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The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R:
In proofs of Software correctness,

with respect to Requirements,

assumptions are made with respect to the Domain.

We present a systematic method , its principles, procedures, techniques and tools, for efficiently analyzing & describing

domains.This paper is based on [Bjørner 2017, 2019, 2021]. It simplifies themethodology of these – as well as introduces
some novel presentation and description language concepts.

• • •

Alert: Before You start reading this paper, You are kindly informed of the following:

Highlight 0.1. What The Paper is All About : The Triptych Dogma, above, says it all: this paper is about a new
area of computing science – that of domains. It is about what domains are. How to model them. And their role in
software development. There are many “domain things” it is not about: it is not about ‘derived’ properties of domains –
beyond, for example, intentional pull [Sect. 8.3]. Such are left for studies of domains based on the kind of formal domain
descriptions such as those advocated by this paper •

Highlight 0.2. A Radically New Approach to Software Development :The Triptych Approach to Software Development ,
calls for software to be developed on the basis of requirements prescriptions, themselves developed on the basis of
domain descriptions. We furthermore advocate these specifications and their development be formal. That is: there are
formal methods for the development of either of these three kinds of specifications:

• Development of domain descriptions is outlined in this paper.
• Development of requirements, from domain descriptions, is outlined in [Bjørner 2021, Chapter 9].
• Development of software, from requirements prescriptions, is treated, extensively, in [Bjørner 2006].
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2 Dines Bjørner

The reader should understand that the current paper, with its insistence of strictly following a method, formally, is at
odds with current ‘software engineering’ practices. •

Highlight 0.3. Characterizations rather than Definitions: The object of domain study, analysis and description, i.e.,
the domains, are, necessarily, informal. A resulting domain description is formal. So the domain items being studied
and analyzed cannot be given a formal definition. Conventionally [so-called theoretical] computer scientists expect
and can seemingly only operate in a world of clearly defined concepts. Not so here. It is not possible. Hence we use
the term ‘characterization’ in lieu of ‘definition’ •

Highlight 0.4. Seemingly Fragmented Texts:The text of this paper is a sequence of enumerated sections, subsections,
sub-subsections and paragraphs, with short Highlights, Characterizations, Examples, Ontological Choices,
Prompts, Schemas and ordinary short texts. The brevity is intentional. Each and all of these units outline important
concepts. Each contain a meaning and can be read “in isolation” •

1 DOMAINS

We start by delineating the informal concept of domain,1

1.1 What are They ?

What do we mean by ‘domain’ ?

Characterization 1.1. Domain: By a domain we shall understand a rationally describable segment of a discrete

dynamics fragment of a human assisted reality: the world that we daily observe – in which we work and act, a reality
made significant by human-created entities. The domain embody endurants and perdurants •

Example 1.2. Some Domain Examples: A few, more-or-less self-explanatory examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-made dams, harbours,
locks, etc. – and their conveyage of materials (ships etc.) [Bjørner 2024, Chapter B].

• Road nets – with street segments and intersections, traffic lights and automobiles – and the flow of these
[Bjørner 2024, Chapter E].

• Pipelines – with their liquids (oil, or gas, or water), wells, pipes, valves, pumps, forks, joins and wells and the
flow of fluids [Bjørner 2024, Chapter I].

• Container terminals – with their container vessels, containers, cranes, trucks, etc. – and the movement of all
of these[Bjørner 2024, Chapter K] •

Characterization 1.1 relies on the understanding of the terms ‘rationally describable’ , ‘discrete dynamics’ , ‘human as-

sisted’ , ‘solid’ and ‘fluid’ . The last two will be explained later. By rationally describable we mean that what is de-
scribed can be understood, including reasoned about, in a rational, that is, logical manner – in other words logically
tractable.2 By discrete dynamicswe imply that we shall basically rule out such domain phenomenawhich have prop-
erties which are continuous with respect to their time-wise, i.e., dynamic, behaviour. By human-assisted we mean
that the domains – that we are interested in modeling – have, as an important property, that they possess man-made
entities.
1Our use of the term ‘domain’ should not be confused with that of Dana Scott’s Domain Theory: https://en.wikipedia.org/wiki/Scott_domain.
2Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describable in terms of the method of this paper !
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Domain Analysis & Description 3

1.2 Some Introductory Remarks

1.2.1 A Discussion of Our Characterization of a Concept of Domain. Characterization 1.1 is our attempt to delineate
the subject area.That is, “our” concept of ‘domain’ is ‘novel’: new and not resembling something formerly known or used .
As such it may be unfamiliar to most readers. So it takes time to digest that characterization. So the reader may have
to return to the page, Page 2, to be reminded of the definition.

1.2.2 Formal Methods and Description Language. The reader is assumed to have a reasonable grasp of formal methods
– such as espoused in [Bjørner 2006; Bjørner and Jones 1978, 1982; Woodcock and Davies 1996].

The descriptions evolving from the modeling approach of this paper are in the abstract, model-oriented specification
language RSL [George et al. 1992] of the Raise3 Specification Language. But other abstract specification languages
could be used: VDM [Bjørner and Jones 1978, 1982], Z [Woodcock and Davies 1996], Alloy [Jackson 2006], CafeOBJ
[Futatsugi et al. 2000], etc. We have chosen RSL since it embodies a variant of CSP [Hoare 1985] – being used to
express domain behaviours.

1.2.3 Programming Languages versus Domain Semantics. From around the late 1960s, spurred on by the works of John
McCarthy, Peter Landin, Christopher Strachey, Dana Scott and others, it was not unusual to see publications of entire
formal definitions of programming language semantics. Widespread technical reports were [Bekič et al. 1974, 1969,
1969, 1974] Notably so was [Milne and Strachey 1976, 1976]. There was the 1978 publication [Bjørner and Jones 1978,
Chapter 5, Algol 60, 1978]. Others were [Bjørner and Jones 1982, Chapters 6–7, Algol 60 and Pascal, 1982] As late as into
the 1980s there were such publications [Bjørner and Oest 1980a, 1980].

Formal descriptions of domains, such as we shall unravel a method for their study, analysis and description, likewise
amount to semantics for the terms of the professional languages spoken by stakeholders of domains. So perhaps it is
time to take the topic serious.

1.2.4 A New Universe. The concept of domain – such as we shall delineate and treat it – is novel. That is: new and
not treated in this way before. Its presentation, therefore, necessarily involves the introduction of a new universe of
concepts. Not the neat, well-defined concepts of neither “classical” computer science nor software engineering. It may
take some concentration on the part of the reader to get used to this !

You will therefore be introduced to quite a universe of new concepts. You will find these concepts named in most
display lines4 and in Figs. 1 and 2.

2 SIX LANGUAGES

This section is an artifice, an expedient.
It summarizes, from an unusual angle, an aspect of the presentation style of this paper.The road ahead of us introduces

rather many new and novel concepts. It is easy to get lost. The presentation alternates, almost sentence-by-sentence, between

5 languages. The below explication might help You to keep track of where the paper eventually shall lead us ! This section,
in a sense, tells the story backwards !5

3RAISE stands for Rigorous Approach to Industrial Software Engineering [George et al. 1995].
4– that is, section, subsection, sub-subsection, paragraph and sub-paragraph lines
5Søren Kierkegaard: Life is lived forwards but is understood backwards [1843].
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4 Dines Bjørner

2.1 The 6 Languages

There are 6 languages at play in this paper:

• (i) technical English, as in most papers;
• (ii) RSL, the RAISE Specification Language [George et al. 1992];
• (iii) an augmented RSL language;
• (iv) the domain modeling language – which we can view as the composition of clauses from two [sub-ordinate]

languages:
– (v) a domain analysis language; and
– (vi) a domain specification
language.

(i) Technical English is the main medium, as in most papers, of what is conveyed. (ii) Domain descriptions are (to be)
expressed in RSL. (iii) The [few places where we resort to the] augmented RSL language is needed for expressing names
of RSL types as values. (iv) The domain modeling language consists of finite sequences domain analysis and domain
description clauses. (v) The domain analysis language just consists of prompts, i.e., predicate functions used informally
by the domain analyzer in inquiring the domain. They yield either truth values or possibly augmented RSL texts. (vi)
The domain description language consists of a few RSL text yielding prompts.

We presume that the reader is familiar with such languages as RSL. That is: VDM [Bjørner and Jones 1978, 1982], Z
[Woodcock and Davies 1996], Alloy [Jackson 2006], etc. They could all be use instead of, as here, RSL.

We summarize some of the language issues.
TheDomainAnalysis Language:We list a few, cf. Fig. 1, of the predicate prompts, i.e., language prompts: is_entity [pg 8],

is_endurant [pg 9], is_perdurant [pg 9], is_solid [pg 11], is_fluid [pg 11], is_part [pg 12], aatomic [pg 12], is_compound [pg 12],
is_Cartesian [pg 13], or is_part-set [pg 14]; and the extended RSL text yielding analysis prompts: record_Cartesian_-
type_names [pg 14], record_part_set_type_names [pg 14] and record_attribute_type_names [pg 19].

The Domain Description Language: RSL. We shall us a subset of RSL. That subset is a simple, discrete mathemat-
ics, primarily functional specification language in the style of VDM [Bjørner and Jones 1978, 1982]. Emphasis is on sets,
Cartesians, lists, and maps (i.e., finite definition set, enumerable functions).

Domain Description: A domain description consists of one or more domain specification units. A specification
unit is of either of 10 kinds, all expressed in RSL. (1) a universe-of-discourse type clause [pg 10]; (2) a part type and
obs_erver value clause [pg 14]; (3) a value clause; (4) a unique identifier type and (uid_) observer value (function)
clause [pg 17]; (5) a mereology type and (mereo_) observer value (function) clause [pg 19]; (6) an attribute type and
(attr_) observer value (function) definition clause [pg 20]; (7) an axiom clause; (8) a channel declaration clause [pg 24];
(9) a behaviour value (signature and definition) clause [pg 25 & pg 26]; and (10) a domain initialization clause [Sect. 9.6].
These clauses are often combined in 2-3 such clauses, and may, and usually do, include further RSL clauses.

The use of RSL “outside” the domain specification units should not be confused with the RSL of the specification
unit schemas and examples.

2.2 Semiotics

In Foundations of the theory of signs [Morris 1938] defines semiotics as “consisting” of syntax, semantics and pragmatics.

• Syntax: The syntax of domain analysis and domain description clauses are simple atomic clauses consisting of
a prompt (predicate or function) identifier, see above, and an identifier denoting a domain entity. The syntax of
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Domain Analysis & Description 5

the domain modeling language prescribes a sequence of one or more domain analysis and domain description
clauses.

• Semantics:Themeaning of a domain analysis clause is that of a function from a domain entity to either a truth
value or some augmented RSL text. The meaning of a domain description clause is that of a function from a
domain entity to a domain specification unit.

• Pragmatics: The pragmatics of a domain analysis predicate clause, as applied to a domain entity e , is that of
prompting the domain analyzer to a next domain analysis step: either that of applying a [subsequent, cf. Fig. 1]
domain analysis predicate prompt to e; or applying a [subsequent, cf. Fig. 1] domain analysis function to e , and
noting – as writing down on a “to remember board” – the result of the [latter] query; or applying a [subsequent,
cf. Fig. 1] domain description function to e . The pragmatics of a domain description function is that of including
the resulting RSL domain description text in the emerging domain description. There is no hint as to what to do
next !

2.3 Speech Acts

The above explication of a pragmatics for the domain modeling language relates to the concepts of speech acts. We refer
to [Austin 1975, How to do things with words], [Searle 1969, Speech Acts: An Essay in the Philosophy of Language]
and [Pulvermüller 2005, Brain mechanisms linking language and action]. A further study of the illocutionary and
locutionary aspects of the domain analysis language seems in place.

3 ENDURANTS AND PERDURANTS, I

The above characterization hinges on the characterizations of endurants and perdurants.

Characterization 3.1. Endurants: Endurants are those quantities of domains that we can observe (see and touch),
in space, as “complete” entities at no matter which point in time – “material” entities that persists, endures – capable
of enduring adversity, severity, or hardship [Merriam Webster] •

Endurants are either natural [“God-given”] or artefactual [“man-made”]. Endurants may be either solid (discrete) or
fluid, and solid endurants, called parts, may be considered atomic or compound parts; or, as in this paper solid endurants
may be further unanalysed living species: plants and animals – including humans.

Characterization 3.2. Perdurants: Perdurants are those quantities of domains for which only a fragment exists,
in space, if we look at or touch them at any given snapshot in time •

Perdurants are here considered to be actions, events and behaviours.

• • •
We exclude, from our treatment of domains, issues of living species, ethics, biology and psychology.

4 A DOMAIN ANALYSIS & DESCRIPTION ONTOLOGY

4.1 The Chosen Ontology

Figure 1 expresses an ontology6 for our analysis of domains. Not a taxonomy7 for any one specific domain.
6An ontology is the philosophical study of being. It investigates what types of entities exist, how they are grouped into categories, and how they are
related to one another on the most fundamental level (and whether there even is a fundamental level) [Wikipedia].
7A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classification, in which things are organized into groups
or types [Wikipedia].
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Fig. 1. A Domain Analysis & Description Ontology

The idea of Fig. 1 is the following:

• It presents a recipe for how to analyze a domain.
• You, the domain analyzer cum describer , are ‘confronted’8 with, or by a domain.
• You have Fig. 1 in front of you, on a piece of paper, or in Your mind, or both.
• You are then asked, by the domain analysis & description method of this paper, to “start” at the uppermost
•, just below and between the ‘r’ and the first ‘s’ in the main title, Phenomena of Natural and Artefactual

Universes of Discourse.
• The analysis & description ontology of Fig. 1 then directs You to inquire as to whether the phenomenon –

whichever You are ”looking at/reading about/…” – is either rationally describable, i.e., is an entity (is_entity)
or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α , “below” which there may be two alternative
bullets, one, β , to the right and one to the left, γ .

8By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it, talking with domain stakeholders:
professional people working “in” the domain; You may, yourself, “be an entity” of that domain !
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Domain Analysis & Description 7

• It is Your decision whether the answer to the “query” that each such situation warrants, is yes, is_β , or no,
is_γ .

• The characterizations of the concepts whose names, α , β ,γ etc., are attached to the •s of Fig. 1 are given in the
following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers, “yes” or “no”, to the •ed
queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually indicated by “yes” or “no”
answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining the phenomena You set
out to analyze.

• If it is not a leaf, then further analysis is required.
• (We shall, in this paper, leave out the analysis and hence description of living species.)
• If an analysis of a phenomenon has reached one of the (only) two •’s, then the analysis at that • results in the

domain describer describing some of the properties of that phenomenon.
• That analysis involves “setting aside”, for subsequent analysis & description, one or more [thus analysis

etc.-pending] phenomena (which are subsequently to be tackled from the “root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has been “set aside”.

4.2 Discussion of The Chosen Ontology

We shall in the following motivate the choice of the ontological classification reflected in Fig 1. We shall argue that
this classification is not “an accidental choice”. In fact, we shall try justify the classification with reference to the
philosophy of Kai Sørlander [Sørlander 1994, 2016, 2022, 2023]9. Kai Sørlander’s aim in these books is to examine
that which is absolutely necessary, inevitable, in any description of the world. In [Bjørner 2021, Chapter 2] we present a
summary of Sørlander’s philosophy. In paragraphs, in the rest of this paper, marked Ontological Choice, we shall
relate Sørlander’s philosophy’s “inevitability” to the ontology for studying domains.

5 THE NAME, TYPE AND VALUE CONCEPTS

Domain modeling, as well as programming, depends, in their specification, on separation of concerns: which kind of
values are subjectable to which kinds of operations, etc., in order to achieve ease of understanding a model or a program,
ease of proving properties of a model, or correctness of a program.

5.1 Names

We name things in order to refer to them in our speech, models and programs. Names of types and values in models and
programs are usually not so-called “first-citizens”, i.e., values that can be arguments in functions, etc. The “science of
names” is interesting.10 In botanicalsociety.org.za/the-science-of-names-an-introduction-to-plant-tax-

onomy the authors actually speak of a “science of names” in connection with plant taxonomy: the “art” of choosing
such names that reflect some possible classification of what they name.

9The 2022 book, [Sørlander 2022], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme of the earlier, 1994–2016 books.
[Sørlander 2023] is an English translation of [Sørlander 2022]
10The study of names is called onomastics or onomatology . Onomastics covers the naming of all things, including place names (toponyms) and personal
names (anthroponyms).
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8 Dines Bjørner

5.2 Types

The type concept is crucial to programming and modeling.

Characterization 5.1. Type: A type is a class, i.e., a further undefined set, of values (“of the same kind”) •

We name types.

Example 5.2. Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London Road Transport , the US Federal Freeway

System, etc.
• RN – the class of all road net instances (within a road transport).
• SA – the class of all automobiles (within a road transport) •

You, the domain describer, choose type names. Choosing type names is a “serious affair”. It must be done carefully. You
can choose short (as above) or long names: Road_Transport, Road_Net, etc. We prefer short, but not cryptic names,
like X, Y, Z, … . Names that are easy to memorize, i.e., mnemonics.

5.3 Values

Values are what programming and modeling, in a sense, is all about”. In programming, values are the data “upon”
which the program code specifies computations. In modeling values are, for example, what we observe: the entities in
front of our eyes.

6 PHENOMENA AND ENTITIES

Characterization 6.1. Phenomena: By a phenomenon we shall understand a fact that is observed to exist or hap-
pen •

Some phenomena are rationally describable – to some degree11 – others are not.

Characterization 6.2. Entities: By an entity By an entity we shall understand a more-or-less rationally describable
phenomenon •

Prompt 6.3. is_entity: We introduce the informal presentation language predicate is_entity. It holds for phe-
nomena φ if φ is describable •

A prompt12 is an informal “advice” to the domain analyzer to “perform” a mental inquiry wrt. the real-life domain
being studied.

Example 6.4. Phenomena and Entities: Some, but not necessarily all aspects of a river can be rationally described,
hence can be still be considered entities. Similarly, many aspects of a road net can be rationally described, hence will
be considered entities •

11That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable phenomena to select for analysis & description.
Also in this sense one practices abstraction by “abstracting away” [the analysis & description of] phenomena that are irrelevant for the “current” (!)
domain description.
12French: mot-clé, German: stichwort , Spanish: palabra clave
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Domain Analysis & Description 9

If You are not happy with this ‘characterization’, then substitute “rationally describable” with: describable in terms

of the endurants and perdurants brought forward in this paper: their external and internal qualities, unique identifiers,

mereologies amd attributes, channels and behaviours !

Ontological Choice 6.5. Phenomena: We choose to “initialize” our ontological “search” to a question of whether a
phenomenon is rationally describable – based on the tenet of Kai Sørlander’s philosophy, namely that “whatever” we
postulate is either true or false and that a principle of contradiction holds: whatever we so express can not both hold and

not hold •

Kai Sørlander then develops his inquiry – as to what is absolutely necessary in any description of the world – into the
rationality of such descriptions necessarily be based on time and space and, from there, by a series of transcendental
deductions, into a base in Newton’s physics. We shall, in a sense, stop there. That is, in the domain concept, such as we
have delineated it, we shall not need to go into Einsteinian physics.

7 ENDURANTS AND PERDURANTS, II

We repeat our characterizations of endurants and perdurants.

7.1 Endurants

We repeat characterization 3.1.

Characterization 7.1. Endurant : Endurants are those quantities of domains that we can observe (see and touch),
in space, as “complete” entities at no matter which point in time – “material” entities that persists, endures – capable
of enduring adversity, severity, or hardship •

Example 7.2. Endurants: Examples of endurants are: a street segment [link], a street intersection [hub], an auto-
mobile •

Prompt 7.3. is_endurant: We introduce the informal presentation language predicate is_endurant to hold for
entity e if is_endurant(e) holds •

7.2 Perdurants

We repeat characterization 3.2.

Characterization 7.4. Perdurant : Perdurants are those quantities of domains for which only a fragment exists, in
space, if we look at or touch them at any given snapshot in time •

Example 7.5. Perdurant : A moving automobile is an example of a perdurant •

Prompt 7.6. is_perdurant: We introduce the informal presentation language predicate is_perdurant to hold for
entity e if is_perdurant(e) holds •
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10 Dines Bjørner

7.3 Ontological Choice

The ontological choice of entities being “viewed” as either endurants or perdurants is motivated as follows: The
concept of endurants can be justified in terms of Newton’s physicswithout going into kinematics, i.e., without including
time considerations. The concept of perdurants can then, on one hand, be justified in terms of Newton’s physics now
taking time into consideration, hence kinematics, and from there causality, etc.; and, on the other hand, and as we shall
see, by transcendentally deducing perdurants from solid endurants •

8 EXTERNAL AND INTERNAL ENDURANT QUALITIES

The main contribution of this section is that of a calculus of domain analysis and description prompts. Two facets are
being presented. Aspects of a domain science: of how we suggest domains can, and should, be viewed – ontologically.
And aspects of a domain engineering: of how we suggest domains can, and should, be analyzed and described.

We begin by characterizing the two concepts: external and internal qualities.

Characterization 8.1. ExternalQualities: External qualities of endurants of a manifest domain are, in a simplifying
sense, those we can see, touch and have spatial extent. They, so to speak, take form.

Characterization 8.2. Internal Qualities: Internal qualities are those properties [of endurants] that do not occupy
space but can be measured or spoken about •

Perhaps we should instead label these two qualities tangible and intangible qualities.

Ontological Choice 8.3. Rationality : The rational, analytic philosophy issues of the inevitability of these qualities
is this: (i) can they be justified as inevitable, and (ii) can they be suitably “separated”, i.e., both disjoint and exhaustive ?
Or are they merely of empirical nature ? The choice here is also that we separate our inquiry into examining both

external and internal qualities of endurants [not ‘either or’] •

8.1 External Qualities – Tangibles

Example 8.4. External Qualities: An example of external qualities of a domains is: the Cartesian13 of sets of solid
atomic street intersections, and of sets of solid atomic street segments, and of sets of solid automobiles of a road
transport system where Cartesian, sets, atomicity, and solidity reflect external qualities •

8.1.1 The Universe of Discourse. Themost immediate external quality of a domain is the “entire” domain – “itself” ! So
any domain analysis starts by identifying that “entire” domain ! By giving it a name, say UoD, for universe of discourse,
Then describing it, in narrative form, that is, in natural language containing terms of professional/technical nature, the
domain. And, finally, formalizing just the name: giving the name “status” of being a type name, that is, of the type of
a class of domains whose further properties will be described subsequently.

Theorem 8.5. The Universe of Discourse:

Narration:
The name, and hence the type, of the domain is UoD

The UoD domain can be briefly characterized by …

Formalization:
type UoD •

13Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)
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8.1.2 Solid and Fluid Endurants. Given then that there are endurants we now postulate that they are either [mutually
exclusive] solid (i.e., discrete) or fluid.

Ontological Choice 8.6. Solids vs. Fluids: Here we [seem to] make a practical choice, not one based on a philo-
sophical argument, one of logical necessity, but one based on empirical evidence. It is possible for endurants to either
be solid or fluid; and here we shall not consider the case where solid [fluid] endurants, due to being heated [cooled],
enters a fluid state [or vice versa] •

8.1.2.1 Solid cum Discrete Endurants..

Characterization 8.7. Discrete cum Solid Endurants: By a solid cum discrete endurant we shall understand an en-
durant which is separate, individual or distinct in form or concept, or, rephrasing, have body (or magnitude) of three-
dimensions: length (or height), breadth and depth [Little et al. 1987, OED, Vol. II, pg. 2046] •

Example 8.8. Solid Endurants: Pipeline system examples of solid endurants are wells, pipes, valves, pumps, forks,

joins and sinks of pipelines. (These units may, however, and usually will, contain fluids, e.g., oil, gas or water.) •

Prompt 8.9. is_solid: We introduce the informal presentation language predicate is_solid to hold for endurant
e if is_solid(e) holds •

8.1.2.2 Fluids..

Characterization 8.10. Fluid Endurants: By a fluid endurant we shall understand an endurant which is prolonged,
without interruption, in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or plasma) having the
property of flowing, consisting of particles that move among themselves [Little et al. 1987, OED, Vol. I, pg. 774] •

Example 8.11. Fluid Endurants: Examples of fluid endurants are: water, oil, gas, compressed air, smoke •

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular14, or plant products, i.e., chopped sugar cane, threshed,
or otherwise15, et cetera. Fluid endurants will be analyzed and described in relation to solid endurants, viz. their
“containers”.

Prompt 8.12. is_fluid:We introduce the informal presentation language predicate is_fluid to hold for endurant
e if is_fluid(e) holds •

8.1.3 Parts and Living Species Endurants. Given then that there are solid endurants we now postulate that they are
either [mutually exclusive] parts or living species.

Ontological Choice 8.13. Parts and Living Species: With Sørlander, [Sørlander 2023, Sect. 5.7.1, pages 71–72] we
reason that one can distinguish between parts and living species •

14 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modeling purposes it is convenient to “compartmen-
talise” them as fluids !
15See footnote 14.
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12 Dines Bjørner

8.1.3.1 Parts.

Characterization 8.14. Parts: The non-living species solids are what we shall call parts •

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned with the analysis and de-
scription of endurants into parts.

Example 8.15. Parts: Example 8.8, of solids, is an example of parts •

Prompt 8.16. is_part: We introduce the informal presentation language predicate is_part to hold for solid en-
durants e if is_part(e) holds •

We distinguish between atomic and compound parts.

Ontological Choice 8.17. Atomic and Compound Parts: It is an empirical fact that parts can be composed from
parts. That possibility exists. Hence we can [philosophy-wise] reason likewise •

8.1.3.1.1 Atomic Parts.

Characterization 8.18. Atomic Part : By an atomic part we shall understand a part which the domain analyzer
considers to be indivisible in the sense of not meaningfully consist of sub-parts •

Example 8.19. Atomic Parts: Examples of atomic parts are: hubs, H, i.e., street intersections; links, L, i.e., the
stretches of roads between two neighbouring hubs; and automobiles, A:

type H, L, A •

Prompt 8.20. is_atomic: We introduce the informal presentation language predicate is_atomic to hold for parts
p if is_atomic(p) holds •

8.1.3.1.2 Compound Parts.

Characterization 8.21. Compound Part : Compound parts are those which are observed to [potentially] consist of
several parts •

Example 8.22. Compound Parts: An example of a compound parts is: a road net consisting of a set of hubs, i.e.,
street intersections or “end-of-streets”, and a set of links, i.e., street segments (with no contained hubs), is a Cartesian
compound; and the sets of hubs and the sets of links are part set compounds •

Prompt 8.23. is_compound: We introduce the informal presentation language predicate is_compound to hold for
parts p if is_compound(p) holds •

We, pragmatically, distinguish between Cartesian product- and set-oriented parts.

Ontological Choice 8.24. Cartesians: The Cartesian versus set parts is an empirical choice. It is not justified in
terms of philosophy, but in terms of mathematics – of mathematical expediency ! •
Manuscript submitted to ACM
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8.1.3.1.3 Cartesians. Cartesians are product-like types – and are named after the French philosopher, scientist and
mathematician René Descartes (1596–1640) [Wikipedia].

Characterization 8.25. Cartesians: Cartesian parts are those compound parts which are observed to consist of two
or more distinctly sort-named endurants (solids or fluids) •

Example 8.26. Cartesians: Road Transport : A road transport, rt:RT, is observed to consist of an aggregate of a road
net, rn:RN, and a set of automobiles, SA, where the road net is observed, i.e., abstracted, as a Cartesian of a set of hubs,
ah:AH, i.e., street intersections (or specifically designated points segmenting an otherwise “straight” street into two
such), and a set of links, al:AL, i.e., street segments between two “neighbouring” hubs.

type
RT, RN, SA, AH = H-set, AL = L-set

value
obs_RN: RT → RN, obs_SA: RT → SA„ obs_AH: RN → AH, obs_AL: RN → AL •

Prompt 8.27. is_Cartesian: We introduce the informal presentation language predicate is_Cartesian to hold
for compound parts p if is_Cartesian(p) holds •

Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to the type names of the endurants16 of
which it consists. The inquiry: record_Cartesian_part_type_names(p:P), we decide, then yields the type of the
constituent endurants.

Prompt 8.28. record-Cartesian-part-type-names:

value
record_Cartesian_part_type_names: P → T-set
record_Cartesian_part_type_names(p) as {ηE1,ηE2,...,ηEn} •

Here T is the name of the type of all type names, and ηEi is the name of type Ei.
Please note the novel introduction of type names as values. Where a type identifier, say T, stands for, denotes, a

class of values of that type, ηT denotes the name of type T.
Please also note that record_Cartesian_part_type_names is not a description language construct. It is an analysis

language, i.e., an informal natural language, here English, construct. As such it is being used by the domain analyzer
cum describer who “applies” it to an observed endurant and notes down, in her mind or jots it on a scratch of paper,
her decision as to appropriate [new] type names.

Example 8.29. Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus observed to consists of

• an aggregate of a road net, rn:RN, and
• an aggregate set of automobiles, sa:SA:

that is:

• record_Cartesian_part_type_names(rt:RT) = {ηRN,ηSA}
where the type name ηRT was – and the type names ηRN and ηSA are – coined, i.e., more-or-less freely chosen, by the
domain analyzer cum describer •
16We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.
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14 Dines Bjørner

8.1.3.1.4 Part Sets.

Characterization 8.30. Part Sets: Part sets are those compound parts which are observed to consist of an indefinite
number of zero, one or more parts •

Prompt 8.31. is_part_set : We introduce the informal presentation language predicate is_part_set to hold for
compound parts e if is_part_set(e) holds •

Once a part, say e:E, has been analyzed into a part set we inquire as to the set of parts and their type of which it
consists. The inquiry: record_part_set_part_type_names, we decide, then yields the (single) type of the constituent
parts.

Prompt 8.32. record-part-set-part-type-names:

value
record_part_set_part_type_names: E → TPs×TP
record_part_set_part_type_names(e:E) as (η Ps,η P) •

Here the name of the value, e, and the type names η Ps and η P are coined, i.e., more-or-less freely chosen, by the
domain analyzer cum describer •

Please also note that record_part_set_part_type_names is not a description language construct. It is an analysis
language, i.e., an informal natural language, here English, construct. As such it is being used by the domain analyzer
cum describer who “applies” in to an observed endurant and notes down, in her mind or jots it on a scratch of paper,
her decision as to appropriate [new] type names.

Example 8.33. Part Sets: Road Transport : The road transport contains a set of automobiles. The part set type name
has been chosen to be SA. It is then determined (i.e., analyzed) that SA is a set of Automobile of type A

• record_part_set_part_type_names(sa:SA) = (η As,η A) •

8.1.3.1.5 Compound Observers. Once the domain analyzer cum describer has decided upon the names of atomic and
compound parts, obs_erver functions can be applied to Cartesian and part set, e:E, parts:

Theorem 8.34. Describe-Cartesians-and-Part-Set-Parts

value
let {η P1,η P2,...,η Pn} = record_Cartesian_part_type_names(e:E) in
“type

P1, P2, ..., Pn;

value
obs_P1: E→P1, obs_P2: E→P2,...n obs_Pn: E→Pn ”

[respectively:]

let (η Ps,η P) = record_part_set_part_type_names(e:E) in
“type

P, Ps = P-set,
value

Manuscript submitted to ACM
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obs_Ps: E→Ps ”

end end •

The “…” texts are the RSL texts “generated”, i.e., written down, by the domain describer. They are domain model speci-

fication units. The “surrounding” RSL-like texts are not written down as phrases, elements, of the domain description.
They are elements of the domain describers’ “notice board”, and, as such, elements of the development of domain mod-
els. We have introduced a core domain modeling tool the obs_… observer function, one to be “applied” mentally by
the domain describer, and one that appears in (RSL) domain descriptions The obs_… observer function is “applied” by
the domain describer, it is not a computable function.

Please also note that Describe-Cartesians-and-Part-Set-Parts schema, 8.34, is not a description language con-
struct. It is an analysis language, i.e., an informal natural language, here English, construct. As such it is being used
by the domain analyzer cum describer who “applies” in to an observed endurant and notes down, but now in a final
form, elements, that is domain description units.

• • •

A major step of the development of domain models has now been presented: that of the analysis & description of the
external qualities of domains.

Schema 8.34 is the first manifestation of the domain analysis & description method leading to actual domain descrip-
tion elements.

From unveiling a science of domains we have “arrived” at an engineering of domain descriptions.

8.1.4 States.

Characterization 8.35. States: By a state we shall mean any subset of the parts of a domain •

Example 8.36. Road Transport State:

variable
hs :AH := obs_AH(obs_RN(rt)),

ls :AL := obs_AL(obs_RN(rt)),

as :SA := obs_SA(rt),

σ :(H|L|A)-set := hs∪ls∪as •

We have chosen to model domain states as variables rather than as values. The reason for this is that the values of
monitorable, including biddable part attributes17 can change, and that domains are often extended and “shrunk” by
the addition, respectively removal of parts:

Example 8.37. Road Transport Development : adding or removing hubs, links and automobiles •

We omit coverage of the aspect of bidding changes to monitorable part attributes.

8.1.5 Validity of Endurant Observations. We remind the reader that the obs_erver functions, as all later such functions:
uid_-, mereo_- and attr_-functions, are applied by humans and that the outcome of these “applications” is the result
of human choices, and possibly biased by inexperience, taste, preference, bias, etc. How do we knowwhether a domain
analyzer & describer’s description of domain parts is valid ?Whether relevantly identified parts aremodeled reasonably
17The concepts of monitorable, including biddable part attributes is treated in Sect. 8.2.3.2.
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wrt. being atomic, Cartesians or part sets Whether all relevant endurants have been identified ? Etc. The short answer
is: we never know. Our models are conjectures and may be refuted [Popper 1981]. A social process of peer reviews, by
domain stakeholders and other domain modelers is needed – as may a process of verifying18 properties of the domain
description held up against claimed properties of the (real) domain.

8.1.6 Summary of Endurant Analysis Predicates. Characterizations 6.2–8.30 imply the following analysis predicates
(Char.:δ , Page π ):

• is_entity, δ6.2π 8
• is_endurant, δ7.1π 9
• is_perdurant, δ7.4π 9
• is_solid, δ8.7π 11
• is_fluid, δ8.10π 11

• is_part, δ8.14π 12
• is_atomic, δ8.18π 12
• is_compound, δ8.21π 12
• is_Cartesian, δ8.25π 13
• is_part_set, δ8.30π 14

We remind the reader that the above predicates represent “formulas” in the presentation, not the description, language.
They are not RSL clauses. They are in the mind of the domain analyzers cum describers. They are “executed” by such
persons. Their result, whether true, false or chaos19, are noted by these persons and determine their next step of
domain analysis.

8.1.7 “Trees are Not Recursive”. A ‘fact’, that seems to surprise many, is that parts are not “recursive”. Yes, in all our
domain modeling experiments, [Bjørner 2024], we have not come across the need for recursively observing compound
parts. Trees, for example, are not recursive in this sense. Trees have roots. Sub-trees not. Banyan trees20 have several
“intertwined trees”. But it would be ‘twisting’ the modeling to try fit a description of such trees to a ‘recursion wim’ !
Instead, trees are defined as nets, such as are road nets, where these nets then satisfy certain constraints [Bjørner 2024,
Chapter B].

8.2 Internal Qualities – Intangibles

The previous section has unveiled an ontology of the external qualities of endurants. The unveiling consisted of two
elements: a set of analysis predicates, predicates 6.2–8.30, and analysis functions, schemas 8.28–8.32, and a pair of
description functions, schema 8.34.

The application of description functions result in RSL text.
That text conveys certain properties of domains: that they consists of such-and-such endurants, notably parts, and

that these endurants “derive” from other endurants. But the RSL description texts do not “give flesh & blood” to these
endurants. Questions like: ‘what are their spatial extents ?’ , ‘how much do the weigh ?’ , ‘what colour do they have ?’ , et
cetera, are left unanswered. In the present section we shall address such issues. We call them internal qualities.

Characterization 8.38. InternalQualities: Internal qualities are those properties [of endurants] that do not occupy
space but can be measured or spoken about •

Example 8.39. Internal qualities: Examples of internal qualities are the unique identity of a part, the mereological

relation of parts to other parts, and the endurant attributes such as temperature, length, colour, etc. •
18testing, model checking and theorem proving
19The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for its application does not hold.
20https://www.britannica.com/plant/banyan
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This section therefore introduces a number of domain description tools:

• uid_: the unique identifier observer of parts;
• mereo_: the mereology observer of parts;
• attr_: (zero,) one or more attribute observers of endurants; and
• attributes_: the attribute query of endurants.

8.2.1 Unique Identity.

Ontological Choice 8.40. Unique Identity : We postulate that separately discernible parts have unique identify. The
issue, really, is a philosophical one. We refer to [Bjørner 2021, Sects. 2.2.2.3–2.2.2.4, pages 14–15] for a discussion of the
existence and uniqueness of entities •

Characterization 8.41. Unique Identity : A unique identity is an immaterial property that distinguishes any two
spatially distinct solids21 •

The unique identity of a part p of type P is obtained by the postulated observer uid_P:

Theorem 8.42. Describe-Unique-Identity-Part-Observer

“type
P,PI

value
uid_P: P → PI” •

Here PI is the type of the unique identifiers of parts of type P.

Example 8.43. Unique Road Transport Identifiers: The unique identifierss of a road transport, rt:RT, consists of the
unique identifiers of the

• road transport – rti:RTI,
• (Cartesian) road net – rni:RNI,
• (set of) automobiles – sa:SAI,
• automobile, ai:AI,

• (set of) hubs, hai:AHI,
• (set of) links, lai:LAI,
• hub, hi:HI, and
• link, li:LI,

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer cum describer – though,
as You can see, these names were here formed by “suffixing” Is to relevant part names •

We have thus introduced a core domain modeling tool the uid_… observer function, one to be “applied” mentally
by the domain describer, and one that appears in (RSL) domain descriptions The uid_… observer function is “applied”
by the domain describer, it is not a computable function.

21For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique identity. The pragmatics is that we, in our
extensive modeling experiments have not found a need for such ascription !
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8.2.1.1 Uniqueness of Parts. No two parts have the same unique identifier.

Example 8.44. Road Transport Uniqueness:

variable
hsuids :HI-set := { uid_H(h) | h:H•u ∈ σ }
lsuids :LI-set := { uid_L(l) | l:L•u ∈ σ }
asuids :AI-set := { uid_A(a) | a:A•u ∈ σ }
σuids :(HI|LI|AI)-set := { uid_(H|L|A)(u) | u:(H|L|A)•u ∈ σ }

axiom
2 card σ = card σuids • For σ see Sect. 8.1.4.

We have chosen, for the same reason as given in Sect. 8.1.4, to model a unique identifier state. The 2 [always] prefix
in the axiom then expresses that changes of parts or addition of parts to and deletions of parts from the domain shall
maintain their uniqueness over time (i.e., always).

8.2.2 Mereology. The concept of mereology is due to the Polish mathematician, logician and philosopher Stanisław
Leśniewski (1886–1939) [Bjørner 2014a; Varzi 1994].

Characterization 8.45. Mereology : Mereology is a theory of [endurant] part-hood relations: of the relations of an
[endurant] parts to a whole and the relations of [endurant] parts to [endurant] parts within that whole •

Ontological Choice 8.46. Mereology : Stanisław Leśniewski was not satisfied with Bertrand Russell’s “repair” of
Gottlob Frege’s axiom systems for set theory. Instead he put forward his axiom system for, as he called it, mereology.
Both as a mathematical theory and as a philosophical reasoning •

Example 8.47. Mereology : Examples of mereologies are that a link is topologically connected to exactly one or,
usually, two specific hubs, that hubs are connected to zero, one or more specific links, and that links and hubs are open
to the traffic of specific subsets of automobiles •

Mereologies can be expressed in terms of unique identifiers.

Example 8.48. Mereology Representation: For our ‘running road transport example’ the mereologies of links, hubs
and automobiles can thus be expressed as follows:

• mereo_L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the link connects, i.e., are in
hsuids ;

• mereo_H(h) = {li1,li2,…,lin } where li1,li2,…,lin are the unique identifiers of the links that are imminent upon
(i.e., emanates from) the hub, i.e., are in lsuids ; and

• mereo_A(a) = {ri1,ri2,…,rim } where ri1,ri2,…,rim are unique identifiers of the road (hub and link) elements that
make up the road net, i.e., are in hsuids∪lsuids •

Once the unique identifiers of all parts of a domain has been described we can analyses and describe their mereologies.
The inquiry: mereo_P(p) yields a mereology type (name), say PMer, and its description22:

Theorem 8.49. Describe-Mereology

22Cf. Sect. 8.1.3.1.5
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“type
PMer = M(PI1,PI2,...,PIm)

value
mereo_P: P → PMer

axiom
A(pm:PMer)” •

where M(PI1,PI2,…,PIm) is a type expression over unique identifier types of the domain; mereo_P is the mereology
observer function for parts p:P; and A(pm:PMer) is an axiom that secures that the unique identifiers of any part are
indeed of parts of the domain.

8.2.3 Attributes. Attributes are what finally gives “life” to endurants: The external qualities “only” named and gave
structure to their atomic or compound types. The internal qualities of uniqueness and mereology are intangible quan-
tities. The internal quality of attributes gives “flesh & blood” to endurants: they let us express endurant properties that
we can more easily, i.e., concretely, relate to.

8.2.3.1 General.

Characterization 8.50. Attributes: Attributes are properties of endurants that can be measured either physically
(by means of length (ruler) and spatial quantity measuring equipment, electronically, chemically, or otherwise) or can
be objectively spoken about •

Ontological Choice 8.51. Attributes: First some empirical observation: in reasoning about “the world around us”
we express its properties in terms of predicates. These predicates, for example: “that building’s wall is red” , building
refers to an endurant part whereas wall and red refers to attributes. Now the “rub”: endurant attributes is what give
“flesh & blood” to domains •

Attributes are of types and, accordingly have values.
We postulate an informal domain analysis function, record_attribute_type_names: The domain analyzer, in ob-

serving a part, p:P , analyzes it into the set of attribute names of parts p:P

Theorem 8.52. record-attribute-type-names

value
record_attribute_type_names: P → ηT-set
record_attribute_type_names(p:P) as ηT-set •

Example 8.53. Road Net Attributes, I: Examples of attributes are: hubs have states, hσ :HΣ: the set of pairs of link
identifiers, (f li,t li), of the links f rom and to which automobiles may enter, respectively leave the hub; and hubs have
state spaces, hω:HΩ: the set of hub states “signaling” which states are open/closed, i.e., green/red; links that have
lengths, LEN; and automobiles have road net positions, APos, either at a hub, atH, or on a link, onL, some fraction,
f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub, identified by thi. Hubs and links have
histories: time-stamped, chronologically ordered sequences of automobiles entering and leaving links and hubs, with
automobile histories similarly recording hubs and links entered and left.
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type
HΣ = (LI×LI)-set
HΩ = HΣ-set
LEN = Nat m
APos = atH | onL
atH :: HI

onL :: LI × (fhi:HI × f:Real × thi:HI)

HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗

value

attr_HΣ: H → HΣ

attr_HΩ: H → HΩ

attr_LEN: L → LEN

attr_APos: A → APos

attr_HHis: H → HHis

attr_LHis: L → LHis

attr_AHis: A → AHis

axiom
∀ (li,(fhi,f,thi)):onL • 0<f<1

∧li∈lsuids∧{fhi,thi}⊆hsuids∧... •

Theorem 8.54. Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record_attribute_type_names(e:E) in
“ type

A1, A2, ..., An

value
attr__A1: E → A1, attr__A2: E → A2, ..., attr__An: E → An

axiom
∀ a1:A1, a2:A2, ..., an:An: A(a1,a2,...,an) ”

end •

8.2.3.2 Michael A. Jackson’s Attribute Categories. Michael A. Jackson [Jackson 1995] has suggested a hierarchy of
attribute categories:from static (is_static23) to dynamic (is_dynamic24) values – and within the dynamic value cate-
gory: inert values (is_inert25), reactive values (is_reactive26), active values (is_active27) – andwithin the dynamic
active value category: autonomous values (is_autonomous28), biddable values (is_biddable29), and programmable val-
ues (is_programmable30) . We postulate informal domain analysis predicates, “performed” by the domain analyzer:

value
is_static,is_autonomous,is_biddable,is_programmable [etc.]: η T→Bool

We refer to [Jackson 1995] and [Bjørner 2021] [Chapter 5, Sect. 5.4.2.3] for details. We suggest a minor revision of
Michael A. Jackson’s attribute categorization, see left side of Fig. 2. We single out the inert from the ontology of Fig. 2,
left side. Inert attributes seem to be “set externally” to the endurant. So we now distinguish between is_external and
is_internal dynamic attributes. We summarize Jackson’s attribute and our revised categorization in Fig. 2.

This distinction has [pragmatic] consequences for how we treat arguments of the behaviours of parts, cf. Sect. 9.5.1
(page 25).
23static: values are constants, cannot change
24dynamic: values are variable, can change
25inert: values can only change as the result of external stimuli where these stimuli prescribe new values
26reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from outside the domain of interest or from
other endurants.
27active: values can change (also) on their own volition
28autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law onto themselves and their surroundings”.
29biddable: values are prescribed but may fail to be observed as such
30programmable: values can be prescribed
Manuscript submitted to ACM
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dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Fig. 2. Michael Jackson’s [Revised] Attribute Categories

Example 8.55. Road Net Attributes, II: The link length and hub state space attributes are static, hub states and auto-
mobile positions programmable. Automobile speed and acceleration attributes, whichwe do notmodel, aremonitorable
•

The attributes categorization determines, in the next major section on perdurants, the treatment of hub, link and
automobile behaviours.

8.2.3.3 Analytic Attribute Extraction Functions:. For later purpose we need characterize three specific attribute cat-
egory extraction functions: static_attributes, monitorable_attributes, and programmable_attributes:

value
p:P

tns = record_attribute_type_names(p)

static_attributes: ηT -set→ ηT -set
static_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_static(tn) }

inert_attributes: ηT -set→ ηT -set
inert_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_inert(tn) }

monitorable_attributes ηT -set → ηT -set
monitorable_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_monitorable(tn) }

programmable_attributes ηT -set → ηT -set
programmable_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_programmable(tn) }

is_monitorable: T → Bool
is_monitorable(t) ≡ ∼is_static(t) ∧ ∼is_inert(t) ∧ ∼is_programmable(t)

Please be reminded that these functions are informal. They are part of the presentation language. Do not
be confused by their RSL-like appearance.
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8.3 Intentional Pull

Ontological Choice 8.56. Intentional Pull: In [Sørlander 2016, pages 167–168] Sørlander argues wrt.
“how can entities be the source of forces ?” and thus reasons for gravitational pull. That same kind of reason-
ing, with proper substitution of terms, leads us to the concept of intentional pull •

Two or more parts of different sorts, but with overlapping sets of intents31 may excert an intentional “pull”

on one another. This intentional “pull” may take many forms. Let px : X and py : Y be two parts of different
sorts (X ,Y ), and with common intent , ι. Manifestations of these, their common intent must somehow be
subject to constraints, and these must be expressed predicatively .

When a compound artifact models “itself” as put together with a number of other endurants then it does
have an intentionality and the components’ individual intentionalities does, i.e., shall relate to that.

Example 8.57. Road Transport Intentionality : Automobiles include the intent of 'transport', and so
do hubs and links. Manifestations of "transport" are reflected in hubs, links and automobiles having the
history attribute. The intentional “pull” of these manifestations is this: For every automobile, if it records
being in some hub or on some link at time τ , then the designated hub, respectively link, records exactly
that automobile; and vice versa: for every hub [link], if it records the visit of some automobile at time τ ,
then the designated automobile records exactly that hub [link]. We leave the formalization of the above to
the reader •

Example 8.58. Double-entry Bookkeeping: Another example of intentional “pull” is that of double-entry
bookkeeping. Here the income/expense ledger must balance the actives/passives ledger •

Example 8.59. The Henry George Theorem.: The Henry George theorem states that under certain condi-
tions, aggregate spending by government on public goods will increase aggregate rent based on land value
(land rent) more than that amount, with the benefit of the last marginal investment equaling its cost •32, 33

8.4 Summary of Endurants

We have completed our treatment of endurants. That treatment was based on an ontology for the observ-
able phenomena of domains – such as we have delineated the concept of domains. The treatment was
crucially based on an ontology for the structure of domain phenomena, and, in a sense, “alternated” be-
tween analysis predicates, analysis functions, and description functions. We have carefully justified this
ontology in ‘Ontological Choice’ paragraphs

31Intent: purpose; God-given or human-imposed !
32Stiglitz, Joseph (1977). “TheTheory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The Economics of Public Services. Palgrave Macmillan,
London. pp. 274–333. doi:10.1007/978-1-349-02917-4_12. ISBN 978-1-349-02919-8.
33Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist. His writing was immensely popular in
19th-century America and sparked several reform movements of the Progressive Era. He inspired the economic philosophy known as Georgism, the
belief that people should own the value they produce themselves, but that the economic value of land (including natural resources) should belong equally
to all members of society. George famously argued that a single tax on land values would create a more productive and just society.
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9 PERDURANT CONCEPTS

The main contribution of this section is that of transcendentally deducing perdurants from endurant parts,
in particular behaviours “of” parts.

Major perdurants are those of actions, events and behaviours with behaviours generally being sets of
sequences of actions, events and behaviours.

9.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those (endurant) parts
which we, as domain analyzers cum describers, have endowed with all three kinds of internal qualities:
unique identifiers, mereologies and attributes. We shall use the CSP [Hoare 1985] constructs of RSL (derived
from RSL [George et al. 1992]) to model concurrent behaviours.

9.2 Transcendental Deduction

Characterization 9.1. Transcendental: By transcendental we shall understand the philosophical notion:
the a priori or intuitive basis of knowledge, independent of experience •

Apriori knowledge or intuition is central: By a priori wemean that it not only precedes, but also determines
rational thought.

Characterization 9.2. Transcendental Deduction: By a transcendental deduction we shall understand
the philosophical notion: a transcendental “conversion” of one kind of knowledge into a seemingly different
kind of knowledge •

Example 9.3. Transcendental Deductions – Informal Examples: We give some intuitive examples of tran-
scendental deductions. They are from the “domain” of programming languages. There is the syntax of a
programming language, and there are the programs that supposedly adhere to this syntax. Given that, the
following are now transcendental deductions.

The software tool, a syntax checker , that takes a program and checks whether it satisfies the syntax,
including the statically decidable context conditions, i.e., the statics semantics – such a tool is one of several
forms of transcendental deductions.

The software tools, an automatic theorem prover and amodel checker , for example SPIN [Holzmann 2003],
that takes a program and some theorem, respectively a Promela statement, and proves, respectively checks,
the program correct with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.
Yes, indeed, any abstract interpretation [Cousot 2021] reflects a transcendental deduction: firstly, these

examples show that there are many transcendental deductions; secondly, they show that there is no single-
most preferred transcendental deduction •

Ontological Choice 9.4. Transcendental Deduction of Behaviours from Parts: So this, then, is, in a sense,
our “final” ontological choice: that of transcendentally deducing behaviours from parts •
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9.3 Actors – A Synopsis

This section provides a summary overview.

Characterization 9.5. Actors: An actor is anything that can initiate an action, event or behaviour •

9.3.1 Action.

Characterization 9.6. Actions: An action is a function that can purposefully change a state •

Example 9.7. Road Net Actions: These are some road transport actions: an automobile leaving a hub,
entering a link; leaving a link, entering a hubs; entering the road net; and leaving the road net •

9.3.2 Event.

Characterization 9.8. Events: An event is a function that surreptitiously changes a state •

Example 9.9. Road Net Events: These are some road net events: The blocking of a link due to a mud
slide; the failing of a hub traffic signal due to power outage; an automobile failing to drive; and the blocking
of a link due to an automobile accident •

We shall not formalize events.

9.3.3 Behaviour.

Characterization 9.10. Behaviours: Behaviours are sets of sequences of actions, events and behaviours •

Concurrency is modeled by the sets of sequences. Synchronization and communication of behaviours are
effected by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.

Example 9.11. Road Net Traffic: Road net traffic can be seen as a behaviour of all the behaviours of
automobiles, where each automobile behaviour is seen as sequence of start, stop, turn right, turn left, etc.,
actions; of all the behaviours of links where each link behaviour is seen as a set of sequences (i.e., be-
haviours) of “following” the link entering, link leaving, and movement of automobiles on the link; of all
the behaviours of hubs (etc.); of the behaviour of the aggregate of roads, viz. The Department of Roads, and
of the behaviour of the aggregate of automobiles, viz, The Department of Vehicles.

9.4 Channel

Characterization 9.12. Channel: A channel is anything that allows synchronization and communica-
tion of values between behaviours •

Theorem 9.13. Channel

We suggest the following schema for describing channels:

“channel { ch[ {ui,uj} ] | ui,ij:UI • ... } M
Manuscript submitted to ACM
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where ch is the describer-chosen name for an array of channels, ui,uj are channel array indices of the
unique identifiers, UI, of the chosen domain •

Example 9.14. Road Transport Interaction Channel:

channel { ch[ {ui,uj} ] | {ui,ij}:(HI|LI|AI)-set • ui,uj∧{ui,uj}⊆σuids } M

Channel array ch is indexed by a “pair” of distinct unique part identifiers of the domain. We shall later
outline M, the type of the “messages” communicated between behaviours •

9.5 Behaviours

We single out the perdurants of behaviours – as they relate directly to the parts of Sect. 8. The treatment is
“divided” into three sections.

9.5.1 Behaviour Signature.

Theorem 9.15. Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name of the behaviour, Bp , and
a function type expression as indicated:
value

Bp : Uidp→34 Mereop→Sta_Valsp→Inert_Valsp→Mon_Refsp→Prgr_Valsp → { ch[{i,j}] | … } Unit

We explain:

• Uidp is the type of unique identifiers of part p, uid_P(p) = Uidp ;
• Mereop is the type of the mereology of part p, mereo_P(p) = Mereop ;
• Sta_Valsp is a Cartesian of the type of inert attributes of part p. Given record_attribute_type_-

names(p) static_attributes(record_attribute_type_names(p)) yields Sta_Valsp ;
• Inert_Valsp is a Cartesian of the type of static attributes of part p. Given record_attribute_type_-

names(p) inert_attributes(record_attribute_type_names(p)) yields Inert_Valsp ;
• Mon_Refsp is a Cartesian of the attr_ibute observer functions of the types of monitorable attributes

of partp. Given record_attribute_type_names(p) analysis function monitorable_attributes(re-
cord_attribute_type_names(p)) yields Mon_Valsp ;

• Prgr_Valsp is a Cartesian of the type of programmable attributes of part p. Given record_attribu-

te_type_names(p) analysis function programmable_attributes(record_attribute_type_names(p)).
yields Prgr_Valsp ;

• { ch[{i,j}] | … } specifies the channels over which part p behaviours, Bp , may communicate;
and:

• Unit is the type name for the () value35 •
34We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses_Schönfinkel#Further_reading (Curried https://en.wikipedia.org/wi-
ki/Currying) the function type
35– You may “read’ () as the value yielded by a statement, including a never-terminating function
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The Cartesian arguments may “degenerate” to the non-Cartesian of no, or just one type identifier, In none,
i.e., (), then () may be skipped. If one, e.g., (a), then (a) is listed.

Example 9.16. Road Transport Behaviour Signatures:

value
hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)

→{ch[ {uid_H(p),ai} ]|ai:AI•ai∈asuid } Unit
link: LI→MereoL→(LEN×...)→(...)→(LHist×...)

→{ch[ {uid_L(p),ai} ]|ai:AI•ai∈asuid } Unit
automobile: AI→MereoA→(...)→(attr_AVel×attr_HAcc×...)→(APos×AHist×...)

→{ch[ {uid_H(p),ri} ]|ri:(HI|LI)•ri∈hsuid∪lsuid } Unit

Here we have suggested additional part attributes: monitorable automobile velocity and acceleration, AVel,
AAcc, and omitted other attributes •

9.5.2 Inert Arguments: Some Examples. Let us give some examples of inert attributes of automobiles. (i)
Driving uphill, one a level road, or downhill, excert some inert “drag” or “pull”. (ii) Velocity can be treated
as a reactive attribute – but it can be [approximately] calculated on the basis of, for example, these inert
attributes: drag/pull and accelerator pedal pressure, and the static engine power attribute.

9.5.3 Behaviour Invocation.

Theorem 9.17. Behaviour Invocation

Behaviours are invoked as follows:

“Bp (uid_p (p))36

(mereo_P(p))
(attr_staA1(p),...,attr_staAs (p))

(attr_inertA1(p),...,attr_inertAi (p))

(attr_monA1,...,attr_monAm )

(attr_prgA1(p),...,attr_prgAp (p))”

• All arguments are passed by value.
• The uid value is never changed.
• The mereology value is usually not changed.
• The static attribute values are fixed, never changed.
• The inert attribute values are fixed, but can be updated by receiving explicit input communications.
• Themonitorable attribute values are functions, i.e., it is as if the “actual” monitorable values are passed

by name !
36We show the arguments of the invocation on separate lines only for readability. That is: normally we show the invocation arguments as
B(…)(…)(…)(…)(…).
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• The programmable attribute values are usually changed, “updated”, by actions described in the be-
haviour definition •

9.5.4 Argument References. Within behaviour descriptions, see next section, references are made to the
behaviour arguments. References, a, to unique identifier, mereology, static and progammable attribute argu-
ments yield their value. References, a, to monitorable attribute arguments also yield their value. This value
is an attr_A observer function. To yield, i.e., read, the monitorable attribute value this function is applied
to that behaviour’s uniquely identified part, puid , in the global part state, σ . To update„ i.e., write, say, to a
value v , for the case of a biddable, monitorable attribute, that behaviour’s uniquely identified part, puid , in
the global part state, σ , shall have part puid ’s A attribute changed to v – with all other attribute values of
puid unchanged. Common to both the read and write functions is the retrieve part function:

(1) Given a unique part identifier, pi, assumed to be that of an existing domain part,
(2) retr_part reads the global [all parts] variable σ to retrieve that part p whose unique part identifier is

pi.

value
2. retr_part: PI → P read
2. retr_part(pi) ≡ let p:P • p ∈ cσ ∧ uid_P(p)=pi in p end
1. pre: ∃ p:P • p ∈ cσ ∧ uid_P(p)=pi

You may think of the functions being illustrated in this section, Sect. 9.5.4, retr_part, read_A_from_P and
update_P_with_A, as “belonging” to the description language, but here suitably expressed for any domain,
that is, with suitable substitutions for A and P.

9.5.4.1 Evaluation of Monitorable Attributes..

(3) Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A be a monitorable
attribute of p, and let ηA be the name of attribute A.

(4) Evaluation of the [current] attribute A value of p is defined by function read_A_from_P.

value
3. pi:PI, a:A, ηA:ηT

4. read_A_from_P: PI × T→ read σ A

4. read_A(pi,ηA) ≡ attr_A(retr_part(pi))

9.5.4.2 Update of Biddable Attributes.

(5) The update of a monitorable attribute A, with attribute name ηA of part p, identified by pi, to a new
value writes to the global part state σ .

(6) Part p is retrieved from the global state.
(7) A new part, p′ is formed such that p′ is like part p:
(a) same unique identifier,
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(b) same mereology,
(c) same attributes values,
(d) except for A.

(8) That new p ′ replaces p in σ .

value
5. σ , a:A, pi:PI, ηA:ηT

5. update_P_with_A: PI × A × ηT→ write σ
5. update_P_with_A(pi,a,ηA) ≡
6. let p = retr_part(pi) in
7. let p′:P •

7a. uid_P(p′)=pi

7b. ∧ mereo_P(p)=mereo_P(p′)

7c. ∧ ∀ ηA′ ∈ record_attribute_type_names(p)\{ηA} ⇒ attr_A′(p)=attr_A′(p′)

7d. ∧ attr_A(p′)=a in
8. σ := cσ \ {p} ∪ {p′}
5. end end
6. pre: ∃ p:P • p ∈ cσ ∧ uid_P(p)=pi

9.5.5 Behaviour Description – Examples. Behaviour descriptions rely strongly on CSPs’ [Hoare 1985] ex-
pressivity. Leaving out some details (_, ‘…’), and without “further ado” , we exemplify.

Example 9.18. Automobile Behaviour at Hub:

(9) We abstract automobile behaviour at a Hub (hi).
(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.

9 automobile(ai)(ris)(...)(atH(hi),ahis, ) ≡
9a automobile_remains_in_hub(ai)(ris)(...)(atH(hi),ahis, )

9b ⌈⌉
9c automobile_leaving_hub(ai)(ris)(...)(atH(hi),ahis, )

9d ⌈⌉
9e automobile_stop(ai)(ris)(...)(atH(hi),ahis, )

(10) [9a] The automobile remains in the hub:
(a) time is recorded,
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(b) the automobile remains at that hub, “idling”,
(c) informing (“first”) the hub behaviour.

10 automobile_remains_in_hub(ai)(ris)(...)(atH(hi),ahis, ) ≡
10a let τ = record_TIME in
10c ch[ {ai,hi} ] ! τ ;

10b automobile(ai)(ris)(...)(atH(hi),⟨(τ ,hi)⟩̂ahis, ) end

(11) [9c] The automobile leaves the hub entering link li:
(a) time is recorded;
(b) hub is informed of automobile leaving and link that it is entering;
(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the vehicle behaviour

positioned at the very beginning (0) of that link.

11 automobile_leaving_hub(ai)({li}∪ris)(...)(atH(hi),ahis, ) ≡
11a let τ = record_TIME in
11b (ch[ {ai,hi} ] ! τ ∥ ch[ {ai,li} ] ! τ ) ;
11c automobile(ai)(ris)(...)(onL(li,(hi,0, )),⟨(τ ,li)⟩̂ahis, ) end
11 pre: [hub is not isolated]

The choice of link entered is here expressed (11) as a non-deterministic choice37. One can model the leave
hub/enter link otherwise.

(12) [9e] Or the automobile “disappears — off the radar” !

12 automobile_stop(ai)(ris),(...)(atH(hi),ahis, ) ≡ stop •

rm

9.6 Behaviour Initialization.

For every manifest part it must be described how its behaviour is initialized.

Example 9.19. Road Transport Initialization: We “wrap up” the main example of this paper: We omit treatment of
monitorable attributes.

(13) Let us refer to the system initialization as an action.
(14) All hubs are initialized,
(15) all links are initialized, and
(16) all automobiles are initialized.

value
13. rts_initialisation: Unit→ Unit
13. rts_initialisation() ≡
14. ∥ { hub(uid_H(l))(mereo_H(l))(attr_HΩ(l),...)(attr_HΣ(l),...)| h:H • h ∈ hs }

37– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can never leave isolated hubs.
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15. ∥ ∥ { link(uid_L(l))(mereo_L(l))(attr_LEN(l),...)(attr_LΣ(l),...)| l:L • l ∈ ls }
16. ∥ ∥ { automobile(uid_A(a))(mereo_A(a))(attr_APos(a)attr_AHis(a),...) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls,as we refer to Sect. 8.1.4 •

10 CONCLUSION

We have summarized a method to be used by [human] domain analyzers cum describers in studying and modeling
domains. Our previous publications [Bjørner 2017, 2019, 2021] have, with this paper, found its most recent, we risk to
say, for us, final form.

Of course, domain models can be developed without the calculi presented in this paper. And was for many years.
From the early 1990s a number of formal models of railways were worked out [Bjørner 2000, 2003a,b; Bjørner et al.
2002; George et al. 2002]. The problem, though, was still, between 1992 and 2016, “where to begin, how to proceed and

when to end” . The domain analysis & description ontology and, hence calculus, of this paper shows how. The system-
atic approach to domain modeling of this ontology and calculus has stood its test of time. The Internet ‘publication’
https://www.imm.dtu.dk/~dibj/2021/dd/dd.pdf include the following domain models38 from the 2007–2024 pe-
riod. Their development has helped hone the method of the present paper.

10.1 Previous Literature

To the best of my knowledge there is no prior, comparable publications in the field of domain science and engineering.
Closest would beMichael A. Jackson’s [Jackson 2009].Well, most computer scientists working in the field of correctness
of programs, from somewhat “early on”, stressed the importance of making proper assumptions about the domain,
They would then express these “in-line”, as appropriate predicates, with their proofs. Michael A. Jackson, lifted this,
to a systematic treatment of the domain in his triplet ‘Problem Frame Approach’: program, machine, domain [Jackson
2001]. But Jackson did not lift his problem frame concern into a proper study of domains.

10.2 The Method

So the method procedure is this: (1) First analyze and describe the external qualities of the chosen domain. (2) For each
of the so-described endurants You then analyze and describe their internal qualities. (2.1) First their unique identification.
(2.2) Then their mereology. (2.3) Then their attributes. (2.4) And finally possible intentional pulls. (3) First then are You
ready to tackle the issue of perdurants. (3.1) Decide upon the state. (Thatmay already have been done in connectionwith
(1).) (3.2) Then describe the channels. (3.3) Then analyze and describe [part] behaviour signatures. (3.4) Then describe
behaviour invocation. (3.5) Then behaviour (body) definitions. (4) Finally describe domain initialization.

38

• Graphs,
• Rivers,
• Canals,
• Railways,
• Road Transport ,

• The “7 Seas” ,
• The “Blue Skies” ,
• Credit Cards,
• Weather Information,
• Documents,

• Urban Planning,
• Swarms of Drones,
• Container Terminals,
• A Retailer Market ,
• Assembly Lines,

• Bookkeeping,
• Shipping,
• Stock Exchanges,
• Web Transactions, etc.
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10.3 Specification Units

Themethod thus focuses, step-by-step, on the development of the following specification units: type specification units,
value specification units, axiom specification units, variable declaration units, and channel declaration units.

There are two forms of type specifications: (α ) introduction of sorts, i.e., type names, and (β) specification of types:
pairs of new type names and type expressions – as atomic, alternate or composite types: set, Cartesian, list, map or
function types.

There are basically three forms of value specification units: (i) (“simple”) naming of values, (ii) signature of functions:
function name and function type, and (iii) signature of (endurant obs_, unique identifier uid_, mereology, mereo_,
and attribute attr_) observer functions.

10.4 Object Orientation

So far we have not used the term ‘object’ !
We shall now venture the following:
The combined description of endurant parts and their perdurant behaviour form an object definition.

You can then, for yourself, develop a way of graphically presenting these object definitions such that each part
type is represented by a box that contains the specification units for [all] external and internal endurant qualities as
well as for the perdurant [part] behaviour signatures and definitions; and such that the mereologies of these parts is
represented by [possibly directed] lines connecting relevant boxes.

That is, an object concept solely based on essentially inescapable world description facts – as justified by Sørlander’s
Philosophy [Sørlander 1994, 2016, 2022, 2023] ! No “finicky” programming language “tricks” !

We leave it to the reader to compare this definition to those of so-called object-oriented programming languages.

10.5 Other Domain Modeling Approaches

[Van et al. 2002] shows fragments of a number of expertly expressed domain models.They are all expressed in RAISE.39

But they are not following the method of this paper. In other words, it is possible to develop domain models not using
the method ! This author has found, however, that following the method – developed after the projects reported in
[Van et al. 2002] – leads to far less problematic situations – in contrast to my not adhering strictly to the method. In
other words, based on this subjective observation, we advice using the method.

There is thus no proof that following the method does result in simpler, straightforward developments.
But we do take the fact that we can justify the method, cf. Fig. 1, on the basis on the inevitability of describing the

world as per philosophy of Kai Sørlander [Sørlander 1994, 2016, 2022, 2023], and that that may have a bearing on the
experienced shorter domain description development efforts.

10.6 How Much ? How Little ?

Howwidemust we cast the net when studying a domain ?The answer to that question depends, we suggest, on whether
our quest is for studying a domain in general, to see what might come out, or whether it is a study aiming at a specific
model for a specific software development. In the former case we cast the net as we please – we suggest: as wide as
possible, wider that for specific quests. In the latter case we should cast the net as “narrowly” as is reasonable: to fit

39Other approaches could also be used: VDM [Bjørner and Jones 1978, 1982], Z [Woodcock and Davies 1996], Alloy [Jackson 2006], CafeOBJ [Futatsugi
et al. 2000], etc.
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those parts of a domain that we expect the requirements and software to deal with ! In this latter case we should assume
that someone, perhaps the same developers, has first “tried their hand” on a wider domain.

10.7 Correctness

Today, 2024, software correctness appears focused on the correctness of algorithms, possibly involving concurrency.
Correctness, of software, in the context of a specific domain, means that the software requirements are “correctly”
derived from a domain description, and that the software design is correctly derived from the domain requirements, that
is: D,S |= R. Advances in program proofs helps little if not including proper domain and requirements specifications.

10.8 Domain Facets

There is more to domain modeling than covered in this paper. In [Bjørner 2009] and in [Bjørner 2021, Chapter 8] we
cover the concept of domain facets. General examples of domain facets are support technologies, rules & regulations,

scripts, license languages, management & organization, and human behaviour .

10.9 Perspectives

Domain models can be developed for either of a number of reasons:

• (i) in order to understand a human-artifact domain;
• (ii ) in order to re-engineer the business processes of a human-artifact domain; or
• (iii) in order to develop requirements prescriptions and, subsequently software application “within” that domain.

[(ii)]We refer to [Hammer andChampy 1993; Hammer and Stanton 1996] and [Bjørner 2006,Vol. 3, Chapter 19, pages 404–

412] for the concept of business process engineering. [(iii)] We refer to [Bjørner 2021, Chapter 9] for the concept of
requirements engineering.

10.10 The Semantics of Domain Models

The meaning of domain models, such as we describe them in this paper, is, “of course”, the actual, real domain “out
there” ! One could, and, perhaps one should, formulate a mathematical semantics of the models, that is, of the is_…,
obs_…, uid_…, mereo_… and attr_… analysis and description functions and what they entail (e.g., the type name
labels: ηT’s; etc.). An early such semantics description is given in [Bjørner 2014b].

10.11 Further on Domain Modeling

Additional facets of domain modeling are covered in [Bjørner 2008] and [Bjørner 2021, Chapter 8: Domain Facets.]

10.12 Software Development

[Bjørner 2008] and [Bjørner 2021, Chapter 9 Requirements] show how to develop Requirements prescriptions from
Domain descriptions. [Bjørner 2006] shows how to develop Software designs from Requirements prescriptions.

10.13 Modeling

Domain descriptions, such as outlined in this paper, are models of domains, that is, of some reality. They need not
necessarily lead to or be motivated by possible development of software for such domains. They can be experimentally
researched and developed just for the sake of understanding domains in which man has had an significantly influence.
Manuscript submitted to ACM
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They are models. We refer to [Fettke and Reisig 2024] for complementary modeling based on Petri nets. The current
author is fascinated by the interplay between graphical and textual descriptions of HERAKLIT, well, in general Petri
Nets.

10.14 Philosophy of Computing

The Danish philosopher Kai Sørlander [Sørlander 1994, 2016, 2022, 2023] has shown that there is a foundation in
philosophy for domain analysis and description. We refer to [Bjørner 2023a, Chapter 2] for a summary of his findings.

10.15 A Manifesto

So there is no excuse, anymore ! Of coursewe have developed interpreters and compilers for programming languages by
first developing formal semantics for those languages [Bjørner and Oest 1980b; Clemmensen and Oest 1984]. Likewise
we must now do for the languages of domain stakeholders, at least for the domains covered by this paper. There really
is no excuse !
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