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Abstract

Domain modelling, as per the approach of this paper, offers the possibility of describing soft-
ware application domains in a precise and comprehensive manner – well before requirements
capture can take place. We endow domain modelling with appropriate analysis and descrip-
tion calculi and a systematic method for constructing domain models. The present paper is
a latest exposé of the domain science & engineering as published in earlier papers and a book.
It reports on our most recent simplifications to the domain analysis & description approach.

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyse and describe domains.

1 Introduction

This paper introduces the possibility of a new phase of software development, one that precedes
requirements engineering, as well as a new way of looking at the world around us !

Today’s well-managed software development projects usually start with some form of require-
ments “capture”. Now the possibility arises to precede this phase of requirements engineering with
an initial phase of domain engineering.

The present paper is an improvement over previously published accounts [11, 14, 15]: builds
upon a simpler domain ontology (Fig. 1 on page 4); has fewer domain concepts (Sects. 3 and 5);
and presents a more rational way of “deriving” behaviours from parts (Sect. 6). Taken together
the presentation is thus made shorter and more precise.

The approach to the modelling of domains put forward in this paper has two major phases:
modelling external qualities of the world as we see it, as it manifests itself to us, or otherwise, and
modelling the internal qualities, as we may not see it, but qualities that can be measured and/or
spoken about. The modelling of external qualities has a few steps. The major step of modelling of
external qualities is that of deciding upon the atomic-, Cartesian- and set-oriented parts. A minor
step, following the major step, is that of identifying a notion of endurant state. The modelling
of internal qualities has a few more steps. The modelling of unique identifiers; the modelling of
mereologies; the modelling of attributes; and the modelling of ‘intentional pull’. It is this structuring
into manageable stages and steps that reassures us, i.e., me, that the approach is sound.
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1.1 What is a Domain ?

By a domain we shall understand a rationally describable segment of a discrete dynamics fragment
of a human assisted reality , i.e., of the world: its endurants, i.e., solid and fluid entities: whether
natural [“God-given”] or artefactual [“man-made”], their parts and living species entities: whether
atomic or compound parts, respectively whether plant or animal living species, including humans
— as well as its perdurants: the behaviours of parts and living species.

Clearly this characterisation does not possess the rigour that should be common in software
development. Terms such as rationally describable, discrete dynamics and human assisted reality
must be not just assumed, but must, below, be made more precise. Yet “ultimate” precision defies
us: The domains we shall study, analyse and describe are not amenable to such precision. The
world is not formal.

Thus the domain analysis & description methodology that we shall be concerned with is not
directed at continuous dynamics systems such as we find them in for example aerospace applications.
And we shall not, in this paper be concerned with the human assistance aspects.

By domain modelling we mean the study, analysis and description of a domain.

If the domain already exists, then the modelling amounts to a faithful rendering of that domain
– involving no creative design1 – but such that the resulting model, i.e., description, “covers” as
wide a spectrum of domain instances as is deemed reasonable.2

If the domain does not already exists, then the modelling may involve creative design.3 We
shall, in this paper, assume already existing domains.

By domain engineering we mean the construction of domain models.4

1.2 Non-computable and Computable Specifications

When specifying software we usually make use of a formal language – one whose semantics can
be expressed mathematically. And the specification had better be computable. Similarly for
prescribing requirements: again a formal language can be deployed. And the specification had
better be computable. Typically, when we derive a software specification, S, from a requirements
prescription, R, the testing, model checking and proof of some form of correctness, D,S |= R, of
the software design relies on not only on relations between the two documents: the R and S, but
also on the domain description, D. But in describing domains we cannot assume computability. It
is the task of requirements engineering to “derive” computable requirements from domain models.
[15, Chapter 9 ] shows how. We refer to Sect. 7.2.3 on page 20 for summary comments.

1.3 Formal Method and Methodology

By a method we shall understand a set of principles for selecting and applying a number of pro-
cedures, techniques and tools for [effectively] constructing an artefact. By methodology we shall
understand the study and knowledge of one or more methods. By a formal method we shall un-
derstand a method which uses one or more formal specification languages as per their intention:
specification and verification (formal tests, model checks and proofs of properties of domains descrip-
tions, requirement prescriptions and software designs. By a formal specification language we shall
understand a language with a formal syntax, a formal semantics and a proof system with which

1The term ‘design’ is used here in the sense of artistic design – such as used when expressing something being,
for example, of ‘modern design’. “Philosophers seek to find the inescapable characteristic of any world. Scientists seek
to determine how our world actually is and our situation in it. Artists seek to create objects for our experience. That is,
what is necessary, real, respectively possible” [53, Sørlander].

2Thus a railway domain model should desirably cover such instances as the railways of Denmark and Norway
and Sweden, each one individually as well as their combination.

3[22, 2021 ], while using a different tool-oriented, proof, check and test approach to domain modelling, sets up a
domain model for automobile assembly lines [see also [13]] and uses satisfiability modulo theory tools to fine-tune
the layout of the automobile assembly line wrt. a number of optimality criteria.

4The approach taken here can, however, also be used to “device” new domains.
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to describe & validate5 domains, prescribe & validate requirements and specify (design) & validate
software.

Our domain analysis & description method has been developed, over the years, with this
understanding of formal methods.

1.4 From Programming Languages to Domains

Domain stakeholders, those whose primary work is in and of the domain, name the entities of the
domain and use these names, nouns and verbs, in communicating with other stakeholders. These
utterings constitute a language, albeit an informal one. In a domain model we give abstract syntax
to (roughly speaking) the nouns, Sects. 3 and 5, and semantics to (roughly speaking) the verbs,
Sect. 6.

When, in comparison, we define the syntax and semantics of a programming language, that
syntax and semantics covers all well-formed instances of programs in that language. Similarly,
when, in consequence, we define the abstract syntax and semantics, i.e., a model,of a domain,
that syntax and semantics covers all well-formed instances — we mean it, the model, to cover all
well-formed instances of domains.

1.5 A Review

We present a latest exposé of the domain science & engineering of [11, 14, 15, 2015–2021 ]. The
first inklings of this applied science were first reported in [1, 1995–1997 ], Volume III, Part IV,
Chapters 8–12, Pages 193–362 of [2, 2006 ] cover several aspects of domain engineering – but not
what we now consider the most important contribution to the field: namely that of the analysis &
description calculi. First developments of the proposed analysis and description calculi were reported
in [7, 8, Kyiv 2010 ]. The recently published papers and book [11, 14, 15, 2015–2021 ] illustrates
the fact that the details of the calculi may change. The present paper reports on our most recent
simplification to the domain analysis & description approach and the few extensions, RSL+, to the
RSL specification language [29]. The domain modelling approach presented here has been honed
over the last 30 years in numerous experiments. Some of these are reported in [16, 13, 17, 18].

1.6 An Overview

1.6.1 A Domain Analysis & Description Ontology

Sections 3–6 represent the contribution of this paper. Figure 1 on the following pageillustrates
basic ideas of how we shall structure our domain analysis & description.

The domain analyser cum describer is confronted by a domain. How and where to start !
Figure 1 on the next pageis intended to be read top-down, left-to-right. So it suggests that the
domain analyser cum describer starts by looking “at the whole domain ! ” – call it φ. That is, at
the • right under the term Universes, between the r and the s !

1.6.2 Step-wise Analysis and Description

Figure 1then suggests, by the two lines emerging from that •, that the domain analyser cum de-
scriber poses the question, of the domain, is it (more or less) rationally describable, i.e.,
is entity(φ), or not. If the domain analyser cum describer decides yes, it is so, then the analysis
“moves” on to the Entity •. Now the question is, is the entity being observed, an endurant or a
perdurant, (to be explained below), and so on. We now assume that the analysis proceeds along
the left hand side dashed line (· · ·- - -· · ·) box labeled ‘Endurants’.

The so-called external quality analysis of endurants ends when reaching either of the Atomic,
Cartesian or Part Set •s.6 At this point the description proceeds to that of the internal qualities

5test, check and verify
6We shall, in this paper, not exemplify living species endurants.
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Figure 1: An Analysis & Description Methodology Ontology

of endurants. From Fig. 1You observe seven vertical [dashed] lines, emanating downwards from
endurant bullets to cross three horisontal (bottom of the figure) lines. They “call” for the domain
analyser cum describer to now analyse and describe the internal qualities of endurants: their unique
identification, their mereologies, and their attributes.

Then the domain analyser cum describer has “traversed” the left hand side of Fig. 1. At this
point a so-called transcendental deduction takes place: The domain analyser cum describer now
“morphs” manifest endurant parts into behaviours. The focal point here are the part behaviour
signatures and definitions. Figure 1’s right hand side hints at the issues to be covered and that
the internal qualities are being a crucial element of behaviour definitions.

1.6.3 The Analysis and Description Prompts

Each • of Fig. 1thus corresponds to an analysis or description prompt. There are two kinds of
analysis prompts. Both are informal. The predicate analysis prompts – with 18 such prompts,
and the function analysis prompts. There is two major kinds of description prompts. (α) external
quality description prompts – with there being two such specific prompts: one for describing
so-called Cartesian endurants (Sect. 3.4.1 on page 10), another for describing so-called Part Set
endurants (Sect. 3.4.2 on page 10), and (β) internal quality description prompts with there being
three such specific prompts: the unique identifier description prompt (Sect. 5.1.1 on page 13),
the mereology description prompt (Sect. 5.2.1 on page 14), and the attribute description prompt
(Sect. 5.3.2 on page 15). The predicate analysis prompts yield truth values. The function analysis
prompts yield part endurants and the names of their type – which we shall call sorts. And the
description prompts yield domain description texts – here in a slight extended version of the RAISE7

7Rigorous Approach to Idustrial Software Engineering

c© Dines Bjørner. December 31, 2022: 09:03 am 4 Domain Modelling



Domain Modelling 5

[30] specification language RSL [29].8,9

1.7 RSL, RSL-text and RSL+

RSL is described in [29]. We use a subset of that RSL. Thus we shall not avail ourselves of the
RSL module concepts of object, class and scheme. Basically, then, a specification expressed in
RSL amounts to sequences of [alternating] type, value and axiom clauses – with, basically, a single
channel clause:

type
...

value
...

axiom
...

type
...

value
...

axiom
...

...

channel
...

type
...

value
...

axiom
...

type
...

value
...

axiom
...

RSL-text is an addition to RSL. In describing domains in RSL we shall be introducing description
prompts which are informal functions which yield values of type RSL-text, that is, proper RSL

texts. Quoting an RSL text: “ text ”. shall denote an RSL-text.
RSL+ designate RSL-text plus, in this paper, one extension. That extension is that of the

type and values of type names. If T denotes a type, i.e., a possibly infinite set of values, then ηT
denotes a value, the name of type T, with φT denoting the type of type names.

The domain analysis & description method is informally explained in a mixture of English and
RSL+. [10, 2014 ] attempts a formalisation of an early version of RSL+.

1.8 A Computer Science Philosophy

We shall base our domain analysis & description approach on the philosophy of Kai Sørlander

[52, 53, 54, 55, 56]. The issue here is: In studying, analysing & describing domains one is con-
fronted with the basic [metaphysical] question[s]: which are the absolutely necessary conditions for
describing any world ?, that is: what, if anything, is of such necessity, that it could under no circum-
stances be otherwise ?, or: which are the necessary characteristics of any possible world ? In his work
Sørlander rationally argues that space, time, Newton’s laws, and a number of additional concepts
are necessarily basic elements of any description of any domain.

1.9 Previous Work

We refer to Sect. 1.5 on page 3.
Axel van Lamsweerde [45, 2009 ] and Michael A. Jackson [41, 42, 1995–2010 ], as well as other

requirements engineering researchers, do touch upon the issues of domains – such as that term is
basically used here. But their requirements analysis and prescription “refer” to; they do not “put it
center stage”, let alone mandate that the[ir] requirements engineer rely on an a priori established
domain description. So they and others do not establish, as is the main focus of this contribution,
calculi for the analysis & description of domains.

1.10 Structure of Paper

There are basically two parts to this paper. The main part consists of Sects. 3 and 5–6. They
present a terse, comprehensive exposé of the domain analysis & description method of this paper.

8RSL: RAISE Specification Language
9Other formal specification languages are possible, f.ex.: VDM [19, 20, 27], Z [57], Alloy [40], or CafeOBJ [28].
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An appendix, the other part, Appendix A, brings an example. For the domain modelling approach
to be believable the example must open up for a realistic domain, one that is not “small”.

• • •

We now explain the domain description ontology as a structured set of concepts for modelling domains,
a set that shows their properties and the relations between them. In simple terms, ontology seeks
the classification and explanation of entities.10

Figure 1 on page 4 is a graphical rendition of a structured set of concepts for modelling domains.

2 Universe of Discourse

Domain descriptions start with a terse sketch of the main facets of the domain followed by the
naming of the domain.

1. Universe of Discourse: calc UoD

Narration:
Text

Formalisation:
type UoD

1 Example. Universe of Discourse: We refer to Sect. A.1 on page 28.

3 External and Internal Qualities

Characterisation 1: External qualities: External qualities of endurants11 of a domain are, in a
simplifying sense, those properties of endurants that we can see, touch and which have spatial
extent. They, so to speak, take form.

Characterisation 2: Internal qualities: Internal qualities of endurants of a domain are, in
a less simplifying sense, those which we may not be able to see or “feel” when touching an
endurant, but they can, as we now ‘mandate’ them, be reasoned about, as for unique identifiers
and mereologies,12 or be measured by some physical/chemical means, or be “spoken of” by
intentional deduction, and be reasoned about, as we do when we attribute and intentional pull
properties13 to endurants.

3.1 Predicate Analysis of External Qualities of Endurants

Characterisation 3: Phenomenon: By a phenomenon we shall understand a fact that is observed
to exist or happen Examples of phenomena are: emotions of a human, the rivers, lakes, forests,
mountains and valleys of mother nature; the railway tracks, their units, the locomotive of a railway
system.

Domain Analysis Predicates: We shall define a number of domain analysis predicates. They
are all referred to as prompts. Prompts are method tools. The domain analyser cum describer
applies these to “real”, i.e., actual world phenomena, that is, not to formal values. In the next 18
paragraphs we shall “reveal” a number of such predicates. First with a reasonable definition (in
slanted font), then with examples and some comments (in roman font).

Predicate Prompt 1: is entity: By an entity we shall understand a phenomenon, i.e., some-
thing that can be observed, i.e., be seen or touched by humans, or that can be conceived as an

10Google’s English Dictionary as provided by Oxford Languages.
11We refer to predicate prompt # 2 below for a definition of endurant.
12We refer to Sects. 5.1–5.2.
13We refer to Sects. 5.3–5.4.

c© Dines Bjørner. December 31, 2022: 09:03 am 6 Domain Modelling



Domain Modelling 7

abstraction of an entity; alternatively, a phenomenon is an entity, if it exists, it is “being”, it is
that which makes a “thing” what it is: essence, essential nature [46, Vol. I, pg. 665] Some, but
not necessarily all aspects of a river can be rationally described, hence can be still be considered
entities. Similarly, many aspects of a road net can be rationally described, hence will be considered
entities.

Predicate Prompt 2: is endurant: Endurants are those quantities of domains that we can
observe (see and touch), in space, as “complete” entities at no matter which point in time –
“material” entities that persists, endures [46, Vol. I, pg. 656] Street segments [links], street
intersections [hubs], automobiles standing still in an automobile show room are endurants. Domain
endurants, when eventually modelled in software, typically become data. Hence the careful analysis
of domain endurants is a prerequisite for subsequent careful conception and analyses of data
structures for software, including data bases.

Predicate Prompt 3: is perdurant: By a perdurant we shall understand an entity for which
only a fragment exists if we look at or touch them at any given snapshot in time. Were we to freeze
time we would only see or touch a fragment of the perdurant [46, Vol. II, pg. 1552] Automobiles
in action, container vessels sailing on the 7 seas and loading and unloading containers in harbours
are examples of perdurants. Domain perdurants, when eventually modelled in software, typically
become processes.

Endurants are either solid endurants, or are fluid endurants.
Predicate Prompt 4: is solid: By a solid endurant we shall understand an endurant which is

separate, individual or distinct in form or concept, or, rephrasing: a body or magnitude of three-
dimensions, having length, breadth and thickness [46, Vol. II, pg. 2046] Wells, pipes, valves,
pumps, forks, joins, regulator, and sinks. of a pipeline are solids.

Predicate Prompt 5: is fluid: By a fluid endurant we shall understand an endurant which
is prolonged, without interruption, in an unbroken series or pattern; or, rephrasing: a substance
(liquid, gas or plasma) having the property of flowing, consisting of particles that move among
themselves [46, Vol. I, pg. 774] Fluids are otherwise liquid, or gaseous, or plasmatic, or granular14,
or plant products15, et cetera. Specific examples of fluids are: water, oil, gas, compressed air, etc.
A container, which we consider a solid endurant, may be conjoined with another, a fluid, like a
gas pipeline unit may “contain” gas.

We analyse endurants into either of two kinds: parts and living species. The distinction between
parts and living species is motivated in Kai Sørlander’s Philosphy [52, 53, 54, 55, 56].

Predicate Prompt 6: is part: By a part we shall understand a solid endurant existing in time
and space and subject to laws of physics, including the causality principle and gravitational pull 16

Natural and man-made parts are either atomic or compound.
Predicate Prompt 7: is atomic: By an atomic part we shall understand a part which the

domain analyser considers to be indivisible in the sense of not meaningfully, for the purposes of
the domain under consideration, that is, to not meaningfully consist of sub-parts The wells,
pumps, valves, pipes, forks, joins and sinks of a pipeline can be considered atomic.

Predicate Prompt 8: is compound: Compound parts are those which are either Cartesian-
product- or are set- oriented parts

Predicate Prompt 9: is Cartesian: Cartesian parts are those (compound parts) which consists
of an “indefinite number” of two or more parts of distinctly named sorts Some clarification
may be needed. (i) In mathematics, as in RSL [29], a value is a Cartesian (“record”) value if it
can be expressed, for example as (a, b, ..., c), where a, b, ..., c are mathematical (or, which is the
same, RSL) values. Let the sort names of these be A,B, ..., C – with these being required to be
distinct. We wrote “indefinite number”: the meaning being that the number is fixed, finite, but
not specific. (ii) The requirement: ‘distinctly named’ is pragmatic. If the domain analyser cum

14This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modelling
purposes it is convenient to “compartmentalise” them as fluids !

15i.e., chopped sugar cane, threshed, or otherwise. See footnote 14.
16This characterisation is the result of our study of relations between philosophy and computing science, notably

influenced by Kai Sørlander’s Philosphy
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describer thinks that two or more of the components of a Cartesian part [really] are of the same
sort, then that person is most likely confused and must come up with suitably distinct sort names
for these “same sort” parts ! (iii) Why did we not write “definite number” ? Well, at the time
of first analysing a Cartesian part, the domain analyser cum describer may not have thought of
all the consequences, i.e., analysed, the compound part. Additional sub-parts, of the Cartesian
compound, may be “discovered”, subsequently and can then, with the approach we are taking wrt.
the modelling of these, be “freely” added subsequently ! We refer to the road transport system
example above. We there viewed (hubs, links and) automobiles as atomic parts. From another
point of view we shall here understand automobiles as Cartesian parts: the engine train, the
chassis, the car body, four doors (left front, left rear, right front, right rear), and the wheels.
These may again be considered Cartesian parts.

Predicate Prompt 10: is part set: Part sets are those which, in a given context, are deemed
to meaningfully consist of an indefinite number of sub-parts of the same sort Examples of set
parts are: the set of hubs of a road net hub aggregate, the set of links of a road net link aggregate,
and the set of automobiles of an automobile aggregate – all of the road net transport that we are
exemplifying.

Predicate Prompt 11: is living species: By a living species we shall understand a solid
endurant, subject to laws of physics, and additionally subject to causality of purpose. Living species
must have some form they can be developed to reach; a form they must be causally determined to
maintain. This development and maintenance must further engage in exchanges of matter with an
environment

It must be possible that living species occur in two forms: plants, respectively animals. Al-
though we have not yet come across domains for which the need to model the living species of
plants were needed, we give some examples anyway: grass, tulip, rhododendron, oak tree. Similar
for animals: dogs, cat, cows, butterflies, cod (fish), etc, Hence:

Predicate Prompt 12: is plant: Plants are living species which are characterised by develop-
ment, form and exchange of matters with the environment

Predicate Prompt 13: is animal: Animals are living species which are additionally charac-
terised by the ability of purposeful movement

Within animals we then have humans.

Predicate Prompt 14: is human: A human (a person) is an animal, with the additional
properties of having language, being conscious of having knowledge (of its own situation), and
responsibility

Characterisation 4: Manifest Part: By a manifest part we shall understand a part which
‘manifests’ itself either in a physical, visible manner, “occupying” an AREA or a VOLUME and a
POSITION in SPACE, or in a conceptual manner forms an organisation in Your mind ! As we
have already revealed, endurant parts can be transcendentally deduced into perdurant behaviours
– with manifest parts indeed being so.

Predicate Prompt 15: is manifest: is manifest(e) holds if e is manifest

Characterisation 5: Structure: By a structure we shall understand an endurant concept that
allows the domain analyser cum describer to rationally decompose a domain analysis and/or its
description into manageable, logically relevant sections, but where these abstract endurants are
not further reflected upon in the domain analysis and description Structures are therefore not
transcendentally deduced into perdurant behaviours.

Predicate Prompt 16: is structure: is structure(e) holds if e is a structure

Predicate Prompt 17: is stationary: An endurant part is stationary if it never changes
position in space

Predicate Prompt 18: is mobile: An endurant part is mobile if it may possibly change
position in space

We may need, occassionally, the distinction as now outline:

Endurants are either natural endurants, or are artefactual endurants.

Predicate Prompt 19: is natural: By a natural endurant we shall understand one which has
been created by nature.

c© Dines Bjørner. December 31, 2022: 09:03 am 8 Domain Modelling
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Predicate Prompt 20: is artefactual: By an artefactual endurant we shall understand one
which has been created by humans.

Discrete Dynamic and Artefactual Domains: In our initial characterisation of domains,
Page 2, an emphasis was put on their discrete dynamics and human assistedness. The analysis and
description calculi and, hence, our domain modelling, are therefore “geared” in that direction.

We summarise17:
2. Analysis Predicates

value
is entity: Φ → Bool
is endurants: E → Bool
is perdurant: E → Bool
is solid: E → Bool
is fluid: E → Bool
is part: E → Bool

is living species: E → Bool
is atomic: E → Bool
is compound: E → Bool
is animal: E → Bool
is plant: E → Bool
is Cartesian: E → Bool
is part set: E → Bool

is human: E → Bool
is manifest: E → Bool
is structure: E → Bool
is structure: E → Bool
is structure: E → Bool
is natural: E → Bool
is artefactual: E → Bool

2 Example. Analysis Predicates: In the example of Appendix A on page 28–38 we do not
[explicitly] show the “application” of analysis predicates. They are tacitly assumed.

3.2 On Interpreting the Analysis & Description Ontology

We interpret the kind of analysis & description methodology ontology diagrams
of which Fig. 1 on page 4 is an example. The figure to the right illustrates a
fragment of such diagrams. At node A, i.e., observing an endurant, a, of sort
A, the downward diverging two lines express that a is either of sort B or of sort
C; that is:

pre: is B(a), is C(a): is A(a)
(is B(a)⇒∼is C(a)) ∧ (is C(a)⇒∼is B(a))
(is B(a)≡∼is C(a)) ∧ (∼is B(a)≡is C(a))

A

B C

is_B is_C

is_A

3.3 Functional Analysis of External Qualities of Endurants

Given a compound endurant, that is, either a Cartesian or a part set, we analyse that compound,
at the two ’s of Fig. 1 on page 4, into its constituent endurants, respectively parts, and the name
of the sort:

3. determine Cartesian parts, determine part set

value
determine Cartesian parts: E → (E1×ηΦ)×(E2×ηΦ)×...×(Ec×ηΦ)
determine Cartesian parts(e) as (e1:ηE1,e2:ηE2,ec:ηEc)

determine part set: E → P-set×ηΦ
determine part set(e) as ({p1,p2,...,ps}:ηP,)

The above calculation function signatures and characterisations illustrate two extensions to RSL

[29]: ηP expresses the name of a sort P, and ηΦ expresses the type of sort names.
Again we emphasize that these calculations are performed by the domain analyser cum de-

scriber. They are used in subsequent schemas for describing external qualities of endurants.

17Framed texts highlight domain analysis & description prompts.
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3.4 Descriptions of External Qualities of Endurants

Similarly, again at the two ’s of Fig. 1 on page 4, we are now ready to describe respectively
Cartesian parts and part set parts.

3.4.1 Describing Cartesian Parts

4. descr Cartesian

value
descr Cartesian: P → RSL-Text
descr Cartesian(p) ≡

“ Narrative:
[ s ] text on sorts
[ o ] text on observers
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

E1, E2, ..., En
[ o ] value

obs E1: E→E1, obs E2: E→E2, ..., E→Ec
[ a ] axiom and/or proof obligation

A/P(...) ”

3 Example. Cartesians: We refer to Sect. A.2.1 on page 28.

3.4.2 Describing Part Sets

5. descr part set

value
descr part-set: P → RSL-Text
descr part set(p) ≡

“ Narrative:
[ s ] text on sorts
[ o ] text on observers
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

P, Ps = P-set
[ o ] value

obs Ps: E→Ps
[ a ] axiom and/or proof obligation

A/P(...) ”

4 Example. Part Sets: We refer to Sect. A.2.2 on page 28.

3.5 Endurant States
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Characterisation 6: Endurant State: By an endurant state we shall understand any collection of
endurant parts

6. gen Σ

value
Σ = P-set

value
gen Σ: E → Σ
gen Σ(e) ≡

if is manifest(e)
then

is atom(e) → {e},
is Cartesian(uod) →

let (p1:ηE1,p2:ηE2,...,pc:ηEc) = calc cartesian parts and sorts(e) in
{p1,p2,...,pc} ∪ gen Σ(p1) ∪ gen Σ(p2) ∪ ... gen Σ(pc) end

is part-set(e) →
let ({p1,p2,...,ps}:ηP) = calc part sets parts and sort(e) in
{p1,p2,...,ps} ∪ gen Σ(p1) ∪ gen Σ(p2) ∪ ... gen Σ(ps) end

else {}
end

5 Example. Endurant State Examples: We refer to Sect. A.2.3 on page 29.

3.6 A Proof-theoretic Explication, I

The concept of analysis prediccates and part observer functions is due to McCarthy [50, Sect.1̇2-13 ].

In [50] McCarthy introduces a notion of abstract syntax, Sect. 12, and semantics, Sect. 13. So
far we have dealt, in our domain analysis, with syntax. There are three elements, according to
McCarthy, to consider: the is ... predicates, the obs ... [“destructor”] functions, and, not
shown, so far, in this paper, the mk ... constructor functions. For compound abstract syntactic
entities they are related as follows:

is Cartesian(p) ≡
let (p1η:P1,p2:ηP2,...,pc:ηPc) = calc Cartesian parts and sorts(p) in
p = mk Cartesian(obs P1(p),obs P2(p),...,obs Pc(p)) end

is part set(p) ≡
let ({p1,p2,...,ps},ηP1) = calc part sets parts and sort(p) in
p = mk part set({p1,p2,...,ps}) end

The mk ... constructors were not intoduced above. The reason is simple; a pragmatic decision: As
the domain analyser cum describer proceeds in their work they may, when encountering Cartesian
compounds, be free to leave some components (of the Cartesian) out, components that they may
later introduce. So really, the first of the identities above ought be expressed as

is Cartesian(p) ≡
let (p1η:P1,p2:ηP2,...,pc:ηPc,...) = calc Cartesian parts and sorts(p) in
p = mk Cartesian(obs P1(p),obs P2(p),...,obs Pc(p),...) end

We continue this explication in Sect. 5.5 on page 16.
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4 Space and Time

The concepts of space and time can be transcendentally deduced, by rational reasoning, as has been
shown in [52, 53, 54, 55, 56, Kai Sørlander ], from the facts of symmetry, asymmetry, transitivity and
intransitivity relations.

They are therefore facts of every possible universe.

4.1 Space

There is one given space. As a type we name it SPACE. We do not bother, here, about textual
representation of spatial locations, but here is an example that would work in or near this globe
we call our earth: Latitude 55.805600, Longitude 12.448160, Altitude 35 m18.

Also, in this paper, we do not present models of SPACE. But we do introduce such notions as
(i) POINT: as SPACE being some dense and infinite collection of points; (ii) LOCATION: as the
location in space of some point;

value record LOCATION: E → LOCATION

(iii) CURVE: as an infinite collection of points forming a mathematical curve – having a (finite or
infinite) length; (iv) SURFACE: as an infinite collection of points forming a mathematical surface
– having a (finite or infinite) area; and (v) VOLUME: as an infinite collection of points forming a
mathematical volume – having a (finite or infinite) volume. We suggest it, as a domain science &
engineering research topic, that somebody studies a calculus or calculi of spatial modelling.

4.2 Time

There is one given space. As a type we name it TIME. We do not bother, here, about textual
representation of time, but here is an example: December 31, 2022: 09:03 am19. But we do
introduce such crucial notions as time interval TI and operations on TIME and TI:

value
−: TIME×TIME→TI
+: TIME×TI→TIME
∗: Real×TI→TI

A crucial time-related operation is that of record TIME. It applies to “nothing”: record TIME()
and yields TIME.

value record TIME: Unit → TIME

5 Internal Qualities

We refer to the Internal Qualities characterisation on Page 6. We can justify the grouping of internal
endurant qualities into three kinds: unique identifiers, cf. Sect. 5.1, mereologies, cf. Sect. 5.2, and
attributes, cf. Sect. 5.3. To this we add the concept of intentional pull, cf. Sect. 5.4.

5.1 Unique Identification

On the basis of philosophical reasoning, within metaphysics, we [can] argue that parts are uniquely
identifiable [52, 53, 54, 55, 56, Kai Sørlander ]

18The author’s house location !
19The time this text was last compiled !
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5.1.1 Calculate Unique Identifiers

7. descr unique identifier

value
descr unique identifier: P → RSL-Text
descr unique identifier(p) ≡

“ Narrative:
[ s ] text on unique identifier sort
[ o ] text on unique identifier observer
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

PI
[ o ] value

uid P: P → PI
[ a ] axiom and/or proof obligation

A/P(...) ”

6 Example. Unique Identifiers: We refer to Sect. A.3.1 on page 29.

5.1.2 Endurant Identifier States

Given the endurant state values, for the whole domain or for respective, manifest part sorts, one
can define corresponding unique identifier values.

7 Example. Unique Identifier State: We refer to Sect. A.3.2 on page 29.

5.1.3 Axioms

The number of manifest parts is the sames as the number of manifest part unique identifiers.

8 Example. Unique Identifier Axiom: We refer to Sect. A.3.3 on page 30.

5.1.4 Endurant Retrieval

Given a unique identifier, π, of a manifest part, p, of an endurant state, σ, of a domain one can
retrieve that part:

value
σ:Σ = gen Σ(uod)
retr P: Π → Σ → P
retr P(π)(σ) ≡ let p:P • p ∈ σ ∧ uid P(p)=π in p end

5.2 Mereology

Mereology is the study and knowledge of parts and part relations. It was first put forward, around
1916, by the Polish logician Stanis law Leśniewski [48, 23].

Which are the relations that can be relevant for “endurant-hood” ? There are basically two
relations: (i) physical ones, and (ii) conceptual ones. (i) Physically two or more endurants may
be topologically either adjacent to one another, like rails of a line, or within an endurant, like
links and hubs of a road net, or an atomic part is conjoined to one or more fluids, or a fluid is
conjoined to one or more parts. The latter two could also be considered conceptual “adjacencies”.
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(ii) Conceptually some parts, like automobiles, “belong” to an embedding endurant, like to an
automobile club, or are registered in the local department of vehicles, or are intended to drive on
roads.

5.2.1 Calculate Mereologies

8. descr mereology

value
descr mereology: P → RSL-Text
descr mereology(p) ≡

“ Narrative:
[ s ] text on mereology type
[ o ] text on mereology observer
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

MT = M(p)
[ o ] value

mereo P: P → MT
[ a ] axiom and/or proof obligation

A/P(...) ”

M(p) is usually a type expression over unique identifiers of mereology-related parts.

9 Example. Mereology: We refer to Sect. A.4 on page 30.

Given the definition of external qualities of a domain, and its unique identifier and mereology
internal qualities one can analyse and describe many properties of that domain. The routes
subsection (Page 31) of the mereology example, Example 9, illustrates one such property.

5.3 Attributes

Parts and fluids are typically recognised because of their spatial form and are otherwise charac-
terised by their intangible, but measurable attributes. That is, whereas endurants, whether solid
(as are parts) or fluids, are physical, tangible, in the sense of being spatial [or being abstractions,
i.e., concepts, of spatial endurants], attributes are intangible: cannot normally be touched, or seen,
but can be objectively measured. Thus, in our quest for describing domains where humans play
an active rôle, we rule out subjective “attributes”: feelings, sentiments, moods. Thus we shall
abstain, in our domain science also from matters of psychology and aesthetics.

5.3.1 Functional Analysis of Attributes

Given a manifest part, p, that is, either an atom, or a Cartesian, or a part set, we calculate from
that part, its constituent attributes values and types:

9. determine attributes

value
determine attributes: P → (a1×ηA1) × (a2×ηA2) × ... × (aa×ηAa)
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5.3.2 Describe Attributes

10. descr attributes

value
descr attributes: P → RSL-Text

let (( ,ηA1),( ,ηA2),...,( ,ηAa)) = determine attributes(p:P) in
descr attributes(p) ≡

“ Narrative:
[ s ] text on attribute types
[ o ] text on attribute observers
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

A1 [ = ... ], A2 [ = ... ], ..., Aa [ = ... ],
[ o ] value

attr A1: P → A1, attr A2: P → A2, ..., attr Aa: P → Aa,
[ a ] axiom and/or proof obligation

A/P(...) ”
end

The domain analyser cum describer has thus determined/decided that A1, A2, ..., Aa are the
“interesting” attributes of of parts of sort P. Attributes are often given a “concrete” form, hence
the [ = ... ] where the ... is some type expression.

10 Example. Attributes: We refer to Sect. A.5 on page 31.

5.3.3 Attribute Categories

Michael A. Jackson has proposed a structure of attributes [41].
Attribute Category 1: Static: By a static attribute we shall under stand an attribute whose

values are constants, i.e., cannot change.
Attribute Category 2: Dynamic: By a dynamic attribute we shall understand an attribute

whose values are variable, i.e., can change. Dynamic attributes are either inert, reactive or active
attributes.

Attribute Category 3: Inert: By an inert attribute we shall understand a dynamic attribute
whose values only change as the result of external stimuli where these stimuli prescribe new values.

Attribute Category 4: Reactive: By a reactive attribute we shall understand a dynamic
attribute whose values, if they vary, change in response to external stimuli, where these stimuli
either come from outside the domain of interest or from other endurants.

Attribute Category 5: Active: By an active attribute we shall under- stand a dynamic
attribute whose values change (also) of its own volition. Active attributes are either autonomous,
or biddable or programmable attributes.

Attribute Category 6: Autonomous: By an autonomous attribute we shall understand a
dynamic active attribute whose values change only “on their own volition”. The values of an
autonomous attributes are a “law onto themselves and their surroundings”.

Attribute Category 7: Biddable: By a biddable attribute we shall understand a dynamic
active attribute whose values are prescribed but may fail to be observed as such.

Attribute Category 8: Programmable: By a programmable attribute we shall understand a
dynamic active attribute whose values can be prescribed.
We modify Jackson’s categorisation. This is done in preparation for our exposé of behaviour
signatures, cf. Sect. 6.4.1 on page 19. Figure 2 on the following page shows groupings of some of
M. A. Jackson’s six basic categories.

A Foundation for Software Development 15 Dines Bjørner. December 31, 2022: 09:03 am



16 December 31, 2022 Dines Bjørner

dynamic

active

endurant

autonomous programmable

static

attributes

attributes
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biddableattributes

monitorable
only

monitorable attributes

Figure 2: An Attribute Ontology

Instead of M. A. Jackson’s six basic categories () we shall, as indicated in Fig. 2 make use of the
combined attribute categories of monitorable and monitorable only attributes.

5.4 Intentional Pull

5.4.1 Characterisations

Intentionality as a philosophical concept is defined by the Stanford Encyclopedia of Philosophy20

as “the power of minds to be about, to represent, or to stand for, things, properties and states of
affairs.”

Intent is then a usually clearly formulated or planned intention. An example of intent is that
of roads made for automobiles and automobiles meant for roads.

Intentional Pull21: Two or more artefactual parts of different sorts, but with overlapping sets
of intents may excert an intentional “pull” on one another. This intentional “pull” may take many
forms. Let px : X and py : Y be two parts of different sorts (X,Y ), and with common intent, ι.
Manifestations of these, their common intent, must somehow be subject to constraints, and these
must be expressed predicatively. When a composite or conjoin artefact models “itself” as put
together with a number of other endurants then it does have an intentionality and the components’
individual intentionalities does, i.e., shall relate to that. The composite road transport system has
intentionality of the road serving the automobile part, and the automobiles have the intent of
being served by the roads, across “a divide”, and vice versa, the roads of serving the automobiles.

11 Example. Intentional Pull: Road Transport: We refer to Sect. A.6 on page 33.

12 Example. Double-entry Bookkeeping: Double-entry bookkeeping, also known as double-
entry accounting, is a method of bookkeeping that relies on a two-sided accounting entry to maintain
financial information. Every entry to an account requires a corresponding and opposite entry to a
different account. The double-entry system has two equal and corresponding sides known as debit
and credit. A transaction in double-entry bookkeeping always affects at least two accounts, always
includes at least one debit and one credit, and always has total debits and total credits that are
equal.22 .

5.5 A Proof-theoretic Explication, II

We remind You of Sect. 3.6 on page 11.
With the introduction of analysis functions and observers for unique identifiers, mereology and

attributes we can now augment the is ..., uid ..., mereo ..., attr A... observers intro-
duced since Page 11.

20Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (seop.illc.uva.nl/entries/-
intentionality/ October 15, 2014, retrieved April 3, 2018.

21The term intentional pull is chosen so as to connote with the term gravitational pull.
22https://en.wikipedia.org/wiki/Double-entry bookkeeping
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is manifest(p:P) ≡
let (( ,ηA1),( ,ηA2),( ,ηAa)) = calc attributes(p) in
p = mk P(uid P(p),mereo P(p),(attr A1(p),attr A2(p),...,attr Aa(p))) end

6 Perdurants

A key point of our domain science & engineering approach is this: to every manifest part we
transcendentally deduce

¯
a unique behaviour.

By transcendental we shall understand the philosophical notion: the a priori or intuitive basis
of knowledge, independent of experience.

By a transcendental deduction we shall understand the philosophical notion: a transcendental
‘conversion’ of one kind of knowledge into a seemingly different kind of knowledge.

6.1 Channels

Part behaviours may communicate with one another. To express behaviours and their communi-
cation we use Hoare’s CSP [35, 36, 37]. One may question this choice. In [5, 9, 12, 2009–2017 ] we
show “that to every mereology there is a CSP expression”. On that background we maintain that
CSP is a reasonable choice — but invite the reader to suggest more appropriate mechanisms for
handling behaviours and their communication.23

So, in general, we declare a RSL/CSP channel :

11. channel declaration

channel { ch[ {ui,uj} ] | ui,uj:UI • {ui,uj}⊆uis } : M

Here ch is the name of the indexed array of channels and the indexes are, in general, any two ele-
ment set of unique part identifiers. M is the type of the messages communicate between behaviours
of index ui,uj.

6.2 Actors

By an actor we shall understand either an action, or an event,or a behaviour.

6.2.1 Actions

By an action of a behaviour we shall understand something which is local to a behaviour, and,
which, when applied, potentially changes the state. Generally action clauses are expressed in RSL

[29].

6.2.2 Events

By an event of a behaviour we shall understand something that involves two behaviours, and, which,
when applied, potentially changes the state of both behaviours. Event clauses are expressed using
the CSP elements of RSL. That is, the CSP output “!” and input events “?”:

ch[ {ui,uj} ] ! expr
let val = ch[ {ui,uj} ] ? ... end

13 Example. Road Transport Actions an Events: We refer to Sect. A.7.2 on page 35.

23Please bear in mind that the use, here, of CSP, is in the following context: the CSP clauses are not to be
“interpreted” on a computer where this “computerisation” has to be “shared” with other computations; hence CSP

synchcronisation & communication is “ideal” and reflects reality.
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6.3 State Access and Updates

We need define two functionals: one for changing the mereology of a part and another for changing
the attribute value of a part. We therefore informally define the following functionals:

6.3.1 Update Mereologies

• part update mereology is a functional: it takes the following arguments: a part p of type
P and a mereology value and yields a part of type P.

• The yielded result, p′, has the same unique identifier, as the argument part p,

• a new, the argument, mereology, as the argument part p,

• and the same attribute values for all attributes, as the argument part p.

value
part update mereology: P → M → P
part update(p)(m) ≡

let (( ,ηA1),( ,ηA2),...,( ,ηAa)) = determine attributes(p) in
let p′:P • uid P(p′)=uid P(p)∧mereo P(p′)=m∧

∀ ηA:ηΦ•ηA∈{ηA1,,ηA2,...,,ηAa}⇒attr A(p′)=attr A(p) in
p′ end end

6.3.2 Update Attributes

• part update attribute is a functional: it takes the following arguments: a part p of type P
and a pair of an attribute name and value, and yields a part p′ of type P.

• The argument attribute name must be that of an attribute of the part.

• The yielded result p′ has the same unique identifier and mereology as the argument part p,

• and the same attribute values for all attributes, as the argument part p, except for argument
attribute (name) for which it now yields the argument attribute value.

value
part update attribute: P → ΦA × A → P
part update attribute(p)(ηA,a) ≡

let (( ,ηA1),( ,ηA2),...,( ,ηAa)) = determine attributes(p) in
assert: ηA∈{ηA1,,ηA2,...,,ηAa}

let p′:P • uid P(p)=uid P(p′)∧mereo P(p)=mereo P(p′)∧
∀ ηA:ηΦ•ηA∈{ηA1,,ηA2,...,,ηAa}\ηA⇒attr A(p′)=attr A(p) in

p′ end end

Monitorable attributes usually change their values surreptitiously. That is, “behind the back”,
so-to-speak, of the part behaviour.

6.4 Behaviours

By a behaviour we shall understand a set of sequences of actions, events and behaviours.
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6.4.1 Behaviour Signatures:

We now come to a crucial point in our unrolling the domain science & engineering method. It is
that of explaining the signature of behaviours, that is, the arguments ascribed to part behaviours.
The general form of part p behaviour signatures is as follows.

12. Behaviour Signatures

value
p behaviour: p:P → in,out {ch[ {uid P(p),ui} ] | ui:UI•ui∈uis∧Mereo(p)} Unit

Yes, that is it ! The behaviour of a[ny] (manifest) part, p, is a function whose only argument is
that part ! The signature informs of the channels that p behaviour may communicate with. The
literal Unit informs that the behaviour may not yield any value, but, for example, go on “forever”
having possibly effected a state change !

6.4.2 Behaviour Definitions:

Behaviours, besides their signatures, are defined. That is, a behaviour definition ‘body’ describes,
in, for us, using RSL [29] with its embodiment of a variant of CSP [37], basically CSP clauses
how it interacts with other behaviours, and, in basically RSL’s functional specification (read:
programming) clauses, how it otherwise “goes about its business” !

In fragment I the focus is on the possible [action] update of either biddable or programmable
attributes.

13. Behaviour Definition, I

p behaviour(p) ≡
let p′ = possible update of biddable and programmable attributes(p) in
p behaviour(p′) end

In fragment II the focus is on the possible [action] value access to any attributes.

14. Behaviour Definition, II

p behaviour(p) ≡ ... attr A(p) ... p behaviour(p)

In fragment III the focus is on the possible interaction with other behaviours, hence illustrates two
events as seen from one behaviour.

15. Behaviour Definition, III

p behaviour(p) ≡
...
let (val,ui) = E(p) in ch[ {uid P(p),ui} ] ! val end ;
...
let uj = I(p) in let (val′,uj) = ch[ {uid P(p),uj} ] ? in
...
p behaviour(p) end end

14 Example. Road Transport Behaviour Definitions: We refer to Sect. A.7.4 on page 35.
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6.5 Domain Initialisation

By domain initialisation we mean the “start-up” of a behaviour for all manifest parts.

15 Example. Road Transport Domain Initialisation: We refer to Sect. A.8 on page 38.

6.6 End of Domain Modelling Presentation

This concludes the four sections, Sects. 2, 3, 4 and 6, on domain modelling.

7 Closing

7.1 The Current Calculi

The treatment of behaviours of Sect. 6.4.2 differs very much from that of Sects. 7.6–7.7 of [15]. The
present one is very short, but results in a repeated use of the part update functional. Our domain
modelling approach allows a wide spectrum, in-between these behaviour signature and definition
styles, for expressing behaviours. What remains fixed in the treatment of endurants: both of their
external qualities, and of their internal qualities.

7.2 Some Issues

A number of issues need be addressed.

7.2.1 A New View of Software Development ?

Yes, we [somewhat immodestly] claim that this paper presents a new view of software development !
Aircraft designers and manufacturers employ professionally educated aeronautics engineers having
state-of-the-art insight into aerodynamics. But, we claim, software companies do not, today,
December 31, 2022, exhibit the same professionalism in their staffing. Software for health care
(hospitals, etc.) are often developed by programmers with no previous professional insight into that
area. Likewise for domains such as law, public administration, health care and tax administration.
With sound methods for “deriving” requirements from domain models, cf. Sect. 7.2.7 on the next
page, these software houses now have a possibility of becoming professional.

7.2.2 From Programming Language Semantics to Domain Models

Domain models give semantics to the nouns (endurants) and verbs (perdurants) spoken by domain
workers. Just like the development of compilers for programming languages were based on formal
models of their semantics, so we can now give semantics to the nouns and verbs spoken by domain
workers, and, from these, using rigorous development methods, similar to those used for compiler
development [21, 25], develop trustworthy domain software.

7.2.3 Correctness: Verification, Checking, Testing

This paper has not dealt with the issue of correctness of domain models. A number of endurant and
perdurant Description prompts have indicated that axioms and assertions24 need be expressed.
For domain assertions their correctness must, of course, be shown – using whichever (testing,
model checking and proof) techniques are adequate. The axioms and assertions carry over into
Rrequirements prescriptions and, from there, into software Specifications. Now the full-blown
force of testing, model checking and proofs must be applied. As indicated in formula D,S |= R,
Sect. 1.2 on page 2, domain models now make proof obligations more clear.

24i.e., proof obligations
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7.2.4 No Recursive Domains !

Surprise, surprise ! Yes, there are no recursively defined endurant sorts. Domains do not contain
“recursive endurants”.25,26

7.2.5 Domain Facets

There is more to domain engineering than this paper can cover. A main element of domain
modelling is that of modelling also other than the intrinsics of domains – as so far covered. By a
domain facet we shall understand one amongst a finite set of generic ways of analysing a domain: a
view of the domain, such that the different facets cover conceptually different views – and these views
together cover the domain.27 [15, Chapter 8 ] covers methods for modelling additional facets – such
as support technology, rules & regulations, scripts (or contracts), license languages, management &
organisation, and human behaviour.

7.2.6 Algorithmics

Algorithms are the hall-mark and corner-stone of computing. So where is “algorithmics” [31, 33,
Harel ] in all this ? ! So where, in all this, does algorithmics fit ? The straight answer is: algorithm
concerns are not concerns of domain modelling !

Domain models focus on expressing properties. They do so using abstraction in general, and
simple combinations of proof theoretic and model theoretic means such as defining abstract types,
here called sorts, comprehension over sets, sequences and maps {f(i)|i:D•P(f,i)}, 〈f(i)|i:D•Q(f,i)〉,
and [ f(i)7→g(i)|i:D•R(f,g,i) ]. The predicates, P,Q and R further “raise” the abstraction. It is in
the efficient rendering of these abstractions that algorithms play a crucial rôle.

7.2.7 Requirements

In [15, Chapter 9, 2021 ] we show how to “derive”, in a systematic manner, requirements prescrip-
tions from domain descriptions. Requirements are for a machine28 The machine is the hardware
upon which the software to be developed is to be executed – as well as the [auxiliary ] software
“under which” that new software is performing (operating system, database system, data commu-
nications software, etc.). First requirements development proceeds in three stages: (i) a domain
requirements stage in which requirements that can be expressed sôlely using terms from the do-
main are developed; (ii) an interface requirements stage in which requirements that can be express
using terms from both the domain and the machine are developed; and (iii) a domain requirements
stage in which requirements that can be expressed sôlely using terms from the machine are devel-
oped. [15] shows how domain requirements stage can be decomposed, sequentially, into projection,
initialisation, determination, extension and fitting steps. For details on this and more we refer to
[15].

7.2.8 Software Design

[2, 2005-2006 ] shows how to further develop software from their requirements prescriptions.

25Some readers may object, but we insist ! If trees are brought forward, as an example of a recursively definable
domain, then we argue: Yes, trees can be recursively defined. Trees can, as well, be defined as a variant of graphs,
and you wouldn’t claim, would you, that graphs are recursive ? We shall consider the living species of trees (that
is, plants), as atomic. In defining attribute types You may wish to model certain attributes as ‘trees’. Then, by
all means, You may do so recursively. But natural trees, having roots and branches cannot be recursively defined,
since proper “sub-trees” of trees would then have roots !

26At an IFIP WG2.2 meeting in Kyoto, August 1978, John McCarthy [49, 50], “waking up” from deep thoughts,
asked, in connection with my presentation of abstract models of various database models [47], “is there any recursion
in all this ?”, to which I replied, “No ! – whereupon he resumed his interrupted thoughts”.

27This characterisation clearly lacks sufficient formality. We refer to Sect. 7.2.16 on page 23 below.
28– as suggested by Michael A. Jackson [41]
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7.2.9 Continuity

As remarked in Sect. 3.1 on page 9 the calculi of this paper do not address the issue of modelling
continuous dynamic phenomena. This is clearly a weakness. The Integrated Formal Methods
conferences [43] initially set out to spur research aimed at amalgamating continuous and discrete
specifications. Not much progress has been made. We do refer, however, to [58, 59].

7.2.10 Modelling Concurrency

We have used Hoare’s CSP [37] to model concurrency. There are other, in this case, graphical lan-
guages for modelling concurrency. We refer to Chapters 12–15 of [3]. In these chapters I treat the
modelling of four graphical specification languages: Petri Nets [51], Message Sequence Charts

[38, 39], State Charts [32] and Live Sequence Charts [26, 34]. All of them are fascinating.
Their graphics appeal to many of us – so I recommend to use them informally, aside, for the text-
tual modelling shown in this paper. But they do not “merge” into formal, textual specification
languages, like VDM-SL, RSL, Z, Alloy.

7.2.11 Modelling Temporality

Although time is modelled, as part of internal attribute properties, we have not shown the model-
ling of temporality of behaviours. In Chapter 15 of [3] I show how to merge Duration Calculus,

DC [60] with RSL-Text. Another fascinating such formal specification language is Leslie Lamport’s
TLA+: Temporal Logic of Actions [44].

7.2.12 Domain Specific Languages

A domain specific language, DSL, is a computer programming language specialised to a particular
application domain. What we have shown here is not a DSL. Examples of DSLs could be program-
ming languages for expressing calculations for railways or financial services or hospitals or other.
[24, Actulus] reports on an actuarial programming language for life insurance and pensions. To
give semantics for a specific DSL one invariably specifies a domain model. So that, then, is a rôle
for domain modelling.

7.2.13 Three Rôles for Domain Models

There are three rôles for domain models: (i) to just simply study and understand a domain –
irrespective of any ensuing software for that domain; (ii) to serve as a basis for the development
of a DSL; and (iii) to serve as a basis for the development of [other] software for the domain.

7.2.14 How Comprehensive should a Domain Model be ?

Clearly domain models for any reasonable domain can be potentially be very large in terms of
pages of description. So the question is: how much of the “domain at large” should be included in
a domain description ?. We cannot, of course, give a general answer to that question. But we can
say that the domain model must at least encompass those domain entities that will, or might,
be referred to in a requirements prescription. That is, if it is found when developing a domain
requirements29 of a requirements prescription, that terms thought to be of the domain was not
covered by the domain description, then, obviously, that description must be augmented.

We do expect there to be, eventually, available for general use, a few, domain models for
selected domains.

For physics Newton and Leibniz30 has given us a calculus with which to – more or less quickly
– establish a model for some physical phenomenon. When control engineers then wish to set up
some automatic control system for a phenomenon they first apply the Newton/Leibniz calculi to

29Cf. Sect. 7.2.7 on the previous page
30https://en.wikipedia.org/wiki/Leibniz%E2%80%93Newton calculus controversy

c© Dines Bjørner. December 31, 2022: 09:03 am 22 Domain Modelling



Domain Modelling 23

model the phenomenon, then, from that, somehow derive a control model. We advocate a similar
approach, as already hinted at in our expressing the Triptych Dogma (Page 1).

The road transport domain modelled in Appendix A is one such domain. It has here been
expressed in a way, devoid of any specific orientation. Based on the model of Appendix A we
can envisage some such orientations as a road pricing domain, a cadastral 31 map domain, a road
development domain, a road maintenance domain, et cetera.

7.2.15 Domain Laws

Physics has excelled in our understanding the world we live in by its laws and by the calculi it
has spawned – calculi that enables us to explain what has happened and to predict what will or
might happen. Domain modelling has already lead to some domain laws – such as illustrated by
for example intentional pulls, cf. Sect. 5.4 on page 16 (approx. half a page) and Appendix A.6 on
page 33 (two pages). The study of intentional pull in domains has just started ! Its counterpart in
physics, gravitational pull, is “behind” many laws of physics.

7.2.16 A Domain Modelling Science ?

A science of domain modelling systematically builds and organizes knowledge about the ways and
means of modelling domains such that that knowledge can explain what these models express.
As an example of there not yet being a sufficient scientific knowledge of domains we refer to our
informal coverage of the concept of domain facets, cf. footnote 27 on page 21. A formal under-
standing of domains and what “facet”–distinguishes them, could help sharpen the characterisation
of Sect. 7.2.5 on page 21. Such a formal understanding was first reported in [10, 2014 ]. Of more
specific nature we suggest, next, studies of some specific issues.

(i) An “integrated” form of use of differential equations with the present RSL+, i.e., the extension
of our approach to domain modellong to cover more specifically issues of continuity.

(ii) A “further detailed” understanding of the concept of intentional pull.
(iii) A study of a possible Calculus of Perdurants.
(iv) A study of examples of domain models with an emphasis on human interaction.
(v) Formal models of the analysis predicates and functions and the description functions,

cf. [10].
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A A Road Transport Domain Example

A.1 Naming and Sketch of Domain

We refer to Sect. 2 on page 6.

Narration:

1 The domain is referred to as RTD, the road transport domain.

2 The road transport domain comprises a set of automobiles and a road net of street intersec-
tions, called hubs, and [uninterrupted] street segments, called links. Automobiles drive in
and out of hubs and links.

Formalisation:

type
1. RTD

A.2 Endurants: External Qualities

A.2.1 Cartesian Examples

We refer to Sect. 3.4.1 on page 10.

3 There is a road transport domain.

From road transport domains we can observe

4 a road net aggregate and

5 an automobile aggregate.

From the road net aggregate we can observe

6 an aggregate of hubs,
i.e., street intersections, and

7 an aggregate of links,
i.e., street segments (with no hubs).

type
3. RTD
4. RNA
5. AA
6. HA
7. LA

value
4. obs RNA: RTD → RNA
5. obs AA: RTD → AA
6. obs HA: RNA → HA
7. obs LA: RNA → LA

A.2.2 Part Sets

We refer to Sect. 3.4.2 on page 10.

8 There are hubs; from aggregate of hubs one can observe sets of hubs.

9 There are links; from aggregate of links one can observe sets of links.

10 There are automobiles; from aggregate of automobiles one can observe sets of automobiles.

type
8. H, Hs = H-set
9. L, Ls = L-set
10. A, As = A-set

value
8. obs Hs: HA → Hs
9. obs Ls: LA → Ls
10. obs As: AA → As
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A.2.3 Endurant States

We refer to Sect. 3.5 on page 10.

11 The singleton value rtd represents a road transport [domain] state.

12 The set value hs represents a state of all hubs of that road transport domain.

13 The set value ls represents a state of all links of that road transport domain.

14 The set value as represents a state of all automobiles of that road transport domain.

value
11. rtd:RTD,
12. hs:H-set = obs Hs(obs HA(obs RNA(rtd))),
13. ls:L-set = obs Ls(obs LA(obs RNA(rtd))),
14. as:A-set = obs As(obs AA(rtd))

A.3 Unique Identifiers

We refer to Sect. 5.1 on page 12.

A.3.1 Unique Identifiation

We shall only consider hubs, links and automobiles.

15 Hubs have unique identifiers.

16 Links have unique identifiers.

17 We define also a unique identifier observer for hubs and links.

18 Automobiles have unique identifiers.

type
15. HI
16. LI
18. AI
value
15. uid H: H → HI
16. uid L: L → LI
17. uid HL: (H|L) → (HI|LI), uid HL(hl) ≡ is H(hl)→uid H(hl), →uid L(hl)
18. uid A: A → AI

A.3.2 Unique Identifier State

19 The variable his contains all unique hub identifiers of the road transport domain 3 on the
preceding page.

20 The variable lis contains all unique link identifiers of the road transport domain 3 on the
facing page.

21 The variable ais contains all unique automobile identifiers of the road transport domain 3
on the preceding page.

variable
14. his = { uid H(h) | h:H • h ∈ hs }.
19. lis = { uid L(l) | l:L • l ∈ ls }.
20. ais = { uid A(a) | a:A • a ∈ as }.
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A.3.3 Unique Identifier Axiom

22 No two hubs, links and automobiles have the same unique identifier.

23 ps is the set of all hubs, links and automobiles.

24 uis is the set of all unique hub, link and automobile identifiers.

axiom
22. card hs = card his,
22. card ls = card lis,
22. card as = card ais,
22. card hs + card ls + card as = card his + card lis + card ais
value
23. ps = hs ∪ ls ∪ as
24. uis = his ∪ lis ∪ ais
axiom
22. card ps = card uis

A.4 Mereology

We refer to Sect. 5.2 on page 13.

25 The mereology of any hub is a pair: the
possibly empty set of the unique identifiers
of links leading into and/or out from the
hub, and the set of the unique identifiers
of automobiles that are allowed to drive in
the hub.

26 The mereology of any link is a pair: the
two element set of the unique identifiers

of the two hubs that are connected by the
link, and the set of the unique identifiers
of automobiles that are allowed to drive
on the link.

27 The mereology of any automobile is the
set of the unique identifiers of hubs in
and links on which the automobile may
be driving.

type
25. H Mer=LI-set×AI-set
26. L Mer=HI-set×AI-set
27. A Mer=(HI|LI)-set

value
25. mereo H: H→H Mer
26. mereo L: L→L Mer
27. mereo A: A→A Mer

28 Link and automobile identifiers of hub mereologies must be of the road transport domain.

29 Hub and automobile identifiers of hub mereologies must be of the road transport domain
and there must be exactly two hub identifiers of those mereologies.

30 Hub and links identifiers of automobile mereologies must be of the road transport domain.

axiom
28. ∀ (lis,ais):H Mer•lis⊆lis∧ais⊆ais
29. ∀ (his,ais):L Mer•his⊆his∧ais⊆ais∧card his=2
30. ∀ ris:A Mer•ris⊆his∪lis

c© Dines Bjørner. December 31, 2022: 09:03 am 30 Domain Modelling



Domain Modelling 31

A.4.1 Routes

31 By a route (of a road net) we shall understand

a an alternating sequence of one or more hub and link identifiers

32 such that

a basis clause 0: the empty list is a route;

b basis clause 1: a singleton list of a hub or a link identifier of the road net is a route;

c inductive clause: the concatenation of a route, r, and the tail of a route r′ where the
last element of r is identical to the first element of r′ is a route; and

d extremal clause: and only such routes that can be formed using the above clauses are
routes.

type
31. R′ = (HI|LI)∗

31a. R = {| r:R′ | wf R(r)(rtd) |}
value
31a. wf R: R′ → RTD → Bool
31a. wf R(r)(rtd) ≡
31a. ∀ i,i+1:Nat • {i,i+1}⊆index(r) ⇒
31a. let (ri,ri′) = (r[ i ],r[ i+1 ]) in
31a. is LI(ri)∧is HI(ri′)∧ ...
31a. is HI(ri)∧is LI(ri′)∧ ...
31a. end

32. routes: RTD×HI-set×LI-set → R-infset
32. routes(rtd,his,lis) ≡
32. let rs = { 〈〉 }
32. ∪ { 〈hi〉 | hi:HI • hi ∈ his }
32. ∪ { 〈li〉 | li:LI • li ∈ lis }
32. ∪ { r̂tl r′ | {r,r′}⊆rs ∧ r[ len r ]=hd r′ } in
32c. rs end
32. pre: his={uid H(h)|h:H•h ∈ obs Hs(obs AH(obs RN(rtd)))} ∧
32. lis={uid L(l)|l:L•l ∈ obs Ls(obs AL(obs RN(rtd)))}

A.5 Attributes

We refer to Sect. 5.3 on page 14.

A.5.1 Hubs, Links and Automobiles

Hub Attributes

33 Hubs have [traffic signal] states which are set of pairs, li,lj, of identifiers of the mereology
links “signaling” that automobiles can connect from link li to link lj.

34 Hubs have [traffic signal] state spaces – designating the set of all possible hub states.

35 Hubs have a history; see Item 46 on page 33.

Link Attributes

36 Links have lengths.
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37 Links have a history; see Item 47 on the next page.

Automobile Attributes

38 Automobiles have positions on the road net:

a either at a hub,

b or on a link, some fraction

c down from an entry hub towards the exit hub.

39 Automobiles have a history; see Item 48 on the facing page.

We postpone treatment of hub, link and automobile histories till Sect. A.6.1.

type
33. HΣ = (LI×LI)-set
34. HΩ = HΣ-set
35. H Hist = ...
36. LEN
37. L Hist = ...
38. A Pos = At Hub | On Link
38a. At Hub :: HI
38b. On Link :: LI × HI × F × HI
38c. F = Real axiom ∀ f:F • 0<f<1
39. A Hist = ...
value
33. attr HΣ: H → HΣ
34. attr HΩ: H → HΩ
35. attr H Hist: A → H Hist
36. attr LEN: L → LEN
37. attr L Hist: A → L Hist
38. attr APos: A → A Pos
39. attr A Hist: A → A Hist

We omit treatment of such automobile attributes as speed, acceleration, engine temperature,
energy (gas, oil, electricity) level, mileage and trip counters, GPS (map) position, road surface
temperature, gear position (reverse, neutral, forward (1, 2, 3, 4, 5), hand brake position, clutch
position, accelerator pressure, brake pedal position, etc.

40 The link identifiers of a hub state must be of the mereology of that hub.

41 A hub state must be in the hub state space.

42 The automobile position must be on the road net.

axiom
40. ∀ h:H • h ∈ hs • let hσ = attr HΣ(h), (lis, ) = mereo H(h) in
40. ∀ (li,lj):(LI×LI) • (li,lj) ∈ hσ ⇒ {li,lj}⊆lis

41. ∀ h:H • h ∈ hs • attr HΣ(h) ∈ attr HΩ(h)

42. ∀ a:A • a ∈ as • let apos = attr A Pos(a) in
42. cases apos of
42. At Hub(hi) → hi ∈ his,
42. On Link(li,fhi, ,thi) →
42. let (his,ais) = mereo L(retr L(li,ls)) in
42. {fhi,thi}⊆his ∧ uid A(a) ∈ ais end
42. end end
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These were some well-formedness axioms. In Sect. A.6.1 we shall treat well-formedness of hub,
link and automobile histories.

A.5.2 Attribute Category Examples

Attribute categories are: HΣ (Item 33 on page 31) is a programmable attribute; HΩ (Item 34 on
page 31) is a static attribute; LEN (Item 36 on page 31) is a static attribute; A Pos (Item 38 on
the facing page) is a programmable attribute; GPS Map is an inert attribute; Speed is a biddable
attribute; Road Surface Temperature is an autonomous attribute; etcetera.

A.6 Intentional Pull

We refer to Sect. 5.4 on page 16.

A.6.1 Further Attributes

We start by formulating the hub, link and automobile history attribute definitions.

43 Hubs and links are entered and left by automobiles, i.e., marked by corresponing events.

44 Automobile enters and leaves hubs, i.e., marked by corresponing events.

45 Automobile enters and leaves links, i.e., marked by corresponing events.

46 Hub histories are time-stamped sequences of automobile enter/leave events – in decreasing
order (most recent events are listed first),

47 Link histories are time-stamped sequences of automobile enter/leave events – in decreasing
order (most recent events are listed first),

48 Automobile histories are time-stamped sequences of hub and link enter/leave events – in
decreasing order (most recent events are listed first),

49 For convenience we “lump” hub and link histories into hub-link histories.

type
43. HL OnOff = mkEnter(ai:AI) | mkLeave(ai:AI)
44. A OnOff H = mkEnterHub(s:HI) | mkLeaveHub(s:HI)
45. A OnOff L = mkEnterLink(s:LI) | mkLeaveLink(s:LI)
46. H Hist = (s t:TIME×s oo:HL OnOff)∗

47. L Hist = (s t:TIME×s oo:HL OnOff)∗

48. A Hist = (s t:TIME×s oo:(OnOff H|OnOff L))∗

49. HL Hist = H Hist | L Hist
value
49. attr HL Hist: (H→H Hist) | (L→L Hist)

50 Automobile histories

a alternate between being on hubs and being on links.

b such that the enter hub event time is identical to the immediately “prior” leave link
event time,

c and such that these events are otherwise ordered in decreasing order of time.
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axiom
50. ∀ a hist:A Hist •

50. ∀ i:Nat • {i,i+1}⊆inds a hist ⇒
50. let (e1,e2)=(s oo(a hist[ i ]),s oo(a hist[ i+1 ])),
50. (t1,t2)=(s t(a hist[ i ]),s t(a hist[ i+1 ])) in
50. case (e1,e2)
50b. (mkLeaveHub(hi),mkEnterLink(li)) → t1=t2,
50c. (mkLeaveLink(li),mkEnterHub(hi)) → t1=t2,
50c. (mkLeaveLink(li),mkEnterLink(li′)) → t1>t2, assert: li=li′

50c. (mkLeaveHub(hi),mkEnterHub(hi′)) → t1>t2, assert: hi=hi′

50a. → false
50. end end

We leave the (narrative and formal) expression of the well-formedness of hub and link histories to
the reader !

The above indicates that one has to be very careful concerning well-formedness.
But we have not captured all of the constraints, i.e., well-formedness of the history attributes.

Next we secure full care !

A.6.2 An Intentional Pull

51 For all automobiles,

a if their traffic history records that the automobile was entering [leaving] a hub (link)
at a certain time,

b then that hub’s (link’s) traffic history shall record that that automobile entered [left]
that hub (link) at exactly that time;

52 and vice versa, for all hubs an links:

a if a hub or link traffic history records that an automobile was leaving that hub (link)
at a certain time,

b then that automobile’s traffic history shall record that that automobile left that hub
(link) at exactly that time.

axiom
51. ∀ a:A • a ∈ as ⇒
51a. let a hist=attr A Hist(a) in
51a. let (t,on off) • (t,on off)∈ elems a hist in
51a. let hli • s(on off) in
51a. let hl:(H|L)•hl ∈ hs∪ls • uid (H|L)(hl) = hli in
51a. cases on off of
51a. mkEnter(hli) →
51a. mkLeave(hli) →
51a.
51b. ∃ ! hl hist:HL Hist • hl hist=attr HL Hist(hl)
51b. let lst=hl hist(uid A(a)) in ∃ ! i:Nat•i∈ inds lst∧lst[ i ]=(t,on off)
51b. end end end end end
52. ≡
52a. ∀ hl:(H|L) • hl ∈ hs∪ls ⇒
52a. let hl hist=attr HL Hist(hl) in
52a. ∀ ai:AI • ai ∈ dom hl hist ⇒
52a. let a:A• a ∈ as∧uid A(a)=ai in [ assert: ∃ a ∈ as•uid A(a)=ai ]
52a. ∀ (t,on off)•(t,on off)∈ elems hl hist(ai) •

52b. ((t,on off),uid HL(hl)) ∈ elems attr A Hist(a) end end
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The above formalisation is currently being checked

A.7 Perdurants

A.7.1 Channels

We refer to Sect. 6.1 on page 17.

channel { ch[ {ui,uj} ] | ui,uj:(HI|LI|AI) • {ui,uj}⊆hislisais } : M

M is presently left undefined.

A.7.2 Domain Actions and Events

A.7.2.1 Domain Actions Automobile actions are here simplified to be those of remaining
(staying) in a hub (Item 56a on the next page) and remaining (staying) on a link (Item 57a on
the following page).

A.7.2.2 Domain Events Automobile events are here simplified to be those of leaving a hub in
order to enter a link (Item 58d on the next page and Item 62 on page 37) and leaving a link in
order to enter a hub (Item 59c on page 37 and Item 67 on page 37).

16 Example. Domain Actions and Events: We refer to Sect. A.7.2.

A.7.3 Behaviour Signatures

We refer to Sect. 6.4.1 on page 19.

value
hub: h:H → in,out { ch[ {hi,ui} ] | ui:(LI|AI)•ui∈lis∪ais } → Unit,
link: l:L → in,out { ch[ {li,ui} ] | ui:(LI|AI)•ui∈lis∪ais } → Unit,
auto: a:A → in,out { ch[ {ai,ui} ] | ui:(LI|HI)-set•ui∈lis∪his } → Unit.

A.7.4 Behaviour Definitions

We refer to Sect. 6.4.2 on page 19.

Automobile Behaviour

We omit consideration of the monitorable GPS Map, Speed and Road Surface Temperature at-
tributes.

53 One interpretation of an automobile, auto, focuses on its road position.

54 Either the automobile is at a hub,

55 or it is on a link.

value
53. auto(a) ≡ auto pos(a)(attr A Pos(p),attr A His(a))

54. auto pos(a)(At Hub(hi),a hist) ≡
54. traversing hub(a)(At Hub(hi),a hist)
54. pre: attr A Pos(a)=At Hub(hi) ∧ attr A Hist(a)=a hist

55. auto pos(a)(On Link(li,fhi,f,thi),a hist) ≡
55. traversing link(a)(On Link(li,fhi,f,thi),a hist)
55. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist
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56 In traversing a hub an automobile

a is either, internal non-deterministically, de, moving on inside the hub

b or, internal non-deterministically, entering a link from the hub.

value
56. traversing hub(a)(At Hub(hi),a hist) ≡
56a. staying at H(a)(At Hub(hi),a hist)
56b. de entering L(a)(At Hub(hi),a hist)
56. pre: attr A Pos(a)=At Hub(h) ∧ attr A Hist(a)=a hist

56a. staying at H(a)(At Hub(hi),a hist) ≡ auto(a)

57 In traversing a link an automobile

a is either, internal non-deterministically, de, moving on inside the link

b – possibly advancing a bit, i.e., increasing its fraction position “down” the link,

c or, internal non-deterministically, entering a hub from the link.

value
57. traversing link(a)(On Link(li,fhi,f,thi),a hist) ≡
57a. staying on L(a)(On Link(li,fhi,f,thi),a hist)
57c. de entering H(a)(On Link(li,fhi,f,thi),a hist)
57. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

57a. staying on L(a)(On Link(li,fhi,f,thi),a hist) ≡
57b. let f′:F • f≤f′<1 in assert: ∃ f′:F • f≤f′<1
57b. let a′ = part update(a)(ηA Pos,On Link(li,fhi,f′,thi))
57a. auto(a′) end end
57a. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

58 In entering a link

a the automobile internal non-deterministically selects the link to be entered, and thus
the next hub,

b records the time,

c updates its history and automobile position accordingly,

d so informs the behaviour of the hub being left and the link being entered,
while resuming being an automobile – with the updated history.

value
58. entering L(a)(At Hub(fhi),a hist) ≡
58a. let li:LI•li∈lis∧li∈mereo H(retr H(fhi)(σ)),thi:HI•thi∈his∧thi∈mereo L(retr L(li)(σ))\{fhi},33
58b. τ = record TIME34,
58b. ai=uid A(a) in
58a. let a pos = On Link(fhi,li,0,thi) in
58c. let a hist′ = 〈(a pos,τ)〉̂a hist in
58c. let a′ = part update(a)(ηA Hist,a hist′) in
58c. let a′′ = part update(a′)(ηA Pos,a pos) in
58d. (ch[ {ai,hi} ] ! mk leave H(ai,τ) ‖ ch[ {ai,li} ] ! mk enter L(ai,τ) ‖ auto(a′′))
58. end end end end end
58. pre: attr A Pos(a)=At Hub(fhi) ∧ attr A Hist(a)=a hist
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59 In entering a hub

a the time is recorded,

b the automobile history and position is updated,

c and the behaviours of the link left link and hub entered are being so informed

while the automobile resumes being an automobile – in the updated state.

value
59. entering H(a)(On Link(li,fhi,f,thi),a hist) ≡
59a. let τ = record TIME,
59a. ai = uid A(a),
59a. a pos = at Hub(thi) in
59a. let a hist′ = 〈(a pos,τ)〉̂a hist in
59b. let a′ = part update(a)(ηA Hist,(τ ,a hist′)) in
59b. let a′′ = part update(a′)(ηA Pos,a pos) in
59c. (ch[ ai,li ] ! mk leave L(ai,τ) ‖ ch[ ai,thi ] ! mk enter H(ai,τ) ‖ auto(a′′))
59. end end end end
59. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

Hub Behaviour

60 The hub behaviour

61 externally non-deterministically (debc) offers

62 to accept, non-deterministically, a leave message,

63 from any automobile in its mereology;

64 it prepares for proper insertion of this event into its traffic history

65 updating to an augmented traffic history, and, hence, hub state;

66 resuming to be the hub behaviour in the updated state;

67 or to accept, non-deterministically, an enter message,

68 again from any automobile in its mereology;

69 updating to an augmented traffic history, and, hence, hub state;

70 resuming to be the hub behaviour in the updated state.

value
60. hub(h) ≡
62. debc { let mk leave H(ai,τ) = ch[ {hi,ai} ] ? in
65. let h hist′ = 〈(τ ,mkEnter(ai))〉̂attr H Hist(h) in
65. let h′ = part update(ηH Hist,h hist′) in
66. hub(h′)
63. | ai:AI • ai ∈ ais end end end}
61. debc
67. debc { let mk enter H(ai,τ) = ch[ {hi,ai} ] ? in
69. let h hist′ = 〈(τ ,mkLeave(ai))〉̂attr H Hist(h) in
69. let h′ = part update(ηH Hist,h hist′) in
70. hub(h′)
68. | ai:AI • ai ∈ ais end end end }

33For retr · · · see Sect. 5.1.4 on page 13.
34For record TIME see Sect. 4.2 on page 12.
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The above formalisation is currently being checked

We leave the definition of link behaviours as an exercise !

A.8 Domain Initialisation

We refer to Sect. 6.5 on page 20.
We initialise a domain behaviour for all atomic endurants: hubs, links and automobiles.

71 The domain behaviour is the parallel composition of

72 the distributed parallel composition of all hub behaviours, with

73 the distributed parallel composition of all link behaviours, with

74 the distributed parallel composition of all automobile behaviours.

72. ‖ { hub(b) | h:H • h ∈ hs }
71. ‖
73. ‖ { link(l) | l:L • l ∈ ls }
71. ‖
74. ‖ { auto(a) | a:A • a ∈ as }

A.9 Verification

It remains to verify that the automobile, hub and link behaviours and the road transport domain
initialisation satisfy the appropriate axioms and the intentional pull.

End of Example

B Method Tool Index

Analysis Predicates:
is Cartesian, 7
is animal, 8
is atomic, 7
is compound, 7
is endurant, 7
is entity, 6
is fluid, 7
is human, 8
is living species, 8
is manifest, 8
is mobile, 8
is part set, 8
is part, 7
is perdurant, 7
is plant, 8
is solid, 7

is stationary, 8
is structure, 8

Analysis Functions:
determine Cartesian parts, 9
determine attributes, 14
determine part set, 9

Description Functions:
descr Cartesian, 10
descr Universe of Discourse, 6
descr attributes, 15
descr mereology, 14
descr part set, 10
descr unique identifier, 13
record LOCATION, 12
record TIME, 12
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