
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Domain Analysis & Description

DINES BJØRNER, Technical University of Denmark, Denmark

ACM Reference Format:
Dines Bjørner. 2024. Domain Analysis & Description. 1, 1 (September 2024), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

The Triptych Dogma

In order to specify Software, we must understand its Requirements.

In order to prescribe Requirements we must understand the Domain.

So we must study, analyze and describe Domains.

D,S |= R:
In proofs of Software correctness,

with respect to Requirements,

assumptions are made with respect to the Domain.

We present a systematic method , its principles, procedures, techniques and tools, for efficiently analyzing & describing

domains.This paper is based on [Bjørner 2017, 2019, 2021]. It simplifies themethodology of these – as well as introduces
some novel presentation and description language concepts.

• • •

Alert: Before You start reading this paper, You are kindly informed of the following:

Highlight 0.1. What The Paper is All About : The Triptych Dogma, above, says it all: this paper is about a new
area of computing science – that of domains. It is about what domains are. How to model them. And their role in
software development. There are many “domain things” it is not about: it is not about ‘derived’ properties of domains –
beyond, for example, intentional pull [Sect. 8.3]. Such are left for studies of domains based on the kind of formal domain
descriptions such as those advocated by this paper •

Highlight 0.2. A Radically New Approach to Software Development :The Triptych Approach to Software Development ,
calls for software to be developed on the basis of requirements prescriptions, themselves developed on the basis of
domain descriptions. We furthermore advocate these specifications and their development be formal. That is: there are
formal methods for the development of either of these three kinds of specifications:

• Development of domain descriptions is outlined in this paper.
• Development of requirements, from domain descriptions, is outlined in [Bjørner 2021, Chapter 9].
• Development of software, from requirements prescriptions, is treated, extensively, in [Bjørner 2006].

Author’s address: Dines Bjørner, Technical University of Denmark, DTU Compute, Fredsvej 11, Holte, 2840, Denmark, bjorner@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Dines Bjørner

The reader should understand that the current paper, with its insistence of strictly following a method, formally, is at
odds with current ‘software engineering’ practices. •

Highlight 0.3. Characterizations rather than Definitions: The object of domain study, analysis and description, i.e.,
the domains, are, necessarily, informal. A resulting domain description is formal. So the domain items being studied
and analyzed cannot be given a formal definition. Conventionally [so-called theoretical] computer scientists expect
and can seemingly only operate in a world of clearly defined concepts. Not so here. It is not possible. Hence we use
the term ‘characterization’ in lieu of ‘definition’ •

Highlight 0.4. Seemingly Fragmented Texts:The text of this paper is a sequence of enumerated sections, subsections,
sub-subsections and paragraphs, with short Highlights, Characterizations, Examples, Ontological Choices,
Prompts, Schemas and ordinary short texts. The brevity is intentional. Each and all of these units outline important
concepts. Each contain a meaning and can be read “in isolation” •

1 DOMAINS

We start by delineating the informal concept of domain,1

1.1 What are They ?

What do we mean by ‘domain’ ?

Characterization 1.1. Domain: By a domain we shall understand a rationally describable segment of a discrete

dynamics fragment of a human assisted reality: the world that we daily observe – in which we work and act, a reality
made significant by human-created entities. The domain embody endurants and perdurants •

Example 1.2. Some Domain Examples: A few, more-or-less self-explanatory examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-made dams, harbours,
locks, etc. – and their conveyage of materials (ships etc.) [Bjørner 2024, Chapter B].

• Road nets – with street segments and intersections, traffic lights and automobiles – and the flow of these
[Bjørner 2024, Chapter E].

• Pipelines – with their liquids (oil, or gas, or water), wells, pipes, valves, pumps, forks, joins and wells and the
flow of fluids [Bjørner 2024, Chapter I].

• Container terminals – with their container vessels, containers, cranes, trucks, etc. – and the movement of all
of these[Bjørner 2024, Chapter K] •

Characterization 1.1 relies on the understanding of the terms ‘rationally describable’ , ‘discrete dynamics’ , ‘human as-

sisted’ , ‘solid’ and ‘fluid’ . The last two will be explained later. By rationally describable we mean that what is de-
scribed can be understood, including reasoned about, in a rational, that is, logical manner – in other words logically
tractable.2 By discrete dynamicswe imply that we shall basically rule out such domain phenomenawhich have prop-
erties which are continuous with respect to their time-wise, i.e., dynamic, behaviour. By human-assisted we mean
that the domains – that we are interested in modeling – have, as an important property, that they possess man-made
entities.
1Our use of the term ‘domain’ should not be confused with that of Dana Scott’s Domain Theory: https://en.wikipedia.org/wiki/Scott_domain.
2Another, “upside–down” – after the fact – [perhaps ‘cheating’] way of defining ‘describable’ is: is it describable in terms of the method of this paper !

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Domain Analysis & Description 3

1.2 Some Introductory Remarks

1.2.1 A Discussion of Our Characterization of a Concept of Domain. Characterization 1.1 is our attempt to delineate
the subject area.That is, “our” concept of ‘domain’ is ‘novel’: new and not resembling something formerly known or used .
As such it may be unfamiliar to most readers. So it takes time to digest that characterization. So the reader may have
to return to the page, Page 2, to be reminded of the definition.

1.2.2 Formal Methods and Description Language. The reader is assumed to have a reasonable grasp of formal methods
– such as espoused in [Bjørner 2006; Bjørner and Jones 1978, 1982; Woodcock and Davies 1996].

The descriptions evolving from the modeling approach of this paper are in the abstract, model-oriented specification
language RSL [George et al. 1992] of the Raise3 Specification Language. But other abstract specification languages
could be used: VDM [Bjørner and Jones 1978, 1982], Z [Woodcock and Davies 1996], Alloy [Jackson 2006], CafeOBJ
[Futatsugi et al. 2000], etc. We have chosen RSL since it embodies a variant of CSP [Hoare 1985] – being used to
express domain behaviours.

1.2.3 Programming Languages versus Domain Semantics. From around the late 1960s, spurred on by the works of John
McCarthy, Peter Landin, Christopher Strachey, Dana Scott and others, it was not unusual to see publications of entire
formal definitions of programming language semantics. Widespread technical reports were [Bekič et al. 1974, 1969,
1969, 1974] Notably so was [Milne and Strachey 1976, 1976]. There was the 1978 publication [Bjørner and Jones 1978,
Chapter 5, Algol 60, 1978]. Others were [Bjørner and Jones 1982, Chapters 6–7, Algol 60 and Pascal, 1982] As late as into
the 1980s there were such publications [Bjørner and Oest 1980a, 1980].

Formal descriptions of domains, such as we shall unravel a method for their study, analysis and description, likewise
amount to semantics for the terms of the professional languages spoken by stakeholders of domains. So perhaps it is
time to take the topic serious.

1.2.4 A New Universe. The concept of domain – such as we shall delineate and treat it – is novel. That is: new and
not treated in this way before. Its presentation, therefore, necessarily involves the introduction of a new universe of
concepts. Not the neat, well-defined concepts of neither “classical” computer science nor software engineering. It may
take some concentration on the part of the reader to get used to this !

You will therefore be introduced to quite a universe of new concepts. You will find these concepts named in most
display lines4 and in Figs. 1 and 2.

2 SIX LANGUAGES

This section is an artifice, an expedient.
It summarizes, from an unusual angle, an aspect of the presentation style of this paper.The road ahead of us introduces

rather many new and novel concepts. It is easy to get lost. The presentation alternates, almost sentence-by-sentence, between

5 languages. The below explication might help You to keep track of where the paper eventually shall lead us ! This section,
in a sense, tells the story backwards !5

3RAISE stands for Rigorous Approach to Industrial Software Engineering [George et al. 1995].
4– that is, section, subsection, sub-subsection, paragraph and sub-paragraph lines
5Søren Kierkegaard: Life is lived forwards but is understood backwards [1843].

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Dines Bjørner

2.1 The 6 Languages

There are 6 languages at play in this paper:

• (i) technical English, as in most papers;
• (ii) RSL, the RAISE Specification Language [George et al. 1992];
• (iii) an augmented RSL language;
• (iv) the domain modeling language – which we can view as the composition of clauses from two [sub-ordinate]

languages:
– (v) a domain analysis language; and
– (vi) a domain specification
language.

(i) Technical English is the main medium, as in most papers, of what is conveyed. (ii) Domain descriptions are (to be)
expressed in RSL. (iii) The [few places where we resort to the] augmented RSL language is needed for expressing names
of RSL types as values. (iv) The domain modeling language consists of finite sequences domain analysis and domain
description clauses. (v) The domain analysis language just consists of prompts, i.e., predicate functions used informally
by the domain analyzer in inquiring the domain. They yield either truth values or possibly augmented RSL texts. (vi)
The domain description language consists of a few RSL text yielding prompts.

We presume that the reader is familiar with such languages as RSL. That is: VDM [Bjørner and Jones 1978, 1982], Z
[Woodcock and Davies 1996], Alloy [Jackson 2006], etc. They could all be use instead of, as here, RSL.

We summarize some of the language issues.
TheDomainAnalysis Language:We list a few, cf. Fig. 1, of the predicate prompts, i.e., language prompts: is_entity [pg 8],

is_endurant [pg 9], is_perdurant [pg 9], is_solid [pg 11], is_fluid [pg 11], is_part [pg 12], aatomic [pg 12], is_compound [pg 12],
is_Cartesian [pg 13], or is_part-set [pg 14]; and the extended RSL text yielding analysis prompts: record_Cartesian_-
type_names [pg 14], record_part_set_type_names [pg 14] and record_attribute_type_names [pg 19].

The Domain Description Language: RSL. We shall us a subset of RSL. That subset is a simple, discrete mathemat-
ics, primarily functional specification language in the style of VDM [Bjørner and Jones 1978, 1982]. Emphasis is on sets,
Cartesians, lists, and maps (i.e., finite definition set, enumerable functions).

Domain Description: A domain description consists of one or more domain specification units. A specification
unit is of either of 10 kinds, all expressed in RSL. (1) a universe-of-discourse type clause [pg 10]; (2) a part type and
obs_erver value clause [pg 14]; (3) a value clause; (4) a unique identifier type and (uid_) observer value (function)
clause [pg 17]; (5) a mereology type and (mereo_) observer value (function) clause [pg 19]; (6) an attribute type and
(attr_) observer value (function) definition clause [pg 20]; (7) an axiom clause; (8) a channel declaration clause [pg 24];
(9) a behaviour value (signature and definition) clause [pg 25 & pg 26]; and (10) a domain initialization clause [Sect. 9.6].
These clauses are often combined in 2-3 such clauses, and may, and usually do, include further RSL clauses.

The use of RSL “outside” the domain specification units should not be confused with the RSL of the specification
unit schemas and examples.

2.2 Semiotics

In Foundations of the theory of signs [Morris 1938] defines semiotics as “consisting” of syntax, semantics and pragmatics.

• Syntax: The syntax of domain analysis and domain description clauses are simple atomic clauses consisting of
a prompt (predicate or function) identifier, see above, and an identifier denoting a domain entity. The syntax of

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Domain Analysis & Description 5

the domain modeling language prescribes a sequence of one or more domain analysis and domain description
clauses.

• Semantics:Themeaning of a domain analysis clause is that of a function from a domain entity to either a truth
value or some augmented RSL text. The meaning of a domain description clause is that of a function from a
domain entity to a domain specification unit.

• Pragmatics: The pragmatics of a domain analysis predicate clause, as applied to a domain entity e , is that of
prompting the domain analyzer to a next domain analysis step: either that of applying a [subsequent, cf. Fig. 1]
domain analysis predicate prompt to e; or applying a [subsequent, cf. Fig. 1] domain analysis function to e , and
noting – as writing down on a “to remember board” – the result of the [latter] query; or applying a [subsequent,
cf. Fig. 1] domain description function to e . The pragmatics of a domain description function is that of including
the resulting RSL domain description text in the emerging domain description. There is no hint as to what to do
next !

2.3 Speech Acts

The above explication of a pragmatics for the domain modeling language relates to the concepts of speech acts. We refer
to [Austin 1975, How to do things with words], [Searle 1969, Speech Acts: An Essay in the Philosophy of Language]
and [Pulvermüller 2005, Brain mechanisms linking language and action]. A further study of the illocutionary and
locutionary aspects of the domain analysis language seems in place.

3 ENDURANTS AND PERDURANTS, I

The above characterization hinges on the characterizations of endurants and perdurants.

Characterization 3.1. Endurants: Endurants are those quantities of domains that we can observe (see and touch),
in space, as “complete” entities at no matter which point in time – “material” entities that persists, endures – capable
of enduring adversity, severity, or hardship [Merriam Webster] •

Endurants are either natural [“God-given”] or artefactual [“man-made”]. Endurants may be either solid (discrete) or
fluid, and solid endurants, called parts, may be considered atomic or compound parts; or, as in this paper solid endurants
may be further unanalysed living species: plants and animals – including humans.

Characterization 3.2. Perdurants: Perdurants are those quantities of domains for which only a fragment exists,
in space, if we look at or touch them at any given snapshot in time •

Perdurants are here considered to be actions, events and behaviours.

• • •
We exclude, from our treatment of domains, issues of living species, ethics, biology and psychology.

4 A DOMAIN ANALYSIS & DESCRIPTION ONTOLOGY

4.1 The Chosen Ontology

Figure 1 expresses an ontology6 for our analysis of domains. Not a taxonomy7 for any one specific domain.
6An ontology is the philosophical study of being. It investigates what types of entities exist, how they are grouped into categories, and how they are
related to one another on the most fundamental level (and whether there even is a fundamental level) [Wikipedia].
7A taxonomy (or taxonomic classification) is a scheme of classification, especially a hierarchical classification, in which things are organized into groups
or types [Wikipedia].

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Dines Bjørner

External Qualities

Describer "states"

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal Plant

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

E

P

F

Part Set

Ps=P−set

H
u

m
an

s

CompoundAtomic
Transcendense

Fig. 1. A Domain Analysis & Description Ontology

The idea of Fig. 1 is the following:

• It presents a recipe for how to analyze a domain.
• You, the domain analyzer cum describer , are ‘confronted’8 with, or by a domain.
• You have Fig. 1 in front of you, on a piece of paper, or in Your mind, or both.
• You are then asked, by the domain analysis & description method of this paper, to “start” at the uppermost
•, just below and between the ‘r’ and the first ‘s’ in the main title, Phenomena of Natural and Artefactual

Universes of Discourse.
• The analysis & description ontology of Fig. 1 then directs You to inquire as to whether the phenomenon –

whichever You are ”looking at/reading about/…” – is either rationally describable, i.e., is an entity (is_entity)
or is indescribable.

• That is, You are, in general, “positioned” at a bullet, •, labeled α , “below” which there may be two alternative
bullets, one, β , to the right and one to the left, γ .

8By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet, visiting it, talking with domain stakeholders:
professional people working “in” the domain; You may, yourself, “be an entity” of that domain !

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Domain Analysis & Description 7

• It is Your decision whether the answer to the “query” that each such situation warrants, is yes, is_β , or no,
is_γ .

• The characterizations of the concepts whose names, α , β ,γ etc., are attached to the •s of Fig. 1 are given in the
following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers, “yes” or “no”, to the •ed
queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis is to proceed “down the tree”, usually indicated by “yes” or “no”
answers.

• If one, or the other is a “leaf” of the ontology tree, then You have finished examining the phenomena You set
out to analyze.

• If it is not a leaf, then further analysis is required.
• (We shall, in this paper, leave out the analysis and hence description of living species.)
• If an analysis of a phenomenon has reached one of the (only) two •’s, then the analysis at that • results in the

domain describer describing some of the properties of that phenomenon.
• That analysis involves “setting aside”, for subsequent analysis & description, one or more [thus analysis

etc.-pending] phenomena (which are subsequently to be tackled from the “root” of the ontology).

We do not [need to] prescribe in which order You analyze & describe the phenomena that has been “set aside”.

4.2 Discussion of The Chosen Ontology

We shall in the following motivate the choice of the ontological classification reflected in Fig 1. We shall argue that
this classification is not “an accidental choice”. In fact, we shall try justify the classification with reference to the
philosophy of Kai Sørlander [Sørlander 1994, 2016, 2022, 2023]9. Kai Sørlander’s aim in these books is to examine
that which is absolutely necessary, inevitable, in any description of the world. In [Bjørner 2021, Chapter 2] we present a
summary of Sørlander’s philosophy. In paragraphs, in the rest of this paper, marked Ontological Choice, we shall
relate Sørlander’s philosophy’s “inevitability” to the ontology for studying domains.

5 THE NAME, TYPE AND VALUE CONCEPTS

Domain modeling, as well as programming, depends, in their specification, on separation of concerns: which kind of
values are subjectable to which kinds of operations, etc., in order to achieve ease of understanding a model or a program,
ease of proving properties of a model, or correctness of a program.

5.1 Names

We name things in order to refer to them in our speech, models and programs. Names of types and values in models and
programs are usually not so-called “first-citizens”, i.e., values that can be arguments in functions, etc. The “science of
names” is interesting.10 In botanicalsociety.org.za/the-science-of-names-an-introduction-to-plant-tax-

onomy the authors actually speak of a “science of names” in connection with plant taxonomy: the “art” of choosing
such names that reflect some possible classification of what they name.

9The 2022 book, [Sørlander 2022], is presently a latest in Kai Sørlander’s work. It refines and further develops the theme of the earlier, 1994–2016 books.
[Sørlander 2023] is an English translation of [Sørlander 2022]
10The study of names is called onomastics or onomatology . Onomastics covers the naming of all things, including place names (toponyms) and personal
names (anthroponyms).

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Dines Bjørner

5.2 Types

The type concept is crucial to programming and modeling.

Characterization 5.1. Type: A type is a class, i.e., a further undefined set, of values (“of the same kind”) •

We name types.

Example 5.2. Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London Road Transport , the US Federal Freeway

System, etc.
• RN – the class of all road net instances (within a road transport).
• SA – the class of all automobiles (within a road transport) •

You, the domain describer, choose type names. Choosing type names is a “serious affair”. It must be done carefully. You
can choose short (as above) or long names: Road_Transport, Road_Net, etc. We prefer short, but not cryptic names,
like X, Y, Z, … . Names that are easy to memorize, i.e., mnemonics.

5.3 Values

Values are what programming and modeling, in a sense, is all about”. In programming, values are the data “upon”
which the program code specifies computations. In modeling values are, for example, what we observe: the entities in
front of our eyes.

6 PHENOMENA AND ENTITIES

Characterization 6.1. Phenomena: By a phenomenon we shall understand a fact that is observed to exist or hap-
pen •

Some phenomena are rationally describable – to some degree11 – others are not.

Characterization 6.2. Entities: By an entity By an entity we shall understand a more-or-less rationally describable
phenomenon •

Prompt 6.3. is_entity: We introduce the informal presentation language predicate is_entity. It holds for phe-
nomena φ if φ is describable •

A prompt12 is an informal “advice” to the domain analyzer to “perform” a mental inquiry wrt. the real-life domain
being studied.

Example 6.4. Phenomena and Entities: Some, but not necessarily all aspects of a river can be rationally described,
hence can be still be considered entities. Similarly, many aspects of a road net can be rationally described, hence will
be considered entities •

11That is: It is up to the domain analyzer cum describer to decide as to how many rationally describable phenomena to select for analysis & description.
Also in this sense one practices abstraction by “abstracting away” [the analysis & description of] phenomena that are irrelevant for the “current” (!)
domain description.
12French: mot-clé, German: stichwort , Spanish: palabra clave

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Domain Analysis & Description 9

If You are not happy with this ‘characterization’, then substitute “rationally describable” with: describable in terms

of the endurants and perdurants brought forward in this paper: their external and internal qualities, unique identifiers,

mereologies amd attributes, channels and behaviours !

Ontological Choice 6.5. Phenomena: We choose to “initialize” our ontological “search” to a question of whether a
phenomenon is rationally describable – based on the tenet of Kai Sørlander’s philosophy, namely that “whatever” we
postulate is either true or false and that a principle of contradiction holds: whatever we so express can not both hold and

not hold •

Kai Sørlander then develops his inquiry – as to what is absolutely necessary in any description of the world – into the
rationality of such descriptions necessarily be based on time and space and, from there, by a series of transcendental
deductions, into a base in Newton’s physics. We shall, in a sense, stop there. That is, in the domain concept, such as we
have delineated it, we shall not need to go into Einsteinian physics.

7 ENDURANTS AND PERDURANTS, II

We repeat our characterizations of endurants and perdurants.

7.1 Endurants

We repeat characterization 3.1.

Characterization 7.1. Endurant : Endurants are those quantities of domains that we can observe (see and touch),
in space, as “complete” entities at no matter which point in time – “material” entities that persists, endures – capable
of enduring adversity, severity, or hardship •

Example 7.2. Endurants: Examples of endurants are: a street segment [link], a street intersection [hub], an auto-
mobile •

Prompt 7.3. is_endurant: We introduce the informal presentation language predicate is_endurant to hold for
entity e if is_endurant(e) holds •

7.2 Perdurants

We repeat characterization 3.2.

Characterization 7.4. Perdurant : Perdurants are those quantities of domains for which only a fragment exists, in
space, if we look at or touch them at any given snapshot in time •

Example 7.5. Perdurant : A moving automobile is an example of a perdurant •

Prompt 7.6. is_perdurant: We introduce the informal presentation language predicate is_perdurant to hold for
entity e if is_perdurant(e) holds •

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Dines Bjørner

7.3 Ontological Choice

The ontological choice of entities being “viewed” as either endurants or perdurants is motivated as follows: The
concept of endurants can be justified in terms of Newton’s physicswithout going into kinematics, i.e., without including
time considerations. The concept of perdurants can then, on one hand, be justified in terms of Newton’s physics now
taking time into consideration, hence kinematics, and from there causality, etc.; and, on the other hand, and as we shall
see, by transcendentally deducing perdurants from solid endurants •

8 EXTERNAL AND INTERNAL ENDURANT QUALITIES

The main contribution of this section is that of a calculus of domain analysis and description prompts. Two facets are
being presented. Aspects of a domain science: of how we suggest domains can, and should, be viewed – ontologically.
And aspects of a domain engineering: of how we suggest domains can, and should, be analyzed and described.

We begin by characterizing the two concepts: external and internal qualities.

Characterization 8.1. ExternalQualities: External qualities of endurants of a manifest domain are, in a simplifying
sense, those we can see, touch and have spatial extent. They, so to speak, take form.

Characterization 8.2. Internal Qualities: Internal qualities are those properties [of endurants] that do not occupy
space but can be measured or spoken about •

Perhaps we should instead label these two qualities tangible and intangible qualities.

Ontological Choice 8.3. Rationality : The rational, analytic philosophy issues of the inevitability of these qualities
is this: (i) can they be justified as inevitable, and (ii) can they be suitably “separated”, i.e., both disjoint and exhaustive ?
Or are they merely of empirical nature ? The choice here is also that we separate our inquiry into examining both

external and internal qualities of endurants [not ‘either or’] •

8.1 External Qualities – Tangibles

Example 8.4. External Qualities: An example of external qualities of a domains is: the Cartesian13 of sets of solid
atomic street intersections, and of sets of solid atomic street segments, and of sets of solid automobiles of a road
transport system where Cartesian, sets, atomicity, and solidity reflect external qualities •

8.1.1 The Universe of Discourse. Themost immediate external quality of a domain is the “entire” domain – “itself” ! So
any domain analysis starts by identifying that “entire” domain ! By giving it a name, say UoD, for universe of discourse,
Then describing it, in narrative form, that is, in natural language containing terms of professional/technical nature, the
domain. And, finally, formalizing just the name: giving the name “status” of being a type name, that is, of the type of
a class of domains whose further properties will be described subsequently.

Theorem 8.5. The Universe of Discourse:

Narration:
The name, and hence the type, of the domain is UoD

The UoD domain can be briefly characterized by …

Formalization:
type UoD •

13Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Domain Analysis & Description 11

8.1.2 Solid and Fluid Endurants. Given then that there are endurants we now postulate that they are either [mutually
exclusive] solid (i.e., discrete) or fluid.

Ontological Choice 8.6. Solids vs. Fluids: Here we [seem to] make a practical choice, not one based on a philo-
sophical argument, one of logical necessity, but one based on empirical evidence. It is possible for endurants to either
be solid or fluid; and here we shall not consider the case where solid [fluid] endurants, due to being heated [cooled],
enters a fluid state [or vice versa] •

8.1.2.1 Solid cum Discrete Endurants..

Characterization 8.7. Discrete cum Solid Endurants: By a solid cum discrete endurant we shall understand an en-
durant which is separate, individual or distinct in form or concept, or, rephrasing, have body (or magnitude) of three-
dimensions: length (or height), breadth and depth [Little et al. 1987, OED, Vol. II, pg. 2046] •

Example 8.8. Solid Endurants: Pipeline system examples of solid endurants are wells, pipes, valves, pumps, forks,

joins and sinks of pipelines. (These units may, however, and usually will, contain fluids, e.g., oil, gas or water.) •

Prompt 8.9. is_solid: We introduce the informal presentation language predicate is_solid to hold for endurant
e if is_solid(e) holds •

8.1.2.2 Fluids..

Characterization 8.10. Fluid Endurants: By a fluid endurant we shall understand an endurant which is prolonged,
without interruption, in an unbroken series or pattern; or, rephrasing: a substance (liquid, gas or plasma) having the
property of flowing, consisting of particles that move among themselves [Little et al. 1987, OED, Vol. I, pg. 774] •

Example 8.11. Fluid Endurants: Examples of fluid endurants are: water, oil, gas, compressed air, smoke •

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular14, or plant products, i.e., chopped sugar cane, threshed,
or otherwise15, et cetera. Fluid endurants will be analyzed and described in relation to solid endurants, viz. their
“containers”.

Prompt 8.12. is_fluid:We introduce the informal presentation language predicate is_fluid to hold for endurant
e if is_fluid(e) holds •

8.1.3 Parts and Living Species Endurants. Given then that there are solid endurants we now postulate that they are
either [mutually exclusive] parts or living species.

Ontological Choice 8.13. Parts and Living Species: With Sørlander, [Sørlander 2023, Sect. 5.7.1, pages 71–72] we
reason that one can distinguish between parts and living species •

14 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modeling purposes it is convenient to “compartmen-
talise” them as fluids !
15See footnote 14.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Dines Bjørner

8.1.3.1 Parts.

Characterization 8.14. Parts: The non-living species solids are what we shall call parts •

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned with the analysis and de-
scription of endurants into parts.

Example 8.15. Parts: Example 8.8, of solids, is an example of parts •

Prompt 8.16. is_part: We introduce the informal presentation language predicate is_part to hold for solid en-
durants e if is_part(e) holds •

We distinguish between atomic and compound parts.

Ontological Choice 8.17. Atomic and Compound Parts: It is an empirical fact that parts can be composed from
parts. That possibility exists. Hence we can [philosophy-wise] reason likewise •

8.1.3.1.1 Atomic Parts.

Characterization 8.18. Atomic Part : By an atomic part we shall understand a part which the domain analyzer
considers to be indivisible in the sense of not meaningfully consist of sub-parts •

Example 8.19. Atomic Parts: Examples of atomic parts are: hubs, H, i.e., street intersections; links, L, i.e., the
stretches of roads between two neighbouring hubs; and automobiles, A:

type H, L, A •

Prompt 8.20. is_atomic: We introduce the informal presentation language predicate is_atomic to hold for parts
p if is_atomic(p) holds •

8.1.3.1.2 Compound Parts.

Characterization 8.21. Compound Part : Compound parts are those which are observed to [potentially] consist of
several parts •

Example 8.22. Compound Parts: An example of a compound parts is: a road net consisting of a set of hubs, i.e.,
street intersections or “end-of-streets”, and a set of links, i.e., street segments (with no contained hubs), is a Cartesian
compound; and the sets of hubs and the sets of links are part set compounds •

Prompt 8.23. is_compound: We introduce the informal presentation language predicate is_compound to hold for
parts p if is_compound(p) holds •

We, pragmatically, distinguish between Cartesian product- and set-oriented parts.

Ontological Choice 8.24. Cartesians: The Cartesian versus set parts is an empirical choice. It is not justified in
terms of philosophy, but in terms of mathematics – of mathematical expediency ! •
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Domain Analysis & Description 13

8.1.3.1.3 Cartesians. Cartesians are product-like types – and are named after the French philosopher, scientist and
mathematician René Descartes (1596–1640) [Wikipedia].

Characterization 8.25. Cartesians: Cartesian parts are those compound parts which are observed to consist of two
or more distinctly sort-named endurants (solids or fluids) •

Example 8.26. Cartesians: Road Transport : A road transport, rt:RT, is observed to consist of an aggregate of a road
net, rn:RN, and a set of automobiles, SA, where the road net is observed, i.e., abstracted, as a Cartesian of a set of hubs,
ah:AH, i.e., street intersections (or specifically designated points segmenting an otherwise “straight” street into two
such), and a set of links, al:AL, i.e., street segments between two “neighbouring” hubs.

type
RT, RN, SA, AH = H-set, AL = L-set

value
obs_RN: RT → RN, obs_SA: RT → SA„ obs_AH: RN → AH, obs_AL: RN → AL •

Prompt 8.27. is_Cartesian: We introduce the informal presentation language predicate is_Cartesian to hold
for compound parts p if is_Cartesian(p) holds •

Once a part, say p:P, has been analyzed into a Cartesian, we inquire as to the type names of the endurants16 of
which it consists. The inquiry: record_Cartesian_part_type_names(p:P), we decide, then yields the type of the
constituent endurants.

Prompt 8.28. record-Cartesian-part-type-names:

value
record_Cartesian_part_type_names: P → T-set
record_Cartesian_part_type_names(p) as {ηE1,ηE2,...,ηEn} •

Here T is the name of the type of all type names, and ηEi is the name of type Ei.
Please note the novel introduction of type names as values. Where a type identifier, say T, stands for, denotes, a

class of values of that type, ηT denotes the name of type T.
Please also note that record_Cartesian_part_type_names is not a description language construct. It is an analysis

language, i.e., an informal natural language, here English, construct. As such it is being used by the domain analyzer
cum describer who “applies” it to an observed endurant and notes down, in her mind or jots it on a scratch of paper,
her decision as to appropriate [new] type names.

Example 8.29. Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus observed to consists of

• an aggregate of a road net, rn:RN, and
• an aggregate set of automobiles, sa:SA:

that is:

• record_Cartesian_part_type_names(rt:RT) = {ηRN,ηSA}
where the type name ηRT was – and the type names ηRN and ηSA are – coined, i.e., more-or-less freely chosen, by the
domain analyzer cum describer •
16We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and fluids.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Dines Bjørner

8.1.3.1.4 Part Sets.

Characterization 8.30. Part Sets: Part sets are those compound parts which are observed to consist of an indefinite
number of zero, one or more parts •

Prompt 8.31. is_part_set : We introduce the informal presentation language predicate is_part_set to hold for
compound parts e if is_part_set(e) holds •

Once a part, say e:E, has been analyzed into a part set we inquire as to the set of parts and their type of which it
consists. The inquiry: record_part_set_part_type_names, we decide, then yields the (single) type of the constituent
parts.

Prompt 8.32. record-part-set-part-type-names:

value
record_part_set_part_type_names: E → TPs×TP
record_part_set_part_type_names(e:E) as (η Ps,η P) •

Here the name of the value, e, and the type names η Ps and η P are coined, i.e., more-or-less freely chosen, by the
domain analyzer cum describer •

Please also note that record_part_set_part_type_names is not a description language construct. It is an analysis
language, i.e., an informal natural language, here English, construct. As such it is being used by the domain analyzer
cum describer who “applies” in to an observed endurant and notes down, in her mind or jots it on a scratch of paper,
her decision as to appropriate [new] type names.

Example 8.33. Part Sets: Road Transport : The road transport contains a set of automobiles. The part set type name
has been chosen to be SA. It is then determined (i.e., analyzed) that SA is a set of Automobile of type A

• record_part_set_part_type_names(sa:SA) = (η As,η A) •

8.1.3.1.5 Compound Observers. Once the domain analyzer cum describer has decided upon the names of atomic and
compound parts, obs_erver functions can be applied to Cartesian and part set, e:E, parts:

Theorem 8.34. Describe-Cartesians-and-Part-Set-Parts

value
let {η P1,η P2,...,η Pn} = record_Cartesian_part_type_names(e:E) in
“type

P1, P2, ..., Pn;

value
obs_P1: E→P1, obs_P2: E→P2,...n obs_Pn: E→Pn ”

[respectively:]

let (η Ps,η P) = record_part_set_part_type_names(e:E) in
“type

P, Ps = P-set,
value

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Domain Analysis & Description 15

obs_Ps: E→Ps ”

end end •

The “…” texts are the RSL texts “generated”, i.e., written down, by the domain describer. They are domain model speci-

fication units. The “surrounding” RSL-like texts are not written down as phrases, elements, of the domain description.
They are elements of the domain describers’ “notice board”, and, as such, elements of the development of domain mod-
els. We have introduced a core domain modeling tool the obs_… observer function, one to be “applied” mentally by
the domain describer, and one that appears in (RSL) domain descriptions The obs_… observer function is “applied” by
the domain describer, it is not a computable function.

Please also note that Describe-Cartesians-and-Part-Set-Parts schema, 8.34, is not a description language con-
struct. It is an analysis language, i.e., an informal natural language, here English, construct. As such it is being used
by the domain analyzer cum describer who “applies” in to an observed endurant and notes down, but now in a final
form, elements, that is domain description units.

• • •

A major step of the development of domain models has now been presented: that of the analysis & description of the
external qualities of domains.

Schema 8.34 is the first manifestation of the domain analysis & description method leading to actual domain descrip-
tion elements.

From unveiling a science of domains we have “arrived” at an engineering of domain descriptions.

8.1.4 States.

Characterization 8.35. States: By a state we shall mean any subset of the parts of a domain •

Example 8.36. Road Transport State:

variable
hs :AH := obs_AH(obs_RN(rt)),

ls :AL := obs_AL(obs_RN(rt)),

as :SA := obs_SA(rt),

σ :(H|L|A)-set := hs∪ls∪as •

We have chosen to model domain states as variables rather than as values. The reason for this is that the values of
monitorable, including biddable part attributes17 can change, and that domains are often extended and “shrunk” by
the addition, respectively removal of parts:

Example 8.37. Road Transport Development : adding or removing hubs, links and automobiles •

We omit coverage of the aspect of bidding changes to monitorable part attributes.

8.1.5 Validity of Endurant Observations. We remind the reader that the obs_erver functions, as all later such functions:
uid_-, mereo_- and attr_-functions, are applied by humans and that the outcome of these “applications” is the result
of human choices, and possibly biased by inexperience, taste, preference, bias, etc. How do we knowwhether a domain
analyzer & describer’s description of domain parts is valid ?Whether relevantly identified parts aremodeled reasonably
17The concepts of monitorable, including biddable part attributes is treated in Sect. 8.2.3.2.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Dines Bjørner

wrt. being atomic, Cartesians or part sets Whether all relevant endurants have been identified ? Etc. The short answer
is: we never know. Our models are conjectures and may be refuted [Popper 1981]. A social process of peer reviews, by
domain stakeholders and other domain modelers is needed – as may a process of verifying18 properties of the domain
description held up against claimed properties of the (real) domain.

8.1.6 Summary of Endurant Analysis Predicates. Characterizations 6.2–8.30 imply the following analysis predicates
(Char.:δ , Page π):

• is_entity, δ6.2π 8
• is_endurant, δ7.1π 9
• is_perdurant, δ7.4π 9
• is_solid, δ8.7π 11
• is_fluid, δ8.10π 11

• is_part, δ8.14π 12
• is_atomic, δ8.18π 12
• is_compound, δ8.21π 12
• is_Cartesian, δ8.25π 13
• is_part_set, δ8.30π 14

We remind the reader that the above predicates represent “formulas” in the presentation, not the description, language.
They are not RSL clauses. They are in the mind of the domain analyzers cum describers. They are “executed” by such
persons. Their result, whether true, false or chaos19, are noted by these persons and determine their next step of
domain analysis.

8.1.7 “Trees are Not Recursive”. A ‘fact’, that seems to surprise many, is that parts are not “recursive”. Yes, in all our
domain modeling experiments, [Bjørner 2024], we have not come across the need for recursively observing compound
parts. Trees, for example, are not recursive in this sense. Trees have roots. Sub-trees not. Banyan trees20 have several
“intertwined trees”. But it would be ‘twisting’ the modeling to try fit a description of such trees to a ‘recursion wim’ !
Instead, trees are defined as nets, such as are road nets, where these nets then satisfy certain constraints [Bjørner 2024,
Chapter B].

8.2 Internal Qualities – Intangibles

The previous section has unveiled an ontology of the external qualities of endurants. The unveiling consisted of two
elements: a set of analysis predicates, predicates 6.2–8.30, and analysis functions, schemas 8.28–8.32, and a pair of
description functions, schema 8.34.

The application of description functions result in RSL text.
That text conveys certain properties of domains: that they consists of such-and-such endurants, notably parts, and

that these endurants “derive” from other endurants. But the RSL description texts do not “give flesh & blood” to these
endurants. Questions like: ‘what are their spatial extents ?’ , ‘how much do the weigh ?’ , ‘what colour do they have ?’ , et
cetera, are left unanswered. In the present section we shall address such issues. We call them internal qualities.

Characterization 8.38. InternalQualities: Internal qualities are those properties [of endurants] that do not occupy
space but can be measured or spoken about •

Example 8.39. Internal qualities: Examples of internal qualities are the unique identity of a part, the mereological

relation of parts to other parts, and the endurant attributes such as temperature, length, colour, etc. •
18testing, model checking and theorem proving
19The outcome of applying an analysis predicate of the prescribed kind may be chaos if the prerequisites for its application does not hold.
20https://www.britannica.com/plant/banyan
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Domain Analysis & Description 17

This section therefore introduces a number of domain description tools:

• uid_: the unique identifier observer of parts;
• mereo_: the mereology observer of parts;
• attr_: (zero,) one or more attribute observers of endurants; and
• attributes_: the attribute query of endurants.

8.2.1 Unique Identity.

Ontological Choice 8.40. Unique Identity : We postulate that separately discernible parts have unique identify. The
issue, really, is a philosophical one. We refer to [Bjørner 2021, Sects. 2.2.2.3–2.2.2.4, pages 14–15] for a discussion of the
existence and uniqueness of entities •

Characterization 8.41. Unique Identity : A unique identity is an immaterial property that distinguishes any two
spatially distinct solids21 •

The unique identity of a part p of type P is obtained by the postulated observer uid_P:

Theorem 8.42. Describe-Unique-Identity-Part-Observer

“type
P,PI

value
uid_P: P → PI” •

Here PI is the type of the unique identifiers of parts of type P.

Example 8.43. Unique Road Transport Identifiers: The unique identifierss of a road transport, rt:RT, consists of the
unique identifiers of the

• road transport – rti:RTI,
• (Cartesian) road net – rni:RNI,
• (set of) automobiles – sa:SAI,
• automobile, ai:AI,

• (set of) hubs, hai:AHI,
• (set of) links, lai:LAI,
• hub, hi:HI, and
• link, li:LI,

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer cum describer – though,
as You can see, these names were here formed by “suffixing” Is to relevant part names •

We have thus introduced a core domain modeling tool the uid_… observer function, one to be “applied” mentally
by the domain describer, and one that appears in (RSL) domain descriptions The uid_… observer function is “applied”
by the domain describer, it is not a computable function.

21For pragmatic reasons we do not have to speculate as to whether “bodies” of fluids can be ascribed unique identity. The pragmatics is that we, in our
extensive modeling experiments have not found a need for such ascription !

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Dines Bjørner

8.2.1.1 Uniqueness of Parts. No two parts have the same unique identifier.

Example 8.44. Road Transport Uniqueness:

variable
hsuids :HI-set := { uid_H(h) | h:H•u ∈ σ }
lsuids :LI-set := { uid_L(l) | l:L•u ∈ σ }
asuids :AI-set := { uid_A(a) | a:A•u ∈ σ }
σuids :(HI|LI|AI)-set := { uid_(H|L|A)(u) | u:(H|L|A)•u ∈ σ }

axiom
2 card σ = card σuids • For σ see Sect. 8.1.4.

We have chosen, for the same reason as given in Sect. 8.1.4, to model a unique identifier state. The 2 [always] prefix
in the axiom then expresses that changes of parts or addition of parts to and deletions of parts from the domain shall
maintain their uniqueness over time (i.e., always).

8.2.2 Mereology. The concept of mereology is due to the Polish mathematician, logician and philosopher Stanisław
Leśniewski (1886–1939) [Bjørner 2014a; Varzi 1994].

Characterization 8.45. Mereology : Mereology is a theory of [endurant] part-hood relations: of the relations of an
[endurant] parts to a whole and the relations of [endurant] parts to [endurant] parts within that whole •

Ontological Choice 8.46. Mereology : Stanisław Leśniewski was not satisfied with Bertrand Russell’s “repair” of
Gottlob Frege’s axiom systems for set theory. Instead he put forward his axiom system for, as he called it, mereology.
Both as a mathematical theory and as a philosophical reasoning •

Example 8.47. Mereology : Examples of mereologies are that a link is topologically connected to exactly one or,
usually, two specific hubs, that hubs are connected to zero, one or more specific links, and that links and hubs are open
to the traffic of specific subsets of automobiles •

Mereologies can be expressed in terms of unique identifiers.

Example 8.48. Mereology Representation: For our ‘running road transport example’ the mereologies of links, hubs
and automobiles can thus be expressed as follows:

• mereo_L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the link connects, i.e., are in
hsuids ;

• mereo_H(h) = {li1,li2,…,lin } where li1,li2,…,lin are the unique identifiers of the links that are imminent upon
(i.e., emanates from) the hub, i.e., are in lsuids ; and

• mereo_A(a) = {ri1,ri2,…,rim } where ri1,ri2,…,rim are unique identifiers of the road (hub and link) elements that
make up the road net, i.e., are in hsuids∪lsuids •

Once the unique identifiers of all parts of a domain has been described we can analyses and describe their mereologies.
The inquiry: mereo_P(p) yields a mereology type (name), say PMer, and its description22:

Theorem 8.49. Describe-Mereology

22Cf. Sect. 8.1.3.1.5
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Domain Analysis & Description 19

“type
PMer = M(PI1,PI2,...,PIm)

value
mereo_P: P → PMer

axiom
A(pm:PMer)” •

where M(PI1,PI2,…,PIm) is a type expression over unique identifier types of the domain; mereo_P is the mereology
observer function for parts p:P; and A(pm:PMer) is an axiom that secures that the unique identifiers of any part are
indeed of parts of the domain.

8.2.3 Attributes. Attributes are what finally gives “life” to endurants: The external qualities “only” named and gave
structure to their atomic or compound types. The internal qualities of uniqueness and mereology are intangible quan-
tities. The internal quality of attributes gives “flesh & blood” to endurants: they let us express endurant properties that
we can more easily, i.e., concretely, relate to.

8.2.3.1 General.

Characterization 8.50. Attributes: Attributes are properties of endurants that can be measured either physically
(by means of length (ruler) and spatial quantity measuring equipment, electronically, chemically, or otherwise) or can
be objectively spoken about •

Ontological Choice 8.51. Attributes: First some empirical observation: in reasoning about “the world around us”
we express its properties in terms of predicates. These predicates, for example: “that building’s wall is red” , building
refers to an endurant part whereas wall and red refers to attributes. Now the “rub”: endurant attributes is what give
“flesh & blood” to domains •

Attributes are of types and, accordingly have values.
We postulate an informal domain analysis function, record_attribute_type_names: The domain analyzer, in ob-

serving a part, p:P , analyzes it into the set of attribute names of parts p:P

Theorem 8.52. record-attribute-type-names

value
record_attribute_type_names: P → ηT-set
record_attribute_type_names(p:P) as ηT-set •

Example 8.53. Road Net Attributes, I: Examples of attributes are: hubs have states, hσ :HΣ: the set of pairs of link
identifiers, (f li,t li), of the links f rom and to which automobiles may enter, respectively leave the hub; and hubs have
state spaces, hω:HΩ: the set of hub states “signaling” which states are open/closed, i.e., green/red; links that have
lengths, LEN; and automobiles have road net positions, APos, either at a hub, atH, or on a link, onL, some fraction,
f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub, identified by thi. Hubs and links have
histories: time-stamped, chronologically ordered sequences of automobiles entering and leaving links and hubs, with
automobile histories similarly recording hubs and links entered and left.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Dines Bjørner

type
HΣ = (LI×LI)-set
HΩ = HΣ-set
LEN = Nat m
APos = atH | onL
atH :: HI

onL :: LI × (fhi:HI × f:Real × thi:HI)

HHis,LHis = (TIME×AI)∗

AHis = (TIME×(HI|LI))∗

value

attr_HΣ: H → HΣ

attr_HΩ: H → HΩ

attr_LEN: L → LEN

attr_APos: A → APos

attr_HHis: H → HHis

attr_LHis: L → LHis

attr_AHis: A → AHis

axiom
∀ (li,(fhi,f,thi)):onL • 0<f<1

∧li∈lsuids∧{fhi,thi}⊆hsuids∧... •

Theorem 8.54. Describe-endurant-attributes(e:E)

let {η A1,ηA2,...,ηAn} = record_attribute_type_names(e:E) in
“ type

A1, A2, ..., An

value
attr__A1: E → A1, attr__A2: E → A2, ..., attr__An: E → An

axiom
∀ a1:A1, a2:A2, ..., an:An: A(a1,a2,...,an) ”

end •

8.2.3.2 Michael A. Jackson’s Attribute Categories. Michael A. Jackson [Jackson 1995] has suggested a hierarchy of
attribute categories:from static (is_static23) to dynamic (is_dynamic24) values – and within the dynamic value cate-
gory: inert values (is_inert25), reactive values (is_reactive26), active values (is_active27) – andwithin the dynamic
active value category: autonomous values (is_autonomous28), biddable values (is_biddable29), and programmable val-
ues (is_programmable30) . We postulate informal domain analysis predicates, “performed” by the domain analyzer:

value
is_static,is_autonomous,is_biddable,is_programmable [etc.]: η T→Bool

We refer to [Jackson 1995] and [Bjørner 2021] [Chapter 5, Sect. 5.4.2.3] for details. We suggest a minor revision of
Michael A. Jackson’s attribute categorization, see left side of Fig. 2. We single out the inert from the ontology of Fig. 2,
left side. Inert attributes seem to be “set externally” to the endurant. So we now distinguish between is_external and
is_internal dynamic attributes. We summarize Jackson’s attribute and our revised categorization in Fig. 2.

This distinction has [pragmatic] consequences for how we treat arguments of the behaviours of parts, cf. Sect. 9.5.1
(page 25).
23static: values are constants, cannot change
24dynamic: values are variable, can change
25inert: values can only change as the result of external stimuli where these stimuli prescribe new values
26reactive: values, if they vary, change in response to external stimuli, where these stimuli either come from outside the domain of interest or from
other endurants.
27active: values can change (also) on their own volition
28autonomous: values change only “on their own volition”; the values of an autonomous attributes are a “law onto themselves and their surroundings”.
29biddable: values are prescribed but may fail to be observed as such
30programmable: values can be prescribed
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Domain Analysis & Description 21

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

dynamicstatic

endurant

internal

reactive

biddable

external = inert

programmable autonomous

active

monitorable attributes

Fig. 2. Michael Jackson’s [Revised] Attribute Categories

Example 8.55. Road Net Attributes, II: The link length and hub state space attributes are static, hub states and auto-
mobile positions programmable. Automobile speed and acceleration attributes, whichwe do notmodel, aremonitorable
•

The attributes categorization determines, in the next major section on perdurants, the treatment of hub, link and
automobile behaviours.

8.2.3.3 Analytic Attribute Extraction Functions:. For later purpose we need characterize three specific attribute cat-
egory extraction functions: static_attributes, monitorable_attributes, and programmable_attributes:

value
p:P

tns = record_attribute_type_names(p)

static_attributes: ηT -set→ ηT -set
static_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_static(tn) }

inert_attributes: ηT -set→ ηT -set
inert_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_inert(tn) }

monitorable_attributes ηT -set → ηT -set
monitorable_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_monitorable(tn) }

programmable_attributes ηT -set → ηT -set
programmable_attributes(tns) ≡ { ηtn | ηtn:ηT • ηtn ∈ tns ∧ is_programmable(tn) }

is_monitorable: T → Bool
is_monitorable(t) ≡ ∼is_static(t) ∧ ∼is_inert(t) ∧ ∼is_programmable(t)

Please be reminded that these functions are informal. They are part of the presentation language. Do not
be confused by their RSL-like appearance.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Dines Bjørner

8.3 Intentional Pull

Ontological Choice 8.56. Intentional Pull: In [Sørlander 2016, pages 167–168] Sørlander argues wrt.
“how can entities be the source of forces ?” and thus reasons for gravitational pull. That same kind of reason-
ing, with proper substitution of terms, leads us to the concept of intentional pull •

Two or more parts of different sorts, but with overlapping sets of intents31 may excert an intentional “pull”

on one another. This intentional “pull” may take many forms. Let px : X and py : Y be two parts of different
sorts (X ,Y), and with common intent , ι. Manifestations of these, their common intent must somehow be
subject to constraints, and these must be expressed predicatively .

When a compound artifact models “itself” as put together with a number of other endurants then it does
have an intentionality and the components’ individual intentionalities does, i.e., shall relate to that.

Example 8.57. Road Transport Intentionality : Automobiles include the intent of 'transport', and so
do hubs and links. Manifestations of "transport" are reflected in hubs, links and automobiles having the
history attribute. The intentional “pull” of these manifestations is this: For every automobile, if it records
being in some hub or on some link at time τ , then the designated hub, respectively link, records exactly
that automobile; and vice versa: for every hub [link], if it records the visit of some automobile at time τ ,
then the designated automobile records exactly that hub [link]. We leave the formalization of the above to
the reader •

Example 8.58. Double-entry Bookkeeping: Another example of intentional “pull” is that of double-entry
bookkeeping. Here the income/expense ledger must balance the actives/passives ledger •

Example 8.59. The Henry George Theorem.: The Henry George theorem states that under certain condi-
tions, aggregate spending by government on public goods will increase aggregate rent based on land value
(land rent) more than that amount, with the benefit of the last marginal investment equaling its cost •32, 33

8.4 Summary of Endurants

We have completed our treatment of endurants. That treatment was based on an ontology for the observ-
able phenomena of domains – such as we have delineated the concept of domains. The treatment was
crucially based on an ontology for the structure of domain phenomena, and, in a sense, “alternated” be-
tween analysis predicates, analysis functions, and description functions. We have carefully justified this
ontology in ‘Ontological Choice’ paragraphs

31Intent: purpose; God-given or human-imposed !
32Stiglitz, Joseph (1977). “TheTheory of Local Public Goods”. In Feldstein, M.S.; Inman, R.P. (eds.). The Economics of Public Services. Palgrave Macmillan,
London. pp. 274–333. doi:10.1007/978-1-349-02917-4_12. ISBN 978-1-349-02919-8.
33Henry George (September 2, 1839 – October 29, 1897) was an American political economist and journalist. His writing was immensely popular in
19th-century America and sparked several reform movements of the Progressive Era. He inspired the economic philosophy known as Georgism, the
belief that people should own the value they produce themselves, but that the economic value of land (including natural resources) should belong equally
to all members of society. George famously argued that a single tax on land values would create a more productive and just society.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Domain Analysis & Description 23

9 PERDURANT CONCEPTS

The main contribution of this section is that of transcendentally deducing perdurants from endurant parts,
in particular behaviours “of” parts.

Major perdurants are those of actions, events and behaviours with behaviours generally being sets of
sequences of actions, events and behaviours.

9.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those (endurant) parts
which we, as domain analyzers cum describers, have endowed with all three kinds of internal qualities:
unique identifiers, mereologies and attributes. We shall use the CSP [Hoare 1985] constructs of RSL (derived
from RSL [George et al. 1992]) to model concurrent behaviours.

9.2 Transcendental Deduction

Characterization 9.1. Transcendental: By transcendental we shall understand the philosophical notion:
the a priori or intuitive basis of knowledge, independent of experience •

Apriori knowledge or intuition is central: By a priori wemean that it not only precedes, but also determines
rational thought.

Characterization 9.2. Transcendental Deduction: By a transcendental deduction we shall understand
the philosophical notion: a transcendental “conversion” of one kind of knowledge into a seemingly different
kind of knowledge •

Example 9.3. Transcendental Deductions – Informal Examples: We give some intuitive examples of tran-
scendental deductions. They are from the “domain” of programming languages. There is the syntax of a
programming language, and there are the programs that supposedly adhere to this syntax. Given that, the
following are now transcendental deductions.

The software tool, a syntax checker , that takes a program and checks whether it satisfies the syntax,
including the statically decidable context conditions, i.e., the statics semantics – such a tool is one of several
forms of transcendental deductions.

The software tools, an automatic theorem prover and amodel checker , for example SPIN [Holzmann 2003],
that takes a program and some theorem, respectively a Promela statement, and proves, respectively checks,
the program correct with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.
Yes, indeed, any abstract interpretation [Cousot 2021] reflects a transcendental deduction: firstly, these

examples show that there are many transcendental deductions; secondly, they show that there is no single-
most preferred transcendental deduction •

Ontological Choice 9.4. Transcendental Deduction of Behaviours from Parts: So this, then, is, in a sense,
our “final” ontological choice: that of transcendentally deducing behaviours from parts •

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Dines Bjørner

9.3 Actors – A Synopsis

This section provides a summary overview.

Characterization 9.5. Actors: An actor is anything that can initiate an action, event or behaviour •

9.3.1 Action.

Characterization 9.6. Actions: An action is a function that can purposefully change a state •

Example 9.7. Road Net Actions: These are some road transport actions: an automobile leaving a hub,
entering a link; leaving a link, entering a hubs; entering the road net; and leaving the road net •

9.3.2 Event.

Characterization 9.8. Events: An event is a function that surreptitiously changes a state •

Example 9.9. Road Net Events: These are some road net events: The blocking of a link due to a mud
slide; the failing of a hub traffic signal due to power outage; an automobile failing to drive; and the blocking
of a link due to an automobile accident •

We shall not formalize events.

9.3.3 Behaviour.

Characterization 9.10. Behaviours: Behaviours are sets of sequences of actions, events and behaviours •

Concurrency is modeled by the sets of sequences. Synchronization and communication of behaviours are
effected by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.

Example 9.11. Road Net Traffic: Road net traffic can be seen as a behaviour of all the behaviours of
automobiles, where each automobile behaviour is seen as sequence of start, stop, turn right, turn left, etc.,
actions; of all the behaviours of links where each link behaviour is seen as a set of sequences (i.e., be-
haviours) of “following” the link entering, link leaving, and movement of automobiles on the link; of all
the behaviours of hubs (etc.); of the behaviour of the aggregate of roads, viz. The Department of Roads, and
of the behaviour of the aggregate of automobiles, viz, The Department of Vehicles.

9.4 Channel

Characterization 9.12. Channel: A channel is anything that allows synchronization and communica-
tion of values between behaviours •

Theorem 9.13. Channel

We suggest the following schema for describing channels:

“channel { ch[{ui,uj}] | ui,ij:UI • ... } M
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Domain Analysis & Description 25

where ch is the describer-chosen name for an array of channels, ui,uj are channel array indices of the
unique identifiers, UI, of the chosen domain •

Example 9.14. Road Transport Interaction Channel:

channel { ch[{ui,uj}] | {ui,ij}:(HI|LI|AI)-set • ui,uj∧{ui,uj}⊆σuids } M

Channel array ch is indexed by a “pair” of distinct unique part identifiers of the domain. We shall later
outline M, the type of the “messages” communicated between behaviours •

9.5 Behaviours

We single out the perdurants of behaviours – as they relate directly to the parts of Sect. 8. The treatment is
“divided” into three sections.

9.5.1 Behaviour Signature.

Theorem 9.15. Behaviour Signature

By the behaviour signature, for a part p, we shall understand a pair: the name of the behaviour, Bp , and
a function type expression as indicated:
value

Bp : Uidp→34 Mereop→Sta_Valsp→Inert_Valsp→Mon_Refsp→Prgr_Valsp → { ch[{i,j}] | … } Unit

We explain:

• Uidp is the type of unique identifiers of part p, uid_P(p) = Uidp ;
• Mereop is the type of the mereology of part p, mereo_P(p) = Mereop ;
• Sta_Valsp is a Cartesian of the type of inert attributes of part p. Given record_attribute_type_-

names(p) static_attributes(record_attribute_type_names(p)) yields Sta_Valsp ;
• Inert_Valsp is a Cartesian of the type of static attributes of part p. Given record_attribute_type_-

names(p) inert_attributes(record_attribute_type_names(p)) yields Inert_Valsp ;
• Mon_Refsp is a Cartesian of the attr_ibute observer functions of the types of monitorable attributes

of partp. Given record_attribute_type_names(p) analysis function monitorable_attributes(re-
cord_attribute_type_names(p)) yields Mon_Valsp ;

• Prgr_Valsp is a Cartesian of the type of programmable attributes of part p. Given record_attribu-

te_type_names(p) analysis function programmable_attributes(record_attribute_type_names(p)).
yields Prgr_Valsp ;

• { ch[{i,j}] | … } specifies the channels over which part p behaviours, Bp , may communicate;
and:

• Unit is the type name for the () value35 •
34We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses_Schönfinkel#Further_reading (Curried https://en.wikipedia.org/wi-
ki/Currying) the function type
35– You may “read’ () as the value yielded by a statement, including a never-terminating function

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Dines Bjørner

The Cartesian arguments may “degenerate” to the non-Cartesian of no, or just one type identifier, In none,
i.e., (), then () may be skipped. If one, e.g., (a), then (a) is listed.

Example 9.16. Road Transport Behaviour Signatures:

value
hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)

→{ch[{uid_H(p),ai}]|ai:AI•ai∈asuid } Unit
link: LI→MereoL→(LEN×...)→(...)→(LHist×...)

→{ch[{uid_L(p),ai}]|ai:AI•ai∈asuid } Unit
automobile: AI→MereoA→(...)→(attr_AVel×attr_HAcc×...)→(APos×AHist×...)

→{ch[{uid_H(p),ri}]|ri:(HI|LI)•ri∈hsuid∪lsuid } Unit

Here we have suggested additional part attributes: monitorable automobile velocity and acceleration, AVel,
AAcc, and omitted other attributes •

9.5.2 Inert Arguments: Some Examples. Let us give some examples of inert attributes of automobiles. (i)
Driving uphill, one a level road, or downhill, excert some inert “drag” or “pull”. (ii) Velocity can be treated
as a reactive attribute – but it can be [approximately] calculated on the basis of, for example, these inert
attributes: drag/pull and accelerator pedal pressure, and the static engine power attribute.

9.5.3 Behaviour Invocation.

Theorem 9.17. Behaviour Invocation

Behaviours are invoked as follows:

“Bp (uid_p (p))36

(mereo_P(p))
(attr_staA1(p),...,attr_staAs (p))

(attr_inertA1(p),...,attr_inertAi (p))

(attr_monA1,...,attr_monAm)

(attr_prgA1(p),...,attr_prgAp (p))”

• All arguments are passed by value.
• The uid value is never changed.
• The mereology value is usually not changed.
• The static attribute values are fixed, never changed.
• The inert attribute values are fixed, but can be updated by receiving explicit input communications.
• Themonitorable attribute values are functions, i.e., it is as if the “actual” monitorable values are passed

by name !
36We show the arguments of the invocation on separate lines only for readability. That is: normally we show the invocation arguments as
B(…)(…)(…)(…)(…).

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Domain Analysis & Description 27

• The programmable attribute values are usually changed, “updated”, by actions described in the be-
haviour definition •

9.5.4 Argument References. Within behaviour descriptions, see next section, references are made to the
behaviour arguments. References, a, to unique identifier, mereology, static and progammable attribute argu-
ments yield their value. References, a, to monitorable attribute arguments also yield their value. This value
is an attr_A observer function. To yield, i.e., read, the monitorable attribute value this function is applied
to that behaviour’s uniquely identified part, puid , in the global part state, σ . To update„ i.e., write, say, to a
value v , for the case of a biddable, monitorable attribute, that behaviour’s uniquely identified part, puid , in
the global part state, σ , shall have part puid ’s A attribute changed to v – with all other attribute values of
puid unchanged. Common to both the read and write functions is the retrieve part function:

(1) Given a unique part identifier, pi, assumed to be that of an existing domain part,
(2) retr_part reads the global [all parts] variable σ to retrieve that part p whose unique part identifier is

pi.

value
2. retr_part: PI → P read
2. retr_part(pi) ≡ let p:P • p ∈ cσ ∧ uid_P(p)=pi in p end
1. pre: ∃ p:P • p ∈ cσ ∧ uid_P(p)=pi

You may think of the functions being illustrated in this section, Sect. 9.5.4, retr_part, read_A_from_P and
update_P_with_A, as “belonging” to the description language, but here suitably expressed for any domain,
that is, with suitable substitutions for A and P.

9.5.4.1 Evaluation of Monitorable Attributes..

(3) Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A be a monitorable
attribute of p, and let ηA be the name of attribute A.

(4) Evaluation of the [current] attribute A value of p is defined by function read_A_from_P.

value
3. pi:PI, a:A, ηA:ηT

4. read_A_from_P: PI × T→ read σ A

4. read_A(pi,ηA) ≡ attr_A(retr_part(pi))

9.5.4.2 Update of Biddable Attributes.

(5) The update of a monitorable attribute A, with attribute name ηA of part p, identified by pi, to a new
value writes to the global part state σ .

(6) Part p is retrieved from the global state.
(7) A new part, p′ is formed such that p′ is like part p:
(a) same unique identifier,

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Dines Bjørner

(b) same mereology,
(c) same attributes values,
(d) except for A.

(8) That new p ′ replaces p in σ .

value
5. σ , a:A, pi:PI, ηA:ηT

5. update_P_with_A: PI × A × ηT→ write σ
5. update_P_with_A(pi,a,ηA) ≡
6. let p = retr_part(pi) in
7. let p′:P •

7a. uid_P(p′)=pi

7b. ∧ mereo_P(p)=mereo_P(p′)

7c. ∧ ∀ ηA′ ∈ record_attribute_type_names(p)\{ηA} ⇒ attr_A′(p)=attr_A′(p′)

7d. ∧ attr_A(p′)=a in
8. σ := cσ \ {p} ∪ {p′}
5. end end
6. pre: ∃ p:P • p ∈ cσ ∧ uid_P(p)=pi

9.5.5 Behaviour Description – Examples. Behaviour descriptions rely strongly on CSPs’ [Hoare 1985] ex-
pressivity. Leaving out some details (_, ‘…’), and without “further ado” , we exemplify.

Example 9.18. Automobile Behaviour at Hub:

(9) We abstract automobile behaviour at a Hub (hi).
(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.

9 automobile(ai)(ris)(...)(atH(hi),ahis,) ≡
9a automobile_remains_in_hub(ai)(ris)(...)(atH(hi),ahis,)

9b ⌈⌉
9c automobile_leaving_hub(ai)(ris)(...)(atH(hi),ahis,)

9d ⌈⌉
9e automobile_stop(ai)(ris)(...)(atH(hi),ahis,)

(10) [9a] The automobile remains in the hub:
(a) time is recorded,

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Domain Analysis & Description 29

(b) the automobile remains at that hub, “idling”,
(c) informing (“first”) the hub behaviour.

10 automobile_remains_in_hub(ai)(ris)(...)(atH(hi),ahis,) ≡
10a let τ = record_TIME in
10c ch[{ai,hi}] ! τ ;

10b automobile(ai)(ris)(...)(atH(hi),⟨(τ ,hi)⟩̂ahis,) end

(11) [9c] The automobile leaves the hub entering link li:
(a) time is recorded;
(b) hub is informed of automobile leaving and link that it is entering;
(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the vehicle behaviour

positioned at the very beginning (0) of that link.

11 automobile_leaving_hub(ai)({li}∪ris)(...)(atH(hi),ahis,) ≡
11a let τ = record_TIME in
11b (ch[{ai,hi}] ! τ ∥ ch[{ai,li}] ! τ) ;
11c automobile(ai)(ris)(...)(onL(li,(hi,0,)),⟨(τ ,li)⟩̂ahis,) end
11 pre: [hub is not isolated]

The choice of link entered is here expressed (11) as a non-deterministic choice37. One can model the leave
hub/enter link otherwise.

(12) [9e] Or the automobile “disappears — off the radar” !

12 automobile_stop(ai)(ris),(...)(atH(hi),ahis,) ≡ stop •

rm

9.6 Behaviour Initialization.

For every manifest part it must be described how its behaviour is initialized.

Example 9.19. Road Transport Initialization: We “wrap up” the main example of this paper: We omit treatment of
monitorable attributes.

(13) Let us refer to the system initialization as an action.
(14) All hubs are initialized,
(15) all links are initialized, and
(16) all automobiles are initialized.

value
13. rts_initialisation: Unit→ Unit
13. rts_initialisation() ≡
14. ∥ { hub(uid_H(l))(mereo_H(l))(attr_HΩ(l),...)(attr_HΣ(l),...)| h:H • h ∈ hs }

37– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automobiles can never leave isolated hubs.

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Dines Bjørner

15. ∥ ∥ { link(uid_L(l))(mereo_L(l))(attr_LEN(l),...)(attr_LΣ(l),...)| l:L • l ∈ ls }
16. ∥ ∥ { automobile(uid_A(a))(mereo_A(a))(attr_APos(a)attr_AHis(a),...) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls,as we refer to Sect. 8.1.4 •

10 CONCLUSION

We have summarized a method to be used by [human] domain analyzers cum describers in studying and modeling
domains. Our previous publications [Bjørner 2017, 2019, 2021] have, with this paper, found its most recent, we risk to
say, for us, final form.

Of course, domain models can be developed without the calculi presented in this paper. And was for many years.
From the early 1990s a number of formal models of railways were worked out [Bjørner 2000, 2003a,b; Bjørner et al.
2002; George et al. 2002]. The problem, though, was still, between 1992 and 2016, “where to begin, how to proceed and

when to end” . The domain analysis & description ontology and, hence calculus, of this paper shows how. The system-
atic approach to domain modeling of this ontology and calculus has stood its test of time. The Internet ‘publication’
https://www.imm.dtu.dk/~dibj/2021/dd/dd.pdf include the following domain models38 from the 2007–2024 pe-
riod. Their development has helped hone the method of the present paper.

10.1 Previous Literature

To the best of my knowledge there is no prior, comparable publications in the field of domain science and engineering.
Closest would beMichael A. Jackson’s [Jackson 2009].Well, most computer scientists working in the field of correctness
of programs, from somewhat “early on”, stressed the importance of making proper assumptions about the domain,
They would then express these “in-line”, as appropriate predicates, with their proofs. Michael A. Jackson, lifted this,
to a systematic treatment of the domain in his triplet ‘Problem Frame Approach’: program, machine, domain [Jackson
2001]. But Jackson did not lift his problem frame concern into a proper study of domains.

10.2 The Method

So the method procedure is this: (1) First analyze and describe the external qualities of the chosen domain. (2) For each
of the so-described endurants You then analyze and describe their internal qualities. (2.1) First their unique identification.
(2.2) Then their mereology. (2.3) Then their attributes. (2.4) And finally possible intentional pulls. (3) First then are You
ready to tackle the issue of perdurants. (3.1) Decide upon the state. (Thatmay already have been done in connectionwith
(1).) (3.2) Then describe the channels. (3.3) Then analyze and describe [part] behaviour signatures. (3.4) Then describe
behaviour invocation. (3.5) Then behaviour (body) definitions. (4) Finally describe domain initialization.

38

• Graphs,
• Rivers,
• Canals,
• Railways,
• Road Transport ,

• The “7 Seas” ,
• The “Blue Skies” ,
• Credit Cards,
• Weather Information,
• Documents,

• Urban Planning,
• Swarms of Drones,
• Container Terminals,
• A Retailer Market ,
• Assembly Lines,

• Bookkeeping,
• Shipping,
• Stock Exchanges,
• Web Transactions, etc.

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Domain Analysis & Description 31

10.3 Specification Units

Themethod thus focuses, step-by-step, on the development of the following specification units: type specification units,
value specification units, axiom specification units, variable declaration units, and channel declaration units.

There are two forms of type specifications: (α) introduction of sorts, i.e., type names, and (β) specification of types:
pairs of new type names and type expressions – as atomic, alternate or composite types: set, Cartesian, list, map or
function types.

There are basically three forms of value specification units: (i) (“simple”) naming of values, (ii) signature of functions:
function name and function type, and (iii) signature of (endurant obs_, unique identifier uid_, mereology, mereo_,
and attribute attr_) observer functions.

10.4 Object Orientation

So far we have not used the term ‘object’ !
We shall now venture the following:
The combined description of endurant parts and their perdurant behaviour form an object definition.

You can then, for yourself, develop a way of graphically presenting these object definitions such that each part
type is represented by a box that contains the specification units for [all] external and internal endurant qualities as
well as for the perdurant [part] behaviour signatures and definitions; and such that the mereologies of these parts is
represented by [possibly directed] lines connecting relevant boxes.

That is, an object concept solely based on essentially inescapable world description facts – as justified by Sørlander’s
Philosophy [Sørlander 1994, 2016, 2022, 2023] ! No “finicky” programming language “tricks” !

We leave it to the reader to compare this definition to those of so-called object-oriented programming languages.

10.5 Other Domain Modeling Approaches

[Van et al. 2002] shows fragments of a number of expertly expressed domain models.They are all expressed in RAISE.39

But they are not following the method of this paper. In other words, it is possible to develop domain models not using
the method ! This author has found, however, that following the method – developed after the projects reported in
[Van et al. 2002] – leads to far less problematic situations – in contrast to my not adhering strictly to the method. In
other words, based on this subjective observation, we advice using the method.

There is thus no proof that following the method does result in simpler, straightforward developments.
But we do take the fact that we can justify the method, cf. Fig. 1, on the basis on the inevitability of describing the

world as per philosophy of Kai Sørlander [Sørlander 1994, 2016, 2022, 2023], and that that may have a bearing on the
experienced shorter domain description development efforts.

10.6 How Much ? How Little ?

Howwidemust we cast the net when studying a domain ?The answer to that question depends, we suggest, on whether
our quest is for studying a domain in general, to see what might come out, or whether it is a study aiming at a specific
model for a specific software development. In the former case we cast the net as we please – we suggest: as wide as
possible, wider that for specific quests. In the latter case we should cast the net as “narrowly” as is reasonable: to fit

39Other approaches could also be used: VDM [Bjørner and Jones 1978, 1982], Z [Woodcock and Davies 1996], Alloy [Jackson 2006], CafeOBJ [Futatsugi
et al. 2000], etc.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Dines Bjørner

those parts of a domain that we expect the requirements and software to deal with ! In this latter case we should assume
that someone, perhaps the same developers, has first “tried their hand” on a wider domain.

10.7 Correctness

Today, 2024, software correctness appears focused on the correctness of algorithms, possibly involving concurrency.
Correctness, of software, in the context of a specific domain, means that the software requirements are “correctly”
derived from a domain description, and that the software design is correctly derived from the domain requirements, that
is: D,S |= R. Advances in program proofs helps little if not including proper domain and requirements specifications.

10.8 Domain Facets

There is more to domain modeling than covered in this paper. In [Bjørner 2009] and in [Bjørner 2021, Chapter 8] we
cover the concept of domain facets. General examples of domain facets are support technologies, rules & regulations,

scripts, license languages, management & organization, and human behaviour .

10.9 Perspectives

Domain models can be developed for either of a number of reasons:

• (i) in order to understand a human-artifact domain;
• (ii) in order to re-engineer the business processes of a human-artifact domain; or
• (iii) in order to develop requirements prescriptions and, subsequently software application “within” that domain.

[(ii)]We refer to [Hammer andChampy 1993; Hammer and Stanton 1996] and [Bjørner 2006,Vol. 3, Chapter 19, pages 404–

412] for the concept of business process engineering. [(iii)] We refer to [Bjørner 2021, Chapter 9] for the concept of
requirements engineering.

10.10 The Semantics of Domain Models

The meaning of domain models, such as we describe them in this paper, is, “of course”, the actual, real domain “out
there” ! One could, and, perhaps one should, formulate a mathematical semantics of the models, that is, of the is_…,
obs_…, uid_…, mereo_… and attr_… analysis and description functions and what they entail (e.g., the type name
labels: ηT’s; etc.). An early such semantics description is given in [Bjørner 2014b].

10.11 Further on Domain Modeling

Additional facets of domain modeling are covered in [Bjørner 2008] and [Bjørner 2021, Chapter 8: Domain Facets.]

10.12 Software Development

[Bjørner 2008] and [Bjørner 2021, Chapter 9 Requirements] show how to develop Requirements prescriptions from
Domain descriptions. [Bjørner 2006] shows how to develop Software designs from Requirements prescriptions.

10.13 Modeling

Domain descriptions, such as outlined in this paper, are models of domains, that is, of some reality. They need not
necessarily lead to or be motivated by possible development of software for such domains. They can be experimentally
researched and developed just for the sake of understanding domains in which man has had an significantly influence.
Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Domain Analysis & Description 33

They are models. We refer to [Fettke and Reisig 2024] for complementary modeling based on Petri nets. The current
author is fascinated by the interplay between graphical and textual descriptions of HERAKLIT, well, in general Petri
Nets.

10.14 Philosophy of Computing

The Danish philosopher Kai Sørlander [Sørlander 1994, 2016, 2022, 2023] has shown that there is a foundation in
philosophy for domain analysis and description. We refer to [Bjørner 2023a, Chapter 2] for a summary of his findings.

10.15 A Manifesto

So there is no excuse, anymore ! Of coursewe have developed interpreters and compilers for programming languages by
first developing formal semantics for those languages [Bjørner and Oest 1980b; Clemmensen and Oest 1984]. Likewise
we must now do for the languages of domain stakeholders, at least for the domains covered by this paper. There really
is no excuse !

ACKNOWLEDGMENTS

I thank Dr. Yang ShaoFa for kind support.

REFERENCES
J. L. Austin. 1975. How to Do Things with Words (2 ed.). Harvard University Press, Cambridge, Mass. (William James Lectures).
H. Bekič, D. Bjørner, W. Henhapl, C.B. Jones, and P. Lucas. 1974. A Formal Definition of a PL/I Subset. Technical Report 25.139. Vienna, Austria.
Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. 1969. Formal Definition of PL/I, ULD Version III. IBM Laboratory, Vienna. (1969).
Dines Bjørner. 2000. Formal Software Techniques in Railway Systems. In 9th IFAC Symposium on Control in Transportation Systems, Eckehard Schnieder

(Ed.). VDI/VDE-GesellschaftMess– und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik, Technical University, Braun-
schweig, Germany, 1–12. Invited talk.

Dines Bjørner. 2003a. Dynamics of Railway Nets: On an Interface between Automatic Control and Software Engineering. In CTS2003: 10th IFAC
Symposium on Control in Transportation Systems. Elsevier Science Ltd., Oxford, UK. https://doi.org/10.1016/S1474-6670(17)32424-2 Symposium held
at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki. www2.imm.dtu.dk/~dibj/ifac-dynamics.pdf.

Dines Bjørner. 2003b. New Results and Trends in Formal Techniques for the Development of Software for Transportation Systems. In FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. Institut für Verkehrssicherheit und Automatisierungstechnik, Techn.Univ.
of Braunschweig, Germany. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany. www2.imm.dtu.dk/
~dibj/dines-amore.pdf.

Dines Bjørner. 2006. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification of Systems and Languages; Vol. 3: Domains, Requirements
and Software Design. Springer, Heidelberg, Germany.

Dines Bjørner. 2008. From Domains to Requirements www.imm.dtu.dk/~dibj/2008/ugo/ugo65.pdf. In Montanari Festschrift (Lecture Notes in Computer
Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer)), Vol. 5065. Springer, Heidelberg, 1–30.

Dines Bjørner. 2009. Domain Engineering. In Formal Methods: State of the Art and New Directions (Eds. Paul Boca and Jonathan Bowen), Paul Boca,
Jonathan Bowen, and Jawed Siddiqi (Eds.). Springer, London, UK, 1–42. https://doi.org/10.1007/978-1-84882-736-3_1

Dines Bjørner. 2014a. A Rôle for Mereology in Domain Science and Engineering. In Mereology and the Sciences (Synthese Library (eds. Claudio Calosi
and Pierluigi Graziani)). Springer, Amsterdam, The Netherlands, 323–357. https://www.imm.dtu.dk/~dibj/2011/urbino/urbino-colour.pdf.

Dines Bjørner. 2014b. Domain Analysis: Endurants – An Analysis & Description Process Modelwww.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf.
In Specification, Algebra, and Software: A Festschrift Symposium in Honor of Kokichi Futatsugi, Shusaku Iida and José Meseguer and Kazuhiro Ogata
(Ed.). Springer, Heidelberg, Garmany.

Dines Bjørner. 2017. Manifest Domains: Analysis & Description www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf. Formal Aspects of Computing 29, 2
(March 2017), 175–225. Online: 26 July 2016.

Dines Bjørner. 2019. Domain Analysis & Description – Principles, Techniques and Modeling Languages. www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-
TOSEM.pdf. ACM Trans. on Software Engineering and Methodology 28, 2 (March 2019), 66 pages.

Dines Bjørner. 2021. Domain Science & Engineering – A Foundation for Software Development. Springer, Heidelberg, Germany. A revised version of this
book is [Bjørner 2023b].

Manuscript submitted to ACM

https://doi.org/10.1016/S1474-6670(17)32424-2
www2.imm.dtu.dk/~dibj/ifac-dynamics.pdf
www2.imm.dtu.dk/~dibj/dines-amore.pdf
www2.imm.dtu.dk/~dibj/dines-amore.pdf
www.imm.dtu.dk/~dibj/2008/ugo/ugo65.pdf
https://doi.org/10.1007/978-1-84882-736-3_1
https://www.imm.dtu.dk/~dibj/2011/urbino/urbino-colour.pdf
www.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf
www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf
www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Dines Bjørner

Dines Bjørner. 2023a. Domain Modelling – A Primer. (May 2023). A short version of [Bjørner 2023b]. xii+202 pages40 .
Dines Bjørner. 2023b. Domain Science & Engineering – A Foundation for Software Development. (January 2023). Revised edition of [Bjørner 2021].

xii+346 pages41 .
Dines Bjørner. 2024. Domain Models – A Compendium. Internet: http://www.imm.dtu.dk/~dibj/2024/models/domain-models.pdf. (March 2024).

This is a very early draft. 19 domain models are presented.
Dines Bjørner, Chris W. George, and Søren Prehn. 2002. Computing Systems for Railways — A Rôle for Domain Engineering. Relations to Requirements

Engineering and Software for Control Applications. In Integrated Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson. Society
for Design and Process Science, P.O.Box 1299, Grand View, Texas 76050-1299, USA. www2.imm.dtu.dk/~dibj/pasadena-25.pdf.

Dines Bjørner and Cliff B. Jones (Eds.). 1978. The Vienna Development Method: The Meta-Language. LNCS, Vol. 61. Springer, Heidelberg, Germany.
Dines Bjørner and Cliff B. Jones (Eds.). 1982. Formal Specification and Software Development. Prentice-Hall, London, England.
D. Bjørner and O. Oest. 1980a. Towards a Formal Description of Ada. LNCS, Vol. 98. Springer–Verlag.
Dines Bjørner and Ole N. Oest (Eds.). 1980b. Towards a Formal Description of Ada. LNCS, Vol. 98. Springer, Heidelberg, Germany.
Geert Bagge Clemmensen and Ole N. Oest. 1984. Formal Specification and Development of an Ada Compiler – A VDM Case Study. In Proc. 7th

International Conf. on Software Engineering, 26.-29. March 1984, Orlando, Florida. IEEE, New York, USA, 430–440.
Patrick Cousot. 2021. Principles of Abstract Interpretation. The MIT Press.
Peter Fettke and Wolfgang Reisig. 2024. Understanding the Digital World – Modeling with HERAKLIT. Springer. To be published.
K. Futatsugi, A.T. Nakagawa, and T. Tamai (Eds.). 2000. CAFE: An Industrial–Strength Algebraic Formal Method. Elsevier, Sara Burgerhartstraat 25, P.O.

Box 211, NL–1000 AE Amsterdam, The Netherlands. Proceedings from an April 1998 Symposium, Numazu, Japan.
Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner.

1992. The RAISE Specification Language. Prentice-Hall, Hemel Hampstead, England.
Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank Pedersen. 1995. The RAISE Development

Method. Prentice-Hall, Hemel Hampstead, England.
Chris W. George, Hung Dang Van, Tomasz Janowski, and Richard Moore. 2002. Case Studies using The RAISE Method. Springer–Verlag, London. This

book reports on a number of case studies using RAISE (Rigorous Approach to Software Engineering). The case studies were done in the period 1994–
2001 at UNU/IIST, the UN University’s International Institute for Software Technology, Macau (till 20 Dec., 1997, Chinese Teritory under Portuguese
administration, now a Special Administrative Region (SAR) of (the so–called People’s Republic of) China).

Michael Hammer and James A. Champy. May 1993. Reengineering the Corporation: A Manifesto for Business Revolution. HarperCollinsPublishers, 77–85
Fulham Palace Road, Hammersmith, London W6 8JB, UK. 5 June 2001, Paperback.

Michael Hammer and Stephen A. Stanton. 1996. The Reengineering Revolutiuon: The Handbook. HarperCollinsPublishers, 77–85 Fulham Palace Road,
Hammersmith, London W6 8JB, UK. Paperback.

Charles Anthony Richard Hoare. 1985. Communicating Sequential Processes. Prentice-Hall International, London, England. Published electronically:
usingcsp.com/cspbook.pdf (2004).

Gerard J. Holzmann. 2003. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley, Reading, Massachusetts.
Daniel Jackson. April 2006. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass., USA. ISBN 0-262-10114-9.
Michael A. Jackson. 1995. Software Requirements & Specifications: a lexicon of practice, principles and prejudices. Addison-Wesley, Reading, England.
Michael A. Jackson. 2001. Problem Frames — Analyzing and Structuring Software Development Problems. Addison-Wesley, England.
Michael A. Jackson. 2009. Program Verification and System Dependability. In Formal Methods: State of the Art and New Directions, Paul Boca, Jonathan

Bowen, and Jawed Siddiqi (Eds.). Springer, London, UK, 43–78. https://doi.org/10.1007/978-1-84882-736-3_1
W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. 1973, 1987. The Shorter Oxford English Dictionary on Historical Principles. Clarendon Press, Oxford,

England. Two vols.
R. Milne and C. Strachey. 1976. A Theory of Programming Language Semantics. Chapman and Hall, London, Halsted Press/John Wiley, New York.
Charles W. Morris. 1938. Foundations of the theory of signs. International encyclopedia of unified science, Vol. I. The University of Chicago Press.
Karl R. Popper. 1963,…,1981. Conjectures and Refutations. The Growth of Scientific Knowledge. Routledge and Kegan Paul Ltd. (Basic Books, Inc.), 39

Store Street, WC1E 7DD, London, England (New York, NY, USA).
F. Pulvermüller. 2005. Brain mechanisms linking language and action. Nature Reviews: Neuroscience 6 (2005), 576–582. https://doi.org/10.1038/nrn1706.
John R. Searle. 1969. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press.
Kai Sørlander. 1994. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deductions, with a foreword by Georg Henrik von Wright].

Munksgaard · Rosinante, Copenhagen, Denmark. 168 pages.
Kai Sørlander. 2016. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, Copenhagen, Denmark. 233 pages.
Kai Sørlander. 2022. Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær, Slagelse, Denmark. See [Sørlander 2023].
Kai Sørlander. 2023. The Structure of Pure Reason. Publisher to be decided. This is an English translation of [Sørlander 2022] – done by Dines Bjørner

in collaboration with the author.
Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore (Eds.). 2002. Specification Case Studies in RAISE. Springer.

40This book is currently being translated into Chinese by Dr. Yang ShaoFa, IoS/CAS, Beijing and into Russian by Dr. Mikhail Chupilko, ISP/RAS, Moscow
41Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version, omitting certain chapters, is [Bjørner 2023a]

Manuscript submitted to ACM

www2.imm.dtu.dk/~dibj/pasadena-25.pdf
https://doi.org/10.1007/978-1-84882-736-3_1

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Domain Analysis & Description 35

Achille C. Varzi. 1994. On the Boundary between Mereology and Topology. Hölder-Pichler-Tempsky, Vienna, 419–438.
James Charles Paul Woodcock and James Davies. 1996. Using Z: Specification, Proof and Refinement. Prentice Hall International Series in Computer

Science, London, England. http://www.comlab.ox.ac.uk/usingz.html

Manuscript submitted to ACM

http://www.comlab.ox.ac.uk/usingz.html

	1 Domains
	1.1 What are They?
	1.2 Some Introductory Remarks
	1.2.1 A Discussion of Our Characterization of a Concept of Domain
	1.2.2 Formal Methods and Description Language
	1.2.3 Programming Languages versus Domain Semantics
	1.2.4 A New Universe

	2 Six Languages
	2.1 The 6 Languages
	2.2 Semiotics
	2.3 Speech Acts

	3 Endurants and Perdurants, I
	4 A Domain Analysis & Description Ontology
	4.1 The Chosen Ontology
	4.2 Discussion of The Chosen Ontology

	5 The Name, Type and Value Concepts
	5.1 Names
	5.2 Types
	5.3 Values

	6 Phenomena and Entities
	7 Endurants and Perdurants, II
	7.1 Endurants
	7.2 Perdurants
	7.3 Ontological Choice

	8 External and Internal Endurant Qualities
	8.1 External Qualities – Tangibles
	8.1.1 The Universe of Discourse
	8.1.2 Solid and Fluid Endurants
	8.1.2.1 Solid cum Discrete Endurants..
	8.1.2.2 Fluids..

	8.1.3 Parts and Living Species Endurants
	8.1.3.1 Parts.
	8.1.3.1.1 Atomic Parts.
	8.1.3.1.2 Compound Parts.
	8.1.3.1.3 Cartesians.
	8.1.3.1.4 Part Sets.
	8.1.3.1.5 Compound Observers.

	8.1.4 States
	8.1.5 Validity of Endurant Observations
	8.1.6 Summary of Endurant Analysis Predicates
	8.1.7 ``Trees are Not Recursive''

	8.2 Internal Qualities – Intangibles
	8.2.1 Unique Identity
	8.2.1.1 Uniqueness of Parts.

	8.2.2 Mereology
	8.2.3 Attributes
	8.2.3.1 General.
	8.2.3.2 Michael A. Jackson's Attribute Categories.
	8.2.3.3 Analytic Attribute Extraction Functions:.

	8.3 Intentional Pull
	8.4 Summary of Endurants

	9 Perdurant Concepts
	9.1 ``Morphing'' Parts into Behaviours
	9.2 Transcendental Deduction
	9.3 Actors – A Synopsis
	9.3.1 Action
	9.3.2 Event
	9.3.3 Behaviour

	9.4 Channel
	9.5 Behaviours
	9.5.1 Behaviour Signature
	9.5.2 Inert Arguments: Some Examples
	9.5.3 Behaviour Invocation
	9.5.4 Argument References
	9.5.4.1 Evaluation of Monitorable Attributes..
	9.5.4.2 Update of Biddable Attributes.

	9.5.5 Behaviour Description – Examples

	9.6 Behaviour Initialization.

	10 Conclusion
	10.1 Previous Literature
	10.2 The Method
	10.3 Specification Units
	10.4 Object Orientation
	10.5 Other Domain Modeling Approaches
	10.6 How Much? How Little?
	10.7 Correctness
	10.8 Domain Facets
	10.9 Perspectives
	10.10 The Semantics of Domain Models
	10.11 Further on Domain Modeling
	10.12 Software Development
	10.13 Modeling
	10.14 Philosophy of Computing
	10.15 A Manifesto

	Acknowledgments
	References

