessels, a set of land trucks, a set of containers
and a set of terminal ports. We rely on the states expounded in Sect. K.5.4.1’s Items 50 on page 323 – 54 on page 323.

331. The signature of τ initial system is that of a function from an endurant container line industry to its perdurant
behaviour, i.e., Unit.

This behaviour is expressed as

332. the distributed composition of all vessel behaviours in parallel with

333. the distributed composition of all land truck behaviours in parallel with

334. the distributed composition of all container behaviours in parallel with

335. the distributed composition of all terminal port behaviours.

value
332 τ initial system: CLI → Unit
332 τ initial system(cli) ≡
332 ‖{ τ vessel(v) | v:V • v ∈ vs }
333 ‖ ‖{ τ land truck(lt) | lt:LT • lt ∈ lts }
334 ‖ ‖{ τ container(c) | c:CON • c ∈ cs }
335 ‖ ‖{ τ terminal port(tp) | tp:TP • tp ∈ tps }

K.6.10.2 Initial Vessels

336. The signature of the i vessel transalation function is simple: a τranslator from endurant vessel parts v
to perdurant vessel behaviours, i.e., Unit.

337. The transcendental deduction then consists of obtaining the proper arguments for the vessel behaviour –

338. and invoking that behaviour.

22As for state: I need to update the container attribute section, Sect. K.5.6.11 on page 334 to reflect a state (for
example: the component contents of a container)

K.6. PERDURANTS 359

value
336 τ vessel: V → Unit
336 τ vessel(v) ≡
337 let v ui = uid V(v), v mer = mereo V(v),
337 v sta = attr V Sta(v), v pos = attr V Pos(v),
337 v csa = attr iCSA(v), vσ = attr VΣ(v) in
338 vessel(v ui,v mer,v sta)(v pos,v csa,vσ) end

K.6.10.3 Initial Land Trucks

Similarly:

τ land truck: LT → Unit
τ land truck(lt) ≡

let lt ui = uid LT(lt), lt mer = mereo LT(lt),
lt sta = attr LT Sta(lt), lt pos = attr LT Pos(lt),
lt hold = attr LT Hold(v), ltσ = attr LTΣ(lt) in

vessel(lt ui,lt mer,lt sta)(lt pos,lt hold,ltσ) end

K.6.10.4 Initial Containers

Similarly:

τ container: CON → Unit
τ container(con) ≡

let c ui = uid CON(con), c mer = mereo CON(con),
c sta = attr C Sta(con), c pos = attr C Pos(con),
cσ = attr CONΣ(lt) in

container(c ui,c mer,c sta)(c pos,cσ) end

K.6.10.5 Initial Terminal Ports

Terminal ports consists of a set of quay cranes, a set of quay trucks a set of stack cranes, and a set of stacks. They
translate accordingly:

τ terminal port: TP → Unit
τ terminal port(tp) ≡

let qcs = obs QCs(obs QCS(tp)),
qts = obs QTs(obs QTS(tp)),
scs = obs SCs(obs SCS(tp)),
stks = obs STKs(obs STKS(tp)) in

‖ { τ quay crane(qc) | qc:QC • qc ∈ qcs } ‖
‖ { τ quay truck(qt) | qt:QT • qt ∈ qts } ‖
‖ { τ stack crane(sc) | sc:SC • sc ∈ scs } ‖
‖ { τ stack(stk) | stk:STK • stk ∈ stks } end

K.6.10.6 Initial Quay Cranes

τ quay crane: QC → Unit
τ (qc) ≡

let qc ui = uid QC(qc), qc mer = mereo QC(qc),
qc sta = attr QC Sta(qc), qc pos = attr QC Pos(qc),
qcσ = attr QCΣ(qc) in

quay crane(qc ui,qc mer,qc sta)(qc pos,qcσ) end

K.6.10.7 Initial Quay Trucks

τ quay truck: QT → Unit
τ quay truck(qt) ≡

let qt ui = uid QT(qt), qt mer = mereo QT(qt),
qt sta = attr QT Sta(qt), qt pos = attr QT Pos(qt),
qtσ = attr QTΣ(qt) in

quay truck(qt ui,qt mer,qt sta)(qt pos,qtσ) end

360 CONTENTS

K.6.10.8 Initial Stack Cranes

τ stack crane: SC → Unit
τ stack crane(sc) ≡

let sc ui = uid SC(sc), sc mer = mereo SC(sc),
sc sta = attr SC Sta(sc), sc pos = attr SC Pos(sc),
scσ = attr SCΣ(sc) in

container(sc ui,sc mer,sc sta)(sc pos,scσ) end

K.6.10.9 Initial Stacks

τ stack: STK → Unit
τ stack(stk) ≡

let stk ui = uid STK(stk), stk mer = mereo STK(stk),
stk sta = attr STK Sta(stk),
stkσ = attr STKΣ(stk) in

stack(stk ui,stk mer,stk sta)(stkσ) end

K.7 Conclusion
to be written

K.7.1 An Interpreation of the Behavioural Description

to be written

K.7.2 What Has Been Done
to be written

K.7.3 What To Do Next
to be written

K.7.4 Acknowledgements
This report was begun when I was first invited to lecture, for three weeks in November 2018, at ECNU23, Shanghai,
China. For this and for my actual stay at ECNU, I gratefully acknowledge Profs. He JiFeng, Zhu HuiBiao, Wang
XiaoLing and Min Zhang. I chose at the time of the invitation to lead the course students through a major,
non-trivial example. Since Shanghai is also one of the major container shipping ports of the world, and since the
Danish company Maersk, through its subsidiary, APMTerminals, operates a major container terminal port, I decided
on the subject fo this experimental report. I gratefully acknowledge the support the ECNU course received from
APMTerminals, through its staff, Messrs Henry Bai and Niels Roed.

23ECNU: East China Normal University

Appendix L

The Blue Skies

Contents

L.1 Introdution . 361

L.2 Endurants . 362

L.2.1 External Qualities . 362

L.2.1.1 Parts and Fluids . 362

L.2.1.2 The Air State . 362

L.2.2 Internal Qualities . 362

L.2.2.1 Unique Identifiers . 362

L.2.2.1.1 Obervers . 362

L.2.2.1.2 All Unique Identifiers 362

L.2.2.1.3 Axioms . 362

L.2.2.2 Mereology . 362

L.2.2.2.1 Obervers . 362

L.2.2.2.2 Axioms . 362

L.2.2.3 Attributes . 362

L.3 Perdurants . 362

L.3.1 Channels . 362

L.3.2 Behaviours . 362

L.3.3 Signatures . 362

L.3.4 Definitions . 362

L.3.5 System . 362

L.4 Conclusion . 362

L.1 Introdution

Some early work on this domain was reported in 1995 [19]. From Appendix B of [58] we “lift” Fig. B.1 Page 349,
cf. Fig. L.1 on the following page.

The aim of this chapter is to [eventually] present a model of the air traffic domain hinted at in Fig. L.1 on the
next page.

361

362 CONTENTS

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

This right 1/2 is a "mirror image" of left 1/2 of the figure

Figure L.1: A schematic air traffic system

L.2 Endurants

L.2.1 External Qualities

L.2.1.1 Parts and Fluids

L.2.1.2 The Air State

L.2.2 Internal Qualities

L.2.2.1 Unique Identifiers

L.2.2.1.1 Obervers

L.2.2.1.2 All Unique Identifiers

L.2.2.1.3 Axioms

L.2.2.2 Mereology

L.2.2.2.1 Obervers

L.2.2.2.2 Axioms

L.2.2.3 Attributes

L.3 Perdurants

L.3.1 Channels

L.3.2 Behaviours

L.3.3 Signatures

L.3.4 Definitions

L.3.5 System

L.4 Conclusion

Appendix M

Document Systems

I had, over the years, since mid 1990s, reflected upon the idea of “what is a document ?”. A most recent version, as
I saw it in 2017, was “documented” in Chapter 7 [66]. But, preparing for my work, at TongJi University, Shanghai,
September 2017, see Chapter Q, I reworked my earlier notes [66] into what is now this chapter.

Contents

M.1 Introduction . 364

M.2 Managing, Archiving and Handling Documents 365

M.3 Principal Endurants . 365

M.4 Unique Identifiers . 365

M.5 Mereology . 366

M.6 Documents: A First View . 366

M.6.1 Document Identifiers . 366

M.6.2 Document Descriptors . 366

M.6.3 Document Annotations . 366

M.6.4 Document Contents: Text/Graphics . 366

M.6.5 Document Histories . 366

M.6.6 A Summary of Document Attributes . 366

M.7 Behaviours: An Informal, First View . 367

M.8 Channels, A First View . 368

M.9 An Informal Graphical System Rendition 369

M.10Behaviour Signatures . 369

M.11Time . 369

M.11.1 Time and Time Intervals: Types and Functions 369

M.11.2 A Time Behaviour and a Time Channel 370

M.11.3 An Informal RSL Construct . 370

M.12Behaviour “States” . 370

M.13Inter-Behaviour Messages . 371

M.13.1 Management Messages with Respect to the Archive 371

M.13.2 Management Messages with Respect to Handlers 371

M.13.3 Document Access Rights . 372

M.13.4 Archive Messages with Respect to Management 372

M.13.5 Archive Message with Respect to Documents 372

M.13.6 Handler Messages with Respect to Documents 372

M.13.7 Handler Messages with Respect to Management 372

M.13.8 A Summary of Behaviour Interactions 373

M.14A General Discussion of Handler and Document Interactions 373

M.15Channels: A Final View . 373

363

364 CONTENTS

M.16An Informal Summary of Behaviours . 373

M.16.1 The Create Behaviour: Left Fig. M.3 on page 374 373

M.16.2 The Edit Behaviour: Right Fig. M.3 on page 374 374

M.16.3 The Read Behaviour: Left Fig. M.4 on page 375 374

M.16.4 The Copy Behaviour: Right Fig. M.4 on page 375 374

M.16.5 The Grant Behaviour: Left Fig. M.5 on page 375 375

M.16.6 The Shred Behaviour: Right Fig. M.5 on page 375 375

M.17The Behaviour Actions . 376

M.17.1 Management Behaviour . 376

M.17.1.1 Management Create Behaviour: Left Fig. M.3 on page 374 . 376

M.17.1.2 Management Copy Behaviour: Right Fig. M.4 on page 375 . 377

M.17.1.3 Management Grant Behaviour: Left Fig. M.5 on page 375 . 378

M.17.1.4 Management Shared Behaviour: Right Fig. M.5 on page 375 378

M.17.2 Archive Behaviour . 378

M.17.2.1 The Archive Create Behaviour: Left Fig. M.3 on page 374 . 379

M.17.2.2 The Archive Copy Behaviour: Right Fig. M.4 on page 375 . . 379

M.17.2.3 The Archive Shred Behaviour: Right Fig. M.5 on page 375 . 379

M.17.3 Handler Behaviours . 380

M.17.3.1 The Handler Create Behaviour: Left Fig. M.3 on page 374 . 380

M.17.3.2 The Handler Edit Behaviour: Right Fig. M.3 on page 374 . . 380

M.17.3.3 The Handler Read Behaviour: Left Fig. M.4 on page 375 . . 381

M.17.3.4 The Handler Copy Behaviour: Right Fig. M.4 on page 375 . 381

M.17.3.5 The Handler Grant Behaviour: Left Fig. M.5 on page 375 . . 381

M.17.4 Document Behaviours . 381

M.17.4.1 The Document Edit Behaviour: Right Fig. M.3 on page 374 382

M.17.4.2 The Document Read Behaviour: Left Fig. M.4 on page 375 . 382

M.17.4.3 The Document Shred Behaviour: Right Fig. M.5 on page 375 382

M.17.5 Conclusion . 382

M.18Documents in Public Government . 383

M.19Documents in Urban Planning . 383

We domain analyse and suggest a description of a domain of documents. We emphasize that the model is one of
several possible. Common to these models is that we model “all” we can say about documents – irrespective of
whether it can also be “implemented” ! The model(s) are not requirements prescriptions – but we can develop such
from our domain description.

You may find that the model is overly detailed with respect to a number of “operations” and properties of
documents. We find that these operations must be part of the very basis of a document domain in order to cope
with documents such as they occur in, for example, public government, see Appendix sect. M.18, or in urban
planning, see Appendix Sect. M.19.

M.1 Introduction

We analyse a notion of documents. Documents such as they occur in daily life. What can we say about documents –
regardless of whether we can actually provide compelling evidence for what we say ! That is: we model documents,
not as electronic entities — which they are becoming, more-and-more, but as if they were manifest entities. When
we, for example, say that “this document was recently edited by such-and-such and the changes of that editing
with respect to the text before is such-and-such”, then we can, of course, always claim so, even if it may be difficult
or even impossible to verify the claim. It is a fact, although maybe not demonstrably so, that there was a version
of any document before an edit of that document. It is a fact that some handler did the editing. It is a fact that
the editing took place at (or in) exactly such-and-such a time (interval), etc. We model such facts.

This research note unravels its analysis &1 description in stages.

1We use the logo gram & between two terms, A & B, when we mean to express one meaning.

M.2. MANAGING, ARCHIVING AND HANDLING DOCUMENTS 365

M.2 Managing, Archiving and Handling Documents
The title of this section: A System for Managing, Archiving and Handling Documents immediately reveals the
major concepts: That we are dealing with a system that manages, archives and handles documents. So what
do we mean by managing, archiving and handling documents, and by documents ? We give an ultra short
survey. The survey relies on your prior knowledge of what you think documents are ! Management decides2 to
direct handlers to work on documents. Management first directs the document archive to create documents.
The document archive creates documents, as requested by management, and informs management of the
unique document identifiers (by means of which handlers can handle these documents). Management then
grants its designated handler(s) access rights to documents, these access rights enable handlers to edit, read

and copy documents. The handlers’ editing and reading of documents is accomplished by the handlers
“working directly” with the documents (i.e., synchronising and communicating with document behaviours).
The handlers’ copying of documents is accomplished by the handlers requesting management, in collaboration
with the archive behaviour, to do so.

M.3 Principal Endurants
By an endurant we shall understand “an entity that can be observed or conceived and described as a ”complete
thing” at no matter which given snapshot of time.” Were we to ”freeze” time we would still be able to observe the
entire endurant. This characterisation of what we mean by an ‘endurant’ is from [51, Manifest Domains: Analysis
& Description]. We begin by identifying the principal endurants.

339. From document handling systems one can observe aggregates of handlers and documents.

We shall refer to ‘aggregates of handlers’ by M, for management, and to ‘aggregates of documents’ by A, for
archive.

340. From aggregates of handlers (i.e., M) we can observe sets of handlers (i.e., H).

341. From aggregates of documents (i.e., A) we can observe sets of documents (i.e., D).

type
339 S, M, A
value
339 obs M: S → M
339 obs A: S → A
type
340 H, Hs = H-set
341 D, Ds = D-set
value
340 obs Hs: M → Hs
341 obs Ds: A → Ds

M.4 Unique Identifiers
The notion of unique identifiers is treated, at length, in [51, Manifest Domains: Analysis & Description].

342. We associate unique identifiers with aggregate, handler and document endurants.

343. These can be observed from respective parts3.

type
342 MI4, AI5, HI, DI
value
343 uid MI6: M → MI
343 uid AI7: A → AI
343 uid HI: H → HI
343 uid DI: D → DI

As reasoned in [51, Manifest Domains: Analysis & Description], the unique identifiers of endurant parts are indeed
unique: No two parts, whether composite, as are the aggregates, or atomic, as are handlers and documents, can
have the same unique identifiers.

2How these decisions come about is not shown in this research note – as it has nothing to do with the essence
of document handling, but, perhaps, with ‘management’.

3 [51, Manifest Domains: Analysis & Description] explains how ‘parts’ are the discrete endurants with which we
associate the full complement of properties: unique identifiers, mereology and attributes.

4We shall not, in this research note, make use of the (one and only) management identifier.
5We shall not, in this research note, make use of the (one and only) archive identifier.
6Cf. Footnote 4: hence we shall not be using the uid MI observer.
7Cf. Footnote 5: hence we shall not be using the uid AI observer.

366 CONTENTS

M.5 Mereology

to be written

M.6 Documents: A First View
A document is a written, drawn, presented, or memorialized representation of thought. The word originates from
the Latin documentum, which denotes a “teaching” or “lesson”.8 We shall, for this research note, take a document
in its written and/or drawn form. In this section we shall survey the concept a documents.

M.6.1 Document Identifiers

Documents have unique identifiers. If two or more documents have the same document identifier then they are the
same, one (and not two or more) document(s).

M.6.2 Document Descriptors
With documents we associate document descriptors. We do not here stipulate what document descriptors are other
than saying that when a document is created it is provided with a descriptor and this descriptor “remains” with
the document and never changes value. In other words, it is a static attribute.9 We do, however, include, in
document descriptors, that the document they describe was initially based on a set of zero, one or more documents
– identified by their unique identifiers.

M.6.3 Document Annotations
With documents we also associate document annotations. By a document annotation we mean a programmable
attribute, that is, an attribute which can be ‘augmented’ by document handlers. We think of document annotations
as “incremental”, that is, as “adding” notes “on top of” previous notes. Thus we shall model document annotations
as a repository: notes are added, i.e., annotations are augmented, previous notes are not edited, and no notes are
deleted. We suggest that notes be time-stamped. The notes (of annotations) may be such which record handlers
work on documents. Examples could be: “March 12, 2024: 10:48 am: This is version V.”, “This document was
released on March 12, 2024: 10:48 am.”, “March 12, 2024: 10:48 am: Section X.Y.Z of version III was deleted.”,
“March 12, 2024: 10:48 am: References to documents doci and docj are inserted on Pages p and q, respectively.”
and “March 12, 2024: 10:48 am: Final release.”

M.6.4 Document Contents: Text/Graphics
The main idea of a document, to us, is the written (i.e., text) and/or drawn (i.e., graphics) contents. We do not
characterise any format for this contents. We may wish to insert, in the contents, references to locations in the
contents of other documents. But, for now, we shall not go into such details. The main operations on documents, to
us, are concerned with: their creation, editing, reading, copying and shredding. The editing and reading

operations are mainly concerned with document annotations and text/graphics.

M.6.5 Document Histories
So documents are created, edited, read, copied and shreded. These operations are initiated by the management
(create), by the archive (create), and by handlers (edit, read, copy), and at specific times.

M.6.6 A Summary of Document Attributes

344. As separate attributes of documents we have document descriptors, document annotations, document con-
tents and document histories.

345. Document annotations are lists of document notes.

346. Document histories are lists of time-stamped document operation designators.

347. A document operation designator is either a create, or an edit, or a read, or a copy, or a shred designator.

348. A create designator identifies

8From: https://en.wikipedia.org/wiki/Document
9You may think of a document descriptor as giving the document a title; perhaps one or more authors; perhaps a

physical address (of, for example, these authors); an initial date; as expressing whether the document is a research,
or a technical report, or other; who is issuing the document (a public institution, a private firm, an individual
citizen, or other); etc.

M.7. BEHAVIOURS: AN INFORMAL, FIRST VIEW 367

(a) a handler and a time (at which the create request first arose), and presents

(b) elements for constructing a document descriptor, one which

i. besides some further undefined information

ii. refers to a set of documents (i.e., embeds reference to their unique identifiers),

(c) a (first) document note, and

(d) an empty document contents.

349. An edit designator identifies a handler, a time, and specifies a pair of edit/undo functions.

350. A read designator identifies a handler.

351. A copy designator identifies a handler, a time, the document to be copied (by its unique identifier, and a
document note to be inserted in both the master and the copy document.

352. A shred designator identifies a handler.

353. An edit function takes a triple of a document annotation, a document note and document contents and yields
a pair of a document annotation and a document contents.

354. An undo function takes a pair of a document note and document contents and yields a triple of a document
annotation, a document note and a document contents.

355. Proper pairs of (edit,undo) functions satisfy some inverse relation.

There is, of course, no need, in any document history, to identify the identifier of that document.

type
344 DD, DA, DC, DH
value
344 attr DD: D → DD
344 attr DA: D → DA
344 attr DC: D → DC
344 attr DH: D → DH
type
345 DA = DN∗

346 DH = (TIME × DO)∗

347 DO == Crea | Edit | Read | Copy | Shre
348 Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|}
348(b)i Info = ...

value
348(b)ii embed DIs in DD: DI-set × Info → DD
axiom
348d ′′empty_DC′′ ∈ DC
type
349 Edit :: (HI × TIME) × (EDIT × UNDO)
350 Read :: (HI × TIME) × DI
351 Copy :: (HI × TIME) × DI × DN
352 Shre :: (HI × TIME) × DI
353 EDIT = (DA × DN × DC) → (DA × DC)
354 UNDO = (DA × DC) → (DA × DN × DC)
axiom
355 ∀ mkEdit(,(e,u)):Edit •

355 ∀ (da,dn,dc):(DA×DN×DC) •

355 u(e(da,dn,dc))=(da,dn,dc)

M.7 Behaviours: An Informal, First View
In [51, Manifest Domains: Analysis & Description] we show that we can associate behaviours with parts, where
parts are such discrete endurants for which we choose to model all its observable properties: unique identifiers,
mereology and attributes, and where behaviours are sequences of actions, events and behaviours.

• The overall document handler system behaviour can be expressed in terms of the parallel composition of the
behaviours

356. of the system core behaviour,

357. of the handler aggregate (the management) behaviour

358. and the document aggregate (the archive) behaviour,

with the (distributed) parallel composition of

368 CONTENTS

359. all the behaviours of handlers and,

the (distributed) parallel composition of

360. at any one time, zero, one or more behaviours of documents.

• To express the latter

361. we need introduce two “global” values: an indefinite set of handler identifiers and an indefinite set of
document identifiers.

value
361 his:HI-set, dis:DI-set

356 sys(...)
357 ‖ mgtm(...)
358 ‖ arch(...)
359 ‖ ‖{hdlri(...)|i:HI•i∈his}
360 ‖ ‖{docui(dd)(da,dc,dh)|i:DI•i∈dis}

For now we leave undefined the arguments, (...) etc., of these behaviours. The arguments of the document behaviour,
(dd)(da,dc,dh), are the static, respectively the three programmable (i.e., dynamic) attributes: document descriptor,
document annotation, document contents and document history. The above expressions, Items 357–360, do not
define anything, they can be said to be “snapshots” of a “behaviour state”. Initially there are no document
behaviours, docui(dd)(da,dc,dh), Item 360. Document behaviours are “started” by the archive behaviour (on behalf
of the management and the handler behaviours). Other than mentioning the system (core) behaviour we shall not
model that behaviour further.

M.8 Channels, A First View
Channels are means for behaviours to synchronise and communicate values (such as unique identifiers, mereologies
and attributes).

362. The management behaviour, mgtm, need to (synchronise and) communicate with the archive behaviour,
arch, in order, for the management behaviour, to request the archive behaviour

• to create (ab initio or due to copying)

• or shred document behaviours, docuj ,

and for the archive behaviour

• to inform the management behaviour of the identity of the document(behaviour)s that it has created.

channel
362 mgtm arch ch:MA

363. The management behaviour, mgtm, need to (synchronise and) communicate with all handler behaviours,
hdlri and they, in turn, to (synchronised) communicate with the handler management behaviour, mgtm. The
management behaviour need to do so in order

• to inform a handler behaviour that it is granted access rights to a specific document, subsequently
these access rights may be modified, including revoked.

channel
363 {mgtm hdlr ch[i]:MH|i:HI•i ∈ his}

364. The document archive behaviour, arch, need (synchronise and) communicate with all document behaviours,
docuj and they, in turn, to (synchronise and) communicate with the archive behaviour, arch.

channel
364 {arch docu ch[j]:AD|h:DI•j ∈ dis}

365. Handler behaviours, hdlri, need (synchronise and) communicate with all the document behaviours, docuj ,
with which it has operational allowance to so do so10, and document behaviours, docuj , need (synchronise
and) communicate with potentially all handler behaviours, hdlri, namely those handler behaviours, hdlri with
which they have (“earlier” synchronised and) communicated.

channel
365 {hdlr docu ch[i,j]:HD|i:HI,j:DI•i ∈ his∧j ∈ dis}

366. At present we leave undefined the type of messages that are communicated.

type
366 MA, MH, AD, HD

10The notion of operational allowance will be explained below.

M.9. AN INFORMAL GRAPHICAL SYSTEM RENDITION 369

mgtm

arch

mgtm_arch_ch

{mgtm_hdlr_ch[i]|i:HI...}

{arch_docu_ch[h]|j:DI...}

{hdlr_docu_ch[i,j]|i:HI,j:DI...}

n_d

n_h

n_h*n_d

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

Figure M.1: An Informal Snapshot of System Behaviours

M.9 An Informal Graphical System Rendition

Figure M.1 is an informal rendition of the “state” of a number of behaviours: a single management behaviour, a
single archive behaviour, a fixed number, nh, of one or more handler behaviours, and a variable, initially zero number
of document behaviours, with a maximum of these being nd. The figure also indicates, again rather informally,
the channels between these behaviours: one channel between the management and the archive behaviours; nh

channels (nh is, again, informally indicated) between the management behaviour and the nh handler behaviours;
nd channels (nd is, again, informally indicated) between the archive behaviour and the nd document behaviours;
and nh × nd channels (nd × nd is, again, informally indicated) between the nh handler behaviours and the nd

document behaviours

M.10 Behaviour Signatures

367. The mgtm behaviour (synchronises and) communicates with the archive behaviour and with all of the handler
behaviours, hdlri.

368. The archive behaviour (synchronises and) communicates with the mgtm behaviour and with all of the docu-
ment behaviours, docuj .

369. The signature of the generic handler behaviours, hdlri expresses that they [occasionally] receive “orders”
from management, and otherwise [regularly] interacts with document behaviours.

370. The signature of the generic document behaviours, docuj expresses that they [occasionally] receive “orders”
from the archive behaviour and that they [regularly] interacts with handler behaviours.

value
367 mgtm: ... → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
368 arch: ... → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
369 hdlri: ... → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
370 docuj : ... → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

M.11 Time

M.11.1 Time and Time Intervals: Types and Functions

371. We postulate a notion of time, one that covers both a calendar date (from before Christ up till now and
beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD, HH:MM:SS).

372. And we postulate a notion of (signed) time interval — between two times (say: ±YY:MM:DD:HH:MM:SS).

373. Then we postulate some operations on time: Adding a time interval to a time obtaining a time; subtracting
one time from another time obtaining a time interval, multiplying a time interval with a natural number;
etc.

374. And we postulate some relations between times and between time intervals.

370 CONTENTS

type
371 TIME
372 TIME INTERVAL
value
373 add: TIME INTERVAL × TIME → TIME
373 sub: TIME × TIME → TIME INTERVAL
373 mpy: TIM INTERVALE × Nat → TIME INTERVAL
374 <,≤,=, 6=,≥,>: ((TIME×TIME)|(TIME INTERVAL×TIME INTERVAL)) → Bool

M.11.2 A Time Behaviour and a Time Channel
375. We postulate a[n “ongoing”] time behaviour: it either keeps being a time behaviour with unchanged time, t,

or – internally non-deterministically – chooses being a time behaviour with a time interval incremented time,
t+ti, or – internally non-deterministically – chooses to [first] offer its time on a [global] channel, time ch,
then resumes being a time behaviour with unchanged time., t

376. The time interval increment, ti, is likewise internally non-deterministically chosen. We would assume that
the increment is “infinitesimally small”, but there is no need to specify so.

377. We also postulate a channel, time ch, on which the time behaviour offers time values to whoever so requests.

value
375 time: TIME → time ch TIME Unit
375 time(t) ≡ (time(t) ⌈⌉ time(t+ti) ⌈⌉ time ch!t ; time(t))
376 ti:TIME INTERVAL ...

channel
377 time ch:TIME

M.11.3 An Informal RSL Construct
The formal-looking specifications of this report appear in the style of the RAISE [101] Specification Language,
RSL [100]. We shall be making use of an informal language construct:

• wait ti.

wait is a keyword; ti designates a time interval. A typical use of the wait construct is:

• ... ptA ; wait ti; ptB ; ...

If at specification text point ptA we may assert that time is t, then at specification text point ptB we can assert
that time is t+ti.

M.12 Behaviour “States”
We recall that the endurant parts, Management, Archive, Handlers, and Documents, have properties in the form of
unique identifiers, mereologies and attributes. We shall not, in this research note, deal with possible mereologies of
these endurants. In this section we shall discuss the endurant attributes of mgtm (management), arch (archive), hdlrs
(handlers), and docus (documents). Together the values of these properties, notably the attributes, constitute states
– and, since we associate behaviours with these endurants, we can refer to these states also a behaviour states. Some
attributes are static, i.e., their value never changes. Other attributes are dynamic.11 Document handling systems
are rather conceptual, i.e., abstract in nature. The dynamic attributes, therefore, in this modeling “exercise”, are
constrained to just the programmable attributes. Programmable attributes are those whose value is set by “their”
behaviour. For a behaviour β we shall show the static attributes as one set of parameters and the programmable
attributes as another set of parameters.

value β: Static → Program → ... Unit

378. For the management endurant/behaviour we focus on one programmable attribute. The management be-
haviour needs keep track of all the handlers it is charged with, and for each of these which zero, one or
more documents they have been granted access to (cf. Sect. M.13.3 on page 372). Initially that management
directory lists a number of handlers, by their identifiers, but with no granted documents.

379. For the archive behaviour we similarly focus on one programmable attribute. The archive behaviour needs
keep track of all the documents it has used (i.e., created), those that are available (and not yet used), and
of those it has shredded. Initially all these three archive directory sets are empty.

11We refer to Sect. 3.4 of [51], and in particular its subsection 3.4.4.

M.13. INTER-BEHAVIOUR MESSAGES 371

380. For the handler behaviour we similarly focus on one programmable attribute. The handler behaviour needs
keep track of all the documents it has been charged with and its access rights to these.

381. Document attributes we mentioned above, cf. Items 344–347.

type
378 MDIR = HI →m (DI →m ANm-set)
379 ADIR = avail:DI-set × used:DI-set × gone:DI-set
380 HDIR = DI →m ANm-set
381 SDATR = DD, PDATR = DA × DC × DH
axiom
379 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used

We can now “complete” the behaviour signatures. We omit, for now, static attributes.

value
367 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
368 arch: ADIR → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
369 hdlri: HDIR → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
370 docuj : SDATR → PDATR → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

M.13 Inter-Behaviour Messages
Documents are not “fixed, innate” entities. They embody a “history”, they have a “past”. Somehow or other
they “carry a trace of all the ”things” that have happened/occurred to them. And, to us, these things are the
manipulations that management, via the archive and handlers perform on documents.

M.13.1 Management Messages with Respect to the Archive
382. Management create documents. It does so by requesting the archive behaviour to allocate a document

identifier and initialize the document “state” and start a document behaviour, with initial information, cf.
Item 348 on page 366:

(a) the identity of the initial handler of the document to be created,

(b) the time at which the request is being made,

(c) a document descriptor which embodies a (finite) set of zero or more (used) document identifiers (dis),

(d) a document annotation note dn, and

(e) an initial, i.e., “empty” contents, "empty DC".

type
348. Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|} [cf. formula Item 348, Page 367]

383. The management behaviour passes on to the archive behaviour, requests that it accepts from handlers
behaviours, for the copying of document:

383 Copy :: DI × HI × TIME × DN [cf. Item 393 on the following page]

384. Management schreds documents by informing the archive behaviour to do so.

type
384 Shred :: TIME × DI

M.13.2 Management Messages with Respect to Handlers
385. Upon receiving, from the archive behaviour, the “feedback” the identifier of the created document (be-

haviour):

type
385. Create Reply :: NewDocID(di:DI)

386. the management behaviour decides to grant access rights, acrs:ACRS12, to a document handler, hi:HI.

type
386 Gran :: HI × TIME × DI × ACRS

12For the concept of access rights see Sect. M.13.3 on the next page.

372 CONTENTS

M.13.3 Document Access Rights
Implicit in the above is a notion of document access rights.

387. By document access rights we mean a set of action names.

388. By an action name we mean such tokens that indicate either of the document handler operations indicate
above.

type
387 ACRS = ANm-set
388 ANm = {|′′edit′′,′′read′′,′′copy′′|}

M.13.4 Archive Messages with Respect to Management
To create a document management provides the archive with some initial information. The archive behaviour
selects a document identifier that has not been used before.

389. The archive behaviour informs the management behaviour of the identifier of the created document.

type
389 NewDocID :: DI

M.13.5 Archive Message with Respect to Documents
390. To shred a document the archive behaviour must access the designated document in order to stop it. No

“message”, other than a symbolic "stop", need be communicated to the document behaviour.

type
390 Shred :: {|′′stop′′|}

M.13.6 Handler Messages with Respect to Documents
Handlers, generically referred to by hdlri, may perform the following operations on documents: edit, read and
copy. (Management, via the archive behaviour, creates and shreds documents.)

391. To perform an edit action handler hdlri must provide the following:

• the document identity – in the form of a (i:HI,j:DI) channel hdlr docu ch index value,

• the handler identity, i,

• the time of the edit request,

• and a pair of functions: one which performs the editing and one which un-does it !

type
391 Edit :: DI × HI × TIME × (EDIT × UNDO)

392. To perform a read action handler hdlri must provide the following information:

• the document identity – in the form of a di:DI channel hdlr docu ch index value,

• the handler identity and

• the time of the read request.

type
392 Read :: DI × HI × TIME

M.13.7 Handler Messages with Respect to Management
393. To perform a copy action, a handler, hdlri, must provide the following information to the management

behaviour, mgtm:

• the document identity,

• the handler identity – in the form of an hi:HI channel mgtm hdlr ch index value,

• the time of the copy request, and

• a document note (to be affixed both the master and the copy documents).

393 Copy :: DI × HI × TIME × DN [cf. Item 383 on the preceding page]

How the handler, the management, the archive and the “named other” handlers then enact the copying, etc.,
will be outlined later.

M.14. A GENERAL DISCUSSION OF HANDLER AND DOCUMENT INTERACTIONS 373

mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

mkGrant

mkCopy

mkShred

mkEditComplete
mkReadCompletemkRead

mkEdit
mkShred
mkCopy

mkCreate mkNewDocID

Figure M.2: A Summary of Behaviour Interactions

M.13.8 A Summary of Behaviour Interactions
Figure M.2 summarises the sources, out, resp. !, and the targets, in, resp. ?, of the messages covered in the previous
sections.

M.14 A General Discussion of Handler and Document Interac-
tions

We think of documents being manifest. Either a document is in paper form, or it is in electronic form. In paper
form we think of a document as being in only one – and exactly one – physical location. In electronic form a
document is also in only one – and exactly one – physical location. No two handlers can access the same document
at the same time or in overlapping time intervals. If your conventional thinking makes you think that two or more
handlers can, for example, read the same document “at the same time”, then, in fact, they are reading either a
master and a copy of that master, or they are reading two copies of a common master.

M.15 Channels: A Final View
We can now summarize the types of the various channel messages first referred to in Items 362, 363, 364 and 365.

type
362 MA = Create (Item 382 on page 371)
362 | Shred (Item 382d on page 371)
362 | NewDocID (Item 389 on the facing page)
363 MH = Grant (Item 382c on page 371)
363 | Copy (Item 393 on the facing page)
364 AD = Shred (Item 390 on the preceding page)
365 HD = Edit (Item 391 on the facing page)
365 | Read (Item 392 on the preceding page)
365 | Copy (Item 393 on the facing page)

M.16 An Informal Summary of Behaviours

M.16.1 The Create Behaviour: Left Fig. M.3 on the next page
394. [1] The management behaviour, at its own volition, initiates a create document behaviour. It does so by

offering a create document message to the archive behaviour.

(a) [1.1] That message contains a meaningful document descriptor,

(b) [1.2] an initial document annotation,

(c) [1.3] an “empty” document contents and

374 CONTENTS

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1
[2]

[5] [6][1]

docu_k

hdlr_i

[3]

[4]

mkGrant

mkNewDocID CREATE

The dotted line means:
Initialising the document.

mkCreate

mgtm

arch

hdlr_1 hdlr_n_h

docu_n_d docu_1

hdlr_i

[2]
docu_j

[3][1]

mkReadCompletemkReadEDIT

Figure M.3: Informal Snapshots of Create and Edit Document Behaviours

(d) [1.4] a single element document history.

(We refer to Sect. M.13.1 on page 371, Items 382–382e.)

395. [2] The archive behaviour offers to accept that management message. It then selects an available document
identifier (here shown as k), henceforth marking k as used.

396. [3] The archive behaviour then “spawns off” document behaviour docuk – here shown by the “dash–dotted”
rounded edge square.

397. [4] The archive behaviour then offers the document identifier k message to the management behaviour.

(We refer to Sect. M.13.4 on page 372, Item 389.)

398. [5] The management behaviour then

(a) [5.1] selects a handler, here shown as i, i.e., hdlri,

(b) [5.2] records that that handler is granted certain access rights to document k,

(c) [5.3] and offers that granting to handler behaviour i.

(We refer to Sect. M.13.2 on page 371, Item 386 on page 371.)

399. [6] Handler behaviour i records that it now has certain access rights to document i.

M.16.2 The Edit Behaviour: Right Fig. M.3
1 Handler behaviour i, at its own volition, initiates an edit action on document j (where i has editing rights for

document j). Handler i, optionally, provides document j with a(annotation) note. While editing document
j handler i also “selects” an appropriate pair of edit/undo functions for document j.

2 Document behaviour j accepts the editing request, enacts the editing, optionally appends the (annotation)
note, and, with handler i, completes the editing, after some time interval ti.

3 Handler behaviour i completes its edit action.

M.16.3 The Read Behaviour: Left Fig. M.4 on the next page
1 Handler behaviour i, at its own volition, initiates a read action on document j (where i has reading rights

for document j). Handler i, optionally, provides document j with a(annotation) note.

2 Document behaviour j accepts the reading request, enacts the reading by providing the handler, i, with
the document contents, and optionally appends the (annotation) note, and, with handler i, completes the
reading, after some time interval ti.

3 Handler behaviour i completes its read action.

M.16.4 The Copy Behaviour: Right Fig. M.4 on the facing page
1 Handler behaviour i, at its own volition, initiates a copy action on document j (where i has copying rights

for document j). Handler i, optionally, provides master document j as well as the copied document (yet to
be identified) with respective (annotation) notes.

2 The management behaviour offers to accept the handler message. As for the create action, the management
behaviour offers a combined copy and create document message to the archive behaviour.

3 The archive behaviour selects an available document identifier (here shown as k), henceforth marking k as
used.

M.16. AN INFORMAL SUMMARY OF BEHAVIOURS 375

mgtm

arch

hdlr_1 hdlr_n_h

docu_1

hdlr_i

docu_j

[2]

[1]

docu_k

[3]

READ mkRead mkReadComplete

[3]

arch

docu_j

[6]

docu_k

[7] [4]

[5]

[2]

[8]

hdlr_1
[1]

hdlr_i

mgtm [10]
[9] [11]

COPY

docu_1

hdlr_n_h

mkCopy

mkGrant

mkGrant

These dot−dashed lines

Initialising the document.
The dotted line mean:

mean: Obtaining the
document "data" !

mkCopy mkNewDocID

Figure M.4: Informal Snapshots of Read and Copy Document Behaviours

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1

hdlr_i

[2][1]

docu_k

GRANT

mkGrant mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_1docu_k docu_j

[1]

[3]

SHRED

mkShred

mkShred

[2]

Figure M.5: Informal Snapshots of Grant and Shred Document Behaviours

4 The archive behaviour then obtains, from the master document j its document descriptor, ddj , its document
annotations, daj , its document contents, dcj , and its document history, dhj .

5 The archive behaviour informs the management behaviour of the identifier, k, of the (new) document copy,

6 while assembling the attributes for that (new) document copy: its document descriptor, ddk , its document
annotations, dak , its document contents, dck, and its document history, dhk, from these “similar” attributes
of the master document j,

7 while then “spawning off” document behaviour docuk – here shown by the “dash–dotted” rounded edge
square.

8 The management behaviour accepts the identifier, k, of the (new) document copy, recording the identities of
the handlers and their access rights to k,

9 while informing these handlers (informally indicated by a “dangling” dash-dotted line) of their grants,

10 while also informing the master copy of the copy identity (et cetera).

11 The handlers granted access to the copy record this fact.

M.16.5 The Grant Behaviour: Left Fig. M.5

This behaviour has its

1 Item [1] correspond, in essence, to Item [9] of the copy behaviour – see just above – and

2 Item [2] correspond, in essence, to Item [11] of the copy behaviour.

M.16.6 The Shred Behaviour: Right Fig. M.5

1 The management, at its own volition, selects a document, j, to be shredded. It so informs the archive
behaviour.

2 The archive behaviour records that document j is to be no longer in use, but shredded, and informs document
j’s behaviour.

3 The document j behaviour accepts the shred message and stops (indicated by the dotted rounded edge box).

376 CONTENTS

M.17 The Behaviour Actions
To properly structure the definitions of the four kinds of (management, archive, handler and document) behaviours
we single each of these out “across” the six behaviour traces informally described in Sects. M.16.1–M.16.6. The
idea is that if behaviour β is involved in τ traces, τ1, τ2, ..., ττ , then behaviour β shall be defined in terms of τ

non-deterministic alternative behaviours named βτ1 , βτ2 , ..., βττ .

M.17.1 Management Behaviour
400. The management behaviour is involved in the following action traces:

(a) create Fig. M.3 on page 374 Left

(b) copy Fig. M.4 on the preceding page Right

(c) grant Fig. M.5 on the previous page Left

(d) shred Fig. M.5 on the preceding page Right

value
400 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
400 mgtm(mdir) ≡
400a mgtm create(mdir)
400b ⌈⌉ mgtm copy(mdir)
400c ⌈⌉ mgtm grant(mdir)
400d ⌈⌉ mgtm shred(mdir)

M.17.1.1 Management Create Behaviour: Left Fig. M.3 on page 374

401. The management create behaviour

402. initiates a create document behaviour (i.e., a request to the archive behaviour),

403. and then awaits its response.

value
401 mgtm create: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
401 mgtm create(mdir) ≡
402 [1] let hi = mgtm create initiation(mdir) ; [Left Fig. M.3 on page 374]
403 [5] mgtm create awaits response(mdir)(hi) end [Left Fig. M.3 on page 374]

The management create initiation behaviour

404. selects a handler on behalf of which it requests the document creation,

405. assembles the elements of the create message:

• by embedding a set of zero or more document references, dis, with some information, info, into a
document descriptor, adding

• a document note, dn, and

• and initial, that is, empty document contents, "empty DC",

406. offers such a create document message to the archive behaviour, and

407. yields the identifier of the chosen handler.

value
402 mgtm create initiation: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
402 mgtm create initiation(mdir) ≡
404 let hi:HI • hi ∈ dom mdir,
405 [1.2−.4] (dis,info):(DI-set×Info),dn:DN • is meaningful(embed DIs in DD(dis,info))(mdir) in
406 [1.1] mgtm arch ch ! mkCreate(embed DIs in DD(ds,info),dn,′′empty_DC′′)
407 hi end

405 is meaningful: DD → MDIR → Bool [left further undefined]

The management create awaits response behaviour

408. starts by awaiting a reply from the archive behaviour with the identity, di, of the document (that that
behaviour has created).

409. It then selects suitable access rights,

M.17. THE BEHAVIOUR ACTIONS 377

410. with which it updates its handler/document directory

411. and offers to the chosen handler

412. whereupon it resumes, with the updated management directory, being the management behaviour.

value
403 mgtm create awaits response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
403 mgtm create awaits response(mdir) ≡
408 [5] let mkNewDocID(di) = mgtm arch ch ? in
409 [5.1] let acrs:ANm-set in
410 [5.2] let mdir′ = mdir † [hi 7→ [di 7→ acrs]] in
411 [5.3] mgtm hdlr ch[hi] ! mkGrant(di,acrs)
412 mgtm(mdir′) end end end

M.17.1.2 Management Copy Behaviour: Right Fig. M.4 on page 375

413. The management copy behaviour

414. accepts a copy document request from a handler behaviour (i.e., a request to the archive behaviour),

415. and then awaits a response from the archive behaviour;

416. after which it grants access rights to handlers to the document copy.

value
413 mgtm copy: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
413 mgtm copy(mdir) ≡
414 [2] let hi = mgtm accept copy request(mdir) in
415 [8] let di = mgtm awaits copy response(mdir)(hi) in
416 [9] mgtm grant access rights(mdir)(di) end end

417. The management accept copy behaviour non-deterministically externally (⌈⌉⌊⌋) awaits a copy request from
a[ny] handler (i) behaviour –

418. with the request identifying the master document, j, to be copied.

419. The management accept copy behaviour forwards (!) this request to the archive behaviour –

420. while yielding the identity of the requesting handler.

417. mgtm accept copy request: MDIR →
417. in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
417. mgtm accept copy request(mdir) ≡
418. let mkCopy(di,hi,t,dn) = ⌈⌉⌊⌋{mgtm hdlr ch[i]?|i:HI•i ∈ his} in
419. mgtm arch ch ! mkCopy(di,hi,t,dn) ;
419. hi end

The management awaits copy response behaviour

421. awaits a reply from the archive behaviour as to the identity of the newly created copy (di) of master document
j.

422. The management awaits copy response behaviour then informs the ‘copying-requesting’ handler, hi, that the
copying has been completed and the identity of the copy (di) –

423. while yielding the identity, di, of the newly created copy.

400b. mgtm awaits copy response: MDIR → HI →
400b. in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} DI
400b. mgtm awaits copy response(mdir)(hi) ≡
421. [8] let mkNewDocID(di) = mgtm arch ch ? in
422. mgtm hdlr ch[hi] ! mkCopy(di) ;
423. di end

The management grants access rights behaviour

424. selects suitable access rights for a suitable number of selected handlers.

425. It then offers these to the selected handlers.

416. mgtm grant access rights: MDIR → DI →
416. in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
416. mgtm grant access rights(mdir)(di) ≡
424. let diarm = [hi 7→acrs|hi:HI,arcs:ANm-set• hi ∈ dom mdir∧arcs⊆(diarm(hi))(di)] in
425. ‖ {mgtm hdlr ch[hi]!mkGrant(hi,time ch?,di,acrs) |
425. hi:HI,acrs:ANm-set•hi ∈ dom diarm∧acrs⊆(diarm(hi))(di)} end

378 CONTENTS

M.17.1.3 Management Grant Behaviour: Left Fig. M.5 on page 375

The management grant behaviour

426. is a variant of the mgtm grant access rights function, Items 424–425.

427. The management behaviour selects a suitable subset of known handler identifiers, and

428. for these a suitable subset of document identifiers from which

429. it then constructs a map from handler identifiers to subsets of access rights.

430. With this the management behaviour then issues appropriate grants to the chosen handlers.

type
MDIR = HI →m (DI →m ANm-set)

value
426 mgtm grant: MDIR → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
426 mgtm grant(mdir) ≡
427 let his ⊆ dom dir in
428 let dis ⊆ ∪{dom mdir(hi)|hi:HI•hi ∈ his} in
429 let diarm = [hi 7→acrs|hi:HI,di:DI,arcs:ANm-set• hi ∈ his∧di ∈ dis∧acrs⊆(diarm(hi))(di)] in
430 ‖{mgtm hdlr ch[hi]!mkGrant(di,acrs) |
430 hi:HI,di:DI,acrs:ANm-set•hi ∈ dom diarm∧di ∈ dis∧acrs⊆(diarm(hi))(di)}
426 end end end

M.17.1.4 Management Shared Behaviour: Right Fig. M.5 on page 375

The management shred behaviour

431. initiates a request to the archive behaviour.

432. First the management shred behaviour selects a document identifier (from its directory).

433. Then it communicates a shred document message to the archive behaviour;

434. then it notes the (to be shredded) document in its directory

435. whereupon the management shred behaviour resumes being the management behaviour.

value
431 mgtm shred: MDIR → out mgtm arch ch Unit
431 mgtm shred(mdir) ≡
432 let di:DI • is suitable(di)(mdir) in
433 [1] mgtm arch ch ! mkShred(time ch?,di) ;
434 let mdir′ = [hi 7→mdir(hi)\{di}|hi:HI•hi ∈ dom mdir] in
435 mgtm(mdir′) end end

M.17.2 Archive Behaviour

436. The archive behaviour is involved in the following action traces:

(a) create Fig. M.3 on page 374 Left

(b) copy Fig. M.4 on page 375 Right

(c) shred Fig. M.5 on page 375 Right

type
379 ADIR = avail:DI-set × used:DI-set × gone:DI-set
axiom
379 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used
value
436 arch: ADIR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
436a arch(adir) ≡
436a arch create(adir)
436b ⌈⌉ arch copy(adir)
436c ⌈⌉ arch shred(adir)

M.17. THE BEHAVIOUR ACTIONS 379

M.17.2.1 The Archive Create Behaviour: Left Fig. M.3 on page 374

The archive create behaviour

437. accepts a request, from the management behaviour to create a document;

438. it then selects an available document identifier;

439. communicates this new document identifier to the management behaviour;

440. while initiating a new document behaviour, docudi, with the document descriptor, dd, the initial document
annotation being the singleton list of the note, an, and the initial document contents, dc – all received from
the management behaviour – and an initial document history of just one entry: the date of creation, all

441. in parallel with resuming the archive behaviour with updated programmable attributes.

436a. arch create: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
436a. arch create(avail,used,gone) ≡
437. [2] let mkCreate((hi,t),dd,an,dc) = mgmt arch ch ? in
438. let di:DI•di ∈ avail in
439. [4] mgmt arch ch ! mkNewDocID(di) ;
440. [3] docudi(dd)(〈an〉,dc,<(date of creation)>)
441. ‖ arch(avail\{di},used∪{di},gone)
436a. end end

M.17.2.2 The Archive Copy Behaviour: Right Fig. M.4 on page 375

The archive copy behaviour

442. accepts a copy document request from the management behaviour with the identity, j, of the master docu-
ment;

443. it communicates (the request to obtain all the attribute values of the master document, j) to that document
behaviour;

444. whereupon it awaits their communication (i.e., (dd,da,dc,dh));

445. (meanwhile) it obtains an available document identifier,

446. which it communicates to the management behaviour,

447. while initiating a new document behaviour, docudi, with the master document descriptor, dd, the master
document annotation, and the master document contents, dc, and the master document history, dh (all
received from the master document),

448. in parallel with resuming the archive behaviour with updated programmable attributes.

436b. arch copy: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
436b. arch copy(avail,used,gone) ≡
442. [3] let mkDocID(j,hi) = mgtm arch ch ? in
443. arch docu ch[j] ! mkReqAttrs() ;
444. let mkAttrs(dd,da,dc,dh) = arch docu ch[j] ? in
445. let di:DI • di ∈ avail in
446. mgtm arch ch ! mkCopyDocID(di) ;
447. [6,7] docudi(augment(dd,′′copy′′,j,hi),
447. augment(da,′′copy′′,hi),dc,
447. augment(dh,(′′copy′′,date and time,j,hi)))
448. ‖ arch(avail\{di},used∪{di},gone)
436b. end end end

where we presently leave the [overloaded] augment functions undefined.

M.17.2.3 The Archive Shred Behaviour: Right Fig. M.5 on page 375

The archive shred behaviour

449. accepts a shred request from the management behaviour.

450. It communicates this request to the identified document behaviour.

451. And then resumes being the archive behaviour, noting however, that the shredded document has been
shredded.

436c. arch shred: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
436c. arch shred(avail,used,gone) ≡
449. [2] let mkShred(j) = mgmt arch ch ? in
450. arch docu ch[j] ! mkShred() ;
451. arch(avail,used,gone∪{j})
436c. end

380 CONTENTS

M.17.3 Handler Behaviours

452. The handler behaviour is involved in the following action traces:

(a) create Fig. M.3 on page 374 Left

(b) edit Fig. M.3 on page 374 Right

(c) read Fig. M.4 on page 375 Left

(d) copy Fig. M.4 on page 375 Right

(e) grant Fig. M.5 on page 375 Left

value
452 hdlrhi: HATTRS → in,out mgtm hdlr ch[hi],{hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
452 hdlrhi(hattrs) ≡
452a hdlr createhi(hattrs)
452b ⌈⌉ hdlr edithi(hattrs)
452c ⌈⌉ hdlr readhi(hattrs)
452d ⌈⌉ hdlr copyhi(hattrs)
452e ⌈⌉ hdlr granthi(hattrs)

M.17.3.1 The Handler Create Behaviour: Left Fig. M.3 on page 374

453. The handler create behaviour offers to accept the granting of access rights, acrs, to document di.

454. It according updates its programmable hattrs attribute;

455. and resumes being a handler behaviour with that update.

452a hdlr createhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
452a hdlr createhi(hattrs,hhist) ≡
453 let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
454 let hattrs′ = hattrs † [hi 7→ acrs] in
455 hdlr createhi(hattrs

′,augment(hhist,mkGrant(di,acrs))) end end

M.17.3.2 The Handler Edit Behaviour: Right Fig. M.3 on page 374

456. The handler behaviour, on its own volition, decides to edit a document, di, for which it has editing rights.

457. The handler behaviour selects a suitable (...) pair of edit/undo functions and a suitable (annotation) note.

458. It then communicates the desire to edit document di with (e,u) (at time t=time ch?).

459. Editing take some time, ti.

460. We can therefore assert that the time at which editing has completed is t+ti.

461. The handler behaviour accepts the edit completion message from the document handler.

462. The handler behaviour can therefore resume with an updated document history.

452b hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
452b hdlr edithi(hattrs,hhist) ≡
456 [1] let di:DI • di ∈ dom hattrs ∧ ′′edit′′ ∈ hattrs(di) in
457 [1] let (e,u):(EDIT×UNDO) • ... , n:AN • ... in
458 [1] hdlr docu ch[hi,di] ! mkEdit(hi,t=time ch?,e,u,n) ;
459 [2] let ti:TIME INTERVAL • ... in
460 [2] wait ti ; assert: time ch? = t+ti
461 [3] let mkEditComplete(ti′,...) = hdlr docu ch[hi,di] ? in assert ti′ ∼= ti
462 hdlrhi(hattrs,augment(hhist,(di,mkEdit(hi,t,ti,e,u))))
452b end end end end

M.17. THE BEHAVIOUR ACTIONS 381

M.17.3.3 The Handler Read Behaviour: Left Fig. M.4 on page 375

463. The handler behaviour, on its own volition, decides to read a document, di, for which it has reading rights.

464. It then communicates the desire to read document di with at time t=time ch? – with an annotation note
(n).

465. Reading take some time, ti.

466. We can therefore assert that the time at which reading has completed is t+ti.

467. The handler behaviour accepts the read completion message from the document handler.

468. The handler behaviour can therefore resume with an updated document history.

452c hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
452c hdlr edithi(hattrs,hhist) ≡
463 [1] let di:DI • di ∈ dom hattrs ∧ ′′read′′ ∈ hattrs(di), n:N • ... in
464 [1] hdlr docu ch[hi,di] ! mkRead(hi,t=time ch?,n) ;
465 [2] let ti:TIME INTERVAL • ... in
466 [2] wait ti ; assert: time ch? = t+ti
467 [3] let mkReadComplete(ti,...) = hdlr docu ch[hi,di] ? in
468 hdlrhi(hattrs,augment(hhist,(di,mkRead(di,t,ti))))
452c end end end

M.17.3.4 The Handler Copy Behaviour: Right Fig. M.4 on page 375

469. The handler [copy] behaviour, on its own volition, decides to copy a document, di, for which it has copying
rights.

470. It communicates this copy request to the management behaviour.

471. After a while the handler [copy] behaviour receives acknowledgment of a completed copying from the man-
agement behaviour.

472. The handler [copy] behaviour records the request and acknowledgment in its, thus updated whereupon the
handler [copy] behaviour resumes being the handler behaviour.

452d hdlr copyhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
452d hdlr copyhi(hattrs,hhist) ≡
469 [1] let di:DI • di ∈ dom hattrs ∧ ′′copy′′ ∈ hattrs(di) in
470 [1] mgtm hdlr ch[hi] ! mkCopy(di,hi,t=time ch?) ;
471 [10] let mkCopyComplete(di′,di) = mgtm hdlr ch[hi] ? in
472 [10] hdlrhi(hattrs,augment(hhist,time ch?,(mkCopy(di,hi,,t),mkCopyComplete(di′))))
452d end end

M.17.3.5 The Handler Grant Behaviour: Left Fig. M.5 on page 375

473. The handler [grant] behaviour offers to accept grant permissions from the management behaviour.

474. In response it updates its handler attribute while resuming being a handler behaviour.

452e hdlr granthi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
452e hdlr granthi(hattrs,hhist) ≡
473 [2] let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
474 [2] hdlrhi(hattrs†[di 7→acrs],augment(hhist,time ch?,mkGrant(di,acrs)))
452e end

M.17.4 Document Behaviours
475. The document behaviour is involved in the following action traces:

(a) edit Fig. M.3 on page 374 Right

(b) read Fig. M.4 on page 375 Left

(c) shred Fig. M.5 on page 375 Right

value
475 docudi: DD × (DA × DC × DH) →
475 in,out arch docu ch[di], {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
475 docudi(dattrs) ≡
475a docu editdi(dd)(da,dc,dh)
475b ⌈⌉ docu readdi(dd)(da,dc,dh)
475c ⌈⌉ docu shreddi(dd)(da,dc,dh)

382 CONTENTS

M.17.4.1 The Document Edit Behaviour: Right Fig. M.3 on page 374

476. The document [edit] behaviour offers to accept edit requests from document handlers.

(a) The document contents is edited, over a time interval of ti, with respect to the handlers edit function
(e),

(b) the document annotations are augmented with respect to the handlers note (n), and

(c) the document history is augmented with the fact that an edit took place, at a certain time, with a pair
of edit/undo functions.

477. The edit (etc.) function(s) take some time, ti, to do.

478. The handler behaviour is notified, mkEditComplete(...) of the completion of the edit, and

479. the document behaviour is then resumed with updated programmable attributes.

value
475a docu editdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
475a docu editdi(dd)(da,dc,dh) ≡
476 [2] let mkEdit(hi,t,e,u,n) = ⌈⌉⌊⌋{hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
476a [2] let dc′ = e(dc),
476b da′ = augment(da,((hi,t),(′′edit′′,e,u),n)),
476c dh′ = augment(dh,((hi,t),(′′edit′′,e,u))) in
477 let ti = time ch? − t in
478 hdlr docu ch[hi,di] ! mkEditComplete(ti,...) ;
479 docudi(dd)(da

′,dc′,dh′)
475a end end end

M.17.4.2 The Document Read Behaviour: Left Fig. M.4 on page 375

480. The The document [read] behaviour offers to receive a read request from a handler behaviour.

481. The reading takes some time to do.

482. The handler behaviour is advised on completion.

483. And the document behaviour is resumed with appropriate programmable attributes being updated.

value
475b docu readdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
475b docu readdi(dd)(da,dc,dh) ≡
480 [2] let mkRead(hi,t,n) = {hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
481 [2] let ti:TIME INTERVAL • ... in
481 [2] wait ti ;
482 [2] hdlr docu ch[hi,di] ! mkReadComplete(ti,...) ;
483 [2] docudi(dd)(augment(da,n),dc,augment(dh,(hi,t,ti,′′read′′)))
475b end end

M.17.4.3 The Document Shred Behaviour: Right Fig. M.5 on page 375

484. The document [shred] behaviour offers to accept a document shred request from the archive behaviour –

485. whereupon it stops !

value
475c docu shreddi: DD × (DA × DC × DH) → in,out arch docu ch[di] Unit
475c docu shreddi(dd)(da,dc,dh) ≡
484 [3] let mkShred(...) = arch docu ch[di] ? in
485 stop
475c [3] end

M.17.5 Conclusion
This completes a first draft version of this document. The date time is: March 12, 2024: 10:48 am. Many things
need to be done. First a careful checking of all types and functions: that all used names have been defined. The
internal non-deterministic choices in formula Items 400 on page 376, 436 on page 378, 452 on page 380 and 475 on
the preceding page, need be checked. I suspect there should, instead, be some mix of both internal and external
non-deterministic choices. Then a careful motivation for all the other non-deterministic choices.

M.18. DOCUMENTS IN PUBLIC GOVERNMENT 383

M.18 Documents in Public Government
Public government, in the spirit of Charles-Louis de Secondat, Baron de La Brède et de Montesquieu (or just
Montesquieu), has three branches:

• the legislative,

• the executive, and

• the judicial.

Our interpretation of these, with respect to documents, are as follows.

• The legislative branch produces laws, i.e., documents. To do so many preparatory documents are created,
edited, read, copied, etc. Committees, subcommittees, individual lawmakers and ministry law office staff
handles these documents. Parliament staff and legislators are granted limited or unlimited access rights to
these documents. Finally laws are put into effect, are amended, changed or abolished.

The legislative branch documents refer to legislative, executive and judicial branch documents.

• The executive branch produces guide lines, i.e., documents. Instructions on interpretation and implementa-
tion of laws; directives to ministry services on how to handle the laws; et cetera.

These executive branch documents refer to legislative, executive and judicial branch documents.

• The judicial branch produces documents. Police cite citizens and enterprises for breach of law. Citizens
and enterprise sue other citizens and/or enterprises. Attorneys on behalf of the governments, or citizens or
enterprises prepare statements. Court proceedings are recorded. Justices pass verdicts.

The judicial branch documents refer to legislative, executive and judicial branch documents.

M.19 Documents in Urban Planning
A separate research note [78, Urban Planning Processes] analyses & describes a domain of urban planning. There
are the geographical documents:

• geodetic,

• geotechnic,

• meteorological,

• and other types of geographical documents.

In order to perform an informed urban planning further documents are needed:

• auxiliary documents which

• requirements documents which

Auxiliary documents presents such information that “fill in” details concerning current ownership of the land area,
current laws affecting this ownership, the use of the land, et cetera. Requirements documents express expectations
about the (base) urban plans that should result from the base urban planning. As a first result of base urban
planning we see the emergence of the following kinds of documents:

• base urban plans

• and ancillary notes.

The base urban plans deal with

• cadestral,

• cartographic and

• zoning

issues. The ancillary notes deal with such things as insufficiencies in the base plans, things that ought be improved
in a next iteration base urban planning, etc. The base plans and ancillary notes, besides possible re-iteration of
base urban planning, lead on to “derived urban planning” for

• light, medium and heavy industry zones,

• mixed shopping and residential zones,

• apartment building zones,

• villa zones,

• recreational zones,

• et cetera.

After these “first generation” derived urban plans are well underway, a “second generation” derived urban planning
can start:

• transport infrastructure,

• water and waste resource management,

384 CONTENTS

• electricity, natural gas, etc., infrastructure,

• et cetera.

And so forth. Literally “zillions upon zillions” of strongly and crucially interrelated documents accrue.
Urban planning evolves and revolves around documents.
Documents are the only “tangible” results or urban planning.13

13Once urban plans have been agreed upon by all relevant authorities and individuals, then urban development
(“build”) and, finally, “operation” of the developed, new urban “landscape”. For development, the urban plans
form one of the “tangible” inputs. Others are of financial and human and other resource nature.

Appendix N

Swarms of Drones

Contents

N.1 An Informal Introduction . 387

N.1.1 Describable Entities . 387

N.1.1.1 The Endurants: Parts . 387

N.1.1.2 The Perdurants . 388

N.1.2 The Contribution of [51] . 388

N.1.3 The Contribution of This Report . 388

N.2 Entities, Endurants . 388

N.2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types . . 389

N.2.1.1 Universe of Discourse . 389

N.2.1.2 The Enterprise . 389

N.2.1.3 From Abstract Sorts to Concrete Types 389

N.2.1.3.1 The Auxiliary Function xtr Ds: 390

N.2.1.3.2 Command Center . 390

N.2.1.3.2.1 A Simple Narrative 390

N.2.1.3.3 Command Center Decomposition 390

N.2.2 Unique Identifiers . 390

N.2.2.1 The Enterprise, the Aggregates of Drones and the Geography 391

N.2.2.2 Unique Command Center Identifiers 391

N.2.2.3 Unique Drone Identifiers . 391

N.2.2.3.1 Auxiliary Function: xtr dis: 391

N.2.2.3.2 Auxiliary Function: xtr D: 392

N.2.3 Mereologies . 392

N.2.3.1 Definition . 392

N.2.3.2 Origin of the Concept of Mereology as Treated Here 392

N.2.3.3 Basic Mereology Principle . 392

N.2.3.4 Engineering versus Methodical Mereology 392

N.2.3.5 Planner Mereology . 393

N.2.3.6 Monitor Mereology . 393

N.2.3.7 Actuator Mereology . 393

N.2.3.8 Enterprise Drone Mereology 394

N.2.3.9 ‘Other’ Drone Mereology . 394

N.2.3.10 Geography Mereology . 395

N.2.4 Attributes . 395

N.2.4.1 The Time Sort . 395

N.2.4.2 Positions . 395

385

386 CONTENTS

N.2.4.2.1 A Neighbourhood Concept 396

N.2.4.3 Flight Plans . 396

N.2.4.4 Enterprise Drone Attributes 396

N.2.4.4.1 Constituent Types . 396

N.2.4.4.2 Attributes . 397

N.2.4.4.3 Enterprise Drone Attribute Categories: 397

N.2.4.5 ‘Other’ Drones Attributes . 397

N.2.4.5.1 Constituent Types . 397

N.2.4.5.2 Attributes . 397

N.2.4.6 Drone Dynamics . 398

N.2.4.7 Drone Positions . 398

N.2.4.8 Monitor Attributes . 398

N.2.4.9 Planner Attributes . 398

N.2.4.9.1 Swarms and Businesses: 398

N.2.4.9.2 Planner Directories: 398

N.2.4.10 Actuator Attributes . 400

N.2.4.11 Geography Attributes . 400

N.2.4.11.1 Constituent Types: 400

N.2.4.11.2 Attributes . 400

N.3 Operations on Universe of Discourse States 401

N.3.1 The Notion of a State . 401

N.3.2 Constants . 401

N.3.3 Operations . 401

N.3.3.1 A Drone Transfer . 401

N.3.3.2 An Enterprise Drone Changing Course 402

N.3.3.3 A Swarm Splitting into Two Swarms 402

N.3.3.4 Two Swarms Joining to form One Swarm 402

N.3.3.5 Etcetera . 402

N.4 Perdurants . 402

N.4.1 System Compilation . 402

N.4.1.1 The Compile Functions . 402

N.4.1.2 Some CSP Expression Simplifications 404

N.4.1.3 The Simplified Compilation . 404

N.4.2 An Early Narrative on Behaviours . 405

N.4.2.1 Either Endurants or Perdurants, Not Both ! 405

N.4.2.2 Focus on Some Behaviours, Not All ! 405

N.4.2.3 The Behaviours – a First Narrative 405

N.4.3 Channels . 405

N.4.3.1 The Part Channels . 405

N.4.3.1.1 General Remarks: . 405

N.4.3.1.2 Part Channel Specifics 406

N.4.3.2 Attribute Channels, General Principles 407

N.4.3.3 The Case Study Attribute Channels 408

N.4.3.3.1 ‘Other’ Drones: . 408

N.4.3.3.2 Enterprise Drones: . 408

N.4.3.3.3 Geography: . 408

N.4.4 The Atomic Behaviours . 408

N.4.4.1 Monitor Behaviour . 408

N.4.4.2 Planner Behaviour . 409

N.4.4.2.1 The Auxiliary transfer Function 409

N.1. AN INFORMAL INTRODUCTION 387

N.4.4.2.2 The Auxiliary flight planning Function 410

N.4.4.3 Actuator Behaviour . 411

N.4.4.4 ‘Other’ Drone Behaviour . 411

N.4.4.5 Enterprise Drone Behaviour 412

N.4.4.6 Geography Behaviour . 414

N.5 Conclusion . 415

We speculate1 on a domain of swarms and drones monitored and controlled by a command center in some geography.
Awareness of swarms is registered only in an enterprise command center. We think of these swarms of drones as
an enterprise of either package deliverers, crop-dusters, insect sprayers, search & rescuers, traffic monitors, or wildfire
fighters – or several of these, united in a notion of an enterprise possibly consisting of of “disjoint” businesses. We
analyse & describe the properties of these phenomena as endurants and as perdurants: parts one can observe and
behaviours that one can study. We do not yet examine the problem of drone air traffic management2. The analysis
& description of this postulated domain follows the principles, techniques and tools laid down in [51].

N.1 An Informal Introduction

N.1.1 Describable Entities

N.1.1.1 The Endurants: Parts

In the universe of discourse we observe endurants, here in the form of parts, and perdurants, here in the form of
behaviours.

The parts are discrete endurants, that is, can be seen or touched by humans, or that can be conceived as an
abstraction of a discrete part.

We refer to Fig. N.1.

CC: Command Center

CA: Actuator CP: Planner CM: Monitor

...

E: Enterprise

ed:ED.. ed:ED.. ed:ED.. od:OD od:OD

UoD: Universe of Discourse

Geography: G

od:OD
...

ODs: Set of ’other’ dronesEDs: Set of Enterprise Drones

AED: Aggregate of Enterprise Drones AOD: Aggregate of ’Other’ Drones

Figure N.1: Universe of Discourse

There is a universe of discourse, uod:UoD. The universe of discourse embodies: an enterprise, e:E. The enterprise
consists of an aggregate of enterprise drones, aed:AED (which consists of a set, eds:EDs, of enterprise drones). and a
command center , cc:CC; The universe of discourse also embodies a geography , g:G. The universe of discourse finally
embodies an aggregate of ‘other’ drones, aod:AOD (which consists of a set, ods:ODs, of these ‘other’ drones). A

1A young researcher colleague, Dr. Yang ShaoFa, of the Software Institute of the Chinese Academy of Sciences
in Beijing, at our meeting in Beijing, early November 2017, told me that he was then about to get involved in
algorithms for drone maneuvering. So, true to me thinking, that, in order to reflect on such algorithms, one
ought try understand the domain. So I sketched the model of this chapter in the week, attending the ICFEM’2017
conference in Xi’An, and presented the model to Dr. Yang upon my return to Beijing.

2www.nasa.gov/feature/ames/first-steps-toward-drone-traffic-management, www.sciencedirect.com/science/ar-
ticle/pii/S2046043016300260

388 CONTENTS

drone is an unmanned aerial vehicle.3 We distinguish between enterprise drones, ed:ED, and ‘other’ drones, od:OD.
The pragmatics of the enterprise swarms is that of providing enterprise drones for one or more of the following
kinds of businesses:4 delivering parcels (mail, packages, etc.)5, crop dusting6 , aerial spraying7, wildfire fighting8 , traffic
control9, search and rescue10 , etcetera. A notion of swarm is introduced. A swarm is a concept. As a concept a
swarm is a set of drones. We associate swarms with businesses. A business has access to one or more swarms. The
enterprise command center , cc:CC, can be seen as embodying three kinds of functions: a monitoring service, cm:CM,
whose function it is to know the locations and dynamics of all drones, whether enterprise drones or ‘other’ drones;
a planning service, cp:CP, whose function it is to plan the next moves of all that enterprise’s drones; and an actuator
service, ca:CA, whose functions it is to guide that enterprise’s drones as to their next moves. The swarm concept
“resides” in the command planner.

N.1.1.2 The Perdurants

The perdurants are entities for which only a fragment exists if we look at or touch them at any given snapshot in time,
that is, were we to freeze time we would only see or touch a fragment of the perdurant.

The major ***

more to come

N.1.2 The Contribution of [51]

The major contributions of [51] are these: a methodology11 for analysing & describing manifest domains12, where
the methodology builds on an ontological principle of viewing the domains as consisting of endurants and perdurants.
Endurants possess properties such as unique identifiers, mereologies, and attributes. Perdurants are then analysed &
described as either actions, events, or behaviours. The techniques to go with the ***

more to come

The tools are ***

more to come

N.1.3 The Contribution of This Report

to be written

We relate our work to that of [139].

• • •

The main part of this report is contained in the next three sections: endurants; states, constants, and operations
on states; and perdurants.

N.2 Entities, Endurants
By an entitye shall understand a phenomenon, i.e., something that can be observe d, i.e., be seen or touched by humans,
or that can be conceived as an abstraction of an entity. We further demand that an entity can be objectively described.

By an endurante shall understand an entity that can be observed or conceived and described as a “complete thing”
at no matter which given snapshot of time. Were we to “freeze” time we would still be able to observe the entire
endurant.

3Drones are also referred to as UAVs.
4http://www.latimes.com/business/la-fi-drone-traffic-20170501-htmlstory.html
5https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011 and https://www.digitaltrends.com/cool-

tech/amazon-prime-air-delivery-drones-history-progress/
6http://www.uavcropdustersprayers.com/, http://sprayingdrone.com/
7https://abjdrones.com/commercial-drone-services/industry-specific-solutions/agriculture/
8https://www.smithsonianmag.com/videos/category/innovation/drones-are-now-being-used-to-battle-

wildfires/
9https://business.esa.int/sites/default/files/Presentation%20on%20UAV%20Road%20Surface%20Monitoring

%20and%20Traffic%20Information 0.pdf
10http://sardrones.org/
11By a methodology we shall understand a set of principles for selecting and applying a number of techniques,

using tools, to – in this case – analyse & describe a domain.
12A manifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”, and

perdurant, that is temporally “fleeting” entities. Endurant entities are either parts or components or materials.
Perdurant entities are either actions or events or behaviours.

N.2. ENTITIES, ENDURANTS 389

N.2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types
By a discrete endurantendurant!discrete we shall understand an endurant which is separate, individual or distinct in
form or concept.

By a parte shall understand a discrete endurant which the domain engineer chooses to endow with internal qualities
such as unique identification, mereology, and one or more attributes. We shall define the concepts of unique identifier,
mereology and attribute later in this report.

Atomic partspart!atomic are those which, in a given context, are deemed to not consist of meaningful, separately
observable proper sub-parts.

Sub-partspart!sub- are parts.
Composite partspart!composite are those which, in a given context, are deemed to indeed consist of meaningful,

separately observable proper sub-parts.
By a sorte shall understand an abstract type.
By a typee shall here understand a set of values “of the same kind” – where we do not further define what we

mean by the same kind”.
By an abstract typetype!abstract we shall understand a type about whose values we make no assumption [as to

their atomicity or composition.
By a concrete typetype!concrete we shall understand a type about whose values we are making certain assumptions

as to their atomicity or composition, and, if composed then how and from which other types they are composed.

N.2.1.1 Universe of Discourse

By a universe of discoursee shall understand that which we can talk about, refer to and whose entities we can name.
Included in that universe is the geography . By geography we shall understand a section of the globe, an area of
land, its geodesy, its meteorology, etc.

486. In the Universe of Discourse we can observe the following parts:

(a) an atomic Geography,

(b) a composite Enterprise,

(c) and an aggregate of ‘Other’13 Drones.

type
486 UoD, G, E, AOD
value
486a obs G: UoD → G
486b obs E: UoD → E
486c obs AOD: UoD → AOD

N.2.1.2 The Enterprise

487. From an enterprise one can observe:

(a) a(n enterprise) command center. and

(b) an aggregate of enterprise drones.

type
487a CC
487a AED
value
487a obs CC: E → CC
487b obs AED: E → AED

N.2.1.3 From Abstract Sorts to Concrete Types

488. From an aggregate of enterprise drones, AED, we can observe a possibly empty set of drones, EDs

489. From an aggregate of ‘other’ drones, AOD, we can observe a possibly empty set, ODs, of ‘other’ drones.

type
488 ED
488 EDs = ED-set
489 OD
489 ODs = OD-set

13We apologize for our using the term ‘other’ drones. These ‘other’ drones are not necessarily adversary or enemy
drones. They are just there – coexisting with the enterprise drones.

390 CONTENTS

value
488 obs EDs: AED → EDs
489 obs ODs: AOD → ODs

Drones, whether ‘other’ or ‘enterprise’, are considered atomic.

N.2.1.3.1 The Auxiliary Function xtr Ds: We define an auxiliary function, xtr Ds.

490. From the universe of discourse we can extract all its drones;

491. similarly from its enterprise;

492. similarly from the aggregate of enterprise drones; and

493. from an aggregate of ‘other’ drones.

490 xtr Ds: UoD → (ED|OD)-set
490 xtr Ds(uod) ≡
490 ∪{xtr Ds(obs AED(obs E(uod)))} ∪ xtr Ds(obs AOD(uod))
491 xtr Ds: E → ED-set
491 xtr Ds(e) ≡ xtr Ds(obs AED(e))
492 xtr Ds: AED → ED-set
492 xtr Ds(aed) ≡ obs EDs(obs EDs(aed))
493 xtr Ds: AOD → OD-set
493 xtr Ds(aod) ≡ obs ODs(aod)

494. In the universe of discourse a drone cannot be both among the enterprise drones and among the ‘other’
drones.

axiom
494 ∀ uod:UoD,e:E,aed:ES,aod:AOD •

494 e=obs E(uod)∧aed=obs AED(e)∧aod:obs AOD(uod)
494 ⇒ xtr Ds(aed) ∩ xtr Ds(aod) ={}

The functions are partial as the supplied swarm identifier may not be one of the universe of discourse, etc.

N.2.1.3.2 Command Center

N.2.1.3.2.1 A Simple Narrative Figure N.1 on page 387 shows a graphic rendition of a space of interest.
The command center, CC, a composite part, is shown to include three atomic parts: An atomic part, the monitor,
CM. It monitors the location and dynamics of all drones. An atomic part, the planner, CP. It plans the next,
“friendly”, drone movements. The command center also has yet an atomic part, the actuator, CA. It informs
“friendly” drones of their next movements. The planner is where “resides” the notion of a enterprise consisting of
one or more businesses, where each business has access to zero, one or more swarms, where a swarm is a set of
enterprise drone identifiers.
The purpose of the control center is to monitor the whereabouts and dynamics of all drones (done by CM); to plan
possible next actions by enterprise drones (done by CP); and to instruct enterprise drones of possible next actions
(done by CA).

N.2.1.3.3 Command Center Decomposition From the composite command center we can observe

495. the center monitor, CM;

496. the center planner, CP; and

497. the center actuator, CA .

type
495 CM
496 CP
497 CA

value
495 obs CM: CC → CM
496 obs CP: CC → CP
497 obs CA: CC → CA

N.2.2 Unique Identifiers

Parts are distinguishable through their unique identifiers. A unique identifiers a further undefined quantity which
we associate with parts such that no two parts of a universe of discourse are identical.

N.2. ENTITIES, ENDURANTS 391

N.2.2.1 The Enterprise, the Aggregates of Drones and the Geography

498. Although we may not need it for subsequent descriptions we do, for completeness of description, introduce
unique identifiers for parts and sub-parts of the universe of discourse:

(a) Geographies, g:G, have unique identification.

(b) Enterprises, e:E, have unique identification.

(c) Aggregates of enterprise drones, aed:AED, have unique identification.

(d) Aggregates of ‘other’ drones, aod:AOD, have unique identification.

(e) Command centers, cc:CC, have unique identification.

type
498 GI, EI, AEDI, AODI, CCI
value
498a uid G: G → GI
498b uid E: E → EI
498c uid AED: AED → AEDI
498d uid OD: AOD → AODI
498e uid CC: CC → CCI

N.2.2.2 Unique Command Center Identifiers

499. The monitor has a unique identifier.

500. The planner has a unique identifier.

501. The actuator has a unique identifier.

type
499 CMI
500 CPI
501 CAI

value
499 uid CM: CM → CMI
500 uid CP: CP → CPI
501 uid CA: CA → CAI

N.2.2.3 Unique Drone Identifiers

502. Drones have unique identifiers.

(a) whether enterprise or

(b) ‘other’ drones

type
502 DI = EDI | ODI
value
502a uid ED: ED → EDI
502b uid OD: OD → ODI

N.2.2.3.1 Auxiliary Function: xtr dis:

503. From the aggregate of enterprise drones;

504. From the aggregate of ‘other’ drones;

505. and from the two parts of a universe of discourse: the enterprise and the ‘other’ drones.

value
503 xtr dis: AED → DI-set
503 xtr dis(aed) ≡ {uid ED(ed)|ed:ED•ed ∈ obs EDs(aed)}
504 xtr dis: AOD → DI-set
504 xtr dis(aod) ≡ {uid D(od)|od:OD•od ∈ obs ODs(aod)}
505 xtr dis: UoD → DI-set
505 xtr dis(uod) ≡ xtr dis(obs AED(uod)) ∪ xtr dis(obs AOD(uod))

392 CONTENTS

N.2.2.3.2 Auxiliary Function: xtr D:

506. From the universe of discourse, given a drone identifier of that space, we can extract the identified drone;

507. similarly from the enterprise;

508. its aggregate of enterprise drones; and

509. and from its aggregate of ‘other’ drones;

506 xtr D: UoD → DI
∼

→ D
506 xtr D(uod)(di) ≡ let d:D • d ∈ xtr Ds(uod)∧uid D(d)=di in d end
506 pre: di ∈ xtr dis(soi)

507 xtr D: E → DI
∼

→ D
507 xtr D(e)(di) ≡ let d:D • d ∈ xtr Ds(obs ES(e))∧uid D(d)=di in d end
507 pre: di ∈ xtr dis(e)

508 xtr D: AED → DI
∼

→ D
508 xtr D(aed)(di) ≡ ≡ let d:D • d ∈ xtr Ds(aed)∧uid D(d)=di in d end
508 pre: di ∈ xtr dis(es)

509 xtr D: AOD → DI
∼

→ D
509 xtr D(aod)(di) ≡ let d:D • d ∈ xtr Ds(aod)∧uid D(d)=di in d end
509 pre: di ∈ xtr dis(ds)

N.2.3 Mereologies

N.2.3.1 Definition

Mereology is the study and knowledge of parts and their relations (to other parts and to the “whole”) [81].

N.2.3.2 Origin of the Concept of Mereology as Treated Here

We shall [thus] deploy the concept of mereology as advanced by the Polish mathematician, logician and philosopher
Stanis law Léschniewski. Douglas T. (“Doug”) Ross14 also contributed along the lines of our approach [162] –
hence [54] is dedicated to Doug.

N.2.3.3 Basic Mereology Principle

The basic principle in modelling the mereology of a any universe of discourse is as follows: Let p′ be a part with unique
identifier p′

id
. Let p be a sub-part of p′ with unique identifier pid. Let the immediate sub-parts of p be p1, p2, . . . , pn with

unique identifiers p1id , p2id , . . . , pnid
. That p has mereology (p′

id
, {p1id , p2id , . . . , pnid

}). The parts pj , for 1 ≤ j ≤ n

for n≥2, if atomic, have mereologies (pid, {p1id , p2id , . . . , pj−1id
, pj+1id

, . . . , pnid
}) – where we refer to the second

term in that pair by m; and if composite, have mereologies (pid, (m,m′)), where the m′ term is the set of unique
identifiers of the sub-parts of pj .

N.2.3.4 Engineering versus Methodical Mereology

We shall restrict ourselves to an engineering treatment of the mereology of our universe of discourse. That is in
contrast to a strict, methodical treatment. In a methodical description of the mereologies of the various parts of
the universe of discourse one assigns a mereology to every part: to the enterprise, the aggregate of ‘other’ drones
and the geography; to the command center of the enterprise and its aggregate of drones; to the monitor, the planner
and the actuator of the command center; to the drones of the aggregate of enterprise drones, and to the drones of the
aggregate of ‘other’ drones. We shall “shortcut” most of these mereologies. The reason is this: The pragmatics of
our attempt to model drones, is rooted in our interest in the interactions between the command center’s monitor
and actuator and the enterprise and ‘other’ drones. For “completeness” we also include interactions between the
geography’s meteorology and the above command center and drones. The mereologies of the enterprise, E, the
enterprise aggregate of drones AED, and the set of (enterprise) drones, EDs, do not involve drone identifiers. The
only “thing” that the monitor and actuator are interested in are the drone identifiers. So we shall thus model the
mereologies of our universe of discourse by omitting mereologies for the enterprise, the aggregates of drones, the sets
of these aggregates, and the geography, and only describe the mereologies of the monitor, planner and actuator, the
enterprise drones and the ‘other’ drones.

14Doug Ross is the originator of the term CAD for computer aided design, of APT for Automatically Programmed
Tools, a language to drive numerically controlled manufacturing, and also SADT for Structure Analysis and Design
Techniques

N.2. ENTITIES, ENDURANTS 393

N.2.3.5 Planner Mereology

510. The planner mereology reflects the center planners awareness15 of the monitor, the actuator,, and the
geography of the universe of discourse.

511. The plannner mereology further reflects that a eureka16 is provided by, or from, an outside source reflected
in the autonomous attribute CmdI. The value of this attribute changes at its own volition and ranges over
commands that directs the planner to perform either of a number of operations.

Eureka examples are: calculate and effect a new flight plan for one or more designated swarms of a designated
business; effect the transfer of an enterprise drone from a designated swarm of a business to another, distinctly
designated swarm of the same business; etcetera.

type
510 CPM = (CAI × CMI × GI) × Eureka
511 Eureka == mkNewFP(BI×SI-set×Plan)
511 | mkChgDB(fsi:SI×tsi:SI×di×DI)
511 | ...
value
510 mereo CP: CP → CPM
511 Plan = ...

We omit expressing a suitable axiom concerning center planner mereologies. Our behavioural analysis & description
of monitoring & control of operations on the space of drones will show that command center mereologies may
change.

N.2.3.6 Monitor Mereology

The monitor’s mereology reflects its awareness of the drones whose position and dynamics it is expected to monitor.

512. The mereology of the center monitor is a pair: the set of unique identifiers of the drones of the universe of
discourse, and the unique identifier of the center planner.

type
512 CMM = DI-set × CPI
value
512 mereo CM: CM → CMM

513. For the universe of discourse it is the case that

(a) the drone identifiers of the mereology of a monitor must be exactly those of the drones of the universe
of discourse, and

(b) the planner identifier of the mereology of a monitor must be exactly that of the planner of the universe
of discourse.

axiom
513 ∀ uod:UoD,e:E,cc:CC,cp:CP,cm:CM,g:G •

513 e=obs E(uod)∧cc=obs CC(e)∧cp=obs CP(cc)∧cm=obs CM(cc) ⇒
513 let (dis,cpi) = mereo CM(cm) in
513a dis = xtr dis(uod)
513b ∧ cpi = uid CP(cp) end

N.2.3.7 Actuator Mereology

The center actuator’s mereology reflects its awareness of the enterprise drones whose position and dynamics it is
expected to control.

514. The mereology of the center actuator is a pair: the set of unique identifiers of the business drones of the
universe of discourse, and the unique identifier of the center planner.

15That “awareness” includes, amongst others, the planner obtaining information from the monitor of the where-
abouts of all drones and providing the actuator with directives for the enterprise drones — all in the context of the
land and “its” meteorology .

16”Eureka” comes from the Ancient Greek word ǫµρηκα heúrēka, meaning “I have found (it)”, which is the first
person singular perfect indicative active of the verb ǫuρηκω heuriskō ”I find”.[1] It is closely related to heuristic,
which refers to experience-based techniques for problem solving, learning, and discovery.

394 CONTENTS

type
514 CAM = EDI-set × CPI
value
514 mereo CA: CA → CAM

515. For all universes of discourse

(a) the drone identifiers of the mereology of a center actuator must be exactly those of the enterprise
drones of the space of interest (of the monitor), and

(b) the center planner identifier of the mereology of a center actuator must be exactly that of the center
planner of the command center of the space of interest (of the monitor)

axiom
515 ∀ uod:UoD,e:E,cc:CC,cp:CP,ca:CA •

515 e=obs E(uod)∧cc=obs CC(e)∧cp=obs CP(cc)∧ca=obs CA(cc) ⇒
515 let (dis,cpi) = mereo CA(ca) in
515a dis = tr dis(e)
515b ∧ cpi = uid CP(cp) end

N.2.3.8 Enterprise Drone Mereology

516. The mereology of an enterprise drone is the triple of the command center monitor, the command center
actuator17, and the geography.

type
516 EDM = CMI × CAI × GI
value
516 mereo ED: ED → EDM

517. For all universes of discourse the enterprise drone mereology satisfies:

(a) the unique identifier of the first element of the drone mereology is that of the enterprise’s command monitor,

(b) the unique identifier of the second element of the drone mereology is that of the enterprise’s command
actuator, and

(c) the unique identifier of the third element of the drone mereology is that of the universe of discourse’s
geography.

axiom
517 ∀ uod:UoD,e:E,cm:CM,ca:CA,ed:ED,g:G •

517 e=obs E(uod)∧cm=obs CM(obs CC(e))∧ca=obs CA(obs CC(e))
517 ∧ ed ∈ xtr Ds(e)∧g=obs G(uod) ⇒
517 let (cmi,cai,gi) = mereo D(ed) in
517a cmi = uid CMM(ccm)
517b ∧ cai = uid CAI(cai)
517c ∧ gi = uid G(g) end

N.2.3.9 ‘Other’ Drone Mereology

518. The mereology of an ‘other’ drone is a pair: the unique identifier of the monitor and the unique identifier of
the geography.

type
518 ODM = CMI × GI
value
518 mereo OD: OD → ODM

We leave it to the reader to formulate a suitable axiom, cf. axiom 517.

17The command center monitor and the command center actuator and their unique identifiers will be defined in
Items 495, 497 on page 390, 499 and 501 on page 391.

N.2. ENTITIES, ENDURANTS 395

N.2.3.10 Geography Mereology

519. The geography mereology is a pair18 of the unique of the unique identifiers of the planner and the set of all
drones.

type
519 GM = CPI × CMI × DI-set
value
519 mereo G: G → GM

We leave it to the reader to formulate a suitable axiom, cf. axiom 517 on the facing page.

N.2.4 Attributes

We analyse & describe attributes for the following parts: enterprise drones and ‘other’ drones, monitor, planner
and actuator , and the geography . The attributes, that we shall arrive at, are usually concrete in the sense that
they comprise values of, as we shall call them, constituent types. We shall therefore first analyse & describe these
constituent types. Then we introduce the part attributes as expressed in terms of the constituent types. But first
we introduce three notions core notions: time, Sect. N.2.4.1, positions, Sect. N.2.4.2, and flight plans, Sect. N.2.4.3.

N.2.4.1 The Time Sort

520. Let the special sort identifier T denote times

521. and the special sort identifier TI denote time intervals.

522. Let identifier time designate a “magic” function whose invocations yield times.

type
520 T

520 TI

value
520 time: Unit → T

523. Two times can not be added, multiplied or divided, but subtracting one time from another yields a time
interval.

524. Two times can be compared: smaller than, smaller than or equal, equal, not equal, etc.

525. Two time intervals can be compared: smaller than, smaller than or equal, equal, not equal, etc.

526. A time interval can be multiplied by a real number.

Etcetera.

value
523 ⊖: T × T → TI

524 <,≤,=, 6=,≥,>: T × T → Bool
525 <,≤,=, 6=,≥,>: TI × TI → Bool
526 ⊗: TI × Real → TI

N.2.4.2 Positions

Positions (of drones) play a pivotal rôle.

527. Each position being designated by

528. longitude, latitude and altitude.

type
528 LO, LA, AL
527 P = LO × LA × AL

1830.11.2017: I think !

396 CONTENTS

N.2.4.2.1 A Neighbourhood Concept

529. Two positions are said to be neighbours if the distance between them is small enough for a drone to fly from
one to the other in one to three minutes’ time – for drones flying at a speed below Mach 1.

value
529 neighbours: P × P → Bool

We leave the neighbourhood proposition further undefined.

N.2.4.3 Flight Plans

A crucial notion of our universe of discourse is that of flight plans.

530. A flight plan element is a pair of a time and a position.

531. A flight plan is a sequence of flight plan elements.

type
530 FPE = T × P
531 FP = FLE∗

532. such that adjacent entries in flight plans

(a) record increasing times and

(b) neighbouring positions.

axiom
532 ∀ fp:FP,i:Nat • {i,i+1}⊆indsfp ⇒
532 let (t,p)=fp[i], (t′,p′)=fp[i+1] in
532a t ≤ t′

532b ∧ neighbours(p,p′)
532 end

N.2.4.4 Enterprise Drone Attributes

N.2.4.4.1 Constituent Types

533. Enterprise drones have positions expressed, for example, in terms of longitude, latitude and altitude. 19

534. Enterprise drones have velocity which is a vector of speed and three-dimensional, i.e., spatial, direction.

535. Enterprise drones have acceleration which is a vector of increase/decrease of speed per time unit and direction.

536. Enterprise drones have orientation which is expressed in terms of three quantities: yaw, pitch and roll .20

We leave speed, direction and increase/decrease per time unit unspecified.

type
533 POS = P
534 VEL = SPEED × DIRECTION
535 ACC = IncrDecrSPEEDperTimeUnit × DIRECTION
536 ORI = YAW × PITCH × ROLL
534 SPEED = ...

534 DIRECTION = ...

535 IncrDecrSPEEDperTimeUnit = ...

19Longitude is a geographic coordinate that specifies the east-west position of a point on the Earth’s surface. It
is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda. Meridians (lines
running from the North Pole to the South Pole) connect points with the same longitude. Latitude is a geographic
coordinate that specifies the northsouth position of a point on the Earth’s surface. Latitude is an angle (defined
below) which ranges from 0o at the Equator to 90o (North or South) at the poles. Lines of constant latitude, or
parallels, run eastwest as circles parallel to the equator. Altitude or height (sometimes known as depth) is defined
based on the context in which it is used (aviation, geometry, geographical survey, sport, and many more). As a
general definition, altitude is a distance measurement, usually in the vertical or ”up” direction, between a reference
datum and a point or object. The reference datum also often varies according to the context.

20Yaw, pitch and roll are seen as symmetry axes of a drone: normal axis, lateral (or transverse) axis and longitu-
dinal (or roll) axis. See Fig. N.2 on the next page.

N.2. ENTITIES, ENDURANTS 397

Figure N.2: Aircraft Orientation

N.2.4.4.2 Attributes
537. One of the enterprise properties is that of its dynamics which is seen as a quadruple of velocity, acceleration,

orientation and position. It is recorded as a reactive attribute.

538. Enterprise drones follow a flight course, as prescribed in and recorded as a programmable attribute, referred
to a the future flight plan, FFP.

539. Enterprise drones have followed a course recorded, also a programmable attribute, as a past flight plan list,
PFPL.

540. Finally enterprise drones “remember”, in the form of a programmable attribute, the geography (i.e., the area,
the land and the weather) it is flying over and in !

type
540 ImG = A×L×W
537 DYN = s vel:VEL × s acc:ACC × s ori:ORI × s pos:POS
538 FPL = FP
539 PFPL = FP∗

value
537 attr DYN: ED → DYN
538 attr FPL: ED → FPL
539 attr PFPL: ED → PFPL
540 attr ImG: ED → ImG

Enterprise, as well as ‘other’ drone, positions must fall within the Euclidian Point Space of the geography of the
universe of discourse. We leave that as an axiom to be defined – or we could decide that if a drone leaves that space
then it is lost, and if drones suddenly “appear, out of the blue”, then they are either “brand new”, or “reappear”.

N.2.4.4.3 Enterprise Drone Attribute Categories: The position, velocity, acceleration, position and
past position list attributes belong to the reactive category. The future position list attribute belong to the
programmable category. Drones have a “zillion” more attributes – which may be introduced in due course.

N.2.4.5 ‘Other’ Drones Attributes

N.2.4.5.1 Constituent Types The constituent types of ‘other’ drones are similar to those of some of the
enterprise drones.

N.2.4.5.2 Attributes
541. ‘Other’ drones have dynamics, dyn:DYN.

542. ‘Other’ drones “remember”, in the form of a programmable attribute, the immediate geography , ImG (i.e.,
the area, the land and the weather) it is flying over and in !

type
542 A, L, W
542 ImG = A×L×W
value
541 attr DYN: OD → DYN
542 attr ImG: OD → ImG

398 CONTENTS

N.2.4.6 Drone Dynamics

543. By a timed drone dynamics, TiDYN, we understand a quadruplet of time, position, dynamics and immediate
geography .

544. By a current drone dynamics we shall understand a drone identifier-indexed set of timed drone dynamics.

545. By a record of [traces of] timed drone dynamics we shall understand a drone identifier-indexed set of sequences
of timed drone dynamics.

type
543 TiDYN = T × POS × DYN × ImG
544 CuDD = (EDI →m TiDYN) ∪ (ODI →m TiDYN)
545 RoDD = (EDI →m TiDYN∗) ∪ (ODI →m TiDYN∗)

We shall use the notion of current drone dynamics as the means whereby the monitor ascertains (obtains, by
interacting with drones) the dynamics of drones, and the notion of a record of [traces of] drone dynamics in the
monitor .

N.2.4.7 Drone Positions

546. For all drones whether enterprise or ‘other’, their positions must lie within the geography of their universe
of discourse.

axiom
546 ∀ uod:UoD,e:E,g:G,d:(ED|OD) •

546 e = obs E(uod) ∧ g = obs G(uod) ∧ d ∈ xtr Ds(uod) ⇒
546 let eps = attr EPS(g), (, ,p) = attr DYN(d) in p ∈ eps end

N.2.4.8 Monitor Attributes

The monitor “sits between” the drones whose dynamics it monitors and the planner which it provides with records
of drone dynamics. Therefore we introduce the following.

547. The monitor has just one, a programmable attribute: a trace of the most recent and all past time-stamped
recordings of the dynamics of all drones, that is, an element rodd:RoDD, cf. Item 545.

type
547 MRoDD = RoDD
value
547 attr MRoDD: CM → MRoDD

The monitor “obtains” current drone dynamics, cudd:CuDD (cf. Item 544) from the drones and offers records of
[traces of] drone dynamics,(cf. Item 545) rodd:RoDD, to the planner .

N.2.4.9 Planner Attributes

N.2.4.9.1 Swarms and Businesses: The planner is where all decisions are made with respect to where
enterprise drones should be flying; which enterprise drones fly together, which no longer – (with this notion of
“flying together” leading us to the concept of swarms); which swarms of enterprise drones do which kinds of work
– (with this notion of work specialisation leading us to the concept of businesses.)

548. The is a notion of a business identifier , BI.

type
548 BI

N.2.4.9.2 Planner Directories: Planners have three directories. These are attributes, BDIR (businesses),
SDIR (swarms) and DDIR (drones).

549. BDIR records which swarms are resources of which businesses;

550. SDIR records which drones “belong” to which swarms.

551. DDIR “keeps track” of past and present enterprise drone positions, as per enterprise drone identifier.

552. We shall refer to this triplet of directories by TDIR

N.2. ENTITIES, ENDURANTS 399

type
549 BDIR = BI →m SI-set
550 SDIR = SI →m DI-set
551 DDIR = DI →m RoDD
552 TDIR = BDIR × SDIR × DDIR
value
549 attr BDIR: CP → BDIR
550 attr SDIR: CP → SDIR
551 attr DDIR: CP → DPL

All three directories are programmable attributes.
The business swarm concept can be visualized by grouping together drones of the same swarm in the visual-

ization of the aggregate set of enterprise drones. Figure N.3 attempts this visualization.

CC: Command Center

CA: Actuator CP: Planner CM: Monitor

...

E: Enterprise

od:OD od:OD

UoD: Universe of Discourse

Geography: G

od:OD
...

ODs: Set of ’other’ dronesEDs: Set of Enterprise Drones

si1 si2 sim

AOD: Aggregate of ’Other’ DronesAED: Aggregate of Enterprise Drones

−− and set of Business Swarms

Figure N.3: Conceptual Swarms of the Universe of Discourse

553. For the planners of all universes of discourse the following must be the case.

(a) The swarm directory must

i. have entries for exactly the swarms of the business directory,

ii. define disjoint sets of enterprise drone identifiers, and

iii. these sets must together cover all enterprise drones.

(b) The drone directory must record the present position, the past positions, a list, dpl:DPL, and, besides
satisfying axioms 546, satisfy some further constraints:

i. they must list exactly the drone identifiers of the aggregate of enterprise drones, and the sum total of
its enterprise drone identifiers must be exactly those of the enterprise drones aggregate of enterprise
swarms, and

ii. the head of a drone’s present and past position list must similarly be within reasonable distance of
that drone’s current position.

axiom
553 ∀ uod:UpD,e:E,cp:CP,g:G •

553 e=obs E(uod)∧cp=obs CP(obs CC(e)) ⇒
553a let (bdir,sdir,ddir) = (attr BDIR,attr SDIR,attr DDIR)(cp) in
553(a)i ∪ rng bdir = dom sdir
553(a)ii ∧ ∀ si,si′SI•{si,si′}⊆dom sdir∧si 6=si′ ⇒
553(a)ii sdir(s) ∩ sdir(s′) = {}
553(a)iii ∧ ∪ rng sdir = xtr dis(e)
553(b)i ∧ dom ddir = xtr dis(e)
553(b)ii ∧ ∀ di:DI•di ∈ dom ddir
553(b)ii let (d,dpl) = (attr DDIR(cp))(di) in
553(b)ii dpl 6= 〈〉

400 CONTENTS

553(b)ii ⇒ neighbours(f,hd(dpl))
553(b)ii ∧ neighbours(hd(dpl),
553(b)ii attr EDPOS(xtr D(obs Ss(e))(di)))
553 end end

N.2.4.10 Actuator Attributes

The actuator receives, from the planner, flight directives as to which enterprise drones should be redirected. The
actuator maintains a record of most recent and all past such flight directives. Finally, the actuator, effects the
directives by informing designated enterprise drones as to their next flight plans.

554. Actuators have one programmable attribute: a flight directive directory. It lists, for each enterprise drone, by
identifier, a pair: its current flight plan and a list of past flight plans.

type
554 FDDIR = EDI →m (FP × FP∗)
value
554 attr FDDIR: CA → FDDIR

N.2.4.11 Geography Attributes

N.2.4.11.1 Constituent Types: The constituent types of longitude, latitude and altitude and positions, of
a geography , were introduced in Items 488.

555. A further concept of geography is that of area.

556. An area, a:A, is a subset of positions within the geography.

type
555 A = P-infset
axiom
556 ∀ uod:UoD,g:G,a:A• g=obs G(uod) ⇒ a ⊆ attr EPS(g)

N.2.4.11.2 Attributes

557. Geographies have, as one of their attributes, a Euclidian Point Space, in this case, a compact21 infinite set of
three-dimensional positions.

type
557 EPS = P-infset
value
557 attr EPS: G → EPS

Further geography attributes reflect the “lay of the land and the weather right now !”.

558. The “lay of the land”, L is a “conglomerate” further undefined geodetics and cadestra22

559. The “weather”W is another “conglomerate” of temperature, humidity, precipitation, air pressure, etc.

type
558 L
559 W
value
558 attr L: G → L
559 attr W: G → W

21In mathematics, and more specifically in general topology, compactness is a property that generalizes the notion
of a subset of Euclidean space being closed (that is, containing all its limit points) and bounded (that is, having all
its points lie within some fixed distance of each other). Examples include a closed interval, a rectangle, or a finite
set of points.

22land surface altitude, streets, buildings (tall or not so tall), power lines, etc.

N.3. OPERATIONS ON UNIVERSE OF DISCOURSE STATES 401

N.3 Operations on Universe of Discourse States
Before we analyse & describe perdurants let us take a careful look at the actions that drone and swarm behaviours
may take. We refer to this preparatory analysis & description as one of analysing & describing the state operations.
From this analysis & description we move on to the analysis & description of behaviours, events and actions. The
idea is to be able to prove some relations between the two analyses & descriptions: the state operation and the
behaviour analyses & descriptions. We refer to [52, Sects. 2.3 and 2.5].

N.3.1 The Notion of a State
A state is any subset of parts each of which contains one or more dynamic attributes. Following are examples of states
of the present case study: a space of interest, an aggregate of ‘business’ swarms, an aggregate of ‘other’ swarms, a
pair of the aggregates just mentioned, a swarm, or a drone.

N.3.2 Constants
Some quantities of a given universe of discourse are constants. Examples are the unique identifiers of the:

560. enterprise, ei;

561. aggregate of ‘other’ drones, oi;

562. geography, gi;

563. command center, cci;

564. monitor, cmi;

565. planner, cpi;

566. actuator, cai;

567. set of ‘other’ drones, odis;

568. set of enterprise drones, edis;

569. and the set of all drones, adis .

value
560 aedi:EI = uid AED(obs AED(uod))
561 aodi:OI = uid AOD(obs AOD(uod))
562 gi:GI = uid G(obs G(uod))
563 cci:CCI = uid CC(obs CC(obs AED(uod)))
564 cmi:CMI = uid CM(obs CM(obs CC(obs AED(uod))))
565 cpi:CPI = uid CP(obs CP(obs CC(obs AED(uod))))
566 cai:CAI = uid CA(obs CA(obs CC(obs AED(uod))))
567 odis:ODIs = xtr dis(obs AOD(uod))
568 edis:EDIs = xtr dis(obs AED(uod))
569 adis :DI-set = odis ∪ edis

N.3.3 Operations
An operation is a function from states to states. Following are examples of operations of the present case study:
a drone transfer: leaving a swarm to join another swarm, a drone changing course: an enterprise drone changing
course, a swarm split: a swarm splitting into two swarms, and swarm join: two swarms joining to form one swarm.

N.3.3.1 A Drone Transfer

570. The transfer operator specifies two distinct and unique identifiers, si, si′, of two enterprise swarms, and the
unique identifier, di, of an enterprise drone – all of the same universe of discourse. The transfer operation
further takes a universe of discourse and yields a universe of discourse as follows:

571. The input argument ‘from’ and ‘to’ swarm identifiers are different.

572. The initial and the final state aggregates of enterprise drones, ‘other’ drones and geographies are unchanged.

573. The initial and final state monitors and actuators are unchanged.

574. The business and the drone directors of the initial and final planner are unchanged.

575. The ’from’ and ‘to’ input argument swarm identifiers are in the swarm directory and the input argument
drone identifiers is in the initial swarm directory entry for the ‘from’ swarm identifier.

576. The input argument drone identifier is in final the swarm directory entry for the ‘to’ swarm identifier.

577. And the final swarm directory is updated ...

value

570 transfer: DI × SI × SI → UoD
∼

→ UoD
570 transfer(di,fsi,tsi)(uod) as uod′

571 fsi 6= tsi ∧
570 let aed = obs AED(uod), aed′ = obs AED(uod′), g = obs G(uod), g′ = obs G(uod′) in

402 CONTENTS

570 let cc = obs CC(aed), cc′ = obs CC(aed′), aod = obs AOD(uod), aod′ = obs AOD(uod′) in
570 let cm = obs CM(cc), cm′ = obs CM(cc′), cp = obs CP(cc), cp′ = obs CP(cc′) in
570 let ca = obs CA(cc), ca′ = obs CA(cc′) in
570 let bdir = attr BDIR(cc), bdir′ = attr BDIR(cc′),
570 sdir = attr SDIR(cc), sdir′ = attr SDIR(cc′),
570 ddir = attr DDIR(cc), ddir′ = attr DDIR(cc′) in
572 post: aed = aed′ ∧ aod = aod′ ∧ g = g′ ∧
573 cm = cm′ ∧ ca = ca′ ∧
574 bdir = bdir′ ∧ ddir = ddir′

575 pre {fsi,tsi} ⊆ dom sdir ∧ di ∈ sdir(fsi)
576 post di 6∈ sdir(fsi′) ∧ di ∈ sdir(tsi′) ∧
577 sdir′ = sdir † [fsi 7→sdir(fsi)∪ di] † [tsi 7→sdir(tsi)\di]
570 end end end end end

N.3.3.2 An Enterprise Drone Changing Course

to be written

N.3.3.3 A Swarm Splitting into Two Swarms

to be written

N.3.3.4 Two Swarms Joining to form One Swarm

to be written

N.3.3.5 Etcetera

to be written

N.4 Perdurants
We observe that the term train can have the following “meanings”: the train, as an endurant, parked at the railway
station platform, i.e., as a composite part; the train, as a perdurant, as it “speeds” down the railway track, i.e.,
as a behaviour; the train, as an attribute. This observation motivates that we “magically”, as it were, introduce a
Translater function, cf. [51, Sect. 4]

N.4.1 System Compilation
The Translater function “worms” its way, so-to-speak, “down” the “hierarchy” of parts, from the universe of
discourse, via its immediate sup-parts, and from these to their sub-parts, and so on, until the Translater reaches
atomic parts. We shall henceforth do likewise.

N.4.1.1 The Compile Functions

578. Compilation of a universe of discourse results in

(a) the AMOL-text of the core of the universe of discourse behaviour (which we set to skip – allowing us
to ignore core arguments),

(b) followed by the AMOL-text of the parallel composition of the compilation of the enterprise,

(c) followed by the AMOL-text of the parallel composition of the compilation of the geography,

(d) followed by the AMOL-text of the parallel composition of the compilation of the aggregate of ‘other’
drones.

578 TranslateUoD(uod) ≡
578a Muid UoD(uod)(mereo UoD(uod),sta(uod))(pro(uod))

578b ‖ TranslateAED(obs AED(uod))
578c ‖ TranslateG(obs G(uod))
578d ‖ TranslateAOD(obs AOD(uod))

579. Compilation of an enterprise results in

(a) the AMOL-text of the core of the enterprise behaviour (which we set to skip – allowing us to ignore
core arguments),

N.4. PERDURANTS 403

(b) followed by the AMOL-text of the parallel composition of the compilation of the enterprise aggregate
of enterprise drones,

(c) followed by the AMOL-text of the parallel composition of the compilation of the enterprise command
center.

579 TranslateAED(e) ≡
579a Muid AED(e)(mereo E(e),sta(e))(pro(e))

579b ‖ TranslateEDs(obs EDs(e))
579c ‖ TranslateCC(obs CC(e))

580. Compilation of an enterprise aggregate of enterprise drones results in

(a) the AMOL-text of the core of the aggregate behaviour (which we set to skip – allowing us to ignore
core arguments),

(b) followed by the AMOL-text of the parallel composition of the distributed compilation of the enterprise
aggregate’s set of enterprise drones.

580 TranslateEDs(es) ≡
580a Muid EDs(es)(mereo EDS(es),sta(es))(pro(es))

580b ‖ {TranslateED(ed)|ed:ED•ed ∈ obs EDs(s)}

581. Compilation of an enterprise drone results in

(a) the AMOL-text of the core of the enterprise drone behaviour – which is what we really wish to express
– and since enterprise drones are here considered atomic, that is where the compilation of enterprise
ends.

581 TranslateED(ed) ≡
581a Muid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

582. Compilation of an aggregate of ‘other’ drones results in

(a) the AMOL-text of the core of the aggregate ‘other’ drones behaviour (which we set to skip – allowing
us to ignore core arguments) –

(b) followed by the AMOL-text of the parallel composition of the distributed compilation of the ‘other’
drones in the ‘other’ drones’ aggregate set of ‘other’ drones.

582 TranslateAOD(aod) ≡
582a Muid OD(od)(mereo S(ods),sta(ods))(pro(ods))

582b ‖ {TranslateOD(od)|od:OD•od ∈ obs ODs(ods)}

583. Compilation of a(n) ‘other’ drone results in

(a) the AMOL-text of the core of the ‘other’ drone behaviour – which is what we really wish to express –
and since ‘other’ drones are here considered atomic, that is where the compilation of the ‘other’ drones
aggregate

583a Translate {OD}(ed) ≡
583a Muid OD(od)(mereo OD(od),sta(od))(pro(od))

584. Compilation of an atomic geography results in

(a) the AMOL-text of the core of the geography behaviour.

584 TranslateG(g) ≡
584a Muid G(g)(mereo G(g),sta(g))(pro(g))

585. Compilation of a composite command center results in

(a) the AMOL-text of the core of the command center behaviour (which we set to skip – allowing us to
ignore core arguments)

(b) followed by the AMOL-text of the parallel composition of the compilation of the command monitor,

404 CONTENTS

(c) followed by the AMOL-text of the parallel composition of the compilation of the command planner,

(d) followed by the AMOL-text of the parallel composition of the compilation of the command actuator.

585 TranslateM (cc) ≡
585a Muid CC(cc)(mereo CC(cc),sta(cc))(pro(cc))

585b ‖ TranslateCC(obs CM(cc))
585c ‖ TranslateCP (obs CP(cc))
585d ‖ TranslateCA(obs CA(cc))

586. Compilation of an atomic command monitor results in

(a) the AMOL-text of the core of the monitor behaviour.

586 TranslateCM (cm) ≡
586a Muid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

587. Compilation of an atomic command planner results in

(a) the AMOL-text of the core of the planner behaviour.

587 TranslateCP (cp) ≡
587a Muid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

588. Compilation of an atomic command actuator results in

(a) the AMOL-text of the core of the actuator behaviour.

588 TranslateCA(ca) ≡
588a Muid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

N.4.1.2 Some CSP Expression Simplifications

We can justify the following CSP simplifications [108, 112, 161, 164]:

589. skip in parallel with any CSP expression csp is csp.

590. The distributed parallel composition of the distributed parallel composition of CSP expressions, csp(i,j), i

indexed over I, i.e., i:I, and j:J respectively, is the distributed parallel composition over CSP expressions,
csp(i,j), i.e., indexed over (i, j):I×J – where the index sets iset and jset are assumed.

axiom
590 skip ‖ csp ≡ csp
590 ‖{‖{csp(i,j)|i:I•i∈iset}|j:J•j∈jset} ≡ ‖{csp(i.j)|i:I,j:J•i∈I-set∧j∈J-set}

N.4.1.3 The Simplified Compilation

591. The simplified compilation results in:

591 Translate(uod) ≡
581a { Muid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

581a | ed:ED • ed ∈ xtr Ds(obs AED(uod)) }
583a ‖ { Muid OD(od)(mereo OD(od),sta(od))(pro(od))

583a | od:OD • od ∈ xtr ODs(obs AOD(uod)) }
584a ‖ Muid G(g)(mereo G(g),sta(g))(pro(g))

584a where g ≡ obs G(uod)
586a ‖ Muid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

586a where cm ≡ obs CM(obs CC(obs E(uod)))
587a ‖ Muid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

587a where cp ≡ obs CP(obs CC(obs E(uod)))
588a ‖ Muid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

588a where ca ≡ obs CA(obs CC(obs E(uod)))

N.4. PERDURANTS 405

592. In Item 591’s Items 581a, 583a, 584a, 586a, 587a, and 588a we replace the “anonymous” behaviour names M
by more meaningful names.

592 Translate(uod) ≡
581a { enterprise droneuid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

581a | ed:ED • ed ∈ xtr Ds(obs AED(uod)) }
583a ‖ { other droneuid OD(od)(mereo OD(od),sta(od))(pro(od))

583a | od:OD • od ∈ xtr ODs(obs AOD(uod)) }
584a ‖ geographyuid G(g)(mereo G(g),sta(g))(pro(g))

584a where g ≡ obs G(uod)
586a ‖ monitoruid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

586a where cm ≡ obs CM(obs CC(obs E(uod)))
587a ‖ planneruid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

587a where cp ≡ obs CP(obs CC(obs E(uod)))
588a ‖ actuatoruid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

588a where ca ≡ obs CA(obs CC(obs E(uod)))

N.4.2 An Early Narrative on Behaviours

N.4.2.1 Either Endurants or Perdurants, Not Both !

First the reader should observe that the manifest parts, in some sense, do no longer “exist” ! They have all been
replaced by their corresponding behaviours. These behaviours embody all the qualities of their “origin”: the
unique identifiers, the mereology, and all the attributes – the latter in one form or another: the static attributes as
constants (referred to in the bodies of the behaviour definitions); the programmable attributes as arguments
(‘‘carried over’’ from one invocation to the next); and the remaining dynamic attributes as “inputs” (whose
varying values are ‘‘accessed’’ through [dynamic attribute] channels).

N.4.2.2 Focus on Some Behaviours, Not All !

Secondly we focus, in this case study, only on the behaviour of the planner . The other behaviours, the ‘other’
drones, enterprise drones, monitor , actuator , and the geography , are, in this case study of less interest to us. That
is, other case studies could focus on the behaviours of drones, or geographies, or monitor , or actuator .

N.4.2.3 The Behaviours – a First Narrative

Drones “continuously” offer their identified dynamics (location, velocity, and possibly more) to the monitor . En-
terprise drones “continuously”, and in addition, offers to accept flight guidance from the actuator . The monitor
“continuously sweeps” the air space and collects the identities of all recognizable drones and their dynamics, and
offers this to the planner . The planner does all the interesting work ! It effects the allocation/reallocation of drones
to/from business swarms; it calculates enterprise drone flights and instructs the actuator to offer such flight plans
to relevant drones; etcetera ! Finally the actuator , as instructed by the planner , offers flight guidance, as per
instructions from the planner , to all or some enterprise drones.

N.4.3 Channels
Channels is a concept of CSP [108, 111, 112].

CSP channels are a means for synchronising behaviours and for communicating values between synchronised be-
haviours, as well as, as a technicality, conveying values of most kinds of dynamic attributes of parts (i.e., endurants)
to “their” behavioural counterparts.

There are thus two starting point for the analysis & description of channels: the mereologies and the dynamic
attributes of parts. Here we shall single out the following parts and behaviours: the command monitor, planner and
actuator , the enterprise drones and the ‘other’ drones, and the geography . We refer to Fig. N.4 on the following
page, a slight “refinement” of Fig. N.1 on page 387.

N.4.3.1 The Part Channels

N.4.3.1.1 General Remarks: Let there be given a universe of discourse. Let us analyse the unique identifiers
and the mereologies of the planner cp: (cpi,cpm), monitor cm: (cmi,cmm) and geography g: (mi,mm), where cpm =
(cai,cmi,gi), cmm = ({di1, di2, . . . , din},cpi) and gm = (cpi,{di1, di2, . . . , din}).

We now interpret these facts. When the planner mereology specifies the unique identifiers of the actuator , the
monitor , and the geography , then that shall mean there there is a way of communicating messages between the
actuator, and the geography, and one side, and the plannner on the other side.

406 CONTENTS

...

CA CP

CC

UoD

edi:ED...

G

E

ed1:ED... od1:OD od2:OD odn:OD...edm:ED

CM

ODs

ch[{i,j}]...

...

EDs

AED AOD

Figure N.4: Universe of Discourse with General Channel: ch[{i,j}] ...

593. We shall therefore, in a first step of specification development, think of a “grand” array channel over which
all communication between behaviours take place. See Fig. N.4.

594. Example indexes into this array channel are shown in the formulas just below.

type
593 MSG
channel
593 {ch[fui,tui]|fui,tui:PI • ...}:MSG
value
594 ch[cpi,cai]!msg output from planner to actuator.
594 ch[cpi,cai]? input from planner to actuator.
594 etc.

We presently leave the type of messages, MSG, that can be communicated over this “grand” channel further
unspecified. We also leave unspecified the pair of distinct unique identifiers that index the channel array. We
emphasize that the uniqueness of all part identifiers allow us to use pairs of such as indices. Expression ch[fui,tui]!,sg
thus expresses output from behaviour indexed by fuit to behaviour indexed by tui, whereas expression ch[tui,fui]?
thus expresses input from behaviour indexed by tui to behaviour indexed by fui. Not all combinations of unique
identifiers are needed. The channel array is “sparse” ! That property allows us to refine the “grand” channel
into the channels illustrated on Fig. N.5 on the next page. Some channels are array channels: The channels to
the drones whether all drones, or just the enterprise drones. Other channels are “single” channels: these are the
channels which are anchored in parts with a priori known, i.e., constant unique identifiers.

N.4.3.1.2 Part Channel Specifics

595. There is an array channel, d cm ch[di,cmi]:D CM MSG, from any drone ([di]) behaviour to the monitor be-
haviour (whose unique identifier is cmi). The channel, as an array, forwards the current drone dynamics
D CM MSG = CuDD.

type
595 D CM MSG = CuDD
channel
595 {d cm ch[di,cmi]|di:(EDI|ODI)•di ∈ dis}:D CM MSG

596. There is a channel, cm cp ch[cmi,cpi, from the monitor behaviour (cmi) to the planner behaviour (cpi). It
forwards the monitor’s records of drone dynamics CM CP MSG = MRoDD.

type
596 CM CP MSG = MRoDD

596 channel m cp ch[cmi,cpi]:CM CP MSG

N.4. PERDURANTS 407

...

E: Enterprise

ed:ED.. ed:ED.. ed:ED.. od:ODod:OD od:OD od:OD

...
od:OD

CP

CC

CMCA

UoD

G

AED

EDs ODs

AOD
g_d_ch[gi,di]d_g_ch[di,gi] d_cm_ch[di,cmi]

ca_ed_ch[cai,edi]

g_cp_ch[gi,cpi]

cp_g_ch[cpi,gi]

cm_cp_ch[cmi,cpi]cp_ca_ch[cpi,cai]

Figure N.5: Universe of Discourse with Specific Channels

597. There is a channel, cp ca ch[cpi,cai]:CP CA MSG, from the plannner behaviour (cpi) to the actuator behaviour
(cai). It forwards flight plans CP CA MSG = FP.

type
597 CP CA MSG = EID →m FP
channel
597 cp ca ch[cpi,cai]:CM CP MSG

598. There is an array channel, ca ed ch[cai,edi], from the actuator behaviour (cai) to the enterprise drone be-
haviours (edi for suitable edis). It forwards flight plans, CA ED MSG = FP, to enterprise drones in a desig-
nated set.

type
598 CA ED MSG = EID × FP
channel
598 {ca ed ch[cai,edi]|edi:EDI•edi ∈ edis}:CA ED MSG

599. There is an array channel, g d ch[di,gi]:D G MSG, from all the drone behaviours (di) to the geography be-
haviour The channels convey, requests for an immediate geography for and around a point: D G MSG =
P.

type
599 D G MSG = P
channel
599 {d g ch[di,gi]|di:(EDI|ODI)•di ∈ dis}:D H MSG

600. There is an array channel, g d ch[gi,di]:G D MSG, from the geography behaviour to all the drone behaviours.
The channels convey, for a requested point, the immediate geography for that area: G D MSG = ImG.

type
600 G D MSG = ImG
channel
600 {g d ch[gi,di]|di:(EDI|ODI)•di ∈ dis}:G D MSG

N.4.3.2 Attribute Channels, General Principles

Some of the drone attributes are reactive. Being reactive means that their values change surreptitiously. In the
physical world of parts that means that these vales must be measured, or somehow ascertained, whenever needed,
i.e., “on the fly”. Now “our world” is that of a domain description. When dealing with endurants, the value of
an attribute, a:A, of part p:P, is expressed as attr A(p). When dealing with perdurants, that same value is to be
expressed as attr A ch[uid P(p)] ?.

408 CONTENTS

601. This means that we must declare a channel for each part with one or more dynamic, however not including
programmable, attributes A1, A2, ..., An.

channel
601 attr A1 ch[pi]:A1, attr A2 ch[pi]:A2, ..., attr An ch[pi]:An

602. If there are several parts, p1,p2,. . . ,pm:P then an array channel over indices p1i,p2i,. . . ,pmi is declared for
each applicable attribute.

channel
602 {attr A1 ch[pji]|pji:PI•pji∈{p1i,p2i,...,pmi}}:A1,
602 {attr A2 ch[pji]|pji:PI•pji∈{p1i,p2i,...,pmi}}:A2,
602 ...

602 {attr An ch[pji]|pji:PI•pji∈{p1i,p2i,...,pmi}}:An

N.4.3.3 The Case Study Attribute Channels

N.4.3.3.1 ‘Other’ Drones: ‘Other’ drones have the following not biddable or programmable dynamic
channels:

603. dynamics, including velocity, acceleration, orientation and position,
{attr DYN ch[odi]:DYN|odi:ODI•odi∈odis}.

channel
603 {attr DYN ch[odi]:DYN|odi:ODI•odi ∈ odis}

N.4.3.3.2 Enterprise Drones: Enterprise drones have the following not biddable or programmable dy-
namic channels:

604. dynamics, including velocity, acceleration, orientation and position,
{attr DYN ch[edi]:DYN|edi:EDI•edi∈odis}.

channel
604 {attr DYN ch[odi]:DYN|odi:ODI•odi ∈ odis}

N.4.3.3.3 Geography: The geography has the following not biddable or programmable dynamic channels:

605. land, attr L ch[gi]:L, and

606. weather, attr W ch[gi]:W.

channel
605 attr L ch[gi]:L
606 attr W ch[gi]:W

We do not show any graphics for the attribute channels.

N.4.4 The Atomic Behaviours
to be written

N.4.4.1 Monitor Behaviour

607. The signature of the monitor behaviour

(a) lists the monitor’s unique identifier, carries the monitor’s mereology, has no static arguments (... maybe
...), has the programmable time-stamped recordings, dtp, of all drone positions (present and past) and

(b) further designates the input channel d cm ch[*.*] from all drones and the channel output cm cp ch[cmi,cpi]
to the planner.

608. The monitor [otherwise] behaves as follows:

(a) All drones provide as input, d cm ch[di,cmi]?, their time-stamped positions, rec.

(b) The programmable mrodd attribute is updated, mrodd′, to reflect the latest time stamped dynamics
per drone identifier.

(c) The updated attribute is is provided to the planner.

(d) Then the monitor resumes being the monitor, forwarding, as the progammable attribute, the time-
stamped drone position recording.

N.4. PERDURANTS 409

value
607a monitor: cmi:CMI×cmm:(dis:DI-set×cpi:CPI) → MRoDD →
607b in {d cm ch[di,cmi]|di:DI•di∈dis} out cm cp ch Unit
608 monitor(mi,(dis,cpi))(mrodd) ≡
608a let rec = {[di 7→ d cm ch[di,cmi]?|di:DI•di∈dis]} in
608b let mrodd′ = mrodd † [di 7→〈rec(di)〉̂mrodd(di)|di:DI•di∈dis] in
608c cm cp ch[cmi,cpi] ! mrodd′;
608d monitor(cmi,(dis,cpi))(mrodd′)
608 end end
608 axiom cmi=cmi∧cpi=cpi

We have decided to let the monitor maintain the present and past time-stamped drone positions. It is the monitor
which records these positions. Not the planner. But the monitor provides these traces, again-and-again, to the
planner.

N.4.4.2 Planner Behaviour

609. The signature of the planner behaviour

(a) lists the planner’s unique identifier, carries the planner’s mereology, has, perhaps ..., some static argu-
ments, has the programmable planner directories, and

(b) further designates the single input channel cm cp ch and the single output channel cp ca ch.

610. The planner [otherwise] behaves as follows:

(a) the planner [internal] non-deterministically (“coin-flipping”) decides whether to transfer a drone be-
tween business swarms, or to calculate flight plans, or . . . other.

(b) Depending on the [outcome of the “coin-flipping”] the planner

(c) either effects a transfer,

i. by delegating to an auxiliary function, transfer, the necessary modifications of the swarm directory
–

ii. whereupon the planner behaviour resumes;

(d) or effects a [re-]calculation on drone flights,

i. by, again, delegating to an auxiliary function, flight planning, the necessary calculations –

ii. which are communicated to the actuator ,

iii. whereupon the planner behaviour resumes;

(e) or . . . other !

value
610 planner: cpi:CPI × (cai>CAI×cmi:CMI×gi:GI) × TDIR →
610 in cm cp ch[cmi,cpi], g cp ch[gi,cpi] out cp ca ch[cpi,cai] Unit
609 planner(cpi,(cai,cmi,gi),...)(bdir,sdir,ddir) ≡
610a let cmd = ′′transfer′′ ⌈⌉ ′′flight_plan′′ ⌈⌉ ... in
610b cases cmd of
610c ′′transfer′′ →
610(c)i let sdir′ = transfer(tdir) in
610(c)ii planner(cpi,(cai,cmi,gi),...)(bdir,sdir′,ddir) end
610d ′′flight_plan′′ →
610(d)i let ddir′ = flight planning(tdir) in
610(d)ii planner(cpi,(cai,cmi,gi),...)(bdir,sdir,ddir′) end
610e ...

609 end
609 axiom cpi=cpi∧cai=cai∧cmi=cmi∧gi=gi

N.4.4.2.1 The Auxiliary transfer Function
611. The transfer function has a simpler signature than the planner behaviour in that it need not communicate

with other behaviours.

(a) The transfer function internal non-deterministically chooses a business designator, bi;

(b) from among that business’ swarm designators it internal non-deterministically chooses two distinct
swarm designators, fsi,tsi;

(c) and from the fsi entry in sdir (which is set of enterprise drone identifiers), it internal non-deterministically
chooses an enterprise drone identifier, di.

410 CONTENTS

(d) Given the swarm and drone identifiers the resulting swarm directory can now be made to reflect the
transfer: reference to di is removed from the fsi entry in sdir and that reference instead inserted into
the tsi entry.

value
611 transfer: TDIR → SDIR
611 transfer(bdir,sdir,ddir) ≡
611a let bi:BI•bi ∈ dom bdir in
611b let fsi,tsi:SI•{fsi,tsi}⊆bdir(bi)∧fsi 6=tsi in
611c let di:DI•di ∈ sdir(fsi) in
611d sdir † [fsi 7→sdir(fsi)\{di}] † [tsi 7→sdir(tsi)∪{di}]
611 end end end

N.4.4.2.2 The Auxiliary flight planning Function

612. The signature of the flight planning behaviour needs two elements: the triplet of business, swarm and drone
directories, and the planner-to-actuator channel.

(a) The flight planning behaviour offers to accept the time-stamped recordings of the most recent drone
positions and dynamics as well as all the past such recordings.

(b) The flight planning behaviour selects, internal, non-deterministically a business, designated by bi,

(c) one of whose swarms, designated by si, it has thus decided to perform a flight [re-]calculation for.

(d) An objective for the new flight plan is chosen.

(e) The flight plan is calculated.

(f) That flight plan is communicated to the actuator .

(g) And the flight plan, appended to the drone directory’s (past) flight plans.

value
612 flight planning: TDIR → in cm cp ch[cmi,cpi], out cp ca ch[cpi,cai] DTP
612 flight planning(bdir,sdir,ddir) ≡
612a let dtp = cm cp ch[cpi,cai] ? ,
612b bi:BI • bi ∈ dom bdir
612c let si:SI • si ∈ bdir(bi) in
612d let fp obj:fp objective(bi,si) in
612e let flight plan = calculate flight plan(dtp,sdir(si),fp obj,tdir) in
612f cp ca ch[cpi,cai] ! flight plan ;
612g 〈flight pla〉̂ddir
612 end end end end
type
612d FP OBJ
value
612d fp objective: BI × SI → FP OBJ
612d fp objective(bi,si) ≡ ...

613. The calculate flight plan function is the absolute focal point of the planner .

613 calculate flight plan: DTP × DI-set × FP−OBJ × TDIR → FP
613 calculate flight plan(dtp,sdir(si),fp obj,tdir) ≡ ...

There are many ways of calculating flight plans.
[139, Mehmood et al., Stony Brook, 2018: Declarative vs Rule-based Control for Flocking Dynamics] is one

such:

to be written

In [157–159, Craig Reynolds: OpenSteer, Steering Behaviours for Autonomous Characters]

to be written

In [143, Reza Olfati-Saber: Flocking for Multi-agent Dynamic Systems: Algorithms and Theory, 2006]

to be written

N.4. PERDURANTS 411

The calculate flight plan function, Item 613 on the facing page, is deliberately provided with all such informa-
tion that can be gathered and hence can be the only ‘external’23 data that can be provided to such calculation
functions,24 and is therefore left further unspecified; future work25 will show whether this assumption holds. If it
does, then, OK, and we can proceed. If it does not, we shall revise the present model.

N.4.4.3 Actuator Behaviour

614. The actuator accepts a current flight plan, cfp:CFP, i.e., a number of enterprise drone identifier-indexed flight
plans, from the planner.

615. The signature of the actuator behaviour lists the actuator’s unique identifier, carries the actuator’s mereology,
has, perhaps ..., some static arguments, has the programmable flight directory, and further designates the
input channel cp ca ch[cpi,cai] and the output channel ca ed ch[cai,*].

616. The actuator further behaves as follows:

(a) It offers to accept a current flight plan from the planner.

(b) It then proceeds to offer those enterprise drones which are designated in the flight plan their flight
plan.

(c) Whereupon the actuator resumes being the actuator, now with its programmable flight plan directory
updated with the latest such !

type
614 CFP = EDI →m FP
value
615 actuator: cai:CAI × (cpi:CPI×edis:EDI-set) → FDDIR →
615 in cp ca ch[cpi,cai] out {ca ed ch[cai,edi]|edi:EDI•edi ∈ edis} Unit
616 actuator(cai,(cpi,edis),...)(pfp,pfpl) ≡
616a let cfp = ca cp ch[cai,cpi] ? in comment: fp:EDI→m FP
616b ‖ {ca ed ch[cai,edi]!cfp(edi)|edi:EDI•edi ∈ dom cfp} ;
616c actuator(cai,(cpi,edis),...)(cfp,〈pfp〉̂pfpl)
614 end

615 axiom cai=cai∧cpi=cpi

N.4.4.4 ‘Other’ Drone Behaviour

617. The signature of the ‘other’ drone behaviour

(a) lists the ‘other’ drone’s unique identifier, the ‘other’ drone’s mereology, has, perhaps ..., some static
arguments; then the programmable attribute of the geography (i.e., the area, the land and the weather)
it is moving over and in;

(b) then, as input channels, the inert, active, autonomous and biddable attributes: velocity, acceleration,
orientation and position, and, finally

(c) further designates the array input channel g d ch[*] from the geography and the array output channel
d cm ch[*] to the monitor .

618. The ‘other’ drone otherwise behaves as follows:

619. internal, non-deterministically the ‘other’ drone chooses to either ..., or "pro"viding to the monitors request
for drone "dyn"amics, or

620. If the choice is ... ,

621. If the choice is "provide dynamics" the behaviour drone monitor is invoked, with arguments similar to that of
other drone, but “marked” with an additional, “frontal” argument: "other", and with “tail”, programmable
arguments (〈〉,〈〉).

622. If the choice is

value
617 other drone: odi:ODI × (cmi:CMI×gi:GI) × ... → (DYN×ImG) →
617b in attr DYN ch[odi],g d ch[gi,odi] out d cm ch[odi,cmi] Unit
618 other drone(odi,(cmi,gi),...)(dyn:(v,a,o,p),img) ≡
619 let mode = ′′...′′ ⌈⌉ ′′pro_dyn′′ ⌈⌉ ′′...′′ in

23Flight plan objectives are here referred to as ‘internal’.
24 Well – better check this!

25 – for you ShaoFa !

412 CONTENTS

619 case mode of
620 ′′...′′ → ... ,
621 ′′pro_dyn′′ → drone moni(odi,(cmi,gi),...)(dyn:(v,a,o,p),img)
622 ′′...′′ → ...

619 end
617 end

623. If the choice is "provide dynamics"

(a) then the drone-monitor behaviour ascertains its dynamics (velocity, acceleration, orientation and posi-
tion),

(b) informs the monitor ‘thereof’, and

(c) resumes being the ‘other’ drone with that updated, programmable dynamics.

value
623 drone moni: odi:ODI × (cmi:CMI×gi:GI) × ... → (DYN×ImG) →
623 in attr DYN ch[odi],g d ch[gi,odi] out d cm ch[odi,cmi] Unit
622 drone moni(odi,(cmi,gi),...)(dyn:(v,a,o,p),img) ≡
623a let (ti,dyn′,img′) =
623a (time(),
623a (let (v′,a′,o′,p′) = attr DYN[odi]? in
623a (v′,a′,o′,p′),
623a d g ch[odi,gi]!p′ ; g d ch[gi,odi]? end)) in
623b d cm ch[odi,cmi] ! (ti,dyn′) ;
623c other drone(cai,(cpi,edis),...)(dyn′,img′)
623a end

N.4.4.5 Enterprise Drone Behaviour

624. The enterprise donor lists its enterprise drone’s unique identifier, carries it’s mereology, has, perhaps ..., some
static arguments, the programmable enterprise drone attributes: a pair of the present flight plan, and the
past flight plans, and a pair of the most recently observed dynamics and immediate geography, and further
designates the single input channel and the output channel array .

Enterprise drones otherwise behave as follows:

625. internal, non-deterministically an enterprise drone chooses to either "rec"ording the "geo"graphy, i.e., the
area, land and weather it is situated in, or "pro"viding to the monitors request for drone "dyn"amics,
or "acc"epting the actuators offer of a new "f"light "p"lan, or "move" "on" (i.e., continue to fly), either
"follow"ing the "flight plan" most recently received from the actuator, or, "ignor"ing this directive,
“just plondering on” !

626. If the choice is "rec geo" then the enterprise geo behaviour is invoked,

627. If the choice is "pro dyn" (provide dynamics to the monitor) then the enterprise moni behaviour is invoked,

628. If the choice is "acc fp" then the enterprise accept flight plan behaviour is invoked,

629. If the choice is "move on" then the enterprise drone decides either to "ignore" the flight plan, or to "follow"

it.

(a) If it "ignore"s the flight plan then the enterprise ignore behaviour is invoked,

(b) If the choice is "follow" then the enterprise follow behaviour is invoked.

624 enterprise drone: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
624 ((FPL×PFPL)×(DDYN×ImG)) →
624 in attr DYN ch[edi],g d ch[gi,edi],ca ed ch[cai,edi]
624 out d cm ch[edi,cmi],d g ch[edi,gi] Unit
624 enterprise drone(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img)) ≡
625 let mode = ′′rec_geo′′ ⌈⌉ ′′pro_dyn′′ ⌈⌉ ′′acc_fp′′ ⌈⌉ ′′move_on′′ in
625 case mode of
626 ′′rec_geo′′ → enterprise geo(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
627 ′′pro_dyn′′ → enterprise moni(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
628 ′′acc_fp′′ → enterprise acc fl pl(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
629 ′′move_on′′ →
629 let m o mode = ′′ignore′′ ⌈⌉ ′′follow′′ in
629 case m o mode of
629a ′′ignore′′ → enterprise ignore(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))
629b ′′follow′′ → enterprise follow(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))

N.4. PERDURANTS 413

635 end
635 end
625 end
625 end
624 axiom cmi=cmi∧cai=cai∧gi=gi

630. If the choice is "rec geo"

(a) then dynamics is ascertained so as to obtain a positions;

(b) that position is used in order to obtain a “fresh” immediate geography;

(c) with which to resume the enterprise drone behaviour.

624 enterprise geography: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
624 ((FPL×PFPL)×(DDYN×ImG)) →
624 in attr DYN ch[edi],g d ch[gi,edi],ca ed ch[cai,edi]
624 out d cm ch[edi,cmi],d g ch[edi,gi] Unit
624 enterprise geography(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
630a let (v,a,o,p) = attr DYN ch[edi]? in
630b let img′ = d g ch[edi,gi]!p;g d ch[gi,edi]? in
630c enterprise drone(edi,(cmi,cai,gi),...)((fpl,pfpl),((v,a,o,p),img′))
630a end end

631. If the choice is "pro dyn" (provide dynamics to the monitor)

(a) then a triplet is obtained as follows:

(b) the current time,

(c) the dynamics (v,a,o,p), and

(d) the immediate geography of position p,

(e) such that the monitor can be given the current dynamics,

(f) and the enterprise drone behaviour is resumed with updated dynamics and immediate geography.

624 enterprise monitor: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
624 ((FPL×PFPL)×(DDYN×ImG)) →
624 in attr DYN ch[edi],g d ch[gi,edi],
624 out d cm ch[edi,cmi],d g ch[edi,gi] Unit
624 enterprise monitor(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
631a let (ti,ddyn′,img′) =
631b (time(),
631c (let (v,a,o,p) = attr DYN[edi]? in
631c (v,a,o,p),
631d d g ch[edi,gi]!p;g d ch[gi,edi]? end)) in
631e d cm ch[edi,cmi] ! (ti,ddyn′) ;
631f enterprise drone(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn′ ,img′))
631a end

632. If the choice is "acc fp"

(a) the enterprise drone offers to accept a new flight plan from the actuator

(b) and the enterprise drone behaviour is resumed with that flight plan now becoming the next current
flight plan and whatever is left of the hitherto current flight plan appended to the past flight plan list.

624 enterprise acc fl pl: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
624 ((FPL×PFPL)×(DDYN×ImG)) → in ca ed ch[cai,edi] Unit
624 enterprise axx fl pl(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
632a let fpl′ = ca ed ch[cmi,edi] ? in
632b enterprise drone(edi,(cmi,cai,gi),...)(fp′,〈fpl〉̂pfpl,(ddyn,img))
632a end

633. If the choice is "move on" and the enterprise drone decides to "ignore" the flight plan,

(a) then it ascertains where it might be moving with the current dynamics

(b) and then it just keeps moving on till it reaches that dynamics

414 CONTENTS

(c) from about where it resumes the enterprise drone behaviour.

624 enterprise ignore: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
624 ((FPL×PFPL)×(DDYN×ImG)) →
624 in attr DYN ch[edi] out d cm ch[edi,cmi],d g ch[edi,gi] Unit
624 enterprise ignore(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
633a let (v′,a′,o′,p′) = increment(dyn,img) in
633b while let (v′′,a′′,o′′,p′′) = attr DYN ch[odi]? in
633b ∼close(p′,p′′) end do manoeuvre(dyn,img) ; wait δ t end ;
633c enterprise drone(cai,(cpi,edis),...)(fpl,pfpl,(attr DYN ch[odi]?,img))
633a end

634. The manoeuvre behaviour is further unspecified. For a fixed wing aircraft it controls the yaw , the roll and
the pitch of the aircraft, hence its flight path, by operating the elevator, aileron, ruddr and the thrust of
the aircraft based on its current dynamics, weight (including aircraft fuel), meteorological conditions (winds
etc.).

value
634 manoeuvre: DYN × ImG → Unit
634 manoeuvre(dyn,img) ≡ ...

The wait δ t is some drone constant.

635. If the choice is "move on" and the enterprise drone decides to "follow" the flight plan,

(a) then, if the current flight plan has been exhausted, i.e., “used-up” it aborts (chaos26)

(b) otherwise it ascertains where it might be moving, i.e., a next dynamics from with the current dynamics.

(c) So it then “moves along” until it has reached that dynamics –

(d) from about where it resumes the enterprise drone behaviour.

value
624 enterprise follow: edi:EDI×(cmi:CMI×cai:CAI×gi:GI) →
624 ((FPL×PFPL)×(DDYN×ImG)) →
624 in attr DYN ch[edi] out d cm ch[edi,cmi],d g ch[edi,gi] Unit
624 enterprise follow(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
635a if fpl = 〈〉 then chaos else
635b let (v′,a′,o′,p′) = increment(dyn,img,hd fpl) in
635c while let (v′′,a′′,o′′,p′′) = attr DYN ch[odi]? in
635c ∼close(p′,p′′) end do manoeuvre(hd fpl,dyn,img) ; wait δ t end ;
635d enterprise drone(edi,(cmi,cai,gi),...)((tlfpl,pfpl),(attr DYN ch[odi]?,img))
635a end end

636. The (overloaded) manoeuvre behaviour is further unspecified. For a fixed wing aircraft it controls the yaw ,
the roll and the pitch of the aircraft, hence its flight path, by operating the elevator, aileron, ruddr and the
thrust of the aircraft based on its current dynamics, weight (including aircraft fuel), meteorological conditions
(winds etc.).

value
636 manoeuvre: FPE × DYN × ImG → Unit
636 manoeuvre(fpe,dyn,img) ≡ ...

The wait δ t is some drone constant.

N.4.4.6 Geography Behaviour

637. The geography behaviour definition

(a) lists the geography behaviour’s unique identifier, carries the its mereology, has the static argument of
its Euclidean point space, and

(b) further designates the single input channels cp g ch[cpi,gi] from the planner and d g ch[*,gi] from the
drones and the output channels g cp ch[gi,cpi] to the planner and g d ch[gi,*] to the drones.

638. The geography otherwise behaves as follows:

26chaos means that we simply decide not to describe what then happens !

N.5. CONCLUSION 415

(a) Internal, non-deterministically the geography chooses to either "resp"ond to a request from the
”plan”ner.

(b) If the choice is

(c) "resp plan"

i. then the geography offers to accept a request from the planner for the immediate geography of an
area “around” a point and

ii. then the geography offers that information to the planner ,

iii. whereupon the geography resumes being that;

else if the choice is

(d) "resp dron"

i. then then the geography offers to accept a request from the planner for the immediate geography
of an area “around” a point and

ii. then the geography offers that information to the planner ,

iii. whereupon the geography resumes being that.

639. The area function takes a pair of a point and a pair of land and weather and yields an immediate geography .

value
637 geography: gi:GI × gm:(cpi:CPI×cmi:CMI×dis:DI-set) × EPS →
637a in cp g ch[cpi,gi], d g ch[∗,gi]
637b out g cp ch[gi,cpi], g d ch[gi,∗] Unit
637 geography(gi,(cpi,cmi,dis),eps) ≡
638a let mode = ′′resp_plan′′ ⌈⌉ ′′resp_dron′′ ⌈⌉ ... in
638b case mode of
638c ′′resp_plan′′ →
638(c)i let p = cp g ch[cpi,gi] ? in
638(c)ii g cp ch[gi,cpi] ! area(p,(attr L ch[gi]?,attr W ch[gi]?)) end
638(c)iii geography(gi,(cpi,cmi,dis),eps)
638d ′′resp_dron′′ →
638(d)i let (p,di) = ⌈⌉⌊⌋{(d g ch[di,gi]?,di)|di:DI•di ∈ dis} in
638(d)ii g cp ch[di,cpi] ! area(p,(attr L ch[gi]?,attr W ch[gi]?)) end
638(d)iii geography(gi,(cpi,cmi,dis),eps)
637 end end
axiom
637 gi=gi∧cpi=cpi∧smi=cmidis=dis

value
639 area: P × (L × W) → ImG
639 area(p,(l,w)) ≡ ...

N.5 Conclusion
to be written

416 CONTENTS

Appendix O

Automobile Assembly Lines

Contents

O.1 Introduction . 419

O.2 A Domain Analysis & Description . 419

O.2.1 An Initial Domain Sketch . 419

O.2.2 Endurants . 420

O.2.2.1 External Qualities . 421

O.2.2.1.1 Parts . 421

O.2.2.1.2 On Main Elements 423

O.2.2.1.3 Automobile Manufacturing: A Wider Context 424

O.2.2.1.4 An Assembly Plant Taxonomy 424

O.2.2.1.5 Aggregate, Set, Core and Sibling Parts 424

O.2.2.1.6 The Core State . 426

O.2.2.1.7 Invariant: External Qualities 428

O.2.2.2 Internal Qualities . 429

O.2.2.2.1 Unique Identifiers . 429

ι 640. AP, Assembly Plants 431

ι 641. ALA, Assembly Line Aggregates 432

ι 642. MAL, Main Assembly Lines 432

ι 643. SALA, Supply Assembly Line Aggregates433

ι 644. SALs=SAL-set, Supply Assembly Line
Sets . 433

ι 645. SAL, Supply Assembly Lines 433

ι 646. SA, Station Aggregates 433

ι 647. Ss=S-set, Station Set 434

ι 648. S, Stations 434

ι 649. ME, Main Elements 434

ι 650. RA, Robot Aggregates 434

ι 651. Rs=R-set, Robot Sets 435

ι 652. R, Robots 435

ι 653. ES, Element Supplies 435

ι 654. Es=E-set, Element Supply Sets 435

ι 655. E, Elements 435

O.2.2.2.2 Mereology . 435

Comments on the Mereology Presentation . 443

Distances of Stations from Outlet 444

417

418 CONTENTS

O.2.2.2.3 Attributes . 445

O.2.2.2.3.1 ι 640. AP: Assembly Plant: 446

O.2.2.2.3.2 ι 641. ALA: Assembly Line Aggregate: 446

O.2.2.2.3.3 ι 642. MAL: Main Assembly Line: 446

O.2.2.2.3.4 ι 643. SALA: Supply Assembly Line Aggregate: 446

O.2.2.2.3.5 ι 644. SALs: Supply Assembly Line Set: 446

O.2.2.2.3.6 ι 645. SAL: Supply Assembly Lines: 446

O.2.2.2.3.7 ι 646. SA: Station Aggregate: 447

O.2.2.2.3.8 ι 647. Ss=S-set: Station Set: 447

O.2.2.2.3.9 ι 648. S: Station: 447

O.2.2.2.3.10 ι 649. ME: Main Element: 448

O.2.2.2.3.11 ι 650. RA: Robot Aggregate: 448

O.2.2.2.3.12 ι 651. Rs=R-set: Robot Set: 449

O.2.2.2.3.13 ι 652. R: Robot: 449

O.2.2.2.3.14 ι 653. ES: Element Supply: 449

O.2.2.2.3.15 ι 654. Es=E-set: Element Supply Set: 449

O.2.2.2.3.16 ι 655. E: Elements: 449

O.2.2.3 Comments wrt. [77] . 449

O.2.3 Perdurants . 450

O.2.3.1 From Parts to Behaviours . 450

O.2.3.2 Channels . 451

O.2.3.3 Actors . 451

O.2.3.3.1 Actions and Events 451

O.2.3.3.2 Behaviours . 451

O.2.3.4 System Initialisation . 451

O.3 Discussion . 451

O.4 Conclusion . 451

O.4.1 Models and Axioms . 451

O.4.2 Learning Forwards, Practicing In Reverse 451

O.4.3 Diagrammatic Reasoning . 452

O.4.4 The Management of Domain Modeling 452

O.4.5 ... one more section ... 453

O.4.6 ... a last section (?) ... 453

O.4.7 Acknowledgments . 453

We interpret Sect. 2 of [77]. That is, we present the domain description of a generic, assembly line
manufacturing plant, like, for example, an automobile plant. The description is in the style of, i.e.,
according to the dogma of [58]. It is an aim of this report to (i) classify the various notions of [77]
in their relationship to domain analysis & description notions of [58]: endurants and perdurants,
external and internal endurant qualities: unique identifiers, mereologies and attributes, as well as
domain versus requirements specifications, i.e., descriptions vs. prescriptions.

Caveat

The topic of this report is currently being studied and writing progresses according ly. I have not checked all
item (etc.) references, but will, one day I have a printed copy to work from ! I have also left many stubs to
be resolved. Various sections represent “diverse” modeling attempts. It will be interesting to see which will
“survive” ! Since this report will be updated on the net daily You may wish to not download-copy it, but to
reload it, from day-to-day, if need be.

March 12, 2024: 10:48 am: “Progress”

• Mereology “finished”.

• “Finished” first round of Attributes.

O.1. INTRODUCTION 419

• Speculating on robot tasks.

• Unfinished “business” wrt. parts and robot operations.

A Development Document

This report cum paper, may look like a paper. But it is not. It is a report on “work in progress”.
It expresses, in its current form, the way we would, sequentially, develop en experimental domain model, such

as mentioned in Sect. O.4.4 on page 452, in the item labeled Experiment on Page 452.

O.1 Introduction

The current author has put forward a theory and a methodology of domain engineering [51,55,58]. That methodol-
ogy is the result of 30 years of experimental development of analyses & descriptions of numerous domains. Isolated
aspects of the domain of assembly line manufacturing has been a topic of study, also in computing science, for
some years. See, for example, https://en.wikipedia.org/wiki/Cellular manufacturing. These computing sci-
ence studies have, however, focused, less on overall assembly lines, and more on their individual manufacturing cells
– in this report referred to as operators (or stations (?)). So when I heard of and read [77] I was ready to myself
tackle the domain analysis & description of an “entire” production line, i.e., a single assembly line complex of a
main and possibly several supply assembly lines.

more to come

O.2 A Domain Analysis & Description

O.2.1 An Initial Domain Sketch

We refer to Fig. O.5 on page 421. In this section we shall give an informal sketch of the domain. The domain is
that of the generic assembly line “core” of a manufacturing plant – think of an automobile factory !1

Figure O.1: Aspects of an Automobile Assembly Line, I

1For the specific case of automobile factories the assembly line focus thus omits consideration of number of major
components: the motor foundry etc., the paint shop, etc.

420 CONTENTS

Figure O.2: Aspects of an Automobile Assembly Line, II

Figure O.3: Aspects of an Automobile Assembly Line,III

We thus focus sôlely on assembly lines2,3. Figure O.5 shows an idealised layout of an assembly line. It shows
one main assembly line and three supply assembly lines. Assembly lines assemble, as we shall call them, elements.4

Assembly of elements, from other, the constituent, elements are performed by robots5 at stations. Stations are
linearly ordered within an assembly line. Assembly lines has a flow direction, i.e., the direction in which increasingly
“bigger” elements “flow”. Each station consists of one or more robots. Robots direct their work at a main element,
and apply their grips to elements supplied from an element supply ,6 or to a “larger” assembly “fetched” from a
supply assembly line incident at that station !

O.2.2 Endurants

The endurant analysis & description is according to the ontology graph of Fig. O.6 on page 422. The analysis &
description is otherwise according to either of [51, 55, 58]. It suffices to have studied [55].

2https://en.wikipedia.org/wiki/Assembly line: An assembly line is a manufacturing process (often called a pro-
gressive assembly) in which parts (usually interchangeable parts) are added as the semi-finished assembly moves
from workstation to workstation where the parts are added in sequence until the final assembly is produced. By
mechanically moving the parts to the assembly work and moving the semi-finished assembly from work station to
work station, a finished product can be assembled faster and with less labor than by having workers carry parts to
a stationary piece for assembly.

Assembly lines are common methods of assembling complex items such as automobiles and other transportation
equipment, household appliances and electronic goods.

3Example supply assembly lines are: (i) engine assembly (where the start of such lines are supplied with already
prepared engine blocks (from a non-assembly line engine foundry and machining shop), (ii-v) four left and right
front and rear door assemblies, (vi-ix) body interior left and right front and rear sofa, and panel assemblies.

4Other, perhaps more common terms are: products or parts. The term ‘part’ is used in our domain analysis &
description method, [51, 55, 58], for quite other purposes –so that is “out !”

5Robots are either humans assisted by various machine tools, as in Charlie Chaplin’s movie: ‘Modern Times’
(1936), or are, indeed, robots.

6That is, a station local storage of elements that are to be joined, at a station, by the help of robots, to the
main element. How the supply elements are introduced to the supply is currently left unspecified.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 421

Figure O.4: Aspects of an Automobile Assembly Line,IV

An Assembly Plant with three Supply Assembly Lines and a total of 29 Stations

Supply Assembly Line (b)

Assembly Line (a)

Supply

Supply Assembly Line (c)

Main Assembly Line

Flow:
Main Element

Element
Supply

Robot

Robot

Robot

Robot Aggr.

a Station enlarged

Station
S

Figure O.5: A simplified Assembly Plant diagram

O.2.2.1 External Qualities

The domain analyser cum describer7 , who is assumed fully familiar with the domain analysis & description method,
[58], starts with analysing and describing external qualities of the domain. In the case of an assembly plant these
are the solid endurants, or, as they are called in [58], the parts. The domain analyser cum describer, from being
familiar with the method, therefore is, all the time, aware that these (described) parts will, in the transition to
the analysis & description of perdurants, be transcendentally deduced, i.e., “morphed” into behaviours. It is this
a-priory knowledge that guides the analyser cum describer’s determination as to whether parts are to be modeled
as atomic or as compounds, and the decomposition of compound parts into atomic, aggregate and set parts.

O.2.2.1.1 Parts The domain, that is, the universe of discourse, is that of an assembly plant – say for
automobiles, for machinery or for electronic gadgets.

640. In an assembly plant, AP, we can observe

641. an assembly line aggregate, ALA8.

642. From an assembly line aggregate one can observe a composite of a main assembly line, MAL,

643. and aggregate of supply assembly lines, SALA,

7The notion of ‘domain analyser cum describer’ covers one, individually (as the author of this paper) working
person, or a well-managed group of two or more persons, all “equally” familiar with the method of [58].

8We omit observations of motor works (foundry, machining, etc.), body shop (pressing, etc.), paint shop, etc.

422 CONTENTS

Behaviours

Indescribables

Channels

Entities = Describables

transcendental injection of endurants into perdurants

External Qualities

Describer "states"

Transcendense

Endurants

Phenomena of Natural and Artefactual Universes of Discourse

Internal QualitiesUnique Identifiers

Mereologies
Attributes

C
o

m
p

o
si

te
 P

ar
t

P
,

P
s

 =
 P

−
s

e
t

P
ar

t
S

et
s

P
1

,P
2

,.
..

,P
n

Compound Parts

A
to

m
ic

 P
ar

t

Parts

A
n

im
al

s

Living Species

P
la

n
ts

FluidsSolids

Endurants Perdurants

Actions Events Actors

Figure O.6: The simple Ontology Graph underlying our Analysis & Description

644. with the latter being sets SALs = SAL-set.

645. of supply assembly lines,

646. From main and supply assembly lines one can observe aggregates of stations, SA,

647. which are sets Ss = S-set9

648. of two or more stations S. From a station one can observe

649. a main element, ME, (an assembly10),

650. an aggregate robot, RA, which is

651. a set, Rs = R-set,11 of

652. one or more robots, R, and

653. an aggregate, ES, of [“supply”] elements12,

654. which are sets, ESs = E-set,

655. of manufacturing elements E.

9Linear Lines: The mereology of sect. O.2.2.2.2 will order these in a linear sequence
10https://www.merriam-webster.com/dictionary/assembly: Assembly: the fitting together of manufactured ele-

ments into a complete machine, structure, or unit of a machine
11 [77]: Our interpretation of ‘operator’: robot perform processes which consists of tasks. These are perdurants,

that is, an operator will, subsequently, in this report be transcendentally “morphed” into s set of one or more
concurrent processes. These processes are then subject, in the domain model, to invariants, and in a subsequent
requirements “model” into constraints.

12These are local storage, usually simple, mostly atomic solid or fluid elements such as bolts & nuts, glue, etc.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 423

type
640. AP
641. ALA
642. MAL
643. SALA
644. SALs = SAL-set
645. SAL
646. SA
647. Ss = S-set
648. S
649. ME
650. RA
651. Rs = R-set
652. R
653. ES
654. Es = E-set

655. E
value
641. obs ALA: AP → ALA
642. obs MAL: ALA → MAL
643. obs SALA: ALA → SALA
644. obs SALs: SALA → SALs
646. obs SA: (MAL|SAL) → SA
647. obs Ss: SA → Ss
649. obs ME: S → ME
650. obs RA: S → RA
651. obs Rs: RA → Rs
653. obs ES: S → ES
654. obs Es: ES → Es
axiom
647. ∀ ss:Ss • card ss > 1
651. ∀ rs:Rs • card rs > 0

Figure O.7 repeats Fig. O.5 on page 421, but now marked with the names of composite sorts introduced in
Items 640–654.

Flow:
Main Element

Element
Supply

Robot

Robot

Robot

Robot Aggr.

a Station enlarged

RA

R
ME

ES

S

MAL

SALA

SAL

SAL

SAL

S

AP

An Assembly Plant with
3 Supply Assembly Lines

and 29 Stations

merge

Figure O.7: A simplified Assembly Plant diagram
marked with composite endurant sort names

O.2.2.1.2 On Main Elements This section is an aside.

In this section we shall discuss what is meant here by a main element, that is, “what is in store” – what
will/might come up later on.

General

The main element is here modeled as a solid endurant. It is a “place-holder” for “the thing for which the
manufacturing plant” is intended. The plan is to endow main elements with an attribute [Sect. O.2.2.2.3.10 on
page 448]: That attribute may itself be thought of as being a solid endurant. We shall then use the term part13

Robots, then, perform operations on the main element. These operations are functions, which are attributes of
robots. As functions they take the main element [main] part attribute and a set of element supply elements and
yield an updated main element part. So You may think of the main element as a “container” for that main part.
There may be no contents of the container, in which case the main element’s part attribute is "nil". Its content is
“received” from the main element of the previous station, if there is one, else from an element supply. A content

13Not to be confused with the Design Analysis & Description concept of parts, i.e., solid endurants.

424 CONTENTS

that a station can no longer contribute to is “passed” on to the next station, or “fused” in, if from a supply assembly
line, as a supply element, to a main assembly line elements, or, to an outside, the “ready product !”

Assembly Line Element Types
The type of main elements is a pair: the type that is stroven for, that is, the assembly line type, and the type

of the element “currently residing in” the main elements. So each station is particularly typed by its “current”
main element type.

O.2.2.1.3 Automobile Manufacturing: A Wider Context These are, roughly the principal compo-
nents of automobile manufacturing14:

• Chassis: The chassis of the car is the baseline component. All other parts are integrated on, or within the
chassis. This is typically a welded frame that’s initially attached to a conveyor that moves along a production
line. As the frame progresses, the car is literally “built from the frame up” to create a final product. Parts
that are sequentially applied to the chassis include the engine, front and rear suspension, gas tank, rear-end
and half-shafts, transmission, drive shaft, gear box, steering box, wheel drums and the brake system.

• Body: Once the “running gear” is integrated within the frame, the body is constructed as a secondary
process. First, the floor pan is positioned properly, then the left and right quarter panels are positioned
and welded to the floor structure. This step is followed by adding the front/rear door pillars, the body side
panels, rear deck, hood and roof. The entire process is typically executed by robotic machines.

• Paint: Before painting the vehicle, a quality control team inspects the body as it sits. Skilled workers look for
dents, abrasives or other deformations that could create a finishing problem when undergoing the painting
process. Once this step is completed, the car is automatically “dipped” with primer, followed by a layer of
undercoat and dried in a heated paint bay. Once the primer/undercoat process is finished, the car is again
“dipped” with the base coat and again dried before moving the assembly to the next stage.

• Interior: After the structure is entirely painted, the body is moved to the interior department in the plant.
There, all of the internal components are integrated with the body. These components include: instrumen-
tation, wiring systems, dash panels, interior lights, seats, door/trim panels, headliner, radio, speakers, glass,
steering column, all weather-striping, brake and gas pedals, carpeting and front/rear fascias.

• Chassis/Body Mating: The two central major assemblies are next mated for final setup and roll-out. Again,
this process is executed via computer and control machines to ensure speed, and perfect the fit between the
body assembly and the chassis. Once the car is rolling on its own, it’s driven to the final quality control
point, inspected and placed in a waiting line for transportation to its final dealer destination.

O.2.2.1.4 An Assembly Plant Taxonomy Figure O.8 on the next page “graphs” the composition of
solid endurants of an assembly plant according to the endurant composition of Items 640– 654 on page 422.
Some diagram explications: (i) the top left dashed triangle shall show an endurant composition as does the main,
large, dashed triangle; (ii) the vertical dotted lines “hanging down” from two SALs “hint” at the “tree” emanating
down from the “middle” SAL; and (iii) the horisontal dots, . . . , in SAL, S, R and E “lines” hint at any number, 0
or more, of these endurants !

O.2.2.1.5 Aggregate, Set, Core and Sibling Parts We review15, as an aside, the [58, Monograph]
concepts of atomic, compound, aggregates, sets, core or root, and sibling parts.

Atomic and Compound Parts
Atomic parts are solid endurants whose possibly “internal” composition is ignored. Compound parts are solid

endurants which we further analyse into core (or, equivalently, root) and sibling parts.

Aggregates and Sets
Compound parts are either composites of one or more parts of different sorts, i.e., like Cartesians, but where

we avoid modeling a composite as a Cartesian of a definite number of parts – since we may, “later”, wish to “add”
additional parts, or are [finite] sets of zero, one or more parts of the same sort.
We use the term aggregate to cover both kind of compounds. Usually, however, we use aggregates for composites,
and sets for sets !

Cores [Roots] and Siblings
With compound parts we distinguish between the core part and the sibling parts.
The core part is understood as follows: It is to be considered a “proper” part although it may sometime be

more of an abstraction than a solid ! Consider the following example: a car, as seen from the point of view of an
automobile plant, is a composite, with a core, the car as a whole, as “somehow” embodied in the overall software
that monitors and co-controls various of the car’s siblings; these siblings are then further aggregates, each with
their cores and siblings. Immediate car siblings could be the chassis, the motor, the engine train, the body. The
chassis, as an aggregate, has, usually, four wheels, etc. The body, as an aggregate, has, perhaps, four doors, a trunk
and a hood. And each of these, the chassis, motor, engine train, body, etc., has their cores.

We now “formalise” the notion of the core of a compound.

14This account is taken, ad verbatim, from: https://itstillruns.com/car-manufacturing-process-5575669.html.
15The treatment of part cores (in [58] called roots) is here augmented with the ⊖ operation – not mentioned

in [58].

O.2. A DOMAIN ANALYSIS & DESCRIPTION 425

MAL

S S

. . .

SA

ALA

SAL

S

. . .SAL SAL

ME ES

. . .

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

Repeat

ι6

ι3

ι2

ι9

E | "nil"

ι7

ι5

ι4

AP ι1

ι7

ι8

ι10 ι14

ι15 ι12

ι13

ι11

Figure O.8: The Composition of Solid Endurants of an Assembly Plant (AP)
Larger red framed boxes designate set parts.
ι i, π p refer to item i page 422.

• We do so by introducing an otherwise not further defined [binary or distributive] operator, ⊖.

• It applies to a pair of parts:

– one is an aggregate, cp, and

– the other, sp, is

∗ either a single one of its siblings, pi,

∗ or a set of these, {pi, pj , .., pk},

– i.e., cp⊖ps, “somehow removes” ps from p.

We now apply the ⊖ systematically to all components of our domain.

• The ‘core’ of an atomic part is that part.

• The ‘core’ of a composite part is that part “minus” (⊖) its “sibling” parts:

– Let p be a composite part,

– then p1 = obs P1(p), p2 = obs P2(p), ..., pm = obs Pm(p) are its sibling parts

– [where obs P1, obs P2, ..., obs Pm are the observers of parts p (of type P)].

– The ‘core’ of p, i.e., core P(p), is then p⊖ {p1, p2, ..., pm} : Pκ.

• The ‘core’ of a set of parts is that part “minus” (⊖) its “sibling” parts:

– Let ps be a set part (of type Ps = Q-set),

426 CONTENTS

– ‘core’ of ps, i.e., core Ps(ps), is then ps⊖ {q1, q2, ..., qn} : Psκ.

Subsequently introduced unique identifier, mereology and attribute observers apply to core parts as they do to non-
core parts.

O.2.2.1.6 The Core State To encircle the notion of domain core states we need characterise:

• the state narratively, Sect. O.2.2.1.6; and

• the state formally, Sect. O.2.2.1.6 on the facing page.

The Order of Assembly Plant Core Parts
The expression Oe(n) shall express that eκ is of the order n, that is, that eκ contains “around” n core parts.

ι 640 π 421. [AP] Assembly plants are of Oapκ(1).

ι 640 π 421. [ALA] Assembly line aggregates are of Oalaκ
(1) per plant.

ι 642 π 421. [MAL] Main assembly line aggregates are of Omalκ (1) per plant.

ι 642 π 421. [SALA] Supply assembly line aggregates are of Osalaκ
(10 − 20) per plant.

ι 644 π 422. [SALs] Supply assembly line sets are of Osalsκ (10 − 20) per plant.

– Let the number of an assembly plant’s supply assembly lines be nl,

– i.e., supply lines l1, ℓ2, ..., ℓnl
.

ι 644 π 422. [SAL] Supply assembly lines are of Osalκ(1).

ι 646 π 422. [SA] Aggregates of stations are of Osaκ (1) per line.

ι 647 π 422. [Ss] Station sets, for one aggregate, are of Ossκ(50 − 100) per line.

– Let the number of stations of line ℓi, for 0 ≤ nℓ, be nsℓi
;

– ℓ0 is the main assembly line and ℓi, for 0 < i ≤ nℓ, is a supply assembly line.

– Thus the total number, nsss, of stations, sss, over all lines is Σ
i=nl
i=0

(nsℓi
);

– that is, typically, nsss=Osssκ (1000)

ι 649 π 422. [ME] Main elements are of order Omeκ (0 − 1) per station16.

ι 649 π 422. [E] Elements are of order Omeκ (1).

ι 651 π 422. [Rs] Robot aggregates are of order Orsκ (1) per station.

ι 651 π 422. [R] Robots are of order Orκ(10) per station.

ι 653 π 422. [ES] Element supplies are of order Oesκ (1) per station.

ι 654 π 422. [ESs] Element supply elements are of order Oessκ (100) per element supply.

State Narrative
We shall now narrate the assembly plant domain state. We start by referring to Fig. O.9 on the next page.

656. We shall model the assembly plant state, σ, by a set of κore parts composed as follows:

ι 640 π 421 17 (AP) the assembly plant κore apκ:APκ;

ι 641 π 421 (ALA) the assembly line aggregate κore alaκ:ALAκ;

ι 642 π 421 (MAL) the main assembly line κore, malκ:MALκ;

ι 643 π 421 (SALA) the aggregate of supply assembly lines κore, salaκ:SALAκ;

ι 644 π 422 (SALs) the consolidated18 set of all sets of assembly line κores, csalsκ:ALsκ;

ι 646 π 422 (SA) the consolidated19 set of all station aggregates cssaκ:SAκ-set;

ι 647 π 422 (Ss) the consolidated set of all assembly lines’ station set κores, cssκ:Ssκ;

ι 648 π 422 (S) the consolidated set of all assembly lines’ station κores, csκ:Sκ;

ι 649 π 422 (ME) the consolidated set of all main element κores, csmeκ:MEκ;

ι 650 π 422 (RA) the consolidated set of all robot aggregates κores, csraκ:RAκ-set;

ι 651 π 422 (Rs) the consolidated set of all robot set κores, csrsκ:Rsκ;

16In this report we do not go into any detail as to how elements are composed.
17ι itemπ page labels refers to narrative item on page; the corresponding formalisation is found on page[s] 423–423.
18– from both the main assembly line and from all the supply assembly lines
19Henceforth, by consolidated, we mean as in footnote 18.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 427

AP

MAL

S S

ALA

SAL

S

. . . SAL

ES

. . .

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

ME RA

SA

κala

κ

κ

[sa]

κ

κsalamal

apκ

R−set

SA

κ
=
{ mal

sal_n
... ,
sal_1κ

κ

κ
,

,

}

SAL

.

κ κ κ κ κ
E E E R R R

κ

css
sκ

κcses

κ κ

κcsra

csr

κ

− consolidate

cssa

cse

κe e e r r r

csme

csals

csals

κsal_2 sal_nsal_1 κκ

Figure O.9: Red/Blue text labels designate contributions to domain state

ι 652 π 422 (R) the consolidated set of all robot κores, csrκ:Rsκ;

ι 653 π 422 (ES) the consolidated set of all element supply κores, csesκ:ESκ-set;

ι 654 π 422 (Es) the consolidated set of all κore elements, cseκ:Eκ-set;

657. as a set, σsκ .

Endurant State Formalisation

658. We consolidate the main and the supply assembly lines into one kind of assembly line, AL,

659. and their corresponding [consolidated] sets.

type
658. AL = MAL | SAL
659. ALs = AL-set
vaue
ι 640π 421. ap:AP
ι 640π 421. apκ:APκ = core AP(ap)

ι 641π 421. ala:ALA = obs ALA(ap)
ι 641π 421. alaκ:ALAκ = core ALA(ala)

ι 642π 421. mal:MAL = obs MAL(ala)
ι 642π 421. malκ:MALκ = core MAL(ala)

ι 643π 421. sala:SALA = obs SALA(ala)

428 CONTENTS

ι 643π 421. salaκ:SALAκ = core SALA(sala)

ι 644π 422. csals:AL-set = {mal} ∪ obs SALs(sala)
ι 644π 422. csalsκ:AL-setκ = ∪{core AL(al)|al:AL•al ∈ csal}

ι 646π 422. cssa:SA-set = {obs SA(al)|al:AL•al ∈ csal}
ι 646π 422. cssaκ:SA-setκ = ∪{core SA(sa)|sa:SA•sa ∈ cssa}

ι 647π 422. css:S-set = ∪{obs Ss(sa)|sa:SA•sa ∈ cssa}
ι 647π 422. cssκ:S-setκ = ∪{core Ss(obs Ss(s))|s:S•s ∈ css}

ι 648π 422. cs:S-set = ∪ css

ι 648π 422. csκ:S-setκ = {core S(s)|s:S•s ∈ cs}

ι 649π 422. csme:ME-set = ∪{obs ME(s)|s:S•s ∈ css}
ι 649π 422. csmeκ:ME-setκ = core ME(csme)

ι 650π 422. csra:RA-set = ∪{obs RA(s)|s:S•s ∈ css}
ι 650π 422. csraκ:RA-setκ = core RA(csra)

ι 651π 422. csrs:R-set = ∪{obs Rs(ra)|ra:RA•ra ∈ csra}
ι 651π 422. csrsκ:κ = core R(csrs)

ι 652π 422. crs:R-set = ∪{obs Rs(ra)|ra:RA•ra ∈ csra}
ι 652π 422. crsκ:κ = core R(csrs)

ι 653π 422. cses:ES = ∪{obs ES(s)|s:S•s ∈ csra}
ι 653π 422. csesκ:κ = core ES(cses)

ι 654π 422. cse:E-set = ∪{obs Es(es)|es:ES•s ∈ cses}
ι 654π 422. cseκ:κ = core E(cse)

657. σs:(AP|ALA|MAL|SALA|SALs|Ss|S|ME|RA|Rs|R|ES|Es|E)-set =
657. {apκ} ∪ {alaκ} ∪ {malκ} ∪ {salaκ} ∪ csalsκ ∪ cssaκ ∪
657. cssκ ∪ csκ ∪ csmeκ ∪ csraκ ∪ csrsκ ∪ csrκ ∪ csesκ ∪ cseκ

O.2.2.1.7 Invariant: External Qualities
660. No two assembly lines, whether main or supply, are equal;

661. no two stations in same or different assembly lines are equal;

662. no two robots in different stations are equal;

663. no two main elements are equal;

664. no two element supplies in different stations are equal;

665. etc.

660. ∀ al i,al j:AL•{al i,al j}⊆csal ⇒
660.

660. to come

660.
661. ∀ s i,s j:S•{s i,s j}⊆csal ⇒
661.

661. to come

661.
662. ∀ r i,r j:R•{r i,r j}⊆csr ⇒
662.

662. to come

662.
663. ∀ me i,me j:ME•{me i,me j}⊆csme ⇒
663.

663. to come

663.
664. ∀ es i,es j:ES•{es i,es j}⊆cses ⇒
664.

664. to come

O.2. A DOMAIN ANALYSIS & DESCRIPTION 429

664.
665. ...

O.2.2.2 Internal Qualities

External qualities can be said to represent manifestation: that an endurant can be seen and touched. Internal
qualities gives “contents” to the manifests in three ways:

• by the obvious endowment of solid endurants with unique identification [58, Sect. 5.2],

• by stating relations between solid endurants, whether topological or conceptual, e.g., operational, in the form
of mereologies [58, Sect. 5.3], and

• by giving “flesh & blood, body & soul” to these endurants in the form of wide ranging attributes [58, Sect. 5.4].

O.2.2.2.1 Unique Identifiers We shall show that many of the concerns of [77] have their “root” in the
unique identification of solid endurants of the domain.

666. All parts, whether compound or atomic, have unique identifiers.

type
666. API, ALAI, MALI, SALAI, SALsI, SALI, SAI, Ss, SI, MEI, RAI, RsI, RI, ESI, EsI, EI

value
666. uid AP: AP→API,
666. uid ALA: AL→ALAI,
666. uid MAL: MAL→MALI,
666. uid SALA: SALA→SALAI,
666. uid SALs: SALs→SALsI,

666. uid SAL: SAL→SALI,
666. uid SA: SA→SAI,
666. uid Ss: Ss→SsI,
666. uid S: S→SI,
666. uid ME: ME→MEI,
666. uid RA: RA→RAI,

666. uid Rs: Rs→RsI,
666. uid R: R→RI,
666. uid ES: ES→EI,
666. uid E: E→EI

Common Unique Identifier Observer

667. Given that is P (p) holds if p is of type P , and is false otherwise, we can define a common unique identifier
observer function for all assembly plant types.

type
667. P = AP|ALA|MAL|SALA|SALs|SA|Ss|S|ME|RA|Rs|R|ES|Es|E
667. PI = API|ALAI|MALI|SALAI|SALsI|SAI|SsI|SI|MEI|RAI|RsI|RI|ESI|EsI|EI
value
667. uid: P → PI

value
667. uid(p) ≡
667. is AP(p)→uid AP(p),
667. is ALA(p)→uid ALA(p),
667. is MAL(p)→uid MAL(p),
667. is SALA(p)→uid SALA(p),
667. is SALs(p)→uid SALs(p),
667. is SA(p)→uid SA(p),
667. is Ss(p)→uid Ss(p),

667. is S(p)→uid S(p),
667. is ME(p)→uid ME(p),
667. is RA(p)→uid RA(p),
667. is Rs(p)→uid Rs(p),
667. is R(p)→uid R(p),
667. is ES(p)→uid ES(p),
667. is Es(p)→uid Es(p),
667. is E(p)→uid E(p),
667. →false

The Unique Identifier State
As for endurant parts, cf. Sect. O.2.2.1.6 on page 427, we can define a state of all endurant

parts’ unique identifiers. To do so we make use of the uid E observers as also being distribu-
tive, that is, if uid E is applied to a set of solid endurants, say {e1,e2,...,en}, then the result is
{uid E(e1),uid E(e2),...,uid E(en)}.

640uid. uid ap = uid AP(ap)
641uid. uid ala = uid ALA(ala)
642uid. uid mal = uid MAL(mal)
643uid. uid sala = uid SALA(sala)
644uid. uid csal = ∪{uid SAL(sal)|sal:SAL•sal ∈ csal}

430 CONTENTS

645uid. uid csals = ∪{uid SALs(sals)|sals:SALs•sals ∈ csals}
646uid. uid cssa = ∪{uid SA(sa)|sa:SA•sa ∈ cssa}
647uid. uid css = ∪{uid Ss(ss)|ss:Ss•ss ∈ css}
648uid. uid cs = ∪{uid S(s)|s:S•s ∈ css}
649uid. uid csme = ∪{uid ME(me)|me:ME•me ∈ csme}
650uid. uid csra = ∪{uid RA(ra)|ra:RA•ra ∈ csra}
651uid. uid csrs = ∪{uid Rs(rs)|rs:Rs•rs ∈ csrs}
652uid. uid csr = ∪{uid R(R)|r:R•r ∈ csr}
653uid. uid cses = ∪{uid ES(es)|es:ES•es ∈ cses}
654uid. uid cse = ∪{uid Es(es)|es:Es•es ∈ cse}

657uid. uid s σ:(AP|AL|MAL|SALA|SALs|SAL|SA|Ss|S|ME|RA|Rs|R|ES|Es)-set =
657uid. {uid ap} ∪ {uid ala} ∪ {uid mal} ∪ {uid sala} ∪ uid csal ∪ uid cssa ∪
657uid. uid css ∪ uid csme ∪ uid csra ∪ uid csr ∪ uid cses ∪ uid cse

An Invariant

668. All parts are uniquely identified, cf. Item 657 on page 428 and Item 657uid on page 430.

668. card s σ = card uid s σ

Part Retrieval

669. From a unique identifier of a domain and the domain endurant state we can obtain the
identified endurant.

value
669. retr End: UI → P-set → P
669. retr End(ui)(σ) ≡ let p•p ∈ σ ∧ uid(p) = ui in p end
axiom
669. σ = s σ ∧ ui ∈ uid s σ ∧ p ∈ s σ

The Unique Identifier Indexed Endurant State
We can define a map from unique identifiers of endurant parts to these.

value
657. σuid =
640σ. [uid ap 7→ ap,
641σ. uid ala 7→ ala,
642σ. uid mal 7→ mal,
643σ. uid sala 7→ sala,
644σ. uid csal 7→ csal,
645σ. uid csals 7→ csals,
646σ. uid cssa 7→ cssa,

647σ. uid css 7→ css,
648σ. uid cs 7→ cs,
649σ. uid csme 7→ csme,
650σ. uid csra 7→ csra,
651σ. uid csrs 7→ csrs,
652σ. uid csr 7→ csr,
653σ. uid cses 7→ cses,
654σ. uid cse 7→ cse]

We leave it to the reader to state the type of the σuid value !

Taxonomy Map with Unique Identifier Labels
Figure O.10 on the next page20 repeats Figs. O.8 on page 425 and O.9 on page 427. In

Fig. O.10 lines are now labeled with appropriate unique identifiers. This leads up to Fig. O.11 on
page 432.

20A difference between Fig. O.10 and Figs. O.8–O.9 is that in Fig. O.10 we have “moved” the left MAL taxonomy
triangle a level down, to “level”with the right SAL triangles.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 431

S S

. . .

SAL

S

. . .SAL SAL

ME ES

. . .

E | "nil"

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

AP

ala_i

ss_i_j

es_i_j_k ra_i_j_kme_i_j_k

e_i_j_k ess_i_j_k

r_i_j_k_me_i_j_k_l

sala_i

sals_i

sal_i_j

ra_i_j_k

SA

MAL

Repeat

ALA

s_i_j_k

mal_i

sa_i_jsa_0_i

Figure O.10: Taxonomy with Unique Identifier Labels

Figure O.11 on the next page is a first, a graphical, two-dimensional expression. We shall
comment on the graphics.

First one may say that Fig. O.11 shows “horisontally” what Figs. O.8–O.10 shows “vertically”.
Then we note that compound composites and compound sets are expressed as maps from

unique part identifiers to parts (which include these unique identifiers).
And finally we note that each compound part is expressed as a pair: pκ,map, the pκ labels

the upper left outside of the map – such that the parentheses of the pair, (pκ,map), is shown just
before pκ and ends after map.

Unique Identifier State Expressions
We now present the proper Unique Identifier State Expression formula sketched in Fig. O.11. It

will be defined in terms of the generate unique identifier state expression function g uise.

[640 on page 421] AP, Assembly Plants

670. The unique identifier state expression for the assembly plant is the pair of the assembly plant
core, apκ, and the unique identifier state expression for the assembly line aggregate.

value
670. g uise(ap) ≡ (apκ,g uise(ala))
670. where: apκ=core AP(ap) ∧ ala=obs ALA(ap)

432 CONTENTS

salas_i sal_i_j

...

...
,
(salak,

...

sa_i_j_k

(salsk,

ap = (apk,

(sal_i_jk,

ala_i

A
P

A
L

A

S
A

L
A

M
A

L

S
A

L

S
A

L
−

s
e

t
S

A
L

s
 =

sala_i

R
...

R

R

...

(sa_i_j_kk,

...

r1 ,

r2 ,

r1_i

r2_i

rm_i rm

)

S
A

(alak,)))))
)

)))
)

...

...

)
...

...

"similar"

(sask,

S
−

s
e

t
S

s
 =

(s_jk,
...

"similar"

(malk, (sak,

es_i es
me_i me

))

ME
ES

(rs,

ra_i

(rak,

R
A

rs_i

S

s_j_isas_isa_imal_i

R
−

s
e

t
R

s
=

content as for dash lined
the sa_i−>(sak,[...])
"box" above

S
A

Figure O.11: Unique Identifier State Expression

[641 on page 421] ALA, Assembly Line Aggregates

671. The unique identifier state expression for the assembly line aggregate, ala, is the pair of the
assembly line aggregate core, alaκ, and the singleton map from the unique identifier of the
assembly line aggregate to that aggregate – expressed as a core-part annotated map.

value
671. g uise(ala) ≡
671.′ (alaκ,
671.′ [uid ALA(ala)7→
671.′ [uid MAL(mal)7→g uise(mal),
671.′ uid SALA(sala)7→g uise(sala)]])

The one-liner, Item 671′, just above, is too “complex”, better, we think, is the 4 liner just
below, i.e., Items 671′′–671′′′′′.

value
671. g uise(ala) ≡
671.′′ (alaκ,
671.′′′ [uid ALA(ala)
671.′′′′ 7→ [uid MAL(mal) 7→ g uise(mal),
671.′′′′′ uid SALA(sala) 7→ g uise(sala)]])
671. where: alaκ=core AP(ala) ∧ mal = obs MAL(ala) ∧ sala = obs SALA(ala)

[642 on page 421] MAL, Main Assembly Lines

672. The unique identifier state expression for the main assembly line, mal, is the pair of the main
assembly line core, malκ, and the map from the unique identifier of its station assembly, sa,
and the unique identifier state expression for the station assembly.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 433

value
672. g uise(mal) ≡
672. (malκ ,
672. [uid MAL(mal) 7→ [uid SA(sa) 7→ g uise(sa)]])
672. where: malκ=core MAL(mal) ∧ sa = obs SA(mal)

[643 on page 421] SALA, Supply Assembly Line Aggregates

673. The unique identifier state expression for the supply assembly line aggregate, sala, is the pair
of the supply assembly line aggregate core, salaκ, and the singleton map from the unique
identifier of the set of assembly lines to that set – expressed as a core-part annotated map.

value
673. g uise(sala) ≡
673. (salaκ,
673. [uid SALA(sala) 7→ [uid SALs(sals) 7→ g uise(sals)]])
673. where: sals = obs SALs(sala) ∧

[644 on page 422] SALs=SAL-set, Supply Assembly Line Sets

674. The unique identifier state expression for the supply assembly line set, sals, is the pair of the
supply assembly line set core, salsκ, and the map from the unique identifier of each of the
supply assembly lines to that set – expressed as a core-part annotated map.

value
674. g uise(sals) ≡
674. (salsκ,
674. [uid SAL(sal) 7→ g uise(sal) | sal:SAL • sal ∈ sals])
674. where:

[645 on page 422] SAL, Supply Assembly Lines

675. The unique identifier state expression for the supply assembly line, sal, is the pair of the
main assembly line core, salκ, and the singleton map from the unique identifier of its station
assembly, sa, and the unique identifier state expression for that station assembly.

value
675. g uise(sal) ≡
675. (salκ ,
675. [uid SAL(sal) 7→ [uid SA(sa) 7→ g uise(sa)]])
675. where: salκ=core SAL(sal) ∧ sa = obs SA(sal)

[646 on page 422] SA, Station Aggregates

676. The unique identifier state expression for the station aggregate, sa, is the pair of the station
aggregate core, salκ, and the map from the unique identifier of each of the stations to that
set – expressed as a core-part annotated map.

434 CONTENTS

value
676. g uise(sa) ≡
676. (saκ ,
676. [uid SA(sa) 7→ g uise(ss)])
676. where: saκ = core SA(sa) ∧ ss = obs Ss(sa)

[647 on page 422] Ss=S-set, Station Set

677. The unique identifier state expression for a set of stations, ss, is the pair of the station set
core, ssκ, and the singleton map from the unique identifier of each of the stations to that
set – expressed as a core-part annotated map.

value
677. g uise(ss) ≡
677. (ssκ ,
677. [uid Ss(s) 7→ g uise(s) | s:S • s ∈ ss])
677. where:

[648 on page 422] S, Stations

678. The unique identifier state expression for stations, s, is the pair of the station core, sκ, and
the map from

• the unique identifier of that stations’ main element to that main element, considered an
atomic,

• the unique identifier of that stations’ element supply to that element supply, here con-
sidered an “atomic” (!), and

• the unique identifier of that stations’ robot aggregate to the unique identifier state
expression for that robot aggregate.

value
678. g uise(s) ≡
678. (sκ ,
678. [uid ME(me) 7→ me ,
678. uid ES(es) 7→ es ,
678. uid RA(ra) 7→ g uise(ra)])
678. where: sκ = core S(s) ∧ me = obs ME(s) ∧ es = obs ES(s) ∧ ra = obs RA(s)

[649 on page 422] ME, Main Elements

Item 678 above expresses that g uise(me) = me.

[650 on page 422] RA, Robot Aggregates

679. The unique identifier state expression for robot aggregates, ra, is a pair of the robot aggregate
core, raκ, and the singleton map from unique identifier of the robot aggregate to the unique
identifier state expression for the set of robots, rs, of that aggregate.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 435

value
679. g uise(ra) ≡
679. (raκ ,
679. [uid Rs(rs) 7→ g uise(rs)])
679. where: rs = obs Rs(ra)

[651 on page 422] Rs=R-set, Robot Sets

680. The unique identifier state expression for robot sets, rs, is a pair of the robot set core and
the map from the unique identifiers of the robots of the set to these robots.

value
680. g uise(rs) ≡
680. (rsκ ,
680. [uid R(r) 7→ r | r:R • r ∈ rs])

[652 on page 422] R, Robots

Item 680 expresses that g uise(r) = r.

[653 on page 422] ES, Element Supplies

Item 678 on the preceding page above expresses that g uise(es) = es.

[654 on page 422] Es=E-set, Element Supply Sets

Item 678 on the preceding page hence expresses that g uise(ess) = ess.

[655 on page 422] E, Elements

Item 678 on the preceding page hence expresses that g uise(e) = e.

O.2.2.2.2 Mereology Observation of endurant parts does not itself leave any trace as to their
taxonomy, nor does the identification of observed parts.

Mereology is what brings forth the taxonomy structures that is rendered, one way or another,
in all the figures shown so far !

We shall show that many of the concerns of [77] have their “root” in mereology-properties of the
domain; and we shall show that the topological aspects of the mereology “supports” Microsoft’s
Automated Graph Layout Tool [142].

We express the mereology properties as relations between the mereology of the endurant being
inquired, some or all elements of the mereology of the “ancestor” endurant, and some or all
elements of the mereology of the “descendant” endurant(s).

Common to all mereo P observers we “retrieve” the “predecessor” part, from the overall en-
durant state, and observe its mereology, while also “retrieving” the “descendant” parts, also from
the overall endurant state, given their identifiers from the mereology of the part under observation,
and then correlate them.

We then end up with a a set of mereology types, a set of corresponding mereology observer
signatures [not definitions], and a set of corresponding axioms. For any given domain the mere-
ology expresses some property that holds and that property transpires as the fix-point solution
to the mutually [but not recursively] – sort-of simultaneous[ly] – expressed axioms [in the form of
equations].

The overall property of the mereologies presented here is to secure that no two parts have
identical mereologies.

That should be a provable property of what is presented below.

436 CONTENTS

• The following numbered paragraphs start with the ιtem number of the endurant, whose
name is given next. The item numbers are formally defined on page 422.

ι 640. AP: Assembly Plant

681. The mereology of an assembly plant is

• the unique identifier of its assembly line aggregate – such that

(a) the successor part’s mereology identifies the assembly plant.

type
681. AP Mer = ALAI
value
681. mereo AP: AP → AP Mer
axiom
681. let alai = mereo AP(ap) in
681a.let (api,) = mereo ALA(retr ALA(alai)) in retr AP(api) = ap end end

ι 641. ALA: Assembly Line Aggregate

682. The mereology of an assembly line aggregate is a pair

• of the unique identifier of the main assembly line

• and the unique identifier of the supply assembly line aggregate – such that

(a) the [assembly plant’s, i.e., the] predecessor’s successor is that assembly line aggre-
gate and

(b) the two successors’ ancestor are likewise.

type
682. ALA Mer = API × (MALI×SALAI)
value
682. mereo ALA: ALA → ALA Mer
axiom
682. let (api,(mali,salai)) = mereo ALA(ala) in
682a. let alai = mereo AP(retr AP(api)),
682b. (alai′,) = mereo MAL(retr MAL(mali)),
682b. (alai′′,) = mereo SALA(retr SALA(salai)) in
682a. alai = uid ALA(ala) ∧
682b. alai = alai′ = alai′′ end end

ι 642. MAL: Main Assembly Line

683. The mereology of a main assembly line aggregate is

• the pair of the unique identifier of an assembly line aggregate and

• the unique identifier of a station aggregate – such that

(a) the main assembly line’s unique identifier is the same as the [assembly line aggre-
gate] ancestor’s successor and

(b) [station aggregate] successor’s ancestor.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 437

type
683. MAL Mer = ALAI × SAI
value
683. mereo MAL: MAL → MAL Mer
axiom
683. let (alai,sai) = mereo MAL(mal), mali = uid MAL(mal) in
683a. let (,(mali′,)) = mereo ALA(retr ALA(alai′)),
683b. (mali′′,) = mereo SA(retr SA(sai)) in
683a. mali = mali′ ∧
683b. mali = mali′′ end end

ι 643. SALA: Supply Assembly Line Aggregate

684. The mereology of a supply assembly line aggregate is

• the unique identifier of an assembly line aggregate and

• a pair of the unique identifier of a supply assembly line set – such that

(a) the [assembly line aggregate] predecessor’s successor and

(b) the [supply line set] successor’s predecessor

supply line aggregate identifiers are the same.

type
684. SALA Mer = ALAI × SALsI
value
684. mereo SALA: SALA → SALA Mer
axiom
684. let (alai,salsi) = mereo SALA(sala), salai=uid SALA(sala) in
684. let (,(,salai′)) = mereo ALA(retr ALA(alai)),
684. (salai′′,) = mereo SALs(retr SALs(salsi)) in
684a. salai = salai′ ∧
684b. salai = salai′ end end

ι 644. SALs=SAL-set: Simple Assembly Line Set

685. The mereology of a set of simple assembly lines is a pair of

• the unique identifier of a supply assembly line aggregate and

• a set of the unique identifiers of station aggregates – such that

(a) the [supply line aggregate] predecessor’s successor and

(b) each individual simple assembly line’s predecessor

supply line set identifiers are the same.

type
685. SALs Mer = SALAI × SAI-set
value
685. mereo SALs: SALs → SALAI × SAI-set
axiom
685. let (salai,sais) = mereo SALs(sals), salsi = uid SALs(sals) in
685. let (,salsi′) = mereo SALA(retr SALA(salai)) in
685a. salsi = salsi′ ∧
685b. ∀ sai:SAI•sai ∈ sais ⇒ let (sals′′,) = mereo SA(retr SA(sai)) in salsi=sals′′ end
685. end end

438 CONTENTS

ι 645. SAL: Simple Assembly Lines

686. The mereology of a simple assembly line is a pair of

• the unique identifier of a [predecessor] supply assembly line set and

• the unique identifier of a [successor] station assembly – such that

(a) the [supply assembly line set] predecessor’s and

(b) the [station assembly] successor’s

simple assembly line identifiers are the same and that of the simple assembly line being
observed.

type
686. SAL Mer= SALsI × SAI
value
686. mereo SAL: SAL → SAL Mer
axiom
686. let (salsi,sai) = mereo SAL(sal), sali = uid SAL(sal) in
686. let (,sali′) = mereo SALs(retr SALs(salsi)), (sali′i,) = mereo SA(retr SA(sai)) in
686a. sali = sali′ ∧
686b. sali = sali′′

686. end end

ι 646. SA: Station Aggregate

687. The mereology of a station aggregate is a pair of

• the unique identifier of the [simple assembly line] predecessor and

• the unique identifier of the [station set] successor – such that

(a) their station aggregate (successor), respectively (predecessor) station aggregate
identifiers are the same as that of the station aggregate being observed.

type
687. SA Mer = SALI × SsI
value
687. mereo SA: SA → SA Mer
axiom
687. let (sali,ssi) = mereo SA(sa), sai = uid SA(sa) in
687. let (,sai′) = mereo SAL(retr SAL(sali)), (sai′′,) = mereo Ss(retr Ss(ssi)) in
687a. sai = sai′ = sai′′ end end

ι 647. Ss = S-set: Station Sets

688. The mereology of a station set is a pair of

• the unique identifier of a [predecessor] station aggregate and

• a set of unique identifiers of [successor] stations – such that

(a) that station aggregate’s successor and

(b) that each successor station’s predecessor

unique identifiers are the same as that of the observed station set.

O.2. A DOMAIN ANALYSIS & DESCRIPTION 439

type
688. Ss Mer = SAI × SI-set
value
688. mereo Ss: Ss → Ss Mer
axiom
688. let (sai,sis) = mereo Ss(ss), ssi = uid Ss(ss) in
688a. let (,ssi′) = mereo (retr SA(sai)) in ssi = ssi′ end
688b. ∀ si:SI • si ∈ ssi • let (ssi′′,) = mereo S(retr S(si)) in ssi = ssi′′ end end

ι 648. S: Station
For all but stations the mereologies of solid endurants have modeled the part-hood relation “part
of” (in the sense of “sub-part of”). All taxonomy figures21 show this “sub-part” relation by means
of the lines connection the •s. Figure O.5 on page 421 show two additional [topological] part-
hood relations: “adjacent to” and “incident upon”. Two stations of a simple assembly line may be
adjacent to one another. The last station of a supply assembly line is incident upon a station of
a main assembly line. The first station of any assembly line has no predecessor. The last station
of a main assembly line has no successor.

689. Thus the mereology of a station, s identified by si, is a pair of,

(a) first a pair, modeling “part of”:

i. the unique identifier of a station set, ssi, the predecessor of s,

ii. the unique identifiers of a triplet [(mei, esi, rai)] of successors of s:

A. a main element mei,

B. an element supply, esi, and

C. a robot aggregate rai,

and

(b) then a pair, (nsi, psi), modeling, nsi “[next] adjacent to”, and, psi “[previous] incident
upon” such that,

i. for the first of the pair, i.e., nsi, is

A. either ”nil” for the “last” station, the outlet, of a main line,

B. or is the next station of a main or supply line,

C. or, for s being the “downstream last” of a supply line station, identifies a
mainline station.

ii. for the second of the pair, psi is [again] a pair: (plsi, lslsi)), where

A. plsi is the station identifier of a station of the line to which s belongs, where

• plsi is ”nil”, if s is the “first, upstream”, station of its line, or

• plsi properly identifies an “upstream” immediately previous station,

and where lslsi is

B. either ”nil”, ie., station s is not one incident upon by a supply assembly line,

C. or is the proper identifier of a supply assembly line’s “downstream, last” station
such that

• no two main line stations have the same supply assembly line incident upon
them, and

• where the number of supply assembly lines exactly equal the number of main
line stations that have supply assembly lined incident upon them.

All of the above must satisfy the following invariants:

21Figs. O.6 on page 422, O.7 on page 423, O.8 on page 425, O.9 on page 427 and O.10 on page 431

440 CONTENTS

(c) the unique identifier, si, of s, is in the the set of unique station identifiers of the
predecessor,

and such that the unique identifiers of

(d) the main element’s,

(e) the element supply’s, and

(f) the robot aggregate’s

predecessors are all the same as that of the station under observation – and such that

(g) the stations, ss, of the ancestor station set do indeed form a linear sequence;

(h) si′ and si′′ [in (si′, si′′)] are indeed station identifiers of that sequence – or one is that
of the next-but-last station of a supply assembly line and the other is that of a station
of a main assembly line;

(i) si′ [in ("nil", si′)] is indeed a station identifier of that sequence; and

(j) si′ [in (si′,"nil")] is indeed a station identifier of that sequence.

We model the notion of linear sequences [here of stations].

(k) Let ls:LS=S∗ stand for a linear sequence of two or more stations S.

(l) Let ss stand for a set of two or more stations, i.e., ss∈Ss=S-set.

(m) Then let linear Ss be the function which “converts” ss to ls.22

type
689. S Mer = (SsI × (MEI × ESI × RAI)) × ((opt SI×opt SI)×opt SI)
689. opt SI = ({|′′nil′′|} | SI)

value
689. S Mer: S → S Mer
axiom
689. let ((ssi,(mei,esi,rai)),((si b,si a),si sl)) = S Mer(s), si = uid S(s) in
689. let (,sis) = mereo Ss(retr Ss(ssi)), (si′,) = mereo ME(retr ME(mei)),
689. (si′′,) = mereo ES(retr ES(esi)), (si′′′,) = mereo RA(retr RA(rai)) in
689(b)ii. si ∈ sis ∧
689d. si = si′ ∧
689e. si = si′′ ∧
689f. si = si′′′ end end

689(a)i. ∀ s:S • let (,(b si,a si)) = S Mer(s) in
689(a)i. b si 6=′′nil′′∧a si 6=′′nil′′ ∨
689(a)i. b si=′′nil′′∧a si 6=′′nil′′ ∨
689(a)i. b si 6=′′nil′′∧a si=′′nil′′ end
689(a)ii.
689(a)iiA.
689(a)iiB.
689(a)iiC.
689(b)i.
689(b)iA.
689(b)iB.
689(b)iC.

22It is not a matter of whether or not an ss∈Ss=S-set may form a linear sequence. They simply do ! An assembly
plant’s assembly lines simply are linear ! Constellations of stations not forming linear sequences do not contribute
to a proper assembly plant !

O.2. A DOMAIN ANALYSIS & DESCRIPTION 441

689(b)ii.
689(b)iiA.
689(b)iiB.

type
689k. LS = S∗

axiom
689k. ∀ ls:LS • len ls > 1

689k. is linear: LS → Bool
689k. is linear(ls) ≡
689k. ∧ let (,(null,)) = mereo S(ls[1]) in null = ′′nil′′ end
689k. ∧ ∀ i:Nat • {i,i+1}⊆inds ls ⇒
689k. let (,(,si a)) = S Mer(ls[i]),
689k. (,(si b,)) = S Mer(ls[i+1]) in si a = uid S(ls[i]) = si b end
689k. ∧ let (,(,s uid)) = mereo S(ls[len ls]) in
689k. ∧ (s uid = ′′nil′′ ∨ is MAL S(retr S(s uid))) end

value
689k. is MAL S: S → Bool
689k. is MAL S(s) ≡
689k. let ((ssi,),) = mereo S(s) in
689k. let (sai,) = mereo Ss(retr Ss(ssi)) in
689k. let ali = mereo SA(retr SA(ssi)) in
689k. is MALI(ali) end end end

689l. ss:Ss, axiom card ss > 1
689g. linear Ss: S-set → S∗

689g. linear Ss(ss) ≡
689g. let ls:LS • elems ls = ss ∧
689g. ∀ i:Nat • {i,i+1}⊆inds ls ⇒
689g. let (,(,a si)) = mereo S(ls[i])
689g. let (,(b si,)) = mereo S(ls[i+1]) in
689g. a si = b si end
689g. ls end end

ι 649. ME: Main Elements

690. The mereology of a main element is a singleton

• of the unique identifier of its predecessor station – such that

(a) that station identifies that main element.

type
690. ME Mer = SI
value
690. mereo ME: ME → ME Mer
axiom
690a. let si = mereo ME(me), mei = uid ME(me) in
690a. let (,(mei′, ,)) = mereo S(retr S(si)) in
690a. mei = mei′ end end

ι 650. RA: Robot Aggregate

442 CONTENTS

691. The mereology of a robot aggregate is

• a pair of the unique identifier of a station (the predecessor) and

• a unique identifier of a robot set (the successors) – such that

(a) the station predecessor identifies the robot aggregate, and

(b) the identified robot set identifies the same robot aggregate.

type
691. RA Mer = SI × RsI
value
691. mereo RA: RA → RA Mer
axiom
691. let (si,rsi) = mereo RA(ra), rai = uid RA(ra) in
691. let (,(rai′, ,),) = mereo S(retr S(si)),
691. (rai′′,) = mereo Rs(retr Rs(rsi)) in
691a. rai = rai′ ∧
691b. rai = rai′′ end end

ι 651. Rs=R-set: Robot Set

692. The mereology of a robot set is a pair of

• the unique identifier of a robot aggregate and

• a set of unique identifiers of robots – such that

(a) the identified robot aggregate identifies the robot set, and

(b) all the identified robots also identifies that robot set.

type
692. Rs Mer = RAI × RI-set
value
692. mereo Rs: Rs → Rs Mer
axiom
692. let (rai,ris) = mereo Rs(rs), rsi = uid Rs(rs) in
692a. let (,rsi′) = mereo RA(retr RA(rai)) in rsi = rsi′ end
692a. ∀ ri:RI • ri ∈ ris ⇒ let rsi′′ = mereo R(retr R(ri)) in rsi = rsi′′ end end

ι 652. R: Robot

693. The mereology of a robot is

• a singleton of the unique identifier of a robot set – such that.

(a) that robot set identifies the robot.

type
693. R Mer = RsI
value
693. mereo Rs: Rs → Rs Mer
axiom
693. let rsi = mereo R(r), ri = uid R(r) in
693a. let (,ris) = mereo Rs(retr Rs(rsi)) in ri ∈ ris end end

ι 653. ES: Element Supply

O.2. A DOMAIN ANALYSIS & DESCRIPTION 443

694. The mereology of an element supply is a pair of

• the unique identifier of a station and

• the unique identifier of an element supply set – such that

(a) the identified station identifies the element supply, and

(b) the identified element supply set identifies the element supply.

type
694. ES Mer = SI × EsI
value
694. mereo ES: ES → ES Mer
axiom
694. let (si,esi) = mereo ES(es), esi = uid ES(es) in
694. let ((,(,esi′,)),) = mereo ES(retr ES(esi)), esi′′ = uid ES(es) in
694a. esi = esi′ ∧
694b. esi = esi′′ end end

ι 654. Es=E-set: Element Supply Set

695. The mereology of an element supply set is a pair of

• the unique identifier of an element supply aggregate and

• a set of unique identifiers of elements – such that

(a) the identified element supply aggregate identifies the element supply set and

(b) the all the element identifiers identifies the element supply set.

type
695. Es Mer = ESI × EI-set
value
695. mereo Es: Es → Es Mer
axiom
695. let (esi,eis) = mereo Es(es), es i = uid Es(es) in
695a. let (,es j) = mereo Es(retr Es(esi)) in es i = es j end ∧
695b. ∀ ei:EI•ei ∈ eis ⇒ let es k = mereo E(retr E(ei)) in es i = es k end end

ι 655. E: Elements

696. The mereology of an element is

• a singleton of the unique identifier of an element supply set – such that

(a) this identifier identifies the element’s supply set.

type
696. E Mer = EsI
value
696. mereo E: E → ES Mer
axiom
696. let esi = mereo E(e), eis = uid E(e) in
696a. let (,eis′) = mereo Es(retr Es(esi)) in eis = eis′ end end

Comments on the Mereology Presentation

444 CONTENTS

It is all very tedious: Mereology after mereology – of each and all of the solid endurants. Their
narratives and formalisations, expression-wise, all follow the same “pattern”, and the “contents”
follow, almost mechanical, from the taxonomy figures23 and, wrt. stations, from Figs. O.5 on
page 421 and O.7 on page 423.

I have not followed a strict narrative for the 16 mereology presentations, and even the formulas
differ slightly. Once I get time I will probably device a LATEX macro so as to generate consistent
narratives.

Distances of Stations from Outlet

Paths:

We shall examine an ordering, �, on stations. To this end we introduce the notion of paths. A
path is a sequence of station identifiers such that

697. A path is a non-empty sequence of station identifiers such that

698. the first identifier is that of the first station of a main assembly line,

699. and such that

700. adjacent identifiers of a path are those of neighbouring stations,

(a) whether of the same assembly line,

(b) or of

i. the first station of a supply assembly line

ii. and of the station of the main assembly line onto which supply assembly line is
joined.

type
697. Path = SI∗

axiom [paths of an assembly plant]
697. ∀ p:Path • len p > 0 ∧
698. let 〈si〉̂p′ = p, ss:Ss = obs Ss(obs SA(mal)) in
698. let s:S • s ∈ ss ∧ let (,(,nil))=mereo S(s) in nil=′′nil′′∧si=uid S(s) end end
699. ∧
700. ∀ i:Nat • {i,i+1}⊆inds p ⇒
700. let (,(pi,)) = mereo S(retr S(i)), (,(,si)) = mereo S(retr S(i+1)) in
700a. (pi=p(i+1) ∧ si=p(i))
699. ∨
700(b)i. (
700(b)i. ∧
700(b)ii. ...)
697. end end

Set of all Paths:

From an assembly plant we can then generate the set of all paths.

701.

702.

703.

704.

23Figs. O.6 on page 422, O.7 on page 423, O.8 on page 425, O.9 on page 427 and O.10 on page 431

O.2. A DOMAIN ANALYSIS & DESCRIPTION 445

705.

706.

701.
702.
703.
704.
705.
706.

Distance:

Given any station of an assembly plant we can then calculate its distance from the main line
outlet.

707.

708.

709.

710.

711.

712.

707.
708.
709.
710.
711.
712.

The � Relation:

713. Given any two stations of an assembly plant we can then express which of the two “precedes”
the other wrt. distance from the main line outlet.

713.

O.2.2.2.3 Attributes

General

The real action of an assembly line is focused in the stations. The robots apply elements to
the contents of the main element. So, in treating now the attributes of assembly lines, we shall in
this early version of this project report, focus on the rôle of elements.

Elements and Parts

The term ‘part’ is a main term of the domain analysis & description method [58] that we use. It
is not to be confused with the same term, i.e., part, used, normally, in connection with machine
parts, part assembly, etc. The term Main Element is used to name the solid endurant of a station,
namely that which, so-to-speak, “holds” the main object of concern: the thing being assembled.
We shall think of main elements to be some form of manifest “carrier”. We shall then ascribe

446 CONTENTS

such main elements an attribute, and here we shall switch to the use of the term part, namely a
main part. So element supplies, which we hitherto explained as containing elements for use in the
assembly of main parts, could, as well be called parts. Whereas solid endurants such as stations
and robot will, later, be “morphed”, i.e., transcendentally deduced, into behaviours, we shall not
morph main parts into behaviours – not as long, at least, as they stay within the assembly lines.
Once a main part has left a main assembly line, “from” its last station, then it may, in some other
domain model, attain “life” in the form of a behaviour.24

Relationship to [77]

We shall show that many of the concerns of [77] have their “root” in attribute-properties of
the domain.

Specifics

O.2.2.2.3.1 ι 640. AP: Assembly Plant: We omit treatment of assembly plant attributes.

O.2.2.2.3.2 ι 641. ALA: Assembly Line Aggregate: We presently omit treatment of assembly
line aggregate attributes.

O.2.2.2.3.3 ι 642. MAL: Main Assembly Line: With every supply assembly line we associate
the attributes

714. that it is a main assembly line, and that

715. the main elements of its stations contain parts of a specific (to be finalised) element type.

type
714. AL Typ = ′′Main′′

715. ME Typ = E Typ
value
714. attr AL Typ: MAL → AL Typ
715. attr ME Typ: MAL → ME Typ

O.2.2.2.3.4 ι 643. SALA: Supply Assembly Line Aggregate: We presently omit treatment of
supply assembly line aggregate attributes.

O.2.2.2.3.5 ι 644. SALs: Supply Assembly Line Set: We presently omit treatment of supply
assembly line set attributes.

O.2.2.2.3.6 ι 645. SAL: Supply Assembly Lines: With every supply assembly line we associate
the attributes that

716. it is a supply assembly line25,

717. the main elements of its stations contain parts of a specific (to be finalised) element type,

718. it “feeds” into an identified main line station, and that

719. it is either “feeding” into the main line at the ”left” or at the ”right” !

24The main parts leaving the main assembly line of an automobile factory, in an orderly fashion, may then, as
an automobile, be able to leave by its own means !

25– where main assembly lines are ”Main” !

O.2. A DOMAIN ANALYSIS & DESCRIPTION 447

type
716. AL Typ = ′′Supply′′

717. ME Typ = E Typ
719. Feed == ′′Left′′ | ′′Right′′

value
716. attr AL Typ: SAL → AL Typ
717. attr ME Typ: SAL → ME Typ
718. attr MAL S: SAL → SI
719. attr Feed: SAL → Feed

O.2.2.2.3.7 ι 646. SA: Station Aggregate: We presently omit treatment of station aggregate
attributes.

O.2.2.2.3.8 ι 647. Ss=S-set: Station Set: We presently omit treatment of station set at-
tributes.

O.2.2.2.3.9 ι 648. S: Station: We first discuss some of the rôles played by the robots, main
element part and element supply of a station.

• Robots of a station are capable, at any one time of performing one of a set of one or more
operations. Robots and their operations have names, RNm respectively OpNm.

So we can attribute a station with

type
720. CAP = RNm →m OpNm-set

We allow two or more robots of any one station to “feature” the same, named operation !

• Operations, OP, are functions from a main element part and

– either a single part provided by a supply line, if the operation is performed at a main
line station, and

∗ either

∗ or a set of elements provided by that stations element supply

– to an updated main element part.

type
721. OP = ME Part × (ME Part|E-set) → ME Part

• So a Station can be given the following attribute:

type
721. OPS = OpNm →m OP

Two or more differently named operations may, in fact, designate identical operations !

• Operations have types:

type
OpTyp = ME Part Typ × (ME Part Typ | E Typ∗) × ME Part Typ

448 CONTENTS

So we assume that there are (meta-) functions like:

value
type of: E → E−Typ, ME Part → ME Part Typ, is of type: E×E Typ → Bool, etc.

We now “return” to our attribute “ascription story” proper !

With a station we can associate the following attributes:

720. The named operations that can be performed by it robots;

721. the catalogue of these operations;

722. the area of the assembly floor covered by the station;

723. the identified zones (sub-areas) into which the station is divided;

type
720. RNm, OpNm
720. CAP = RNm →m OpNm-set
721. OPS = OpNm →m OP
721. OP = ME Part × (ME Part|E-set) → ME Part
722. Sta Area = AREA

723. Zones = ZId →m Zone
723. Zone = Zone Area
723. Zone Area = AREA

value
720. attr CAP: S → CAP
721. attr OPS: S → OPS
722. attr StaArea: S → StaArea
723. attr Zones: S → Zones
axiom
723. [∪ of zone areas ≡ station area]

O.2.2.2.3.10 ι 649. ME: Main Element: With main elements we associate the following pro-
grammable attribute:

724. the main part, mp:ME Part and

725. the types of the main part before, during and after robot operations, i.e., as it enters the
station, during its stay at the station, and as it leaves the station.

type
724. ME Part
725. ME Part Types = E Typ∗

value
724. attr Part: ME → ME Part
725. attr ME Part Types ME → ME Part Types

Caveat: The above type model is a bit simplified ! Shall/must be reviewed !

O.2.2.2.3.11 ι 650. RA: Robot Aggregate: Caveat: It seems that either stations or robot
aggregates must have some form of awareness, expressed in the form of an attribute, of the tasks to
be collectively, co-operatively performed by the ensemble of robots. I am currently contemplating
such a model !

O.2. A DOMAIN ANALYSIS & DESCRIPTION 449

O.2.2.2.3.12 ι 651. Rs=R-set: Robot Set: We presently omit treatment of robot set at-
tributes.

O.2.2.2.3.13 ι 652. R: Robot: With a robot we can associate the following attributes:

726. the zone to which it is allocated;

727. the operations it can perform and their type;

728. where we leave unspecified these element (i.e., part) types.

729. ...

type
726. R Zone = Zone
727. R Ops = OpNm →m OpTyp
727. OpTyp = ME Part Typ × (ME Part Typ|E Typ∗) × ME Part Typ
728. ME Part Typ, E Typ
729. ...
value
726. attr RZone: R → RZone
727. attr ROps: R → ROps
728. ...
729. ...

O.2.2.2.3.14 ι 653. ES: Element Supply: An element supply can be characterised by

730. a catalogue of element “quantities on hand” and their type.

type
730. ES QoH Typ = E Typ × Nat
value
730. attr ES QoH Typ: ES → ES QoH Typ

O.2.2.2.3.15 ι 654. Es=E-set: Element Supply Set: We presently omit treatment of element
set attributes.

O.2.2.2.3.16 ι 655. E: Elements: An element (i.e., a part) can be characterised by

731. its type

type
731. E Typ
value
731. attr E Typ: E → E Typ

O.2.2.3 Comments wrt. [77]

We shall now relate the various segments of our model to [77].

to be written

450 CONTENTS

An Assembly Plant with three Supply Assembly Lines and a total of 29 Stations

Supply Assembly Line (b)

Assembly Line (a)

Supply

Supply Assembly Line (c)

Main Assembly Line

Flow:
Main Element

Element
Supply

Robot

Robot

Robot

Robot Aggr.

a Station enlarged

Station
S

MAL

S S

. . .

SA

ALA

SAL

S

. . .SAL SAL

ME ES

. . .

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

Repeat

ι6

ι3

ι2

ι9

E | "nil"

ι7

ι5

ι4

AP ι1

ι7

ι8

ι10 ι14

ι15 ι12

ι13

ι11

Figure O.12:

O.2.3 Perdurants

O.2.3.1 From Parts to Behaviours

We refer the reader to Figs. O.5 on page 421 and O.8 on page 425 – summarised in Fig. O.12.

• By transcendental deduction, see [58, Chapter 5], we “morph” core parts, pκ, i.e., including
atomic parts, into behaviours βp.

• Behaviour βap coordinates behaviour βala with the rest of the manufacturing plant – remem-
ber: the assembly line complex is only one among several factory elements.

• Behaviour βala coordinates the main assembly line behaviours with that of the behaviour of
the supply assembly lines aggregate.

• Behaviour βmal coordinates the main assembly line’s stations.

• Behaviour βsala coordinates the total of all supply lines.

• Behaviours βsal coordinates the specific supply assembly line’s stations.

• Behaviour βsa coordinates the interaction between the stations of an assembly line.

• Behaviour βs coordinates the specific station’s elements (main element, robots and element
supply) as well as that station’s interaction with neighbouring stations.

• Behaviour βme participates in the main elements interaction with its station’s robots.

O.3. DISCUSSION 451

• Behaviour βes responds to its station’s robots’ requests for supply elements.

• Behaviour βra coordinates the specific station’s robots.

• Behaviours βr interacts with its station’s main element, its other robots, and its element
supply.

• Behaviours βe – is presently left unspecified.

O.2.3.2 Channels

O.2.3.3 Actors

O.2.3.3.1 Actions and Events

O.2.3.3.2 Behaviours

to be written

O.2.3.4 System Initialisation

O.3 Discussion

We shall relate the model of Sect. O.2 to [77]. To us [77] both describes and prescribes: describes
some aspects of the problem domain and prescribes some requirements.

to be written

O.4 Conclusion

We shall discuss whether the kind of work reported in [77] could be supported, made easier, made
more complete, given that their domain is first properly described.

O.4.1 Models and Axioms

to be written

O.4.2 Learning Forwards, Practicing In Reverse

The Danish philosopher Søren Kierkegaard (1813–1855) is quoted as saying

Life can only be understood backwards; but it must be lived forwards.

Now, why do we bringing that quote here ? ! We do so for the following, slightly, if not radically
less “lofty” reason: We learn forward, bit-by-bit, not seeing the overall picture before at the end.
Then, when we shall practice what we have been taught, what we have learnt, we apply that
knowledge, so-to-speak, backwards, knowing where what we shall end up with from the start of
that “doing it”.

When You study [58] You learn the subject forward. But having hopefully understood the
domain modeling discipline, You You practice it “sort-of” in reverse.

My reason for bring the Søren Kierkegaard quote is to make You remember “that” !

452 CONTENTS

O.4.3 Diagrammatic Reasoning

One, of many, observations of this report, are the examples of what I shall refer to as diagrammatic
reasoning26.

One way in which this is manifested, in this compendium is in Figs. O.5 on page 421, O.6 on
page 422, O.7 on page 423, O.8 on page 425, O.9 on page 427 and O.10 on page 431. You may
think that the number of these figures is a bit high. Very well, but they helped this “seasoned
domain engineer” to come to grips with the seeming complexities of the domain being modeled.
The internal relationships between these figures is obvious, “when You look at them !”, and their
“external” relations to the narration & formalisation items should also be “obvious” !

O.4.4 The Management of Domain Modeling

A Domain Modeling Development Plan

We outline a plan for the commercial/professional development of a domain model for a “real”
[say automobile] assembly plant:

• Study:

– A domain is suggested.

– One or two seasoned domain engineers cum scientists , the initiation team, make in-
quiries about the domain:

∗ Visit one or more such domain sites.

∗ Search the Internet for reliable accounts on the domain.

∗ Read technical/scientific papers about the domain.

– At some point the initiation team decides to do one or more experimental domain
modeling efforts.

• Experiment:

– They follow the dogma of [58] – “strictly”.

– (This report is an example of such an experimental research and engineering develop-
ment.)

– They may waver along different paths, maybe abandon/abort certain modeling direc-
tions, eventually reaching some, usually, incomplete domain analysis & description
documentation.

– They may decide to do another, and, perhaps, subsequently yet another experimental
research and engineering development.

– Eventually they either abandon the attempt to go after a fully complete, professional
domain model, or they conclude that a satisfactory, complete modeling project is
professionally and commercial viable.

• Apply:

– The first step in a professional and commercial domain modeling project is that of
creating a staff plan:

∗ An outcome of a final domain modeling experiment is that the main taxonomy
of the domain has been settled upon.

26

• Gerard Allwein and Jon Barwise (ed.) (1996).
Logical Reasoning with Diagrams. Oxford University Press.

• https://en.wikipedia.org/wiki/Diagrammatic reasoning.

O.4. CONCLUSION 453

∗ For each of the main categories of endurants one or two domain engineers [cum
scientists] are then to be allocated to the project.

∗ A development graph27 is developed.

∗ A budget is established.

∗ Negotiations with customer finally establish the financial foundation for the
project28.

– The commercial development project starts.

– First the endurant aspects are modeled – with

∗ external qualities being first modeled [58, Chapter 4], then with

∗ internal qualities:

· unique identification [58, Sect. 5.2],

· mereologies [58, Sect. 5.3], and

· attributes [58, Sect. 5.4] – including notably intentional pull – which has not
been illustrated in this report [58, Sect. 5.5].

– Then perdurants:

∗ states [58, Sect. 7.2],

∗ channels [58, Sect. 7.5],

∗ actor, i.e., action, event and behaviour, signatures [58, Sect. 7.6],

∗ their definitions [58, Sect. 7.7], and

∗ system initialisation [58, Sect. 7.8].

– Etcetera !

– Each project member either “sticks” to the initially assigned endurant (hence perdu-
rant) area throughout the project, or members have their subject areas “rotated”.

Special circumstances may mandate variations to the above development plan.

For a reasonably “complete”, i.e., covering essential aspects of, say an automobile manufacturing
plant’s assembly lines, it is roughly estimated that a group of well-educated domain engineers cum
scientists would number 8–10, and that it would take 18–24 months to do the “Apply” phase of a
domain modeling development project.

O.4.5 ... one more section ...

O.4.6 ... a last section (?) ...

O.4.7 Acknowledgments

to be written

27For the notion of Development Graphs see [16–18].
28One cannot assume that the customer explicitly funds the Study and Experiment phases of the project.

454 CONTENTS

Appendix P

Nuclear Power Plants

Contents

P.1 Introduction . 457

P.1.1 The Domain . 457

P.1.2 The Domain Description Ontology . 457

P.2 Informal Characterisation . 457

P.3 Sketch of a Conceptual Domain Model . 459

P.3.1 Endurants . 459

P.3.1.1 External Qualities . 459

P.3.1.1.1 The Parts . 459

P.3.1.1.2 Liquids . 461

P.3.1.1.3 States, I . 461

P.3.1.1.4 A First Review. 461

P.3.1.1.5 Additional Parts . 462

P.3.1.1.6 A State Update. 463

P.3.1.1.7 A Second Review. 463

P.3.1.1.8 The Domain Taxonomy 463

P.3.1.2 Internal Qualities . 463

P.3.1.2.1 Unique Identifiers . 463

P.3.1.2.1.1 The Unique Identifier Type and Observers. . . 463

P.3.1.2.1.2 A State of Unique Identifiers. 465

P.3.1.2.1.3 An Axiom . 465

P.3.1.2.2 Mereology . 465

P.3.1.2.3 Attributes . 472

P.3.1.2.3.1 Common Part Attributes. 472

P.3.1.2.3.2 Flow Attributes 473

P.3.1.2.3.3 Pipe Attributes 473

P.3.1.2.3.4 Specific Part Attributes 474

P.3.1.2.4 Intentional Pull . 479

P.3.2 Perdurants . 480

P.3.2.1 Channels . 480

P.3.2.2 Actions . 480

P.3.2.3 Behaviours . 481

P.3.2.3.1 Behaviour Signatures 481

P.3.2.3.2 Behaviour Definitions 483

P.3.2.4 Action Signatures and Definitions 488

P.3.2.4.1 Action Signatures . 488

455

456 CONTENTS

P.3.2.4.2 Action Definitions . 488

P.3.2.5 Domain Initialization . 488

P.3.2.6 Meaning of Domain Models 489

P.4 System Domains . 489

P.4.1 Some Preparatory Remarks . 490

P.4.1.1 The Triptych Development Dogma 490

P.4.1.2 Simulators [Demos], Monitors and Controllers 490

P.4.1.3 Demos or Simulations . 491

P.4.1.4 Identity, Microscopic and Macroscopic Simulations 492

P.4.2 Specific System Domains . 493

P.4.2.1 Design . 493

P.4.2.2 Design Feasibility . 494

P.4.2.3 Building . 494

P.4.2.4 Commissioning . 494

P.4.2.5 Start-up . 494

P.4.2.6 Steady State Operation . 494

P.4.2.7 Emergency Stops . 494

P.4.2.8 Maintenance . 495

P.4.2.9 Repair . 495

P.4.2.10 Renewal of Fuel . 495

P.4.2.11 Decommissioning . 495

P.4.2.12 Removal . 495

P.5 Varieties of Generation III-IV Reactors . 495

P.6 Closing . 495

P.6.1 What has so far been Achieved ? . 495

P.6.2 What is Next ? . 496

P.6.3 Semantic versus Syntactic Reasoning 496

P.6.3.1 Petri nets . 496

P.6.3.2 Multilevel Flow Modelling . 496

P.6.4 Acknowledgements . 496

P.7 Bibliography . 497

P.7.1 Bibliographical Notes . 497

There are different kinds of nuclear power plants. We focus on one kind, the pressurized
steam nuclear power plants. In the US there are today almost 100 nuclear power plants. Around
the world more then 400 nuclear reactors are installed. The US Nuclear Regulator Commission,
U.S.NRC https://www.nrc.gov/about-nrc.html has the responsibility for the safe use of ra-
dioactive materials for beneficial civilian purposes while protecting people and the environment in
the US. The NRC regulates commercial nuclear power plants and other uses of nuclear materials,
such as in nuclear medicine, through licensing, inspection and enforcement of its requirements.
We sketch the rudiments of a domain model for pressurized steam nuclear power plants. That
model is then suggested instantiated to a number of strongly related domain models – covering:

• design,

• design feasibility,

• building.

• commissioning,

• start-up,

• steady state operation,

• emergency stops,

• maintenance,

• repair,

• renewal of fuel,

• decommissioning and

• removal.

The models could then be a basis for simulators and monitors for regulatory work: inspection
etc. The present proposal for modelling nuclear power plants should be seen in the context of, for
example, Multi-level Flow Modelling , MFM [126]. In MFM it seems that systems are modelled graph-
ically. Our approach is to model systems using simple discrete mathematics and mathematical
logic.

P.1. INTRODUCTION 457

Warning

This is a rather early draft. The present work began July 4th, 2023. Today is March 12,
2024: 10:48 am, There is no way I can believably fill in the very many most relevant attributes,
Sect. P.3.1.2.3, nor the very many most relevant actions and behaviour definitions, Sects. P.3.2.2
and P.3.2.3.2. For that I need to talk with nuclear reactor people: scientists, engineers, and
operators.

References

This document follows [61] “slavishly”. You may find [updates] to [61] and this document at:

• Domain Modelling
http://www.imm.dtu.dk/~dibj/2023/DomainModelling/DomainModelling23June2023.pdf

• Nuclear Power Plants ...
http://www.imm.dtu.dk/~dibj/2023/nupopl/nupopl.pdf

Emendations

Vertical margin bars, as [possibly] shown here, mark text corrected or new text wrt. to an
immediately previous version of this document.

P.1 Introduction

P.1.1 The Domain

more to come

We refer to

• Generation II [Fission] Reactors
https://en.m.wikipedia.org/wiki/Generation II reactor1,

• Generation III [Fission] Reactors
https://en.m.wikipedia.org/wiki/Generation III reactor,

• Generation IV [Fission] Reactors
https://en.m.wikipedia.org/wiki/Generation IV reactor and

• Fusion Reactors
https://en.m.wikipedia.org/wiki/Fusion power

for general information.

more to come

P.1.2 The Domain Description Ontology

Figure P.1 on the following page diagrams the structure of the way in which we analyze and
describe domains.

P.2 Informal Characterisation

We focus, as an example of how to model a nuclear fission power plant on Generation I–III reactors.
We shall try explain Fig. P.2 on page 459.

1We omit consideration of Generation I Reactors

458 CONTENTS

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set
H

u
m

an
s

CompoundAtomic
Transcendense

Figure P.1: An Upper Ontology

• The blue signifies cold[er] water.

• The red signifies warm[er] water.

• To the very left is the nuclear reactor, R, with its uranium core and control rods.

• To the immediate right of it is the steam generator, SG.

• The positioning of the uranium core and the rods is made such as to heat the water.

• The nuclear reactor and the steam generator are contained in a separate highly encased
structure, CS.

• The cold/warm water of the reactor forms a separate loop – circulating through the steam
generator.

• Cold[er] water is taken into the system – shown in the lower right of the figure.

• And is then used to vaporize the warmer water from the condenser, C.

• That water forms another, separate loop circulating from intake via the condenser to the
cooling tower, CT.

• It is used to cool some steam or warm[er] water having been utilized in the turbine above,
T.

• A third, separate loop of water circulates between the three: the steam generator, SG, the
turbine, T, and the condenser, C.

• Figure P.2 on the facing page does not show how the water in the leftmost and middle loops
enter and leave the system.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 459

Figure P.2: Components and Flow of a Nuclear Power Plant

• Nor does Fig. P.2 show temperature, radiation, pressure, nor other sensors, pumps , ... Pump,
and other actuators nor possible pressure tanks, PT.2

• The water of the leftmost loop is heated up, in the reactor by the uranium rods.

• The the [typically boiling] hot water is used in the steam generator to heat water of the
middle, the center loop into steam.

• That steam drives the turbine –

• which generates electricity

• that is transmitted into the power net.

P.3 Sketch of a Conceptual Domain Model

We follow the sequence of analyzing, describing and presenting a domain model as outlined in
[58, 61].

P.3.1 Endurants

P.3.1.1 External Qualities

P.3.1.1.1 The Parts

732. The domain is that of pressurized water nuclear power plants.

From a nuclear power plant we can observe

733. a cooler water supply and condenser compound, CWS C, compound;

734. a steam generator, turbine and condenser, SG T C, compound;

2Figure P.3 on page 462 shows some of these.

460 CONTENTS

735. a reactor and steam generator containment, R SG, compound and

736. an electricity generator and power net, EG PN compound.

type
732. NPP
733. CWS C
734. SG T C
735. R SG
736. EG PN

value
733. obs CWS C: NPP → CWS C
734. obs SG T C: NPP → SG T C
735. obs R SG: NPP → R SG
736. obs EG PN: NPP → EG PN

737. From a cooler water supply and condenser, CWS C, compound one can observe its part of
the cooling tower, CT, and its likewise embedding in the condenser, eC.

738. From a steam generator, turbine and condenser, SG T C, compound one can observe its
steam generator embedding, eSG, in the containment compound, the turbine compound,
TC, and the main condenser compound, mC.

739. From a reactor and steam generator containment compound, R SG, one can observe the
reactor compound, R, and the [main] steam generator compound, mSG.

740. From the electricity generator and power net, EG PN, one can observe the [main] electricity
generator compound, mEG, and the power net, PN.

type
737. CT, eC
738. eSG, TC, mC
739. R, SG
740. mEG, PN
value
737. obs CT: CWS C → CT
737. obs eC: CWS C → eC

738. obs eSG: SG T C → eSG
738. obs TC: SG T C → TC
738. obs mC: SG T C → mC
739. obs R: R SG → R
739. obs SG: R SG → mSG
740. obs mEG: EG PN → mEG
740. obs PN: EG PN → PN

The triplet steam generator, turbine compound and condenser compound for the so-called Rankine
Cycle3

741. From the reactor we can observe the reactor core and the reactor rod compound. [We can
also observe the reactor water and the reactor liquid; see below.]

742. The reactor rod compound is a [definite] set of rod-machines.

743. From a rod-machine we can observe a rod and a machine (to move the rod in and out of the
reactor core).

Rods and their machines are considered atomic.

type
741. RC, RRC, RW, RL
742. RMs = RM-set, RM
743. ROD, RMC
value
741. obs RC: R → RC

741. obs RRC: R → RRC
741. obs RW: R → RW
741. obs RL: R → RL
742. obs RMs: RRC → RMs
743. obs ROD: RM → ROD
743. obs RMC: RM → RMC

3The Rankine cycle, also called the Rankine vapor cycle, is a thermodynamic cycle that converts heat
into mechanical energy. The Rankine cycle is name after William Johnson Macquorn Rankine, a 19th
century Scottish engineer and physicist known for his research in the thermodynamic properties of steam
[https://www.techtarget.com/whatis/definition/Rankine-cycle].

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 461

P.3.1.1.2 Liquids

744. From the cooling tower4, embedded and main condenser, turbine compound, embedded and
main steam generator and reactor we can observe their water [contents].

745. From the reactor we can observe the reactor liquid.

type
744. W
745. L
value
744. obs W: (CT|eC|mC|TC|eSG|mSG|R) → W
745. obs L: R → L

P.3.1.1.3 States, I Based on the above we can define a state notion – as the set of all compound
and atomic parts, and, deviating from the “edicts” of [58, 61], also the set of waters contained in
the various parts !

value
npp:NPP = [some npp:NPP]
cws c:CWS C = obs CWS C(npp)
sg t c:SG T C = obs SG T C(npp)
r sg:R SG = obs R SG(npp)
eg pn:EG PN = obs EG PN(npp)

ct:CT = obs CT(cws c)
ec:eC = obs eC(cws c)

esg:eSG = obs eSG(sg t c)
tc:TC = obs TC(sg t c)

mc:mC = obs mC(sg t c)

r:R = obs R(r sg)
sg:SG = obs SG(r sg)

meg: mEG= obs mEG(eg pn)
pn:PN = obs PN(eg pn)

rc: = obs RC(r)
rrc: = obs RRC(r)
rms: = obs RMs(r)

value
(ctw, ecw,mcw, tw, esgw,msgw, rw)

= (obs W(ct),obs W(ec),obs W(mc),obs W(tc),obs W(esg),obs W(meg),obs W(r))

σ′ = {npp, cws c, sg t c, r sg, eg pn, ct, ec, esg, tc,mc, r, sg,meg, pn, rc, rrc, rw, rrcs}

We do not include the “water states” in the state σ′, as we do not associate unique identifiers [nor
mereologies, but only attributes] with water states. That is, we do not model waters as behaviours.
We prime the σ′ as we shall later need adjust it.

P.3.1.1.4 A First Review. It is high time to consider the whole of a pressured water nuclear
reactor in further detail, as to its various measuring, i.e., sensor, and control, i.e., actuator devices.
See Fig. P.3 on the following page.
We observe then that the various water holding compounds are suitably connected by water pipes,
and we observe three water pumps, actuators, for some of these pipes. There are undoubtedly
many more.

We can also envisage a number water pressure sensors, water temperature sensors, radiation
sensors, et cetera,

We then observe a pressure tank compound.
All of these, and many more, need be included in the external qualities description.

4We now analyze the waters right-to-left in Fig. P.2 on page 459

462 CONTENTS

Figure P.3: Components and Flow of a Nuclear Power Plant

P.3.1.1.5 Additional Parts We now include some further parts to the domain. We model them
on par, i.e., as being on the same “level” as major parts of the nuclear power plant, NPP. We refer
to Fig. P.3.

746. From the Cooler Water Supply and Cooler , CWS C, we observe a pump/valve, CWS Pump,
placed on the, or a, pipe between the CWS and the external cool water supply (not formal-
ized (!)).5.

747. From the Cooling Tower and Condenser,CT C, we observe a pump/valve, CT C Pump, placed
on the, or a, pipe between the Cooling Tower, CT, and the Condenser, C.6.

748. From the Steam Generator, Electric Generator and Condenser compound we can observe a
pump, SG EG C Pump, placed on the, or a, pipe between the condenser , C, and the steam
generator , SG.

749. From the Reactor Steam Generator compound we can observe a pump, SG R Pump, placed
between the steam generator, SG, and a reactor inlet, R.

750. And from the Reactor Steam Generator “pair” we can also observe a pressure tank , PT placed
on the, or a, pipe between a reactor outlet and a turbine inlet.

5‘Placement’ will be modelled by a suitable mereology.
6‘Placement’ will be modelled by a suitable mereology.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 463

type
746. CWS Pump, CT C Pump
748. SG EG C Pump
749. SG R Pump
750. PT
value
746. obs CWS Pump: CWS C → CWS Pump
746. obs CT C Pump: CWS C → CT C Pump
748. obs SG EG C Pump: SG EG C → SG EG C Pump
749. obs SG R Pump: R SG → SG R Pump
750. obs PT: R SG → PT

We do not model thermometers, pressure, radiation nor other meters. Their values are here
modelled in terms of attributes, see Items 777– 780 on page 472, of appropriate parts.

P.3.1.1.6 A State Update. We adjust the state definition of above.

value
cws pump: = obs CWS Pump(cws c)
ct c pump: = obs CT C Pump(cws c)

sg ec c pump: = obs SG EG C Pump(sg eg c)
sg r pump: = obs SG R Pump(r sg)
press tank: = obs PT(r sg)

value
σ = σ′ ∪ {cws pump, ct c pump, sg eg c pump, sg r pump, press tank}

P.3.1.1.7 A Second Review. What have we ? Really nothing ! Nothing that really tells us
that we are modelling a nuclear power plant ! Just a bunch of names of parts. That they actually
model “real” parts of real nuclear power plants is nowhere to be seen ! So what ?

In order to interpret these many parts in the direction of modelling nuclear power plants we
now turn to their internal qualities. It is only with the introduction of a suitable number of part
attributes that the model starts resembling that of a [generic] model of nuclear power plants. To
express the part attributes properly we first model their unique identifiers and mereologies.

P.3.1.1.8 The Domain Taxonomy

• Domain Taxonomy By a domain taxonomy we shall here understand a hierarchical pre-
sentation of the parts of a domain: their sub-parts, down to and including atomic parts

Figure P.4 on the next page shows a taxonomy for out domain of nuclear power plants. We have
not shown atomic sensors and actuators (pumps, etc.).
The taxonomy of a specific domain is a concept quite different from the ontology of a method,
cf. Fig. P.1 on page 458, for analyzing and describing that and other domains.

P.3.1.2 Internal Qualities

P.3.1.2.1 Unique Identifiers

P.3.1.2.1.1 The Unique Identifier Type and Observers.

751. We define the common type of unique identifiers and

752. the unique identifier observer function for each part type.

464 CONTENTS

MAL

S S

. . .

SA

ALA

SAL

S

. . .SAL SAL

ME ES

. . .

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

Repeat

ι6

ι3

ι2

ι9

E | "nil"

ι7

ι5

ι4

AP ι1

ι7

ι8

ι10 ι14

ι15 ι12

ι13

ι11

Figure P.4: The Nuclear Power Plant Domain Taxonomy

type
751. NPP UI, CWS C UI, SG T C UI, R SG UI, EG PN UI, CT UI, eC UI, eSG UI,
751. TC UI, mC UI, R UI, SG UI, mEG UI, PN UI, RC UI, RRC UI, ROD UI, RMC UI,
751. CWS Pump UI, CT C Pump, SG EG Pump UI, SG R Pump UI, PT UI

751. UI = NPP UI | CWS C UI | SG T UI | R SG UI | EG PN UI | CT UI| eC UI| eSG UI
751. | TC UI | mC UI | R UI | SG UI | mEC UI | PN UI| RC UI | RRC UI | ROD UI
751. | RMC UI | CWS Pump UI | CT C Pump | SG EG Pump UI | SG R Pump UI | PT UI

value
752. ui NPP: NPP → NPP UI
752. ui CWS C: CWS C → CWS C UI
752. ui SG T C: SG T C → SG T C UI
752. ui R SG: R SG → R SG UI
752. ui EG PN: EG PN → EG PN UI
752. ui CT: CT → CT UI
752. ui eC: eC → eC UI
752. ui eSG: eSG → eSG UI
752. ui TC: TC → TC UI

752. ui mC: mC → mC UI
752. ui R: R → R UI
752. ui SG: SG → SG UI
752. ui mEG: mEG → mEG UI
752. ui PN: PN → PN UI
752. ui RC: RC → RC UI
752. ui RRC: RRC → RRC UI
752. ui ROD: ROD → ROD UI
752. ui RMC: RMC → RMC UI

752. ui CWS Pump: CWS Pump → CWS Pump UI
752. ui CT C Pump: CT C Pump → CT C UI
752. ui SG EG C Pump: SG EG Pump → SG EG C Pump UI
752. ui SG R Pump: SG R Pump → SG R Pump UI
752. ui PT: PT → PT UI

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 465

P.3.1.2.1.2 A State of Unique Identifiers. We form a state of unique identifiers from the
sub-states, indicated by names, of all parts of the power plant.

value
nppui = ui NPP(npp)
cws cui = ui CWS C(npp)
sg t cui = ui SG T C(npp)
r sgui = ui R SG(npp)
eg pnui = ui EG PN(npp)

ctui = ui CT(cws c)
ecui = ui eC(cws c)

esgui = ui eSG(sg t c)
tcui = ui TC(sg t c)
mcui = ui mC(sg t c)

rui = ui R(r sg)
sgui = ui SG(r sg)

megui: = ui mEG(eg pn)
pnui: = ui PN(eg pn)

rcui: = ui RC(rc)
rrcui: = ui RRC(rrc)

rodui: = ui ROD(r)
rmui: = ui RMC(r)

cws pumpui: = ui CWS Pump(cws pump)
ct c pumpui: = ui CT C Pump(ct c pump)
sg eg c pumpui: = ui (sg eg c pump)
sg r pumpui: = ui SG EG Pump(sg r pump)
pt ui: = ui PT(pt)

rmsui: = { ui ROD(rod),ui RMC(mac) | ((rod,mac)):RM•(rod,mac)∈obs RMs(r) }

value
σui = {npp ui, cws c ui, sg t cui, r sgui, eg pnui}

∪ {ctui, ecui}
∪ {esgui, tcui,mcui}
∪ {rui, sgui}
∪ {megui, pnui}
∪ {rcui, rrcui}
∪ {cws pumpui, cws ct pumpuisg eg c pumpui, sg r pumpui, rmsui, ptui}

P.3.1.2.1.3 An Axiom The unique identifiers are unique: no two parts have the same unique
identfier. That means that the cardinality of state elements equals the cadinality of their unique
identifiers.

axiom card σ ≡ card σui

P.3.1.2.2 Mereology Mereology is the study and knowledge of relations between parts and
between parts and the “whole”.

We shall model how the various power plant parts relates to one-another. A main cause of
’relation’ is the topological layout of and [thus, intended] interaction between parts.

The topological layout was chosen by studying Figs. P.2–P.3. It is expected that that “layout”
may change as we obtain deeper insight.

The below represents a first attempt at a mereology for all parts of the generic nuclear power
plant. It, traditionally, focus on the mereological relations between “ancestors7, neighbours8” and
“immediate sub-components”9 of parts.

7If from a part of type A one can observe a part of type B, then A is an ancestor of B.
8If from a part a of type A one can observe a part b of type B, and if from a : A once can further observe parts

c : C, d : D, ..., e : E, and if parts c : C, d : D, ..., e : E interact with b then c : C, d : D, ..., e : E are neighbours of
b : B.

9If part a : A one can observe part of type b : B, then b : B is an immediate sub-component of a : A.

466 CONTENTS

753. The mereology of NPP relates it to

• its “national nuclear regulatory commission”10, and

• its “immediate sub-components” CWS C, SG T, R SG and EG PN.

type
753. Mereo NPP = NNRC UI × (CWS C UI×SG T UI×R SG UI×EG PN UI)
value
753. mereo NPP: NPP → Mereo NPP
753. mereo NPP(npp) as (nnrcui, (cws cui, sg tui, eg pnui))

We envisage a nulear power plant behaviour which monitors and support controls these major
components of the domain: receives, i.e., monitors, information from them and support them
in the[ir] control of them.

754. The mereology of CWS C relates it to

• its “ancestor” NPP,

• its “neighbours” SG T, R SG and EG PN, and

• its “immediate sub-components” CT and eC.

type
754. Mereo CWS C = NPP UI × (SG TC×R SG UI×EG PN UI) × (CT UI×eC UI)
value
754. mereo CWS C: CWS C → Mereo CWS C
754. mereo CWS C(cws cui) as (nppui, (sg tcui, r sgui, eg pniu), (ctui, ecui))

We envisage a cooler water supply and condenser behaviour which monitors and support
controls its components and “reports back” to the overall monitors and support controller,
the NPP.

755. The mereology of SG T C relates it to

• its “ancestor” NPP,

• its “neighbours” SG T, R SG and EG PN and

• its “immediate sub-components” eSG andTC.

type
755. Mereo SG T C = NPP UI × (SG T UI×R SG UI×EG PN UI) × (eSG UI×TC UI)
value
755. mereo SG T C: SG T → Mereo SG T C
755. mereo SG T C(sg t cui) as (nppui, (sg tui, r sgui, eg pnui), (esgui, tcui)))

We envisage ... etc.11

756. R SG relates it to

• its “ancestor” NPP,

• its “neighbor” SG T C, and

• its “immediate sub-components” R and mSG.

10– omitted from this document
11The reader should, by now, be able to repeat the “we envisage” text of Items 753–754, etc.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 467

type
756. Mereo R SG = NPP × SG T C UI × (R UI×mSG UI)
value
756. mereo R SG: R SG → Mereo R SG
756. mereo R SG() as (nppui, sg t cui, (rui,msgui))

We envisage ... etc.

757. The mereology of EG PN relates it to

• its “ancestor” NPP,

• its “neighbour” SG T C and PN UI and

• its “immediate sub-component” T.

type
757. Mereo EG PN = NPP UI × (SG T C UI×PN UI) × T UI
value
757. mereo EG PN: EG PN → Mereo EG PN
757. mereo EG PN(eg pn) as (nppui, (sg t cui, pnui), tui)

We envisage ... etc.

758. The mereology of CT relates it to

• its “ancestor” NPP, and

• its “neighbour” CWS C.

type
758. Mereo CT = NPP UI × CWS C UI
value
758. mereo CT: CT → Mereo CT
758. mereo CT(ct) as (nppui, cws cui)

We envisage ... etc.

759. The mereology of eC relates it to

• its “ancestor” C, and

• its “neighbour” mC.

type
759. Mereo eC = C UI × mC UI
value
759. mereo eC: eC → Mereo eC
759. mereo eC(ec) as (cui,mcui)

We envisage ... etc.

760. The mereology of eSG relates it to

• its “ancestor” SG, and

• its “neighbours” mSG, and R.

468 CONTENTS

type
760. Mereo eSG = SG UI × (mSG UI×R UI)
value
760. mereo eSG: eSG → Mereo eSG
760. mereo eSG(esg) as (sgui, (msgui, rui)

We envisage ... estc.

761. The mereology of TC relates it to

• its “ancestor” SG T C, and

• its “neighbours” R and C.

type
761. Mereo TC = SG T C UI × (R UI×C UI)
value
761. mereo TC: TC → Mereo TC
761. mereo TC(tc) as (sg r cui, (rui, cui)

We envisage ... etc.

762. The mereology of mC relates it to

• its “ancestor” C,

• its “neighbours” mSG, T and CT, and

• its “immediate sub-components” mC and eC.

type
762. Mereo mC = C UI × (mSG UI×T UI×CT UI) × (mC UI×eC UI)
value
762. mereo mC: mC → Mereo mC
762. mereo mC(mc) as (cui, (msgui, tui, cui), (mcui, ecui))

We envisage ... etc.

763. The mereology of R relates it to

• its “ancestor” R SG,

• its “neighbour” SG, and

• its “immediate sub-components” mSG and eSG.

type
763. Mereo R = R SG UI × SG UI × (mSG UI×eSG UI)
value
763. mereo R: R → Mereo R
763. mereo R(r) as (rsgui, sgui, (msgui, esgui))

We envisage ... etc.

764. The mereology of SG relates it to

• its “ancestor” R SG,

• its “neighbours” R and T, and

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 469

• its “immediate sub-components” mSG and eSG.

type
764. Mereo SG = R SG UI × (R UI×T UI) × (mSG UI×eSG UI)
value
764. mereo SG: SG → Mereo SG
764. mereo SG(sg) as (rsgui, (rui, tui), (msgui, esgui))

We envisage ... etc.

765. The mereology of mEG relates it to

• its “ancestor” EG, and

• its “neighbour” PN .

type
765. Mereo mEG = EG UI × PN UI
value
765. mereo mEG: mEG → Mereo mEG
765. mereo mEG(meg) as (egui, pnui)

We envisage ... etc.

766. The mereology of PN relates it to

• its “ancestor” EG PN, and

• its “neighbour” mEG.

type
766. Mereo PN = EG PN UI × mEG UI
value
766. mereo PN: mEG → Mereo mPN
766. mereo PN(pn) as (eg pnui,megui)

We envisage ... etc.

767. The mereology of RC relates it to

• its “ancestor” R, and

• its “neighbour” RRC.

type
768. Mereo RC = R UI × RRC UI
value
768. mereo RC: RC → Mereo RC
768. mereo RC(rc) as (rui, rrcui)

We envisage ... etc.

768. The mereology of RRC relates it to

• its “ancestor” R, and

• its “immediate sub-component” RMs.

470 CONTENTS

type
768. Mereo RRC = RC UI × RMs UI
value
768. mereo RRC: RRC → Mereo RRC
768. mereo RRC(rrc) as (rrui, rmsui)

We envisage ... etc.

769. The mereology of RMCs relates it to

• its “ancestor” RRC, and

• its “immediate sub-components” – a set of pairs of rods and rod machines: ROD and
RMC.

• Such sets (rms’s) are usually order in some form of matrix (or other). We assume, in a
matrix of m rows and n columns.

type
769. Mereo RMs = RRC UI × ((Nat×Nat)× ((ROD UI×RMC UI)∗)∗)
value
769. mereo RMs: RMs → Mereo RMs
769. mereo RMs(rrc) as (rrui, ((m,n),matrix))
769. post: lenmatrix = m
769. ∧ ∀ row:(ROD UI×RMC UI)∗•len row = n
769. ...

where

We envisage ... etc.

770. The mereology of ROD relates it to

• its “ancestor” RM, and

• its “neighbour” RMC.

type
770. Mereo ROD = RM UI × RMC UI
value
770. mereo ROD: ROD → Mereo ROD
770. mereo ROD(rod) = (rm {ui},rmc {ui})
770. pre: ...

We envisage ... etc.

771. The mereology of RMC relates it to

• its “ancestor” ,

• its “neighbours” and , and

• its “immediate sub-components” and .

type
771. Mereo RMC = RM UI × ROD UI
value
771. mereo RMC: RMC → Mereo RMC
771. mereo ROD(rmc) = (rm {ui},rod {ui})
771. pre: ...

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 471

We envisage ... etc.

772. The mereology of CWS Pump, cf. [ι746,pi462], relates it to

• its “ancestor” CWS C, and

• its “neighbours” CWS and

type
772. Mereo CWS Pump = CWS UI × ...
value
772. mereo CWS Pump: CWS Pump → Mereo CWS Pump
772. mereo CWS Pump(cws pump) as (cws cui, ...)

We envisage ... etc.

773. The mereology of CT C Pump, cf. [ι747,pi462], relates it to

• its “ancestor” CWS C,

• its “neighbours” CWS and CT.

type
773. Mereo CT C Pump = CT C UI × (CT UI×C UI)
value
773. mereo CT C Pump: CT C Pump → Mereo CT C Pump
773. mereo CT C Pump() as (ctui, cui)

We envisage ... etc.

774. The mereology of SG EG C Pump, cf. [ι748,pi462], relates it to

• its “ancestor” SG EG C, and

• its “neighbours” C and SG.

type
774. Mereo SG EG C Pump = SG EG C UI × (C UI×SG UI)
value
774. mereo SG EG C Pump: SG EG C Pump → Mereo SG EG C Pump
774. mereo SG EG C Pump(sg eg c) as (sg eg cui, (cui, sgui))

We envisage ... etc.

775. The mereology of SG R Pump, cf. [ι749,pi462], relates it to

• its “ancestor” SG R, and

• its “neighbours” and .

type
775. Mereo R Pump = SG R UI × (SG UI×R UI)
value
775. mereo SG R Pump: Mereo R Pump → Mereo SG R Pump
775. mereo SG R Pump(sg r) as (sgui, rui)

We envisage ... etc.

472 CONTENTS

776. The mereology of PT, cf. [ι750,pi462], relates it to

• its “ancestor” SG, and

• its “neighbours” R and T.

type
776. Mereo PT = SG UI × (R UI×T UI)
value
776. mereo PT: PT → Mereo PT
776. mereo PT(pt) as (sgui, (rui, tui))

We envisage ... etc.

The above mereology definitions represent a first attempt. As we define the various part be-
haviours, Sect. P.3.2.3.2 we shall be reviewing and using the above mereologies – and then we may
have to adjust some.

P.3.1.2.3 Attributes Finally we have come to model what really should lend credence to our
model as a reasonably relevant model of an, albeit “somewhat” simplified, domain of power plants.
Initially it must be said that the domain analyser com describer, me, Dines Bjørner, is, obviously
a novice in this area.12

P.3.1.2.3.1 Common Part Attributes. Common attributes across many different parts are
enumerated below.

777. Flow of liquid, water or other. Can be measured at different positions of the liquid contain-
ers.13

778. Water temperature. Can be measured at different positions of the water containers.

779. Water or steam pressure. Can be measured at different positions of the water and steam
containers.

780. Radiation. Can be measured at well-nigh any position in power plant.

781. ...

type
777. Flow = m3/sec
778. W Temp = Real Kelvin
779. W Press, S Press = Joule/m3 = kg×m−1 × sec−2

780. Radiation = Beq [Bequerel] or Cu [Curie] [1Beq = 1/sec]
value
777. attr Flow: ... → Flow
778. attr W Temp: ... → W Temp
779. attr W Press: ... → W Press
779. attr S Press: ... → S Press
780. attr Radiation: ... → Radiation

The ... above refers to the union, |, of [applicable] component types.

12I did, indeed, study nuclear phsyics and was around the basic engineering of nuclear power plants in my
Bachelor’s study, 1958–1961, at my Alma Mater, the DTU, but from that to claim ..., no !

13We shall elaborate on Flow attributes in Sect. P.3.1.2.3.2 on the next page.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 473

P.3.1.2.3.2 Flow Attributes There are three “isolated loops” of water flow:

(a.) From the intake of water, CWS C, , through the cooling tower, CT, and the [embedded]
condenser, eC, and back.

(b.) from the main steam generator, mSG, through the turbine, T, onto the embedding, i.e., the
main condenser, mC, and back to the main steam generator.

(c.) From the reactor, R, through the [embedded] steam generator, eSG, and back.

We shall now try characterise these cold and hot water and steam flows through a number of
attributes. These attributes will be “attached” to, i.e., associated with, the parts inwhich they
occur.14 These parts are:

(a.) CWS C, CT, eC, (b.) mSG, T, mC, and (c.) R, eSG.

782. There is the flow, measured in cubic meter per second.

783. That flow can be obseved at the inlet to and outlet from the eight parts listed above.

784. There is also the pressure of these flows, measured in Joule.

type
782. Flow = Real m3/sec
784. Joule = Real Joule/m3 = Real kg×m−1 × sec−2

value
783. attr (in|out) Flow (CWS C|CT|eC|mSG|mC|R|eSG) → Flow
784. attr (in|out) Pressure (CWS C|CT|eC|mSG|mC|R|eSG) → Pressure

more to come

P.3.1.2.3.3 Pipe Attributes To bring the water/steam from part to part these parts have pipe
in- and outlets. We have not, till now, modelled these pipes. Now we shall indicated their presence
– as attributes of these parts !

785. With each inlets and outlets of the parts itemized in the three •s above (CWS C, CT, eC,
mSG, T, mC, R, and eSG), we associate a pipe of some length, diameter, and hence volume:

type
785. Pipe Len = Real cm
785. Pipe Dia = Real cm
785. Pipe Vol = Real m3

value
785. attr (in|out)let Pipe: (CWS C|CT|eC|mSG|mC|R|eSG)→(Pipe Len×Pipe Diam×Pipe Vol)

more to come

14You may then interpret the parts as also being containers of water.

474 CONTENTS

P.3.1.2.3.4 Specific Part Attributes We list remaining attribute definitions by part.

1. The Universe of Discourse, NPP, Items 732 [π459], 751 [π463], 753 [π466]

786.

787.

788.

789.

786.
787.
788.
789.

2. Cooler Water Supply - Condenser, CWS C, Items 733 [π459], 751 [π463], 754 [π466]

790.

791.

792.

793.

790.
791.
792.
793.

3. Steam Generator - Turbine - Condenser, SG T C, Items 734 [π459], 751 [π463], 755 [π466]

794.

795.

796.

797.

794.
795.
796.
797.

4. Reactor - Steam Generator R SG, Items 735 [π460], 751 [π463], 756 [π466]

798.

799.

800.

801.

798.
799.
800.
801.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 475

5. Electricity Generator - Power Net, EG PN, Items 736 [π460], 751 [π463], 757 [π467]

802.

803.

804.

805.

802.
803.
804.
805.

6. Cooling Tower, CT, Items 737 [π460], 751 [π463], 758 [π467]

806.

807.

808.

809.

806.
807.
808.
809.

7. Embedded Condenser, eC, Items 737 [π460], 751 [π463], 759 [π467]

810.

811.

812.

813.

810.
811.
812.
813.

8. Embedded Steam Generator, eSG, Items 738 [π460], 751 [π463], 760 [π467]

814.

815.

816.

817.

814.
815.
816.
817.

476 CONTENTS

9. Turbine Compound, TC, Items 738 [π460], 751 [π463], 761 [π468]

818.

819.

820.

821.

818.
819.
820.
821.

10. Main Condenser, mC, Items 738 [π460], 751 [π463], 762 [π468]

822.

823.

824.

825.

822.
823.
824.
825.

11. Reactor, R, Items 739 [π460], 751 [π463], 763 [π468]

826.

827.

828.

829.

826.
827.
828.
829.

12. Steam Generator, SG, Items 739 [π460], 751 [π463], 764 [π468]

830.

831.

832.

833.

830.
831.
832.
833.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 477

13. Main Electricity Generator, mEG, Items 739 [π460], 751 [π463], 765 [π469]

834.

835.

836.

837.

834.
835.
836.
837.

14. Power Net, PN, Items 739 [π460], 751 [π463], 766 [π469]

838.

839.

840.

841.

838.
839.
840.
841.

15. Reactor Core, RC, Items 741 [π460], 751 [π463], 767 [π469]

842.

843.

844.

845.

842.
843.
844.
845.

16. Reactor Rod Compound, RRC, Items 741 [π460], 751 [π463], 768 [π469]

846.

847.

848.

849.

846.
847.
848.
849.

478 CONTENTS

17. Reactor Rod Machine Set, RMCs, Items 742 [π460], 751 [π463], 769 [π470]

850.

851.

852.

853.

850.
851.
852.
853.

18. Rod, ROD, Items 743 [π460], 751 [π463], 770 [π470]

854.

855.

856.

857.

854.
855.
856.
857.

19. Rod Machine, RMC, Items 743 [π460], 751 [π463], 771 [π470]

858.

859.

860.

861.

858.
859.
860.
861.

20. CWS Pump, CWS Pump, Items 743 [π460], 751 [π463], 772 [π471]

862.

863.

864.

865.

862.
863.
864.
865.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 479

21. CT C Pump, CT C Pump, Items 743 [π460], 751 [π463], 773 [π471]

866.

867.

868.

869.

866.
867.
868.
869.

22. SG EG C Pump, SG EG C Pump, Items 743 [π460], 751 [π463], 774 [π471]

870.

871.

872.

873.

870.
871.
872.
873.

23. Pressure Tank, PT, Items 743 [π460], 751 [π463], 776 [π472]

874.

875.

876.

877.

874.
875.
876.
877.

P.3.1.2.4 Intentional Pull This concept has yet to be investigated. My hunch is that the
relation between the reactor, the steam generator and the turbine includes an intentional pull.
And also the relation between the positions of the rod with respect to the reactor core and the
temperature of the reactor water.

more to come

480 CONTENTS

P.3.2 Perdurants

In this section we shall treat the methodological phases, stages and steps of analyzing and describing
perdurants from one specific perspective, namely that of interpreting , i.e., transcendentally deduc-
ing , endurants into perdurants, where these perdurants reflect on the, as one could claim, basic
intentions of the domain being modelled.

This may sound cryptic. The main example in this report is that of a [generic, conceptual
class of] nuclear power plants. We therefore claim, or postulate, that the basic intentions of the
modelling so far has been to model the domain of stably operating nuclear power plants.

The perdurants, therefor, of this major section, are therefor to model actions, events and
behaviours of normally operating nuclear power plants.

Section P.4 shall then deal with a number of “derivative” transcendental deductions.

P.3.2.1 Channels

878. We, somewhat superfluously, but for simplicity let channel indices range over any set of two
[thus distinct] unique identifiers of σuid.

879. These channels communicate messages of type M, where the definition of their contribution
to M shall evolve as we identify and define nuclear power plant behaviours.

The mereologies of the individual behaviours will, anyway, identity applicable such unique
identifiers.

channel
878. { ch[{ui,uj}] | ui,ij:UI • {ui,ij}⊂σui ∧ ui 6=uj } : M
type
879. M = ...

P.3.2.2 Actions

We informally identify and briefly sketch part behaviours.

880. NPP: gather attribute values ...; direct “immediate” NPP components to do one or another
action;

881. CWS C: gather attribute values ...; inform NPP of [a summary of] these values; direct “im-
mediate” CWS C components to do one or another action;

882. SG T C:

883. R SG:

884. EG PN:

885. CT:

886. eC:

887. eSG:

888. TC:

889. mC:

890. R:

891. SG:

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 481

892. mEG:

893. PN:

894. RC:

895. RMs:

896. RM:

897. ROD:

898. RMC: start raising, respectively lowering and stop raising, respectively lowing of rod; ...

899. CWS Pump: start, respectively stop of rod pump; ...

900. CT C Pump: start, respectively stop of rod pump; ...

901. SG EG C Pump: start, respectively stop of rod pump; ...

902. PT: start, respectively stop of pressuring; ...

P.3.2.3 Behaviours

We now associate behaviours with parts.
There are basically two kinds of part behaviours.
Active Behaviours are those which, own their own initiative (for example as prompted by

behavioural events “of their parts”), or as directed by monitoring behaviours, initiate actions.
Passive Behaviours are those which do not initiate actions, but [usually] respond to interaction

with [mereology-]connected behaviours.

P.3.2.3.1 Behaviour Signatures

903.

904.

905.

906.

907.

908.

909.

910.

911.

912.

913.

914.

915.

916.

917.

482 CONTENTS

918.

919.

920.

921.

922.

923.

924.

925.

926.

927.

value
904. behaviour NPP: NPP UI×Mereo NPP×StaV NPP×MonV NPP

→ ProV NPP → chs NPP Unit
905. behaviour CWS C: CWS C UI×Mereo CWS C×StaV CWS C×MonV CWS C

→ ProV CWS C → chs CWS C Unit
906. behaviour SG T C: SG T C UI×Mereo SG T C×StaV SG T C×MonV SG T C

→SG T C NPP → chs SG T C Unit
907. behaviour R SG: R SG UI×Mereo R SG×StaV R SG×MonV R SG

→ ProV R SG → chs R SG Unit
908. behaviour EG PN: EG PN UI×Mereo EG PN×StaV EG PN×MonV EG PN

→ ProV EG PN → chs EG PN Unit
909. behaviour CT: CTUI×Mereo CT×StaV CT×MonV CT

→ ProV CT → chs CT Unit
910. behaviour eC: eC UI×Mereo eC×StaV eC×MonV eC

→ ProV eC → chs eC Unit
911. behaviour eSG: eSG UI×Mereo eSG×StaV eSG×MonV eSG

→ ProV eSG → chs eSG Unit
912. behaviour TC: TC UI×Mereo TC×StaV TC×MonV TC

→ ProV TC → chs TC Unit
913. behaviour mC: mC UI×Mereo mC×StaV mC×MonV mC

→ ProV mC → chs mC Unit
914. behaviour R: R UI×Mereo R×StaV R×MonV R

→ ProV R → chs R Unit
915. behaviour SG: SG UI×Mereo SG×StaV SG×MonV SG

→ ProV SG → chs SG Unit
916. behaviour mEG: mEG UI×Mereo mEG×StaV mEG×MonV mEG

→ ProV −mEG>chs mEG Unit
917. behaviour PN: PN UI×Mereo PN×StaV PN×MonV PN

→ ProV PN → chs PN Unit
918. behaviour RC: RCUI×Mereo RC×StaV RC×MonV RC

→ ProV RC → chs RC Unit
919. behaviour RRC: RRC UI×Mereo RRC×StaV RRC×MonV RRC

→ ProV RRC → chs RRC Unit
920. behaviour RMs: RMs UI×Mereo RMs×StaV RMs×MonV RMs

→ ProV RMs → chs RMs Unit
921. behaviour RM: RM UI×Mereo RM×StaV RM×MonV RM

→ ProV RM → chs RM Unit
922. behaviour ROD: ROD UI×Mereo ROD×StaV ROD×MonV ROD

→ ProV ROD → chs ROD Unit
923. behaviour RMC: RMC UI×Mereo RMC×StaV RMC×MonV RMC

→ ProV RMC → chs RMC Unit
924. behaviour CWS Pump: CWS Pump UI×Mereo CWS Pump×StaV CWS Pump×MonV CWS Pump

→ ProV CWS Pump → chs CWS Pump Unit
925. behaviour CWS CT Pump: CWS CT Pump UI×Mereo CWS CT Pump×StaV CWS CT Pump×MonV CWS CT Pump

→ ProV CWS CT Pump → chs CWS CT Pump Unit
926. behaviour SG EG Pump: SG EG Pump UI×Mereo SG EG Pump×StaV >SG EG Pump<MonV SG EG Pump

→ ProV SG EG Pump → chs SG EG Pump Unit

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 483

927. behaviour PT: PT UI×Mereo PT×StaV PT×MonV PT
→ ProV PT → chs PTC Unit

P.3.2.3.2 Behaviour Definitions We list all the definitions of behaviours.

1. The Universe of Discourse, NPP, Items 732 [π459], 751 [π463], 753 [π466]

928.

929.

930.

931.

928.
929.
930.
931.

2. Coler Water Supply - Condenser, CWS C, Items 733 [π459], 751 [π463], 754 [π466]

932.

933.

934.

935.

932.
933.
934.
935.

3. Generator - Turbine - Condenser, SG T C, Items 734 [π459], 751 [π463], 755 [π466]

936.

937.

938.

939.

936.
937.
938.
939.

4. Reactor - Generator R SG, Items 735 [π460], 751 [π463], 756 [π466]

940.

941.

942.

943.

484 CONTENTS

940.
941.
942.
943.

5. Electricity Generator - Power Net, EG PN, Items 736 [π460], 751 [π463], 757 [π467]

944.

945.

946.

947.

944.
945.
946.
947.

6. Cooling Tower, CT, Items 737 [π460], 751 [π463], 758 [π467]

948.

949.

950.

951.

948.
949.
950.
951.

7. Embedded Condenser, eC, Items 737 [π460], 751 [π463], 759 [π467]

952.

953.

954.

955.

952.
953.
954.
955.

8. Embedded Steam Generator, eSG, Items 738 [π460], 751 [π463], 760 [π467]

956.

957.

958.

959.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 485

956.
957.
958.
959.

9. Turbine Compound, TC, Items 738 [π460], 751 [π463], 761 [π468]

960.

961.

962.

963.

960.
961.
962.
963.

10. Main Condenser, mC, Items 738 [π460], 751 [π463], 762 [π468]

964.

965.

966.

967.

964.
965.
966.
967.

11. Reactor, R, Items 739 [π460], 751 [π463], 763 [π468]

968.

969.

970.

971.

968.
969.
970.
971.

12. Steam Generator, SG, Items 739 [π460], 751 [π463], 764 [π468]

972.

973.

974.

975.

486 CONTENTS

972.
973.
974.
975.

13. Main Electricity Generator, mEG, Items 739 [π460], 751 [π463], 765 [π469]

976.

977.

978.

979.

976.
977.
978.
979.

14. Power Net, PN, Items 739 [π460], 751 [π463], 766 [π469]

980.

981.

982.

983.

980.
981.
982.
983.

15. Reactor Core, RC, Items 741 [π460], 751 [π463], 767 [π469]

984.

985.

986.

987.

984.
985.
986.
987.

16. Reactor Rod, RRC, Items 741 [π460], 751 [π463], 768 [π469]

988.

989.

990.

991.

P.3. SKETCH OF A CONCEPTUAL DOMAIN MODEL 487

988.
989.
990.
991.

17. Reactor Rod Machine Set, RMCs, Items 742 [π460], 751 [π463], 769 [π470]

992.

993.

994.

995.

992.
993.
994.
995.

18. Rod, ROD, Items 743 [π460], 751 [π463], 770 [π470]

996.

997.

998.

999.

996.
997.
998.
999.

19. Rod Machine, RMC, Items 743 [π460], 751 [π463], 771 [π470]

1000.

1001.

1002.

1003.

1000.
1001.
1002.
1003.

20. CWS Pump, CWS Pump, Items 743 [π460], 751 [π463], 772 [π471]

1004.

1005.

1006.

1007.

488 CONTENTS

1004.
1005.
1006.
1007.

21. CT C Pump, CT C Pump, Items 743 [π460], 751 [π463], 773 [π471]

1008.

1009.

1010.

1011.

1008.
1009.
1010.
1011.

22. SG EG C Pump, SG EG C Pump, Items 743 [π460], 751 [π463], 774 [π471]

1012.

1013.

1014.

1015.

1012.
1013.
1014.
1015.

23. Pressure Tank, PT, Items 743 [π460], 751 [π463], 776 [π472]

1016.

1017.

1018.

1019.

1016.
1017.
1018.
1019.

P.3.2.4 Action Signatures and Definitions

P.3.2.4.1 Action Signatures

P.3.2.4.2 Action Definitions

P.3.2.5 Domain Initialization

The domain behaiour is the parallel composition of the following behaviours, the

P.4. SYSTEM DOMAINS 489

1020. nuclear power plant,

1021. cooler water supply conden-
sor,

1022. electricity generator turbine
cooler,

1023. reactor generator,

1024. generator power net,

1025. cooling tower,

1026. embedded condenser,

1027. embedded steam generator,

1028. turbine,

1029. main condenser,

1030. reactor,

1031. steam generator,

1032. main electricity generator,

1033. power net,

1034. reactor core,

1035. reactor rod compound,

1036. reactor rod machne set,

1037. set of reactor rod,

1038. set of reactor machines,

1039. ...

1040. ...

1041. ...

In order to express the static, the monitorable and the programmable attributes we make use of the:

• static attribute names [stavs],

• monitorable attribute names [monvs] and

• programmable attribute names [prgvs]

auxiliary domain analysis functions defined in [61, Sect. 5.4.2.5]. We refer to them by the abbreviations given above.
in brackets.

1020. behaviour NPP(ui NPP(npp),mereo NPP(npp),stavs(npp),monvs(npp))(prgvs(npp))
1021. ‖ behaviour CWS C(ui CWS C(cws c),mereo CWS C(cws c),stavs(cws c),monvs(cws c))(prgvs(cws c))
1022. ‖ behaviour SG T C(ui SG T C(sg t c),mereoSG T C(sg t c),stavs(sg t c),monvs(sg t c))(prgvs(sg t c))
1023. ‖ behaviour R SG(ui R SG(r sg),mereo R SG(r sg),stavs(r sg),monvs(r sg))(prgvs(r sg))
1024. ‖ behaviour EG PN(ui EG PN(eg pn),mereoEG PN(eg pn),stavs(eg pn),monvs(eg pn))(prgvs(eg pn))
1025. ‖ behaviour CT(ui CT(ct),mereo CT(ct),stavs(ct),monvs(ct))(prgvs(ct))
1026. ‖ behaviour eC(ui eC(ec),mereo eC(ec),stavs(ec),monvs(ec))(prgvs(ec))
1027. ‖ behaviour eSG(ui eSG(esg),mereo eSG(esg),stavs(esg),monvs(esg))(prgvs(esg))
1028. ‖ behaviour TC(ui TC(tc),mereo TC(tc),stavs(tc),monvs(tc))(prgvs(tc))
1029. ‖ behaviour mC(ui mC(mc),mereo mC(mc),stavs(mc),monvs(mc))(prgvs(mc))
1030. ‖ behaviour R(ui R(r),mereo R(r),stavs(r),monvs(r))(prgvs(r))
1031. ‖ behaviour SG(ui SG(sg),mereo SG(sg),stavs(sg),monvs(sg))(prgvs(sg))
1032. ‖ behaviour mEG(ui mEG(meg),mereo mEG(meg),stavs(meg),monvs(meg))(prgvs(meg))
1033. ‖ behaviour PN(ui PN(pn),mereo PN(pn),stavs(pn),monvs(pn))(prgvs(pn))
1034. ‖ behaviour RRC(ui RRC(rrc),mereo RRC(rrc),stavs(rrc),monvs(rrc))(prgvs(rrc))
1035. ‖ behaviour RMs(ui RMs(rms),mereo RMs(rms),stavs(rms),monvs(rms))(prgvs(rms))
1036. ‖ { behaviour ROD(ui ROD(rod),mereo ROD(rod),stavs(rod),monvs(rod))(prgvs(rod))
1036. | (rod,):(ROD×RMC)•(rod,)∈rms }
1037. ‖ { behaviour RMC(ui RMC(rmc),mereo RMC(rmc),stavs(rmc),monvs(rmc))(prgvs(rmc))
1037. | (rmc,):(ROD×RMC)•(,emc)∈rms }
1038. ‖ behaviour CWS Pump(ui CWS Pump(cwspump),mereo CWS Pump(cwspump),
1038. stavs(cwspump),monvs(cwspump))(prgvs(cwspump))
1039. ‖ behaviour CT C Pump(ui CT C Pump(cwsctpump),mereo CT C Pump(cwsctpump),
1039. stavs(cwsctpump),monvs(cwsctpump))(prgvs(cwsctpump))
1040. ‖ behaviour SG EG Pump(ui SG EG Pump(sgegpump),mereo SG EG Pump(sgegpump),
1040. stavs(sgegpump),monvs(sgegpump))(prgvs(sgegpump))
1041. ‖ behaviour PT(ui PT(pt),mereo PT(pt),
1041. stavs(pt),monvs(pt))(prgvs(pt))

P.3.2.6 Meaning of Domain Models

We have developed and presented a domain model, D. We can consider this model from three
points of view: (i) as a syntactic object, (ii) as a semantic object, and (iii) as a pragmatic object.
(i) From the point of view of the syntactic object we can, for example, ask whether the syntax of
D is correct. (ii) From the point of view of the semantic object we can, for example, ask what is
the meaning of D. (iii) From the point of view of the syntactic object we can, for example, ask for
relations between the domain D and the model D.

Without further elaboration we shall postulate a meaning function, M, and claim that the
meaning of D is M(D).

P.4 System Domains

to be written

490 CONTENTS

P.4.1 Some Preparatory Remarks

This section builds on [58, Chapter 9, 2021] [which is based on [43, 2011]].
The perdurants of Sect. P.3.2 reflected, we claim, on the intention of the nuclear power plant

domain model: the so-called conceptual domain model , namely that of describing its intended,
normal, state of operation. In this section we shall consider a number of, what we shall refer to
as system domains. One could claim that these system domains are derivative, that is, that they
derive from the conceptual domain model, when considering how the domain instances com about:
are conceived, designed and built, are started-up, operated in normal, failure, repair or renewal
mode, and are closed down and dismantled.

To prepare for such modelling let us first consider the possible uses of a domain model. There
are basically two uses. (i) as models of how the domain behave, and (ii) as the basis for the
development of software. Use (i) should need no further comments. Use (ii) need the following,
long, comment: The domain model serves, now, as a basis for developing one or another kind of
requirements prescription, from which to then further develop a software specification, i.e., “code”
to be interpreted by a computing system.

P.4.1.1 The Triptych Development Dogma

Figure P.5 intends to show the main phases of the development from that of a domain description,
via that of a requirements prescription, for either of three kinds of software, to either of these kinds.
The idea behind Fig. P.5 is that the rounded “box” refers to the actual domain, whether existing
or contemplated, that the domain description box refers to a description of that domain, that the
requirements prescription boxes refer t a prescription for some desired software, and that the three
rightmost boxes refer to respective, implemented softwares.

"The Domain"
A Domain

Description

A Simulator
Requirements
Prescription

Requirements
Prescription

A Controller
Requirements
Prescription

A Monitor

Simulator

Software

Monitor

Software

Controller

Software

Figure P.5: The Domain, Requirements, Software Development Triptych

How the transitions from description to prescriptions are effected are covered extensively in [58,
Chapter 8, 2021]. The transitions from prescriptions to software design & code is covered exten-
sively in [26–28, Software Engineering, vols.1-2-3, 2005-6].

P.4.1.2 Simulators [Demos], Monitors and Controllers

A “meaning” of the concepts of simulator, monitor, and controller software is hinted at in Fig. P.6
on the facing page.
Figure P.6 on the next page shows three pairs, from left-to-right, of relations: a simulator [also,
sometimes, called “a demo”], a monitor, and a monitor & controller pair. Each pair shows a time
line, a rounded box above the time line, ostensibly referring to the actual domain [being simulated,

P.4. SYSTEM DOMAINS 491

q

p p

q

r r

p

q
r

Real−time

Simulation

(1)

p

q

r

p
r
q

Real−time
Monitoring

(2) Real−time
Monitoring & Control

(3)

t
time slice "snapshot" of domain "state"

time slice "snapshot" of software "state"
oa ocob

Legend: oa,ob,...,oc: observations; mi,mj,...,mk: monitorings; cx,...,cy: controls

t t

mi mj mk

cx cy

mi mj mk

D
o

m
a
in

s
S

o
ft

w
a
re

Figure P.6: Simulator, Monitor and Controller Behaviours

or monitored, or controlled], and the software [simulator, monitor, controller] below the line. Both
the domain “box” and the software box are meant to show, by a vertical “slice” through these,
the state of the domain behaviour, respectively of the software “under execution”, that is, of the
various endurant attributes. These latter, p, q, r named, attributes are shown as horizontal lines.

In the leftmost, the simulator, pair the domain behavior and the software execution do not
“communicate”. It is as if neither of them “exists” !

In the center, the monitor, pair the domain behavior and the software execution the executing
software “samples” (monitors) selected domain attributes. The executing software may then do
whatever the requirements have otherwise prescribed.

In the rightmost, the [monitor &] controller, pair the domain behavior and the software ex-
ecution the executing software “samples” (monitors) selected domain attributes. The executing
software may then react, as it is expected that the requirements have prescribed, by attempting
to set, i.e., control, selected [biddable or programmable] attributes.

P.4.1.3 Demos or Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act of simulating
something generally entails representing certain key characteristics or behaviours of a selected
physical or abstract system” [Wikipedia] for the purposes of testing some hypotheses usually
stated in terms of the model being simulated and pairs of statistical data and expected outcomes.
A trace (whether a domain behaviour or a program execution trace) is a time-stamped sequence
of states: domain states, respectively simulator [or demo], monitor and monitor & control states.

Figure P.7 on the following page (a) shows a horizontal time axis which basically “divides” that
figure into two sub-figures. (b) Above the time axis the “fat” rounded edge rectangle alludes to
the time-wise behaviour, a domain trace, of “The Domain” (i.e., the actual, or real, domain). (c)
Below the time axis there are eight “thin” rectangles. These are labels S1, S2, S3, S4, S5, S6, S7
and S8. (d) Each of these denote a “run”, i.e., a time-stamped “execution”, a program trace, of
the “Demo”. Their “relationship” to the time axis is this: their execution takes place in the real
time as related to that of “The Domain” behaviour. (e) S1 and S2 ‘begins’ and ‘ends’ before the
“The Domain” behaviour. (f) S7 and S8 ‘begins’ and ‘ends’ after the “The Domain” behaviour.
(g) S3 ‘begins’ before and ‘ends’ during the “The Domain” behaviour. (g) S4 ‘begins’ before and

492 CONTENTS

t eb

β ε
Time

S5

S4

S2S1
εβ

S7

S6

S8

S3

S1, S2, S3, S4, S5, S6, S7, S8: "runs" of the Domain Simulation

A Domain Behaviour: A Trace of the Domain

Figure P.7: Simulations

‘ends’ after the “The Domain” behaviour. (g) S5 ‘begins’ after the begin and ‘ends’ before the end
of the “The Domain” behaviour. (h) S6 ‘begins’ during and ‘ends’ after that of the “The Domain”
behaviour.

From Fig. P.7 and the above explication we can conclude that “executions” S4 and S5 each share
exactly one time point, t, at which “The Domain” and “The Simulation” “share” time, that is,
the time-stamped execution S4 and S5 reflect a “Simulation” state which at time t should reflect
(some abstraction of) “The Domain” state.

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the simulation trace, or,
vice-versa (cf. Fig. P.7[S4,S5]), is there a “shared” time. Only if the ‘begin’ and ‘end’ times of the
domain behaviour are identical to the ‘start’ and ‘finish’ times of the simulation trace, is there an
infinity of shared 1–1 times.

In Fig P.6 on the preceding page we show “the same” “Domain Behaviour” (three times) and a
(1) simulation, a (2) monitoring and a (3) monitoring & control, all of whose ‘begin/start’ (b/β) and
‘end/finish’ (e/ǫ) times coincide. In such cases the “Demo/Simulation” takes place in real-time
throughout the ‘begin· · · · · ·end’ interval.

Let β and ǫ be the ‘start’ and ‘finish’ times of either S4 or S5. Then the relationship between

t, β, ǫ, b and e is t−b
e-t = t−β

ǫ−t
— which leads to a second degree polynomial in t which can then be

solved in the usual, high school manner.

P.4.1.4 Identity, Microscopic and Macroscopic Simulations

In explaining Fig. P.7 we did not comment on the time relations wrt. b, e, β, ǫ. But it was assumed,
and now made explicit, that the intervals [b : e], respectively [β : ǫ], express that the simulation
[β : ǫ], stands in a one-to-one relation with the domain behaviour [b : e] [why otherwise show the
simulation ?]. That is that every distinct time point in interval [β : ǫ] corresponds to exactly one
distinct time point in interval [b : e]

We can distinguish between four kinds of simulations. (i) If the time interval length [e − b]
equals [ǫ − β] then we say that the simulation is an identity simulation. (ii) If the time interval
length [e − b] is larger that [ǫ − β] then we say that the simulation is a microscopic simulation.
(iii) If the time interval length [e − b] is smaller that [ǫ − β] then we say that the simulation is a
macroscopic simulation. (iv) If b is equal to η and e is equal to ǫ then we say that the simulation
is a real-time simulation.

As a consequence we can only “speak of” monitors and controllers if the simulation is a real-time
simulation.

P.4. SYSTEM DOMAINS 493

P.4.2 Specific System Domains

We shall not go further into the above possible variety of simulations but focus on just some
real-time simulations.15

Among possibly interesting such for the case of nuclear power plants we suggest:

• that a conceptual domain model by researched and developed for a generic nuclear power
plant;

• a model that is then particularized into a number, say 12, further detailed system domain
models – covering the

– design,

– design feasibility,

– building.

– commissioning,

– start-up,

– steady state operation,

– emergency stops,

– maintenance,

– repair,

– renewal of fuel,

– decommissioning and

– removal

of nuclear power plants;

• that a monitor version of each of these models be requirements developed, [58, Chapter 9],
and

• that each such requirements be implemented in software – for the support of financial backers,
designers, builders, nuclear power plant staff and nuclear regulatory agency staff.

The conceptual domain model is what stake-holders of nuclear power plants have in mind when
they now turn to model anyone of the system domains.

We now elaborate on each of the 12 nuclear power plant monitors.

P.4.2.1 Design

The system domain model for the design of a specific, concrete nuclear power plant, takes its
departure point in the conceptual domain model of Sect. P.3.

The domain design model shall model the the physics and engineering design of the major parts
the nuclear reactor, steam generator, the turbine, and the electricity generator (R, SG+C+CT, T, and
CT) as conceptualized in Sect. P.3.

That is, the domain analyzer cum describer works in very close contact, for months, with physi-
cists and professional engineers from each of these fields. These persons shall inform the system
domain modeller on system endurants and perdurants specific to the design process.

The resulting domain design model, DDM, also models the calculations – but does not actually
perform these calculations – that must be performed during actual design.

The input to the design process (to be modelled) is (i) the professional skills of all relevant
physicists and professional engineers PD and (ii) the conceptual domain model CDM.

The output, being built during the design process, is (α) a the [formal] description of [usually
considerable set of] annotated engineering drawings EDD, (β) a revised version of the conceptual
domain model rCDM, and (γ) a domain design model DDM:

• value

DESIGN : PD × CDM
∼

→ EDD×rCDM× DDM

15We leave out the obviously interesting one of developing and deploying a non-real-time simulator – say for demo
purposes !

494 CONTENTS

An interpretation of DESIGN , with the prescribed arguments, i.e., an actual design process, for
which DDM is a model, then results in actual, “physical” drawings, EDDafd, whether on paper or
electronically stored, or both.

The meaning, MDDM, DDM, i.e., MDDM(DDM), can then be requirements developed into
software, i.e., a monitor that can help the management of designs.

P.4.2.2 Design Feasibility

to be written

P.4.2.3 Building

The domain building model shall model the building, i.e., the “on-the-ground” actual engineering
construction, of the nuclear power plant [as outlined in Sect. P.3].

That is, the domain analyzer cum describer works in very close contact, for months, with pro-
fessional engineers from the design and the construction firms – as well as some of the physicists
and professional engineers from the design study. They will inform the system domain modeller on
system endurants and perdurants specific to the building process.

An element of the domain building model is a program evaluation and review technique [PERT16]
like annotated and formal network diagram that shows the critical paths17 of construction.

The input to the building process (to be modelled) is (i) the professional skills of all construction
engineers and workersPB, (ii) the revised conceptual domain model rCDM, (iii) the domain design
model DDM, (iv) the informally annotated and formal engineering drawings EDD18 and (v) the
materials and tools MAT that are to go into the construction.

The output, being built during the design process, is (α) the actual nuclear power plant, as
a physical entity NPP, there, on-the-ground, (β) a set of revised annotated engineering drawings
rEDD, (γ) a possibly further revised version of the conceptual domain model frCDM, (δ) a possibly
further revised version of the domain design model frDDM, and (ǫ) a domain building model DBM:

• value

BUILD: PB ××rEDD×frCDM×rDDM×MAT
∼

→ P×rEDD×frCDM×frDDM×DBM

The meaning, MDBM, DBM, i.e., MDBM(DBM), can then be requirements developed into software,
i.e., a monitor that can help the management of construction.

P.4.2.4 Commissioning

to be written

P.4.2.5 Start-up

to be written

P.4.2.6 Steady State Operation

to be written

P.4.2.7 Emergency Stops

to be written

16https://en.wikipedia.org/wiki/Program evaluation and review technique
17https://en.wikipedia.org/wiki/Critical path method
18– not the drawings themselves, but a syntax for these

P.5. VARIETIES OF GENERATION III-IV REACTORS 495

P.4.2.8 Maintenance

to be written

P.4.2.9 Repair

to be written

P.4.2.10 Renewal of Fuel

to be written

P.4.2.11 Decommissioning

to be written

P.4.2.12 Removal

to be written

P.5 Varieties of Generation III-IV Reactors

Unlike in automobile construction, where hundreds of thousands of “copies” are produced, annu-
ally, of the same model (barring interior leather and fabric and exterior colouring), it seems that
very, very few nuclear power plants are constructed according to one-and-the-same design.

Figures P.8, P.9 on the next page, and P.10 on page 497 schematize six such Generation IV
designs19:

Figure P.8: Gas-Cooled and Sodium-Cooled Fast Reactors

more to come

P.6 Closing

P.6.1 What has so far been Achieved ?

to be written

19From https://en.m.wikipedia.org/wiki/Generation IV reactor.

496 CONTENTS

Figure P.9: Experiment Molten Salt and Molten Salt Reactors

P.6.2 What is Next ?

to be written

P.6.3 Semantic versus Syntactic Reasoning

The current author can envisage two kinds of reader-remarks:

• What about using Petri nets, [152–156], to model nuclear power plants ?

• What about using Multilevel Flow Modellngi, [126], to model nuclear power plants ?

P.6.3.1 Petri nets

to be written

P.6.3.2 Multilevel Flow Modelling

to be written

P.6.4 Acknowledgements

I thank Dr. Joseph Kiniry of Galois, Inc., Portland, Oregon for having induced me onto the subject
of this report.

more to come

P.7. BIBLIOGRAPHY 497

Figure P.10: Molten Salt and Supercritical-Water-Cooled Reactors

P.7 Bibliography

P.7.1 Bibliographical Notes

We are aware of the Multilevel Flow Modelling , MGM, approach of Morten Lind, [126]20. It seems
that MFM relates its reasoning to graphical, visual, renditions of domains, not to mathematical
logical domain descriptions. But their relationship should be studied.

20https://orbit.dtu.dk/en/publications/an-introduction-to-multilevel-flow-modeling

498 CONTENTS

Part VI

System Models

In Chapters Q–T we present four models – not quite of domains, but !

• ChapterQ: Urban Planning pages 501–549

• ChapterR: Weather Systems pages 551–565

• Chapter S: A Stock Exchange pages 567–590

• ChapterT: An Extensible Virtual Shared Memory pages 591–606

499

500

Appendix Q

Urban Planning

Warning The

present urban planning domain description makes use of a “global” clock !

Contents

Q.1 Structures and Parts . 504

Q.1.1 The Urban Space, Clock, Analysis & Planning Complex 504

Q.1.2 The Analyser Structure and Named Analysers 505

Q.1.3 The Planner Structure . 505

Q.1.4 Atomic Parts . 506

Q.1.5 Preview of Structures and Parts . 506

Q.1.6 Planner Names . 506

Q.1.7 Individual and Sets of Atomic Parts . 506

Q.2 Unique Identifiers . 508

Q.2.1 Urban Space Unique Identifier . 508

Q.2.2 Analyser Unique Identifiers . 508

Q.2.3 Master Planner Server Unique Identifier 509

Q.2.4 Master Planner Unique Identifier . 509

Q.2.5 Derived Planner Server Unique Identifier 509

Q.2.6 Derived Planner Unique Identifier . 509

Q.2.7 Derived Plan Index Generator Identifier 509

Q.2.8 Plan Repository . 510

Q.2.9 Uniqueness of Identifiers . 510

Q.2.10 Indices and Index Sets . 510

Q.2.11 Retrieval of Parts from their Identifiers 511

Q.2.12 A Bijection: Derived Planner Names and Derived Planner Identifiers . 511

Q.3 Mereologies . 512

Q.3.1 Clock Mereology . 513

Q.3.2 Urban Space Mereology . 513

Q.3.3 Analyser Mereology . 513

Q.3.4 Analysis Depository Mereology . 513

Q.3.5 Master Planner Server Mereology . 514

Q.3.6 Master Planner Mereology . 514

Q.3.7 Derived Planner Server Mereology . 514

Q.3.8 Derived Planner Mereology . 514

Q.3.9 Derived Planner Index Generator Mereology 515

Q.3.10 Plan Repository Mereology . 515

501

502 CONTENTS

Q.4 Attributes . 515

Q.4.1 Clock Attribute . 515

Q.4.1.1 Time and Time Intervals and their Arithmetic 515

Q.4.1.2 The Attribute . 516

Q.4.2 Urban Space Attributes . 516

Q.4.2.1 The Urban Space . 516

Q.4.2.2 The Urban Space Attributes 517

Q.4.2.2.1 Main Part and Attributes 517

Q.4.2.2.2 Urban Space Attributes – Narratives and Formalisation518

Q.4.2.2.3 General Form of Attribute Models 518

Q.4.2.2.4 Geodetic Attribute[s] 518

Q.4.2.2.5 Cadastral Attribute[s] 518

Q.4.2.2.6 Geotechnical Attribute[s] 519

Q.4.2.2.7 Meteorological Attribute[s] 519

Q.4.2.2.8 Socio-Economic Attribute[s] 519

Q.4.2.2.9 Law Attribute[s]: State, Province, Region, City and
District Ordinances 520

Q.4.2.2.10 Industry and Business Economics 520

Q.4.2.2.11 Etcetera . 520

Q.4.2.2.12 The Urban Space Attributes – A Summary 520

Q.4.2.2.13 Discussion . 521

Q.4.3 Scripts . 521

Q.4.4 Urban Analysis Attributes . 521

Q.4.5 Analysis Depository Attributes . 521

Q.4.6 Master Planner Server Attributes . 522

Q.4.7 Master Planner Attributes . 522

Q.4.8 Derived Planner Server Attributes . 523

Q.4.9 Derived Planner Attributes . 523

Q.4.10 Derived Planner Index Generator Attributes 523

Q.4.11 Plan Repository Attributes . 524

Q.4.12 A System Property of Derived Planner Identifiers 524

Q.5 The Structure Translators . 525

Q.5.1 A Universe of Discourse Translator 525

Q.5.2 The Analyser Structure Translator 525

Q.5.3 The Planner Structure Translator 525

Q.5.3.1 The Master Planner Structure Translator 526

Q.5.3.2 The Derived Planner Structure Translator 526

Q.5.3.3 The Derived Planner Pair Structure Translator 526

Q.6 Channel Analysis and Channel Declarations 526

Q.6.1 The clk ch Channel . 526

Q.6.2 The tus a ch Channel . 527

Q.6.3 The tus mps ch Channel . 527

Q.6.4 The a ad ch Channel . 528

Q.6.5 The ad s ch Channel . 528

Q.6.6 The mps mp ch Channel . 528

Q.6.7 The p pr ch Channel . 529

Q.6.8 The p dpxg ch Channel . 529

Q.6.9 The pr s ch Channel . 529

Q.6.10 The dps dp ch Channel . 530

Q.7 The Atomic Part Translators . 530

CONTENTS 503

Q.7.1 The clock Translator . 530

Q.7.1.1 The Translate CLK Function 530

Q.7.1.2 The clock Behaviour . 531

Q.7.2 The Urban Space Translator . 531

Q.7.2.1 The Translate TUS Function 531

Q.7.2.2 The urb spa Behaviour . 532

Q.7.3 The Analyseranmi
, i:[1 : n] Translator 533

Q.7.3.1 The Translate Aanmj
Function 533

Q.7.3.2 The analyseruij Behaviour . 534

Q.7.4 The Analysis Depository Translator 534

Q.7.4.1 The Translate AD Function 534

Q.7.4.2 The ana dep Behaviour . 535

Q.7.5 The Derived Planner Index Generator Translator 535

Q.7.5.1 The Translate DPXG(dpxg) Function 535

Q.7.5.2 The dpxg Behaviour . 536

Q.7.6 The Plan Repository Translator . 536

Q.7.6.1 The Translate PR Function . 536

Q.7.6.2 The plan rep Behaviour . 537

Q.7.7 The Master Server Translator . 537

Q.7.7.1 The Translate MPS Function 537

Q.7.7.2 The master server Behaviour 538

Q.7.8 The Master Planner Translator . 538

Q.7.8.1 The Translate MP Function 538

Q.7.8.2 The Master urban planning Function 539

Q.7.8.3 The master planner Behaviour 540

Q.7.8.4 The initiate derived servers and derived planners Behaviour . 540

Q.7.9 The Derived Servernmi
, i:[1 : p] Translator 541

Q.7.9.1 The Translate DPSnmj
Function 541

Q.7.9.2 The derived server Behaviour 542

Q.7.10 The Derived Plannernmi
, i:[1 : p] Translator 542

Q.7.10.1 The Translate DPdpnmj
Function 543

Q.7.10.2 The derived urban planning Function 543

Q.7.10.3 The derived plannernmj
Behaviour 544

Q.8 Initialisation of The Urban Space Analysis & Planning System 545

Q.8.1 Summary of Parts and Part Names . 545

Q.8.2 Summary of of Unique Identifiers . 545

Q.8.3 Summary of Channels . 546

Q.8.4 The Initial System . 546

Q.8.5 The Derived Planner System . 546

Q.9 Further Work . 546

Q.9.1 Reasoning About Deadlock, Starvation, Live-lock and Liveness 546

Q.9.2 Document Handling . 547

Q.9.2.1 Urban Planning Documents 547

Q.9.2.2 A Document Handling System 547

Q.9.3 Validation and Verification (V&V) . 547

Q.9.4 Urban Planning Project Management 548

Q.9.4.1 Urban Planning Projects . 548

Q.9.4.2 Strategic, Tactical and Operational Management 548

Q.9.4.2.1 Project Resources . 548

Q.9.4.2.2 Strategic Management 549

504 CONTENTS

Q.9.4.2.3 Tactical Management 549

Q.9.4.2.4 Operational Management 549

Q.9.4.3 Urban Planning Management 549

Endurants

By an entity we shall understand a phenomenon, i.e., something that can be observed, i.e., be
seen or touched by humans, or that can be conceive d as an abstraction of an entity. We further
demand that an entity can be objectively described

By an endurant we shall understand an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we
would still be able to observe the entire endurant.

By a discrete endurant we shall understand an endurant which is separate, individual or distinct
in form or concept.

By a part we shall understand a discrete endurant which the domain engineer chooses to endow
with internal qualities1 such as unique identification, mereology , and one or more attributes. We
shall define these three categories in Sects. Q.2, Q.3, respectively Sect. Q.4. We refer in general
to [51].

In this, a major section of this report, we shall cover

• Sect. Q.1: Parts,

• Sect. Q.2: Unique Identifiers,

• Sect. Q.3: Mereology, and

• Sect. Q.4: Attributes.

Q.1 Structures and Parts

From an epistemological2 point of view a study of the parts of a universe of discourse is often the
way to understand “who the players” of that domain are. From the point of view of [51] knowledge
about parts lead to knowledge about behaviours. This is the reason, then, for our interest in parts.

Q.1.1 The Urban Space, Clock, Analysis & Planning Complex

The domain-of-interest, i.e., the universe of discourse for this report is that of the urban space
analysis & planning complex – where the ampersand, ‘&’, shall designate that we consider this
complex as ‘one’ !

1042. The universe of discourse, UoD, is here seen as a structure of four elements:

(a) a clock , CLK,

(b) the urban space, TUS,

(c) an analyser aggregate, AA,

(d) the planner aggregate, PA,

type
1042 UoD, CLK, TUS, AAG, PA

value
1042a obs CLK: UoD → CLK
1042b obs TUS: UoD → TUS

1– where by external qualities of an endurant we mean whether it is discrete of continuous, whether it is a parts,
or a component – such as these are defined in [51].

2Epistemology is the branch of philosophy concerned with the theory of knowledge.

Q.1. STRUCTURES AND PARTS 505

1042c obs AAG: UoD → AAG
1042d obs PA: UoD → PA

The clock and the urban space are here considered atomic , the analyser aggregate, AA, and the
the planner aggregate, PA, are here seen as structures.

Q.1.2 The Analyser Structure and Named Analysers

1043. The analyser structure consists of

(a) a structure, AC, which consists of two elements:

i. a structure of an indexed set, hence named analysers,

ii. Aanm1
, Aanm2

, . . . , Aanmn
,

and

1044. an atomic analysis depository , AD.

There is therefore defined a set, ANms, of

1045. analyser names: {anm1, anm2, . . . , anmn}, where n ≥ 0.

type
1043 AA, AC, A, AD
1043(a)i A = Aanm1

| Aanm2
| ... | Aanmn

1045 ANms = {|anm1, anm2, ..., anmn|}
value
1043a obs AC: AA → AC
1043(a)ii obs ACanmi

: AC → Aanmi
, i:[1..n]

1044 obs AD: AA → AD

Analysers and the analysis depository are here seen as atomic parts.

Q.1.3 The Planner Structure

1046. The composite planner structure part, consists of

(a) a master planner structure, MPA, which consists of

i. an atomic master planner server , MPS, and

ii. an atomic master planner , MP, and

(b) a derived planner structure, DPA, which consists of

i. a structure in the form of an indexed set of (hence named) derived planner structures,
DPCnmj

, j : [1..p], which each consists of

A. a atomic derived planner servers, DPSnmj
, j : [1..p], and

B. a atomic derived planners, DPnmj
, j : [1..p];

(c) an atomic plan repository , PR, and

(d) an atomic derived planner index generator , DPXG.

type
1046 PA, MPA, MPS, MP, DPA, DPCnmj

, DPSnmj
, DPnmj

, i:[1..p]

506 CONTENTS

value
1046a obs MPA: PA → MPA

1046(a)i obs MPS: MPA → MPS
1046(a)ii obs MP: MPA → MP

1046b obs DPA: PA → DPA
1046(b)i obs DPCnmj

: DPA → DPCnmj
, i:[1..p]

1046(b)iA obs DPSnmj
: DPCnmj

→ DPSnmj
, i:[1..p]

1046(b)iB obs DPnmj
: DPCnmj

→ DPnmj
, i:[1..p]

1046c obs PR: PA → PR
1046d obs DPXG: → DPXG

We have chosen to model as structures what could have been modeled as composite parts. If we
were to domain analyse & describe management & organisation facets of the urban space analysis &
planning domain then we might have chosen to model some of these structures instead as composite
parts.

Q.1.4 Atomic Parts

The following are seen as atomic parts:

• clock ,

• urban space,

• analysis deposit,

• each analyser in the indexed set of
analyseranmi

s,

• master planner server ,

• master planner,

• each server in the indexed set of derived
planner servernmj

s,

• each planner in the indexed set of derived
plannernmj

s,

• derived planner index generator.

• plan repository and

We shall return to the these atomic part sorts when we explore their properties: unique identifiers,
mereologies and attributes.

Q.1.5 Preview of Structures and Parts

Let us take a preview of the parts, see Fig. Q.1 on the next page.

Q.1.6 Planner Names

1047. There is therefore defined identical sets of derived planner aggregate names, derived planner
server names, and derived planner names: {dnm1, dnm2, . . . , dnmp}, where g ≥ 0.

type
1047 DNms = {|dnm1, dnm2, ..., dnmp|}

Q.1.7 Individual and Sets of Atomic Parts

In this closing section of Sect. Q.1.7 we shall identify individual and sets of atomic parts.

1048. We postulate an arbitrary universe of discourse, uod:UoD and let that be a constant value
from which we the calculate a number of individual and sets of atomic parts.

1049. There is the clock , clk:CLK,

Q.1. STRUCTURES AND PARTS 507

TUS CLK

AD

DPS_1

A_nm_1 A_nm_2 A_nm_n

DPS_nm_p

PR

DPXG

DP_nm_1 DP_nm_2 DP_nm_p

DPC_1 DPC_nm_2

DPS_nm_2

DPC_nm_pMPC

MPS

MP

PA

DPA

AC

AG

Figure Q.1: The Urban Analysis and Planning System: Structures and Atomic Parts

1050. the urban space, tus:TUS,

1051. the set of analysers, aanmi
:Aanmi

, i:[1..n],

1052. the analysis depository , ad,

1053. the master planner server , mps:MPS,

1054. the master planner , mp:MP,

1055. the set of derived plannner servers, {dpsnmi
:DPSnmi

| i:[1..p]},

1056. the set of derived planners, {dpnmi
:DPnmi

| i:[1..p]},

1057. the derived plan index generator , dpxg,

1058. the plan repository , pr, and

1059. the set of pairs of derived server and derived planners, sps.

value
1048 uod : UoD
1049 clk : CLK = obs CLK(uod)
1050 tus : TUS = obs TUS(uod)
1051 ans : Aanmi

-set, i:[1..n] =
1051 { obs Aanmi

(aa) | aa∈(obs AA(uod)), i:[1..n]}
1052 ad : AD = obs AD(obs AA(uod))
1053 mps : MPS = obs MPS(obs MPA(uod))
1054 mp : MP = obs MP(obs MPA(uod))
1055 dpss : DPSnmi

-set, i:[1..p] =
1055 { obs DPSnmi

(dpcnmi
) |

508 CONTENTS

1055 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
1056 dps : DPnmi

-set, i:[1..p] =
1056 { obs DPnmi

(dpcnmi
) |

1056 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
1057 dpxg : DPXG = obs DPXG(uod)
1058 pr : PR = obs PR(uod)
1059 spsps : (DPSnmi

×DPnmi
)-set, i:[1..p] =

1059 { (obs DPSnmi
(dpcnmi

),obs DPnmi
(dpcnmi

)) |
1059 dpcnmi

:DPCnmi
•dpcnmi

∈ obs DPCSnmi
(obs DPA(uod)), i:[1..p] }

Q.2 Unique Identifiers

We introduce a notion of unique identification of parts. We assume (i) that all parts, p, of any
domain P , have unique identifiers, (ii) that unique identifiers (of parts p:P) are abstract values (of
the unique identifier, π, sort Π UI of parts p:P), (iii) such that distinct part sorts, Pi and Pj , have
distinctly named unique identifier sorts, say Π UIi and Π UIj , (iv) that all π:Π UIi and πj :Π UIj
are distinct, and (v) that the observer function uid P applied to p yields the unique identifier, say
π:Π UI, of p.

The analysis & description of unique identification is a prerequisite for talking about mere-
ologies of universes of discourse, and the analysis & description of mereologies are a means for
understanding how parts relate to one another.

Since we model as structures what elsewhere might have been modeled as composite parts we
shall only deal with unique identifiers of atomic parts.

Q.2.1 Urban Space Unique Identifier

1060. The urban space has a unique identifier.

type
1060 TUS UI
value
1060 uid TSU: TSU → TUS UI

Q.2.2 Analyser Unique Identifiers

1061. Each analyser has a unique identifier.

1062. The analysis depository has a unique identifier.

type
1061 A UI = A UIanm1

| A UIanm2
| ... | A UIanmn

1062 AD UI
value
1061 uid A: Anmi

→ A UInmi
, i : [1..n]

1062 uid AD: AD → AD UI
axiom
1061 ∀ anmi

:Anmi
•

1061 let a uinmi
= uid A(anmi

) in a uinmi
≃ nmi end

The mathematical symbol ≃ (in this report) denotes isomorphy .

Q.2. UNIQUE IDENTIFIERS 509

Q.2.3 Master Planner Server Unique Identifier

1063. The unique identifier of the master planner server .

type
1063 MPS UI
value
1063 uid MPS: MPS → MPS UI

Q.2.4 Master Planner Unique Identifier

1064. The unique identifier of the master planner .

type
1064 MP UI
value
1064 uid MP: MP → MP UI

Q.2.5 Derived Planner Server Unique Identifier

1065. The unique identifiers of derived planner servers.

type
1065 DPS UI = DPS UInm1

| DPS UInm2
| ... | DPS UInmp

value
1065 uid DPS: DPSnmi

→ DPS UInmi
, i : [1..p]

axiom
1065 ∀ dpsnmi

:DPSnmi
•

1065 let dps uinmi
= uid DPS(dpsnmi

) in dps uinmi
≃ nmi end

Q.2.6 Derived Planner Unique Identifier

1066. The unique identifiers of derived planners.

type
1066 DP UI = DP UInm1

| DP UInm2
| ... | DP UInmp

value
1066 uid DP: DPnmi

→ DP UInmi
, i : [1..p]

axiom
1066 ∀ dpnmi

:DPnmi
•

1066 let dp uinmi
= uid DP(dpnmi

) in dp uinmi
≃ nmi end

Q.2.7 Derived Plan Index Generator Identifier

1067. The unique identifier of derived plan index generator :

type
1067 DPXG UI
value
1067 uid DPXG: DPXG → DPXG UI

510 CONTENTS

Q.2.8 Plan Repository

1068. The unique identifier of plan repository :

type
1068 PR UI
value
1068 uid PR: PR → PR UI

Q.2.9 Uniqueness of Identifiers

1069. The identifiers of all analysers are distinct.

1070. The identifiers of all derived planner servers are distinct.

1071. The identifiers of all derived planners are distinct.

1072. The identifiers of all other atomic parts are distinct.

1073. And the identifiers of all atomic parts are distinct.

1069 card ans = card auis
1070 card dpss = card dpsuis
1071 card dps = card dpuis
1072 card{ clkui, tusui, adui,mpsui,mpui, dpxgui, plasui} = 7
1073 ∩(ans, dpss, dps, {clkui, tusui, adui,mpsui,mpui, dpxgui, plasui})={}

Q.2.10 Indices and Index Sets

It will turn out to be convenient, in the following, to introduce a number of index sets.

1074. There is the clock identifier, clkui:CLK UI.

1075. There is the urban space identifier, tusui:TUS UI.

1076. There is the set, auis:A UI-set, of the identifiers of all analysers.

1077. The analysis depository identifier, adui.

1078. There is the master planner server identifier, mpsui:MPS UI.

1079. There is the master planner identifier, mpui:MP UI.

1080. There is the set, dpsuis:DPS UI-set, of the identifiers of all derived planner servers.

1081. There is the set, dpuis:DP UI-set, of the identifiers of all derived planners.

1082. There is the derived plan index generator identifier, dpxgui:DPXG UI.

1083. And there is the plan repository identifier, prui:PR UI.

value
1074 clkui : CLK UI = uid CLK(uod)
1075 tusui : TUS UI = uid TUS(uod)
1076 auis : A UI-set = {uid A(a)|a:A•a ∈ ans}
1077 adui : AD UI = uid AD(ad)
1078 mpsui : MPS UI = uid MPS(mps)
1079 mpui : MP UI = uid MP(mp)

Q.2. UNIQUE IDENTIFIERS 511

1080 dpsuis : DPS UI-set = {uid DPS(dps)|dps:DPS•dps ∈ dpss}
1081 dpuis : DP UI-set = {uid DP(dp)|dp:DP•dp ∈ dps}
1082 dpxgui : DPXG UI = uid DPXG(dpxg)
1083 prui : PR UI = uid PR(pr)

1084. There is also the set of identifiers for all servers: psuis:(MPS UI|DPS UI)-set,

1085. there is then the set of identifiers for all planners: psuis:(MP UI|DP UI)-set,

1086. there is finally the set of pairs of paired derived planner server and derived planner identifiers.

1087. there is a map from the unique derived server identifiers to their “paired” unique derived
planner identifiers, and

1088. there is finally the reverse map from planner to server identifiers.

value
1084 suis : (MPS UI|DPS UI)-set = {mpsui} ∪ dpsuis
1085 puis : (MP UI|DP UI)-set = {mpui} ∪ dpuis
1086 sips : (DPS UI×DP UI)-set = {(uid DPS(dps),uid DP(dp))|(dps,dp):(DPS×DP)•(dps,dp)∈sps}
1087 si pi m : DPS UI→m DP UI = [uid DPS(dps)7→uid DP(dp)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]
1088 pi si m : DP UI→m DPS UI = [uid DP(dp)7→uid DPS(dps)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]

Q.2.11 Retrieval of Parts from their Identifiers

1089. Given the global set dpss, cf. 1055 on page 507, i.e., the set of all derived servers, and given
a unique planner server identifier, we can calculate the derived server with that identifier.

1090. Given the global set dps, cf. 1056 on page 507, the set of all derived planners, and given a
unique derived planner identifier, we can calculate the derived planner with that identifier.

value
1089 c s: dpss → DPS UI → DPS
1089 c s(dpss)(dps ui) ≡ let dps:DPS•dps ∈dpss∧uid DPS(dps)=dps ui in dps end
1090 c p: dps → DP UI → DP
1090 c p(dps)(dp ui) ≡ let dp:DP•dp ∈dps∧uid DPS(dp)=dp ui in dp end

Q.2.12 A Bijection: Derived Planner Names and Derived Planner Identifiers

We can postulate a unique relation between the names, dn:DNm-set, i.e., the names dn∈DNms,
and the unique identifiers of the named planners:

1091. We can claim that there is a function, extr DNm, from the unique identifiers of derived
planner servers to the names of these unique identifiers.

1092. Similarly can claim that there is a function, extr DNm, from the unique identifiers of derived
planners to the names of these unique identifiers.

value
1091 extr Nm: DPS UI → DNm
1091 extr Nm(dps ui) ≡ ...
1092 extr Nm: DP UI → DNm
1092 extr Nm(dp ui) ≡ ...
axiom
1091 ∀ dps ui1,dps ui2:DPS ui • dps ui1 6=dps ui2 ⇒ extr Nm(dps ui1) 6= extr Nm(dps ui1)
1092 ∀ dp ui1,dp ui2:DP ui • dp ui1 6=dp ui2 ⇒ extr Nm(dp ui1) 6= extr Nm(dp ui1)

512 CONTENTS

1093. Let dps ui dnm:DPS UI DNm, dp ui dnm:DP UI DNm stand for maps from derived planner
server, respectively derived planner unique identifiers to derived planner names.

1094. Let nm dp ui:Nm DP UI, nm dp ui:Nm DP UI stand for the reverse maps.

1095. These maps are bijections.

type
1093 DPS UI DNm: DPS UI →m DP Nm
1093 DP UI DNm: DP UI →m DP Nm
1094 DNm DPS UI: DP Nm →m DP UI
1094 DNm DP UI: DP Nm →m DP UI
axiom
1095 ∀ dps ui dnm:DPS UI DNm • dps ui dnm−1·dps ui dnnm = λx.x
1095 ∀ dp ui dnm:DP UI DNm • dp ui dnm−1·dp ui dnnm = λx.x
1095 ∀ dnm dps ui:DNm DPS UI • dnm dps ui−1·dnm dps ui = λx.x
1095 ∀ dnm dp ui:DNm DP UI • dp ui dnm−1·dnm dps ui = λx.x

that is:
1095 ∀ dps ui dnm:DPS UI DNm, dp ui dnm:DP UI DNm, dps ui:DPS UI •

1095 dps ui ∈ dom dps ui dnm ⇒ dp ui dnm(dps ui dnm(dps ui)) = dps ui
et cetera !

1096. The function mk DNm DUI takes the set of all derived planner servers, respectively derived
planners and produces bijective maps, dnm dps ui, respectively dnm dp ui.

1097. Let dnm dps ui:DNm DPS UI and

1098. dnm dp ui:DNm DP UI

stand for such [global] maps.

value
1096 mk Nm DPS UI: DPSnmi

-set → DNm DPS UI
1096 mk Nm DPS UI(dpss) ≡ [uid DPS(dps)7→extr Nm(uid DPS(dps))|dps:DPS•dps ∈ dpss]
1096 mk Nm DP UI: DPnmi

-set → DNm DP UI
1096 mk Nm DP UI(dps) ≡ [uid DP(dp)7→extr Nm(uid DP(dp))|dp:DP•dps ∈ dps]

1097 nm dps ui:Nm DPS UI = mk Nm DPS UI(dps)
1098 nm dp ui:Nm DP UI = mk Nm DP UI(dps)

Q.3 Mereologies

Mereology (from the Greek µǫρoς ‘part’) is the theory of part-hood relations: of the relations of part
to whole and the relations of part to part within a whole3.

Part mereologies inform of how parts relate to other parts. As we shall see in the section
on perdurants, mereologies are the basis for analysing & describing communicating between part
behaviours.

Again: since we model as structures what is elsewhere modeled as composite parts we shall only
consider mereologies of atomic parts.

3Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [81].

Q.3. MEREOLOGIES 513

Q.3.1 Clock Mereology

1099. The clock is related to all those parts that create information, i.e., documents of interest to
other parts. Time is then used to time-stamp those documents. These other parts are: the
urban space, the analysers, the planner servers and the planners.

type
1099 CLK Mer = TSU UI×A UI-set×MPS UI×MP UI×DPS UI-set×DP UI-set
value
1099 mereo CLK: CLK → Clk Mer
axiom
1099 mereo CLK(uod) = (tusui, auis,mpsui,mpui, dpsuis, dpuis)

Q.3.2 Urban Space Mereology

The urban space stands in relation to those parts which consume urban space information: the
clock (in order to time stamp urban space information), the analysers and the master planner
server .

1100. The mereology of the urban space is a triple of the clock identifier, the identifier of the
master planner server and the set of all analyser identifiers. all of which are provided with
urban space information.

1101. The constraint here is expressed in the ‘the’: for the universe of discourse it must be the
master planner aggregate unique identifier and the set of exactly all the analyser unique
identifiers for that universe.

type
1100 TUS Mer = CLK UI × A UI-set × MPS UI
value
1100 mereo TUS: TUS → TUS Mer
axiom
1101 mereo TUS(tus) = (clkui, auis,mpsui)

Q.3.3 Analyser Mereology

1102. The mereology of a[ny] analyser is that of a triple: the clock identifier , the urban space
identifier , and the analysis depository identifier.

type
1102 A Mer = CLK UI × TUS UI × AD UI
value
1102 mereo A: A → A Mer

Q.3.4 Analysis Depository Mereology

1103. The mereology of the analysis depository is a triple: the clock identifier , the master planner
server identifier , and the set of derived planner server identifiers.

type
1103 AD Mer = CLK UI × MPS UI × DPS UI-set
value
1103 mereo AD: AD → AD Mer

514 CONTENTS

Q.3.5 Master Planner Server Mereology

1104. The master planner server mereology is a quadruplet of the clock identifier (time is used
to time stamp input arguments, prepared by the server, to the planner), the urban space
identifier, the analysis depository and the master planner identifier.

1105. And for all universes of discourse these must be exactly those of that universe.

type
1104 MPS Mer = CLK UI × TUS UI × AD UI × MP UI
value
1104 mereo MPS: MPS → MPS Mer
axiom
1105 mereo MPS(mps) = (clkui, tusui, adui,mpui)

Q.3.6 Master Planner Mereology

1106. The mereology of the master planner is a triple of: the clock identifier4, master server
identifier5, derived planner index generator identifier6, and the plan repository identifier7.

type
1106 MP Mer = CLK UI × MPS UI × DPXG UI × PR UI
value
1106 mereo MP: MP → MP Mer
axiom
1106 mereo MP(mp) = (clkui,mpsui,dpxgui,prui)

Q.3.7 Derived Planner Server Mereology

1107. The derived planner server mereology is a quadruplet of:

the clock identifier8, the set of all analyser
identifiers9, the plan repository identifier,10

and the derived planner identifier11.

type
1107 DPS Mer = CLK UI × AD UI × PLAS UI × DP UI
value
1107 mereo DPS: DPS → DPS Mer
axiom
1107 ∀ (dps,dp):(DPS×DP) • (dps,dp)∈sps ⇒
1107 mereo DPS(dps) = (clkui, adui,plasui,uid DP(dp))

Q.3.8 Derived Planner Mereology

1108. The derived planner mereology is a quadruplet of:
4From the clock the planners obtain the time with which they stamp all information assembled by the plannner.
5from which the master planner obtains essential input arguments
6in collaboration with which the master planner obtains a possibly empty set of derived planning indices
7with which it posits and from which it obtains summaries of all urban planning plans produced so far.
8From the clock the servers obtain the time with which they stamp all information assembled by the servers.
9From the analysers the servers obtain analyses.

10In collaboration with the plan repository the planners deposit plans etc. and obtains summaries of all urban
planning plans produced so far

11The server provides its associated planner with appropriate input arguments.

Q.4. ATTRIBUTES 515

the clock identifier, the derived plan server
identifier, the derived plan index generator

identifier, and the plan repository identifier.

type
1108 DP Mer = CLK UI × DPS UI × DPXG UI × PR UI
value
1108 mereo DP: DP → DP Mer
axiom
1108 ∀ (dps,dp):(DPS×DP) • (dps,dp)∈sps ⇒
1108 mereo DP(dp) = (clkui,uid DPS(dps),dpxgui,prui)

Q.3.9 Derived Planner Index Generator Mereology

1109. The mereology of the derived planner index generator is the set of all planner identifiers:
master and derived.

type
1109 DPXG Mer = (MP UI|DP UI)-set
value
1109 mereo DPXG: DPXG → DPXG Mer
axiom
1109 mereo DPXG(dpxg) = psuis

Q.3.10 Plan Repository Mereology

1110. The plan repository mereology is the set of all planner identifiers: master and derived.

1110 PR Mer = (MP UI|DP UI)-set
value
1110 mereo PR: PR → PR Mer
axiom
1110 mereo PR(pr) = psuis

Q.4 Attributes

Parts are typically recognised because of their spatial form and are otherwise characterised by
their intangible, but measurable attributes. That is, whereas endurants, whether discrete (as are
parts and components) or continuous (as are materials), are physical, tangible, in the sense of
being spatial (or being abstractions, i.e., concepts, of spatial endurants), attributes are intangible:
cannot normally be touched, or seen, but can be objectively measured. Thus, in our quest for
describing domains where humans play an active rôle, we rule out subjective “attributes”: feelings,
sentiments, moods. Thus we shall abstain, in our domain science also from matters of aesthetics.
A formal concept, that is, a type, consists of all the entities which all have the same qualities.
Thus removing a quality from an entity makes no sense: the entity of that type either becomes
an entity of another type or ceases to exist (i.e., becomes a non-entity)

Q.4.1 Clock Attribute

Q.4.1.1 Time and Time Intervals and their Arithmetic

1111. Time is modeled as a continuous entity.

516 CONTENTS

1112. One can subtract two times and obtain a time interval.

1113. There is an “infinitesimally” smallest time interval, δt:T.

1114. Time intervals are likewise modeled as continuous entities.

1115. One can add or subtract a time interval to, resp. from a time and obtain a time.

1116. One can compare two times, or two time intervals.

1117. One can add and subtract time intervals.

1118. One can multiply time intervals with real numbers.

type
1111 T
1112 TI
value
1112 sub: T × T → TI
1113 δt:TI
1115 add,sub: TI × T → T
1116 <,≤,=,≥,>: ((T×T)|(TI×TI)) → Bool
1117 add,sub: TI × TI → TI
1118 mpy: TI × Real → TI

Q.4.1.2 The Attribute

1119. The only attribute of a clock is time. It is a programmable attribute.

type
1119 T
value
1119 attr T: CLK → T
axiom
1119 ∀ clk:CLK •

1119 let (t,t′) = (attr CLK(clk);attr CLK(clk)) in
1119 t≤t′ end

The ‘;’ in an expression (a;b) shall mean that first expression a is evaluated, then expression b.

Q.4.2 Urban Space Attributes

Q.4.2.1 The Urban Space

1120. We shall assume a notion of the urban space, tus:TUS, from which we can observe the
attribute:

1121. an infinite, compact Euclidean set of points.

1122. By a point we shall understand a further undefined atomic notion.

1123. By an area we shall understand a concept, related to the urban space, that allows us to speak
of “a point being in an area” and “an area being equal to or properly within another area”.

1124. To an[y] urban space we can associate an area; we may think of an area being an attribute
of the urban space.

Q.4. ATTRIBUTES 517

type
1120 TUS
1121 PtS = Pt-infset
value
1120 attr PtS: TUS → Pt-infset
type
1122 Pt
1123 Area
value
1124 attr Area: TUS → Area
1123 is Pt in Area: Pt × (TUS|Area) → Bool
1123 is Area within Area: Area × (TUS|Area) → Bool

Q.4.2.2 The Urban Space Attributes

By urban space attributes we shall here mean the facts by means of which we can characterize that
which is subject to urban planning: the land, what is in and on it: its geodetics, its cadastra12,
its meteorology, its socio-economics, its rule of law, etc. As such we shall consider ‘the urban
space’ to be a part in the sense of [51]. And we shall consider the geodetic, cadastral, geotechnical,
meteorological , “the law” (i.e., state, province, city and district ordinances) and socio-economic
properties as attributes.

Left: geodetic map, right: cadastral map.

Q.4.2.2.1 Main Part and Attributes One way of observing the urban space is presented: to
the left, in the framed box, we narrate the story; to the right, in the framed box, we formalise it.

1125. The Urban Space (TUS) has the following

(a) PointSpace attributes,

(b) Geodetic attributes,

(c) Cadastre attributes,

(d) Geotechnical attributes,

(e) Meteorological attributes,

(f) Law attributes,

(g) Socio-Economic attributes, etcetera.

type
1125 TUS, PtS, GeoD, Cada, GeoT, Met, Law, SocEco, ...

value
1125a attr Pts: TUS → PtS
1125b attr GeoD: TUS → GeoD
1125c attr Cada: TUS → Cada
1125d attr GeoT: TUS → GeoT
1125e attr Met: TUS → Met
1125f attr Law: TUS → Law
1125g attr SocEco: TUS → SocEco

The attr A: P → A is the signature of a postulated attribute (observer) function. From parts of
type P it observes attributes of type A. attr A are postulated functions. They express that we can
always observe attributes of type A of parts of type P.

12Cadastra: A Cadastra is normally a parcel based, and up-to-date land information system containing a record
of interests in land (e.g. rights, restrictions and responsibilities). It usually includes a geometric description of land
parcels linked to other records describing the nature of the interests, the ownership or control of those interests,
and often the value of the parcel and its improvements. See http://www.fig.net/

518 CONTENTS

Q.4.2.2.2 Urban Space Attributes – Narratives and Formalisation We describe attributes of
the domain of urban spaces. As they are, in real life. Not as we may record them or represent
them (on paper or within the computer). We can “freely” model that reality as we think it
is. If we can talk about and describe it, then it is so ! For meteorological attributes it means
that we describe precipitation, evaporation, humidity and atmospheric pressure as these physical
phenomena “really” are: continuous over time ! Similar for all other attributes. Etcetera.

Q.4.2.2.3 General Form of Attribute Models

1126. We choose to model the General Form of Attributes, such as geodetical, cadastral, geotech-
nical, meteorological, socio-economic, legal, etcetera, as [continuous] functions from time to
maps from points or areas to the specific properties of the attributes.

1127. The points or areas of the properties maps must be in, respectively within, the area of the
urban space whose attributes are being specified.

type
1126 GFA = T → ((Pt|Area) →m Properties)
value
1127 wf GFA: GFA × TUS → Bool
1127 wf GFA(gfa,tus) ≡
1127 let area = attr Area(tus) in
1127 ∀ t:T • t ∈ D gfa ⇒
1127 ∀ pt:Pt • pt ∈ dom gfa(t) ⇒ is Pt in Area(pt,area)
1127 ∧ ∀ ar:Area • ar ∈ dom gfa(t) ⇒ is within Area(ar,area)
1127 end

D is a hypothesized function which applies to continuous functions and yield their domain !

Q.4.2.2.4 Geodetic Attribute[s]

1128. Geodetic attributes map points to

(a) land elevation and what kind of land it is; and (or) to

(b) normal and current water depths and what kind of water it is.

1129. Geodetic attributes also includes road nets and what kind of roads;

1130. etcetera,

type
1128 GeoD = T → (Pt →m ((Land|Water) × RoadNet × ...))
1128a Land = Elevation × (Farmland|Urban|Forest|Wilderness|Meadow|Swamp|...)
1128b Water = (NormDepth × CurrDepth) × (Spring|Creek|River|Lake|Dam|Sea|Ocean|...)
1129 RoadNet = ...
1130 ...

Q.4.2.2.5 Cadastral Attribute[s] A cadastre is a public register showing details of ownership
of the real property in a district, including boundaries and tax assessments.

1131. Cadastral maps shows the boundaries and ownership of land parcels. Some cadastral maps
show additional details, such as survey district names, unique identifying numbers for parcels,
certificate of title numbers, positions of existing structures, section or lot numbers and their
respective areas, adjoining and adjacent street names, selected boundary dimensions and
references to prior maps.

Q.4. ATTRIBUTES 519

1132. Etcetera.

type
1131 Cada = T → (Area →m (Owner × Value × ...))
1132 ...

Q.4.2.2.6 Geotechnical Attribute[s]

1133. Geotechnical attributes map points to

(a) top and lower layer soil etc. composition, by depth levels,

(b) ground water occurrence, by depth levels,

(c) gas, oil occurrence, by depth levels,

(d) etcetera.

type
1133 GeoT = (Pt →m Composition)
1133a Composition = VerticalScaleUnit × Composite∗

1133b Composite = (Soil|GroundWater|Sand|Gravel|Rock|...|Oil|Gas|...)
1133c Soil,Sand,Gravel,Rock,...,Oil,Gas,... = [chemical analysis]
1133d ...

Q.4.2.2.7 Meteorological Attribute[s]

1134. Meteorological information records, for points (of an area) precipitation, evaporation, hu-
midity, etc.;

(a) precipitation: the amount of rain, snow, hail, etc.; that has fallen at a given place and
at the time-stamped moment13, expressed, for example, in milimeters of water;

(b) evaporation: the amount of water evaporated (to the air);

(c) atmospheric pressure;

(d) air humidity;

(e) etcetera.

1134 Met = T → (Pt →m (Precip × Evap × AtmPress × Humid × ...))
1134a Precip = MMs [milimeters]
1134b Evap = MMs [milimeters]
1134c AtmPress = MB [milibar]
1134d Humid = Percent
1134e ...

Q.4.2.2.8 Socio-Economic Attribute[s]

1135. Socio-economic attributes include time-stamped area sub-attributes:

(a) income distribution;

(b) housing situation, by housing category: apt., etc.;

(c) migration (into, resp. out of the area);

13– that is within a given time-unit

520 CONTENTS

(d) social welfare support, by citizen category;

(e) health status, by citizen category;

(f) etcetera.

type
1135 SocEco = T → (Area →m (Inc×Hou×Mig×SoWe×Heal×...))
1135a Inc = ...
1135b Hou = ...
1135c Mig = {|”in”,”out”|} →m ({|”male”,”female”|} →m (Agegroup × Skills × HealthSumm × ...))
1135d SoWe = ...
1135e CommHeal = ...
1135f ...

Q.4.2.2.9 Law Attribute[s]: State, Province, Region, City and District Ordinances

1136. By the law we mean any state, province, region, city, district or other ‘area’ ordinance14.

1137. ...

type
1136 Law
value
1136 attr Law: TUS → Law
type
1136 Law = Area →m Ordinances
1137 ...

Q.4.2.2.10 Industry and Business Economics

to be written

Q.4.2.2.11 Etcetera

to be written

Q.4.2.2.12 The Urban Space Attributes – A Summary Summarising we can model the ag-
gregate of urban space attributes as follows.

1138. Each of these attributes can be given a name.

1139. And the aggregate can be modelled as a map (i.e., a function) from names to appropriately
typed attribute values.

type
1138 TUS Attr Nm = {|”pts”,”ged”,”cad”,”get”,”law”,”eco”,...|}
1139 TUSm = TUS Attr Nm →m TUS Attr
axiom
1139 ∀ tusm:TUSm • ∀ nm:TUS Attr Nm • nm ∈ dom tusm ⇒
1139 case (nm,mtusm(nm)) of
1139 ((”pts”,v) → is PtS(v), ”ged”,v) → is GeoD(v), (”cad”,v) → is CaDa(v),
1139 (”get”,v) → is GeoT(v), (”law”,v) → is Law(v), (”eco”,v) → is Eco(v), ...
1139 end

14Ordinance: a law set forth by a governmental authority; specifically a municipal regulation: for ex.: A city
ordinance forbids construction work to start before 8 a.m.

Q.4. ATTRIBUTES 521

Q.4.2.2.13 Discussion

to be written

Q.4.3 Scripts

The concept of scripts is relevant in the context of analysers and planners.
By a script we shall understand the structured, almost, if not outright, formally expressed,

wording of a procedure on how to proceed, one that may have legally binding power, that is,
which may be contested in a court of law.

Those who contract urban analyses and urban plannings may wish to establish that some
procedural steps are taken. Examples are: the vetting of urban space information, the formulation
of requirements to what the analysis must contain, the vetting of that and its “quality”, the order
of procedural steps, etc. We refer to [53, 65].

A[ny] script, as implied above, is “like a program”, albeit to be “computed” by humans.
Scripts may typically be expressed in some notation that may include: graphical renditions

that, for example, illustrate that two or more independent groups of people, are expected to
perform a number of named and more-or-less loosely described actions, expressed in, for example,
the technical (i.e., domain) language of urban analysis, respectively urban planning.

The design of urban analysis and of urban planning scripts is an experimental research project
with fascinating prospects for further understanding what urban analysis and urban planning is.

Q.4.4 Urban Analysis Attributes

1140. Each analyser is characterised by a script, and

1141. the set of master and/or derived planner server identifiers – meaning that their “attached”
planners might be interested in its analysis results.

type
1140 A Script = A Scriptanm1

| A Scriptanm2
| ... | A Scriptanmn

1141 A Mer = (MPS UI|DPS UI)-set
value
1140 attr A Script: A → A Scripts
1141 attr A Mer: A → A Mer
axiom
1141 ∀ a:A•a ∈ ans ⇒ attr A Mer(a) ⊆ psuis

Q.4.5 Analysis Depository Attributes

The purpose of the analysis depository is to accept, store and distribute collections of analyses;
it accepts these analysis from the analysers. it stores these analyses “locally”; and it distributes
aggregates of these analyses to plan servers.

1142. The analysis depository has just one attribute, AHist. It is modeled as a map from analyser
names to analysis histories.

1143. An analysis history is a time-ordered sequence, of time stamped analyses, most recent analyses
first.

type
1142 AHist = ANm →m (s T:T × s Anal:Analanmi

)∗

value
1142 attr AHist: AD → AHist
axiom

522 CONTENTS

1143 ∀ ah:AHist, anm:ANm • anm ∈ dom ah ⇒
1143 ∀ i:Nat • {i,i+1}⊆inds ah(anm) ⇒
1143 s T((ah(nm))[i]) > s T((ah(nm))[i+1])

Q.4.6 Master Planner Server Attributes

The planner servers, whether for master planners or derived planners, assemble arguments for their
associated (i.e., ‘paired’) planners. These arguments include information auxiliary to other argu-
ments, such as urban space information for the master planner, and analysis information for all
planners; in addition the server also provides requirements that are resulting planner plans are
expected to satisfy. For every iteration of the planner behaviour the pair of auxiliary and require-
ments information is to be renewed and the renewed pairs must somehow “fit” the previously
issued pairs.

1144. The programmable attributes of the master planner server are those of aux:AUXiliaries and
req:REQuirements.

1145. We postulate a predicate function, fit mAux mReq, which takes a pair of pairs auxiliary and
requirements arguments, and yields a truth value.

type
1144 mAUX, mREQ
value
1144 attr mAUX: MPS → mAUX
1144 attr mREQ: MPS → mREQ
1145 fit mAUX mReq: (mAUX×mREQ)×(mAUX×mREQ) → Bool
1145 fit mAUX mReq(arg prev,arg new) ≡ ...

Q.4.7 Master Planner Attributes

The master planner has the following attributes:

1146. a master planner script which is a static attribute;

1147. an aggregate of script “counters”, a programmable attribute; the aggregate designates pointers
in the master script where resumption of master planning is to take place in a resumed
planning;

1148. a set of names of the analysers whose analyses the master planner is, or may be interested
in, a static attribute; and

1149. a set of identifiers of the derived planners which the master planner may initiate static at-
tribute.

type
1146 MP Script
1147 MP Script Pt
1147 MP Script Pts = MP Script pt-set
1148 ANms = ANm-set
1149 DPUIs = DP UI-set
value

1146 attr MP Script: MP → MP Script
1147 attr Script Pts: MP → MP Script Pts
1148 attr ANms: MP → ANms
1149 attr DPUIs: MP → DPUIs
axiom
1148 attr ANms(mp) ⊆ ANms
1149 attr DPNms(mp) ⊆ DNms

Q.4. ATTRIBUTES 523

Q.4.8 Derived Planner Server Attributes

1150. The programmable attributes, of the derived planner servers are those of aux:AUXiliaries and
req:REQuirements, one each of an indexed set.

1151. We postulate an indexed predicate function, fit mAux mReq, which takes a pair of pairs
auxiliary and requirements arguments, and yields a truth value.

type
1144 dAUX = dAUXdnm1

| dAUXdnm2
| ... | dAUXdnmp

1144 dREQ = dREQdnm1
| dREQdnm2

| ... | dREQdnmp

value
1150 attr dAUXdnmi

: MPSdnmi
→ dAUXdnmi

1150 attr dREQdnmi
: MPSdnmi

→ dREQdnmi

1151 fit dAUX dReqdnmi
dReqdnmi

: (dAUXdnmi
×dREQdnmi

)×(dAUXdnmi
×dREQdnmi) → Bool

1151 fit dAUX dReqi(arg prevdnmi
,arg newdnmi

) ≡ ...

Q.4.9 Derived Planner Attributes

1152. a derived planner script which is a static attribute;

1153. an aggregate of script “counters”, a programmable attribute; the aggregate designates points
in the derived planner script where resumption of derived planning is to take place in a resumed
planning;

1154. a set of identifiers of the analysers whose analyses the master planner is, or may be interested
in, a static attribute; and

1155. a set of identifiers of the derived planners which any specific derived planner may initiate, a
static attribute.

type
1152 DP Script
1153 DP Script pt
1153 DP Script Pts = DP Script pt∗

1154 ANms
1155 DNms
value

1152 attr MP Script: MP → MP Script
1153 attr Script Pts: MP → Script Pts
1154 attr ANms: MP → ANms
1155 attr DNms: MP → DNms
axiom
1154 attr AUIs(mp) ⊆ ANms
1155 attr DPUIs(mp) ⊆ DNms

Q.4.10 Derived Planner Index Generator Attributes

The derived planner index generator has two attributes:

1156. the set of all derived planner identifiers (a static attribute), and

1157. a set of already used planner identifiers (a programmable attribute).

type
1156 All DPUIs = DP UI-set
1157 Used DPUIs = DP UI-set
value
1156 attr All DPUIs: DPXG →

All DPUIs
1157 attr Used DPUIs: DPXG →

Used DPUIs
axiom
1156 attr All DPUIs(dpxg) = dpuis
1157 attr Used DPUIs(dpxg) ⊆ dpuis

524 CONTENTS

Q.4.11 Plan Repository Attributes

The rôle of the plan repository is to keep a record of all master and derived plans. There are two
plan repository attributes.

1158. A bijective map between derived planner identifiers and names, and

1159. a pair of a list of time-stamped master plans and a map from derived planner names to lists
of time-stamped plans, where the lists are sorted in time order, most recent time first.

type
1158 NmUIm = DNm →m DP UI
1159 PLANS = ((MP UI|DP UI)→m (s t:T×s pla:PLA)∗)
value
1158 attr NmUIm: PR → NmUIm
axiom
1158 ∀ bm:NmUIm • bm−1(bm) ≡ λx.x
value
1158 attr PLANS: PR → PLANS
axiom
1159 let plans = attr PLANS(pr) in
1159 dom plans ⊆ {mpui}∪dpuis
1159 ∀ pui:(MP UI|DP UI)•pui ∈ {mpui}∪dpuis ⇒ time ordered(plans(pui))
1159 end
value
1159 time ordered: (s t:T×s pla:PLA)∗ → Bool
1159 time ordered(tsl) ≡ ∀ i:Nat•{i,i+1}⊆inds tsl ⇒ s t(sl(i)) > s t(tsl(i+1))

Q.4.12 A System Property of Derived Planner Identifiers

Let there be given the set of derived planners dps.

1160. The function reachable identifiers is the one that calculates all derived planner identifiers
reachable from a given such identifier, dp ui:DP UI, in dps.

(a) We calculate the derived planner, dp:DP, from dp ui.

(b) We postulate a set of unique identifiers, uis, initialised with those that can are in the
attr DPUIs(dp) attribute.

(c) Then we recursively calculate the derived planner identifiers that can be reached from
any identifier, ui, in uis.

(d) The recursion reaches a fix-point when there are no more identifiers “added” to uis in
an iteration of the recursion.

1161. A derived planner must not “circularly” refer to itself.

value
1160 reachable identifiers: DP-set × DP UI → DP UI-set
1160 (dps)(dp ui) ≡
1160a let dp = c p(dps)(dp ui) in
1160b let uis = attr DPUIs(dp) ∪
1160c {ui|ui:DP UI•ui ∈ uis ∧ ui ∈ reachable identifiers(dps)(ui)}
1160d in uis end end

1161 ∀ ui:DP UI • ui ∈ dpuis ⇒ ui 6∈ names(dps)(ui)

The seeming “endless recursion” ends when an iteration of the dns construction and its next does
not produce new names for dns — a least fix-point has been reached.

Q.5. THE STRUCTURE TRANSLATORS 525

Q.5 The Structure Translators

Q.5.1 A Universe of Discourse Translator

In this section, i.e., all of Sect. Q.5.1, we omit complete typing of behaviours.

1162. The universe of discourse, uod, compiles and translates into the of its four elements:

(a) the translation of the atomic clock, see Item Q.7.1 on page 530,

(b) the translation of the atomic urban space, see Item Q.7.2 on page 531,

(c) the compilation of the analyser structure, see Item Q.5.2,

(d) the compilation of planner structure. see Item Q.5.3,

value
1162 Translate UoD(uod) ≡
1162a Translate CLK(clk),
1162b Translate TUS(tus),
1162c Translate AA(obs AA(uod)),
1162d Translate PA(obs PA(uod))

The Translator apply to, as here, structures, or composite parts. The Translator apply to atomic
parts. In this section, i.e., Sect. Q.5.1, we will explain the obvious meaning of these functions: we
will not formalise their type, and we will make some obvious short-cuts.

Q.5.2 The Analyser Structure Translator

1163. Compiling the analyser structure results in an AMOL-text which expresses the separate

(a) translation of each of its n analysers, see Item Q.7.3 on page 533, and

(b) the translation of the analysis depository, see Item Q.7.4 on page 534.

1163 Translate AA(aa) ≡
1163a { Translate Aanmi

(obs Aanmi
(aa)) | i:[1..n] },

1163b Translate AD(obs AD(aa))

Q.5.3 The Planner Structure Translator

1164. The planner structure, pa:PA, compiles into four elements:

(a) the compilation of the master planner structure, see Item Q.5.3.1 on the following page,

(b) the translation of the derived server index generator , see Item Q.7.5 on page 535,

(c) the translation of the plan repository , see Item Q.7.6 on page 536, and

(d) the compilation of the derived server structure, see Item Q.5.3.2 on the next page.

1164 Translate PA(pa) ≡
1164a Translate MPA(obs MPA(pa)),
1164b Translate DPXG(obs DPXG(pa)),
1164c Translate PR(obs PR(pa)),
1164d Translate DPA(obs DPA(pa))

526 CONTENTS

Q.5.3.1 The Master Planner Structure Translator

1165. Compiling the master planner structure results in an AMOL-text which expresses the separate
translations of the

(a) the atomic master planner server , see Item Q.7.7 on page 537 and

(b) the atomic master planner , see Item Q.7.8 on page 538.

1165 Translate MPA(mpa) ≡
1165a Translate MPS(obs MPS(mpa)),
1165b Translate MP(obs MP(mpa))

Q.5.3.2 The Derived Planner Structure Translator

1166. The compilation of the derived planner structure results in some AMOL-text which expresses
the set of separate compilations of each of the derived planner pair structures, see Item Q.5.3.3.

1166 Translate DPA(dpa) ≡ { Translate(obs DPCnmj
(pa)) | j:[1..p] }

Q.5.3.3 The Derived Planner Pair Structure Translator

1167. The compilation of the derived planner pair structure results in some AMOL-text which
expresses

(a) the results of translating the derived planner server , see Item Q.7.9 on page 541 and

(b) the results of translating the derived planner , see Item Q.7.10 on page 542.

1167 Translate DPCnmj
(dpcnmj

), i:[1..p] ≡
1167a Translate DPSnmj

(obs DPSnmj
(dpcnmj

)),
1167b Translate DPnmj

(obs DPnmj
(dpcnmj

))

Q.6 Channel Analysis and Channel Declarations

The transcendental interpretation of parts as behaviours implies existence of means of communication
& synchronisation of between and of these behaviours. We refer to Fig. Q.2 on the next page for
a summary of the channels of the urban space analysis and urban planning system.

more to come

Q.6.1 The clk ch Channel

The purpose of the clk ch channel is, for the clock, to propagate Time to such entities who inquire.
We refer to Sects. Q.3.1 on page 513, Q.3.2 on page 513, Q.3.3 on page 513, Q.3.5 on page 514, Q.3.6
on page 514, Q.3.7 on page 514 and Q.3.8 on page 514 for the mereologies that help determine
the indices for the clk ch channel.

1168. There is declared a (single) channel clk ch

1169. whose messages are of type CLK MSG (for Time).

The clk ch is single. There is no need for enquirers to provide their identification. The clock
“freely” dispenses of “its” time.

type
1168 CLK MSG = T
channel
1169 clk ch:CLK MSG

Q.6. CHANNEL ANALYSIS AND CHANNEL DECLARATIONS 527

��������

mps:MPS

dpxg

DPXG

pr:PR

dps_nm_1 dps_nm_2 dps_nm_p

a_anm_na_anm_2

clk_ch

a_anm_1
clk:CLK

{tus_a_ch[j]|j:a_ui_s}

clk_ch

clk_ch

ad

clk_ch
tus:TUS

{a_ad_ch[j]|j:a_ui_s}

mp:MP

dp_nm_p
dp_nm_2dp_nm_1

{p_pr_ch[i]|i:p_ui_s}

{p_dpxg_ch[i]|i:p_ui_s}

s_p_ch[dps_ui1] s_p_ch[dps_ui2] ps_p_ch[dp_ui_p]

{ad_s_ch[i]|i:{mps_ui} U a_ui_s}

mps_mp_ch

{pr_s_ch[i]|i:s_ui_s}

tus_mps_ch

Figure Q.2: The Urban Space and Analysis Channels and Behaviours

Q.6.2 The tus a ch Channel

The purpose of the tus a ch channel is, for the the urban space, to propagate urban space attributes
to analysers. We refer to Sects. Q.3.2 and Q.3.3 for the mereologies that help determine the
indices for the tus a -ch channel.

1170. There is declared an array channel tus a ch whose messages are of

1171. type TUS MSG (for a time stamped aggregate of urban space attributes, TUSm, cf. Item 1139
on page 520).

type
1171 TUS MSG = T × TUSm
channel
1170 {tus a ch[a ui]:TUS MSG|a ui:A UI•a ui ∈ auis}

The tus a ch channel is to offer urban space information to all analysers. Hence it is an array
channel over indices ANms, cf. Item 1045 on page 505.

Q.6.3 The tus mps ch Channel

The purpose of the tus mps ch channel is, for the the urban space, to propagate urban space
attributes to the master planner server. We refer to Sects. Q.3.2 and Q.3.5 for the mereologies that
help determine the indices for the tus mps ch channel.

1172. There is declared a channel tus mps ch whose messages are of

528 CONTENTS

1171 type TUS MSG (for a time stamped aggregate of urban space attributes, TUSm, cf. Item 1139
on page 520).

type
1171 TUS MSG = T × TUSm
channel
1172 tus mps ch:TUS MSG

The tus s ch channel is to offer urban space information to just the master server. Hence it is a
single channel.

Q.6.4 The a ad ch Channel

The purpose of the a ad ch channel is, for analysers to propagate analysis results to the analysis
depository. We refer to Sects. Q.3.3 and Q.3.4 for the mereologies that help determine the indices
for the a ad ch channel.

1173. There is declared a channel a ad ch whose time stamped messages are of

1174. type A MSG (for analysis message).

type
1174 A MSGanmi

= (s T:T × s A:Analysisanmi
), i:[1:n]

1174 A MSG = A MSGanm1
|A MSGanm2

|...|A MSGanmn

channel
1173 {a ad ch[a ui]:A MSG|a ui:A UI•a ui ∈ auis}

Q.6.5 The ad s ch Channel

The purpose of the ad s ch channel is, for the analysis depository to propagate histories of analysis
results to the server. We refer to Sects. Q.3.4, Q.3.5 and Q.3.7 for the mereologies that help
determine the indices for the ad s ch channel.

1175. There is declared a channel ad s ch whose messages are of

1176. type AD MSG (defined as A Hist for a histories of analyses), see Item 1142 on page 521.

type
1176 AD MSG = A Hist
channel
1175 {ad s ch[s ui]|s ui:(MPS UI|DPS UI)•s ui ∈{mpsui}∪dpsuis}:AD MSG

The ad s ch channel is to offer urban space information to the master and derived servers. Hence
it is an array channel.

Q.6.6 The mps mp ch Channel

The purpose of the mps mp ch channel is for the master server to propagate comprehensive master
planner input to the master planner. We refer to Sects. Q.3.5 and Q.3.6 for the mereologies that
help determine the indices for the mps mp ch channel.

1177. There is declared a channel mps mp ch whose messages are of

1178. type MPS MSG which are quadruplets of time stamped urban space information, TUS MSG,
see Item 1171 on the previous page, analysis histories, A Hist, see Item 1176, master planner
auxiliary information, mAUX, and master plan requirements, mREQ.

Q.6. CHANNEL ANALYSIS AND CHANNEL DECLARATIONS 529

type
1178 MPS MSG = TUS MSG×AD MSG×mAUX×mREQ
channel
1177 mps mp ch:MPS MSG

The mps mp ch channel is to offer MPS MSG information to just the master server . Hence it is a
single channel.

Q.6.7 The p pr ch Channel

The purpose of the p pr ch channel is, for master and derived planners to deposit and retrieve master
and derived plans to the plan repository. We refer to Sects. Q.3.6 and Q.3.10 for the mereologies
that help determine the indices for the p pr ch channel.

1179. There is declared a channel p pr ch whose messages are of

1180. type PLAN MSG – for time stamped master plans.

type
1180 PLAN MSG = T × PLANS
channel
1179 {p pr ch[p ui]:PLAN MSG|p ui:(MP UI|DP UI)•p ui ∈ puis}

The p pr ch channel is to offer comprehensive records of all current plans to all the the planners.
Hence it is an array channel.

Q.6.8 The p dpxg ch Channel

The purpose of the p dpxg ch channel is, for planners to request and obtain derived planner index
names of, respectively from the derived planner index generator. We refer to Sects. Q.3.6 and Q.3.9
for the mereologies that help determine the indices for the mp dpxg ch channel.

1181. There is declared a channel p dpxg ch whose messages are of

1182. type DPXG MSG. DPXG MSG messages are

(a) either request from the planner to the index generator to provide zero, one or more of
an indicated set of derived planner names,

(b) or to accept such a (response) set from the index generator .

type
1182 DPXG MSG = DPXG Req | DPXG Rsp
1182a DPXG Req :: DNm-set
1182b DPXG Rsp :: DNm-set
channel
1181 {p dpxg ch[ui]:DPXG MSG|ui:(MP UI|DP UI)•ui ∈ puis}

Q.6.9 The pr s ch Channel

The purpose of the pr s ch channel is, for the plan repository to provide master and derived plans
to the derived planner servers. We refer to Sects. Q.3.10 and Q.3.7 for the mereologies that help
determine the indices for the pr dps ch channel.

1183. There is declared a channel pr dps ch whose messages are of

530 CONTENTS

1184. type PR MSGd, defined as PLAp, cf. Item 1159 on page 524.

type
1184 PR MSG = PLANS
channel
1183 {pr s ch[ui]:PR MSGd|ui:(MPS UI|DPS UI)•ui ∈ suis}

Q.6.10 The dps dp ch Channel

The purpose of the dps dp ch channel is, for derived planner servers to provide input to the derived
planners. We refer to Sects. Q.3.7 and Q.3.8 for the mereologies that help determine the indices
for the dps dp ch channel.

1185. There is declared a channel dps dp ch[ui nm j], one for each derived planner pair.

1186. The channel messages are of type DPS MSGnmj
. These DPS MSGnmi

messages are quadru-
plets of analysis aggregates, AD MSG, urban plan aggregates, PLANS, derived planner auxiliary
information, dAUXnmj

, and derived plan requirements, dAUXnmj
.

type
1186 DPS MSGnmj

= AD MSG×PLANS×dAUXnmj
×dREQnmj

, j:[1..p]
channel
1185 {dps dp ch[ui]:DPS MSGnmj

|ui:DPS UI•ui ∈ dpsuis}

Q.7 The Atomic Part Translators

Q.7.1 The clock Translator

We refer to Sect. Q.4.1.2 for the attributes that play a rôle in determining the clock signature.

Q.7.1.1 The Translate CLK Function

1187. The Translate CLK(clk) results in three text elements:

(a) the value keyword,

(b) the signature of the clock definition,

(c) and the body of that definition.

The clock signature contains the unique identifier of the clock; the mereology of the clock, cf. Item Q.3.1
on page 513; and the attributes of the clock, in some form or another: the programmable time
attribute and the channel over which the clock offers the time.

value
1187 Translate CLK(clk) ≡
1187a ” value
1187b clock: T → out clk ch Unit
1187c clock(uid CLK(clk),mereo CLK(clk))(attr T(clk)) ≡ ... ”

Q.7. THE ATOMIC PART TRANSLATORS 531

Q.7.1.2 The clock Behaviour

The purpose of the clock is to show the time. The “players” that need to know the time are:
the urban space when informing requestors of aggregates of urban space attributes, the analysers
when submitting analyses to the analysis depository, the planners when submitting plans to the
plan repository.

1188. We see the clock as a behaviour.

1189. It takes a programmable input, the current time, t.

1190. It repeatedly emits the some next time on channel clk ch.

1191. Each iteration of the clock it non-deterministically, internally increments the current time
by either nothing or an infinitisimally small time interval δ ti, cf. Item 1113 on page 516.

1192. In each iteration of the clock it either offers this next time, or skips doing so;

1193. whereupon the clock resumes being the clock albeit with the new, i.e., next time.

value
1190 δti:TI = ... cf. Item 1113 on page 516
1188 clock: T → out clk ch Unit
1189 clock(uid clk,mereo clk)(t) ≡
1191 let t′ = (t+δti) ⌈⌉ t in
1192 skip ⌈⌉ clk ch!t′ ;
1193 clock(uid clk,mereo clk)(t′) end
1193 pre: uid clk = clkui ∧
1193 mereo clk = (tusui, auis,mpsui,mpui, dpsuis, dpuis)

Q.7.2 The Urban Space Translator

We refer to Sect. Q.4.2.2 for the attributes that play a rôle in determining the urban space signa-
ture.

Q.7.2.1 The Translate TUS Function

1194. The Translate TUS(tus) results in three text elements:

(a) the value keyword

(b) the signature of the urb spa definition,

(c) and the body of that definition.

The urban space signature contains the unique identifier of the urban space, the mereology of
the urban space, cf. Item Q.3.2 on page 513, the static point space attribute.

value
1194 Translate TUS(tus) ≡
1194a ” value
1194b urb spa: TUS UI × TUS Mer → Pts →
1194b out ... Unit
1194c urb spa(uid TUS(tus),mereo TUS(tus))(attr Pts(tus)) ≡ ... ”

We shall detail the urb spa signature and the urb spa body next.

532 CONTENTS

a_anm_na_anm_2a_anm_1
clk:CLK

ad

tus:TUS
clk_ch

Figure Q.3: The Urban Space and Analysis Behaviours

Q.7.2.2 The urb spa Behaviour

The urban space can be seen as a behaviour. It is “visualized” as the rounded edge box to the left
in Fig. Q.3. It is a “prefix” of Fig. Q.3. In this section we shall refer to many other elements of
our evolving specification. To grasp the seeming complexity of the urban space, its analyses and
its urban planning functions, we refer to Fig. Q.3.

1195. To every observable part, like tus:TUS, there corresponds a behaviour, in this case, the
urb spa.

1196. The urb spa behaviour has, for this report, just one static attribute, the point space, Pts.

1197. The urb spa behaviour has the following biddable and programmable attributes, the Cadastral,
the Law and the SocioEconomic attributes. The biddable and programmable attributes
“translate” into behaviour parameters.

1198. The urb spa behaviour has the following dynamic, non-biddable, non-programmable at-
tributes, the GeoDetic, GeoTechnic and the Meterological attributes The non-biddable, non-
programmable dynamic attributes “translate”, in the conversion from parts to behaviours,
to input channels etc.

the urb spa behaviour offers its attributes, upon demand,

1199. to a urban space analysis behaviours, tus ana i and one master urban server.

1200. The urb spa otherwise behaves as follows:

(a) it repeatedly “assembles” a tuple, tus, of all attributes;

(b) then it external non-deterministically either offers the tus tuple

(c) to either any of the urban space analysis behaviours,

(d) or to the master urban planning behaviour;

(e) in these cases it resumes being the urb spa behaviour;

(f) or internal-non-deterministically chooses to

(g) update the law, the cadastral, and the socio-economic attributes;

(h) whereupon it resumes being the urb spa behaviour.

channel
1198 attr Pts ch:Pts, attr GeoD ch:GeoD, attr GeoT ch:GeoT, attr Met ch:Met
1199 tus mps ch:TUSm

Q.7. THE ATOMIC PART TRANSLATORS 533

1199 {tus a ch[ai]|ai ∈ auis}:TUSm
value
1195 urb spa: TUS UI × TUS Mer →
1196 Pts →
1197 (Cada×Law×Soc Eco×...) →
1198 in attr Pts ch, attr GeoD ch, attr GeoT ch, attr Met ch →
1199 out tus mps ch, {tus ana ch[ai]|ai ∈ [a 1...a a]} → Unit
1200 urb spa(pts)(pro) ≡
1200a let geo = [”pts” 7→attr Pts ch?”ged” 7→attr GeoD ch?,”cad” 7→cada,”get” 7→attr geoT ch?,
1200a ”met” 7→attr Met ch?,”law” 7→law,”eco” 7→eco,...] in
1200c ((⌈⌉⌊⌋ {tus a ch[ai]!geo|ai ∈ auis}
1200b ⌈⌉⌊⌋
1200d tus mps ch!geo) ;
1200e urb spa(pts)(pro)) end
1200f ⌈⌉
1200g let pro′:(Cada×Law×Soc Eco×...)•fit pro(pro,pro′) in
1200h urb spa(pts)(pro′) end

1200g fit pro: (Cada×Law×Soc Eco×...) × (Cada×Law×Soc Eco×...) → Bool

We leave the fitness predicate fit pro further undefined. It is intended to ensure that the biddable
and programmable attributes evolve in a commensurate manner.

Q.7.3 The Analyseranmi
, i:[1 : n] Translator

We refer to Sect. Q.4.4 for the attributes that play a rôle in determining the analyser signature.

Q.7.3.1 The Translate Aanmj
Function

1201. The Translate Aanmj
(aanmj

) results in three text elements:

(a) the value keyword,

(b) the signature of the analyseraanmj
definition,

(c) and the body of that definition.

The analyseranmj
signature contains the unique identifier of the analyser, the mereology of the

analyser, cf. Item Q.3.3 on page 513, and the attributes, here just the programmable attribute of
the most recent analysisaanmj

performed by the analyseranmj
.

type
1201 Analysis = Analysisnm1

|Analysisnm2
|...|Analysisnmn

value
1201 Translate Anmi

(anmi
):

1201 ” value
1201 analysernmi

: (uid A×mereo A) →
1201 Analysisnmi

→
1201 in tus a ch[uid A(anmi

)]
1201 out a ad ch[uid A(anmi

)]
1201 analyseruij (uid A(anmi

),mereo A(anmi
))(ananmi

) ≡ ... ”

534 CONTENTS

Q.7.3.2 The analyseruij Behaviour

Analyses, or various kinds, of the urban space, is an important prerequisite for urban planning.
We therefore introduce a number, n, of urban space analysis behaviours, analysisanmi

(for anmi

in the set {anm1, ..., anma}. The indexing designates that each analysisanmi
caters for a distinct

kind of urban space analysis, each analysis with respect to, i.e., across existing urban areas: ...,
(ai) traffic statistics, (aj) income distribution, ..., (ak) health statistics, (aℓ) power consumption,
..., (aa) We shall model, by an indexed set of behaviours, anai, the urban [space] analyses
that are an indispensable prerequisite for urban planning.

1202. Urban [space] analyser, tus anai, for ai ∈ [a1...aa], performs analysis of an urban space whose
attributes, except for its point set, it obtains from that urban space – via channel tus ana ch
and

1203. offers analysis results to the mp beh and the n derived behaviours.

1204. Urban analyser, anaai
, otherwise behaves as follows:

(a) The analyser obtains, from the urban space, its most recent set of attributes.

(b) The analyser then proceeds to perform the specific analysis as “determined” by its index
ai.

(c) The result, tus anaai
, is communicated whichever urban, the master or the derived,

planning behaviour inquires.

(d) Whereupon the analyser resumes being the analyser, improving and/or extending its
analysis.

type
1201 Analysis = Analysisanm1

|Analysisanm2
|...|Analysisanmn

value
1204 analysernmi(a ui,a mer)(analysisnmi) ≡
1204a let tusm = tus a ch[a ui] ? in
1204b let analysis′nmi = perform analysisnmi(tusm)(analysis) in
1204c ⌈⌉⌊⌋ a ad ch[a ui] ! (clk ck?,analysis′nmi) ;
1204d analyseri(a ui,a mer)(analysis′nmi) end end

1204b perform analysisanmi
: TUSm → Analysisanmi

→ Analysisanmi

1204b perform analysisanmi
(tusm)(analysisanmi

) ≡ ...

Q.7.4 The Analysis Depository Translator

We refer to Sect. Q.4.5 for the attributes that play a rôle in determining the analysis depository
signature.

Q.7.4.1 The Translate AD Function

1205. The Translate AD(ad) results in three text elements:

(a) the value keyword

(b) the signature of the ana dep definition,

(c) and the body of that definition.

The ana dep signature essentially contains the unique identifier of the analyser, the mereology of the
analyser, cf. Item Q.3.4 on page 513, and the attributes, in one form or another: the programmable
attribute, a hist, see Item 1142 on page 521, the channels over which ana dep either accepts time
stamped analyses, Analysisaui

, from analyseranmi
, or offers a hists to either the master planner server

or the derived planner servers.

Q.7. THE ATOMIC PART TRANSLATORS 535

value
1205 Translate AD(ad) ≡
1205a ” value
1205b ana dep: (A UI × A Mer) → AHist →
1205b in {a ad ch[i]‖i:A UI•i ∈ auis}
1205b out {ad s ch[i]|i:A UI•i ∈ suis} Unit
1205c ana dep(ui A(ad),mereo A(ad))(attr AHist(ad)) ≡ ... ”

Q.7.4.2 The ana dep Behaviour

The definition of the analysis depository is as follows.

1206. The behaviour of ana dep is as follows: non-deterministically, externally (⌈⌉⌊⌋), ana dep

1207. either (⌈⌉⌊⌋, line 1209) offers to accept a time stamped analysis from some analyser (⌈⌉⌊⌋{ ... |
... }),

(a) receiving such an analyses it “updates” its history,

(b) and resumes being the ana dep behaviour with that updated history;

1208. or offers the analysis history to the master planner server
and resumes being the ana dep behaviour;

1209. or offers the analysis history

(a) to whichever (⌈⌉⌊⌋{ ... | ... }) planner server offers to accept a history

(b) and resumes being the ana dep behaviour with that updated history.

value
1206 ana dep(a ui,a mer)(ahist) ≡
1207 ⌈⌉⌊⌋ { (let ana = a ad ch[i] ? in
1207a let ahist′ = ahist†[i 7→〈ana〉̂(ahist(i))] in
1207b ana dep(a ui,a mer)(ahist′) end end)
1207b | i:A UI•i∈ auis }
1208 ⌈⌉⌊⌋ (ad mps ch!ahist ; ana dep(a ui,a mer)(ahist))
1209 ⌈⌉⌊⌋
1209a ({ ad s ch[j]!ahist
1209a | j:(MPS UI|DPS UI)•j∈suis};
1209b ana dep(a ui,a mer)(ahist))

Q.7.5 The Derived Planner Index Generator Translator

We refer to Sect. Q.4.10 for the attributes that play a rôle in determining the derived planner index
generator signature.

Q.7.5.1 The Translate DPXG(dpxg) Function

1210. The Translate DPXG(dpxg) results in three text elements:

(a) the value keyword

(b) the signature of the dpxg behaviour definition,

(c) and the body of that definition.

536 CONTENTS

The signature of the dpxg behaviour definition has many elements: the unique identifier of the dpxg
behaviour, the mereology of the dpxg behaviour, cf. Item Q.3.9 on page 515, and the attributes
in some form or another:the unique identifier , the mereology , and the attributes, in some form or
another: the programmable attribute All DPUIs, cf. Item 1156 on page 523, the programmable
attribute Used DPUIs, cf. Item 1157 on page 523, the mp dpxg ch input/output channel, and the
dp dpxg ch input/output array channel.

value
1210 Translate DPXG(dpxg) ≡
1210a ” value
1210b dpxg beh: (DPXG UI×DPXG Mer) →
1210b (All DPUIs×UsedDPUIS) →
1210b in,out {p dpxg ch[i]|i:(MP UI|DP UI)•i∈puis} Unit
1210c dpxg beh(uid DPXG(dpxg),mereo DPXG(dpxg))(all dpuis,used dpuis) ≡ ... ”

Q.7.5.2 The dpxg Behaviour

1211. The index generator otherwise behaves as follows:

(a) It non-deterministically, externally, offers to accept requests from any planner, whether
master or server. The request suggests the names, req, of some derived planners.

(b) The index generator then selects a suitable subset, sel dpuis, of these suggested derived
planners from those that are yet to be started.

(c) It then offers these to the requesting planner.

(d) Finally the index generator resumes being an index generator, now with an updated
used dpuis programmable attribute.

value
1211 dpxg: (DPXG UI×DPXG Mer) → (All DPUIs×Used DPUIs) →
1211 in,out mp dpxg ch,
1211 {p dpxg ch[j]|j:(MP UI|DP UI)•j∈{puis}} Unit
1211 dpxg(dpxg ui,dpxg mer)(all dpuis,used dpuis) ≡
1211a ⌈⌉⌊⌋ { let req = p dpxg c[j] ? in
1211b let sel dpuis = all dpuis \ used dpuis • sel dpuis ⊆ req dpuis in
1211c dp dpxg ch[j] ! sel dpuis ;
1211d dpxg(dpxg ui,dpxg mer)(all dpuis,used dpuis∪sel dpuis) end end
1211 | j:(MP UI|DP UI)•j∈puis }

Q.7.6 The Plan Repository Translator

We refer to Sect. Q.4.11 for the attributes that play a rôle in determining the plan repository
signature.

Q.7.6.1 The Translate PR Function

1212. The Translate PR(pr) results in three text elements:

(a) the value keyword,

(b) the signature of the plan repository definition,

(c) and the body of that definition.

The plan repository signature contains the unique identifier of the plan repository, the mereology
of the plan repository, cf. Item Q.3.10 on page 515, and the attributes: the programmable plans,
cf. 1159 on page 524, and the input/out channel p pr ch.

Q.7. THE ATOMIC PART TRANSLATORS 537

value
1212 Translate PR(pr) ≡
1212a ” value
1212b plan rep: PLANS →
1212b in {p pr ch[i]|i:(MP UI|DP UI)•i∈puis}
1212b out {s pr ch[i]|i:(MP UI|DP UI)•i∈suis} Unit
1212c plan rep(plans)(attr AllDPUIs(pr),attr UsedDPUIs(pr)) ≡ ... ”

Q.7.6.2 The plan rep Behaviour

1213. The plan repository behaviour is otherwise as follows:

(a) The plan repository non-deterministically, externally chooses between

i. offering to accept time-stamped plans from a planner, pui, either the master planner
or anyone of the derived planners,

ii. from whichever planner so offers,

iii. inserting these plans appropriately, i.e., at pui, as the new head of the list of “there”,

iv. and then resuming being the plan repository behaviour appropriately updating its
programmable attribute;

(b) or

i. offering to provide a full copy of its plan repository map

ii. to whichever server requests so,

iii. and then resuming being the plan repository behaviour.

value
1213a plan rep(pr ui,ps uis)(plans) ≡
1213(a)i ⌈⌉⌊⌋ { let (t,plan) = p pr ch[i] ? in assert: i ∈ dom plans
1213(a)iii let plans′ = plans † [i 7→〈(t,plan)〉̂plans(i)] in
1213(a)iv plan rep(pr ui,ps uis)(plans′) end end
1213(a)ii | i:(MP UI|DP UI)•i∈puis }
1213b ⌈⌉⌊⌋
1213(b)i ⌈⌉⌊⌋ { s pr ch[i] ! plans ; assert: i ∈ dom plans
1213(b)iii plan rep(pr ui,ps uis)(plans)
1213(b)ii | i:(MP UI|DP UI)•i∈puis }

Q.7.7 The Master Server Translator

We refer to Sect. Q.4.6 for the attributes that play a rôle in determining the master server signature.

Q.7.7.1 The Translate MPS Function

1214. The Translate MPS(mps) results in three text elements:

(a) the value keyword,

(b) the signature of the master server definition,

(c) and the body of that definition.

The master server signature contains the unique identifier of the master server, the mereology of
the master server, cf. Item Q.3.5 on page 514, and the dynamic attributes of the master server: the
most recently, previously produced auxiliary information, the most recently, previously produced
plan requirements information, the clock channel, the urban space channel, the analysis depository
channel, and the master planner channel.

538 CONTENTS

value
1214 Translate MPS(mps) ≡
1214a ” value
1214b master server: (mAUX×mREQ) →
1214b in clk ch, tus m ch, ad s ch[uid MPS(mps)]
1214b out mps mp ch Unit
1214c master server(uid MPS(mps),mereo MPS(mps))(attr mAUX(mps),attr mREQ(mps)) ≡ ... ”

Q.7.7.2 The master server Behaviour

1215. The master server obtains time from the clock, see Item 1216c, information from the urban
space, and the most recent analysis history, assembles these together with “locally produced”

(a) auxiliary planner information and

(b) plan requirements

as input, MP ARG, to the master planner.

1216. The master server otherwise behaves as follows:

(a) it obtains latest urban space information and latest analysis history, and

(b) then produces auxiliary planning and plan requirements commensurate, i.e., fit, with
the most recently, i.e., previously produced such information;

(c) it then offers a time stamped compound of these kinds of information to the master
planner,

(d) whereupon the master server resumes being the master server, albeit with updated
programmable attributes.

type
1215a mAUX
1215b mREQ
1215 mARG = (T × ((mAUX × mREQ) × (TUSm × AHist)))
value
1216 master server(uid,mereo)(aux,req) ≡
1216a let tusm = tus m ch ? , ahist = ad s ch[mps ui] ? ,
1216b maux:mAUX, mreq:mREQ • fit AuxReq((aux,req),(maux,mreq)) in
1216c s p ch[uid] ! (clk ch?,((maux,mreq),(tusm,ahist))) ;
1216d master server(uid,mereo)(maux,mreq)
1216 end

1216b fitAuxReq: (mAUX×mREQ)×(mAUX×mREQ) → Bool
1216b fitAuxReq((aux,req),(maux,mreq)) ≡ ...

Q.7.8 The Master Planner Translator

We refer to Sect. Q.4.7 for the attributes that play a rôle in determining the master planner signa-
ture.

Q.7.8.1 The Translate MP Function

1217. The Translate MP(mp) results in three text elements:

(a) the value keyword,

Q.7. THE ATOMIC PART TRANSLATORS 539

(b) the signature of the master planner definition,

(c) and the body of that definition.

The master planner signature contains the unique identifier of the master planner, the mereology of
the master planner, cf. Item Q.3.6 on page 514, and the attributes of the master planner: the script,
cf. Sect. Q.4.3 on page 521 and Item 1140 on page 521, a set of script pointers, cf. Item 1147 on
page 522, a set of analyser names, cf. Item 1148 on page 522, a set of planner identifiers, cf. Item 1149
on page 522, and the channels as implied by the master planner mereology.

value
1217 Translate MP(mp) ≡
1217a ” value
1217b master planner: Mmpui:P UI×MP Mer×(Script×ANms×DPUIs) →
1217b Script Pts →
1217b in clk ch, mps mp ch, ad ps ch[mpui]
1217b out p pr ch[mpui]
1217b in,out p dpxg ch[mpui] Unit
1217c master planner(uid MP(mp),mereo MP(mp),
1217c (attr Script(mp),attr ANms(mp),attr DPUIs(mp)))(attr Script Ptrs(mp)) ≡ ... ”

Q.7.8.2 The Master urban planning Function

1218. The core of the master planner behaviour is the master urban planning function.

1219. It takes as arguments: the script, a set of analyser names, a set of derived planner identifiers,
a set of script pointers, and the time-stamped master planner argument, cf. Item 1215 on
the facing page;

1220. and delivers, i.e., yields, a set of “remaining” derived planner identifiers, an updated set of
script pointers, and a master result:M RES, i.e., a master plan, mp:M PLAN together with the
time stamped master argument from which the plan was constructed.

1221. The master urban planning function is not defined by other than a predicate:

(a) the “remaining” derived planner identifiers is a subset of the arguments derived planner
identifiers;

(b) the “resulting” master argument is the same as the input master argument, i.e., it is
“carried forward”;

(c) the arguments: the script, the analyser names, the derived planner identifiers, the
set of script pointers, the time-stamped master planner argument, and the result plan
otherwise satisfies a predicate P(script,anms,dpuis,ptrs,marg)(mplan) expressing that the
result mplan is an appropriate plan in view of the other arguments.

type
1220 M PLAN
1220 M RES = M PLAN × DPUI-set × M ARG
value
1219 master urban planning:
1219 Script × ANm-set × DP UI-set × Script Ptr-set × M ARG
1220 → (DP UI-set × Script Ptr-set) × M RES
1218 master urban planning(script,anms,dpuis,ptrs,marg)
1221a as ((dpuis′,ptrs′),(mplan,marg′))
1221a dpuis′ ⊆ dpuis
1221b ∧ marg′ = marg

540 CONTENTS

1221c ∧ P(script,anms,dpuis,ptrs,marg)(mplan)
1218 P : ((Script×ANM-set×DP UI-set×Script Ptr-set×M ARG×MPLAN×Script Ptr-set)
1218 × (DP UI-set×Script Ptr-set×M ARG×MPLAN)) → Bool
1218 P((script,anms,dpuis,ptrs,marg,mplan,ptrs),(dpuis′,ptrs′,marg,mplan)) ≡ ...

Q.7.8.3 The master planner Behaviour

1222. The master planner behaviours is otherwise as follows:

(a) The master planner obtains, from the master server, its time stamped master argument,
cf. Item 1215 on page 538;

(b) it then invokes the master urban planning function;

(c) the time-stamped result is offered to the plan repository;

(d) if the result is OK as a final result,

(e) then the behaviour is stopped;

(f) otherwise

i. the master planner inquires the derived planner index generator as for such derived
planner identifiers which are not used;

ii. the master planner behaviour is the resumed with the appropriately updated pro-
grammable script pointer attribute, in parallel with

iii. the distributed parallel composition of the parallel behaviours of the derived servers

iv. and the derived planners

v. designated by the derived planner identifiers transcribed into (nm dps ui) derived
server, respectively into (nm dp ui) derived planner names. For these transcription
maps we refer to Sect. Q.2.12 on page 511, Item 1097 on page 512.

value
1222 master planner(uid,mereo,(script,anms,puis))(ptrs) ≡
1222a let (t,((maux,mreq),(tusm,ahist))) = mps mp ch ? in
1222b let ((dpuis′,ptrs′),mres) = master urban planning(script,anms,dpuis,ptrs) in
1222c p pr ch[uid] ! mres ;
1222d if completed(mres) assert: ptrs′ = {}
1222e then init der serv planrs(uid,dpuis′)
1222f else
1222(f)i init der serv plans(ui,dpuis)
1222(f)ii ‖ master planner(uid,mereo,(script,anms,puis))(ptrs′)
1222 end end end

Q.7.8.4 The initiate derived servers and derived planners Behaviour

The init der serv planrs behaviour plays a central rôle. The outcome of the urban planning func-
tions, whether for master or derived planners, result in a possibly empty set of derived planner
identifiers, dpuis. If empty then that shall mean that the planner, in the iteration, of the planner
behaviour is suggesting that no derived server/derived planner pairs are initiated. If dpuis is not
empty, say consists of the set {dpuii , dpuij , ..., dpuik} then the planner behaviour is suggesting that
derived server/derived planner pairs whose planner element has one of these unique identifiers, be
appropriately initiated.

1223. The init der serv planrs behaviour takes the unique identifier, uid, of the “initiate issuing”
planner and a suggested set of derived planner identifiers, dpuis.

Q.7. THE ATOMIC PART TRANSLATORS 541

1224. It then obtains, from the derived planner index generator , dpxg, a subset, dpuis′, that may be
equal to dpuis.

It then proceeds with the parallel initiation of

1225. derived servers (whose names are extracted, extr Nm, from their identifiers, cf. Item 1091 on
page 511),

1226. and planners (whose names are extracted, extr Nm, from their identifiers, cf. Item 1092 on
page 511)

1227. for every dp ui in the set dpuis′.

However, we must first express the selection of appropriate arguments for these server and planner
behaviours.

1228. The selection of the server and planner parts, making use of the identifier to part mapping
nms dp ui and nm dp ui, cf. Items 1097– 1098 on page 512;

1229. the selection of respective identifiers,

1230. mereologies, and

1231. auxiliary and

1232. requirements attributes.

value
1223 init der serv planrs: uid:(DP UI|MP UI) × DP UI-set → in,out pr dpxg[uid] Unit
1223 init der serv planrs(uid,dpuis) ≡
1224 let dpuis′ = (pr dpxg ch[uid] ! dpuis ; pr dpxg ch[uid] ?) in
1228 ‖ { let p = c p(dp ui), s = c s(nms dp ui(dp ui)) in
1229 let ui p = uid DP(p), ui s = uid DPS(s),
1230 me p = mereo DP(p), me s = mereo DPS(s),
1231 aux p = attr sAUX(p), aux s = attr sAUX(s),
1232 req p = attr sREQ(p), req s = attr sREQ(s) in
1225 derived serverextr Nm(dp ui)(ui s,me s,(aux s,req s)) ‖
1226 derived plannerextr Nm(dp ui)(ui p,me p,(aux p,req p))

1227 | dp ui:DP UI•dpui ∈ dpuis′ end end }
1223 end

Q.7.9 The Derived Servernmi
, i:[1 : p] Translator

We refer to Sect. Q.4.8 for the attributes that play a rôle in determining the derived server signa-
ture.

Q.7.9.1 The Translate DPSnmj
Function

1233. The Translate DPS(dpsnmj
) results in three text elements:

(a) the value keyword,

(b) the signature of the derived server definition,

(c) and the body of that definition.

The derived servernmj
signature of the derived server contains the unique identifier ; the mereology ,

cf. Item Q.3.7 on page 514 – used in determining channels: the dynamic clock identifier, the
analysis depository identifier, the derived planner identifier; and the attributes which are: the
auxiliary, dAUXnmj

and the plan requirements, dREQnmj
.

542 CONTENTS

value
1233 Translate DPS(dpsnmj

) ≡
1233a ” value
1233b derived servernmj

:
1233b DPS UInmj

×DPS Mernmj
→ (DAUXnmj

×dREQnmj
) →

1233b in clk ch, ad s ch[uid DPS(dpsnmj
)]

1233b out s p ch[uid DPS(dpsnmj
)] Unit

1233c derived servernmj

1233c (uid DPS(dpsnmj
),mereo DPS(dpsnmj

)),(attr dAUX(dpsnmj
),attr dREQ(dpsnmj

)) ≡ ... ”

Q.7.9.2 The derived server Behaviour

The derived server is almost identical to the master server, cf. Sect. Q.7.7.2, except that plans
replace urban space information.

1234. The derived server obtains time from the clock, see Item 1235c, , and the most recent analysis
history, assembles these together with “locally produced”

(a) auxiliary planner information and

(b) plan requirements

as input, MP ARG, to the master planner.

1235. The master server otherwise behaves as follows:

(a) it obtains latest plans and latest analysis history, and

(b) then produces auxiliary planning and plan requirements commensurate, i.e., fit, with
the most recently, i.e., previously produced such information;

(c) it then offers a time stamped compound of these kinds of information to the derived
planner,

(d) whereupon the derived server resumes being the derived server, albeit with updated
programmable attributes.

type
1234a dAUXnmj

1234b dREQnmj

1234 dARGnmj
= (T × ((dAUXnmj

× dREQnmj
) × (PLANS × AHist)))

value
1235 derived servernmj

(uid,mereo)(aux,req) ≡
1235a let plans = ps pr ch[uid] ?, ahist = ad s ch[uid] ?,
1235b daux:dAUX, dreq:dREQ • fit AuxReqnmj

((aux,req),(daux,dreq)) in
1235c s p ch[uid] ! (clk ch?,((maux,mreq),(plans,ahist))) ;
1235d derived servernmj

(uid,mereo)(daux,dreq)
1235 end

1235b fitAuxReqnmj
: (dAUXnmj

×dREQnmj
)×(dAUXnmj

×dREQnmj
) → Bool

1235b fitAuxReqnmj
((aux,req),(daux,dreq)) ≡ ...

You may wish to compare formula Items 1234–1235d above with those of formula Items 1215–1216d
of Sect. Q.7.7.2 on page 538.

Q.7.10 The Derived Plannernmi
, i:[1 : p] Translator

We refer to Sect. Q.4.9 for the attributes that play a rôle in determining the derived planner
signature.

Q.7. THE ATOMIC PART TRANSLATORS 543

Q.7.10.1 The Translate DPdpnmj
Function

This function is an “almost carbon copy” of the Translate MPdpnmj
function. Thus Items 1236–

1236c are “almost the same” as Items 1217– 1217c on page 539.

1236. The Translate DP(nmj
) results in three text elements:

(a) the value keyword,

(b) the signature of the derived plannernmj
definition,

(c) and the body of that definition.

The derived plannernmj
signature of the derived planner contains the unique identifier , the mere-

ology , cf. Item Q.3.8 on page 514 and the attributes: the script, cf. Sect. Q.4.3 on page 521 and
Item 1140 on page 521, a set of script pointers, cf. Item 1153 on page 523, a set of analyser names,
cf. Item 1154 on page 523, a set of planner identifiers, cf. Item 1155 on page 523, and the channels
as implied by the master planner mereology.

value
1236 Translate DP(dp) ≡
1236a ” value
1236b derived planner: dpui:DP UI×DP Mer×(Script×ANms×DPUIs) → Script Pts →
1236b in s p ch[dpui], clk ch, ad ps ch[dpui]
1236b out p pr ch[dpui]
1236b in,out p dpxg ch[dpui] Unit
1236c derived planner(uid DP(dp),mereo DP(dp),
1236c (attr Script(dp),attr ANms(dp),attr DPUIs(dp)))(attr Script Ptrs(dp)) ≡ ... ”

Q.7.10.2 The derived urban planning Function

This function is an “almost carbon copy” of the master urban planning function. Thus Items 1237–
1240c are “almost the same” as Items 1218– 1221c on page 539.

1237. The core of the derived planner behaviour is the derived urban planning function.

1238. It takes as arguments: the script, a set of analyser names, a set of derived planner identifiers,
a set of script pointers, and the time-stamped derived planner argument, cf. Item 1215 on
page 538;

1239. and delivers, i.e., yields, a set of “remaining” derived planner identifiers, an updated set of
script pointers, and a master result, M RES, i.e., a master plan, mp:M PLAN together with
the time stamped master argument from which the plan was constructed.

1240. The master urban planning function is not defined by other that a predicate:

(a) the “remaining” derived planner identifiers is a subset of the arguments derived planner
identifiers;

(b) the “resulting” master argument is the same as the input master argument, i.e., it is
“carried forward”;

(c) the arguments: the script, the analyser names, the derived planner identifiers, the set
of script pointers, the time-stamped master planner argument, and the result plan
otherwise satisfies a predicate Pdnmi

(scriptdnmi
,anms,dpuis,ptrs,margdnmi

)(dplandnmi
)

expressing that the result mplan is an appropriate plan in view of the other arguments.

544 CONTENTS

type
1239 D PLANdnmi

1239 D RESdnmi
= D PLANdnmi

× DP UI-set × D ARGdnmi

value
1238 derived urban planningdnmi

:
1238 Scriptdnmi

× ANm-set × DP UI-set × Script Ptr-set × D ARGdnmi

1239 → (DP UI-set × Script Ptr-set) × D RESdnmi

1237 derived urban planningdnmi
(script,anms,dpuis,ptrs,darg)

1240a as ((dpuis′,ptrs′),(dplan,ptrs′darg′))
1240a dpuis′ ⊆ dpuis
1240b ∧ darg′ = darg
1240c ∧ Pdnmi

(script,anms,dpuis,ptrs,darg),((dpuis′,ptrs′),(dplan,ptrs′darg′))

1237 Pdnmi
: ((Scriptdnmi

×ANM-set×DP UI-set×Script Ptr-set×D ARGdnmi
)

1237 ×(DP UI-set×Scriptdnmi
Ptr-set×D RESdnmi

)) → Bool
1237 Pdnmi

((scriptdnmi
,anms,dpuis,ptrs,dargdnmi

),(dp uis′,ptrs′,dres)) ≡ ...

Q.7.10.3 The derived plannernmj
Behaviour

This behaviour is an “almost carbon copy” of the derived plannernmj
behaviour. Thus Items 1241–

1241k are “almost the same” as Items 1222– 1222(f)v on page 540.

1241. The derived planner behaviour is otherwise as follows:

(a) The derived planner obtains, from the derived server, its time stamped master argument,
cf. Item 1215 on page 538;

(b) it then invokes the derived urban planning function;

(c) the time-stamped result is offered to the plan repository;

(d) if the result is OK as a final result,

(e) then the behaviour is stopped;

(f) otherwise

(g) the derived planner inquires the derived planner index generator as for such derived
planner identifiers which are not used;

(h) the derived planner behaviour is the resumed with the appropriately updated pro-
grammable script pointer attribute, in parallel with

(i) the distributed parallel composition of the parallel behaviours of the derived servers

(j) and the derived planners

(k) designated by the derived planner identifiers transcribed into (nm dps ui) derived
server, respectively into (nm dp ui) derived planner names. For these transcription
maps we refer to Sect. Q.2.12 on page 511, Item 1097 on page 512.

value
1222 derived plannerdnmi

(uid,mereo,(scriptdnmi
,anms,puis))(ptrs) ≡

1222a let (t,((dauxdnmi
,dreqdnmi

),(plans,ahist))) = s p ch[uid] ? in
1222b let ((dpuis′,ptrs′),dresdnmi

) = derived urban planningdnmi
(scriptdnmi

,anms,dpuis,ptrs) in
1222c p pr ch[uid] ! dresdnmi

;
1222d if completed(dresdnmi

)
1222e then init der serv planrs(uid,dpuis′) assert: ptrs′ = {}
1222f else
1222(f)i init der serv plans(uid,dpuis′)
1222(f)ii ‖ derived planner(uid,mereo,(scriptdnmi

,anms,puis))(ptrs′)
1222 end end end

Q.8. INITIALISATION OF THE URBAN SPACE ANALYSIS & PLANNING SYSTEM 545

Q.8 Initialisation of The Urban Space Analysis & Planning Sys-
tem

Section Q.5 presents a compiler from structures and parts to behaviours. This section presents an
initialisation of some of the behaviours. First we postulate a global universe of discourse, uod.
Then we summarise the global values of parts and part names. This is followed by a summaries
of part qualities – in four subsections: a summary of the global values of unique identifiers; a
summary of channel declarations; the system as it is initialised; and the system of derived servers
and planners as they evolve.

Q.8.1 Summary of Parts and Part Names

value
1048 on page 506 uod : UoD
1049 on page 506 clk : CLK = obs CLK(uod)
1050 on page 507 tus : TUS = obs TUS(uod)
1051 on page 507 ans : Aanmi

-set, i:[1..n] = { obs Aanmi
(aa) | aa∈(obs AA(uod)), i:[1..n]}

1052 on page 507 ad : AD = obs AD(obs AA(uod))
1053 on page 507 mps : MPS = obs MPS(obs MPA(uod))
1054 on page 507 mp : MP = obs MP(obs MPA(uod))
1055 on page 507 dpss : DPSnmi

-set, i:[1..p] =
1055 on page 507 { obs DPSnmi

(dpcnmi
) |

1055 on page 507 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
1056 on page 507 dps : DPnmi

-set, i:[1..p] =
1056 on page 507 { obs DPnmi

(dpcnmi
) |

1056 on page 507 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
1057 on page 507 dpxg : DPXG = obs DPXG(uod)
1058 on page 507 pr : PR = obs PR(uod)
1059 on page 507 spsps : (DPSnmi

×DPnmi
)-set, i:[1..p] =

1059 on page 507 { (obs DPSnmi
(dpcnmi

),obs DPnmi
(dpcnmi

)) |
1059 on page 507 dpcnmi

:DPCnmi
•dpcnmi

∈ obs DPCSnmi
(obs DPA(uod)), i:[1..p] }

Q.8.2 Summary of of Unique Identifiers

value
1074 on page 510 clkui : CLK UI = uid CLK(uod)
1075 on page 510 tusui : TUS UI = uid TUS(uod)
1076 on page 510 auis : A UI-set = {uid A(a)|a:A•a ∈ ans}
1077 on page 510 adui : AD UI = uid AD(ad)
1078 on page 510 mpsui : MPS UI = uid MPS(mps)
1079 on page 510 mpui : MP UI = uid MP(mp)
1080 on page 510 dpsuis : DPS UI-set = {uid DPS(dps)|dps:DPS•dps ∈ dpss}
1081 on page 510 dpuis : DP UI-set = {uid DP(dp)|dp:DP•dp ∈ dps}
1082 on page 510 dpxgui : DPXG UI = uid DPXG(dpxg)
1083 on page 510 prui : PR UI = uid PR(pr)

1083 on page 510 suis : (MPS UI|DPS UI)-set = {mpsui} ∪ dpsuis
1085 on page 511 puis : (MP UI|DP UI)-set = {mpui} ∪ dpuis
1086 on page 511 sips : (DPS UI×DP UI)-set = {(uid DPS(dps),uid DP(dp))|(dps,dp):(DPS×DP)•(dps,dp)∈sps}
1087 on page 511 si pi m : DPS UI→m DP UI = [uid DPS(dps)7→uid DP(dp)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]
1088 on page 511 pi si m : DP UI→m DPS UI = [uid DP(dp)7→uid DPS(dps)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]

546 CONTENTS

Q.8.3 Summary of Channels

channel
1169 on page 526 clk ch:CLK MSG
1170 on page 527 {tus a ch[a ui]:TUS MSG|a ui:A UI•a ui ∈ auis}
1172 on page 527 tus mps ch:TUS MSG
1173 on page 528 {a ad ch[a ui]:A MSG|a ui:A UI•a ui ∈ auis}
1175 on page 528 {ad s ch[s ui]|s ui:(MPS UI|DPS UI)•s ui ∈{mpsui}∪dpsuis}:AD MSG
1177 on page 528 mps mp ch:MPS MSG
1179 on page 529 {p pr ch[p ui]:PLAN MSG|p ui:(MP UI|DP UI)•p ui ∈ puis}
1181 on page 529 {p dpxg ch[ui]:DPXG MSG|ui:(MP UI|DP UI)•ui ∈ puis}
1183 on page 529 {pr s ch[ui]:PR MSGd|ui:(MPS UI|DPS UI)•ui ∈ suis}
1185 on page 530 {dps dp ch[ui]:DPS MSGnmj

|ui:DPS UI•ui ∈ dpsuis}

Q.8.4 The Initial System

1194c on page 531 urb spa(uid TUS(tus),mereo TUS(tus))(attr Pts(tus))
‖

1187c on page 530 clock(uid CLK(clk),mereo CLK(clk))(attr T(clk))
‖

1201 on page 533 ‖ {analyseruii(uid A(auii),mereo A(auii))(anaanmi
) | uii:A UID • uii ∈ auis}

‖
1187c on page 530 ana dep(ui A(ad),mereo A(ad))(attr AHist(ad))

‖
1212c on page 536 plan rep(plans)(attr AllDPUIs(pr),attr UsedDPUIs(pr))

‖
1210c on page 535 dpxg beh(uid DPXG(dpxg),mereo DPXG(dpxg))(all dpuis,used dpuis)

‖
1214c on page 537 master server(uid MPS(mps),mereo MPS(mps))(attr mAUX(mps),attr mREQ(mps))

‖
1217c on page 539 master planner(uid MP(mp),mereo MP(mp),
1217c on page 539 (attr Script(mp),attr ANms(mp),attr DPUIs(mp)))(attr Script Ptrs(mp))

Q.8.5 The Derived Planner System

1233c on page 541 { derived serverdpsnmj

1233c on page 541 (uid DPS(dpsnmj
),mereo DPS(dpsnmj

))(attr dAUX(dpsnmj
),attr dREQ(dpsnmj

))

‖
1236c on page 543 derived planner(uid DP(dpnmj

),mereo DP(dpnmj
),

1236c on page 543 (attr Script(dpnmj
),attr ANms(dpnmj

),attr DPUIs(dpnmj
)))

1236c on page 543 | j:[1..p] }

Q.9 Further Work

Q.9.1 Reasoning About Deadlock, Starvation, Live-lock and Liveness

The current author is quite unhappy about the way in which he has defined the urban planning,
oracle and repository behaviours. Such issues as which invariants are maintained across behaviours
are not addressed. In fact, it seems to be good practice, following Dijkstra, Lamport and others,
to formulate appropriate such invariants and only then “derive” behaviour definitions accordingly.
In a rewrite of this research note, if ever, into a proper paper, the current author hopes to follow
proper practices. He hopes to find younger talent to co-author this effort.

Q.9. FURTHER WORK 547

Q.9.2 Document Handling

I may appear odd to the reader that I now turn to document handling. One central aspect of
urban planning, strange, perhaps, to the reader, is that of handling the “zillions upon zillions”
of documents that enter into and accrue from urban planning. If handling of these documents is
not done properly a true nightmare will occur. So we shall briefly examine the urban planning
document situation ! From that we conclude that we must first try understand:

• What do we mean by a document?̇

Q.9.2.1 Urban Planning Documents

The urban planning functions and the urban planning behaviours, including both the base and the
n derived variants, rely on documents. These documents are created, edited, read, copied, and,
eventually, shredded by urban-planners. Editing documents result in new versions of “the same”
document. While a document is being edited or read we think of it as not being accessible to
other urban-planners. If urban-planners need to read a latest version of a document while that
version is subject to editing by another urban planner, copies must first be made, before editing,
one for each “needy” reader. Once, editing has and readings have finished, the “reader” copies
need, or can, be shredded.

Q.9.2.2 A Document Handling System

In Chapter M we sketch[ed] a document handling system domain.15 That is, not a document
handling software system, not even requirements for a document handling software system, but
just a description which, in essence, models documents and urban planners’ actions on documents.
(The urban planners are referred to as document handlers.) The description further models two
‘aggregate’ notions: one of ‘handler management’, and one of ‘document archive’. Both seem
necessary in order to “sort out” the granting of document access rights (that is, permissions to
perform operations on documents), and the creation and shredding of documents, and in order to
avoid dead-locks in access to and handling of documents.

Q.9.3 Validation and Verification (V&V)

By validation of a document we shall mean: the primarily informal and social process of checking
that the document description meets customer expectations.

Validation serves to get the right product.

By verification of a document we shall mean: the primarily formal, i.e., mathematical process
of checking, testing and formal proof that the model, which the document description entails,
satisfies a number of properties.

Verification serves to get the product right.

By validation of the urban planning model of this document we shall understand the social
process of explaining the model to urban planning stakeholders, to obtain their reaction, and to
possibly change the model according to stakeholder objections.

By verification of the urban planning model of this document we shall understand the formal
process, based on formalisations of the argument and result types of the description, of testing,
model checking and formally proving properties of the model.

more to come

15I had, over the years, since mid 1990s, reflected upon the idea of “what is a document ?”. A most recent
version, as I saw it in 2017, was “documented” in Chapter 7 [66]. But, preparing for my work, at TongJi University,
Shanghai, September 2017, I reworked my earlier notes [66] into what is now Chapter M.

548 CONTENTS

Q.9.4 Urban Planning Project Management

In this research note we have focused on the urban planning project behaviours, their interactions,
and their information “passing”. Usually publications about urban planning: research papers,
technical papers, survey papers, etcetera, focus on specific “functions”. In this research note we
do not. We focus instead on what we can say about the domain of urban planning: the fact, or the
possibility, that an initial, a core, here referred to as a base, urban planning effort (i.e., project,
hence behaviour) can “spew off”, generate, a number of (derived, i.e., in some sense subsidiary),
more specialised, urban planning projects.

Q.9.4.1 Urban Planning Projects

We think of a comprehensive urban planning project as carried out by urban planners. As is
evident from the model the project consists of one base urban planning project and up to n
derived urban planning projects. The urban planners involved in these projects are professionals
in the areas of planning:

• master urban planning issues:

– geodesy,

– geotechniques,

– meteorology,

• master urban plans:

– cartography,

– cadestral matters,

– zoning;

• derived urban planning issues:

– industries,

– residential and shopping,

– apartment buildings,

– villas,

– recreational,

– etcetera;

• technological infrastructures:

– transport,

– electricity,

– telecommunications,

– gas,

– water,

– waste,

– etcetera;

• societal infrastructures:

– health care,

– schools,

– police,

– fire brigades,

– etcetera;

• etcetera, etcetera, etcetera !

To anyone with any experience in getting such diverse groups and individuals of highly skilled
professionals to work together it is obvious that some form of management is required. The
term ‘comprehensive’ was mentioned above. It is meant to express that the comprehensive urban
planning project is the only one “dealing” with a given geographic area, and that no other urban
planning projects “infringe” upon it, that is, “deal” with sub-areas of that given geographic area.

Q.9.4.2 Strategic, Tactical and Operational Management

We can distinguish between

• strategic,

• tactical and

• operational

management.

Q.9.4.2.1 Project Resources But first we need take a look at the resources that management
is charged with:

• the urban planners, i.e., humans,

• time,

• finances,

• office space,

• support technologies: computing etc.,

• etcetera.

Q.9. FURTHER WORK 549

Q.9.4.2.2 Strategic Management By strategic management we shall understand the anal-
ysis and decisions of, and concerning, scarce resources: people (skills), time, monies: their deploy-
ment and trade-offs.

Q.9.4.2.3 Tactical Management By tactical management we shall understand the analysis
and decisions with respect to budget and time plans, and the monitoring and control of serially
reusable resources: office space, computing.

Q.9.4.2.4 Operational Management By operational management we shall understand the
monitoring and control of the enactment, progress and completion of individual deliverables, i.e.,
documents, the quality (adherence to “standards”, fulfillment of expectations, etc.) of these
documents, and the day-to-day human relations.

Q.9.4.3 Urban Planning Management

The above (strategic, tactical & operational management) translates, in the context of urban
planning, into:

to be written

550 CONTENTS

Appendix R

Weather Systems

Contents

R.1 On Weather Information Systems . 552

R.1.1 On a Base Terminology . 552

R.1.2 Some Illustrations . 553

R.1.2.1 Weather Stations . 553

R.1.2.2 Weather Forecasts . 553

R.1.2.3 Forecast Consumers . 553

R.2 Major Parts of a Weather Information System 553

R.3 Endurants . 554

R.3.1 Parts and Materials . 554

R.3.2 Unique Identifiers . 555

R.3.3 Mereologies . 556

R.3.4 Attributes . 556

R.3.4.1 Clock, Time and Time-intervals 556

R.3.4.2 Locations . 557

R.3.4.3 Weather . 557

R.3.4.4 Weather Stations . 558

R.3.4.5 Weather Data Interpreter . 558

R.3.4.6 Weather Forecasts . 559

R.3.4.7 Weather Forecast Consumer 559

R.4 Perdurants . 559

R.4.1 A WIS Context . 559

R.4.2 Channels . 560

R.4.3 WIS Behaviours . 560

R.4.4 Clock . 561

R.4.5 Weather Station . 561

R.4.6 Weather Data Interpreter . 562

R.4.6.1 collect wd . 562

R.4.6.2 calculate wf . 562

R.4.6.3 disseminate wf . 563

R.4.7 Weather Forecast Consumer . 564

R.5 Conclusion . 565

R.5.1 Reference to Similar Work . 565

R.5.2 What Have We Achieved ? . 565

R.5.3 What Needs to be Done Next ? . 565

R.5.4 Acknowledgments . 565

551

552 CONTENTS

This document reports a class exercise from a PhD course at the University of Bergen, Norway,
November 2016.1 We show an example domain description. It is developed and presented as out-
lined in [51]. The domain being described is that of a generic weather information system. Four
main endurants (i.e., aspects) of a generic weather information system are those of the weather,
weather stations (collecting weather data), weather data interpretation (i.e., meteorological in-
stitute[s]), and weather forecast consumers. There are, correspondingly, two kinds of weather
information: the weather data, and the weather forecasts. These forms of weather information
are acted upon: the weather data interpreter (i.e., a meteorological institute) is gathering weather
data; based on such interpretations the meteorological institute is “calculating” weather forecasts;
and and weather forecast consumers are requesting and further “interpreting” (i.e., rendering) such
forecasts. Thus weather data is communicated from weather stations to the weather data inter-
preter; and weather forecasts are communicated from the weather data interpreter to the weather
forecast consumers. It is the dual purpose of this technical report to present a domain description
of the essence of generic weather information systems, and to add to the “pile” [39,40,44–46,48–50]
of technical reports that illustrate the use[fulness] of the principles, techniques and tools of [51].

R.1 On Weather Information Systems

R.1.1 On a Base Terminology

From Wikipedia:

1242. Weather is the state of the atmosphere, to the degree that it is hot or cold, wet or dry, calm
or stormy, clear or cloudy, atmospheric (barometric) pressure: high or low.

1243. So weather is characterized by temperature, humidity (incl. rain, wind (direction, velocity,
center, incl. its possible mobility), atmospheric pressure, etcetera.

1244. By weather information we mean

• either weather data that characterizes the weather as defined above (Item 1242),

• or weather forecast, i.e., a prediction of the state of the atmosphere for a given location
and time or time interval.

1245. Weather data are collected by weather stations. We shall here not be concerned with
technical means of weather data collection.

1246. Weather forecasts are used by forecast consumers, anyone: you and me.

1247. Weather data interpretation (i.e., forecasting) is the science and technology of creating
weather forecasts based on time- or time interval-stamped weather data and locations.
Weather data interpretation is amongst the charges of meteorological institutes.

1248. Meteorology is the interdisciplinary scientific study of the atmosphere.

1249. An atmosphere (from Greek ατµoζ (atmos), meaning “vapour”, and σφαιρα (sphaira),
meaning “sphere”) is a layer of gases surrounding a planet or other material body, that is
held in place by the gravity of that body.

1250. Meteorological institutes work together with the World Meteorological Organization (WMO).
Besides weather forecasting, meteorological institutes (and hence WMO) are concerned also
with aviation, agricultural, nuclear, maritime, military and environmental meteorology, hy-
drometeorology and renewable energy.

1I thank my host, Prof.Magne Haveraaen for the invitation. The occasion was that of a visit by Mme. Dooren
Tuheirwe from Makerere University, Uganda, and her work with the universty and the Norwegian Meteorological
Institute rm on a joint project on a Weather Information System for Uganda.

R.2. MAJOR PARTS OF A WEATHER INFORMATION SYSTEM 553

1251. Agricultural meteorologists, soil scientists, agricultural hydrologists, and agronomists are
persons concerned with studying the effects of weather and climate on plant distribution,
crop yield, water-use efficiency, phenology of plant and animal development, and the energy
balance of managed and natural ecosystems. Conversely, they are interested in the rôle of
vegetation on climate and weather.

R.1.2 Some Illustrations

R.1.2.1 Weather Stations

R.1.2.2 Weather Forecasts

R.1.2.3 Forecast Consumers

R.2 Major Parts of a Weather Information System

We think of the following parts as being of concern in the kind of weather information systems
that we shall analyse and describe: Figure R.1 on the following page shows one weather (dashed
rounded corner all embracing rectangle), one central weather data interpreter (cum meteo-
rological institute) seven weather stations (rounded corner squares), nineteen weather forecast
consumers, and one global clock. All are distributed, as hinted at, in some geographical space.
Figure R.2 shows “an orderly diagram” of “the same” weather information system as Figure R.1.
The lines between pairs of the various parts shall indicate means communication between the
pairs of (thus) connected parts. Dashed lines “crossing” bundles of these communication lines are
labeled ch xy. These labels, ch xy, designated CSP-like channels. An input, by a weather station
(wsi), of weather data from the weather (wi), is designated by the CSP expression ch ws[wi,wsi] ?.

554 CONTENTS

Weather Station

Weather Data Interpreter,
i.e., Meteorological Institute

clock

Weather Forecast Consumer

Weather

Figure R.1: A Weather Information System

An output, say from the weather data interpreter (wdi) to a weather forecast consumer (fci), of a
forecast f, is designated by ch ic[wdii,fci] ! f

R.3 Endurants

R.3.1 Parts and Materials

1252. The WIS domain contains a number of sub-domains:

(a) the weather, W, which we consider a material,

(b) the weather stations sub-domain, WSS (a composite part),

(c) the weather data interpretation sub-domain, WDIS (an atomic part),

(d) the weather forecast consumers sub-domain, WFCS (a composite part), and

(e) the (“global”) clock (an atomic part).

type
1252 WIS
1252a W
1252b WSS
1252c WDIS
1252d WFCS
1252e CLK
value
1252a obs material W: WIS → W
1252b obs part WSS: WIS → WSS
1252c obs part WDIS: WIS → WDIS
1252d obs part WFCS: WIS → WFCS
1252e obs part CLK: WIS → CLK

R.3. ENDURANTS 555

Weather Data Interpreter,

Weather Stations

Weather

Weather Forecast Consumers

ch_ws

i.e., Meteorological Institute

ch_si

ch_ic

ch_cp

Clock

Figure R.2: A Weather Information System Diagram

1253. The weather station sub-domain, WSS, consists of a set, WSs,

1254. of atomic weather stations, WS.

1255. The weather forecast consumers sub-domain, WFCS, consists of a set, WFCs,

1256. of atomic weather forecast consumers, WFC.

type
1253 WSs = WS-set
1254 WS
1255 WFCs = WFC-set
1256 WFC
value
1253 obs part WSs: WSS → WSs
1255 obs part WFCs: WFCS → WFCs

R.3.2 Unique Identifiers

We shall consider only atomic parts.

1257. Every single weather station has a unique identifier.

1258. The weather data interpretation (i.e., the weather forecast “creator”) has a unique identifier.

1259. Every single weather forecast consumer has a unique identifier.

1260. The global clock has a unique identifier.

556 CONTENTS

type
1257 WSI
1258 WDII
1259 WFCI
1260 CLKI
value
1257 uid WSI: WS → WSI
1258 uid WDII: WDIS → WDII
1259 uid WFCI: WFC → WFCI
1259 uid CLKI: CLK → CLKI

R.3.3 Mereologies

We shall restrict ourselves to consider the mereologies only of the atomic parts.

1261. The mereology of weather stations is the pair of the unique clock identifier and the unique
identifier of the weather data interpreter.

1262. The mereology of weather data interpreter is the triple of the unique clock identifier, set
of unique identifiers of all the weather stations and the set of unique identifiers of all the
weather forecast consumers.

1263. The mereology of weather forecast consumer is the the pair of the unique clock identifier
and the unique identifier of the weather data interpreter.

1264. The mereology of the global clock is the triple of the set of all the unique identifiers of
weather stations, the unique identifier of the weather data interpreter, and the set of all the
unique identifiers of weather forecast consumers.

type
1261 WSM = CLKI × WDII
1262 WDIM = CLKI × WSI-set × WFCI-set
1263 WFCM = CLKI × WDII
1264 CLKM = CLKI × WDGI-set × WDII × WFCI-set
value
1261 mereo WSM: WS → WSM
1262 mereo WDI: WDI → WDIM
1263 mereo WFC: WFC → WFCM
1264 mereo CLK: CLK → CLKM

R.3.4 Attributes

R.3.4.1 Clock, Time and Time-intervals

1265. The global clock has an autonomous time attribute.

1266. Time values are further undefined, but times are considered absolute in the sense as repre-
senting some intervals since “the birth of time”, an example, concrete time could be March

12, 2024: 10:48 am.

1267. Time intervals are further undefined, but time intervals can be considered relative in the
sense of representing a quantity elapsed between two times, examples are: 1 day 2 hours
and 3 minutes, etc. When a time interval, ti, is specified it is always to be understood to
designate the times from now, or from a specified time, t, until the time t + ti.

R.3. ENDURANTS 557

1268. We postulate ⊕, ⊖, and can postulate further “arithmetic” operators, and

1269. we can postulate relational operators.

type
1265 TIME
1266 TI
value
1265 attr TIME: CLK → TIME
1268 ⊕: TIME×TI→TIME, TI×TI→TI
1268 ⊖: TIME×TI→TIME, TIME×TIME→TI
1269 =, 6=, <, ≤, ≥, >: TIME×TIME→Bool, TI×TI→Bool, ...

We do not here define these operations and relations.

R.3.4.2 Locations

1270. Locations are metric, topological spaces and can thus be considered dense spaces of three
dimensional points.

1271. We can speak of one location properly contained (⊂) within, or contained or equal (⊆), or
equal (=), or not equal (6=) to another location.

type
1270. LOC
value
1271. ⊂, ⊆, =, 6=: LOC × LOC → Bool

R.3.4.3 Weather

1272. The weather material is considered a dense, infinite set of weather point volumes WP. Some
dense, infinite subsets (still proper volumes) of such points may be liquid, i.e., rain, water in
rivers, lakes and oceans. Other dense, infinite subsets (still proper volumes) of such points
may be gaseous, i.e., the air, or atmosphere. These two forms of proper volumes “border”
along infinite subsets (curved planes, surfaces) of weather points.

1273. From the material weather one can observe its location.

type
1272 W = WP-infset
1272 WP
value
1273 attr LOC: W → LOC

1274. Some meteorological quantities are:

(a) Humidity,

(b) Temperature,

(c) Wind and

(d) Barometric pressure.

1275. The weather has an indefinite number of attributes at any one time.

(a) Humidity distribution, at level (above sea) and by location,

(b) Temperature distribution, at level (above sea) and by location,

558 CONTENTS

(c) Wind direction, velocity and mobility of wind center, and by location,

(d) Barometric pressure, and by location,

(e) etc., etc.

type
1274a Hu
1274b Te
1274c Wi
1274d Ba
1275a HDL = LOC →m Hu
1275b TDL = LOC →m Te
1275c WDL = LOC →m Wi
1275d BPL = LOC →m Ba
1275e ...
value
1275a attr HDL: W → HDL
1275b attr TDL: W → TDL
1275c attr WDL: W → WDL
1275d attr APL: W → BPL
1275e ...

R.3.4.4 Weather Stations

1276. Weather stations have static location attributes.

1277. Weather stations sample the weather gathering humidity, temperature, wind, barometric
pressure, and possibly other data, into time and location stamped weather data.

value
1276 attr LOC: WS → LOC
type
1277 WD :: mkWD((TIME×LOC)×(TDL×HDL×WDL×BPL×...))

R.3.4.5 Weather Data Interpreter

1278. There is a programmable attribute: weather data repository, wdr:WDR, of weather data,
wd:WD, collected from weather stations.

1279. And there is programmable attribute: weather forecast repository, wfr:WFR, of forecasts,
wf:WF, disseminate-able to weather forecast consumers.

These repositories are updated when

1280. received from the weather stations, respectively when

1281. calculated by the weather data interpreter.

type
1278 WDR
1279 WFR
value
1280 update wdr: TIME × WD → WDR → WDR
1281 update wfr: TIME × WF → WFR → WFR

It is a standard exercise to define these two functions (say algebraically).

R.4. PERDURANTS 559

R.3.4.6 Weather Forecasts

1282. Weather forecasts are weather forecast format-, time- and location-stamped quantities, the
latter referred to as wefo:WeFo.

1283. There are a definite number (n≥1) of weather forecast formats.

1284. We do not presently define these various weather forecast formats.

1285. They are here thought of as being requested, mkWFReq, by weather forecast consumers.

type
1282 WF = WFF × (TIME×TI) × LOC × WeFo
1283 WFF = WFF1 | WFF2 | ... | WFFn
1284 WFF1, WFF2, ..., WFFn
1285 WFReq :: mkWFReq(s wff:WFF,s ti:(TIME×TI),s loc:LOC)

R.3.4.7 Weather Forecast Consumer

1286. There is a programmable attribute, d:D, D for display (!).

1287. Displays can be rendered (RND): visualized, tabularised, made audible, translated (between
languages and language dialects, ...), etc.

1288. A rendered display can be “abstracted back” into its basic form.

1289. Any abstracted rendered display is identical to its abstracted form.

type
1286 D
1287 RND
value
1286 attr D: WFC → D

1287 rndr D: RND × D → D
1288 abs D: D → D
axiom
1289 ∀ d:D, r:RND • abs D(rndr(r,d)) = d

R.4 Perdurants

R.4.1 A WIS Context

1290. We postulate a given system, wis:WIS.

That system is characterized by

1291. a dynamic weather

1292. and its unique identifier,

1293. a set of weather stations

1294. and their unique identifiers,

1295. a single weather data interpreter

1296. and its unique identifier,

1297. a set of weather forecast consumers

1298. and their unique identifiers, and

1299. a single clock

1300. and its unique identifier.

1301. Given any specific wis:WIS there is [there-
fore] a full set of part identifiers, is, of
weather, clock, all weather stations, the
weather data interpreter and all weather
forecast consumers.

We list the above-mentioned values. They will be referenced by the channel declarations and the
behaviour definitions of this section.

560 CONTENTS

value
1290 wis:WIS
1291 w:W = obs material W(wis)
1292 wi:WI = uid WI(w)
1293 wss:WSs = obs part WSs(obs part WSS(wis))
1294 wsis:WDGI-set = {uid WSI(ws)|ws:WS•ws ∈ wss}
1295 wdi:WDI = obs part WDIS(wis)
1296 wdii:WDII = uid WDII(wdi)
1297 wfcs:WFCs = obs part WFCs(obs part WFCS(wis))
1298 wfcis:WFI-set = {uid WFCI(wfc)|wfc:WFC•wfc ∈ wfcs}
1299 clk:CLK = obs part CLK(wis)
1300 clki:CLKI = uid CLKI(clk)
1301 is:(WI|WSI|WDII|WFCI)-set = {wi}∪wsis∪{wdii}∪wfcis

R.4.2 Channels

1302. Weather stations share weather data, WD, with the weather data interpreter — so there is
a set of channels, one each, “connecting” weather stations to the weather data interpreter.

1303. The weather data interpreter shares weather forecast requests, WFReq, and interpreted
weather data (i.e., forecasts), WF, with each and every forecast consumer — so there is
a set of channels, one each, “connecting” the weather data interpreter to the interpreted
weather data (i.e., forecast) consumers.

1304. The clock offers its current time value to each and every part, except the weather, of the
WIS system.

channel
1302 { ch si[wsi,wdii]:WD | wsi:WSI•wsi ∈ wsis }
1303 { ch ic[wdii,fci]:(WFReq|WF) | fci:FCI•fci ∈ fcis }
1304 { ch cp[clki,i]:TIME | i:(WI|CLKI|WSI|WDII|WFCI)•i ∈ is }

R.4.3 WIS Behaviours

1305. WIS behaviour, wis beh, is the

1306. parallel composition of all the weather station behaviours, in parallel with the

1307. weather data interpreter behaviour, in parallel with the

1308. parallel composition of all the weather forecast consumer behaviours, in parallel with the

1309. clock behaviour.

value
1305 wis beh: Unit → Unit
1305 wis beh() ≡
1306 ‖ { ws beh(uid WSI(ws),mereo WS(ws),...) | ws:WS•ws ∈ wss } ‖
1307 ‖ wdi beh(uid WDI(wdi),mereo WDI(wdi),...)(wd rep,wf rep) ‖
1308 ‖ { wfc beh(uid WFCI(wfc),mereo WDG(wfc),...) | wfc:WFC•wfc ∈ wfcs } ‖
1309 clk beh(uid CLKI(clk),mereo CLK(clk),...)(”March 12, 2024: 10:48 am”)

R.4. PERDURANTS 561

R.4.4 Clock

1310. The clock behaviour has a programmable attribute, t.

1311. It repeatedly offers its current time to any part of the WIS system.

It nondeterministically internally “cycles” between

1312. retaining its current time, or

1313. increment that time with a “small” time interval, δ, or

1314. offering the current time to a requesting part.

value
1310. clk beh: clki:CLKI × clkm:CLKM → TIME →
1311. out {ch cp[clki,i]|i:(WSI|WDII|WFCI)•i ∈wsis∪{wdii}∪wfcis } Unit
1310. clk beh(clki,is)(t) ≡
1312. clk beh(clki,is)(t)
1313. ⌈⌉ clk beh(clki,is)(t⊕δ)
1314. ⌈⌉ (⌈⌉⌊⌋{ ch cp[clki,i] ! t | i:(WSI|WDII|WFCI)•i ∈ is } ; clk beh(clki,is)(t))

R.4.5 Weather Station

1315. The weather station behaviour communicates with the global clock and the weather data
interpreter.

1316. The weather station behaviour simply “cycles” between sampling the weather, reporting its
findings to the weather data interpreter and resume being that overall behaviour.

1317. The weather station time-stamp “sample’ the weather (i.e., meteorological information).

1318. The meteorological information obtained is analysed with respect to temperature (distribu-
tion etc.),

1319. humidity (distribution etc.),

1320. wind (distribution etc.),

1321. barometric pressure (distribution etc.), etcetera,

1322. and this is time-stamp and location aggregated (mkWD) and “sent” to the (central ?)
weather data interpreter,

1323. whereupon the weather data generator behaviour resumes.

value
1315 ws beh: wsi:WSI × (clki,wi,wdii):WDGM × (LOC × ...) →
1315 in ch cp[clki,wsi] out ch gi[wsi,wdii] Unit
1316 ws beh(wsi,(clki,wi,wdii),(loc,...)) ≡
1318 let tdl = attr TDL(w),
1319 hdl = attr HDL(w),
1320 wdl = attr WDL(w),
1321 bpl = attr BPL(w), ... in
1322 ch gi[wsi,wdii] ! mkWD((ch cp[clki,wsi] ?,loc),(tdl,hdl,wdl,bpl,...)) end ;
1323 wdg beh(wsi,(clki,wi,wdii),(loc,...))

562 CONTENTS

R.4.6 Weather Data Interpreter

1324. The weather data interpreter behaviour communicates with the global clock, all the weather
stations and all the weather forecast consumers.

1325. The weather data interpreter behaviour non-deterministically internally (⌈⌉) chooses to

1326. either collect weather data,

1327. or calculate some weather forecast,

1328. or disseminate a weather forecast.

value
1324 wdi beh: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
1324 in ch cp[clki,wdii], { ch si[wsi,wdii] | wsi:WSI•wsi ∈ wsis },
1324 out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
1324 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
1326 collect wd(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)
1325 ⌈⌉
1327 calculate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)
1325 ⌈⌉
1328 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)

R.4.6.1 collect wd

1329. The collect weather data behaviour communicates with the global clock and all the weather
stations – but “passes-on” the capability to communicate with all of the weather forecast
consumers.

1330. The collect weather data behaviour

1331. non-deterministically externally offers to accept weather data from some weather station,

1332. updates the weather data repository with a time-stamped version of that weather data,

1333. and resumes being a weather data interpreter behaviour, now with an updated weather data
repository.

value
1329 collect wd: wdii:WDII×(clki,wsis,wfcis):WDIM×...
1329 → (WD Rep×WF Rep) →
1329 in ch cp[clki,wdii], { ch si[wsi,wdii] | wsi:WSI•wsi ∈ wsis },
1329 out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
1330 collect wd(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
1331 let ((ti,loc),(hdl,tdl,wdl,bpl,...)) = ⌈⌉⌊⌋{wsi[wsi,wdii]?|wsi:WSI•wsi∈wsis} in
1332 let wd rep′ = update wdr(ch cp[clki,wdii]?,((ti,loc),(hdl,tdl,wdl,bpl,...)))(wd rep) in
1333 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep′,wf rep) end end

R.4.6.2 calculate wf

1334. The calculate forecast behaviour communicates with the global clock – but “passes-on” the
capability to communicate with all of weather stations and the weather forecast consumers.

1335. The calculate forecast behaviour

1336. non-deterministically internally chooses a forecast type from among a indefinite set of such,

R.4. PERDURANTS 563

1337. and a current or “future” time-interval,

1338. whereupon it calculates the weather forecast and updates the weather forecast repository,

1339. and then resumes being a weather data interpreter behaviour now with the weather forecast
repository updated with the calculated forecast.

value
1334 calculate wf: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
1334 in ch cp[clki,wdii], { ch si[wsi,wdii] | wsi:WSI•wsi ∈ wsis },
1334 out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
1335 calculate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
1336 let tf:WWF = ft1 ⌈⌉ ft2 ⌈⌉ ... ⌈⌉ ftn,
1337 ti:(TIME×TIVAL) • toti≥ch cp[clki,wdii] ? in
1338 let wf rep′ = update wfr(calc wf(tf,ti)(wf rep)) in
1339 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep′) end end

1340. The calculate weather forecast function is, at present, further undefined.

value
1340. calc wf: WFF × (TIME×TI) → WFRep → WF
1340. calc wf(tf,ti)(wf rep) ≡ ,,,

R.4.6.3 disseminate wf

1341. The disseminate weather forecast behaviour communicates with the global clock and all the
weather forecast consumers – but “passes-on” the capability to communicate with all of
weather stations.

1342. The disseminate weather forecast behaviour non-deterministically externally offers to re-
ceived a weather forecast request from any of the weather forecast consumers, wfci, that
request is for a specific format forecast, tf, and either for a specific time or for a time-
interval, toti, as well as for a specific location, loc.

1343. The disseminate weather forecast behaviour retrieves an appropriate forecast and

1344. sends it to the requesting consumer –

1345. whereupon the disseminate weather forecast behaviour resumes being a weather data inter-
preter behaviour

value
1341 disseminate wf: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
1341 in ch cp[clki,wdii] in,out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
1341 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
1342 let mkReqWF((tf,toti,loc),wfci) = ⌈⌉⌊⌋{ch ic[wdii,wfci] ? | wfci:WFCI•wfci∈wfcis} in
1343 let wf = retr WF((tf,toti,loc),wf rep) in
1344 ch ic[wdii,wfci] ! wf ;
1345 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) end end

1346. The retr WF((tf,toti,loc),wf rep) function invocation retrieves the weather forecast from the
weather forecast repository most “closely” matching the format, tf, time, toti, and location
of the request received from the weather forecast consumer. We do not define this function.

564 CONTENTS

1346. retr WF: (WFF×(TIME×TI)×LOC) × WFRep → WF
1346. retr WF((tf,toti,loc),wf rep) ≡ ...

We could have included, in our model, the time-stamping of receipt (formula Item 1342) of re-
quests, and the time-stamping of delivery of requested forecast in which case we would insert
ch cp[clki,wdii]? at respective points in formula Items 1342 and 1344.

R.4.7 Weather Forecast Consumer

1347. The weather forecast consumer communicates with the global clock and the weather data
interpreter.

1348. The weather forecast consumer behaviour

1349. nondeterministically internally either

1350. selects a suitable weather cast format, tf,

1351. selects a suitable location, loc′, and

1352. selects, toti, a suitable time (past, present or future) or a time interval (that is supposed to
start when forecast request is received by the weather data interpreter.

1353. With a suitable formatting of this triple, mkReqWF(tf,loc′,toti), the weather forecast con-
sumer behaviour “outputs” a request for a forecast to the weather data interpreter (first
“half” of formula Item 1352) whereupon it awaits (;) its response (last “half” of formula
Item 1352) which is a weather forecast, wf,

1354. whereupon the weather forecast consumer behaviour resumes being that behaviour with it
programmable attribute, d, being replaced by the received forecast suitably annotated;

1349 or the weather forecast consumer behaviour

1355. edits a display

1356. and resumes being a weather forecast consumer behaviour with the edited programmable
attribute, d′.

value
1347 wfc beh: wfci:WFCI × (clki,wdii):WFCM × (LOC × ...) → D →
1347 in ch cp[clki,wfci],
1347 in,out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
1348 wfc beh(wfci,(clki,wdii),(loc,...))(d) ≡
1350 let tf = tf1 ⌈⌉ tf2 ⌈⌉ ... ⌈⌉ tfn,
1351 loc′:LOC • loc′=loc∨loc′ 6=loc,
1352 (t,ti):(TIME×TI) • ti≥0 in
1353 let wf = (ch ic[wdii,wfci] ! mkReqWF(tf,loc′,(t,ti))) ; ch ic[wdii,wfci] ? in
1354 wfc beh(wfci,(clki,wdii),(loc,...))((tf,loc′,(t,ti)),wf) end end
1349 ⌈⌉
1355 let d′:D {\EQ} rndr\ D(d,{\DOTDOTDOT}) in
1356 wfc beh(wfci,(clki,wdii),(loc,...))(d′) end

The choice of location may be that of the weather forecast consumer location, or it may be one
different from that. The choice of time and time-interval is likewise a non-deterministic internal
choice.

R.5. CONCLUSION 565

R.5 Conclusion

R.5.1 Reference to Similar Work

As far as I know there are no published literature nor, to our knowledge, institutional or private
works on the subject of modelling weather data collection, interpretation and weather forecast
delivery systems.

R.5.2 What Have We Achieved ?

to be written

R.5.3 What Needs to be Done Next ?

to be written

R.5.4 Acknowledgments

This technical cum experimental research report was begun in Bergen, Wednesday, November 9,
2016 – inspired by a presentation by Ms. Doreen Tuheirwe, Makarere University, Kampala, Uganda.
I thank her, and Profs. Magne Haveraaen and Jaakko Järvi of BLDL: the Bergen Language Design
Laboratory, Dept. of Informatics, University of Bergen (Norway), for their early comments, and
Prof. Haveraaen for inviting me to give PhD lectures there in the week of Nov. 6–12, 2016.

566 CONTENTS

Appendix S

The Tokyo Stock Exchange, 2009

I thank Prof. Tetsuo Tamai, Tokyo University, for commenting on an early version of this chapter:
clarifying issues and identifying mistakes and typos.

This chapter was begun on January 24. It was released, first time, January 28.

Contents

S.1 Introduction . 568

S.2 The Problem . 568

S.3 A Domain Description . 568

S.3.1 Market and Limit Offers and Bids . 568

S.3.1.1 Order Books . 569

S.3.1.2 Aggregate Offers . 570

S.3.1.3 The TSE Itayose “Algorithm” 571

S.4 Conclusion . 573

S.4.1 Match Executions . 574

S.4.2 Order Handling . 574

S.4.3 Conclusion . 574

S.5 Tetsuo Tamai’s Paper . 575

S.6 Tokyo Stock Exchange arrowhead Announcements 583

S.6.1 Change of trading rules . 583

S.6.2 Points to note when placing orders . 587

The reason why these notes are written is the appearance of [177].
I have taken the liberty of including that paper in this document, cf. Appendix S.5.
I had the good fortune of visiting Prof. Tetsuo Tamai, Tokyo Univ., 8–Dec.8, 2009.

I read [177] late November.
I then had wished that Tetsuo had given it to me upon my arrival.

I was, obviously ignorant of its publication some five months earlier.
I have now reread [177] (late January 2010).

I mentioned to Tetsuo that I would try my hand on a formalisation.
A description, both by a narrative, and by related formulas.

What you see here, in Chap. S, is a first attempt1.

1Earlier versions of this document will have Chap. S being very incomplete.

567

568 CONTENTS

S.1 Introduction

This chapter shall try describe: narrate and formalise some facets of the (now “old”2) stock trading
system of the TSE: Tokyo Stock Exchange (especially the ‘matching’ aspects).

S.2 The Problem

The reason that I try tackle a description (albeit of the “old” system) is that Prof. Tetsuo Tamai
published a delightful paper [177, IEEE Computer Journal, June 2009 (vol. 42 no. 6) pp. 58-65)],
Social Impact of Information Systems, in which a rather sad story is unfolded: a human error key
input: an offer for selling stocks, although “ridiculous” in its input data (“sell 610 thousand stocks,
each at one (1) Japanese Yen”, whereas one stock at 610,000 JPY was meant), and although several
immediate — within seconds — attempts to cancel this “order”, could not be cancelled ! This
lead to a loss for the selling broker at around 42 Billion Yen, at today’s exchange rate, 26 Jan.
2010, 469 million US $s !3 Prof. Tetsuo Tamai’s paper gives a, to me, chilling account of what I
judge as an extremely sloppy and irresponsible design process by TSE and Fujitsu. It also leaves,
I think, a strong impression of arrogance on the part of TSE. This arrogance, I claim, is still there
in the documents listed in Footnote 2.

So the problem is a threefold one of

• Proper Requirements: How does one (in this case a stock exchange) prescribe (to the
software developer) what is required by an appropriate hardware/software system for, as in
this case, stock handling: acceptance of buy bids and sell offers, the possible withdrawal (or
cancellation) of such submitted offers, and their matching (i.e., the actual trade whereby
buy bids are marched in an appropriate, clear and transparent manner).

• Correctness of Implementation: does one make sure that the software/hardware system
meets customers’ expectations.

• Proper Explanation to Lay Users: How does one explain, to the individual and institu-
tional customers of the stock exchange, those offering stocks for sale of bids for buying stocks
– how does one explain – in a clear and transparent manner the applicable rules governing
stock handling.4

I shall only try contribute, in this document, to a solution to the first of these sub-problems.

S.3 A Domain Description

S.3.1 Market and Limit Offers and Bids

1. A market sell offer or buy bid specifies

(a) the unique identification of the stock,

2 We write “old” since, as of January 4, 2010, that ‘old’ stock trading system has been replaced by the so-called
arrowhead system. We refer to the following documents:

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet.html

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet-e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet1e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet2e.html

3So far three years of law court case hearing etc., has, on Dec. 4, 2009, resulted in complainant being awarded
10.7 billion Yen in damages. See http://www.ft.com/cms/s/0/e9d89050-e0d7-11de-9f58-00144feab49a.html.

4The rules as explained in the Footnote 2 listed documents are far from clear and transparent: they are full
of references to fast computers, overlapping processing, etc., etc.: matters with which these buying and selling
customers should not be concerned — so, at least, thinks this author !

S.3. A DOMAIN DESCRIPTION 569

(b) the number of stocks to be sold or bought, and

(c) the unique name of the seller.

2. A limit sell offer or buy bid specifies the same information as a market sell offer or buy bid
(i.e., Items 1a–1c), and

(d) the price at which the identified stock is to be sold or bought.

3. A trade order is either a (mkMkt marked) market order or (mkLim marked) a limit order.

4. A trading command is either a sell order or a buy bid.

5. The sell orders are made unique by the mkSell “make” function.

6. The buy orders are made unique by the mkBuy “make” function.

type√
1 Market = Stock id × Number of Stocks × Name of Customer
1a Stock id√
1b Number of Stocks = {|n•n:Nat∧n≥1|}
1c Name of Customer
2 Limit = Market × Price√
2d Price = {|n•n:Nat∧n≥1|}
3 Trade == mkMkt(m:Market) | mkLim(l:Limit)
4 Trading Command = Sell Order | Buy Bid
5 Sell Order == mkSell(t:Trade)
6 Buy Bid == mkBuy(t:Trade)

S.3.1.1 Order Books

7. We introduce a concept of linear, discrete time.

8. For each stock the stock exchange keeps an order book.

9. An order book for stock sid : SI keeps track of limit buy bids and limit sell offers (for the
identified stock, sid), as well as the market buy bids and sell offers; that is, for each price

(d) the number stocks, by unique order number, offered for sale at that price, that is,
limit sell orders, and

(e) the number of stocks, by unique order number, bid for buying at that price, that is,
bid orders;

(f) if an offer is a market sell offer, then the number of stocks to be sold is recorded, and
if an offer is a market buy bid (also an offer), then the number of stocks to be bought
is recorded,

10. Over time the stock exchange displays a series of full order books.

11. A trade unit is a pair of a unique order number and an amount (a number larger than 0) of
stocks.

12. An amount designates a number of one or more stocks.

type√
7 T, On [Time, Order number]
8 All Stocks Order Book = Stock Id →m Stock Order Book
9 Stock Order Book = (Price →m Orders) × Market Offers
9 Orders:: so:Sell Orders × bo:Buy Bids

570 CONTENTS

9d Sell Orders = On →m Amount
9e Buy Bids = On →m Amount
9f Market Offers :: mkSell(n:Nat) × mkBuy(n:Nat)
10 TSE = T →m All Stocks Order Book
11 TU = On × Amount
12 Amount = {|n•Nat∧n≥1|}

S.3.1.2 Aggregate Offers

13. We introduce the concepts of aggregate sell and buy orders for a given stock at a given price
(and at a given time).

14. The aggregate sell orders for a given stock at a given price is

(g) the stocks being market sell offered and

(h) the number of stocks being limit offered for sale at that price or lower

15. The aggregate bids for a given stock at a given price is

(i) including the stocks being market bid offered and

(j) the number of stocks being limit bid for buying at that price or higher

value
14 aggr sell: All Stocks Order Book × Stock Id × Price → Nat
14 aggr sell(asob,sid,p) ≡
14 let ((sos,),(mkSell(ns),)) = asob(sid) in
14g ns +
14h all sell summation(sos,p) end
15 aggr buy: All Stocks Order Book × Stock Id × Price → Nat
15 aggr buy(asob,sid,p) ≡
15 let ((,bbs),(,mkBuy(nb))) = asob(sid) in
15i nb +
15j nb + all buy summation(bbs,p) end

all sell summation: Sell Orders × Price → Nat
all sell summation(sos,p) ≡

let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ ≥ p} in accumulate(sos,ps)(0) end

all buy summation: Buy Bids × Price → Nat
all buy summation(bbs,p) ≡

let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ ≤ p} in accumulate(bbs,ps)(0) end

The auxiliary accumulate function is shared between the all sell summation and the all buy summation
functions. It sums the amounts of limit stocks in the price range of the accumulate function argu-
ment ps. The auxiliary sum function sums the amounts of limit stocks — “pealing off” the their
unique order numbers.

value
accumulate: (Price →m Orders) × Price-set → Nat → Nat
accumulate(pos,ps)(n) ≡

case ps of {} → n, {p}∪ ps′ → accumulate(pos,ps′)(n+sum(pos(p)){dom pos(p)}) end

sum: (Sell Orders|Buy Bids) → On-set → Nat
sum(ords)(ns) ≡

case ns of {} → 0, {n}∪ ns′ → ords(n)+sum(ords)(ns′) end

S.3. A DOMAIN DESCRIPTION 571

To handle the sub limit sells and sub limit buys indicated by Item 17c of the Itayose “algorithm”
we need the corresponding sub sell summation and sub buy summation functions:

value
sub sell summation: Stock Order Book × Price → Nat
sub sell summation(((sos,),(ns,)),p) ≡ ns +

let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ > p} in accumulate(sos,ps)(0) end

sub buy summation: Stock Order Book × Price → Nat
sub buy summation(((,bbs),(,nb)),p) ≡ nb +

let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ < p} in accumulate(bbs,ps)(0) end

S.3.1.3 The TSE Itayose “Algorithm”

16. The TSE practices the so-called Itayose “algorithm” to decide on opening and closing prices5.
That is, the Itayose “algorithm” determines a single so-called ‘execution’ price, one that
matches sell and buy orders6:

17. The “matching sell and buy orders” rules:

(a) All market orders must be ‘executed’7.

(b) All limit orders to sell/buy at prices 8 than the ‘execution price’9 must be executed.

(c) The following amount of limit orders to sell or buy at the execution prices must be
executed: the entire amount of either all sell or all buy orders, and at least one ‘trading
unit’10 from ‘the opposite side of the order book’11.

• The 28 January 2010 version had lines

– 17c′∃ name some priced buys, should have been, as now, some priced sells and

– 17c′′∀ name all priced buys, should have been, as now, all priced sells.

• My current understanding of and assumptions about the TSE is

– that each buy bid or sell order concerns a number, n, of one or more of the same kind
of stocks (i.e. sid).

– that each buy bid or sell order when being accepted by the TSE is assigned a unique
order number on, and

– that this is reflected in some Sell Orders or Market Bids entry being augmented.12

• For current (Monday 22 Feb., 2010) lack of a better abstraction13, I have structured the
Itayose “Algorithm” as follows:

– (17′) either a match can be made based on

∗ all buys and

5 [177, pp 59, col. 1, lines 4-3 from bottom, cf. Page 576]
6 [177, pp 59, col. 2, lines 1–3 and Items 1.–3. after yellow, four line ‘insert’, cf. Page 576] These items 1.–3. are

reproduced as “our” Items 17a–17c.
7To execute an order:
8

9Execution price:
10Trading unit:
11The opposite side of the order book:
12The present, 22.2.2010, model “lumps” all market orders. This simplification must be corrected, as for the

Sell Orders and Market Bids, the Market Offers must be modelled as are Orders.
13One that I am presently contemplating is based on another set of pre/post conditions.

572 CONTENTS

∗ some sells,

– (17′∨) or

– (17′′) a match can be made based on

∗ aome buys and

∗ all sells.

value
17 match: All Stocks Order Book × Stock Id → Price-set
17 match(asob,sid) as ps
17 pre: sid ∈ dom asob
17 post: ∀ p′:Price • p′ ∈ ps ⇒
17′ all buys some sells(p′,ason,sid,ps) ∨
17′∨ ∨
17′′ some buys all sells(p′,ason,sid,ps)

• (17′) The all buys some sells part of the above disjunction “calculates” as follows:

– The all buys... part includes

∗ all the market buys

∗ all the buys properly below the stated price, and

∗ all the buys at that price.

– The ...some sells part includes

∗ all the market sells

∗ all the sells properly below the stated price, and

∗ some of the buys at that price.

17′ all buys some sells(p′,ason,sid,ps) ≡
17′ ∃ os:On-set •

17a′ all market buys(asob(sid))
17b′ + all sub limit buys(asob(sid))(p′)
17c′ + all priced buys(asob(sid))(p′)
17a′ = all market sells(asob(sid))
17b′ + all sub limit sells(asob(sid))(p′)
17c′∃ + some priced sells(asob(sid))(p′)(os)

• (17′′) As for the above, only “versed”.

17′′ some buys all sells(p′,ason,sid,ps) ≡
17′′ ∃ os:On-set •

17a′′ all market buys(asob(sid))
17b′′ + all sub limit buys(asob(sid))(p′)
17c′′ + some priced buys(asob(sid))(p′)(os)
17a′′ = all market sells(asob(sid))
17b′′ + all sub limit sells(asob(sid))(p′)
17c′′∀ + all priced sells(asob(sid))(p′) ∨

The match function calculates a set of prices for each of which a match can be made. The set may
be empty: there is no price which satisfies the match rules (cf. Items 17a–17c below). The set may
be a singleton set: there is a unique price which satisfies match rules Items 17a–17c. The set may
contain more than one price: there is not a unique price which satisfies match rules Items 17a–17c.

S.4. CONCLUSION 573

The single (′) and the double (′′) quoted (17a–17c) group of lines, in the match formulas above,
correspond to the Itayose “algorithm”s Item 17c ‘opposite sides of the order book’ description.
The existential quantification of a set of order numbers of lines 17′ and 17′′ correspond to that
“algorithms” (still Item 17c) point of at least one ‘trading unit’. It may be that the post condition
predicate is only fullfilled for all trading units – so be it.

value
all market buys: Stock Order Book → Amount
all market buys((,(,mkBuys(nb))),p) ≡ nb

all market sells: Stock Order Book → Amount
all market sells((,(mkSells(ns),)),p) ≡ ns

all sub limit buys: Stock Order Book → Price → Amount
all sub limit buys(((,bbs),))(p) ≡ sub buy summation(bbs,p)

all sub limit sells: Stock Order Book → Price → Amount
all sub limit sells((sos,))(p) ≡ sub sell summation(sos,p)

all priced buys: Stock Order Book → Price → Amount
all priced buys((,bbs),)(p) ≡ sum(bbs(p))

all priced sells: Stock Order Book → Price → Amount
all priced sells((sos,),)(p) ≡ sum(sos(p))

some priced buys: Stock Order Book → Price → On-set → Amount
some priced buys((,bbs),)(p)(os) ≡

let tbs = bbs(p) in if {}6=os∧os⊆dom tbs then sum(tbs)(os) else 0 end end

some priced sells: Stock Order Book → Price → On-set → Amount
some priced sells((sos,),)(p)(os) ≡

let tss = sos(p) in if {}6=os∧os⊆dom tss then sum(tss)(os) else 0 end end

The formalisation of the Itayise “algorithm”, as well as that “algorithm” [itself], does not guarantee
a match where a match “ought” be possible. The “stumbling block” seems to be the Itayose
“algorithm”s Item 17c. There it says: ‘at least one trading unit’. We suggest that a match could
be made in which some of the stocks of a candidate trading unit be matched with the remaining
stocks also being traded, but now with the stock exchange being the buyer and with the stock
exchange immediately “turning around” and posting those remaining stocks as a TSE marked
trading unit for sale.

18. It seems to me that the Tetsuo Tamai paper does not really handle

(a) the issue of order numbers,

(b) therefore also not the issue of the number of stocks to be sold or bought per order
number.

19. Therefore the Tetsuo Tamai paper does not really handle

(a) the situation where a match “only matches” part of a buy or a sell order.

S.4 Conclusion

Much more to come: essentially I have only modelled column 2, rightmost column, Page 59
of [177, Tetsuo Tamai, “TSE”]. Next to be modelled is column 1, leftmost column, Page 60
of [177]. See these same page numbers of the present document !

574 CONTENTS

S.4.1 Match Executions

to be written

S.4.2 Order Handling

to be written

S.4.3 Conclusion

to be written

S.5. TETSUO TAMAI’S PAPER 575

S.5 Tetsuo Tamai’s Paper

For private, limited circulation only, I take the liberty of enclosing Tetsuo Tamai’s IEEE Computer
Journal paper.

576 CONTENTS

S.5. TETSUO TAMAI’S PAPER 577

578 CONTENTS

S.5. TETSUO TAMAI’S PAPER 579

580 CONTENTS

S.5. TETSUO TAMAI’S PAPER 581

582 CONTENTS

S.6. TOKYO STOCK EXCHANGE ARROWHEAD ANNOUNCEMENTS 583

S.6 Tokyo Stock Exchange arrowhead Announcements

S.6.1 Change of trading rules

584 CONTENTS

S.6. TOKYO STOCK EXCHANGE ARROWHEAD ANNOUNCEMENTS 585

586 CONTENTS

S.6. TOKYO STOCK EXCHANGE ARROWHEAD ANNOUNCEMENTS 587

S.6.2 Points to note when placing orders

588 CONTENTS

S.6. TOKYO STOCK EXCHANGE ARROWHEAD ANNOUNCEMENTS 589

590 CONTENTS

Appendix T

XVSM: An Extensible Virtual Shared
Memory

Contents

T.1 Introduction . 592

T.1.1 On Targets of Formal Specification . 592

T.1.2 Why Specify Software Concepts Formally 593

T.1.3 An XVSM Type System . 593

T.1.3.1 Type Systems . 594

T.1.3.2 Static and Dynamic Type Systems 594

T.1.3.3 Why Type Systems . 594

T.1.4 Words of Caution . 594

T.2 XVSM Trees . 595

T.2.1 XTree Rules . 595

T.2.2 XTree Types . 595

T.2.3 XTree Type Designator Wellformedness 595

T.2.4 XTree Type Functions . 596

T.2.5 XTree Wellformedness . 596

T.2.6 XTree Subtypes . 597

T.3 XTree Operations . 598

T.3.1 XTree Multiset Union . 598

T.3.2 Commensurate Multiset Arguments . 598

T.3.3 Type “Prediction” . 599

T.3.4 A Theorem: Correctness of Type “Prediction” 599

T.3.5 XTree Multiset Equality . 599

T.3.6 XTree Multiset Subset . 599

T.3.7 Property Multiset Membership . 600

T.3.8 XTree Multiset Membership . 600

T.3.9 XTree Multiset Cardinality . 600

T.3.10 Arbitrary Selection of XTrees or Properties from Multisets 600

T.3.11 XTree Multiset Difference . 601

T.3.12 XTree List Concatenation . 601

T.3.13 XTree List Equality . 601

T.3.14 XTree List Property Membership . 601

T.3.15 XTree List XTree Membership . 602

T.3.16 XTree List Length . 602

591

592 CONTENTS

T.3.17 XTree List Head . 602

T.3.18 XTree List Tail . 602

T.3.19 XTree List Nth Element . 602

T.4 Indexing . 603

T.4.1 Paths and Indexes . 603

T.4.2 Proper Index . 603

T.4.3 Index Selecting . 603

T.4.4 Path Indexing . 604

T.5 Queries . 604

T.5.1 Generally on Semantics . 604

T.5.2 Syntax: Simple XVSM Queries . 605

T.5.2.1 Syntax: Predefined Selector Queries 605

T.5.2.2 Semantics: Predefined Selector Queries 605

T.5.2.2.1 Count . 605

T.5.2.2.2 Sort Up . 606

T.6 Conclusion . 606

This document presents work in progress. The document constitutes a technical note. It
reports on an attempt to formalise XVSM: the Extensible Virtual Shared Memory as reported in
the Dipl.Ing. thesis by Stefan Craß: A Formal Model of the Extensible Virtual Shared Memory
(XVSM) and its Implementation in Haskell – Design and Specification. Technische Universität
Wien, 05.02.2010 [84].

T.1 Introduction

XVSM, the Extensible Virtual Shared Memory concept, has been described in a number of conference
proceeding publications: [13, 85, 122, 123]. The MSc Thesis [84] claims to present a formal model,
but what is presented is not a proper formal model. To be a proper formal model there must be an
abstract presentation in some formal, that is, mathematically well defined specification language
and there must be a formal proof system for that language. Usually a formal semantics is also an
abstract specification. Haskell, although a commendable programming language, is not suited
for the specification of a semantics of XVSM, and [84] presents a Haskell implementation of XVSM
and not an abstraction. A reasonably precise, even readable (and also executable), definition of
XVSM could have been done in Haskell. Such a definition would carefully build up definitions, in
Haskell, of the syntax of XVSM XTrees, of XVSM queries, etc. We shall present a formal definition
of XVSM in RSL, the Raise Specification Language [100, 101].

T.1.1 On Targets of Formal Specification

Formalisation of software concepts started in the 1960s. The most notable example was that of the
formal (operational semantics) description of the PL/I programming language [8–10]. The ULD
notation emerged (ULD I, ULD II, ULD III -- ULD for Universal Language Description). This
name of notation was later renamed into VDL (Vienna Language Description) by J.A.N. Lee [125].
Peter Lucas (sometimes with Kurt Walk) reviewed the [128–134] semantics descriptions of notably
ULD III and the background for VDM (the Vienna Development Method).

As a result of the VDL (research and experimental development) work the IBM Vienna Labo-
ratory undertook, in 1973, to develop, for the IBM market a new PL/I compiler for a new IBM
computer (code named FSM: Future Systems machine). The US and European IBM laboratories’
development of this computer was, eventually, curtailed, in February 1974. Nevertheless, the IBM
Vienna Laboratory, was able to complete the work on a formal (denotational semantics-like) de-
scription of PL/I [5]. This work led to VDM [71,73,98,118–120] – which later led to RAISE [100,101]
(1990). All the other now available formal specification languages came after VDM: Alloy [115]
(2000), B, Event B [2] (1990, 2000) and Z [183] (1980).

T.1. INTRODUCTION 593

First with VDM and now, as here, with RSL, formal specification has been used – other than for
the semantics description of programming languages – first for formalising software designs, then
for formalising requirements for general software, and for formalising (their) domain descriptions.

In this technical note we apply, not for the first time, formal specification to what the pro-
posers of XVSM refers to as middleware: computer software that connects software components
or applications. The software consists of a set of services that allows multiple processes running
on one or more machines to interact (including sharing data). Middleware technology evolved to
provide for interoperability in support of the move to coherent distributed architectures, which
are most often used to support and simplify complex distributed applications. It includes web
servers, application servers, and similar tools that support application development and delivery.
Middleware is especially integral to modern information technology based on XML, SOAP, Web

services, and service-oriented architecture.

T.1.2 Why Specify Software Concepts Formally

A number of independent reasons can be given for why one might wish to formally specify a
software concept1. We itemize some of these:

• As a design aid: In researching and experimentally developing the design of a software
concept, experiments with formal models of the software concept, or just some of its sub-
concepts, have shown to help clarify and simplify many design issues2.

• As a communication document: A suitably narrated and formalised specification, such
as the present technical note lays a ground for (but is not yet), can be used as a, or the,
‘semantics’ specification for XVSM. It can serve as a standards document.

• As a basis for implementation: A suitably narrated and formalised specification, such as
the present technical note, can serve as a basis for (thus provably) correct implementations
of proper XVSM middleware.

• As a basis for teaching & training: An XVSM communication document can serve as the
basis for instruction in the use (i.e., ‘programming’) of XVSM-dependent applications.

• As a basis for proving properties of XVSM: The formal specfication of XVSM, such as
attempted, or at least begun, with the present technical note, can be referred to in formal
proofs of properties of XVSM and its applications.

T.1.3 An XVSM Type System

One of the great contributions of computing science to mathematics has been the studies made of
type systems. And one of the great advances of software engineering from the middle 1950s till
today has been the use of suitable, usually static, type systems.

The current author has (therefore) been quite surprised when discovering, that a language such
as the XVSM query language and the Core Application Programming Interface Languages3 (such
as CAPI-1, CAPI-2, and CAPI-3) has not been endowed by a type system. Instead of erroneous

1By a software concept we mean such concepts as (the semantics of) programming languages, database models
or database management systems, operating systems, specific application systems [such as for air traffic, banking,
manufacturing, transportation, or other], their requirements, their underlying domains, etc.

2The current author offers the following observation (i) and advice (ii): (i) it seems that formalisation was not
used in the conceptualisation of XVSM; and (ii) further extensions of XVSM should preferably be based on the present
– or similar, reworked – formalisation and should itself use formal modelling. In reading publications about XVSM

an experienced reader of precise descriptions too easily resolves that there are simply far too many ambiguous,
incinsistent and incomplete description points: they may not be so, but the current egnlish texts leaves such an
experienced reader of precise descriptions to resolve so.

3An application programming interface (API) is an interface implemented by a software program which enables
it to interact with other software.

594 CONTENTS

query and transaction results (here modelled by chaos) an XVSM programme could use these type
testing facilties to secure provably correct uses of XVSM.

We shall, here and there, ‘divert’ from a straight line reformulation of [84], and present com-
ponents of an XVSM Type System (XVSM/TS).

T.1.3.1 Type Systems

Many kinds of type systems can be proposed for XVSM. Defining a type system may imply that only
correctly typed data, i.e., XTrees, and only arguments to operations: queries and actions, that, in
some weak or strong sense, satisfy the signature (that is, the type) of the operation are allowed.
(We then speak of a weakly, respectively strongly type language.) We shall, through the judicious
use of concepts of sub, commensurate- and super-types, suggest one (of several possible) XVSM

type systems. It is important to emphasize this: that either one of several XVSM type systems are
possible. The one presented ehre may not be the best for a number of contemplated applications
of XVSM, but it is probably a sensible one! Recommendable monographs cum textbooks on type
systems and programming languages are [146, 163]. Further foundational studies of type systems
are provided in the monographs [1, 102].

T.1.3.2 Static and Dynamic Type Systems

A programming language is said to use static typing when type checking can be performed during
compile-time as opposed to run-time.

A programming language is said to be dynamically typed when the majority of its type checking
can only be performed at run-time as opposed to at compile-time. In dynamic typing, values have
types but variables do not (necessarily); that is, a variable can refer to a value of any type.
Whether one can speak of XVSM variables is not known.

We shall anyway think of the type system that we shall put forward for XVSM as being a dynamic
type system.

T.1.3.3 Why Type Systems

Reasons for endowing XVSM with a type system can be itemized:

• Safety: Checking, before execution, that an operation, with the types of its argument and
the types of the space-based data, that is, XTrees, satisfy the type rules helps avoid otherwise
meaningless operations.

• Optimisation: Static type-checking may provide useful compile-time information. Dy-
namic type-checking may provide useful run-time information.

• Documentation: In expressive type systems, types can serve as a form of documentation,
since they can illustrate the intent of the programmer.

• Abstraction (Modularity): Types allow programmers to think about programs at a
higher level than the bit or byte, not bothering with low-level implementation.

Any one chosen type system will have been devised so as to satisfy at least one of the above
reasons.

T.1.4 Words of Caution

The type system proposed here for XVSM is just an example. I am not quite sure that my particular
design choices are the right ones for a system like XVSM. A perhaps more proper XVSM type system
should evolve as the result of close, concentrated discussions and work, in Vienna, not over the
Internet, between the leading authors of [13, 84, 85, 122, 123] and Dines Bjørner. But what I am
rather sure of is that for XVSM to be considered a serious contender for so-called space-based

T.2. XVSM TREES 595

computing XVSM must be endowed with a type system and with a suitable set of type system
(run-time) operations.

T.2 XVSM Trees

T.2.1 XTree Rules

20. There are labels and labels are further unspecified quantities.

21. Properties are pairs of labels and XTrees, that is, a property is such a pair.

22. An XTree is either an XTree value or an XTree multiset or an XTree sequence (an XTree

list).

(a) An XTree value is either some XTree text or is some XTree integer.

(b) An XTree multiset consists of a multiset of properties.

(c) An XTree sequence consists of a list of properties.

type
20 L
21 P = L × XT
22 XT = XV | XL | XS
22a XV == mk ST(sel txt:Text) | mk IN(sel i:Int)
22b XS == mk XS(sel xs:(P→m Nat))
22c XL == mk XL(sel xl:P∗)

T.2.2 XTree Types

23. An XTree type is either

(a) an integer type, or

(b) a text type, or

(c) a multiset type which maps its entry labels into corresponding XTree type, or

(d) a sequence type which is a sequence of labelled XTree types.

type
23 XTTy = IntTy | TxtTy | MulTy | SeqTy
23a IntTy == mkITy
23b TxtTy == mkTTy
23c MulTy == mk MTy(m:(L →m XTTy))
23d SeqTy == mk STy(m:(L × XTTy)∗)

XTTy are type designators.

T.2.3 XTree Type Designator Wellformedness

24. A type designator, i.e., any XTTy is wellformed if it satisfies the following conditions:

(a) Integer and text type designators are wellformed.

(b) Multiset type designators are wellformed if the type designators for any label are well-
formed.

596 CONTENTS

(c) Sequence type designators are wellformed if all labelled type designators are wellformed
and if the type designators for identifically labelled entries are the same type.4

value
24. wf XTTy: XTTy → Bool
24. wf XTTy(t) ≡
24. case t of
24a. mkITy → true,
24a. mkTTy → true,
24b. mk MTy(tym) → ∀ t′:XXTy•t′ ∈ rng tym ⇒ wf XTTy(t′)
24c. mk STy(tyl) →
24c. ∀ (l′,t′):(L×XTTy)•(l′,t′) ∈ elems tyl ⇒ wf XTTy(t′) ∧
24c. ∀ (l′′,t′′):(L×XTTy)•(l′′,t′′)∈ elems tyl ⇒ xtr type(t′) = xtr type(t′′) end

T.2.4 XTree Type Functions

25. Given an XTree one can “extract” its type:

(a) The type of an integer value is mkITy.

(b) The type of a text value is mkTTy.

(c) The type of an XTree multiset, ms, is mk MTy(tym) where tym is a mapping from the
labels of ms to the XTree type of the corresponding values.5

(d) The type of an XTree sequence, sq, is mk STy(tys) where tys is a sequence of labelled
XTree types of the indexed (and labelled) XTree values of the sequence.

value

25. xtr type: XT
∼→ XTTy

25. xtr type(xt) ≡
25. case xt of
25a. mk IN(intg) → mkITy,
25b. mk ST(text) → mkTTy,
25c. mk XS(xs) → mk MTy([l 7→xtr type(xt′)|l:L•l ∈ dom xs ∧ xt′ ∈ xs(l)]),
25d. mk XL(xl) → mk STy(〈(l,xtr type(xt′))|i:Nat•i ∈ inds xl ∧ xl(i)=(l,xt′)〉)
25. end
25. pre: type conform(xt)

T.2.5 XTree Wellformedness

26. An XTree is type conformant if

(a) it is an integer, or

(b) it is a text, or

(c) it is a multiset all of whose XTrees are type conformant and all identically labelled
XTrees have the same type, or

(d) it is a sequence all of whose XTrees are type conformant and all of whose identically
labelled XTrees have the same type.

4Note: This constraints is in line with the constraint of Item 23c on the preceding page.
5Note: Thus we constrain two or more properties with the same label to be of the same type – or, as we shall

see, subtypes of such a type. This is a consequence of Item 23c on the previous page.

T.2. XVSM TREES 597

value
26. type conform: XT → Bool
26a. type conform(xt) ≡
26. case xt of
26a. mk IN(intg) → true,
26b. mk ST(text) → true,
26c. mk XS(xs) →
26c. ∀ (l′,xt′),(l′′,xt′′):(L×XT)•{(l′,xt′),(l′′,xt′′)}⊆dom xs ∧
26c. type conform(xt′) ∧
26c.a l′=l′′ ⇒ xtr type(xt′) = xtr type(xt′′),
26d. mk XL(xl) →
26d. ∀ (l′,xt′),(l′′,xt′′):(L×XT)•{(l′,xt′),(l′′,xt′′)}⊆elems xl ∧
26d. type conform(xt′) ∧
26d.a l′=l′′ ⇒ xtr type(xt′)=xtr type(xt′′)
26. end

Discussion: Whether, in formula lines 26c.a and 26d.a, to insist on equality of types or to allow
one type to be a subtype of the other (whichever way) is a question to be considered.

T.2.6 XTree Subtypes

27. We define a subtype relation as a relation between a pair of type designators:

(a) The XTree integer type is (i.e., designates) a subtype of itself.

(b) The XTree text type is (i.e., designates) a subtype of itself.

(c) Let two multiset type designators be mk MTy(tym′) and mk MTy(tym′′).
mk MTy(tym′) is (i.e., designates) a subtype of mk MTy(tym′′)

i. if the definition set of labels of mk MTy(tym′) is a subset of the definition set of
labels of mk MTy(tym′′),

ii. and, if for identical labels, ℓ, in mk MTy(tym′) and mk MTy(tym′(ℓ)) is (i.e., des-
ignates) a subtype of mk MTy(tym′′(ℓ)).

(d) Let two sequence type designators be mk STy(tyl′) and mk STy(tyl′′).
mk STy(tyl′) is (i.e., designates) a subtype of mk STy(tyl′′)

i. if the length of tyl′ is less than or equal to the length of tyl′,6

ii. if for index positions, i, of tyl′ the labels of the indexed properties tyl′(i) (= (l′,t′))
and tyl′′(i) (= (l′′,t′′)) are the same (l′=l′′) and

iii. type designator t′ is (i.e., designates) a subtype of t′′.

(e) Only such pairs of types as implied by the above can possibly enjoy a subtype relation.

value
27. is subtype: XXTy × XXTy → Bool
27. is subtype(ta,tb) ≡
27. case (ta,tb) of
27a. (mkITy,mkITy) → true,
27b. (mkTTy,mkTTy) → true,
27c. (mk MTy(tym′),mk MTy(tym′)) →
27(c)i. dom tym′ ⊆ tym′′ ∧
27(c)ii. ∀ l:L•l ∈ dom tym′ ⇒ is subtype(tym′(l),tym′′(l)),
27d. (mk STy(tyl′),mk STy(tyl′)) →
27(d)i. len tyl′ ≤ tyl′′ ∧

6We could, instead of this “prefix” subtype property, have defined an “embedded” subtype property: that tyl′

is a subtype of a properly embedded sequence of tyl′′

598 CONTENTS

27(d)ii. ∀ i:Nat • 1≤i≤len tyl′ ⇒
27(d)ii. let ((l′,t′),(l′′,t′′))=(tyl′(i),tyl′′(i)) in
27(d)ii. l′=l′′ ∧
27(d)iii. is subtype(t′,t′′) end,
27e. → false
27. end

Please note that if td′ and td′′ are type designators, then either td′ denotes a subtype of td′′ or
td′′ denotes a subtype of td′ or neither denotes a subtype of the other.

T.3 XTree Operations

T.3.1 XTree Multiset Union

28. By the union of two multisets we understand their bag (i.e., multiset) union.

(a) For any property which is common to both multisets the multiset union maps the
property into the sum of its number of occurrences in the two argument multisets.

(b) For any property which is only in one of the multisets the multiset union contains that
property with the number of occurrences designated by that multiset.

(c) Shared label values must be of comparable types.

value
28 XSunion: XS × XS → XS
28a XSunion(mk XS(xs1),mk XS(xs2)) ≡
28a mk XS([p 7→xs1(p)+xs2(p)|p ∈ dom xs1 ∩ dom xs2]
28b ∪ xs1\dom xs2 ∪ xs2\dom xs1)
28c pre: comparable types(xtr type(mk XS(xs1)),xtr type(mk XS(xs2)))

T.3.2 Commensurate Multiset Arguments

29. Two multiset values (types) are comparable

30. if for identical (i.e., shared) labels have identical types (are equal);

31. or maybe we should just ask for an appropriate subtype relation.

value
29. comparable values: XS × XS → Bool
29. comparable values(mk XS(lm′),mk XS(lm′′)) ≡
30. ∀ l:L • l ∈ dom lm′ ∩ lm′′ ⇒
30. (xtr type(lm′(l)) = xtr type(lm′′(l)) ∨
31. is subtype(xtr type(lm′(l)),xtr type(lm′′(l))) ∨
31. is subtype(xtr type(lm′′(l)),xtr type(lm′(l))))

value
29. comparable types: XTTy × XTTy → Bool
29. comparable types(mk XT(lmt′),mk XT(lmt′′)) ≡
30. ∀ l:L • l ∈ dom lmt′ ∩ lmt′′ ⇒
30. (lmt′(l) = lmt′′(l) ∨
31. is subtype(lmt′(l),lmt′′(l)) ∨ is subtype(lmt′′(l),lmt′(l)))

T.3. XTREE OPERATIONS 599

T.3.3 Type “Prediction”

32. One can calculate the type of the result of a multiset union from its two arguments:

(a)

(b)

(c)

(d)

32.
32a.
32b.
32c.
32d.

T.3.4 A Theorem: Correctness of Type “Prediction”

33. One can prove the following theorem:

(a)

(b)

(c)

(d)

(e)

33.
33a.
33b.
33c.
33d.
33e.

T.3.5 XTree Multiset Equality

34. Multiset equality is bag equality of the multisets.

value
34 XSequal: XS × XS → Bool
34 XSequal(mk XS(xs1),mk XS(xs2)) ≡ xs1 = xs2

T.3.6 XTree Multiset Subset

35. One multiset is a subset of another multiset

(a) if the first has a subset of the properties of the latter and

(b) and, for each property of the first its number of occurrences in the former is equal to
or smaller than its number of occurrences in the latter.

value
35 XSsubset: XS × XS → Bool
35 XSsubset(mk XS(xs1),mk XS(xs2)) ≡
35a dom xs1 ⊆ dom xs2 ∧
35b ∀ p:P • p ∈ dom xs1 ⇒ xs1(p)≤xs2(p)

600 CONTENTS

T.3.7 Property Multiset Membership

36. A property, p=(l,xt), is in a multiset if it occurs in the multiset with a cardinality higher
than 0.

value
36 XSmember: P × XS → Bool
36 XSmember(p,mk XS(xs)) ≡ p ∈ dom xs ∧ xs(p)>0

T.3.8 XTree Multiset Membership

37. An XTree, xt, is a member of a multiset, xs, if there exists a label, ℓ such that the property
(ℓ,xt) is a member of xs.

value
37 XSmember: XT × XS → Bool
37 XSmember(xt,mk XS(xs)) ≡ ∃ l:L • XSmember((l,xt),mk XS(xs))

T.3.9 XTree Multiset Cardinality

38. The cardinality of a multiset is the sum total of all the XTrees of distinct properties of that
multiset.

value
38 XScard(mk XS(xs)) ≡
38 if xs = [] then 0
38 else
38 let (l,xt):P•(l,xt)∈ dom xs in
38 xs(l,xt) + XScard(mk XS(xs\{(l,xt)})) end end

T.3.10 Arbitrary Selection of XTrees or Properties from Multisets

39. To select an XTree of a multiset

(a) is undefined if the multiset is empty.

(b) If it is not empty then an arbitrary property is chosen from the (definition set of the)
multiset and the XTree of that property is yielded.

(c) To select a property of a multiset basically follows the above description.

value

39 XSselectXT: XS
∼→ XT

39 XSselectXT(mk XS(xs)) ≡
39a if xs=[]
39a then chaos
39b else let (l,xt):P•(l,xt) ∈ dom xs in xt end
39b end

39 XSselectP: XS
∼→ P

39 XSselectP(mk XS(xs)) ≡
39a if xs=[]
39a then chaos
39c else let p:P•p ∈ dom xs in p end
39c end

T.3. XTREE OPERATIONS 601

T.3.11 XTree Multiset Difference

40. The multiset difference of two multisets, xs1 and xs2,

(a) is the multiset where properties that are in both xs1 and xs2 occur in the result with
their number of occurrences being their difference, if larger than 0,

(b) to which is joined the multiset of xs1 whose properties are not in xs2.

value
40 XTreeDiff: XS × XS → XS
40 XTreeDiff(mk XS(xs1),mk XS(xs2)) ≡
40a mkXS(rm0([p 7→xs1(p)−xs2(p)|p:P•p ∈ dom xs1 ∩ dom xs2])
40b ∪ xs1\dom xs2)

rm0: (P→m Int) → (P→m Nat)
rm0(pmn) ≡ [p 7→pmn(p)|p:P•p ∈ dom pmn ∧ pmn(p)>0]

T.3.12 XTree List Concatenation

41. The concatenation of two XTree lists is the usual concatenation of lists.

42. Labels, ℓ, common to the two XTree lists must designate XTree, xt1 and xt2 (i.e., properties
(ℓ,xt1) and (ℓ,xt2)) where one is a subtype of the pther (i.e., including “vice versa”).

value
41 XTreeListConc: XL × XL → XL
41 XTreeListConc(mk XL(xl1),mk XL(xl2)) ≡ mk XL(xl1̂xl2)
42 pre ∀ (l1,xtt),(l2,xt2):P•(l1,xt1) ∈ elems xl1∧(l2,xt2) ∈ elems xl2 ∧ l1=l2 ⇒
42 subtype(xt1,xt2)∨subtype(xt2,xt1)

T.3.13 XTree List Equality

43. The equality of two XTree lists is the usual equality of lists.

value
43 XTreeListEqual: XL × XL → Bool
43 XTreeListEqual(mk XL(xl1),mk XL(xl2)) ≡ xl1=xl2

T.3.14 XTree List Property Membership

44. A property is a member of an XTree list

45. if there is an index into the list which identifies that property.

value
44 XMbrTreeList: P × XL → Bool
45 XMbrTreeList(p,mk XL(xl)) ≡ ∃ i:Nat • i ∈ inds xl ∧ p=xl(i)

602 CONTENTS

T.3.15 XTree List XTree Membership

46. An XTree is a member of an XTree list

47. if there is an index into the list which identifies that XTree.

value
46 XMbrTreeList: XT × XL → Bool
47 XMbrTreeList(xt,mk XL(xl)) ≡ ∃ i:Nat,l:Label • i ∈ inds xl ∧ (l,xt)=xl(i)

T.3.16 XTree List Length

48. The length of an XTree list

(a) is the length of the list it contains.

value
48 XTreeListLength: XL → Nat
48a XTreeListLength(mk XL(xl)) ≡ len xl

T.3.17 XTree List Head

49. The head, or first, element of an XTree list

(a) is the head property of the list it contains.

value
49 XTreeListHead: XL → P
49a XTreeListHead(mk XL(xl)) ≡ if xl=〈〉 then chaos else hd xl end

T.3.18 XTree List Tail

50. The tail, or rest, of an XTree list

(a) is the tail of the list it contains.

value
50 XTreeListTail: XL → XL
50a XTreeListTail(mk XL(xl)) ≡ if xl=〈〉 then chaos else mk XL(tl xl) end

T.3.19 XTree List Nth Element

51. The nth element of a list

(a) if n is an index of the list then it is the property indexed by n else it is undefined.

value

51 NthXTreeListElem: Nat × XL
∼→ P

51a NthXTreeListElem(n,mk XL(xl)) ≡ if 0<n≤len xl then xl(n) else chaos end

T.4. INDEXING 603

T.4 Indexing

T.4.1 Paths and Indexes

52. An index is either a label or a wildcard or a???

53. non-zero natural number.

54. A path is a finite sequence of zero, one or more indexes.

type
52 Index == mk L(l:L) | mk WldCrd | mk Nat(i:Nat1)
53 Nat1 = {|n:Nat•n>0|}
54 Path = Index∗

T.4.2 Proper Index

55. We define an is Index predicate over indexes and Xtrees.

(a) If there is a property, (ℓ,xt), which is in a multiset mk XS(xs) then ℓ is an index of that
mk XS(xs).

(b) If there is an index, j, into the list, xl, of an XTree list, mk XL(xl), then j is an index
of that mkXL(xl);

(c) if, furthermore, there is the property, (ℓ,xt) at list xl position j, then ℓ is an index into
mkXL(xl); and

(d) mk WldCrd is (always) an index.

value
is Index: Index × XT → Bool
is Index(i,xt) ≡

case (i,xt) of
55a (mk L(l),mk XS(xs)) → ≡ ∃ xt′:XT•(l,xt′) ∈ dom xs,
55b (mk Nat(j),mk XL(xl)) → j ∈ inds xl,
55c (mk L(l),mk XL(xl)) → ∃ j:Nat1,xt′:XT•j ∈ inds xl∧xl(j)=(l,xt′),
55d (mk WldCrd,) → true,

→ false
end

T.4.3 Index Selecting

56. Given an index it thus may or may not identify an XTree, xt′, or a property, p:P, of an
argument XTree, xt. The definition follows those of Items 55a–55c.

value

56 Identify: Index × XT
∼→ (XT|P)

56 Identify(i,xt) ≡
56 case (i,xt) of
55a (mk L(l),mk XS(xs)) → let xt′:XT•(l,xt′)∈ dom xs in xt′ end,
55b (mk Nat1(i),mk XL(xl)) → xl(i),
55c (mk L(l),mk XL(xl)) → let i:Nat1,xt′:XT•i ∈ inds xl∧xl(i)=(l,xt′) in xt′ end,
55d (mk WldCrd,mk XS(xs)) → let p:P•p ∈ dom xs in p end,
55d (mk WldCrd,mk XL(xl)) → hd xl
56 end
56 pre is Index(i,xt)

604 CONTENTS

T.4.4 Path Indexing

57. Given an XTree, xt, a path, pth, may or may not identify an XTree, xtr′, of xt. The selection
function, Select is defined recursively:

(a) If the path is empty then the argument XTree, xt, is yielded.

(b) If the head of the path is an index of the XTree, xt, then the so indexed XTree, xtx, is
selected.

(c) Otherwise the path, pth, is ill-defined.

value

57 Select: XT × Path
∼→ XT | P

57a Select(xtop,〈〉) ≡ xtop
57b Select(xt,〈i〉̂pth) ≡
57b if is Index(i,xt)
57b then
57b let e = Identify(i,xt) in
57b if e:P ∧ pth 6=〈〉 then chaos end
57b Select(e,pth) end
57c else chaos end

T.5 Queries

58. An XVSM query is a [piped] sequence of simple XVSM queries.

type
58 Q = SQ∗

T.5.1 Generally on Semantics

59. The idea is the following:

(a) The meaning of a simple XVSM query, sq:SQ, as applied to an XTree, xt:XT, is expressed
as MSQ(sq)(xt), and is to be an XTree multiset or an XTree list. Not an XTree value
?

(b) The meaning of an XVSM query, q:Q, as applied to an XTree, xt:XT, is expressed as
MQ(q)(xt), and is to be an XTree multiset or an XTree list.

(c) The meaning function, MQ, when applied to an empty query, 〈〉, is MQ(〈〉)(xt), that is,
xt.

(d) The meaning function, MQ, when applied to a non-empty query, 〈sq〉̂q, is MQ(q)(MSQ(sq)(xt)).

(e) Both MSQ and MQ may be undefined for some combinations of queries and Xtrees.

value

59a MSQ: SQ → XT
∼→ XT

59b MQ: Q → XT
∼→ XT

59b MSQ(sq) as xt
59c MQ(〈〉)(xt) ≡ xt
59d MQ(〈sq〉̂q)(xt) ≡ MQ(q)(MSQ(sq)(xt))

59e MQ(〈sq〉̂q)(xt) ≡
59e if IS UNDEFINED(MSQ(sq)(xt))

T.5. QUERIES 605

59e then IS UNDEFINED(MQ(〈sq〉̂q)(xt))
59e else ... to be defined ...
59e end

T.5.2 Syntax: Simple XVSM Queries

60. A simple XVSM query is either a selector query or a matchmaker query.

61. A [simple] selector [XVSM] query is either a predefined selector quiry or ...

type
60 SQ = SelQ | MatchQ
61 SelQ = PreSelQ | ...

T.5.2.1 Syntax: Predefined Selector Queries

62. A predefined selector query is either a count, a sort up, a sort down, a reverse, an identity,
or a unique (slector) query.

(a) A count query states a non-zero natural number.

(b) A sort up query states a path.

(c) A sort down query states a path.

(d) A reverse query does not present an argument.

(e) An identity query does not present an argument.

(f) A unique (selector) query states a path.

62 PreSelQ = Cnt | SrtUp | SrtDo | Rev | Id | Uniq | ...
62a Cnt == mk Cnt(sel n:Nat)
62b SrtUp == mk SrtUp(sel p:Path)
62c SrtDo == mk SrtDo(sel p:Path)
62d Rev == mk Rev
62e Id == mk Id
62f Uniq == mk Uniq(sel p:Path)

T.5.2.2 Semantics: Predefined Selector Queries

T.5.2.2.1 Count

63. The mk Cnt(n) selector query applies to an XTree, xt, and,

(a) if it is an XTree list and if the list is of length n or more, yields the XTree list mk XL(xl′)
of the first n properties of xt = mk XL(xl), else it yields chaos; or

(b) if it is an XTree multiset and if the multiset has at least n properties, yields an XTree
multiset, mk XS(xs′), of n arbitrarily chosen properties of xt = mk XS(xs), else it yields
chaos.

63 MPreSelQ: PreSelQ → XT
∼→ XT

63 MPreSelQ(mk Cnt(n))(xt) ≡
63 case xt of
63a mk XL(xl) →
63a if len xl≥n then mk XL(〈xl(i)|i:Nat•i:[1..n]〉) else chaos end,
63b mk XS(xs) →

606 CONTENTS

63b if card dom xs≥n
63b then let ps:P-set•card ps=n ∧ ps⊆dom xs in
63b mk XS([p 7→xs(p)|p:P•p ∈ ps]) end
63b else chaos
63b end,
63b → chaos
63b end

T.5.2.2.2 Sort Up

64. The mk SrtUp selector query applies to a (relative) path, ptĥℓ, and an XTree, xt.

(a) First we Select from xt the XTree, xt′′, identified by the path pth.

(b) The selected XTree, xt′′, is either a list or a multiset.

(c) The result of MPreSelQ(mk SrtUp(ptĥℓ))(xt) is the XTree list xt′ which has all the
entries that xt has except that these are now ordered with respect to the ordering of
the ℓ values of xt′′.

value
64 MPreSelQ: SrtUp → XT → XL
64 MPreSelQ(mk SrtUp(ptĥℓ))(xt) ≡
64a let xt′′ = Select(xt)(pth) in
64b let vl =

64c end end

much more to come

T.6 Conclusion

to be written

