
Double-Entry Bookkeeping

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

September 2, 2023

Abstract

We present a model of the domain of double-entry bookkeeping.

Contents

1 Introduction 2

2 A Formal Model 2

2.1 Double-Entry Account Types . 2

2.2 Summation . 5

2.3 Suffix 0,i ,i−1 and i+1 Types . 5

2.4 Account Identifiers . 6

2.5 Account Trails . 7

2.6 Account Class Types . 7

2.7 Double-entry Bookkeeping Type Constraints, I 8

2.8 Income/Outcome and Asset/Liability Class Name Relations 8

2.9 Account Structures . 9

2.10 Establish Initial Accounts . 10

2.11 Double-Entry Account Command Types . 10

2.11.1 Operating Commands . 10

2.11.2 A Double-entry Accounting Behaviour 12

2.11.3 Reusing Existing Accounts . 13

3 Discussion 14

3.1 A Dichotomy . 14

3.2 Unified Enterprise Domain Models . 14

4 Conclusion 14

5 Bibliography 14

5.1 Bibliographical Notes . 14

5.2 References . 15

A A Simple File System 17

1

2 September 2, 2023 Dines Bjørner

B Index 23

1 Introduction

The concept of double-entry bookkeeping is assumed known1. The model that we shall present
is a convention model, and is expressed in RSL [9], the RAISE2, [10] Specification Language.
We refer to [1] for a general introduction to rigorous software engineering. And we refer
to [2] for introductions to the domain modelling approach that – generally – lies behind our
modeling of this, the double-entry bookkeeping domain. Recent papers summarizing domain
moelling are [3, 4, 7].

You may wish to first study the simple (UNIX-like) file system model of Appendix A.

more to come

2 A Formal Model

We present a model of the domain of double-entry bookkeeping. The description alternates
beween numbered

• narratives and

• formulas.

The formula definitions are indexed, cf. Appendix B.

2.1 Double-Entry Account Types

1. A double-entry bookkeeping account, traditionally, consists of two accounts, an in-
come/outcome (earnings/expenditure) account, IOA, and an assets/liabilities account,
ALA.3

2. In addition a double-entry bookkeeping account relates to, is for, a year – further un-
defined.

3. Let deba be a DEBA value – one that we shall refer to as a “global” example value –
one whose components are ioa, ala and y.

type
1. DEBA = IOA0 × ALA0 × Year
2. Year
value
3. deba:(ioa,ala,year):DEBA = ...

1We refer to the Wikipedia article on double-entry bookkeeping (or ...accounting):
https://en.wikipedia.org/wiki/Double-entry bookkeeping

2RAISE: Rigorous Approach to Industrial Software Engineering
3Pls., for a moment, till after the presentation of the formal model, Sect. 2.3 on page 5, disregard the type

name suffixes i,i−1 and i+1.

September 2, 2023 3

4. An income/outcome account consists of zero, one or more elements of two kinds:

• immediate income/outcome accounts, I IOAs, and

• embedded income/outcome accounts, E IOAs;

• and a sum.

Both are maps, merged into one map using the map type union constructor, d.

type
4. IOAi = (I IOAsi d E IOAsi) × Sumi+1

5. Immediate income/outcome accounts map income/outcome entry names, IOENm, into
audit trails, Audit Trail.

type
5. I IOAsi = IOENmi →m Audit Traili

6. Embedded income/outcome accounts map income/outcome directory names, IODNm,
into income/outcome audits.

type
6. E IOAsi = IODNmi →m IOAi−1

7. Income/outcome entry and directory names are disjoint types of further undefined iden-
tifiers, ID.

type
7. IOENmi :: ID, IODNmi :: ID ,

8. An assets/liabilities account consists of zero, one or more elements of two kinds:

• immediate assets/liabilities accounts, I IOAs, and

• embedded assets/liabilities accounts, E IOAs;

• and a sum.

Both are maps, merged into one map using the map type union constructor, d.

type
8. ALAi = (I ALAsi d E ALAsi) × Sumi+1

8. I ALAsi = ALENmi →m Audit Traili
8. E ALAsi = ALDNmi →m ALAi−1

4 September 2, 2023 Dines Bjørner

9. Asset/liability entry and directory names are disjoint types of further undefined identi-
fiers, ID.

type
9. ALENmi :: ID, ALDNmi :: ID

10. An audit trail entry is a triplet4: an audit information element, AIi+1 (further unde-
fined), a list of timed audit records, TARi

∗, and a sum, Sumi
5

type
10. Audit Traili = ATIi×TARi

∗×Sumi

11. Audit trail information will presently be left further undefined.

type
11. ATIi

12. Sums are the same as amounts.

type
12. Sumi = Amounti

13. type
13. TARi = TIMEi × Refi × Amounti

14. References are further unexplained references to documents evidencing the audit entry.

type
14. Refi

15. Amounts are real numbers with a currency designator6.

15. Amount = Real US $

4An audit trail is a step-by-step record by which accounting, trade details, or other financial data can be
traced to their source. Audit trails are used to verify and track many types of transactions, including accounting
transactions and trades in company accounts https://www.investopedia.com/terms/a/audittrail.asp

5Suffixes, i,i+1, will be explained right after this narrative+formalization text, Sect. 2.3 on the next page.
6Hee we have, arbitrarily (!), chosen US $

September 2, 2023 5

2.2 Summation

16. The sum element of the audit triplets must be the sum of the time-stamped value entries
for that income/outcome or assets/liabilities account.

axiom [Sums add up]
16. ∀ (,tarl,sumi):(AIi×TARi

∗×Sumi)
16. • summation(tarl)=sumi

value
16. summation: TAR∗ → Real US $
16. summation(tarl) ≡ case tarl of 〈〉 → 0, (, ,v)̂tarl′→ v+summation(tarl′) end

2.3 Suffix 0,i ,i−1 and i+1 Types

We now explain the rôle of the 0,i ,i−1 and i+1 type suffixes.
First we summarize their occurrences.
As suffix 0 they are affixed the IOA and ALA when they first appear, Item 1 on page 2.

They are then, in subsequent type descriptions, affixed the IOA and ALA type names. From
there they are carried forward to the ALENm, ALDNm type names. They are decreased from
their left-hand side type definition occurrence in definition Item 5 on page 3. They are
increased from their left-hand side type definition occurrence in definition Item 10 on the
facing page.

Then we explain their deployment.
Initially we let the ‘base’ type by suffixed 0. In subsequent type definitions we let the

relevant left-hand side type identifiers be suffixed by i. The specific value of i may be 0, or
−1, or −2, etc. Occurrences of suffixed type name on the right-hand side of a type description
“inherits” the right-hand side suffix. Embedded book-keeping directories are thus ascribed
decreasing suffixes.

Then we explain their purpose.
Lean back and reflect ! Formalization here means several things. One of these is that we

abstract from physical representation of the defined type values. In the case of this example
we can think of two representations. There is the abstract representation, as mathematical
quantities. And there is the concrete representation of double-entry accounts: either as
maintained in computer storage, or as displayed on a computer screen, or as printed on a
sheet of paper. The computer storage representation we shall not consider here. The computer
display representation has, amongst others, the following characteristics: it is represented,
line-wise, from the top of a possibly scrolled screen, to the bottom – as far down as is necessary,
with each screen-line extending from a fixed left-most position to anywhere – as far to the
right on a left-to-right “scrolled” screen as is necessary, ! The printed paper representation
has, amongst others, the following characteristics: It is constrained by page size. Limited page
width and height (actually depth). So unless one uses “fold-out” and “fold-down” sheets of
paper for the physical paper representation of accounts, one is constrained. We shall in the
following “assume” the presence of such “fold” characteristics.

Now we can tackle the issue of the indices.
The issue, really, is this: We wish to indicate, by the suffixes, the amount of line space,

right-to-left that the audit trail: ‘audit informationi’, ‘audit record tripleti’, ‘sumi’, and
‘sumi+1’ texts might conveniently be displayed on a computer screen or on (possibly”folded”)

6 September 2, 2023 Dines Bjørner

paper – right-to-left indented – with index 0 entries furthest to the right, and with index i−1
entries to the left of i entries. We leave it to the reader to interpret Fig. 1 with respect to
the above explication !

enj

dn1

enk

en1

en2

ena

enb

enc

dna

enx

enz

enp

enq

enr

sum_1

...

...

...

...
+

+

+

+

+

+

+

+

+

Figure 1: A Fragment Double-entry Bookkeeping Account

2.4 Account Identifiers

17. An account identifier is an account entry and directory name list, i.e., a sequence of one
or more account names, either of income/outcome or asset/liability class names

18. – such that the last name in the list is an entry name, the others being directory names.

type
17. AI = IOCNm∗ | ALCNm∗

17. IOCNm = IOENm | IODNm, ALCNm = ALENm | ALDNm
axiom [well-formed paths]
17. ∀ ai:IOCNm∗ • ai6=〈〉 ∧ is IOENm(ai[len ai])
17. ∧ ∀ i:Nat•i ∈ inds ai \ {len ai} ⇒ is IODNm(ai(i))
17. ∀ ai:ALCNm∗ • ai6=〈〉 ∧ is ALENm(ai[len ai])
17. ∧ ∀ i:Nat•i ∈ inds ai \ {len ai} ⇒ is ALDNm(ai(i))

September 2, 2023 7

19. From an account we can extract the set of all its account identifiers. We refer to Item 64
on page 18.

type
19. Path = IOCNm∗

value
19. end paths: IOA → P-set
19. end paths(ioa) ≡
19. case ioa of
19. [] → {〈〉},
19. [mkIOENm(id) 7→e] ∪ ioa′ → {〈mkIOENm(id)〉} ∪ end paths(ioa′),
19. [mkIODNm(id) 7→d] ∪ ioa′ → {〈mkIODNm(id)〉̂p:P•p ∈ end paths(d)} ∪ end paths(ioa′)
19. end

Similar for end paths of ALA.

2.5 Account Trails

20. An account identifier designates an audit trail.

value
20. entry: Path → IOA → Audit Trail
20. entry(p)(ioa) ≡
20. case p of
20. 〈mkIOENm(id)〉 → ioa(mkIOENm(id)),
20. 〈mkIODNm(id)〉̂p′ → entry(p′)(ioa(mkIODNm(id)))
20. end
20. pre: p ∈ end paths(ioa)

Similar for audit trails of ALA.

2.6 Account Class Types

21. An account class type7 is either ”nominal”, ”tangible real”, ”intangible real”, ”arti-
ficial personal”, ”natural personal”, or ”representative personal” –

7Accounts can be partitioned into the following types:

• Nominal: A nominal account is a general ledger containing the transactions of a business, namely
expenses, incomes, profits and losses. It contains all the transactions that occur in one fiscal year.
Furthermore, it resets to zero and starts afresh when the next fiscal year begins.

Examples of nominal accounts are Commission Received, Salary Account, Rent Account and Interest
Account.

• Real:

– Tangible: Tangible assets include land, buildings, machinery, furniture, etc.

– Intangible: Intangible assets include goodwill, patents, copyrights, etc.

• Personal: relates to people, associations and companies.

– Artificial: An artificial personal account represents bodies which are not human beings but act as
separate legal entities according to the law. For example, government bodies, hospitals, banks,
companies, cooperatives, partnerships, etc.

8 September 2, 2023 Dines Bjørner

22. corresponding to appropriate predicates.

type
21. AType = ′′nominal′′

21. | ′′tangible_real′′ | ′′intangible_real′′
21. | ′′artificial_personal′′ | ′′natural_personal′′ | ′′representative_personal′′
value
22. account type: AI → AType
22. is nominal: AI → Bool
22. is tangible real: AI → Bool
22. is intangible real: AI → Bool
22. is artificial personal: AI → Bool
22. is natural personal: AI → Bool
22. is representative personal: AI → Bool

2.7 Double-entry Bookkeeping Type Constraints, I

23. For audit trails, the time stamped income/outcome and asset/liability entries are chrono-
logically ordered – earlier times precede later times.

axiom [Chronologically ordered Audits]
23. ∀ tar:TAR•∀ i:Nat•{i,i+1}⊆inds tra⇒let ((t, ,),(t′, ,))=(tar(i),tar(i+1)) in t<t′ end

2.8 Income/Outcome and Asset/Liability Class Name Relations

The basic idea of double-entry bookkeeping is that the two kinds of accounts somehow “bal-
ance” one-another – according to the equation:

• if revenue (income) = expenses (outcome) then assets = liabilities + equity.

This implies that the two accounts, IOA (income/outcome) and ALA (assets/liabilities) have
their entry names “somehow” relate. We shall here simplify that “somehow” relation into
two user-defined maps:

24. To each income/outcome account identifier there corresponds, for that double-entry
book keeping account, one or more asset/liability account identifiers; and

25. To each assets/liabilities account identifier there corresponds, for that double-entry book
keeping account, one or more income/outcome account identifiers.

– Natural: A natural personal account represents human beingsfor example, a Capital account, a
Drawings account, Creditors, Debtors, etc.

– Representative: This type of personal account represents the accounts of natural or artificial entities.
However, the transactions in this type of account either belong to the previous or the coming year.
For example, a representative personal account can contain information on an employees due salary
from last year. Also, it can represent the amount of rent a company paid in advance for the coming
year.

September 2, 2023 9

We leave unspecified, ..., how that association comes about !

26. Let ioal map be the asscociation for a givn double-entry account.

27. The income/outcome to asset/liability associations must cover all incomes/outcomes
and assets/liabilities, and vice versa.

type
24. Assoc IOAL Map: IONm∗ −m> (ALNm∗)-set
25. Assoc ALIO Map: ALNm∗ −m> (IONm∗)-set
value
26. ioal map:Assoc IOAL Map = ... ; alio map:Assoc ALIO Map = ... ;
axiom [Income/Outcome–Asset/Liability Association]
27. dom ioal map = end parths(ioa) ∧ ∪ rng ioalmap = end paths(ala) •

One can have other relations, but this one suffice for the illustration of the concept of double
-entry bookkeeping.

With this relation in hand we can always know which, thus “mutual”, accounts to update
– but the amounts with which respective accounts are updated is left to the accountant !

Example 1 Mutual Account Updates: Let ai stand for the income/outcome account of pay-
ment for furniture, then the corresponding asset/liability account could be that of furniture.

Similar for the income/outcome account of depreciation/appreciation of furniture – the
same asset/liability furniture account maps into (at least) the two income/outcome accounts:
payment for furniture and payment for furniture

more to come

2.9 Account Structures

28. By an account structure we mean “almost the same” as an account ! Where an in-
come/outcome or an assets/liabilities account – during the accounting year – reflects
time-stamped entries an account structure does not contain the time-stamped entries.

type
28. DEBAS = IOAS × ALAS
28. IOAS = (IOENm →m IOAI) d (IODNm →m IOAS)
28. ALAS = (ALENm →m ALAI) d (ALDNm →m ALAS)

29. From an income/outcome account we can observe an income/outcome account structure,
and the same for asset/liability accounts.

value
29. observe: (IOA → IOAS) | (ALA → ALAS)
29. observe(a) as as; post: end paths(a) = end paths(as)

10 September 2, 2023 Dines Bjørner

2.10 Establish Initial Accounts

Initial accounts are accounts that have not been completed wrt. real8 assets.

30. From an income/outcome account structure we can establish an initial income/outcome
account , and the same for assets/liability accounts.

value
29. establish: (IOAS → IOA) | (ALAS → ALA)
29. establish(as) as a
29. post: end paths(as) = end paths(a)
30. ∧ ∀ nm:(IOCNm|ALCNm)•nm ∈ end paths(a) ⇒ entry(nm)(a) ∈ {[],〈〉}

Real assets need be initialized. That can be done by commands mentioned below.

2.11 Double-Entry Account Command Types

New accounts, i.e., accounts deba:DEBA where no such exists for that enterprise, can be
established through these commands:

31. new DEBA: This command assumes that those responsible for the double-entry book-
keeping accounts have decided upon

(a) an account structure, debas = (ioas,alas),

(b) on an association relation, assoc id,

(c) on the amounts with with which real assets are to be initialized, and

(d) an accounting year.

value
31a. debas:DEBAS = ...
31b. Assoc Maps:(Assoc IOAL Map × Assoc ALIO Map) = ...
31c. Real Assets:(AI →m Amount) = ...
31d. year:Year = ...
31. new DEBA: DEBAS×Assoc Maps×Real Assets×Year → DEBA
31. new DEBA(debas,assoc maps,real assets,year) as deba
31. pre: P(debas,assoc maps,real assets,year)
31. post: Q(debas,assoc maps,real assets,year)(deba)

We leave it to the reader to fill in the pre/post, i.e., the P,Q, conditions !

2.11.1 Operating Commands

We shall illustrate hust one double-entry bookkeeping “command”: that of entering a com-
bined income/outcome – assets/libailities entry. We shall simplify that command. We shall
simply “balance” the earnings/expenditue entry with a single assets/libailities entry.

32. enter: To post, mkEnter(...), a transaction the following information is required:

8Cf. footnote 7 on page 7

September 2, 2023 11

• an account identifier, ai,

• the time, τ ,

• a reference, ref, to some transaction evidence, i.e., a document,

• and an amount, amount.

The time will be “generated” when acting upon the posting.

33. To enter a transaction, mkEnter(ai,ref,amount) into a double-entry bookkeeping account,
deba=(ioa,ala,year),

34. at a recorded time, record TIME(),

35. and selecting, non-determinstically (de) one assets/liabilities path, ap,

36. results in a new double-entry bookkeeping account, deba=(ioa’,ala’,year’),

37. – provided the access identifier (path, ai) is of the accounts – and where the

38. end paths are the same,

39. years are the same,

40. income/outcome entries, except for the argument access identifier, are the same,

41. assets/liabilities entries are all the same, except for the argument access identifier, where

42. old and the new access path entries have

43. the same account information, ainfo, but the audit trail has been extended with the
appropriate triplet, and where

44. all the intermediate sums have been adjusted – as have the full account sums !

type
32. Enter :: P × Ref × Amount
value

32. enter: Enter → DEBA
∼→ DEBA

33. enter(mkEnter(ip,ref,amount))(((ioas,isum),(alas,asum),year)) ≡
34. let τ = record TIME()
35. ap = de ioal map(ip) in
36. ((ioas′,isum′),(alas′,asum′),year′) end
37. pre: ip ∈ end paths(ioas) ∧ ap ∈ end paths(alas)
38. post: end paths(ioas)=end paths(ioas′) ∧ end paths(alas)=end paths(alas′)
39. ∧ year=year′

40. ∧ ∀ p:(IOCNm∗)-set•p ∈ end paths(ioas)\{ip} • entry(p)(ioas)=entry(p)(ioas′)
41. ∧ ∀ p:(ALCNm∗)-set•p ∈ end paths(alas)\{ap} • entry(p)(alas)=entry(p)(alas′)
42. ∧ let (info,tar,isum,isum′)=entry(ip)(ioas),(info′,tar′,isum′′,isum′′′)=entry(ip)(ioas′) in
43. info=info′ ∧ tar′=tar̂〈(τ ,ref,amount,sum+amount)〉 end
42. ∧ let (linfo,tar,sum,sum′)=entry(ap)(ala),(info′,tar′,sum′′,sum′′′)=entry(ap)(ala′) in
43. info=info′ ∧ tar′=tar̂〈(τ ,ref,amount,sum+amount)〉 end
44. ∧ adjusted summations((ioas,isum),(alas,asum),(ioas,isum),(alas,asum))

12 September 2, 2023 Dines Bjørner

Ler us recall where intermediate amounts, sums and summations appear in the double-entry
bookkeeping accounts (ιitem,πage: [ι4π3], [ι8π3], [ι5π3], [ι8π3], [ι10π4], [ι13π4]):

4. IOAi = (I IOAsi d E IOAsi) × Sumi+1

8. ALAi = (I ALAsi d E ALAsi) × Sumi+1

5. I IOAsi = IOENmi →m Audit Traili
8. I ALAsi = ALENmi →m Audit Traili
10. Audit Traili = ATIi×TARi

∗×Sumi

13. TARi = TIMEi × Refi × Amounti

45. The sumi (intermediate sums) appearing (Item 10) in an Audit trail’s third (i.e., last)
element is to be the summation of all the amounts of that audit’s trail elements.

46. The sumsi+1 appearing (Items 4, 8) as the last elements in IOAi and ALAi is to be the
summation of all the intermediate sums.

value
45.
45.
45.
45.
45.
46.
46.
46.
46.
46.

2.11.2 A Double-entry Accounting Behaviour

The above domain description focuses on just the double-entry bookkeeping accounts and
a few operations on such accounts. Now we “widen” our domain scope. The double-entry
bookkeeping accounts are but one element, one beaviour, in any enterprise’s bookkeeping.
Other elements are the bookkeeper (accountants), the (human) staff, whose kookkeeping
(accounting) behaviours perform the accounts. That is: a “wider” context places the above
domain description as one behaviour, the double-entry account behaviour, and the set of one
or more bookkeepers as a concurrently interacting set of other behaviours. We refer to the
context of the bookkeeper behaviours as the mereology of the double-entry account behaviour.

47. That mereology can be abstracted as the set, bis:BI-set, of unique identifiers, bi:BI, of
bookkeeper behaviours:

type
47. DEBA Mer = BI-set, BI

whee BI is the type of the unique identifiers of bookkeepes.

September 2, 2023 13

48. We define a double-entry account behaviour. It is based on that behaviour having, as
arguments, the

• unique identifier (i:DEABI),

• mereology (bis:BI-set) of

• static attribute (year:Year), and the

• programmable attribute (income/outcome and asssets/liabilities ioa:IOA,ala:ALA).

49. Besides other ... tasks the double-entry accounting behaviour non-deterministically ex-
ternally, debc,

50. offers to accept mkEnter(...) requests from accountant behaviours identifified by their
unique identifier j.

51. Having accepted such a request the double-entry accounting behaviour honors that
request, resutinng in an “update” ioa’:IOA,ala’:ALA (ignoring the year), and

52. resumes being a double-entry accounting behaviour –

53. offering, perhaps, ..., to accept other double-entry accounting requests.

type
48. DEABI
value
48. double entry account: DBEAI → Year → DEBA Mer → (IOA×ALA) → ... Unit
48. double entry account(dbeai)(y)(bis)(ioa,ala) ≡
49. ...
50. debc let mkEnter(ip,ref,amount) = { ch[{dbeai,bi}] ? | bi:BI • bi ∈ bis } in
51. let (ioa′,ala′,) = enter(mkEnter(ip,ref,amount))(ioa,ala,y) in
52. double entry account(dbeai)(y)(bis)(ioa′,ala′) end end
53. ...

2.11.3 Reusing Existing Accounts

Resetting accounts, i.e., initial accounts deba:DEBA where such exists for that enterprise, can
be established through these commands:

54. :

55. :

56. :

57. :

58. :

14 September 2, 2023 Dines Bjørner

type
54.
55.
56.
57.
58.

3 Discussion

3.1 A Dichotomy

There is, however, a dichotomy .9 The two contrasting things are:

• the enterprise and

• its double-entry bookkeeping accounts.

We have made no reference, at all (!), to the enterprise in the previous section. Yet, we know
that we can (likewise, as we have now done it for “its” double-entry bookkeeping accounting)
refer to — i.e., make a domain model for — the domain of the enterprise. We refer to [8].
That reference records domain models for

• Nuclear Power Plants,

• Shipping ,

• Rivers and Canals,

• A Retailer Market,

• Container Terminals,

• Documents,

• Urban Planning ,

• Swarms of Drones,

• Credit Cards,

• Weather Information,

• Web-based Transaction Pro-
cessing ,

• The Tokyo Stock Exchange,

• Pipelines,

• Container Lines,

• The Market,

• Railways,

• etcetera !

3.2 Unified Enterprise Domain Models

Here is how to do it “better” ! – i.e., in a “coordinated” manner: While modeling the domain
of relevant enterprises — i.e., such for which double-entry bookkeeping is relevant — model,
at the same time, “its” double-entry bookkeeping accounts],! That is, when an action in the
enterprise warrants a double-entry posting, then the combined, i.e., unified model, models
that posting.

4 Conclusion

to be written

5 Bibliography

5.1 Bibliographical Notes

to come
9Dichotomy: A division or contrast between two things that are or are represented as being opposed or

entirely different.

September 2, 2023 15

5.2 References

[1] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification
of Systems and Languages; Vol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

[2] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development.
EATCS Monographs in Theoretical Computer Science. Springer, 2021. A revised version of
this book is [6].

[3] Dines Bjørner. Domain Modelling. Technical report, Technical University of Denmark,
Fredsvej 11, DK-2840 Holte, Denmark, December 2022. Chapter 3 of [?].

[4] Dines Bjørner. Domain Modelling. In Jonathan Bowen et al., editor, Theories of Programming
and Formal Methods: Essays Dedicated to Jifeng He on the Occasion of His 80th Birthday,
Lecture Notes in Computer Science, Festschrift. Spriger, August 2023.

[5] Dines Bjørner. Domain Modelling – A Primer. A short version of [6]. xii+202 pages10, May
2023.

[6] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development.
Revised edition of [2]. xii+346 pages11, January 2023.

[7] Dines Bjørner. Domain Science: Modelling. To be submitted, August 2023. Institute of
Mathematics and Computer Science. Technical University of Denmark.

[8] Dines Bjørner. Domain Case Studies:

• 2023: Nuclear Power Plants, A Domain Sketch, 21 July, 2023 www.imm.dtu.-

dk/~dibj/2023/nupopl/nupopl.pdf

• 2021: Shipping , April 2021. www.imm.dtu.dk/~dibj/2021/ral/ral.pdf

• 2021: Rivers and Canals – Endurants – A Technical Note, March 2021. www.imm.-
dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf

• 2021: A Retailer Market, January 2021. www.imm.dtu.dk/~dibj/2021/Retailer/-
BjornerHeraklit27January2021.pdf

• 2019: Container Terminals, ECNU, Shanghai, China www.imm.dtu.dk/~dibj/2018/-

yangshan/maersk-pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China www.imm.dtu.dk/~dibj/2017/-

docs/docs.pdf

• 2017: Urban Planning , TongJi Univ., Shanghai, China www.imm.dtu.dk/~dibj/-

2018/BjornerUrbanPlanning24Jan2018.pdf

• 2017: Swarms of Drones, Inst. of Softw., Chinese Acad. of Sci., Peking, China
www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf

10This book is currently being trasnlated into Chinese by Dr. Yang ShaoFa, IoSCAS, Beijing and into Russian
by Dr. Mikhail Chupilko, ISP/RAS, Moscow

11Due to copyright reasons no URL is given to this document’s possible Internet location. A primer version,
omitting certain chapters, is [5]

16 September 2, 2023 Dines Bjørner

• 2013: Road Transport, Techn. Univ. of Denmark www.imm.dtu.-

dk/~dibj/road-p.pdf

• 2012: Credit Cards, Uppsala, Sweden www.imm.dtu.dk/~dibj/2016/credit/accs.-

pdf

• 2012: Weather Information, Bergen, Norway www.imm.dtu.dk/~dibj/2016/wis/-

wis-p.pdf

• 2010: Web-based Transaction Processing , Techn. Univ. of Vienna, Austria www.imm.-

dtu.dk/~dibj/wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan www.imm.dtu.dk/~db/to-

dai/tse-1.pdf, www.imm.dtu.dk/~db/todai/tse-2.pdf

• 2009: Pipelines, Techn. Univ. of Graz, Austria www.imm.dtu.dk/~dibj/pipe-p.pdf

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark www.imm.dtu.-

dk/~dibj/container-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark www.imm.dtu.dk/~dibj/themarket.-

pdf

• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium www.imm.dtu.-

dk/~dibj/train-book.pdf

Experimental research reports carried out to “discover”, try-out and refine method princi-
ples, techniques and tools, Technical University of Denmark, Fredsvej 11, DK-2840 Holte,
Denmark.

[9] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Lan-
guage. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[10] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn,
and Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1995.

September 2, 2023 17

A A Simple File System

As a preamble (!) for studying the main example of this report, i.e., the double-entry book-
keeping example, we “first” bring You this “teaser”. It models the file system used on LINUX
(Ubuntu) systems !

59. A file directory is a directory.

60. With respect to directories there are the (abstract) notions of files, f:F, (abstract) file
and directory identifiers, fi:FI, di:DI, and directories, d:D12.

61. In a (classical) file directory directories map these identifiers into respectively files or
directories.

62.

type
59. FD = D
60. F, I, FI, DI
60. FI :: I, DI :: I
61. D = (FI →m F) d (DI →m D)

An example:

value
fd:FD = [f0 7→ file0,

f1 7→ file1,
...
fn 7→ filen,
d1 7→ [f11 7→ file11,

f12 7→ file12,
...,
f1n 7→ file1n,
d11 7→ [f111 7→ file111,

f112 7→ file112,
...,
f11n 7→ file11m,
d111 7→ dir111,
d112 7→ dir112,
...,
d11n 7→ dir11n]

d12 7→ dir12,
d13 7→ dir13,
...,
d1o 7→ dir1o
],

12In writing ‘abstract’ we mean to say that we do not here bother about what a file nor what an identifier
is.

18 September 2, 2023 Dines Bjørner

d2 7→ dir1,
d3 7→ dir3,
...,
dp 7→ dirp

]

63. A file or directory path name is a sequence of zero, one or more, i.e., n, identifiers of
which the firs n − 1 are directory identifiers and the last is either a directory or a file
identifier.

The sequences

〈d1,d11,f111〉 and 〈d1,d11,d112〉

are path names of the directory example above and identify file file111, respectively directory
dir112.

type
63. DPN = (DI|FI)∗

axiom
63. ∀ dpn:DPN • len dpn > 0 ⇒ ∀ i:Nat • i ∈ inds dpn ∧ i<len dpn ⇒ is DI(dp(i))

64. The function end paths generates all the paths (to empty sub-directories and files) of a
directory.

65. If the directory is empty the singleton set of one empty path is yielded.

66. If the directory immediately contains a file, then the singleton path of that file’s identifier
is yielded together with the paths of the remaining directory entries.

67. If the directory immediately contains a sub-directory then the singleton path of that di-
rectory’s identifier concatenated to all the paths of the sub-directory is yielded together
with the paths of remaining directory.

value
64. end paths: D → DPN-set
64. end paths(d) ≡
64. case d of
65. [] → {〈〉},
66. [mkFI(i) 7→f] ∪ d′ → { 〈mkFI(i)〉 } ∪ end paths(d′),
67. [mkDI(i) 7→d] ∪ d′ → { 〈mkDI(i)〉̂p | p:P • p ∈ end paths(d) } ∪ end paths(d′)
64. end

68. The function paths generates all the paths (to all sub-directories and files) of a directory.

We express that by applying the function end paths and “taking” all prefixes of the
yielded paths.

September 2, 2023 19

value
68. paths: D → DPN-set
68. paths(d) ≡ { prefix(p)(i) | p>:P • p ∈ end paths(d) ∧ i:Nat • i ∈ inds(p) }

68. prefix: P × Nat → P-set
68. prefix(p,n) ≡ { 〈 p(i) | i:Nat • 1 ≤ i < j 〉 | j:Nat • 1≤j≤n } pre: n ≤ len p

69. Given an end path of a directory and that directory, read entry yields the designated
entry, whether a file or an empty directory.

70. If the path

71. is a singleton path of just a file or an empty directory identifier then that file, respectively
empty sub-directory is yielded,

72. else the path has a directory identifier head and and tail path and the desired entry is
yielded from sub-directory of the head identifier with the tail path.

73. The “empty directory” requirement is expressed in the pre condition that the argument
path must be an end path.

69. read entry: P → D → (D|F)
69. read entry(p)(d) ≡
70. case p of
71. 〈i〉 → d(i),
72. 〈mkDI(i)〉̂p′ → read entry(p′)(d(mkDI(i)))
69. end
73. pre: p ∈ end paths(d)

Let d denote a directory, p a path in d, di a directory identifier, and fi and fi’ file identifiers.
File directories, d, are subject to the following additional operations:

74. create file dir sys(),
75. insert dir(p,di)(d),
79. insert file(p,(fi,file))(d),

82. copy file(p,fi)(p′,fi′)(d),
87. update file(p)(file), and
91. delete entry(p)(d)

Observe that the operations deal only with “smallest” file system entities: empty directories
and files.

74. Creating a file directory system yields an empty directory, [].

value
74. create file dir sys: Unit → D
74. create file dir sys() ≡ []

75. Inserting an empty directory, named di, in a file directory system d, at position (i.e.,
path) p,

20 September 2, 2023 Dines Bjørner

76. yields a new file directory system d’,

77. all of whose paths, except for the new path: p’=p̂〈di〉, are those of d with path p’
being a new path designating [] !

78. This latter is expressed by the predicate +++.

value
75. insert dir: Path × DI → D → D
76. insert dir(p,di)(d) as d′

75. pre: p̂〈di〉 6∈ end paths(d)
77. post: unchanged(p,di,d) ∧ changed(p,di,d)

77. unchanged: P × DI × D → Bool
77. unchanged(p,di,d) ≡
77. ∀ p:P • p ∈ end paths(d) ⇒ read entry(p)(d) = read entry(p)(d′)
77. changed: P × DI × D → Bool
77. changed(p,di,d) ≡
77. paths(d′) = paths(d) ∪ {p̂〈di〉} ∧ read entry(p̂〈di〉)(d′)=[]

79. Inserting a file, f, named fi, in a file directory system d, at position (i.e., path) p,

80. yields a new file directory system d’,

81. which is unchanged wrt. paths of directory d, but changed (only) wrt. the new path p
concatenated with 〈fi〉

value
79. insert file: P × (FI×F) → D → D
79. insert file(p,(fi,file))(d) as d′

80. pre: p̂〈fi〉 6∈ end paths(d)
81. post: unchanged(p,fi,d) ∧ changed(p,di,d)

81. unchanged: P × FI × D × D → Bool
81. unchanged(p,fi,d,d′) ≡
81. ∀ p′:P • p′ ∈ end paths(d) • read entry(p′)(d) = read entry(p′)(d′)
81. changed: P × (FI × F) × D × D → Bool
81. changed(p,(fi,f),d,d′) ≡
81. paths(d′) = paths(d) ∪ {p̂〈fi〉} ∧ read entry(p̂〈fi〉)(d′)=f

Note that the unchanged and changed predicates are so-called “overloaded”, i.e., same name
but two distinct function types.

82. Copying a file from one “end location” in a file directory, d, to another such yields a
changed file directory, d’,

83. provided the argument “from” file is an end path of d, the directory path of the new
“location” is also an end path of d, and the suggested end path to the copied file is not
an end path of d,

September 2, 2023 21

84. where all end paths of d and d’ identify the same files, respectively empty directories,
and

85. the paths of p’ are exactly those of p augmented by just the new end path to fi’, and

86. where the files to be copied and copied are the same.

value
82. copy file: (P×FI)×(P×FI) → D → D
82. copy file((p,fi),(p′,fi′))(d) as d′

83. pre: p̂〈fi〉 ∈ end paths(d) ∧ p′ ∈ end paths(d) ∧ p′̂〈fi〉 6∈ end paths(d)
84. post: unchanged(p,fi,d,d′) ∧
85. changed(p,(fi′,read entry(p̂〈fi′〉)(d))d,d′) ∧
86. read entry(p̂〈fi〉)(d) = read entry(p̂〈fi〉)(d′) = read entry(p′̂〈fi′〉)(d′)

87. Updating a file is to replace an identified file with a given, i.e., an argument file, thus
resulting in a new file directory,

88. provided that the argument path is an end path of d and designates a file, and

89. where all the paths of the argument and the result file directory are the same, but

90. the file at designation p is now the argument, i.e., new file.

value
87. update file: P × F → D → D
87. update file(p,f)(d) as d′

88. pre: p ∈ end paths(d) ∧ is FI(p(len p))
89. post: paths(d) = paths(d′)
90. ∧ read entry(p)(d′) = f

91. Deleting an entry, a file or an empty directory from a file directory, results in a new file
directory,

92. provided the argument end path is in the argument file directory,

93. but not in the result file directory.

value
91. delete entry: P → D → D
91. delete entry(p)(d) as d′

92. pre: p ∈ end paths(d)
93. post: end paths(d′) = end paths(d) \ {p}

• • •

We kindly ask the reader to consider the following:

22 September 2, 2023 Dines Bjørner

• What we have modeled here can be seen as a language ! Yes, a “programming language”
with which file directories can be established and manipulated. For this “systems pro-
gramming language” fragment we have defined the syntax of “data types” and com-
mands, and the defined the semantics of the “system commands” whose interpretation
effects changes.

• Yes, the reader is kindly asked to observe how a “whole little theory”, i.e., an algebra, of
file directories have been carefully “unfolded:”: That algebra consists of the values whose
types are defined in Items 59– 63 on page 18, and the operations defined in Items 64 on
page 18 through 93 on the preceding page.

• Finally, to reemphasize from the above, please observe two “technical issues:

– That the development of this algebra has been in small steps.

– And that the file directory operations have been defined in terms of their pre/post
conditions, i.e., properties.

September 2, 2023 23

B Index

There are 59 indexed terms.

Axioms
Chronologically ordered Audits ι 23, 8
Income/Outcome–Asset/Liability Asso-

ciation ι 27, 8
Sums add up ι 16, 4
well-formed paths ι 17, 6

Behaviours
double entry accounting ι 47, 12

Functions
account type ι 22, 8
adjusted summations ι 45, 12
end paths ι 19, 6
enter ι 32, 11
entry ι 20, 7
establish ι 29, 9
is artificial personal ι 22, 8
is intangible real ι 22, 8
is natural personal ι 22, 8
is nominal ι 22, 8
is representative personal ι 22, 8
is tangible real ι 22, 8
new DEBA ι 31, 10
observe ι 29, 9
summation ι 16, 4

Types
Semantics Types

ALA ι 8, 3
ALAS ι 28, 9
ALDNm ι 9, 4
ALENm ι 9, 4
Assoc ALIO Map ι 25, 8
Assoc IOAL Map ι 24, 8
ATI ι 11, 4
AType ι 21, 7

DEBA ι 1, 2

DEBAS ι 28, 9

E ALA ι 8, 3

E IOAs ι 6, 3

I ALA ι 8, 3

I IOAs ι 5, 3

IOA ι 4, 3

IOAS ι 28, 9

IODNm ι 7, 3

IOENm ι 7, 3

TAR ι 13, 4

Year ι 2, 2

Syntax Types
AI ι 17, 5

ALCNm ι 17, 6

Amount ι 15, 4

Audit Trail ι 10, 4

Enter ι 32, 11

IOCNm ι 17, 6

Path ι 19, 6

Ref ι 14, 4

Sum ι 12, 4

Values
ala ι 3, 2

alio map ι 26, 8

Assoc Maps ι 31b, 10

deba ι 3, 2

debas ι 31a, 10

ioa ι 3, 2

ioal map ι 26, 8

Real Assets ι 31c, 10

year ι 31d, 10

year ι 3, 2

