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The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R:

In proofs of Software correctness,
with respect to Requirements,
assumptions are made with respect to the Domain.
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• Three days of morning lectures

– Lectures I: Endurants: Tangibles 1–71
– Lectures II: Endurants: Intangibles 72–104
– Lectures III: Perdurants 105–147

• Each [set of] morning lecture[s] consists of two, 40-45 min. lecture.

• 10-15 min. breaks.

• And a max. 45 min. session in which we discuss a specific domain example, for example:

– a pipeline system,
– a customer/retailer/wholesaler market,
– a railway system,
– or other !
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•We present a systematic method , its

– principles ,
– procedures ,
– techniques

and
– tools ,

• for efficiently analyzing & describing domains.

• This talk is based on [8, 9, 10].

• It simplifies the methodology of these
– as well as introduces some novel presentation and description language
concepts.
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1 Domains

•We start by delineating the informal concept of domain,1

1.1 What are They ?

•What do we mean by ‘domain’ ?
Characterization 1 Domain:

• By a domain we shall understand

– a rationally describable segment of
– a discrete dynamics fragment of
– a human assisted reality.

• The domain embody

– endurants

– and perdurants
1Our use of the term ‘domain’ should not be confused with that of Dana Scott’s Domain Theory: https://en.wikipedia.org/wiki/Scott domain.
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Example 1 Some Domain Examples: A few, more-or-less self-explanatory
examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc.,
and their man-made dams, harbours, locks, etc. – and their conveyage of
materials (ships etc.) [13, Chapter B].

• Road nets – with street segments and intersections, traffic lights and
automobiles – and the flow of these [13, Chapter E ].

• Pipelines – with their liquids (oil, or gas, or water), wells, pipes, valves,
pumps, forks, joins and wells and the flow of fluids [13, Chapter I ].

• Container terminals – with their container vessels, containers, cranes,
trucks, etc. – and the movement of all of these[13, Chapter K ]
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• Characterization 1 on Slide 4 relies on the understanding of the terms
‘rationally describable’ , ‘discrete dynamics’ ,
‘human assisted’ ,
‘solid’ and ‘fluid’ . The last two will be explained later.

• By rationally describable we mean that what is described can be under-
stood, including reasoned about, in a rational, that is, logical manner – in
other words logically tractable.2

• By discrete dynamics we imply that we shall basically rule out such
domain phenomena which have properties which are continuous with re-
spect to their time-wise behaviour.

• By human-assisted we mean that the domains – that we are interested in
modelling – have, as an important property, that they possess man-made
entities.

2Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describable in terms of the method of this paper !
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1.2 Some Introductory Remarks

1.2.1 A Discussion of Our Characterization of a Concept of Domain

• Characterization 1 on Slide 4 is our attempt to delineate the subject area.

– That is, “our” concept of ‘domain’ is ‘novel’:
∗ new and not resembling something formerly known or used .

– As such it may be unfamiliar to most readers.

• So it takes time to digest that characterization.

• So the reader may have to return to the page, Page 4,

• to be reminded of the definition.
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1.2.2 Formal Methods and Description Language

... the speaker says some words ...

1.2.3 Programming Languages versus Domain Semantics

... the speaker says some words ...

1.2.4 A New Universe

... the speaker says some words ...
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2 Endurants and Perdurants, I

• The above characterization hinges on the characterizations of

– endurants and
– perdurants.

Characterization 2 Endurants:

• Endurants are those quantities of domains

• that we can observe (see and touch), in space,

• as “complete” entities at no matter which point in time –

• “material” entities that persists, endures –

• capable of enduring adversity, severity, or hardship [Merriam Webster]
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• Endurants are

– either natural [“God-given”]
– or artefactual [“man-made”].

• Endurants may be

– either solid (discrete)
– or fluid.

• Solid endurants, called parts, may be considered

– eiher atomic

– or compound parts;

• or, as in this talk solid endurants
may be further unanalysed living species:

– plants and animals – including humans .
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Characterization 3 Perdurants: Perdurants are those quantities of domains
for which only a fragment exists, in space, if we look at or touch them at any
given snapshot in time [Merriam Webster]

• Perdurants are here considered to be

– actions ,
– events and
– behaviours .

• • •

•We exclude, from our treatment of domains, issues of
ethics, biology and psychology.
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3 A Domain Analysis & Description Ontology

3.1 The Chosen Ontology

• Figure 1 expresses an ontology3 for our analysis of domains.

• Not a taxonomy4 for any one specific domain.

3An ontology is the philosophical study of being. It investigates what types of entities exist, how they are grouped into categories, and how they are related to one another on the most
fundamental level (and whether there even is a fundamental level) [Wikipedia].

4A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classification, in which things are organized into groups or types [Wikipedia].
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• The idea of Fig. 1 on the preceding slide is the following:

– It presents a recipe for how to analyze a domain.
– You, the domain analyzer cum describer , are ‘confronted’5 with, or by

a domain.
– You have Fig. 1 on the previous slide in front of you, on a piece of

paper, or in Your mind, or both.
– You are then asked, by the domain analysis & description method of

this paper, to “start” at the uppermost •, just below and between the ‘r’
and the first ‘s’ in the main title, Phenomena of Natural and Artefactual
Universes of Discourse.

– The analysis & description ontology of Fig. 1 then directs You to in-
quire as to whether the phenomenon – whichever You are ”looking
at/reading about/...” – is either rationally describable, i.e., is an entity
(is entity) or is indescribable.

5By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it, talking with domain stakeholders: professional people working “in” the
domain; You may, yourself, “be an entity” of that domain !
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– That is, You are, in general, “positioned” at a bullet, •, labeled α , “be-
low” which there may be two alternative bullets, one, β , to the right
and one to the left, γ .

– It is Your decision whether the answer to the “query” that each such
situation warrants, is yes, is β , or no, is γ .

– The characterizations of the concepts whose names, α,β ,γ etc., are
attached to the •s of Fig. 1 are given in the following sections.

– Whether they are precise enough to guide You in Your obtaining rea-
sonable answers, “yes” or “no”, to the •ed queries is, of course, a prob-
lem. I hope they are.

– If Your answer is “yes”, then Your analysis is to proceed “down the
tree”, usually indicated by “yes” or “no” answers.

– If one, or the other is a “leaf” of the ontology tree, then You have
finished examining the phenomena You set out to analyze.

– If it is not a leaf, then further analysis is required.
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– (We shall, in this paper, leave out the analysis and hence description of
living species .)

– If an analysis of a phenomenon has reached one of the (only) two ’s,
then the analysis at that • results in the domain describer describing
some of the properties of that phenomenon.

– That analysis involves “setting aside”, for subsequent analysis & de-
scription, one or more [thus analysis etc.-pending] phenomena (which
are subsequently to be tackled from the “root” of the ontology).

•We do not [need to] prescribe in which order You analyze & describe the
phenomena that has been “set aside”.
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3.2 Discussion of The Chosen Ontology

•We shall in the following motivate the choice of the ontological classifica-
tion reflected in Fig 1 on Slide 13.

– We shall argue that this classification is not “an accidental choice”.
– In fact, we shall try justify the classification
– with reference to the philosophy of Kai Sørlander [28, 29, 30, 31]6.
– Kai Sørlander’s aim in these books is to examine
– that which is absolutely necessary, inevitable, in any description of the

world.

• In [10, Chapter 2 ] we present a summary of Sørlander’s philosophy.

• In paragraphs, in the rest of this paper, marked Ontological Choice,
we shall relate Sørlander’s philosophy’s “inevitability” to the ontology for
studying domains.

6The 2022 book, [30], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme of the earlier, 1994–2016 books. [31] is an English translation of [30]
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4 The Name, Type and Value Concepts

• Domain modelling , as well as programming ,

– depends, in their specification,
– on separation of concerns:

∗ which kind of values are subjectable to which kinds of operations ,
∗ etc.,

– in order to achieve
∗ ease of understanding a model or a program,
∗ ease of proving properties of a model,
∗ or correctness of a program.



19

4.1 Names

•We name things in order to refer to them in our speech, models and pro-
grams.

• Names of types and values in models and programs are usually not so-
called “first-citizens”, i.e., values that can be arguments in functions, etc.

• The “science of names” is interesting.7

• In botanicalsociety.org.za/the-science-of-names-an-introduct-
ion-to-plant-taxonomy the authors actually speak of a “science of
names” in connection with plant taxonomy: the “art” of choosing such
names that reflect some possible classification of what they name.

7The study of names is called onomastics or onomatology . Onomastics covers the naming of all things, including place names (toponyms) and personal names (anthroponyms).
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4.2 Types

• The type concept is crucial to programming and modelling.

Characterization 4 Type: A type is a class of values (“of the same kind”)

•We name types.

Example 2 Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London
Road Transport, the US Federal Freeway System, etc.

• RN – the class of all road net instances (within a road transport).

• SA – the class of all automobiles (within a road transport)

• You, the domain describer, choose type names.

– Choosing type names is a “serious affair”.
– It must be done carefully.
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– You can choose short (as above) or long names: Road Transport, Road Net,
etc.

– We prefer short, but not cryptic names, like X, Y, Z, ... .
– Names that are easy to memorize, i.e., mnemonics .
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4.3 Values

• Values are what programming and modelling, in a sense, is all about”.

• In programming, values are the data “upon” which the program code
specifies computations.

• In modelling values are, for example, what we observe: the entities in
front of our eyes.
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5 Phenomena and Entities

• Characterization 5 Phenomena: By a phenomenon we shall understand
a fact that is observed to exist or happen

• Some phenomena are rationally describable – to some degree8 – others
are not.

8That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable phenomena to select for analysis & description. Also in this sense one practices
abstraction by “abstracting away” [the analysis & description of] phenomena that are irrelevant for the “current” (!) domain description.
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Characterization 6 Entities: By an entity By an entity we shall understand
a more-or-less rationally describable phenomenon

We introduce the informal presentation language predicate is entity. It
holds for phenomena φ if φ is describable.

Example 3 Phenomena and Entities: Some, but not necessarily all aspects of
a river can be rationally described, hence can be still be considered entities.
Similarly, many aspects of a road net can be rationally described, hence will
be considered entities

If You are not happy with this ‘characterization’, then substitute “rationally
describable” with: describable in terms of the endurants and perdurants
brought forward in this paper: their external and internal qualities, unique
identifiers, mereologies amd attributes, channels and behaviours !

Ontological Choice: We choose to “initialize” our ontological “search”
to a question of whether a phenomenon is rationally describable – based on
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the tenet of Kai Sørlander’s philosophy, namely that “whatever” we postulate
is either true or false and that a principle of contradiction holds: whatever we
so express can not both hold and not hold

Kai Sørlander then develops his inquiry – as to what is absolutely neces-
sary in any description of the world – into the rationality of such descriptions
necessarily be based on time and space and, from there, by a series of tran-
scendental deductions, into a base in Newton’s physics. We shall, in a sense,
stop there. That is, in the domain concept, such as we have delineated it, we
shall not need to go into Einsteinian physics.
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6 Endurants and Perdurants, II

We repeat our characterizations of endurants and perdurants.
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6.1 Endurants

•We repeat characterization 2 on Slide 9.
Characterization 7 Endurant:

• Endurants are those quantities of domains

• that we can observe (see and touch), in space,

• as “complete” entities at no matter which point in time

• – “material” entities that persists, endures

• – capable of enduring adversity, severity, or hardship [Merriam Webster]

Example 4 Endurants: Examples of endurants are: a street segment [link],
a street intersection [hub], an automobile

•We introduce the informal presentation language predicate

• is endurant to hold for entity e if is endurant(e) holds.
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6.2 Perdurants

•We repeat characterization 3 on Slide 11.

Characterization 8 Perdurant:

• Perdurants are those quantities of domains

• for which only a fragment exists, in space,

• if we look at or touch them at any given snapshot in time [Merriam Web-
ster]

Example 5 Perdurant: A moving automobile is an example of a perdurant

•We introduce the informal presentation language predicate
is perdurant to hold for entity e if is perdurant(e) holds.
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6.3 Ontological Choice

• The ontological choice of entities being “viewed” as either endurants or
perdurants is motivated as follows:

– The concept of endurants
∗ can be justified in terms of Newton’s physics
∗ without going into kinematics, i.e., without including time consider-

ations.

• The concept of perdurants

– can then, on one hand, be justified in terms of Newton’s physics
– now taking time into consideration,
– hence kinematics, and from there causality, etc.;
– and, on the other hand, and as we shall see,
– by transcendentally deducing perdurants from solid endurants



30

7 External and Internal Endurant Qualities

• The main contribution of this section is that of a calculus of domain anal-
ysis and description prompts.

• Two facets are being presented.

– Aspects of a domain science: of how we suggest domains can, and
should, be viewed – ontologically.

– And aspects of a domain engineering: of how we suggest domains can,
and should, be analyzed and described.

•We begin by characterizing the two concepts: external and internal quali-
ties.
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Characterization 9 External Qualities: External qualities of endurants of a
manifest domain

• are, in a simplifying sense, those we can

– see,
– touch and
– have spatial extent.

• They, so to speak, take form

Characterization 10 Internal Qualities: Internal qualities are

• those properties [of endurants]

• that do not occupy space

• but can be measured or spoken about
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• Perhaps we should instead label these two qualities tangible and intangible
qualities.

Ontological Choice:

• The rational, analytic philosophy issues of the inevitability of these qual-
ities is this:

• (i) can they be justified as inevitable, and

• (ii) can they be suitably “separated”, i.e., both disjoint and exhaustive ?

• Or are they merely of empirical nature ?

• The choice here is also that we separate our inquiry

• into examining both external and internal qualities of endurants

• [not ‘either or’]
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7.1 External Qualities – Tangibles

Example 6 External Qualities: An example of external qualities of a do-
mains is:
• the Cartesian9

– of sets of solid atomic street intersections, and
– of sets of solid atomic street segments, and
– of sets of solid automobiles

of a road transport system

• where

– Cartesian, – sets, – atomicity, and – solidity

reflect external qualities
9Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–

1650)
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7.1.1 The Universe of Discourse

• The most immediate external quality of a domain is the “entire” domain
– “itself” !

– So any domain analysis starts by identifying that “entire” domain !
– By giving it a name, say UoD, for universe of discourse,
– Then describing it, in narrative form, that is, in natural language con-

taining terms of professional/technical nature, the domain.
– And, finally, formalizing just the name: giving the name “status” of

being a type name, that is, of the type of a class of domains whose
further properties will be described subsequently.
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Narration:
The name, and hence the type, of the domain] is UoD
The UoD domain can be briefly characterized by ...

Formalization:
type UoD
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7.1.2 Solid and Fluid Endurants

• Given then that there are endurants

– we now postulate that they are either [mutually exclusive] solid (i.e.,
discrete) or fluid.
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Ontological Choice:

• Here we [seem to] make a practical choice,

• not one based on a philosophical argument,

• one of logical necessity,

• but one based on empirical evidence.

• It is possible for endurants to either be solid or fluid;

• and here we shall not consider the case where solid [fluid] endurants,

• due to being heated [cooled], enters a fluid state [or vice versa]
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7.1.2.1 Solid [or Discrete] Endurants.

Characterization 11 Discrete or Solid Endurants: By a solid [or discrete]
endurant we shall understand an endurant

• which is separate, individual or distinct in form or concept,

• or, rephrasing: have ‘body’ [or magnitude] of three-dimensions: length,
breadth and depth [26, OED, Vol. II, pg. 2046 ]
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Example 7 Solid Endurants: Pipeline system examples of solid endurants are

• wells,

• pipes,

• valves,

• pumps,

• forks,

• joins and

• sinks

of pipelines.
(These units may, however, and usually will, contain fluids, e.g., oil, gas or
water.)
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•We introduce the informal presentation language predicate is solid

• to hold for endurant e

• if is solid(e) holds.
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7.1.2.2 Fluids.

Characterization 12 Fluid Endurants:

• By a fluid endurant we shall understand an endurant
which is

– prolonged, without interruption,
in an unbroken series or pattern;

– or, rephrasing: a substance (liquid, gas or plasma) having the property
of flowing, consisting of particles that move among themselves [26,
OED, Vol. I, pg. 774 ]

Example 8 Fluid Endurants: Examples of fluid endurants are:

• water,

• oil,

• gas,

• compressed air,
• smoke
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• Fluids are otherwise

– liquid, or
– gaseous, or
– plasmatic, or
– granular10, or
– plant products, 11,
– et cetera.

• Fluid endurants will be analyzed and described
in relation to solid endurants, viz. their “containers”.

10 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modelling purposes it is convenient to “compartmentalise” them as fluids !
11i.e., chopped sugar cane, threshed, or otherwise; see footnote 10.
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•We introduce the informal presentation language predicate

– is fluid

– to hold for endurant e

– if is fluid(e) holds.
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7.1.3 Parts and Living Species Endurants

• Given then that there are solid endurants

– we now postulate that they are either [mutually exclusive] parts or living
species.

Ontological Choice:

•With Sørlander, [31, Sect. 5.7.1, pages 71–72 ]

• we reason that one can distinguish between parts and living species
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7.1.3.1 Parts.

Characterization 13 Parts:

• The non-living species solids are what we shall call parts

• Parts are the “work-horses” of man-made domains.

• That is, we shall mostly be concerned
with the analysis and description of endurants into parts.

Example 9 Parts: Example 7 on Slide 39, of solids, is an example of parts
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•We introduce the informal presentation language predicate is part

• to hold for solid endurants e

• if is part(e) holds.

• • •

•We distinguish between atomic and compound parts.

•Ontological Choice:

– It is an empirical fact that parts can be composed from parts.
– That possibility exists.
– Hence we can [philosophy-wise] reason likewise
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7.1.3.1.1 Atomic Parts.

Characterization 14 Atomic Part:

• By an atomic part we shall understand a part

– which the domain analyzer considers to be indivisible
– in the sense of not meaningfully consist of sub-parts
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Example 10 Atomic Parts: Examples of atomic parts are:

• hubs, H, i.e., street intersections;

• links, L, i.e., the stretches of roads between two neighbouring hubs; and

• automobiles, A:

type H, L, A
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•We introduce the informal presentation language predicate is atomic

• to hold for parts p

• if is atomic(p) holds.
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7.1.3.1.2 Compound Parts

Characterization 15 Compound Part:

• Compound parts are those which are observed to [potentially] consist of
several parts

Example 11 Compound Parts: An example of a compound parts is: a road
net consisting of

• a set of hubs, i.e., street intersections or “end-of-streets”, and

• a set of links, i.e., street segments (with no contained hubs),

is a Cartesian compound;

• and the sets of hubs and the sets of links

are part set compounds
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•We introduce the informal presentation language predicate is compound

• to hold for parts p if

• is compound(p) holds.
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•We, pragmatically, distinguish between

– Cartesian product- and set-oriented parts.

Ontological Choice:

• The Cartesian versus set parts is an empirical choice.

• It is not justified in terms of philosophy,

• but in terms of mathematics – of mathematical expediency !
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7.1.3.1.3 Cartesians

• Cartesians are product-like types

• – and are named after the French philosopher, scientist and mathematician
René Descartes (1596–1640) [Wikipedia].

Characterization 16 Cartesians:

• Cartesian parts are those compound parts which are

– observed to consist of two or more distinctly sort-named endurants
(solids or fluids)

•We introduce the informal presentation language predicate is Cartesian

• to hold for compound parts p

• if is Cartesian(p) holds.
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Example 12 Cartesians: Road Transport:

1. A road transport, rt:RT, is observed to consist of

2. an aggregate of a road net, rn:RN,

3. and a set of automobiles, SA.
Here the road net is observed, i.e., abstracted, as a Cartesian of

4. a set of hubs, ah:AH12, and

5. a set of links, al:AL13

type
1,2,3. RT, RN, SA,
4,5. AH = H-set, AL = L-set
value
2. obs RN: RT → RN,
3. obs SA: RT → SA,
4. obs AH: RN → AH,
5. obs AL: RN → AL

12i.e., street intersections (or specifically designated points segmenting an otherwise “straight” street into two such)
13i.e., street segments between two “neighbouring” hubs.
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• Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to
the type names of the endurants14 of which it consists.

• The inquiry: record Cartesian part type names(p:P), we decide,
then yields the type of the constituent endurants.

Schema 1 record-Cartesian-part-type-names

value
record Cartesian part type names: P → T-set
record Cartesian part type names(p) as {ηE1,ηE2,...,ηEn}

• Here

• T is the name of the type of all type names, and

• ηEi is the name of type Ei.

14We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.
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Example 13 Cartesian Parts: The Cartesian parts of a road transport, rt:RT,
is thus observed to consists of

• an aggregate of a road net, rn:RN, and

• an aggregate set of automobiles, sa:SA:

that is:

• record Cartesian part type names(rt:RT) = {ηRN,ηSA}
where the type name ηRT was – and the type names ηRN and ηSA are
– coined, i.e., more-or-less freely chosen, by the domain analyzer cum de-
scriber
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7.1.3.1.4 Part Sets

Characterization 17 Part Sets: Part sets are those compound parts which
are observed to consist of an indefinite number of
zero, one or more parts

We introduce the informal presentation language predicate is part set to
hold for compound parts e if is part set(e) holds.

• Once a part, say e:E, has been analyzed into a part set we inquire as to the
set of parts and their type of which it consists.

• The inquiry: record part set part type names, we decide, then yields
the (single) type of the constituent parts.

Schema 2 record-part-set-part-type-names

value
record part set part type names: E → TPs×TP
record part set part type names(e:E) as (η Ps,η P)
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Here the name of the value, e, and the type names η Ps and η P are coined,
i.e., more-or-less freely chosen, by the domain analyzer cum describer
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Please also note that record part set part type names is not a descrip-
tion language construct.

• It is an analysis language, i.e., an informal natural language, here English,
construct.

• As such it is being used by the domain analyzer cum describer

• who “applies” in to an observed endurant and

• notes down, in her mind or jots it on a scratch of paper,

• her decision as to appropriate [new] type names.
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Example 14 Part Sets: Road Transport: The road transport contains a set of
automobiles.

• The part set type name has been chosen to be SA.

– It is then determined (i.e., analyzed) that SA is a set of Automobile of
type A

∗ record part set part type names(sa:SA) = (η As,η A)
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7.1.3.1.5 Compound Observers

• Once the domain analyzer cum describer has decided upon the names of
atomic and compound parts,

• obs erver functions can be applied to Cartesian and part set, e:E, parts:

Schema 3 Describe-Cartesians-and-Part-Set-Parts

value
let {η P1,η P2,...,η Pn} = record Cartesian part type names(e:E) in
“type

P1, P2, ..., Pn;
value

obs P1: E→P1, obs P2: E→P2,...n obs Pn: E→Pn ”
end
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respectively:

value
let (η Ps,η P) = record part set part type names(e:E) in
“type

P, Ps = P-set,
value

obs Ps: E→Ps ”
end

• The “...” texts are the RSL texts “generated”, i.e., written down, by the
domain describer.



63

• They are domain model specification units .

– The “surrounding” RSL-like texts are not written down as phrases, ele-
ments, of the domain description.

– They are elements of the domain describers’ “notice board”,
– and, as such, elements of the development of domain models.

•We have introduced a core domain modelling tool

– the obs ... observer function,
– one to be “applied” mentally by the domain describer,
– and one that appears in (RSL) domain descriptions

• The obs ... observer function is “applied” by the domain describer,

• it is not a computable function.
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Please also note that Describe-Cartesians-and-Part-Set-Parts schema,
3, is not a description language construct.

• It is an analysis language, i.e., an informal natural language, here English,
construct.

• As such it is being used by the domain analyzer cum describer

• who “applies” in to an observed endurant and

• notes down, but now in a final form, elements, that is domain description
units .
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7.1.4 States

Characterization 18 States: By a state we shall mean any subset of the
parts of a domain

Example 15 Road Transport State:

variable
hs:AH := obs AH(obs RN(rt)),
ls:AL := obs AL(obs RN(rt)),
as:SA := obs SA(rt),
σ :(H|L|A)-set := hs∪ls∪as
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•We have chosen to model domain states as variables rather than as values.

• The reason for this is

– that the values of monitorable, including biddable part attributes15 can
change, and

– that domains are often extended and “shrunk” by the addition, respec-
tively removal of parts:

Example 16 Road Transport Development:

∗ adding or removing hubs, links and automobiles

We omit coverage of the aspect of bidding changes to monitorable part
attributes.

15The concepts of monitorable, including biddable part attributes is treated in Sect. 7.2.3.2.
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7.1.5 Validity of Endurant Observations

•We remind the reader that the obs erver functions, as all later such func-
tions: uid -, mereo - and attr -functions, are applied by humans

– and that the outcome of these “applications”
– is the result of human choices,
– and possibly biased by inexperience, taste, preference, bias, etc.
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• How do we know whether a domain analyzer & describer’s description of
domain parts is valid ?

– Whether relevantly identified parts are modeled reasonably wrt. being
atomic, Cartesians or part sets

– Whether all relevant endurants have been identified ?
– Etc.

• The short answer is: we never know.

• Our models are conjectures and may be refuted [27].

• A social process of peer reviews, by domain stakeholders and other do-
main modelers is needed –

• as may a process of verifying16 properties of the domain description held
up against claimed properties of the (real) domain.

16testing, model checking and theorem proving
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7.1.6 Summary of Analysis Predicates

Characterizations 6–17 imply the following analysis predicates (Defn.: δ ,
page π):

• Endurant Ontology:

– is entity, δ6 π 24
– is entity, δ6 π 24
– is entity, δ6 π 24
– is endurant, δ7 π 27
– is perdurant, δ8 π 28
– is solid, δ11 π 38

– is fluid, δ12 π 41

– is part, δ13 π 45

– is atomic, δ14 π 47

– is compound, δ15 π 50

– is Cartesian, δ16 π 53

– is part set, δ17 π 57
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•We remind the student that the above predicates

– represent “formulas” in the presentation, not the description, language.
– They are not RSL clauses.
– They are in the mind of the domain analyzers cum describers.
– They are “executed” by such persons.
– Their result, whether true, false or chaos17,
– are noted by these persons
– and determine their next step of domain analysis.

17The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for its application does not hold.
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7.1.7 “Trees are Not Recursive”

• A ‘fact’, that seems to surprise many, is that parts are not “recursive”.

– Yes, in all our domain modelling experiments, [13],
– we have not come across the need for recursively observing compound

parts.
– Trees, for example, are not recursive in this sense.
∗ Trees have roots.
∗ Sub-trees not.
∗ Banyan trees18 have several “intertwined trees”.

– But it would be ‘twisting’ the modelling to try fit a description of such
trees to a ‘recursion wim’ !

• Instead, trees are defined as nets, such as are road nets,

• where these nets then satisfy certain constraints [13, Chapter B].

18https://www.britannica.com/plant/banyan
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7.2 Internal Qualities – Intangibles

• The previous section has unveiled an ontology of the external qualities of
endurants.

– The unveiling consisted of two elements:
∗ a set of analysis predicates, predicates 6–17, and analysis functions,

schemas 1–2, and
∗ a pair of description functions, schema 3 on Slide 61.

– The application of description functions result in RSL text.
– That text conveys certain properties of domains:
∗ that they consists of such-and-such endurants,
∗ notably parts,
∗ and that these endurants “derive” from other endurants.

– But the RSL description texts do not “give flesh & blood” to these en-
durants.
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– Questions like:
∗ ‘what are their spatial extents ?’ ,
∗ ‘how much do the weigh ?’ ,
∗ ‘what colour do they have ?’ ,
∗ et cetera,
are left unanswered.

• In the present section we shall address such issues.

•We call them internal qualities .
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Characterization 19 Internal Qualities: Internal qualities are

• those properties [of endurants]

• that do not occupy space

• but can be measured or spoken about

Example 17 Internal qualities: Examples of internal qualities are

• the unique identity of a part,

• the mereological relation of parts to other parts, and

• the endurant attributes such as temperature, length, colour, etc.
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• This section therefore introduces a number of domain description tools:

– uid : the unique identifier observer of parts;
– mereo : the mereology observer of parts;
– attr : (zero,) one or more attribute observers of endurants; and
– attributes : the attribute query of endurants.
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7.2.1 Unique Identity

Ontological Choice:

•We postulate that separately discernible parts have unique identify.

• The issue, really, is a philosophical one.

•We refer to [10, Sects. 2.2.2.3–2.2.2.4, pages 14–15 ] for a discussion of the
existence and uniqueness of entities
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• Characterization 20 Unique Identity : A unique identity is

– an immaterial property
– that distinguishes any two spatially distinct solids19

• The unique identity of a part p of type P is obtained by the postulated
observer uid P:

Schema 4 Describe-Unique-Identity-Part-Observer

“type
P,PI

value
uid P: P → PI”

• Here PI is the type of the unique identifiers of parts of type P.

19For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique identity. The pragmatics is that we, in our extensive modelling experiments
have not found a need for such ascription !
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Example 18 Unique Road Transport Identifiers: The unique identifierss of a
road transport, rt:RT, consists of the unique identifiers of the

• road transport – rti:RTI,

• (Cartesian) road net – rni:RNI,

• (set of) automobiles – sa:SAI,

• automobile, ai:AI,

• (set of) hubs, hai:AHI,

• (set of) links, lai:LAI,

• hub, hi:HI, and

• link, li:LI,

where the type names are all coined, i.e., more-or-less freely chosen, by the
domain analyzer cum describer – though, as You can see, these names were
here formed by “suffixing” Is to relevant part names
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•We have thus introduced a core domain modelling tool

– the uid ... observer function,
– one to be “applied” mentally by the domain describer,
– and one that appears in (RSL) domain descriptions

• The uid ... observer function is “applied” by the domain describer,

• it is not a computable function.
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7.2.1.1 Uniqueness of Parts.

• No two parts have the same unique identifier.

Example 19 Road Transport Uniqueness:

variable
hsuids:HI-set := { uid H(h) | h:H•u∈σ }
lsuids:LI-set := { uid L(l) | l:L•u∈σ }
asuids:AI-set := { uid A(a) | a:A•u∈σ }
σ uids:(HI|LI|AI)-set := { uid (H|L|A)(u) | u:(H|L|A)•u∈σ }

axiom
� card σ = card σ uids For σ see Sect. 7.1.4 on Slide 65.

We have chosen, for the same reason as given in Sect. 7.1.4, to model a
unique identifier state. The � [always] prefix in the axiom then expresses
that changes of parts or addition of parts to and deletions of parts from the
domain shall maintain their uniqueness over time (i.e., always).
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7.2.2 Mereology

• The concept of mereology is due to the Polish mathematician, logician
and philosopher Stanisław Leśniewski (1886–1939) [32, 6].

• Characterization 21 Mereology : Mereology is a theory of [endurant]
part-hood relations:

– of the relations of an [endurant] parts to a whole
– and the relations of [endurant] parts to [endurant] parts within that

whole
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Ontological Choice:

• The Polish mathematician and philosopher Stanisław Leśniewski

• was not satisfied with Bertrand Russell’s “repair” of Gottlob Frege’s ax-
iom systems for set theory.

• Instead he put forward his axiom system for, as he called it, mereology.

• Both as a mathematical theory and as a philosophical reasoning
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Example 20 Mereology : Examples of mereologies are

• that a link is topologically connected to
exactly one or, usually, two specific hubs,

• that hubs are connected to
zero, one or more specific links,

• and that links and hubs are open to
the traffic of specific subsets of automobiles

•Mereologies can be expressed in terms of unique identifiers.
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Example 21 Mereology Representation:

• For our ‘running road transport example’ the mereologies of links, hubs
and automobiles can thus be expressed as follows:

– mereo L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the
hubs that the link connects, i.e., are in hsuids;

– mereo H(h) = {li1,li2,...,lin}where li1,li2,...,lin are the unique identifiers
of the links that are imminent upon (i.e., emanates from) the hub, i.e.,
are in lsuids; and

– mereo A(a) = {ri1,ri2,...,rim} where ri1,ri2,...,rim are unique identifiers
of the road (hub and link) elements that make up the road net, i.e., are
in hsuids∪lsuids
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• Once the unique identifiers of all parts of a domain has been described we
can analyses and describe their mereologies.

• The inquiry: mereo P(p) yields a mereology type (name), say PMer, and
its description20:

Schema 5 Describe-Mereology

“type
PMer = M (PI1,PI2,...,PIm)

value
mereo P: P → PMer

axiom
A (pm:PMer)”

20Cf. Sect. 7.1.3.1.5
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7.2.3 Attributes

• Attributes are what finally gives “life” to endurants:

– The external qualities “only” named
– and gave structure to their atomic or compound types.
– The internal qualities of uniqueness and mereology are intangible quan-

tities.
– The internal quality of attributes gives “flesh & blood” to endurants:
∗ they let us express endurant properties
∗ that we can more easily,
∗ i.e., concretely, relate to.
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7.2.3.1 General.

Characterization 22 Attributes: Attributes are properties of endurants

• that can be measured either physically

• (by means of length (ruler) and spatial quantity measuring equipment,
electronically, chemically, or otherwise)

• or can be objectively spoken about
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Ontological Choice:

• First some empirical observation:

– in reasoning about “the world around us”
– we express its properties in terms of predicates.
– These predicates, for example: “that building’s wall is red”, building

refers to an endurant part
– whereas wall and red refers to attributes.

• Now the “rub”:

– endurant attributes is what give “flesh & blood” to domains 21

21Editorial remark: I am not yet satisfied with this reasoning. The issue
is: to force the concept of attributes to be justified philosophically, as an
inevitable element of any world description, and not being forced upon us
solely from empirical evidence.
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• Attributes are of types and, accordingly have values.

•We postulate an informal domain analysis function, record attribute type names:

– The domain analyzer, in observing a part, p:P,
– analyzes it into the set of attribute names
– of parts p:P

Schema 6 record-attribute-type-names

value
record attribute type names: P → ηT-set
record attribute type names(p:P) as ηT-set
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Example 22 Road Net Attributes, I : Examples of attributes are:

• hubs have states, hσ :HΣ: the set of pairs of link identifiers, ( f li,t li), of the
links f rom and to which automobiles may enter, respectively leave the
hub; and

• hubs have state spaces, hω :HΩ: the set of hub states “signaling” which
states are open/closed, i.e., green/red;

• links that have lengths, LEN; and

• automobiles have road net positions, APos,

• either at a hub, atH, or on a link , onL, some fraction, f:Real, down a link,
identified by li, from a hub, identified by fhi, towards a hub, identified by
thi.

• Hubs and links have histories: time-stamped, chronologically ordered se-
quences of automobiles entering and leaving links and hubs, with auto-
mobile histories similarly recording hubs and links entered and left.
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type
HΣ = (LI×LI)-set
HΩ = HΣ-set
LEN = Nat m
APos = atH | onL
atH :: HI
onL :: LI × (fhi:HI × f:Real × thi:HI)
HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗

value

attr HΣ: H → HΣ

attr HΩ: H → HΩ

attr LEN: L → LEN
attr APos: A → APos
attr HHis: H → HHis
attr LHis: L → LHis
attr AHis: A → AHis

axiom
∀ (li,(fhi,f,thi)):onL • 0<f<1
∧li∈lsuids∧{fhi,thi}⊆hsuids∧...
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• Generally:

Schema 7 Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record attribute type names(e:E) in
“ type

A1, A2, ..., An
value

attr A1: E → A1, attr A2: E → A2, ..., attr An: E → An
axiom
∀ a1:A1, a2:A2, ..., an:An: A (a1,a2,...,an) ”

end
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7.2.3.2 Michael A. Jackson’s Attribute Categories.

•Michael A. Jackson [25] has suggested a hierarchy of attribute categories:
– from static (is static22)
– to dynamic (is dynamic23) values – and within the dynamic value category:
∗ inert values (is inert24),
∗ reactive values (is reactive25),
∗ active values (is active26) – and within the dynamic active value category:
· autonomous values (is autonomous27),
· biddable values (is biddable28), and
· programmable values (is programmable29) .

22static: values are constants, cannot change
23dynamic: values are variable, can change
24inert: values can only change as the result of external stimuli where these stimuli prescribe new values
25reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from outside the domain of interest or from other endurants.
26active: values can change (also) on their own volition
27autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law onto themselves and their surroundings”.
28biddable: values are prescribed but may fail to be observed as such
29programmable: values can be prescribed
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– We postulate informal domain analysis predicates, “performed” by the
domain analyzer:

value
is static,is autonomous,is biddable,is programmable [etc.]: η T→Bool

• We refer to [25] and [10] [Chapter 5, Sect. 5.4.2.3 ] for details.
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•We suggest a minor revision of Michael A. Jackson’s attribute categoriza-
tion, see left side of Fig. 2 on the following slide.

– We single out the inert from the ontology of Fig. 2 on the next slide,
left side.

– Inert attributes seem to be “set externally” to the endurant.
– So we now distinguish between is external and is internal dy-

namic attributes.

•We summarize Jackson’s attribute and our revised categorization in Fig. 2.
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dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Figure 2: Michael Jackson’s [Revised] Attribute Categories

This distinction has [pragmatic] consequences for how we treat arguments
of the behaviours of parts, cf. Sect. 8.5.1 (page 120).
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Example 23 Road Net Attributes, II :

• The link length and hub state space attributes are static,

• hub states and automobile positions are programmable attributes.

• Automobile speed and acceleration attributes,

– which we do not model,

• are monitorable

• • •

• The attributes categorization determines, in the next major section on per-
durants, the treatment of hub, link and automobile behaviours.
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7.2.3.3 Analytic Attribute Extraction Functions:.
value

p:P

tns = record attribute type names(p)

static attributes: ηT -set → ηT -set
static attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is static(tn) }

inert attributes: ηT -set → ηT -set
inert attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is inert(tn) }

monitorable attributes ηT -set → ηT -set
monitorable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is monitorable(tn) }

programmable attributes ηT -set → ηT -set
programmable attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is programmable(tn) }

is monitorable: T → Bool
is monitorable(t) ≡ ∼is static(t) ∧ ∼is inert(t) ∧ ∼is programmble(t)
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7.3 Intentional Pull

Ontological Choice:

• In [29, pages 167–168 ] Sørlander argues

• wrt. “how can entities be the source of forces ?”

• and thus reasons for gravitational pull .

• That same kind of reasoning,

• with proper substitution of terms,

• leads us to the concept of intentional pull

• • •

• Two or more parts

– of different sorts, but with overlapping sets of intents30

– may excert an intentional “pull” on one another.
30Intent: purpose; God-given or human-imposed !
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• This intentional “pull” may take many forms.

– Let px : X and py : Y
– be two parts of different sorts (X ,Y ),
– and with common intent, ι .
– Manifestations of these, their common intent
– must somehow be subject to constraints ,
– and these must be expressed predicatively .

•When a compound artifact

– models “itself” as put together with a number of other endurants
– then it does have an intentionality and
– the components’ individual intentionalities does,

i.e., shall relate to that.
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Example 24 Road Transport Intentionality :

• Automobiles include the intent of ’transport’,

• and so do hubs and links .

•Manifestations of "transport" are reflected in

– hubs, links and automobiles

– having the history attribute.
• The intentional “pull” of these manifestations is this:

– For every automobile, if it records being in some hub or on some link at time τ ,
– then the designated hub, respectively link, records exactly that automobile; and vice

versa:
– for every hub [link], if it records the visit of some automobile at time τ ,
– then the designated automobile records exactly that hub [link].

• We leave the formalization of the above to the listener
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Example 25 Double-entry Bookkeeping :

• Another example of intentional “pull” is that of double-entry bookkeep-
ing.

– Here the income/expense ledger
– must balance
– the actives/passives ledger
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Example 26 The Henry George Theorem.:

• The Henry George theorem states that

– under certain conditions,
– aggregate spending by government on public goods
– will increase aggregate rent based on land value (land rent)
– more than that amount,
– with the benefit of the last marginal investment
– equaling its cost 31,32

31Stiglitz, Joseph (1977). “The Theory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The
Economics of Public Services. Palgrave Macmillan, London. pp. 274333. doi:10.1007/978-1-349-02917-
4 12. ISBN 978-1-349-02919-8.

32Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist.
His writing was immensely popular in 19th-century America and sparked several reform movements of the
Progressive Era. He inspired the economic philosophy known as Georgism, the belief that people should own
the value they produce themselves, but that the economic value of land (including natural resources) should
belong equally to all members of society. George famously argued that a single tax on land values would
create a more productive and just society.
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7.4 Summary of Endurants

•We have completed our treatment of endurants.

– That treatment was based on an ontology for the observable phenomena
of domains –

– such as we have delineated the concept of domains.

• The treatment was crucially based on an ontology for the structure of
domain phenomena, and, in a sense, “alternated” between

– analysis predicates,
– analysis functions, and
– description functions.

•We have carefully justified this ontology in ‘Ontological Choice’ para-
graphs
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8 Perdurant Concepts

• The main contribution of this section is that of transcendentally deducing
perdurants from endurant parts,

– in particular behaviours “of” parts.

•Major perdurants are those of actions, events and behaviours

• with behaviours generally being sets of sequences of actions, events
and behaviours.
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8.1 “Morphing” Parts into Behaviours

• As already indicated we shall

– transcendentally deduce
– (perdurant) behaviours from
– those (endurant) parts
∗ which we, as domain analyzers cum describers,
∗ have endowed with all three kinds of internal qualities:
∗ unique identifiers, mereologies and attributes.

•We shall use the CSP [24] constructs of RSL (derived from RSL [20]) to
model concurrent behaviours.
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8.2 Transcendental Deduction

Characterization 23 Transcendental : By transcendental
we shall understand the philosophical notion:
the a priori or intuitive basis of knowledge,
independent of experience

• A priori knowledge or intuition is central:

– By a priori we mean that it not only precedes,
– but also determines rational thought.

Characterization 24 Transcendental Deduction:
By a transcendental deduction
we shall understand the philosophical notion:
a transcendental “conversion”
of one kind of knowledge
into a seemingly different kind of knowledge
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Example 27 Transcendental Deductions – Informal Examples:

•We give some intuitive examples of transcendental deductions.

• They are from the “domain” of programming languages.

– There is the syntax of a programming language,
and there are the programs that supposedly adhere to this syntax.

– Given that, the following are now transcendental deductions.
∗ The software tool,

a syntax checker.
∗ The software tools,

an automatic theorem prover and
a model checker.
∗ A compiler and

an interpreter.



109

• Yes, indeed, any abstract interpretation [18]
reflects a transcendental deduction:

– firstly, these examples show that
there are many transcendental deductions;

– secondly, they show that
there is no single-most preferred transcendental deduction
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Ontological Choice:

• So this, then, is, in a sense, our “final” ontological choice:

• that of transcendentally deduce behaviours from, or of, parts
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8.3 Actors – A Synopsis

This section provides a summary overview.

Characterization 25 Actors:

• An actor is anything that can initiate an action, event or behaviour
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8.3.1 Action

Characterization 26 Actions:

• An action is a function that can purposefully change a state

Example 28 Road Net Actions: These are some road transport actions:

• an automobile

– leaving a hub, entering a link;
– leaving a link, entering a hubs;
– entering the road net; and
– leaving the road net
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8.3.2 Event

Characterization 27 Events:

• An event is a function that surreptitiously changes a state

Example 29 Road Net Events: These are some road net events:

• The blocking of a link due to a mud slide;

• the failing of a hub traffic signal due to power outage;

• an automobile failing to drive; and

• the blocking of a link due to an automobile accident

We shall, in these lectures, not exemplify formalization of events.
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8.3.3 Behaviour

Characterization 28 Behaviours:

• Behaviours are sets

• of sequences of

• actions, events and behaviours

• Concurrency is modeled by the sets of sequences.

• Synchronization and communication of behaviours are effected

• by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.
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Example 30 Road Net Traffic :

• Road net traffic can be seen as a behaviour

– of all the behaviours of automobiles,
∗ where each automobile behaviour is seen as sequence of

start, stop, turn right, turn left, etc., actions;
– of all the behaviours of links
∗ where each link behaviour is seen

as a set of sequences (i.e., behaviours) of “following” the
· link entering, link leaving, and movement

of automobiles on the link;
– of all the behaviours of hubs (etc.);
– of the behaviour of the aggregate of roads,

viz. The Department of Roads , and
– of the behaviour of the aggregate of automobiles,

viz, The Department of Vehicles
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8.4 Channel

• Characterization 29 Channel :

– A channel is anything
– that allows synchronization and communication
– of values
– between behaviours

Schema 8 Channel

We suggest the following schema for describing channels:

“channel { ch[{ui,uj} ] | ui,ij:UI • ... } M

• where ch is the describer-chosen name for an array of channels,

• ui,uj are channel array indices of the unique identifiers,

• UI, of the chosen domain
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Example 31 Road Transport Interaction Channel :

channel { ch[{ui,uj} ] | {ui,ij}:(HI|LI|AI)-set • ui6=uj∧{ui,uj}⊆σ uids } M

• Channel array ch

• is indexed by a “pair” of distinct unique part identifiers of the domain.

•We shall later outline M, the type of the “messages” communicated be-
tween behaviours
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8.5 Behaviours

•We single out the perdurants of behaviours

– as they relate directly to the parts of Sect. 7.
– The treatment is “divided” into three sections.
∗ (i) behaviour signatures,
∗ (ii) behaviour invocation, and
∗ (iii) behaviour definition.



119

8.5.1 Behaviour Signature

Schema 9 Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name
of the behaviour, Bp, and a function type expression as indicated:
value

Bp: Uidp→33

Mereop →
Sta Valsp →

Inert Valsp →
Mon Refsp →

Prgr Valsp→
{ ch[{i,j}] | ... } Unit

33We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses Schönfinkel#Further reading

(Curried https://en.wikipedia.org/wiki/Currying) the function type
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We explain:

• Uidp is the type of unique identifiers of part p, uid P(p) = Uidp;

•Mereop is the type of the mereology of part p, mereo P(p) = Mereop;

• Sta Valsp is a Cartesian of the type of inert attributes of part p. Given
record attribute type names(p) static attributes(record attribute type na-

mes(p)) yields Sta Valsp;

• Inert Valsp is a Cartesian of the type of static attributes of part p. Given
record attribute type names(p) inert attributes(record attribute type na-

mes(p)) yields Inert Valsp;

•Mon Refsp is a Cartesian of the attr ibute observer functions of the types
of monitorable attributes of part p. Given record attribute type names(p)

analysis function monitorable attributes(record attribute type names(p))

yields Mon Valsp;
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• Prgr Valsp is a Cartesian of the type of programmable attributes of part p.
Given record attribute type names(p) analysis function programmable -

attributes(record attribute type names(p)). yields Prgr Valsp;

• { ch[{i,j}] | ... } specifies the channels over which part p behaviours, Bp,
may communicate;

and:

• Unit is the type name for the () value34

• • •

• The Cartesian arguments

• may “degenerate” to the non-Cartesian of no,

• or just one type identifier,

• If none, i.e., (), then () may be skipped.

• If one, e.g., (a), then (a) is listed.
34– You may “read’ () as the value yielded by a statement, including a never-terminating function
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Example 32 Road Transport Behaviour Signatures:

value
hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)

→{ch[{uid H(p),ai} ]|ai:AI•ai∈asuid} Unit
link: LI→MereoL→(LEN×...)→(...)→(LHist×...)

→{ch[{uid L(p),ai} ]|ai:AI•ai∈asuid} Unit
automobile: AI→MereoA→(...)→(attr AVel×attr HAcc×...)→(APos×AHist×...)

→{ch[{uid H(p),ri} ]|ri:(HI|LI)•ri∈hsuid∪lsuid} Unit

• Here we have suggested additional part attributes:

– monitorable automobile velocity and acceleration, AVel, AAcc,

• and omitted other attributes
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8.5.1.1 Inert Arguments: Some Examples.

• Let us give some examples of inert attributes of automobiles.

– (i) Driving uphill, one a level road, or downhill, excert some inert

“drag” or “pull”.
– (ii) Velocity can be treated as a reactive attribute – but it can be [approx-

imately] calculated on the basis of, for example, these inert attributes:
drag/pull and accelerator pedal pressure, and the static engine power
attribute.
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8.5.2 Behaviour Invocation

Schema 10 Behaviour Invocation

• Behaviours are invoked as follows:

“Bp(uid p(p))35

(mereo P(p))
(attr staA1(p),...,attr staAs(p))

(attr inertA1(p),...,attr inertAi(p))
(attr monA1,...,attr monAm)

(attr prgA1(p),...,attr prgAp(p))”

35We show the arguments of the invocation on separate lines only for readability. That is: normally we show the invocation arguments as B(...)(...)(...)(...)(...).
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• All arguments are passed by value.

• The uid value is never changed.

• The mereology value is usually not changed.

• The static attribute values are fixed, never changed.

• The inert attribute values are fixed, but can be updated by receiving ex-
plicit input communications.

• The monitorable attribute values are functions, i.e., it is as if the “actual”
monitorable values are passed by name !

• The programmable attribute values are usually changed, “updated”, by
actions described in the behaviour definition
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8.5.2.1 Argument References.

•Within behaviour descriptions, see next section, references are made to
the behaviour arguments.

– References, a, to unique identifier, mereology, static and progammable
attribute arguments yield their value.

– References, a, to monitorable attribute arguments also yield their value.
This value is an attr A observer function.
∗ To yield, i.e., read, the monitorable attribute value this function is

applied to that behaviour’s uniquely identified part, puid, in the global
part state, σ .
∗ To update,, i.e., write, say, to a value v, for the case of a biddable,

monitorable attribute, that behaviour’s uniquely identified part, puid,
in the global part state, σ , shall have part puid’s A attribute changed
to v – with all other attribute values of puid unchanged.
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• Common to both the read and write functions is the retrieve part function:

6. Given a unique part identifier, pi, assumed to be that of an existing
domain part,

7. retr part reads the global [all parts] variable σ to retrieve that part p
whose unique part identifier is pi.

value
7. retr part: PI → P read
7. retr part(pi) ≡ let p:P • p ∈ c σ ∧ uid P(p)=pi in p end
6. pre: ∃ p:P • p ∈ c σ ∧ uid P(p)=pi

• You may think of the functions being illustrated in this section, Sect. 8.5.2.1,

– retr part, read A from P and update P with A,
– as “belonging” to the description language,
– but here suitably expressed for any domain,
– that is, with suitable substitutions for A and P.
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8.5.2.2 Evaluation of Monitorable Attributes.

8. Let pi:PI be the unique identifier of any part, p, with monitorable at-
tributes, let A be a monitorable attribute of p, and let ηA be the name
of attribute A.

9. Evaluation of the [current] attribute A value of p is defined by function
read A from P.

value
8. pi:PI, a:A, ηA:ηT
9. read A from P: PI × T → read σ A
9. read A(pi,ηA) ≡ attr A(retr part(pi))
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8.5.2.3 Update of Biddable Attributes.

10. The update of a monitorable attribute A, with attribute name ηA of part p,
identified by pi, to a new value writes to the global part state σ .

11. Part p is retrieved from the global state.

12. A new part, p′ is formed such that p′ is like part p:

(a) same unique identifier,
(b) same mereology,
(c) same attributes values,
(d) except for A.

13. That new p′ replaces p in σ .
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value
10. σ , a:A, pi:PI, ηA:ηT

10. update P with A: PI × A × ηT → write σ

10. update P with A(pi,a,ηA) ≡
11. let p = retr part(pi) in
12. let p′:P •

12a. uid P(p′)=pi
12b. ∧ mereo P(p)=mereo P(p′)
12c. ∧ ∀ ηA′ ∈ record attribute type names(p)\{ηA} ⇒ attr A′(p)=attr A′(p′)
12d. ∧ attr A(p′)=a in
13. σ := c σ \ {p} ∪ {p′}
10. end end
11. pre: ∃ p:P • p ∈ c σ ∧ uid P(p)=pi
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8.5.3 Behaviour Description – Examples

• Behaviour descriptions rely strongly on CSPs’ [24] expressivity.

• Leaving out some details ( , ‘...’), and without “further ado”, we exem-
plify.
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Example 33 Automobile Behaviour at Hub:

14. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.

14 automobile(ai)(ris)(...)(atH(hi),ahis, ) ≡
14a automobile remains in hub(ai)(ris)(...)(atH(hi),ahis, )
14b de
14c automobile leaving hub(ai)(ris)(...)(atH(hi),ahis, )
14d de
14e automobile stop(ai)(ris)(...)(atH(hi),ahis, )
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15. [14a] The automobile remains in the hub:

(a) time is recorded,
(b) the automobile remains at that hub, “idling”,
(c) informing (“first”) the hub behaviour.

15 automobile remains in hub(ai)(ris)(...)(atH(hi),ahis, ) ≡
15a let τ = record TIME in
15c ch[{ai,hi} ] ! τ ;
15b automobile(ai)(ris)(...)(atH(hi),〈(τ ,hi)〉̂ahis, ) end
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16. [14c] The automobile leaves the hub entering link li:

(a) time is recorded;
(b) hub is informed of automobile leaving and link that it is entering;
(c) “whereupon” the vehicle resumes (i.e., “while at the same time” re-

suming) the vehicle behaviour positioned at the very beginning (0) of
that link.

16 automobile leaving hub(ai)({li}∪ris)(...)(atH(hi),ahis, ) ≡
16a let τ = record TIME in
16b (ch[{ai,hi} ] ! τ ‖ ch[{ai,li} ] ! τ) ;
16c automobile(ai)(ris)(...)(onL(li,(hi,0, )),〈(τ ,li)〉̂ahis, ) end
16 pre: [hub is not isolated]

• The choice of link entered is here expressed (16) as a non-deterministic
choice36.

• One can model the leave hub/enter link otherwise.
36– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can never leave isolated hubs.
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17. [14e] Or the automobile “disappears — off the radar” !

17 automobile stop(ai)(ris),(...)(atH(hi),ahis, ) ≡ stop
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8.6 Behaviour Initialization.

• For every manifest part it must be described how its behaviour is initial-
ized.

Example 34 Road Transport Initialization: We “wrap up” the main example
of this paper:

•We omit treatment of monitorable attributes.

18. Let us refer to the system initialization as an action.

19. All hubs are initialized,

20. all links are initialized, and

21. all automobiles are initialized.
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value
18. rts initialisation: Unit → Unit
18. rts initialisation() ≡
19. ‖ { hub(uid H(l))(mereo H(l))(attr HΩ(l),...)(attr HΣ(l),...)| h:H • h ∈ hs }
20. ‖ ‖ { link(uid L(l))(mereo L(l))(attr LEN(l),...)(attr LΣ(l),...)| l:L • l ∈ ls }
21. ‖ ‖ { automobile(uid A(a))(mereo A(a))(attr APos(a)attr AHis(a),...) | a:A • a ∈ as }

•We have here omitted possible monitorable attributes.

• For hs, ls,as we refer to Sect. 7.1.4
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9 Conclusion

• We have summarized a method

– to be used by [human] domain analyzers cum describers
– in studying and modelling domains.
– Our previous publications [8, 9, 10] have, with this paper, found its most recent, we

risk to say, for us, final form.
– Of course, domain models can be developed without the calculi presented in this

paper.
– And was for many years.
– From the early 1990s a number of formal models of railways were worked out [21,

1, 3, 15, 2].
– The problem, though, was still, between 1992 and 2016,
– “where to begin, how to proceed and when to end”.
– The domain analysis & description ontology and, hence calculus, of this paper shows

how.
– The systematic approach to domain modelling of this ontology and calculus has stood

its test of time.
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– The Internet ‘publication’ [14] presents 19 domain models from the 2007–2024
period.
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9.1 Previous Literature

... the speaker says some words ...

9.2 Domain Facets

... the speaker says some words ...
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9.3 Perspectives

• Domain models can be developed for either of a number of reasons:

– (i) in order to understand a human-artifact domain;
– (ii ) in order to re-engineer the business processes of a human-artifact

domain; or
– (iii) in order to develop requirements prescriptions and, subsequently

software application “within” that domain.

(ii) We refer to [22, 23] and [4, Vol. 3, Chapter 19, pages 404–412 ] for the
concept of business process engineering .

(iii) We refer to [10, Chapter 9 ] for the concept of requirements engineering .
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9.4 The Semantics of Domain Models

• The meaning of domain models, such as we describe them in this paper,
is, “of course”, the actual, real domain “out there” !

– One could, and, perhaps one should, formulate a mathematical seman-
tics of the models, that is, of the is ..., obs ..., uid ..., mereo ... and
attr ... analysis and description functions and what they entail (e.g.,
the type name labels: ηT’s; etc.).

– An early such semantics description is given in [7].
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9.5 Further on Domain Modelling

• Additional facets of domain modelling are covered in

– [5] and
– [10, Chapter 8: Domain Facets.]
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9.6 Software Development

• [5] and [10, Chapter 9 Requirements]

– show how to develop Requirements prescriptions from Domain de-
scriptions.

• [4] shows how to develop S oftware designs from Requirements pre-
scriptions.
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9.7 Modeling

• Domain descriptions, such as outlined in this paper,

– are models of domains, that is, of some reality.
– They need not necessarily lead to or be motivated by possible develop-

ment of software for such domains.
– They can be experimentally researched and developed just for the sake

of understanding domains in which man has had an significantly influ-
ence.

– They are models.
– We refer to [19] for complementary modeling based on Petri nets.

• The current author is fascinated by the interplay between graphical and
textual descriptions of HERAKLIT, well, in general Petri Nets.
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9.8 Philosophy of Computing

• The Danish philosopher Kai Sørlander [28, 29, 30, 31]

– has shown that there is a foundation in philosophy
– for domain analysis and description.

•We refer to [11, Chapter 2 ] for a summary of his findings.
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9.9 A Manifasto

• So there is no excuse, anymore !

– Of course we have developed interpreters and compilers for program-
ming languages by first developing formal semantics for those lan-
guages [16, 17].

– Likewise we must now do for the languages of domain stakeholders, at
least for the domains covered by this paper.

– There really is no excuse !
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