
Domain Modelling

DINES BJØRNER, Technical University of Denmark, Denmark

ACM Reference Format:
Dines Bjørner. 2024. Domain Modelling. 1, 1 (March 2024), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

The Triptych Dogma

In order to specify Software, we must understand its Requirements.
In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.
D,S |= R:

In proofs of Software correctness,
with respect to Requirements,

assumptions are made with respect to the Domain.

We present a systematic method , its principles, procedures, techniques and tools, for efficiently analyzing &
describing domains. This paper is based on [12–14]. It simplifies the methodology of these – as well as introduces
some novel presentation and description language concepts.

1 DOMAINS
We start by delineating the informal concept of domain,1

1.1 What are They ?
What do we mean by ‘domain’ ?

Characterization 1. Domain: domain By a domain we shall understand a rationally describable segment of a
discrete dynamics fragment of a human assisted reality: the world that we daily observe – in which we work and
act, a reality made significant by human-created entities. The domain embody endurants and perdurants •

Example 1. Some Domain Examples: A few, more-or-less self-explanatory examples:
• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-made dams, harbours,
locks, etc. – and their conveyage of materials (ships etc.) [17, Chapter B].

• Road nets – with street segments and intersections, traffic lights and automobiles – and the flow of these
[17, Chapter E].

1Our use of the term ‘domain’ should not be confused with that of Dana Scott’s Domain Theory: https://en.wikipedia.org/wiki/-
Scott_domain.

Author’s address: Dines Bjørner, Technical University of Denmark, DTU Compute, Fredsvej 11, Holte, 2840, Denmark, bjorner@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/3-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Dines Bjørner

• Pipelines – with their liquids (oil, or gas, or water), wells, pipes, valves, pumps, forks, joins and wells and
the flow of fluids [17, Chapter I].

• Container terminals – with their container vessels, containers, cranes, trucks, etc. – and the movement
of all of these[17, Chapter K] •

Characterization 1 relies on the understanding of the terms ‘rationally describable’, ‘discrete dynamics’, ‘human
assisted’, ‘solid’ and ‘fluid’. The last two will be explained later. By rationally describable we mean that what
is described can be understood, including reasoned about, in a rational, that is, logical manner – in other words
logically tractable.2 By discrete dynamics we imply that we shall basically rule out such domain phenomena
which have properties which are continuous with respect to their time-wise, i.e., dynamic, behaviour. By human-
assisted we mean that the domains – that we are interested in modelling – have, as an important property, that
they possess man-made entities.

1.2 Some Introductory Remarks
1.2.1 A Discussion of Our Characterization of a Concept of Domain. Characterization 1 is our attempt to delineate
the subject area. That is, “our” concept of ‘domain’ is ‘novel’: new and not resembling something formerly known
or used . As such it may be unfamiliar to most readers. So it takes time to digest that characterization. So the
reader may have to return to the page, Page 1, to be reminded of the definition.

1.2.2 Formal Methods and Description Language. The reader is assumed to have a reasonable grasp of formal
methods – such as espoused in [7; 20; 21; 44].
The descriptions evolving from the modelling approach of this paper are in the abstract, model-oriented

specification language RSL [25] of the Raise3 Specification Language. But other abstract specification languages
could be used: VDM [20; 21], Z [44], Alloy [32], CafeOBJ [24], etc. We have chosen RSL since it embodies a variant
of CSP [30] – being used to express domain behaviours.

1.2.3 Programming Languages versus Domain Semantics. From around the late 1960s, spurred on by the works of
John McCarthy, Peter Landin, Christopher Strachey, Dana Scott and others, it was not unusual to see publications
of entire formal definitions of programming language semantics. Widespread technical reports were [1; 2, 1969,
1974] Notably so was [37, 1976]. There was the 1978 publication [20, Chapter 5, Algol 60, 1978]. Others were [21,
Chapters 6–7, Algol 60 and Pascal, 1982] As late as into the 1980s there were such publications [3, 1980].
Formal descriptions of domains, such as we shall unravel a method for their study, analysis and description,

likewise amount to semantics for the terms of the professional languages spoken by stakeholders of domains. So
perhaps it is time to take the topic serious.

1.2.4 A New Universe. The concept of domain – such as we shall delineate and treat it – is novel. That is: new
and not treated in this way before. Its presentation, therefore, necessarily involves the introduction of a new
universe of concepts. Not the neat, well-defined concepts of neither “classical” computer science nor software
engineering. It may take some concentration on the part of the reader to get used to this !
You will therefore be introduced to quite a universe of new concepts. You will find these concepts named in

most display lines4 and in Figs. 1 and 2.

2 ENDURANTS AND PERDURANTS, I
The above characterization hinges on the characterizations of endurants and perdurants.
2Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describable in terms of the method of
this paper !
3RAISE stands for Rigorous Approach to Industrial Software Engineering [26].
4– that is, section, subsection, sub-subsection, paragraph and sub-paragraph lines

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 3

Characterization 2. Endurants: Endurants are those quantities of domains that we can observe (see and
touch), in space, as “complete” entities at no matter which point in time – “material” entities that persists, endures
– capable of enduring adversity, severity, or hardship [Merriam Webster] •

Endurants are either natural [“God-given”] or artefactual [“man-made”]. Endurants may be either solid (discrete)
or fluid, and solid endurants, called parts, may be considered atomic or compound parts; or, as in this paper solid
endurants may be further unanalysed living species: plants and animals – including humans.

Characterization 3. Perdurants: Perdurants are those quantities of domains for which only a fragment
exists, in space, if we look at or touch them at any given snapshot in time [Merriam Webster] •

Perdurants are here considered to be actions, events and behaviours.
• • •

We exclude, from our treatment of domains, issues of ethics, biology and psychology.

3 A DOMAIN ANALYSIS & DESCRIPTION ONTOLOGY

3.1 The Chosen Ontology
Figure 1 expresses an ontology5 for our analysis of domains. Not a taxonomy6 for any one specific domain.
The idea of Fig. 1 is the following:

• It presents a recipe for how to analyze a domain.
• You, the domain analyzer cum describer , are ‘confronted’7 with, or by a domain.
• You have Fig. 1 in front of you, on a piece of paper, or in Your mind, or both.
• You are then asked, by the domain analysis & description method of this paper, to “start” at the uppermost
•, just below and between the ‘r’ and the first ‘s’ in the main title, Phenomena of Natural and Artefactual
Universes of Discourse.

• The analysis & description ontology of Fig. 1 then directs You to inquire as to whether the phenomenon –
whichever You are ”looking at/reading about/...” – is either rationally describable, i.e., is an entity (is_entity)
or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α , “below” which there may be two alternative
bullets, one, β , to the right and one to the left, γ .

• It is Your decision whether the answer to the “query” that each such situation warrants, is yes, is_β , or no,
is_γ .

• The characterizations of the concepts whose names, α , β ,γ etc., are attached to the •s of Fig. 1 are given in
the following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers, “yes” or “no”, to the
•ed queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually indicated by “yes” or “no”
answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining the phenomena You
set out to analyze.

• If it is not a leaf, then further analysis is required.
5An ontology is the philosophical study of being. It investigates what types of entities exist, how they are grouped into categories, and how
they are related to one another on the most fundamental level (and whether there even is a fundamental level) [Wikipedia].
6A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classification, in which things are organized
into groups or types [Wikipedia].
7By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it, talking with domain
stakeholders: professional people working “in” the domain; You may, yourself, “be an entity” of that domain !

, Vol. 1, No. 1, Article . Publication date: March 2024.

4 • Dines Bjørner

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s
CompoundAtomic

Transcendense

Fig. 1. A Domain Analysis & Description Ontology

• (We shall, in this paper, leave out the analysis and hence description of living species.)
• If an analysis of a phenomenon has reached one of the (only) two •’s, then the analysis at that • results
in the domain describer describing some of the properties of that phenomenon.

• That analysis involves “setting aside”, for subsequent analysis & description, one or more [thus analysis
etc.-pending] phenomena (which are subsequently to be tackled from the “root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has been “set aside”.

3.2 Discussion of The Chosen Ontology
We shall in the following motivate the choice of the ontological classification reflected in Fig 1. We shall argue that
this classification is not “an accidental choice”. In fact, we shall try justify the classification with reference to the
philosophy of Kai Sørlander [39–42]8. Kai Sørlander’s aim in these books is to examine that which is absolutely
necessary, inevitable, in any description of the world. In [14, Chapter 2] we present a summary of Sørlander’s

8The 2022 book, [41], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme of the earlier, 1994–2016 books.
[42] is an English translation of [41]

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 5

philosophy. In paragraphs, in the rest of this paper, marked Ontological Choice, we shall relate Sørlander’s
philosophy’s “inevitability” to the ontology for studying domains.

4 THE NAME, TYPE AND VALUE CONCEPTS
Domain modelling, as well as programming, depends, in their specification, on separation of concerns: which kind
of values are subjectable to which kinds of operations, etc., in order to achieve ease of understanding a model or a
program, ease of proving properties of a model, or correctness of a program.

4.1 Names
We name things in order to refer to them in our speech, models and programs. Names of types and values in
models and programs are usually not so-called “first-citizens”, i.e., values that can be arguments in functions, etc.
The “science of names” is interesting.9 In botanicalsociety.org.za/the-science-of-names-an-introduct-
ion-to-plant-taxonomy the authors actually speak of a “science of names” in connection with plant taxonomy:
the “art” of choosing such names that reflect some possible classification of what they name.

4.2 Types
The type concept is crucial to programming and modelling.

Characterization 4. Type: A type is a class of values (“of the same kind”) •

We name types.

Example 2. Type Names: Some examples of type names are:
• RT – the class of all road transport instances: the Metropolitan London Road Transport , the US Federal
Freeway System, etc.

• RN – the class of all road net instances (within a road transport).
• SA – the class of all automobiles (within a road transport) •

You, the domain describer, choose type names. Choosing type names is a “serious affair”. It must be done carefully.
You can choose short (as above) or long names: Road_Transport, Road_Net, etc. We prefer short, but not cryptic
names, like X, Y, Z, Names that are easy to memorize, i.e., mnemonics.

4.3 Values
Values are what programming and modelling, in a sense, is all about”. In programming, values are the data “upon”
which the program code specifies computations. In modelling values are, for example, what we observe: the
entities in front of our eyes.

5 PHENOMENA AND ENTITIES
Characterization 5. Phenomena: By a phenomenon we shall understand a fact that is observed to exist or

happen •

Some phenomena are rationally describable – to some degree10 – others are not.

9The study of names is called onomastics or onomatology . Onomastics covers the naming of all things, including place names (toponyms) and
personal names (anthroponyms).
10That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable phenomena to select for analysis &
description. Also in this sense one practices abstraction by “abstracting away” [the analysis & description of] phenomena that are irrelevant
for the “current” (!) domain description.

, Vol. 1, No. 1, Article . Publication date: March 2024.

6 • Dines Bjørner

Characterization 6. Entities: By an entity By an entity we shall understand a more-or-less rationally
describable phenomenon •

We introduce the informal presentation language predicate is_entity. It holds for phenomenaϕ ifϕ is describable.

Example 3. Phenomena and Entities: Some, but not necessarily all aspects of a river can be rationally described,
hence can be still be considered entities. Similarly, many aspects of a road net can be rationally described, hence
will be considered entities •

If You are not happy with this ‘characterization’, then substitute “rationally describable” with: describable in
terms of the endurants and perdurants brought forward in this paper: their external and internal qualities, unique
identifiers, mereologies amd attributes, channels and behaviours !
Ontological Choice:We choose to “initialize” our ontological “search” to a question of whether a phenomenon

is rationally describable – based on the tenet of Kai Sørlander’s philosophy, namely that “whatever” we postulate
is either true or false and that a principle of contradiction holds: whatever we so express can not both hold and not
hold •

Kai Sørlander then develops his inquiry – as to what is absolutely necessary in any description of the world –
into the rationality of such descriptions necessarily be based on time and space and, from there, by a series of
transcendental deductions, into a base in Newton’s physics. We shall, in a sense, stop there. That is, in the domain
concept, such as we have delineated it, we shall not need to go into Einsteinian physics.

6 ENDURANTS AND PERDURANTS, II
We repeat our characterizations of endurants and perdurants.

6.1 Endurants
We repeat characterization 2.

Characterization 7. Endurant : Endurants are those quantities of domains that we can observe (see and
touch), in space, as “complete” entities at no matter which point in time – “material” entities that persists, endures
– capable of enduring adversity, severity, or hardship [Merriam Webster] •

Example 4. Endurants: Examples of endurants are: a street segment [link], a street intersection [hub], an
automobile •

We introduce the informal presentation language predicate is_endurant to hold for entity e if is_endurant(e)
holds.

6.2 Perdurants
We repeat characterization 3.

Characterization 8. Perdurant : Perdurants are those quantities of domains for which only a fragment
exists, in space, if we look at or touch them at any given snapshot in time [Merriam Webster] •

Example 5. Perdurant : A moving automobile is an example of a perdurant •

We introduce the informal presentation language predicate is_perdurant to hold for entity e if is_perdurant(e)
holds.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 7

6.3 Ontological Choice
The ontological choice of entities being “viewed” as either endurants or perdurants is motivated as follows: The
concept of endurants can be justified in terms of Newton’s physics without going into kinematics, i.e., without
including time considerations. The concept of perdurants can then, on one hand, be justified in terms of Newton’s
physics now taking time into consideration, hence kinematics, and from there causality, etc.; and, on the other
hand, and as we shall see, by transcendentally deducing perdurants from solid endurants •

7 EXTERNAL AND INTERNAL ENDURANT QUALITIES
The main contribution of this section is that of a calculus of domain analysis and description prompts. Two
facets are being presented. Aspects of a domain science: of how we suggest domains can, and should, be viewed –
ontologically. And aspects of a domain engineering: of how we suggest domains can, and should, be analyzed
and described.
We begin by characterizing the two concepts: external and internal qualities.

Characterization 9. External Qualities: External qualities of endurants of a manifest domain are, in a
simplifying sense, those we can see, touch and have spatial extent. They, so to speak, take form.

Characterization 10. Internal Qualities: Internal qualities are those properties [of endurants] that do not
occupy space but can be measured or spoken about •

Perhaps we should instead label these two qualities tangible and intangible qualities.
Ontological Choice: The rational, analytic philosophy issues of the inevitability of these qualities is this: (i)

can they be justified as inevitable, and (ii) can they be suitably “separated”, i.e., both disjoint and exhaustive ? Or
are they merely of empirical nature ?
The choice here is also that we separate our inquiry into examining both external and internal qualities of

endurants [not ‘either or’] •

7.1 External Qualities – Tangibles

Example 6. External Qualities: An example of external qualities of a domains is: the Cartesian11 of sets of
solid atomic street intersections, and of sets of solid atomic street segments, and of sets of solid automobiles of a
road transport system where Cartesian, sets, atomicity, and solidity reflect external qualities •

7.1.1 The Universe of Discourse. The most immediate external quality of a domain is the “entire” domain –
“itself” ! So any domain analysis starts by identifying that “entire” domain ! By giving it a name, say UoD, for
universe of discourse, Then describing it, in narrative form, that is, in natural language containing terms of
professional/technical nature, the domain. And, finally, formalizing just the name: giving the name “status”
of being a type name, that is, of the type of a class of domains whose further properties will be described
subsequently.

Narration:
The name, and hence the type, of the domain] is UoD
The UoD domain can be briefly characterized by ...

Formalization:
type UoD

11Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)

, Vol. 1, No. 1, Article . Publication date: March 2024.

8 • Dines Bjørner

7.1.2 Solid and Fluid Endurants. Given then that there are endurants we now postulate that they are either
[mutually exclusive] solid (i.e., discrete) or fluid.
Ontological Choice: Here we [seem to] make a practical choice, not one based on a philosophical argument,

one of logical necessity, but one based on empirical evidence. It is possible for endurants to either be solid or
fluid; and here we shall not consider the case where solid [fluid] endurants, due to being heated [cooled], enters a
fluid state [or vice versa] •

7.1.2.1 Solid [or Discrete] Endurants.

Characterization 11. Discrete or Solid Endurants: By a solid [or discrete] endurant we shall understand an
endurant which is separate, individual or distinct in form or concept, or, rephrasing: have ‘body’ [or magnitude]
of three-dimensions: length, breadth and depth [36, OED, Vol. II, pg. 2046] •

Example 7. Solid Endurants: Pipeline system examples of solid endurants are wells, pipes, valves, pumps, forks,
joins and sinks of pipelines. (These units may, however, and usually will, contain fluids, e.g., oil, gas or water.) •

We introduce the informal presentation language predicate is_solid to hold for endurant e if is_solid(e)
holds.

7.1.2.2 Fluids.

Characterization 12. Fluid Endurants: By a fluid endurant we shall understand an endurant which is
prolonged, without interruption, in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or
plasma) having the property of flowing, consisting of particles that move among themselves [36, OED, Vol. I,
pg. 774] •

Example 8. Fluid Endurants: Examples of fluid endurants are: water, oil, gas, compressed air, smoke •

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular12, or plant products, i.e., chopped sugar cane,
threshed, or otherwise13, et cetera. Fluid endurants will be analyzed and described in relation to solid endurants,
viz. their “containers”.

We introduce the informal presentation language predicate is_fluid to hold for endurant e if is_fluid(e)
holds.

7.1.3 Parts and Living Species Endurants. Given then that there are solid endurants we now postulate that they
are either [mutually exclusive] parts or living species.

Ontological Choice:With Sørlander, [42, Sect. 5.7.1, pages 71–72] we reason that one can distinguish between
parts and living species •

7.1.3.1 Parts.

Characterization 13. Parts: The non-living species solids are what we shall call parts •

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned with the analysis and
description of endurants into parts.

Example 9. Parts: Example 7, of solids, is an example of parts •

12 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modelling purposes it is convenient to
“compartmentalise” them as fluids !
13See footnote 12.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 9

We introduce the informal presentation language predicate is_part to hold for solid endurants e if is_part(e)
holds.
We distinguish between atomic and compound parts.
Ontological Choice: It is an empirical fact that parts can be composed from parts. That possibility exists.

Hence we can [philosophy-wise] reason likewise •

7.1.3.1.1 Atomic Parts.

Characterization 14. Atomic Part : By an atomic part we shall understand a part which the domain analyzer
considers to be indivisible in the sense of not meaningfully consist of sub-parts •

Example 10. Atomic Parts: Examples of atomic parts are: hubs, H, i.e., street intersections; links, L, i.e., the
stretches of roads between two neighbouring hubs; and automobiles, A:

type H, L, A •

We introduce the informal presentation language predicate is_atomic to hold for parts p if is_atomic(p) holds.

7.1.3.1.2 Compound Parts.

Characterization 15. Compound Part : Compound parts are those which are observed to [potentially]
consist of several parts •

Example 11. Compound Parts: An example of a compound parts is: a road net consisting of a set of hubs,
i.e., street intersections or “end-of-streets”, and a set of links, i.e., street segments (with no contained hubs), is a
Cartesian compound; and the sets of hubs and the sets of links are part set compounds •

We introduce the informal presentation language predicate is_compound to hold for parts p if is_compound(p)
holds.
We, pragmatically, distinguish between Cartesian product- and set-oriented parts.
Ontological Choice: The Cartesian versus set parts is an empirical choice. It is not justified in terms of

philosophy, but in terms of mathematics – of mathematical expediency ! •

7.1.3.1.3 Cartesians. Cartesians are product-like types – and are named after the French philosopher, scientist
and mathematician René Descartes (1596–1640) [Wikipedia].

Characterization 16. Cartesians: Cartesian parts are those compound parts which are observed to consist
of two or more distinctly sort-named endurants (solids or fluids) •

Example 12. Cartesians: Road Transport : A road transport, rt:RT, is observed to consist of an aggregate of a
road net, rn:RN, and a set of automobiles, SA, where the road net is observed, i.e., abstracted, as a Cartesian of a
set of hubs, ah:AH, i.e., street intersections (or specifically designated points segmenting an otherwise “straight”
street into two such), and a set of links, al:AL, i.e., street segments between two “neighbouring” hubs.
type

RT, RN, SA, AH = H-set, AL = L-set
value

obs_RN: RT→ RN, obs_SA: RT → SA„ obs_AH: RN → AH, obs_AL: RN→ AL •

We introduce the informal presentation language predicate is_Cartesian to hold for compound parts p if
is_Cartesian(p) holds.

, Vol. 1, No. 1, Article . Publication date: March 2024.

10 • Dines Bjørner

Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to the type names of the endurants14 of
which it consists. The inquiry: record_Cartesian_part_type_names(p:P), we decide, then yields the type of
the constituent endurants.

Schema 1. record-Cartesian-part-type-names
value

record_Cartesian_part_type_names: P→ T-set
record_Cartesian_part_type_names(p) as {ηE1,ηE2,...,ηEn} •

Here T is the name of the type of all type names, and ηEi is the name of type Ei.
Please note the novel introduction of type names as values. Where a type identifier, say T, stands for, denotes, a
class of values of that type, ηT denotes the name of type T.
Please also note that record_Cartesian_part_type_names is not a description language construct. It is an

analysis language, i.e., an informal natural language, here English, construct. As such it is being used by the
domain analyzer cum describer who “applies” it to an observed endurant and notes down, in her mind or jots it
on a scratch of paper, her decision as to appropriate [new] type names.

Example 13. Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus observed to consists of
• an aggregate of a road net, rn:RN, and
• an aggregate set of automobiles, sa:SA:

that is:
• record_Cartesian_part_type_names(rt:RT) = {ηRN,ηSA}

where the type name ηRT was – and the type names ηRN and ηSA are – coined, i.e., more-or-less freely chosen,
by the domain analyzer cum describer •

7.1.3.1.4 Part Sets.

Characterization 17. Part Sets: Part sets are those compound parts which are observed to consist of an
indefinite number of zero, one or more parts •

We introduce the informal presentation language predicate is_part_set to hold for compound parts e if
is_part_set(e) holds.

Once a part, say e:E, has been analyzed into a part set we inquire as to the set of parts and their type of which
it consists. The inquiry: record_part_set_part_type_names, we decide, then yields the (single) type of the
constituent parts.

Schema 2. record-part-set-part-type-names
value

record_part_set_part_type_names: E → TPs×TP
record_part_set_part_type_names(e:E) as (η Ps,η P) •

Here the name of the value, e, and the type names η Ps and η P are coined, i.e., more-or-less freely chosen, by the
domain analyzer cum describer •

Please also note that record_part_set_part_type_names is not a description language construct. It is an
analysis language, i.e., an informal natural language, here English, construct. As such it is being used by the
domain analyzer cum describer who “applies” in to an observed endurant and notes down, in her mind or jots it
on a scratch of paper, her decision as to appropriate [new] type names.
14We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 11

Example 14. Part Sets: Road Transport : The road transport contains a set of automobiles. The part set type
name has been chosen to be SA. It is then determined (i.e., analyzed) that SA is a set of Automobile of type A

• record_part_set_part_type_names(sa:SA) = (η As,η A) •

7.1.3.1.5 Compound Observers. Once the domain analyzer cum describer has decided upon the names of atomic
and compound parts, obs_erver functions can be applied to Cartesian and part set, e:E, parts:

Schema 3. Describe-Cartesians-and-Part-Set-Parts

value
let {η P1,η P2,...,η Pn} = record_Cartesian_part_type_names(e:E) in
“type

P1, P2, ..., Pn;
value

obs_P1: E→P1, obs_P2: E→P2,...n obs_Pn: E→Pn ”
[respectively:]

let (η Ps,η P) = record_part_set_part_type_names(e:E) in
“type

P, Ps = P-set,
value

obs_Ps: E→Ps ”
end end •

The “...” texts are the RSL texts “generated”, i.e., written down, by the domain describer. They are domain model
specification units. The “surrounding” RSL-like texts are not written down as phrases, elements, of the domain
description. They are elements of the domain describers’ “notice board”, and, as such, elements of the development
of domain models. We have introduced a core domain modelling tool the obs_... observer function, one to be
“applied” mentally by the domain describer, and one that appears in (RSL) domain descriptions The obs_... observer
function is “applied” by the domain describer, it is not a computable function.
Please also note that Describe-Cartesians-and-Part-Set-Parts schema, 3, is not a description language

construct. It is an analysis language, i.e., an informal natural language, here English, construct. As such it is being
used by the domain analyzer cum describer who “applies” in to an observed endurant and notes down, but now
in a final form, elements, that is domain description units.

• • •

A major step of the development of domain models has now been presented: that of the analysis & description of
the external qualities of domains.
Schema 3 is the first manifestation of the domain analysis & description method leading to actual domain

description elements.
From unveiling a science of domains we have “arrived” at an engineering of domain descriptions.

7.1.4 States.

Characterization 18. States: By a state we shall mean any subset of the parts of a domain •

Example 15. Road Transport State:
variable

hs :AH := obs_AH(obs_RN(rt)),
ls :AL := obs_AL(obs_RN(rt)),
as :SA := obs_SA(rt),

, Vol. 1, No. 1, Article . Publication date: March 2024.

12 • Dines Bjørner

σ :(H|L|A)-set := hs∪ls∪as •

We have chosen to model domain states as variables rather than as values. The reason for this is that the values
of monitorable, including biddable part attributes15 can change, and that domains are often extended and “shrunk”
by the addition, respectively removal of parts:

Example 16. Road Transport Development : adding or removing hubs, links and automobiles •

We omit coverage of the aspect of bidding changes to monitorable part attributes.

7.1.5 Validity of Endurant Observations. We remind the reader that the obs_erver functions, as all later such
functions:uid_-,mereo_- and attr_-functions, are applied by humans and that the outcome of these “applications”
is the result of human choices, and possibly biased by inexperience, taste, preference, bias, etc. How do we know
whether a domain analyzer & describer’s description of domain parts is valid ? Whether relevantly identified
parts are modeled reasonably wrt. being atomic, Cartesians or part sets Whether all relevant endurants have
been identified ? Etc. The short answer is: we never know. Our models are conjectures and may be refuted [38]. A
social process of peer reviews, by domain stakeholders and other domain modelers is needed – as may a process
of verifying16 properties of the domain description held up against claimed properties of the (real) domain.

7.1.6 Summary of Analysis Predicates. Characterizations 6–17 imply the following analysis predicates (Defn.:δ ,
pageπ):

• Endurant Ontology:
– is_entity, δ6π 6
– is_entity, δ6π 6
– is_entity, δ6π 6
– is_endurant, δ7π 6
– is_perdurant, δ8π 6
– is_solid, δ11π 8

– is_fluid, δ12π 8
– is_part, δ13π 8
– is_atomic, δ14π 9
– is_compound, δ15π 9
– is_Cartesian, δ16π 9
– is_part_set, δ17π 10

We remind the reader that the above predicates represent “formulas” in the presentation, not the description,
language. They are not RSL clauses. They are in the mind of the domain analyzers cum describers. They are
“executed” by such persons. Their result, whether true, false or chaos17, are noted by these persons and determine
their next step of domain analysis.

7.1.7 “Trees are Not Recursive”. A ‘fact’, that seems to surprise many, is that parts are not “recursive”. Yes, in all
our domain modelling experiments, [17], we have not come across the need for recursively observing compound
parts. Trees, for example, are not recursive in this sense. Trees have roots. Sub-trees not. Banyan trees18 have
several “intertwined trees”. But it would be ‘twisting’ the modelling to try fit a description of such trees to a
‘recursion wim’ ! Instead, trees are defined as nets, such as are road nets, where these nets then satisfy certain
constraints [17, Chapter B].

15The concepts of monitorable, including biddable part attributes is treated in Sect. 7.2.3.2.
16testing, model checking and theorem proving
17The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for its application does not hold.
18https://www.britannica.com/plant/banyan

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 13

7.2 Internal Qualities – Intangibles
The previous section has unveiled an ontology of the external qualities of endurants. The unveiling consisted of
two elements: a set of analysis predicates, predicates 6–17, and analysis functions, schemas 1–2, and a pair of
description functions, schema 3.
The application of description functions result in RSL text.
That text conveys certain properties of domains: that they consists of such-and-such endurants, notably parts,

and that these endurants “derive” from other endurants. But the RSL description texts do not “give flesh & blood”
to these endurants. Questions like: ‘what are their spatial extents ?’, ‘how much do the weigh ?’, ‘what colour do
they have ?’, et cetera, are left unanswered. In the present section we shall address such issues. We call them
internal qualities.

Characterization 19. Internal Qualities: Internal qualities are those properties [of endurants] that do not
occupy space but can be measured or spoken about •

Example 17. Internal qualities: Examples of internal qualities are the unique identity of a part, the mereological
relation of parts to other parts, and the endurant attributes such as temperature, length, colour, etc. •

This section therefore introduces a number of domain description tools:
• uid_: the unique identifier observer of parts;
• mereo_: the mereology observer of parts;
• attr_: (zero,) one or more attribute observers of endurants; and
• attributes_: the attribute query of endurants.

7.2.1 Unique Identity. Ontological Choice:We postulate that separately discernible parts have unique identify.
The issue, really, is a philosophical one. We refer to [14, Sects. 2.2.2.3–2.2.2.4, pages 14–15] for a discussion of the
existence and uniqueness of entities •

Characterization 20. Unique Identity : A unique identity is an immaterial property that distinguishes any
two spatially distinct solids19 •

The unique identity of a part p of type P is obtained by the postulated observer uid_P:

Schema 4. Describe-Unique-Identity-Part-Observer

“type
P,PI

value
uid_P: P→ PI” •

Here PI is the type of the unique identifiers of parts of type P.

Example 18. Unique Road Transport Identifiers: The unique identifierss of a road transport, rt:RT, consists of
the unique identifiers of the

• road transport – rti:RTI,
• (Cartesian) road net – rni:RNI,
• (set of) automobiles – sa:SAI,
• automobile, ai:AI,

• (set of) hubs, hai:AHI,
• (set of) links, lai:LAI,
• hub, hi:HI, and
• link, li:LI,

19For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique identity. The pragmatics is that
we, in our extensive modelling experiments have not found a need for such ascription !

, Vol. 1, No. 1, Article . Publication date: March 2024.

14 • Dines Bjørner

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer cum describer –
though, as You can see, these names were here formed by “suffixing” Is to relevant part names •

We have thus introduced a core domain modelling tool the uid_... observer function, one to be “applied”
mentally by the domain describer, and one that appears in (RSL) domain descriptions The uid_... observer
function is “applied” by the domain describer, it is not a computable function.

7.2.1.1 Uniqueness of Parts. No two parts have the same unique identifier.

Example 19. Road Transport Uniqueness:
variable

hsuids :HI-set := { uid_H(h) | h:H•u ∈ σ }

lsuids :LI-set := { uid_L(l) | l:L•u ∈ σ }

asuids :AI-set := { uid_A(a) | a:A•u ∈ σ }

σuids :(HI|LI|AI)-set := { uid_(H|L|A)(u) | u:(H|L|A)•u ∈ σ }

axiom
□ card σ = card σuids • For σ see Sect. 7.1.4.

We have chosen, for the same reason as given in Sect. 7.1.4, to model a unique identifier state. The □ [always]
prefix in the axiom then expresses that changes of parts or addition of parts to and deletions of parts from the
domain shall maintain their uniqueness over time (i.e., always).

7.2.2 Mereology. The concept of mereology is due to the Polish mathematician, logician and philosopher
Stanisław Leśniewski (1886–1939) [10; 43].

Characterization 21. Mereology : Mereology is a theory of [endurant] part-hood relations: of the relations
of an [endurant] parts to a whole and the relations of [endurant] parts to [endurant] parts within that whole •

Ontological Choice: Stanisław Leśniewski was not satisfied with Bertrand Russell’s “repair” of Gottlob
Frege’s axiom systems for set theory. Instead he put forward his axiom system for, as he called it, mereology.
Both as a mathematical theory and as a philosophical reasoning •

Example 20. Mereology : Examples of mereologies are that a link is topologically connected to exactly one or,
usually, two specific hubs, that hubs are connected to zero, one or more specific links, and that links and hubs are
open to the traffic of specific subsets of automobiles •

Mereologies can be expressed in terms of unique identifiers.

Example 21. Mereology Representation: For our ‘running road transport example’ the mereologies of links,
hubs and automobiles can thus be expressed as follows:

• mereo_L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the link connects, i.e.,
are in hsuids ;

• mereo_H(h) = {li1,li2,...,lin} where li1,li2,...,lin are the unique identifiers of the links that are imminent upon
(i.e., emanates from) the hub, i.e., are in lsuids ; and

• mereo_A(a) = {ri1,ri2,...,rim} where ri1,ri2,...,rim are unique identifiers of the road (hub and link) elements
that make up the road net, i.e., are in hsuids∪lsuids •

Once the unique identifiers of all parts of a domain has been described we can analyses and describe their
mereologies. The inquiry: mereo_P(p) yields a mereology type (name), say PMer, and its description20:
20Cf. Sect. 7.1.3.1.5

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 15

Schema 5. Describe-Mereology

“type
PMer =M(PI1,PI2,...,PIm)

value
mereo_P: P → PMer

axiom
A(pm:PMer)” •

where M(PI1,PI2,...,PIm) is a type expression over unique identifier types of the domain; mereo_P is the
mereology observer function for parts p:P; and A(pm:PMer) is an axiom that secures that the unique identifiers
of any part are indeed of parts of the domain.

7.2.3 Attributes. Attributes are what finally gives “life” to endurants: The external qualities “only” named and
gave structure to their atomic or compound types. The internal qualities of uniqueness and mereology are
intangible quantities. The internal quality of attributes gives “flesh & blood” to endurants: they let us express
endurant properties that we can more easily, i.e., concretely, relate to.

7.2.3.1 General.

Characterization 22. Attributes: Attributes are properties of endurants that can be measured either
physically (by means of length (ruler) and spatial quantity measuring equipment, electronically, chemically, or
otherwise) or can be objectively spoken about •

Ontological Choice: First some empirical observation: in reasoning about “the world around us” we express
its properties in terms of predicates. These predicates, for example: “that building’s wall is red” , building refers to
an endurant part whereas wall and red refers to attributes. Now the “rub”: endurant attributes is what give “flesh
& blood” to domains •21
Attributes are of types and, accordingly have values.

We postulate an informal domain analysis function, record_attribute_type_names: The domain analyzer,
in observing a part, p:P , analyzes it into the set of attribute names of parts p:P

Schema 6. record-attribute-type-names

value
record_attribute_type_names: P→ ηT-set
record_attribute_type_names(p:P) as ηT-set •

Example 22. Road Net Attributes, I: Examples of attributes are: hubs have states, hσ :HΣ: the set of pairs of
link identifiers, (f li,t li), of the links f rom and to which automobiles may enter, respectively leave the hub; and
hubs have state spaces, hω:HΩ: the set of hub states “signaling” which states are open/closed, i.e., green/red;
links that have lengths, LEN; and automobiles have road net positions, APos, either at a hub, atH, or on a link,
onL, some fraction, f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub, identified by
thi. Hubs and links have histories: time-stamped, chronologically ordered sequences of automobiles entering and
leaving links and hubs, with automobile histories similarly recording hubs and links entered and left.

21Editorial remark: I am not yet satisfied with this reasoning. The issue is: to force the concept of attributes to be justified philosophically, as
an inevitable element of any world description, and not being forced upon us solely from empirical evidence.

, Vol. 1, No. 1, Article . Publication date: March 2024.

16 • Dines Bjørner

type
HΣ = (LI×LI)-set
HΩ = HΣ-set
LEN = Nat m
APos = atH | onL
atH :: HI
onL :: LI × (fhi:HI × f:Real × thi:HI)
HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗

value

attr_HΣ: H → HΣ
attr_HΩ: H → HΩ
attr_LEN: L → LEN
attr_APos: A → APos
attr_HHis: H→ HHis
attr_LHis: L → LHis
attr_AHis: A → AHis

axiom
∀ (li,(fhi,f,thi)):onL • 0<f<1

∧li∈lsuids∧{fhi,thi}⊆hsuids∧... •

Schema 7. Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record_attribute_type_names(e:E) in
“ type

A1, A2, ..., An
value

attr__A1: E → A1, attr__A2: E → A2, ..., attr__An: E → An
axiom

∀ a1:A1, a2:A2, ..., an:An: A(a1,a2,...,an) ”
end •

7.2.3.2 Michael A. Jackson’s Attribute Categories. Michael A. Jackson [33] has suggested a hierarchy of at-
tribute categories: from static (is_static22) to dynamic (is_dynamic23) values – and within the dynamic value
category: inert values (is_inert24), reactive values (is_reactive25), active values (is_active26) – and within
the dynamic active value category: autonomous values (is_autonomous27), biddable values (is_biddable28), and
programmable values (is_programmable29) . We postulate informal domain analysis predicates, “performed” by
the domain analyzer:
value

is_static,is_autonomous,is_biddable,is_programmable [etc.]: η T→Bool

We refer to [33] and [14] [Chapter 5, Sect. 5.4.2.3] for details. We suggest a minor revision of Michael A. Jackson’s
attribute categorization, see left side of Fig. 2. We single out the inert from the ontology of Fig. 2, left side.
Inert attributes seem to be “set externally” to the endurant. So we now distinguish between is_external and
is_internal dynamic attributes. We summarize Jackson’s attribute and our revised categorization in Fig. 2.
This distinction has [pragmatic] consequences for how we treat arguments of the behaviours of parts, cf.

Sect. 8.5.1 (page 21).

22static: values are constants, cannot change
23dynamic: values are variable, can change
24inert: values can only change as the result of external stimuli where these stimuli prescribe new values
25reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from outside the domain of interest
or from other endurants.
26active: values can change (also) on their own volition
27autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law onto themselves and their
surroundings”.
28biddable: values are prescribed but may fail to be observed as such
29programmable: values can be prescribed

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 17

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Fig. 2. Michael Jackson’s [Revised] Attribute Categories

Example 23. Road Net Attributes, II: The link length and hub state space attributes are static, hub states and
automobile positions programmable. Automobile speed and acceleration attributes, which we do not model, are
monitorable •

The attributes categorization determines, in the next major section on perdurants, the treatment of hub, link and
automobile behaviours.

7.2.3.3 Analytic Attribute Extraction Functions:. For later purpose we need characterize three specific attribute
category extraction functions: static_attributes, monitorable_attributes, and programmable_attributes:

value
p:P
tns = record_attribute_type_names(p)

static_attributes: ηT -set → ηT -set
static_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_static(tn) }

inert_attributes: ηT -set→ ηT -set
inert_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_inert(tn) }

monitorable_attributes ηT -set→ ηT -set
monitorable_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_monitorable(tn) }

programmable_attributes ηT -set → ηT -set
programmable_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_programmable(tn) }

is_monitorable: T → Bool
is_monitorable(t) ≡ ∼is_static(t) ∧ ∼is_inert(t) ∧ ∼is_programmble(t)

Please be reminded that these functions are informal. They are part of the presentation language. Do not be
cofused by their RSL-like appearance.

, Vol. 1, No. 1, Article . Publication date: March 2024.

18 • Dines Bjørner

7.3 Intentional Pull
Ontological Choice: In [40, pages 167–168] Sørlander argues wrt. “how can entities be the source of forces ?” and
thus reasons for gravitational pull. That same kind of reasoning, with proper substitution of terms, leads us to the
concept of intentional pull •
Two or more parts of different sorts, but with overlapping sets of intents30 may excert an intentional “pull” on
one another. This intentional “pull” may take many forms. Let px : X and py : Y be two parts of different sorts
(X ,Y), and with common intent , ι. Manifestations of these, their common intent must somehow be subject to
constraints, and these must be expressed predicatively .

When a compound artifact models “itself” as put together with a number of other endurants then it does have
an intentionality and the components’ individual intentionalities does, i.e., shall relate to that.

Example 24. Road Transport Intentionality : Automobiles include the intent of ’transport’, and so do hubs
and links.Manifestations of "transport" are reflected in hubs, links and automobiles having the history attribute.
The intentional “pull” of these manifestations is this: For every automobile, if it records being in some hub or on
some link at time τ , then the designated hub, respectively link, records exactly that automobile; and vice versa:
for every hub [link], if it records the visit of some automobile at time τ , then the designated automobile records
exactly that hub [link]. We leave the formalization of the above to the reader •

Example 25. Double-entry Bookkeeping: Another example of intentional “pull” is that of double-entry book-
keeping. Here the income/expense ledger must balance the actives/passives ledger •

Example 26. The Henry George Theorem.: The Henry George theorem states that under certain conditions,
aggregate spending by government on public goods will increase aggregate rent based on land value (land rent)
more than that amount, with the benefit of the last marginal investment equaling its cost •

31, 32

7.4 Summary of Endurants
We have completed our treatment of endurants. That treatment was based on an ontology for the observable
phenomena of domains – such as we have delineated the concept of domains. The treatment was crucially based
on an ontology for the structure of domain phenomena, and, in a sense, “alternated” between analysis predicates,
analysis functions, and description functions. We have carefully justified this ontology in ‘Ontological Choice’
paragraphs

8 PERDURANT CONCEPTS
The main contribution of this section is that of transcendentally deducing perdurants from endurant parts, in
particular behaviours “of” parts.

Major perdurants are those of actions, events and behaviours with behaviours generally being sets of sequences
of actions, events and behaviours.

30Intent: purpose; God-given or human-imposed !
31Stiglitz, Joseph (1977). “The Theory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The Economics of Public Services. Palgrave
Macmillan, London. pp. 274âĂŞ333. doi:10.1007/978-1-349-02917-4_12. ISBN 978-1-349-02919-8.
32Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist. His writing was immensely
popular in 19th-century America and sparked several reform movements of the Progressive Era. He inspired the economic philosophy known
as Georgism, the belief that people should own the value they produce themselves, but that the economic value of land (including natural
resources) should belong equally to all members of society. George famously argued that a single tax on land values would create a more
productive and just society.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 19

8.1 “Morphing” Parts into Behaviours
As already indicated we shall transcendentally deduce (perdurant) behaviours from those (endurant) parts
which we, as domain analyzers cum describers, have endowed with all three kinds of internal qualities: unique
identifiers, mereologies and attributes. We shall use the CSP [30] constructs of RSL (derived from RSL [25]) to
model concurrent behaviours.

8.2 Transcendental Deduction
Characterization 23. Transcendental: By transcendental we shall understand the philosophical notion: the a

priori or intuitive basis of knowledge, independent of experience •

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but also determines
rational thought.

Characterization 24. Transcendental Deduction: By a transcendental deduction we shall understand the
philosophical notion: a transcendental “conversion” of one kind of knowledge into a seemingly different kind of
knowledge •

Example 27. Transcendental Deductions – Informal Examples:Wegive some intuitive examples of transcendental
deductions. They are from the “domain” of programming languages. There is the syntax of a programming
language, and there are the programs that supposedly adhere to this syntax. Given that, the following are now
transcendental deductions.

The software tool, a syntax checker , that takes a program and checks whether it satisfies the syntax, including
the statically decidable context conditions, i.e., the statics semantics – such a tool is one of several forms of
transcendental deductions.
The software tools, an automatic theorem prover and a model checker , for example SPIN [31], that takes a

program and some theorem, respectively a Promela statement, and proves, respectively checks, the program
correct with respect the theorem, or the statement.
A compiler and an interpreter for any programming language.
Yes, indeed, any abstract interpretation [22] reflects a transcendental deduction: firstly, these examples show

that there are many transcendental deductions; secondly, they show that there is no single-most preferred
transcendental deduction •

Ontological Choice: So this, then, is, in a sense, our “final” ontological choice: that of transcendentally deduce
behaviours from, or of, parts •

8.3 Actors – A Synopsis
This section provides a summary overview.

Characterization 25. Actors: An actor is anything that can initiate an action, event or behaviour •

8.3.1 Action.

Characterization 26. Actions: An action is a function that can purposefully change a state •

Example 28. Road Net Actions: These are some road transport actions: an automobile leaving a hub, entering
a link; leaving a link, entering a hubs; entering the road net; and leaving the road net •

8.3.2 Event.

Characterization 27. Events: An event is a function that surreptitiously changes a state •

, Vol. 1, No. 1, Article . Publication date: March 2024.

20 • Dines Bjørner

Example 29. Road Net Events: These are some road net events: The blocking of a link due to a mud slide; the
failing of a hub traffic signal due to power outage; an automobile failing to drive; and the blocking of a link due
to an automobile accident •

We shall not formalize events.

8.3.3 Behaviour.

Characterization 28. Behaviours: Behaviours are sets of sequences of actions, events and behaviours •

Concurrency is modeled by the sets of sequences. Synchronization and communication of behaviours are effected
by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.

Example 30. Road Net Traffic: Road net traffic can be seen as a behaviour of all the behaviours of automobiles,
where each automobile behaviour is seen as sequence of start, stop, turn right, turn left, etc., actions; of all the
behaviours of links where each link behaviour is seen as a set of sequences (i.e., behaviours) of “following” the
link entering, link leaving, and movement of automobiles on the link; of all the behaviours of hubs (etc.); of the
behaviour of the aggregate of roads, viz. The Department of Roads, and of the behaviour of the aggregate of
automobiles, viz, The Department of Vehicles.

8.4 Channel
Characterization 29. Channel: A channel is anything that allows synchronization and communication of

values between behaviours •

Schema 8. Channel

We suggest the following schema for describing channels:
“channel { ch[{ui,uj}] | ui,ij:UI • ... } M

where ch is the describer-chosen name for an array of channels, ui,uj are channel array indices of the unique
identifiers, UI, of the chosen domain •

Example 31. Road Transport Interaction Channel:
channel { ch[{ui,uj}] | {ui,ij}:(HI|LI|AI)-set • ui,uj∧{ui,uj}⊆σuids } M

Channel array ch is indexed by a “pair” of distinct unique part identifiers of the domain. We shall later outline M,
the type of the “messages” communicated between behaviours •

8.5 Behaviours
We single out the perdurants of behaviours – as they relate directly to the parts of Sect. 7. The treatment is
“divided” into three sections.

8.5.1 Behaviour Signature.

Schema 9. Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name of the behaviour, Bp , and a
function type expression as indicated:

value
Bp : Uidp→33 Mereop→Sta_Valsp→Inert_Valsp→Mon_Refsp→Prgr_Valsp → { ch[{i,j}] | ... } Unit

33We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses_Schönfinkel#Further_reading (Curried https://en.wikipedi-
a.org/wiki/Currying) the function type

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 21

We explain:
• Uidp is the type of unique identifiers of part p, uid_P(p) = Uidp ;
• Mereop is the type of the mereology of part p, mereo_P(p) =Mereop ;
• Sta_Valsp is a Cartesian of the type of inert attributes of part p. Given record_attribute_type_names(p)
static_attributes(record_attribute_type_names(p)) yields Sta_Valsp ;

• Inert_Valsp is a Cartesian of the type of static attributes of partp. Given record_attribute_type_names(p)
inert_attributes(record_attribute_type_names(p)) yields Inert_Valsp ;

• Mon_Refsp is a Cartesian of the attr_ibute observer functions of the types of monitorable attributes
of part p. Given record_attribute_type_names(p) analysis function monitorable_attributes(re-
cord_attribute_type_names(p)) yieldsMon_Valsp ;

• Prgr_Valsp is a Cartesian of the type of programmable attributes of part p. Given record_attribu-
te_type_names(p) analysis function programmable_attributes(record_attribute_type_names(p)).
yields Prgr_Valsp ;

• { ch[{i,j}] | ... } specifies the channels over which part p behaviours, Bp , may communicate;
and:

• Unit is the type name for the () value34 •

The Cartesian arguments may “degenerate” to the non-Cartesian of no, or just one type identifier, In none, i.e., (),
then () may be skipped. If one, e.g., (a), then (a) is listed.

Example 32. Road Transport Behaviour Signatures:
value

hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)
→{ch[{uid_H(p),ai}]|ai:AI•ai∈asuid } Unit

link: LI→MereoL→(LEN×...)→(...)→(LHist×...)
→{ch[{uid_L(p),ai}]|ai:AI•ai∈asuid } Unit

automobile: AI→MereoA→(...)→(attr_AVel×attr_HAcc×...)→(APos×AHist×...)
→{ch[{uid_H(p),ri}]|ri:(HI|LI)•ri∈hsuid∪lsuid } Unit

Here we have suggested additional part attributes: monitorable automobile velocity and acceleration, AVel, AAcc,
and omitted other attributes •

8.5.2 Inert Arguments: Some Examples. Let us give some examples of inert attributes of automobiles. (i) Driving
uphill, one a level road, or downhill, excert some inert “drag” or “pull”. (ii) Velocity can be treated as a reactive
attribute – but it can be [approximately] calculated on the basis of, for example, these inert attributes: drag/pull
and accelerator pedal pressure, and the static engine power attribute.

8.5.3 Behaviour Invocation.

Schema 10. Behaviour Invocation

Behaviours are invoked as follows:
“Bp (uid_p (p))35

(mereo_P(p))
(attr_staA1(p),...,attr_staAs (p))

(attr_inertA1(p),...,attr_inertAi (p))
(attr_monA1,...,attr_monAm)

34– You may “read’ () as the value yielded by a statement, including a never-terminating function

, Vol. 1, No. 1, Article . Publication date: March 2024.

22 • Dines Bjørner

(attr_prgA1(p),...,attr_prgAp (p))”

• All arguments are passed by value.
• The uid value is never changed.
• The mereology value is usually not changed.
• The static attribute values are fixed, never changed.
• The inert attribute values are fixed, but can be updated by receiving explicit input communications.
• The monitorable attribute values are functions, i.e., it is as if the “actual” monitorable values are passed by
name !

• The programmable attribute values are usually changed, “updated”, by actions described in the behaviour
definition •

8.5.4 Argument References. Within behaviour descriptions, see next section, references are made to the behaviour
arguments. References, a, to unique identifier, mereology, static and progammable attribute arguments yield their
value. References, a, to monitorable attribute arguments also yield their value. This value is an attr_A observer
function. To yield, i.e., read, the monitorable attribute value this function is applied to that behaviour’s uniquely
identified part, puid , in the global part state, σ . To update„ i.e., write, say, to a value v , for the case of a biddable,
monitorable attribute, that behaviour’s uniquely identified part, puid , in the global part state, σ , shall have part
puid ’s A attribute changed to v – with all other attribute values of puid unchanged. Common to both the read and
write functions is the retrieve part function:

(1) Given a unique part identifier, pi, assumed to be that of an existing domain part,
(2) retr_part reads the global [all parts] variable σ to retrieve that part p whose unique part identifier is pi.

value
2. retr_part: PI → P read
2. retr_part(pi) ≡ let p:P • p ∈ cσ ∧ uid_P(p)=pi in p end
1. pre: ∃ p:P • p ∈ cσ ∧ uid_P(p)=pi

You may think of the functions being illustrated in this section, Sect. 8.5.4, retr_part, read_A_from_P and
update_P_with_A, as “belonging” to the description language, but here suitably expressed for any domain, that
is, with suitable substitutions for A and P.

8.5.4.1 Evaluation of Monitorable Attributes.
(3) Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A be a monitorable attribute

of p, and let ηA be the name of attribute A.
(4) Evaluation of the [current] attribute A value of p is defined by function read_A_from_P.

value
3. pi:PI, a:A, ηA:ηT
4. read_A_from_P: PI × T→ read σ A
4. read_A(pi,ηA) ≡ attr_A(retr_part(pi))

8.5.4.2 Update of Biddable Attributes.
(5) The update of a monitorable attribute A, with attribute name ηA of part p, identified by pi, to a new value

writes to the global part state σ .
(6) Part p is retrieved from the global state.
(7) A new part, p′ is formed such that p′ is like part p:

35We show the arguments of the invocation on separate lines only for readability. That is: normally we show the invocation arguments as
B(...)(...)(...)(...)(...).

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 23

(a) same unique identifier,
(b) same mereology,
(c) same attributes values,
(d) except for A.

(8) That new p ′ replaces p in σ .
value
5. σ , a:A, pi:PI, ηA:ηT

5. update_P_with_A: PI × A × ηT→ write σ
5. update_P_with_A(pi,a,ηA) ≡
6. let p = retr_part(pi) in
7. let p′:P •

7a. uid_P(p′)=pi
7b. ∧ mereo_P(p)=mereo_P(p′)
7c. ∧ ∀ ηA′ ∈ record_attribute_type_names(p)\{ηA} ⇒ attr_A′(p)=attr_A′(p′)
7d. ∧ attr_A(p′)=a in
8. σ := cσ \ {p} ∪ {p′}
5. end end
6. pre: ∃ p:P • p ∈ cσ ∧ uid_P(p)=pi

8.5.5 Behaviour Description – Examples. Behaviour descriptions rely strongly on CSPs’ [30] expressivity. Leaving
out some details (_, ‘...’), and without “further ado” , we exemplify.

Example 33. Automobile Behaviour at Hub:

(9) We abstract automobile behaviour at a Hub (hi).
(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.

9 automobile(ai)(ris)(...)(atH(hi),ahis,) ≡
9a automobile_remains_in_hub(ai)(ris)(...)(atH(hi),ahis,)
9b ⌈⌉

9c automobile_leaving_hub(ai)(ris)(...)(atH(hi),ahis,)
9d ⌈⌉

9e automobile_stop(ai)(ris)(...)(atH(hi),ahis,)

(10) [9a] The automobile remains in the hub:
(a) time is recorded,
(b) the automobile remains at that hub, “idling”,
(c) informing (“first”) the hub behaviour.

10 automobile_remains_in_hub(ai)(ris)(...)(atH(hi),ahis,) ≡
10a let τ = record_TIME in
10c ch[{ai,hi}] ! τ ;
10b automobile(ai)(ris)(...)(atH(hi),⟨(τ ,hi)⟩̂ahis,) end

, Vol. 1, No. 1, Article . Publication date: March 2024.

24 • Dines Bjørner

(11) [9c] The automobile leaves the hub entering link li:
(a) time is recorded;
(b) hub is informed of automobile leaving and link that it is entering;
(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the vehicle behaviour positioned

at the very beginning (0) of that link.
11 automobile_leaving_hub(ai)({li}∪ris)(...)(atH(hi),ahis,) ≡
11a let τ = record_TIME in
11b (ch[{ai,hi}] ! τ ∥ ch[{ai,li}] ! τ) ;
11c automobile(ai)(ris)(...)(onL(li,(hi,0,)),⟨(τ ,li)⟩̂ahis,) end
11 pre: [hub is not isolated]

The choice of link entered is here expressed (11) as a non-deterministic choice36. One can model the leave
hub/enter link otherwise.
(12) [9e] Or the automobile “disappears — off the radar” !

12 automobile_stop(ai)(ris),(...)(atH(hi),ahis,) ≡ stop •

8.6 Behaviour Initialization.
For every manifest part it must be described how its behaviour is initialized.

Example 34. Road Transport Initialization: We “wrap up” the main example of this paper: We omit treatment
of monitorable attributes.
(13) Let us refer to the system initialization as an action.
(14) All hubs are initialized,
(15) all links are initialized, and
(16) all automobiles are initialized.

value
13. rts_initialisation: Unit → Unit
13. rts_initialisation() ≡
14. ∥ { hub(uid_H(l))(mereo_H(l))(attr_HΩ(l),...)(attr_HΣ(l),...)| h:H • h ∈ hs }
15. ∥ ∥ { link(uid_L(l))(mereo_L(l))(attr_LEN(l),...)(attr_LΣ(l),...)| l:L • l ∈ ls }
16. ∥ ∥ { automobile(uid_A(a))(mereo_A(a))(attr_APos(a)attr_AHis(a),...) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls,as we refer to Sect. 7.1.4 •

9 CONCLUSION
We have summarized a method to be used by [human] domain analyzers cum describers in studying and modelling
domains. Our previous publications [12–14] have, with this paper, found its most recent, we risk to say, for us,
final form.
Of course, domain models can be developed without the calculi presented in this paper. And was for many

years. From the early 1990s a number of formal models of railways were worked out [4–6; 19; 27]. The problem,
though, was still, between 1992 and 2016, “where to begin, how to proceed and when to end” . The domain analysis &
description ontology and, hence calculus, of this paper shows how. The systematic approach to domain modelling
of this ontology and calculus has stood its test of time. The Internet ‘publication’ [18] presents 19 domain
models from the 2007–2024 period.
36– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can never leave isolated hubs.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Domain Modelling • 25

9.1 Previous Literature
To the best of my knowledge there is no prior, comparable publications in the field of domain science and
engineering. Closest would be Michael A. Jackson’s [35]. Well, most computer scientists working in the field
of correctness of programs, from somewhat “early on”, stressed the importance of making proper assumptions
about the domain, They would then express these “in-line”, as appropriate predicates, with their proofs. Michael
A. Jackson, lifted this, to a systematic treatment of the domain in his triplet ‘Problem Frame Approach’: program,
machine, domain [34]. But Jackson did not lift his problem frame concern into a proper study of domains.

9.2 Domain Facets
There is more to domain modelling than covered in this paper. In [9] and in [14, Chapter 8] we cover the concept
of domain facets. General examples of domain facets are support technologies, rules & regulations, scripts, license
languages, management & organization, and human behaviour .

9.3 Perspectives
Domain models can be developed for either of a number of reasons:

• (i) in order to understand a human-artifact domain;
• (ii) in order to re-engineer the business processes of a human-artifact domain; or
• (iii) in order to develop requirements prescriptions and, subsequently software application “within” that
domain.

[(ii)] We refer to [28; 29] and [7, Vol. 3, Chapter 19, pages 404–412] for the concept of business process engineering.
[(iii)] We refer to [14, Chapter 9] for the concept of requirements engineering.

9.4 The Semantics of Domain Models
The meaning of domain models, such as we describe them in this paper, is, “of course”, the actual, real domain
“out there” ! One could, and, perhaps one should, formulate a mathematical semantics of the models, that is, of the
is_..., obs_..., uid_..., mereo_... and attr_... analysis and description functions and what they entail (e.g., the
type name labels: ηT’s; etc.). An early such semantics description is given in [11].

9.5 Further on Domain Modelling
Additional facets of domain modelling are covered in [8] and [14, Chapter 8: Domain Facets.]

9.6 Software Development
[8] and [14, Chapter 9 Requirements] show how to develop Requirements prescriptions fromDomain descriptions.
[7] shows how to develop Software designs from Requirements prescriptions.

9.7 Modeling
Domain descriptions, such as outlined in this paper, are models of domains, that is, of some reality. They need
not necessarily lead to or be motivated by possible development of software for such domains. They can be
experimentally researched and developed just for the sake of understanding domains in which man has had an
significantly influence. They are models. We refer to [23] for complementary modeling based on Petri nets. The
current author is fascinated by the interplay between graphical and textual descriptions of HERAKLIT, well, in
general Petri Nets.

, Vol. 1, No. 1, Article . Publication date: March 2024.

26 • Dines Bjørner

9.8 Philosophy of Computing
The Danish philosopher Kai Sørlander [39–42] has shown that there is a foundation in philosophy for domain
analysis and description. We refer to [15, Chapter 2] for a summary of his findings.

REFERENCES
[1] H. Bekič, D. Bjørner, W. Henhapl, C.B. Jones, and P. Lucas. A Formal Definition of a PL/I Subset. Technical Report 25.139, Vienna,

Austria, December 1974.
[2] Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version III. IBM Laboratory, Vienna, 1969.
[3] D. Bjørner and O. Oest. Towards a Formal Description of Ada, volume 98 of LNCS. Springer–Verlag, 1980.
[4] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC Symposium on Control in

Transportation Systems, pages 1–12, Technical University, Braunschweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und
Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

[5] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software Engineering. In CTS2003: 10th
IFAC Symposium on Control in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo,
Japan. Editors: S. Tsugawa and M. Aoki. www2.imm.dtu.dk/~dibj/ifac-dynamics.pdf .

[6] Dines Bjørner. NewResults and Trends in Formal Techniques for theDevelopment of Software for Transportation Systems. In FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. Institut für Verkehrssicherheit und Automatisierungstechnik,
Techn.Univ. of Braunschweig, Germany, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany. www2.imm.dtu.dk/~dibj/dines-amore.pdf .

[7] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification of Systems and Languages; Vol. 3: Domains,
Requirements and Software Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, Heidelberg, Germany, 2006.

[8] Dines Bjørner. From Domains to Requirements www.imm.dtu.dk/~dibj/2008/ugo/ugo65.pdf . In Montanari Festschrift, volume 5065
of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008.
Springer.

[9] Dines Bjørner. Domain Engineering. In Paul Boca, Jonathan Bowen, and Jawed Siddiqi, editors, Formal Methods: State of the Art and
New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, December 2009. Springer.

[10] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. InMereology and the Sciences, Synthese Library (eds. Claudio
Calosi and Pierluigi Graziani), pages 323–357, Amsterdam, The Netherlands, October 2014. Springer. https://www.imm.dtu.dk/~dibj/
2011/urbino/urbino-colour.pdf .

[11] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model www.imm.dtu.dk/~dibj/2014/kanazawa/
kanazawa-p.pdf . In Shusaku Iida and José Meseguer and Kazuhiro Ogata, editor, Specification, Algebra, and Software: A Festschrift
Symposium in Honor of Kokichi Futatsugi. Springer, Heidelberg, Garmany, May 2014.

[12] Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf . Formal Aspects of
Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[13] Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modeling Languages. www.imm.dtu.dk/~dibj/2018/tosem/
Bjorner-TOSEM.pdf . ACM Trans. on Software Engineering and Methodology, 28(2):66 pages, March 2019.

[14] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS Monographs in Theoretical Computer
Science. Springer, Heidelberg, Germany, 2021. A revised version of this book is [16].

[15] Dines Bjørner. Domain Modelling – A Primer. A short version of [16]. xii+202 pages37, May 2023.
[16] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. Revised edition of [14]. xii+346 pages38,

January 2023.
[17] Dines Bjørner. Domain Models – A Compendium. Internet: http://www.imm.dtu.dk/˜dibj/2024/models/domain-models.pdf,

March 2024. This is a very early draft. 19 domain models are presented.
[18] Dines Bjørner. Domain Models – A Compendium. Internet: http://www.imm.dtu.dk/˜dibj/2024/models/domain-models.pdf,

March 2024. This is a very early draft. 19 domain models are presented.
[19] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for Domain Engineering. Relations to

Requirements Engineering and Software for Control Applications. In Integrated Design and Process Technology. Editors: Bernd Kraemer
and John C. Petterson, P.O.Box 1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science.
www2.imm.dtu.dk/~dibj/pasadena-25.pdf .

37This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS, Beijing and into Russian by Dr. Mikhail Chupilko,
ISP/RAS, Moscow
38Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version, omitting certain chapters, is [15]

, Vol. 1, No. 1, Article . Publication date: March 2024.

www2.imm.dtu.dk/~dibj/ifac-dynamics.pdf
www2.imm.dtu.dk/~dibj/dines-amore.pdf
www.imm.dtu.dk/~dibj/2008/ugo/ugo65.pdf
https://www.imm.dtu.dk/~dibj/2011/urbino/urbino-colour.pdf
https://www.imm.dtu.dk/~dibj/2011/urbino/urbino-colour.pdf
www.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf
www.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf
www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
www2.imm.dtu.dk/~dibj/pasadena-25.pdf

Domain Modelling • 27

[20] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61 of LNCS. Springer, Heidelberg,
Germany, 1978.

[21] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-Hall, London, England, 1982.
[22] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press, 2021.
[23] Peter Fettke and Wolfgang Reisig. Understanding the Digital World – Modeling with HERAKLIT. Springer, 2024. To be published.
[24] K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic Formal Method, Sara Burgerhartstraat 25,

P.O. Box 211, NL–1000 AE Amsterdam, The Netherlands, 2000. Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.
[25] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren Prehn, and

Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.
[26] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank Pedersen. The RAISE

Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.
[27] Chris W. George, Hung Dang Van, Tomasz Janowski, and Richard Moore. Case Studies using The RAISE Method. FACTS (Formal Aspects

of Computing: Theory and Software) and FME (Formal Methods Europe). Springer–Verlag, London, 2002. This book reports on a
number of case studies using RAISE (Rigorous Approach to Software Engineering). The case studies were done in the period 1994–2001
at UNU/IIST, the UN University’s International Institute for Software Technology, Macau (till 20 Dec., 1997, Chinese Teritory under
Portuguese administration, now a Special Administrative Region (SAR) of (the so–called People’s Republic of) China).

[28] Michael Hammer and James A. Champy. Reengineering the Corporation: A Manifesto for Business Revolution. HarperCollinsPublishers,
77–85 Fulham Palace Road, Hammersmith, London W6 8JB, UK, May 1993. 5 June 2001, Paperback.

[29] Michael Hammer and Stephen A. Stanton. The Reengineering Revolutiuon: The Handbook. HarperCollinsPublishers, 77–85 Fulham
Palace Road, Hammersmith, London W6 8JB, UK, 1996. Paperback.

[30] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-Hall
International, London, England, 1985. Published electronically: usingcsp.com/cspbook.pdf (2004).

[31] Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley, Reading, Massachusetts, 2003.
[32] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass., USA, April 2006. ISBN

0-262-10114-9.
[33] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices. ACM Press. Addison-Wesley,

Reading, England, 1995.
[34] Michael A. Jackson. Problem Frames — Analyzing and Structuring Software Development Problems. ACM Press, Pearson Education.

Addison-Wesley, England, 2001.
[35] Michael A. Jackson. Program Verification and System Dependability. In Paul Boca, Jonathan Bowen, and Jawed Siddiqi, editors, Formal

Methods: State of the Art and New Directions, pages 43–78, London, UK, December 2009. Springer.
[36] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary on Historical Principles. Clarendon Press,

Oxford, England, 1973, 1987. Two vols.
[37] R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall, London, Halsted Press/John Wiley, New

York, 1976.
[38] Karl R. Popper. Conjectures and Refutations. The Growth of Scientific Knowledge. Routledge and Kegan Paul Ltd. (Basic Books, Inc.), 39

Store Street, WC1E 7DD, London, England (New York, NY, USA), 1963,. . . ,1981.
[39] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deductions, with a foreword by Georg Henrik

von Wright]. Munksgaard · Rosinante, Copenhagen, Denmark, 1994. 168 pages.
[40] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, Copenhagen, Denmark, 2016. 233 pages.
[41] Kai Sørlander. Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær, Slagelse, Denmark, 2022. See [42].
[42] Kai Sørlander. The Structure of Pure Reason. Publisher to be decided, 2023. This is an English translation of [41] – done by Dines

Bjørner in collaboration with the author.
[43] Achille C. Varzi. On the Boundary between Mereology and Topology, pages 419–438. Hölder-Pichler-Tempsky, Vienna, 1994.
[44] James Charles Paul Woodcock and James Davies. Using Z: Specification, Proof and Refinement. Prentice Hall International Series in

Computer Science, London, England, 1996.

, Vol. 1, No. 1, Article . Publication date: March 2024.

	1 Domains
	1.1 What are They?
	1.2 Some Introductory Remarks
	1.2.1 A Discussion of Our Characterization of a Concept of Domain
	1.2.2 Formal Methods and Description Language
	1.2.3 Programming Languages versus Domain Semantics
	1.2.4 A New Universe

	2 Endurants and Perdurants, I
	3 A Domain Analysis & Description Ontology
	3.1 The Chosen Ontology
	3.2 Discussion of The Chosen Ontology

	4 The Name, Type and Value Concepts
	4.1 Names
	4.2 Types
	4.3 Values

	5 Phenomena and Entities
	6 Endurants and Perdurants, II
	6.1 Endurants
	6.2 Perdurants
	6.3 Ontological Choice

	7 External and Internal Endurant Qualities
	7.1 External Qualities – Tangibles
	7.1.1 The Universe of Discourse
	7.1.2 Solid and Fluid Endurants
	7.1.2.1 Solid [or Discrete] Endurants.
	7.1.2.2 Fluids.

	7.1.3 Parts and Living Species Endurants
	7.1.3.1 Parts.
	7.1.3.1.1 Atomic Parts.
	7.1.3.1.2 Compound Parts.
	7.1.3.1.3 Cartesians.
	7.1.3.1.4 Part Sets.
	7.1.3.1.5 Compound Observers.

	7.1.4 States
	7.1.5 Validity of Endurant Observations
	7.1.6 Summary of Analysis Predicates
	7.1.7 ``Trees are Not Recursive''

	7.2 Internal Qualities – Intangibles
	7.2.1 Unique Identity
	7.2.1.1 Uniqueness of Parts.

	7.2.2 Mereology
	7.2.3 Attributes
	7.2.3.1 General.
	7.2.3.2 Michael A. Jackson's Attribute Categories.
	7.2.3.3 Analytic Attribute Extraction Functions:.

	7.3 Intentional Pull
	7.4 Summary of Endurants

	8 Perdurant Concepts
	8.1 ``Morphing'' Parts into Behaviours
	8.2 Transcendental Deduction
	8.3 Actors – A Synopsis
	8.3.1 Action
	8.3.2 Event
	8.3.3 Behaviour

	8.4 Channel
	8.5 Behaviours
	8.5.1 Behaviour Signature
	8.5.2 Inert Arguments: Some Examples
	8.5.3 Behaviour Invocation
	8.5.4 Argument References
	8.5.4.1 Evaluation of Monitorable Attributes.
	8.5.4.2 Update of Biddable Attributes.

	8.5.5 Behaviour Description – Examples

	8.6 Behaviour Initialization.

	9 Conclusion
	9.1 Previous Literature
	9.2 Domain Facets
	9.3 Perspectives
	9.4 The Semantics of Domain Models
	9.5 Further on Domain Modelling
	9.6 Software Development
	9.7 Modeling
	9.8 Philosophy of Computing

	References

