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Preface
This book introduces the reader to the field of Informatics: Informatics is, to this author,
confluence of mathematics, of the computer & computing sciences, of the domain
science & engineering [as espoused in this book], and, to some extent also requirements
engineering and software design.1

This book also introduces the reader to MOLA: an abstract, yet computable, MOdeling
LAnguage2 The reader will learn to read and understand MOLA programs and models, that
is, how to understand essential features of computer programs and domain models –
the latter such as, for example, banking, road transport, railways, retailing, and even such
phenomena as canals !

We make a distinction between programs and models. Programs are intended for in-
terpretation by, i.e., “execution” on, computers.3 Models are [abstract program-like] spec-
ifications intended primarily, in this book, for reading, understanding and possibly also
experimentation, by humans !

This book is intended to as a first introduction to domain models & computing for
laymen, i.e., for people with at least 8 years of schooling and otherwise curious of the world
around them, and, more specifically, for teachers and students at primary-to-middle school

1We emphasize that this is our delineation of the term ‘informatics’. There are others: Edinburgh Uni-
versity defines informatics as follows: Informatics studies the representation, processing, and communication
of information in natural and engineered systems. It has computational, cognitive and social aspects. The
central notion is the transformation of information - whether by computation or communication, whether by
organisms or artifacts. [https://www.ed.ac.uk/files/atoms/files/what20is20informatics.pdf]
[Wikipedia] informs us: Informatics is the study of computational systems.[1][2] According to the ACM

Europe Council and Informatics Europe, informatics is synonymous with computer science and computing
as a profession,[3] in which the central notion is transformation of information.[1][4] In other countries,
the term ”informatics” is used with a different meaning in the context of library science, in which case it
is synonymous with data storage and retrieval.[5] [https://en.m.wikipedia.org/wiki/Informatics]
[1] “What is Informatics ?” University of Edinburgh.
[2] “INFORMATICS” — Bedeutung im Cambridge Englisch Wörterbuch”; dictionary.cambridge.org (in

German).
[3] “Are We All In The Same Boat ?” ACM & Informatics Europe.
[4] “What is Informatics ?” - Definition from Techopedia. Techopedia.com. October 2014.
[5] Wellisch, Hans (1972-07-01). “From Information Science to Informatics: a terminological investiga-

tion”. Journal of Librarianship.
2MOLA is a pared-down version of RSL: the RAISE Specification Language [47], where RAISE is the

Rigorous Approach to Software Engineering method [48]. MOLA omits, among other things, RSL’s “object-
oriented” specification structuring constructs: Scheme, Class, Object.

3MOLA is, however, not a computer programming language. We do not provide an computer interpreter
[1] or compiler [2] for MOLA. Some readers may themselves develop and provide such, hopefully public
domain, software, i.e., “for free”, that enable computer assisted calculations in MOLA.
[1] In computer science, an interpreter is a computer program that directly executes instructions written

in a programming or scripting language, without requiring them previously to have been compiled into a
machine language program [Wikipedia].
[2] A compiler is a special program that translates a programming language’s source code into machine

code, byte-code or another programming language [Wikipedia].
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levels interested in teaching basic matters related to computing.
For these latter, one may expect these college teachers and their candidates to write spe-

cific, primary, respectively middle school textbooks on computing. Those school textbooks
are then intended to teach the basics of computing seen from the view of mathematical
abstractions.

An Essence
This book emphasizes that the readers learn how to read and understand basic properties
of the everyday world that surrounds them – not the [equally exciting] world of [intricate,
clever, complex] algorithms performed by computers in calculating properties of that
world. Also we shall, presently, not cover such quintessential aspects of computing as the
correctness of software nor the complexity of algorithms.

The study of this book is to be done without computers ! Yes, indeed ! It is the concepts
that underlie models and computing, not the information technology (IT) implements, the
hardware, [computers, say in the form of laptops, data communication, as illustrated by
The Internet, storage, etc.] that are at the center of our concern.

• • •

This author has, for many years, been quite unhappy of the ways in which we teach
computing in schools.

As we grow up we learn to speak. The ability to understand human speech and to speak
is not inherited. We painstakingly learn it.

As we grow up we learn to read and write. The ability understand human written text
and to write is not inherited. Humans “invented” languages and expressing language text in
spoken word. We painstakingly learn it.

In school we learn, first reckoning 4, then mathematics5. We learn to read and under-
stand mathematics before we learn to ‘mimic’ mathematics in the sense of learning to solve
basically trivial problems. They are trivial in the sense that the problem poser knows the
solution beforehand. We learn about mathematical theories and their application in solving
problems. We do not learn to “create” new mathematics, new theories. At universities we
learn how mathematicians “invented”, came across, studied and thus created new mathe-
matics.

Likewise for physics. In school we did not learn to “make new” physics. We learn about
theories of physics: mechanics, electricity, etc. and their application in solving problems. [We
did learn, however, how physicists came about and created new physics !6]

4Reckoning: calculating “with” actual numbers, first the whole, positive, “natural” ones, then also
the negative ones, the integers, moving on, slowly, to rationals and reals [the rationals + the irrationals],
imaginary , transcendental , etc.

5Mathematics, here in the sense of “lifting” from concrete numbers to symbolic, i.e., named numbers:
x, y, .... Then “lifting” to logic, sets, etc., etc.

6Galileo’s [1564–1642] observing the “similar” falls of light and heavy masses. Newton’s [1643–1727]
apple dropping on his head, Etc.
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When first introducing computers and their programs in schools, schools, in most in-
stances, introduced programming, not to first understand theories of programs.

This book turns all this “up-side–down” ! First on reading and understanding programs
for computers; then on reading and understanding models of primarily man-made domains;

For actual programmers a main concern is that of efficiency of computer programs:
faster, using less storage, etc. That is a “material concern”. For us, to read and understand
programs and models a main concern is ease of understanding, elegance, “beauty” ! [43,
Edsger W. Dijkstra]. That is an “intellectual concern !”

Holte August 19, 2023: 11:09 am
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Motivation: Education
In this chapter we “entertain” the reader with a palette of widely different topics ! It is
meant as a gentle, hopefully not too distracting survey of a rather wide set of concepts –
all deemed necessary for the full enjoyment of this oeuvre ! 1

Section0.7.3 (pages 8–10) should be studied before remaining chapters are read !

Study Hint: This chapter can be studied at Your leisure. It calls for so-called
“arm-chair” reading, with a cup of good, warm, West Lake2 Long Jing (Dragon
Well) green tea and biscuits !

0.1 Domains

Christians take comfort in:

In the beginning was the Word, and the Word was with God, and the Word was God.

The same was in the beginning with God.

All things were made by him; and without him was not any thing made that was made.

In him was life; and the life was the light of men.

And the light shineth in darkness; and the darkness comprehended it not.

There was a man sent from God, whose name was John.

The same came for a witness, to bear witness of the Light, that all men through him

might believe.

1We ‘label’ this box Education – in the sense of the German word Bildung , and the Danish word
Dannelse, that is, in th sense of achieving insight, becoming wiser, rather than becoming more proficient
in certain skills !

2‘West Lake’ (‘Xi Lake’) is in the city of HangZhou, ZheJiang Province, China
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He was not that Light, but was sent to bear witness of that Light.

That was the true Light, which lighteth every man that cometh into the world.

He was in the world, and the world was made by him, and the world knew him not.

[King James I Bible, From the Gospel of John, 1:1–10. 16113]

We shall, perhaps profanely, interpret this bringing together two such diverse concepts as
“The Word” and the world & universe around us: “All things were made by Him”, to justify
this book’s emphasis on domains and a formal domain description language.

Therefore Chapter1’s introduction to the concept of domains [All things ... made].
And therefore most remaining chapters’ introduction to a formal domain model description
language [The Word ].

Definition 1 Domain: By a domain we shall understand a rationally describable segment
of a discrete dynamics fragment of a human assisted reality, i.e., of the world that we daily
observe. It includes its endurants, i.e., solid and fluid entities of parts and living species,
and perdurants

Endurants are either natural [“God-given”] or artefactual [“man-made”]. and may be
considered atomic or compound parts, or, as in this book, further unanalysed living species:
plants and animals – including humans.

Perdurants are here considered to be actions, events and behaviours.

Chapter1, therefore, is the first, major chapter of this book.

0.2 The Concepts and Practice of Programs and Models

Caveat:
We shall use the term ‘model’ in a specific sense: Foremost it is used in the sense

of domain models. That is where we start. From the “outside” ! From the man-made
artefactual world around us as it is embedded in the natural world.

And we shall use the term ‘program’ to mean: possibly computable program code,
thereby also working from the “inside-out !”

That is: We do not start with the fact of computers, but with the fact of “real world”
domains.

This book is to serve as an introductory, i.e., first text, on the concepts and practices of
domain modelling, as well as on the concepts and practices of computable programs.

It is addressed to laymen4 and primary and middle school teachers and their teachers at
teachers’ colleges – and all other people in-between !

Definition 2 Concepts of Computing: 5 By the concepts of computing we shall include
the ideas of • computation; • formal texts prescribing computations; • a syntactical text

3John took his cue from Genesis:1–5
4Layman: a person without professional or specialized knowledge in a particular subject
5Concerning enumeration of definitions: Appendix chapter, ChapterA, brings an extensive list of

concept definitions, numbered from 1 up. The present definition of Concepts of Computing therefore,
enumeration-wise, “starts” where ChapterA “ends” !
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being subject to [machine, i.e., computer] interpretation; • [a] specification; • a program;
• programming; and • abstraction

As this book will show, there are many more computing concepts.

Definition 3 Practices of Computing: By the practices of computing we shall include
those of • abstraction; • conceptualisation (of a problem, an exercise or its solution); •
narration (of a problem, an exercise or its solution); •programming; and • divide-and-
conquer

As this book will show, there are many more computing practices.
The concepts & practices of domain modelling will occupy most of this book. Basic domain
modelling concepts are introduced in Chapter1.
It is intended for both self-study and for teachers college classes in computing. From the
present book such teachers should be able to, themselves, develop proper class material for
primary and middle school students.

0.3 Teaching Tools: Speech and Writing

This book outlines a teaching of the practical fundamentals of computing which does not
make use of computers ! We suggest that teaching the practice of computing can be done
by speech and writing. Writing as in writing on a [black, white, green (glass fiber)] board
and on paper ! Speech as spoken by the teacher and the class students.

We cannot, of course, avoid, that some teachers may supplement their use of speech
and writing by the use of computers in the class room. That is, computer tools may be
developed which allow examples “being computed” ! In this day-and-age of, so-called, AI,
such tools may make use of AI.6

0.4 Didactics

Definition 4 Didactics: A didactic method (Greek: διδασκǫιν, ”to teach”) is a teaching
method that follows a consistent scientific approach or educational style to present infor-
mation to students[https://en.wikipedia.org/wiki/Didactic method].

The didactics of this book is based on the following principles:

• Programs are mathematical objects.

• Although quite deep mathematical theories can be expounded, relevant to the un-
derstanding of programs and programming, one need only a modicum of logic and
discrete mathematics to get along with the basics of programming.

6We however, find that, however, “perfect” the so-called Man-Machine-Interface, MMI, the interface
between the machine, i.e., the computer hardware, and the student – however “perfect” – it may be, that
it does, invariably, stand in the way of pedagogy !
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• A didactics is that of not introducing concepts before constituent concepts – i.e.,
concepts in terms of which the concept being introduced – are defined. Thus the
concept of sets is introduced before the concept of numbers !

• A final, major didactics is also the following: Rather than focusing on computing,
we focus on specification of possibly computable problems, more specifically that of
the specification of domains.

That is: analysing and describing domains will be more dominant than analysing
and describing [possibly intricate and beautiful] algorithms.

0.5 Problem Solving

Programming is a human process, following some procedure, for solving problems. What do
we mean by tool, solving and problem ? For process, see below, Definition 7 Sect.0.6. For
tools, see below, Definition 9 on the next page Sect.0.6. By solving we mean such things
as getting answers to questions. Variations on the theme: problem are: (i) posing a question
– whose possible answer is not immediately obvious – represents formulating a problem; (ii)
an inquiry starting from given conditions to investigate or demonstrate a fact, result, or law –
represents another facet of the concept of problem.

0.6 Method & Methodology

Definition 5 Method: By a method we shall understand a set of

• principles and procedures

for selecting and applying a set of

• techniques and tools

to a problem in order to achieve an orderly construction of a solution

Definition 6 Principles: By a principle we mean: a proposition or value that is a guide for
behavior or evaluation [Wikipedia], i.e., code of conduct

Definition 7 Procedure: By a procedure we mean: instructions or recipes, a set of com-
mands that show how to achieve some result, such as to prepare or make something [Wikipedia],
i.e., an established way of doing something

Definition 8 Technique: By a technique we mean: a technique, or skill, is the learned
ability to perform an action with determined results with good execution often within a given
amount of time, energy, or both [Wikipedia], i.e., a way of carrying out a particular task
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Definition 9 Tool: By a tool we mean: a tool is an object that can extend an individual’s
ability to modify features of the surrounding environment [Wikipedia]

Definition 10 Formal Method: By a formal method we shall understand a method

• whose principles include that of considering its artifacts as mathematical quantities,
of abstraction, etc.;

• whose decisive procedures include that of

– the sequential analysis and description of first endurants, then perdurants, and,

– within the analysis and description of endurants, the sequential analysis and
description of first their external qualities and then their internal qualities,

– etc.;

• whose techniques include those of specific ways of specifying properties; and

• whose tools include those of one or more formal languages

0.7 Languages

Natural Language is the principal method of human communication, consisting of words
used in a structured and conventional way and conveyed by speech, writing, or gesture.

0.7.1 Definitions of Languages

MOLA is the formal language of this book, the object language.

Definition 11 Language: By a language we shall here understand a set of strings of
characters, i.e., sentences, sentences which are structured according to some

• syntax7, i.e., grammar,

• are given meaning by some semantics8, and

• are used according to some pragmatics9

7By syntax we shall mean the arrangement of elements (e.g., words or parts) and their composition
(e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or parts) in a language
or model. [By words and phrases we mean those of a (written/spoken) laguages; and by parts we mean
those of a domain model.]

8By semantics we shall mean we shall mean the meaning of a syntactic element (word, phrase, text or
part). [By words and phrases we mean those of a (written/spoken) laguages; and by parts we mean those
of a domain model.]

9By pragmatics we shall mean we shall mean what a speaker/writer/domain-modeler implies and a
listener/reader infers based on contributing factors like the situational context, the individuals’ mental
states, the preceding dialogue, and other factors.
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Definition 12 Formal Language: By a formal language we shall here understand a
language

• whose syntax and semantics can both be expressed mathematically and

• about whose sentences one can rationally reason (argue, prove) properties

0.7.2 Two Languages

Two language will be at play in this book:

• the object language, here MOLA, and

• the language of the observer’s presentation.

We also refer to the language of the observer as the, or a, meta language.

We quote from Kleene [62, Chapter 1, § 1] – relevant to Chapter2:

When we are studying logic, the logic we are studying will pertain to one
language, which we call the object language, because this language (including
its logic) is an object of our study. Our study of this language and its logic,
including our use of logic in carrying out the study, we regard as taking place
in another language, which we call the observers language. Or we may speak
of the object logic and the observers logic.

Similar remarks can be made for all chapters’ presentation of material.

0.7.2.1 The Object Language

The object language of this book is MOLA.
We shall slowly build up, i.e., introduce, this language. Basic elements of MOLA derive

from logic (hence Chapter2), sets (hence Chapter3), numbers and numerals (hence Chap-
ter4), functions and types (hence Sect.6.1), Cartesians (hence Chapter8), lists (hence
Chapter10), maps (hence Chapter11), etcetera.

0.7.2.2 The Observer’s Language

The observer’s language, i.e., the meta language “borrows” from many fields: Foremost
from English. Then from mostly discrete mathematics, not that of MOLA, but that of the
discrete mathematics You learn in school and at colleges and universities. And finally from
pictorial, graphical languages. Only discrete mathematics has a formal, if not always a
logic, foundation.

0.7.2.3 Applicative MoLa

to be written
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0.7.2.4 Imperative MoLa

to be written

0.7.2.5 Concurrency MoLa

to be written

0.7.3 Formal Expression Evaluation

This section has direct bearing, i.e., is of importance, to a proper understanding of the
concept of formal language, and is hence of importance to grasping the semantics of MOLA.

0.7.3.1 Formal Expressions

From early school years You have come across such formal expressions as:

• a2 + b2 = c2 – Pythagoras’10 theorem, right-angled triangle

• a ∗ x3 + b ∗ x2 + c ∗ x + d = 0 – ordinary polynomial in x of degree 3.

• E = mc2 – Albert Einstein’s11 1905 equation relating Energy (of a body of material)
to the mass (of that material) and the square of the speed of light, c2.

First: they are formal since their syntax is expressed in a precisely defined language, i.e., as
here, that of mathematics. Secondly: they are formal since their semantics is well defined
– also in ordinary mathematics and physics !

Definition 13 Formal Expression: By a formal expression we shall here mean an expression
which lends itself to formal evaluation, i.e., any kind of “calculation” that is systematic

In this book we shall, again-and-again, introduce the formal expressions of MOLA.

0.7.3.2 Evaluation

Definition 14 Formal Evaluation: By formal evaluation we mean a process whereby we —
in a mathematically rigorous manner – find some property, for example the value — of an
expression

So far we have not really introduced the concept of MOLA expressions. Further on, i.e.,
immediately below, we shall introduce the

So, for the time being, kindly asking or Your patience, let us assume that E is a formal
expression. As an example of such, let it range over

• constants,

• variables12, and

10Greek: around 500 BC
1118979–1955
12identifiers which denote values
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• sub-expressions which are of the form

– Eℓ Oi Er, or

– Op E,

whee Oi are infix, dyadic, two argument operators, and Op are prefix [or suffix], unary
operators, and Eℓ, Er, E are appropriate expressions.

Evaluation now proceeds as follows:

• If the expression is a constant, like true, false, 0, 1, ..., a, b, c, d, then the denoted
[constant] value is the result of the evaluation.

• If the expression is a variable, like a, b, c, d in Pythagoras’ theorem or x in the poly-
nomial equation, then the denoted value – somehow “kept” in the environment of
the evaluation – is the result of the evaluation.

• If the expression is an infix expression then the operation denoted by the infix oper-
ator is applied to the result of the evaluation of the two operand expressions. And

• If the expression is a prefix expression then the operation denoted by the prefix [or
suffix] operator is applied to the result of the evaluation of the operand expression.

MOLA is a language built up around formal expressions.

0.7.3.3 Failed Evaluation: chaos

To express that some evaluation fails, for example the division of any number x by 0, we
introduce the literal

• chaos.

chaos is a literal of MOLA.
Throughout this book we shall be concerned with proper forms of uses of MOLA in

order to avoid failed evaluations.

0.7.4 MOLA Models

Although it is quite “early” in our presentation of a method for describing domains in MOLA

and introducing [MOLA] programming ideas we shall, nevertheless, state the following:

Definition 15 Descriptions and Models: A MOLA description is a set of specification
units

Definition 16 Specification Units: The MOLA specification units are of the following
kinds:
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• type,

• value,

• axiom,

• variable, and

• channel

The specification unit set is, for practical reasons, sequentially ordered, as is the text of
this book.

We explain the role of specification units.

• type clauses introduce and define classes of values;

• value clauses introduce and define either specific or free-ranging values, as needed,
of the MOLA specification; and

• axiom clauses state properties of values in the MOLA specification.

Type, value and axiom clauses make up the vast bulk of any MOLA specification.
We shall rarely have need for the additional MOLA specification units:

• variable clauses declare so-called ‘assignable’ variables, such as typically used in so-
called imperative programming 13.

• channel clauses declare means of communication between MOLA behaviours.

0.7.5 Speech Acts

Definition 17 Speech Act: Speech acts14 are acts15 that refer to the action performed by
produced utterances. People can perform an action by saying something. Through speech
acts, the speaker can convey physical action merely through words and phrases. The con-
veyed utterances are paramount to the actions performed

We shall, going somewhat “outside” established convention wrt. ‘speech acts’, consider
two forms:

• speech acts which change a “state of affairs”, which moves You from one state of
proficiency, say capability , to another, usually “improved” state; and

• speech acts which change Your mood , Your insight, knowledge.

In this book the text of some chapters predominantly aim at proficiency , typically in the
method of programming in MOLA, while other chapters predominantly aim at insight,
typically in understanding the basis for that method (and MOLA).

13Ordinary programming languages, from the 1954 FORTRAIN, via the 1960 ALgol 60, to todays C, C+,

Java and Python are all imperative programming languages.
14See also: https://en.wikipedia.org/wiki/Speech act
15Acts are things done; deeds, pretense



11

0.8 Ontology and Taxonomy

to be written

The broader definition of ontology is:

Definition 18 Ontology: By ontology we shall here mean: a set of concepts and categories
in a subject area or domain that shows their properties and the relations between them

Example 1 Ontology: We shall only be concerned with an ontology for domain descrip-
tion. See Fig. 1.1 on page 27

The broader definition of taxonomy is:

Definition 19 Taxonomy: By a taxonomy we shall here understand the classification of
something, in particular a specific domain

Example 2 Taxonomy: A taxonomy for a simplification of a road transport domain is
shown in Fig. ?? on page ?? 16

more to come

0.9 Computer and Computing Science

Definition 20 Computer Science: By computer science we shall mean the study and knowl-
edge of the phenomena that “goes on, occur, inside” computing devices

Definition 21 Computing Science: By computing science we shall mean the study and
knowledge of how to construct “those things” that “occur” within computers

0.10 A Triptych of Software Development

The Triptych Dogma

In order to specify Software,
we must understand its requirements.

In order to prescribe Requirements
we must understand the domain

So we must study, analyze and describe Domains.

By a domain we shall understand a rationally describable segment of a discrete dynamics
fragment of a human assisted reality, i.e., of the world

16Editorial note: To be inserted
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0.10.1 Domains

Domains include endurants, i.e., solid and fluid entities of parts and living species, and
perdurants. Perdurants are either actions, events and behaviours.

Endurants are either natural [“God-given”] or artefactual [“man-made”]. and may be
considered atomic or compound parts, or, as in this book, further unanalyzed living species:
plants and animals – including humans. Perdurants evolve around states. States are
collections of parts. Actions potentially change states in a planned manner. Events surrep-
titiously change states. Behaviours are sets of sequences of actions, events and [embedded ]
behaviours.

It is a main characteristic of this book that it focuses very much on the presentation
of material that enables the reader to model every-day domains such as mostly man-made
systems, for example:

• Banking: By programming ‘banking’ we shall, for example, mean: to create a model
of bank customers, i.e., clients, of bank accounts, of deposits, withdrawals and loans,
etc., and of credit/debit cards, etc.

• Road Transport: By programming ‘road transport’ we shall, for example, mean: to
create a model of roads and automobiles, of traffic signals, routes along the roads,
automobiles entering and leaving road intersections and street segments, etc.

• Retailing: By programming ‘retailing’ we shall, for example, mean: to create a model
of customers, retailers, goods for sale, wholesalers/importers, etc.

• Railways: By programming ‘railways’ we shall, for example, mean: to create a model
of rail nets, trains, time-tables, train rides, etc.

but also [predominantly] natural domains, classical mathematical systems and basic com-
puting systems:

• Rivers and Canals: By programming ‘rivers and canals’ we shall, for example, mean:
to create a model of rivers: their sources, confluence and deltas, and of canals: their
networks, connection to rivers and the sea, locks, boat traffic, etc.

• Graphs, Trees: By programming ‘graphs and trees’ we shall, for example, mean:
to create a model of these abstract notions, of edges and vertices, roots and leaves,
paths, cycles, etc.

• Relational Databases: By programming ‘relational databases’ we shall, for example,
mean: to create a model of relations and their tuples, and of their querying, i.e., SQL,
etc.
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0.10.2 Requirements

0.10.2.1 Some Definitions and Rules

Definition 22 Requirements, I: By a [software] requirements we shall understand (cf.,
[256, IEEE Standard 610.12]): “A condition or capability needed by a user to solve a
problem or achieve an objective”

• The Golden Rule of requirements engineering: Prescribe only those requirements
that can be objectively shown to hold for the designed software

Objectively shown means that the designed software can either be tested, or be model
checked, or be proved (verified), to satisfy the requirements. Caveat: Since we do not
illustrate formal tests, model checking nor theorem proving, we shall, alas, not illustrate
adherence to this rule.

• An Ideal Rule of requirements engineering: When prescribing (including formalizing)
requirements, also formulate tests and properties for model checking and theorems
whose proof should show adherence to the requirements

The rule is labelled ideal since such precautions will not be shown in this book. The rule is
clear. It is a question for proper management to see that it is adhered to. See the Caveat
above.

• Adequacy: Make sure that requirements cover what users expect

That is, do not express a requirement for which you have no users, but make sure that
all users’ requirements are represented or somehow accommodated. In other words: the
requirements gathering process needs to be like a “fine-meshed net”: One must make sure
that all possible stake-holders have been involved in the requirements acquisition process,
and that possible conflicts and other inconsistencies have been obviated.

• Implementability: Make sure that requirements are implementable

That is, do not express a requirement for which you have no assurance that it can be
implemented. In other words one must tacitly assume, perhaps even indicate, somehow,
that an implementation is possible. But the requirements in and by themselves, may stay
short of expressing such designs. Caveat: The domain and requirements specifications are,
in our approach, model-oriented. That helps expressing “implementability”.

Definition 23 Requirements, II: By requirements we shall [further] understand a docu-
ment which prescribes desired properties of a machine: what endurants the machine shall
“maintain”, and what the machine shall (must; not should) offer of functions and of be-
haviours while also expressing which events the machine shall “handle”
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Definition 24 Machine, II: By a machine that “maintains” endurants we shall mean: a
machine which, “between” users use of that machine, “keeps” the data that represents these
entities

From earlier we repeat:

Definition 25 Machine, III: By machine we shall understand a, or the, combination of
hardware and software that is the target for, or result of the required computing systems
development

So this, then, is a main objective of requirements development: to start towards the design
of the hardware and software for the computing system.

Definition 26 Requirements, III: To specify the machine

0.10.2.2 General

Domain models can be developed, final ones can be studied and enjoyed, without there
being any thought of software developed for the domain !

But software for domains ought not, we almost “religiously” proclaim, be developed
without first having [more-or-less] understood the domain, i.e., without having a domain
model from which to start software development.

The link between a domain description and domain software specification is a requirements
prescription.

Domain descriptions typically rely on abstractions for their expressiveness, and cover
more aspects of the domain for which possible computing support may sought. As such,
domain descriptions are typically expressed in terms of [elegant, short, concise] logical
predicates, that, also typically, do not lend themselves to some form of “immediate” in-
terpretation by computer. The role of a requirements prescription is to “bridge the gap”
between “not obviously, nor usually, efficient” computing – and is to focus on those aspects
of the domain for which computing is sought, and to also render that focus computable !

We shall not, in this book show how to “concert”, how to transcendentally deduce,
requirements prescriptions from domain descriptions.

Chapter 9 in [23] shows how to do that ! And the three books: [8–16] shows further
techniques and the transition from requirements prescriptions to software.

0.10.3 Software

Definition 27 Software: By software we shall mean not just the code that, when submitted
for execution on a computer, performs desired computations, but all the documentation
that went into the development of that software: the underlying domain description, the
ensuing requirements prescription, all the tests, checks and proofs of trustworthiness of
these specifications, all the management plans, their follow-up, development histories, etc.,
etc.
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0.10.4 Programs

Definition 28 Program: A computer program is a sequence or set of instructions in a
programming language for a computer to execute

0.11 Computers

to be written

0.11.1 Hardware

to be written

0.11.2 Et cetera

to be written

0.12 Informatics & IT

• Informatics: We understand informatics as a confluence of mathematics, of the com-
puter and computing sciences, of the domain science and engineering as espoused in
this monograph, requirements engineering and software design.

• IT – Information Technology: We understand information technology as the conflu-
ence of nano physics, electronics, computers and communication (hardware), sensors,
actuators, etc.

• Two Universes: Two diverse universes appear to emerge:

Information Technology is, to this author, a universe of both material quality and
quantity . It is primarily materially characterised, such as I see it, by such terms as
bigger, smaller; faster, slower; costly, inexpensive, and environment “friendly”

Informatics is, to this author, a universe of intellectual quality . As such it is primarily
characterised, such as I see it, by such terms as better, more fit for purpose, appropriate,
logically correct and meets user expectations.

0.13 Structure of Book

The17 reader is urged to study, carefully, the overall table-of-contents, Pages v–viii, and the
specific chapter table-of-contents that head each chapter !

17Change: New text inserted: Structure of book section, Chapter0
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You may wish to skip the reading of the rest of this Structure of Book section in a first
reading !

The book has 49 chapters ! Some chapters address the issue of what should be learned
and taught ! They are usually short, some 10–15 pages at most. They could be taken, by
school teachers, as the basis for a few class hours of teaching. The school teachers are then
expected either, themselves, to develop teaching and problem exercise material for their
classes – or to rely on primary-, middle- or high school text books provided by such, for
example, teachers college professors who also could derive such text books from the present
book. Other chapters address more “esoteric” issues.

to come

The book is structured in XIV parts !

• Part I, Domains I [pp. 23-46], contains just one chapter.

– Chapter1, Domains I [pp. 23-46], introduces the core concept of domains – some-
what “novel” to most readers. It may not be suitable for primary/middle school
teaching, but its “message” should be reasonably firmly embedded in the head
of Infomatics teachers ! – and the readers of this book after having studied parts
I and XI.

• Part II, The Basics [pp. 49-153] contains 11 chapters (!). Together they provide the
very foundation of informatics.

– Chapter2, Logic [pp. 49-62], provides a simple introduction to logic (the Boolean
truth values and the basic operations on these: ∼,∨,∧,=,≡, etc., to be under-
stood by all. It also sketches the bases for proofs of MOLA program and model
properties – material that is somehow “more advanced”.

– Chapter3, Sets [pp. 63-76], likewise. Sets, as a mathematical and as a MOLA

concept, are important to abstract programs and formal domain models.

– Chapter4, Numbers [pp. 77-88],

– Chapter5, Names and Values, Characters and Texts [pp. 89-99], has two main
sections. They can be studied in any order. The first section, Sect.5.1 is non-
trivial, the second section, Sect.5.2, is somewhat trivial.

∗ Section5.1, Names and Values [pp. 89-97], more to come

∗ Section5.2, Characters and Text [pp. 97-99], is, perhaps, unusual in a book
one of whose main topics is computing. But in any language, also the
formal ones with which we describe domains and programs, the characters
and texts, which are communicated between humans, models, programs and
the computing hardware, are important.18

– Chapters 6, 8, 10–11, i.e.,
18Editorial note: Peter Naur’s ALgol 60 report [60] began with details on Algol 60’s characters and

texts ! Cf. Sects. 2.1 and 2.4 ! [https://www.masswerk.at/algol60/report.htm]
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∗ 6, Functions [pp. 101-105],

∗ 8, Cartesians [pp. 109-117],

∗ 10, Lists [pp. 135-143], and

∗ 11, Maps [pp. 145-152],

constitute the main chapters on both discrete mathematics and MOLA “data”
types. With functions, sets, Cartesians, lists and maps, MOLA “becomes” an
abstract functional program and domain model description language. Each cover
respective facets of their type: their type expressions, how to express functions,
Cartesians, lists and maps; and operations on/over these.

– Chapters7, Infinity [pp. 107-108], and 9, Graphs [pp. 119-133], provide “leisurely
acquired” insight into the esoteric issue of infinity – useful in connection with
the possibility of infinite sets, possibly Cartesians, and lists and maps – with
Chapter 9, Graphs [pp. 119-133], appealing to intuitive views of a variety of
graphs.

– Chapter12, Types and Sorts [pp. 153-161], collects the full “story” of types,
gathered from eight previous chapters, into a coherent presentation – and widens
the treatment of types to that of sorts: abstract types, i.e., types with only
implicit, indirect, type descriptions. The latter, sorts, become crucial for our
treatment of domain model descriptions.

• Part III, Space and Time [pp. 167-182], contains three chapters:

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part IV, Structured Clauses [pp. 185-186], contains just one chapter:

– Chapter ??, textsf [pp. ??-??]

• Part V, Sequentiality and Concurrency [pp. 189-192], contains two chapters:

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part VI, Algorithms [pp. 195-199], contains three chapters:

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part VII, Programming Paradigms [pp. 203-209], contains four chapters:



18

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part VIII, Modeling Paradigms [pp. 213-217], contains three chapters:

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part IX, Semiotics [pp. 221-225], contains three chapters:

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part X, The Triptych Dogma [pp. 229-233], contains three chapters:

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part XI, Domain II [pp. 237-258], contains nine chapters !

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part XII, Formal Bases [pp. 261-269], contains five chapters:

– Chapter ??, textsf [pp. ??-??],
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– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

– Chapter ??, textsf [pp. ??-??],

• Part XIII, Closing [pp. 273-273], contains just one chapters:

– Chapter ??, textsf [pp. ??-??],

• Part XIV, Appendices [pp. 285-273], contains five appendices:

– Appendix??, textsf [pp. ??-??],

– Appendix??, textsf [pp. ??-??],

– Appendix??, textsf [pp. ??-??],

– Appendix??, textsf [pp. ??-??],

– Appendix??, textsf [pp. ??-??],

0.14 Summary

to be written

0.15 Exercises

Exercise 1 XIntro:

Exercise 2 YIntro:

Exercise 3 ZIntro:
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Motivation: Domains
The world around us is cultured by man’s achievements, whether for the good or other-
wise. We teach and learn physics (with chemistry), we teach and learn botanic, zoology,
biology, etc. But do we actually, at school level, teach and learn about our own “cre-
ations”: the finance system, the retail industry, road, rail, ship and air transport, etc. This
book wishes to ‘right’ things: Let us teach, in school, how banks work, about retail supply
lines, traffic control, shipping and the airline industry. For that we need to know about
how to understand, i.e., analyse these kinds of main-made domains, and how they can be
described. In this chapter we cover some aspects of the analysis of domains. In PartXI
we “conclude” by covering material on their description.
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Study Hint: This chapter is of central, crucial importance to the “message” of
this book. It is not really intended for “direct” class teaching ! Its contents should
be well understood by such who teach ‘Informatics’. So it should be studied by
them, well, all (!). Do it at Your leisure: several more cups of tea: perhaps Indian
Assam Earl Grey !

Christians take comfort in:

In the beginning was the Word, and the Word was with God, and the Word was
God. The same was in the beginning with God. All things were made by him;
and without him was not any thing made that was made. In him was life; and
the life was the light of men. And the light shineth in darkness; and the darkness
comprehended it not. [From the The Gospel of John].

We shall, perhaps profanely, interpret this bringing together two such diverse concepts as
“The Word” and the world around us: “All things were made by Him”, to justify this book’s
emphasis on domains and a formal domain description language.

Therefore this chapter’s introduction to the concept of domains [All things ... made].
And therefore most remaining chapters’ introduction to a formal domain description
language, here MOLA [The Word ].
This paper gives an ultra-short introduction to domain science as developed since 2008:
[17,18,20,22,23]. Since the publication of [23, Nov. 2021 ] there has been further refinements
and simplifications. These are documented in the [25–29,34] reports and publications. This
paper evolved as the result of writing [33, Informatics for Beginners]. The present paper is
one of four currently being prepared: [30–32].

1.1 Domain Definition

We repeat the definition of the concept of domains as first given on Page 3.

Definition 31 Domain: By a domain we shall understand a rationally describable segment
of a discrete dynamics fragment of a human assisted reality, i.e., of the world that we daily
observe. It includes its endurants, i.e., solid and fluid entities of parts and living species,
and perdurants

Endurants are either natural [“God-given”] or artefactual [“man-made”]. and may be
considered atomic or compound parts, or, as in this book, further unanalysed living species:
plants and animals – including humans.

Perdurants are here considered to be actions, events and behaviours.

We exclude, from our treatment of domains, issues of ethical, biological and psychological
matters.

Example 3 Some Domain Examples: A few, more-or-less self-explanatory examples:
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• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their
man-made dams, harbours, locks, etc. – and their conveyage of materials (ships
etc.) [24];

• Road nets – with street segments and intersections, traffic lights and automobiles –
and the flow of these;

• Pipelines – with their wells, pipes, valves, pumps, forks, joins and wells and the flow
of fluids [19]; and

• Container terminals – with their container vessels, containers, cranes, trucks, etc.
– and the movement of all of these [21]

The definition relies on the understanding of the terms ‘rationally describable’, ‘discrete
dynamics’, ‘human assisted’, ‘solid’ and ‘fluid’. The last two will be explained later.
By rationally describable we mean that what is described can be understood, including
reasoned about, in a rational, that is, logical manner – in other words logically tractable.
By discrete dynamics we imply that we shall basically rule out such domain phenomena
which have properties which are continuous with respect to their time-wise, i.e., dynamic,
behaviour. By human-assisted we mean that the domains – that we are interested in
modelling – have, as an important property, that they possess man-made entities.

This primer presents a method , its principles, procedures, techniques and tools, for
analysing &1 describing domains.

1.2 A Domain Analysis & Description Ontology

Figure 1.1 on the facing page expresses an ontology for our analysis of domains. Not an
taxonomy for any one specific domain.

We refer to Fig. 1.1 on the next page.

The idea of Fig. 1.1 on the facing page is the following:

• It presents a recipe for how to analyse a domain.

• You, the domain analyser cum describer , are confronted2 with, or by a domain.

• You have Fig. 1.1 on the next page in front of you, on a piece of paper, or in Your
mind, or both.

1We use here the ampersand, ‘&’, as in A&B, to emphasize that we are treating A and B as one
concept.

2By ‘confronted’ we mean: You are reading about it, in papers, in books, in postings on the Internet,
visiting it, talking with domain stakeholders: professional people working “in” the domain.
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Figure 1.1: A Domain Analysis & Description Ontology

• You are then asked, by the domain analysis & description method of this chapter,
to “start” at the uppermost •, just below and between the ‘r’ and the first ‘s’ in the
main title, Phenomena of Natural and Artefactual Universes of Discourse.

• The analysis & description ontology of Fig. 1.1 then directs You to inquire as to
whether the phenomenon – whichever You are ”looking at/reading about/...” – is
an entity (is rationally describable) or is indescribable.

• It is Your decision whether the answer to that “query” is yes or no.

• The definitions of the concepts whose names are attached to the •s of Fig. 1.1 are
given in the following sections.

• Whether they are precise enough to guide You in Your obtaining reasonable answers,
“yes” or “no”, to the •ed queries is, of course, a problem. I hope they are.

• If Your answer is “yes”, then Your analysis proceeds down the tree, usually indicated
by “yes” or “no” answers.
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• If one, or the other is a “leaf” of the ontology tree, You have finished examining the
phenomena You set out to analyse.

• If it is not a leaf, then further analysis is required.

• (We shall, in this book, leave out the analysis and hence description of living species.)

• If an analysis of a phenomenon has reached one of the (only) three ’s, then the
analysis at that • results in the domain describer describing, in MOLA, some of the
properties of that phenomenon.

• That analysis involves “setting aside”, for subsequent analysis & description, one or
more [thus analysis etc.-pending] phenomena (which are subsequently to be tackled
from the “root” of the ontology).

We do not [need to] prescribe in which order You analyse & describe the phenomena that
has been “set aside”.

1.3 The Name, Type and Value Concepts

Domain modeling , as well as programming , depends, in their specification, on separation of
concerns: which kind of values are subjectable to which kinds of operations, etc., in order to
achieve ease of understanding a model or a program, ease of proving properties of a model,
or correctness of a program.

1.3.1 Names

We name things in order to refer to them in our speech, models and programs. Names
of types and values in models and programs are usually not so-called “first-citizens”, i.e.,
values that can be arguments in functions, etc. The “science of names” is interesting.3 In
botanicalsociety.org.za/the-science-of-names-an-introduction-to-plant-taxo-

nomy the authors actually speak of a “science of names” in connection with plant taxonomy:
the “art” of choosing such names that reflect some possible classification of what they name.

more to come

1.3.2 Types

The type concept is crucial to programming and modeling.

Definition 32 Type: A type is a class of values (“of the same kind”)

3The study of names is called onomastics or onomatology . Onomastics covers the naming of all things,
including place names (toponyms) and personal names (anthroponyms).



29

We name types.

Example 4 Type Names: Some examples of type names are:

• RT – the class of all road transport instances: the Metropolitan London Road Trans-
port, the US Federal Freeway System, etc.

• RN – the class of all road net instances (within a road transport).

• SA – the class of all automobiles (within a road transport)

You, the domain describer, choose type names. Choosing type names is a “serious affair”.
It must be done carefully. You can choose short (as above) or long names: Road Transport,
Road Net, etc. We prefer short, but not cryptic names, like X, Y, Z, ... . Names that are
easy to memorize.

1.3.3 Values

Values are what programming and modeling, in a sense, is all about”. In programming,
values are the data “upon” which the program code specifies computations. In modeling
values are, for example, what we observe: the entities in front of our eyes.

1.4 Phenomena and Entities

Definition 33 Phenomena: By a phenomenon we shall understand a fact that is observed
to exist or happen

Some phenomena are rationally describable – to some degree4 – others are not.

Definition 34 Entities: By an entity By an entity we shall understand a more-or-less
rationally describable phenomenon

Example 5 Phenomena and Entities: Some, but not necessarily all aspects of a river can
be rationally described, hence can be still be considered entities. Similarly, many aspects
of a road net can be rationally described, hence will be considered entities

4That is: It is up to the domain analyser cum describer to decide as to how many rationally describable
phenomena to select for analysis & description. Also in this sense one practices abstraction by “abstract-
ing away” [the analysis & description of] phenomena that are irrelevant for the “current” (!) domain
description.
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1.5 Endurants and Perdurants

1.5.1 Endurants

Definition 35 Endurants: Endurants are those quantities of domains that we can ob-
serve (see and touch), in space, as “complete” entities at no matter which point in time –
“material” entities that persists, endures

Example 6 Endurants: Examples of endurants are: a street segment [link], a street
intersection [hub], an automobile

1.5.2 Perdurants

Definition 36 Perdurants: Perdurants are those quantities of domains for which only a
fragment exists, in space, if we look at or touch them at any given snapshot in time

Example 7 Perdurant: A moving automobile is an example of a perdurant

1.6 External and Internal Endurant Qualities

The main contribution of this section is that of a calculus of domain analysis and description
prompts.

1.6.1 External Qualities

Definition 37 External Qualities: External qualities of endurants of a manifest domain
are, in a simplifying sense, those we can see, touch and have spatial extent. They, so to
speak, take form.

Example 8 External Qualities: An example of external qualities of a domains is: the
Cartesian5 of sets of solid atomic street intersections, and of sets of solid atomic street
segments, and of sets of solid automobiles of a road transport system where the Cartesian,
sets, atomic, and solid reflect external qualities

5Cartesian after the French philosopher, mathematician, scientist René Descartes (1596–1650)
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1.6.1.1 Discrete or Solid Endurants

Definition 38 Discrete or Solid Endurants: By a solid [or discrete] endurant we shall
understand an endurant which is separate, individual or distinct in form or concept, or,
rephrasing: have ‘body’ [or magnitude] of three-dimensions: length, breadth and depth [65,
Vol. II, pg. 2046]

Example 9 Solid Endurants: Examples of sold endurants are the wells, pipes, valves,
pumps, forks, joins and sinks of pipelines are solids. [These units may, however, and
usually will, contain fluids, e.g., oil, gas or water]

Type Naming: When, in a domain analysis, we encounter a solid, for the first time, we
name its type, i.e., anticipating the upcoming solid description, as for parts, i.e., atomic,
compound, Cartesian and part set parts (or for living species)6, see below, we “set aside”,
somehow, say in our mind, or on a piece of paper, or in a computer document, that or
those type names.

1.6.1.2 Fluids

Definition 39 Fluid Endurants: By a fluid endurant we shall understand an endurant
which is prolonged, without interruption, in an unbroken series or pattern; or, rephrasing:
a substance (liquid, gas or plasma) having the property of flowing, consisting of particles
that move among themselves [65, Vol. I, pg. 774]

Example 10 Fluid Endurants: Examples of fluid endurants are: water, oil, gas, com-
pressed air, smoke

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular7, or plant products, i.e.,
chopped sugar cane, threshed, or otherwise8, et cetera. Fluid endurants will be analysed
and described in relation to solid endurants, viz. their “containers”.

Type Naming: When, in a domain analysis, we encounter a fluid, for the first time, we
name its type, i.e., anticipating the upcoming fluid description, we “set aside”, somehow,
say in our mind, or on a piece of paper, or in a computer document, that or those type
names.

1.6.1.3 Parts

Definition 40 Parts: The non-living species solids are what we shall call parts

6– whose further analysis we shall not cover in this book
7 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our

modelling purposes it is convenient to “compartmentalise” them as fluids !
8See footnote 7.
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Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned
with the analysis and description of endurants into parts.

Example 11 Parts: The previous example of solids was also an example of parts

We distinguish between atomic and compound parts.

1.6.1.3.1 Atomic Parts.

Definition 41 Atomic Part, I: By an atomic part we shall understand a part which the
domain analyser considers to be indivisible in the sense of not meaningfully consist of
sub-parts

Example 12 Atomic Parts: Examples of atomic parts are: hubs, i.e., street intersections;
links, i.e., the stretches of roads between two neighbouring hubs; and automobiles:

type H, L, A

1.6.1.3.2 Compound Parts. We, pragmatically, distinguish between Cartesian product-
and set-oriented parts.

Definition 42 Compound Part, I: Compound parts are those which are observed to [po-
tentially] consist of several parts

Example 13 Compound Parts: An example of a compound parts is: a road net consisting
of a set of hubs, i.e., street intersections or “end-of-streets”, and a set of links, i.e., street
segments (with no contained hubs), is a Cartesian compound; and the sets of hubs and the
sets of links are part set compounds

1.6.1.3.3 Cartesians.

Definition 43 Cartesians: Cartesian parts are those compound parts which are observed
to consist of two or more distinctly sort-named endurants (solids or fluids)

Example 14 Cartesians: Road Transport: A road transport, rt:RT, is observed to consist
of an aggregate of a road net, rn:RN, and a set of automobiles, SA, where the road net is
observed, i.e., abstracted, as a Cartesian of a set of hubs, ah:AH, i.e., street intersections
(or specifically designated points segmenting an otherwise “straight” street into two such),
and a set of links, al:AL, i.e., street segments between two “neighbouring” hubs.

type
RT, RN, SA, AH = H-set, AL = L-set

value
obs RN: RT → RN, obs SA: RT → SA,, obs AH: RN → AH, obs AL: RN → AL
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Once a part has been analysed into a Cartesian, say p:P, we inquire as to the type names of
the endurants9 of which it consists. The inquiry: record Cartesian parts(p:P), we decide,
then yields the type of the constituent endurants.

1: record Cartesian part type names(p:P)

value
record Cartesian part type names: P → T-set
record Cartesian part type names(p) as {ηE1,ηE2,...,ηEn}

Here T is the name of the type of all type names, and η Ei is the name of type Ei.

Example 15 Cartesian Parts: The Cartesian parts of a road transport, rt:RT, is thus
observed to consists of

• an aggregate of a road net, rn:RN, and

• an aggregate set of automobiles, sa:SA:

that is:

• record Cartesian part type names(rt:RT) = {η RN,η SA}

where the type names η RT were and η RN and η SA are coined, i.e., more-or-less freely
chosen, by the domain analyzer cum describer

1.6.1.3.4 Part Sets.

Definition 44 Part Sets: Part sets are those compound parts which are observed to consist
of an indefinite number of zero, one or more parts

Once a part has been analysed into a part set, say s:S, we inquire as to the set of parts and
their type of which it consists. The inquiry: record part set parts(s:S), we decide, then
yields the (single) type of the constituent parts.

2: record part set part type names(s:S)

value
record part set part type names: S → TPs×TP
record part set part type names(s:S) as (η Ps,η P)

Here the name of the value, s, and the type names η S and η P are coined, i.e., more-or-less
freely chosen, by the domain analyzer cum describer

9We emphasize that the observed elements of a Cartesian part may be both solids, at least one, and
fluids
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Example 16 Part Sets: Road Transport: The road transport contains a set of auto-
mobiles. The part set type name has been chosen to be SA. It is then determined (i.e.,
analyzed) that SA is a set of Automobile of type A

• record part set parts(sa:SA) = ηA

• • •

So far we have only touched upon the ‘External Qualities’ labeled, dotted-dashed box of
the ‘Endurants’-labeled dashed box of Fig.1.1.

1.6.1.4 Compound Observers

Once the domain analyser cum describer has decided upon the names of atomic and com-
pound parts, obs erver functions can be applied to Cartesian, c:C, respectively part set,
ps:PS, parts:

3: describe Cartesians and Part Set Parts

value
let {η P1,η P2,...,η Pn} = record Cartesian part type names(c:C) in
“type

P1, P2, ..., Pn;
value

obs P1: C→P1, obs P2: C→P2,...n obs Pn: C→Pn ”
[respectively:]

let {η Ps,η P} = record part set part type names(ps:PS) in
“type

Ps = P-set,
value

obs Ps: C→Ps ”
end end

The “...” texts are the MOLA texts “generated”, i.e., written down, by the domain de-
scriber. They are domain model specification units.

The “surrounding” MOLA-like texts are not written down as phrases, elements, of the
domain description. They are elements of the domain describers’ “notice board”, and, as
such, elements of the development of domain models.

We have thus introduced a core domain modeling tool the obs ... observer function,
one to be “applied” mentally by the domain describer, and one that appears in (MOLA)
domain descriptions

The obs ... observer function is “applied” by the domain describer, it is not a com-
putable function.
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1.6.1.5 States

Definition 45 States: By a state we shall mean any subset of the parts of a domain

Example 17 Road Transport State:

variable
hs:AH := obs AH({\obs}RN(rt)),
ls:AL := obs AL({\obs}RN(rt)),
as:SA := obs SA(rt),
σ:(H|L|A)-set := hs∪ls∪as

We have chosen to model domain states as variables rather than as values. The reason for
this is that monitorable, including biddable part attributes change, and that domains are
often extended and “shrunk” by the addition, respectively removal of parts: Example 18
Road Transport Development: adding or removing hubs, links and automobiles in a road
transport We do not cover the aspect of bidding changes to monitorable part attributes,
nor the introduction of new parts and removal of former parts in this paper.

1.6.1.6 Validity of Endurant Observations

We remind the reader that the obs erver functions, as all later such functions: uid -,
mereo - and attr -functions, are applied by humans and that the outcome of these “ap-
plications” is the result of human choices, and possibly biased by inexperience, taste,
preference, bias, etc.

How do we know whether a domain analyser & describer’s description of domain parts
is valid ? Whether relevantly identified parts are modeled reasonably wrt. being atomic,
Cartesians or part sets Whether all relevant endurants have been identified ? Etc. The
short answer is: we never know. Our models are conjectures and may be refuted10. A social
process of peer reviews, by domain stakeholders and other domain modelers is needed.

1.6.1.7 Summary of Analysis Predicates

• Endurant Ontology:

– is entity

– is endurant

– is perdurant

– is solid

– is fluid

– is part

– is living species

– is atomic

– is compound

– is Cartesian

– is part set

– is plant

– is animal

– is human

• Location:

– is stationary

– is mobile

• Treatment:

– is manifest

– is structure

10We refer to [71, Sir Karl Popper ].
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Example 19 Road Transport: Automobiles are mobile, hubs and links are stationary,
only Automobiles, hubs and links are manifest, the rest are structures, i.e., conceptual

1.6.2 Internal Qualities

Definition 46 Internal Qualities: Internal qualities are those properties [of endurants]
that do not occupy space but can be measured or spoken about

Example 20 Internal qualities: Examples of internal qualities are the unique identity of
a part, the mereological relation of parts to other parts, and the endurant attributes such
as temperature, length, colour

This section therefore introduces a number of domain description tools:

• uid : the unique identifier observer of parts;

• mereo : the mereology observer of parts;

• attr : (zero,) one or more attribute observers of endurants; and

• attributes : the attribute query of endurants.

1.6.2.1 Unique Identity

Definition 47 Unique Identity: A unique identity is unique identity an immaterial prop-
erty that distinguishes any two spatially distinct solids

The unique identity of a part p of type P is obtained by observer uid P:

4: describe Unique Identity Part Observer

type
P,PI

value
uid P: P → PI

Here PI is the type of the unique identifiers of parts of type P.

Example 21 Unique Identifiers: The unique identifierss of a road transport, rt:RT, is thus
observed, under record unique identifiers(rts:RTS), to consists of the unique identifiers
of the

• road transport – rtsi:RTSI,

• (Cartesian) road net – rni:RNI,

• (set of) automobiles – sa:SAI,

• automobile, ai:AI,
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• (set of) hubs, hai:AHI,

• (set of) links, lai:LAI,

• hub, hi:HI, and

• link, li:LI,

that is:

• record unique identifiers(rt:RT) = {RNI,SAI,AI,AHI,LAI,HI,LI}

where the type names are all coined, i.e., more-or-less freely chosen, by the domain analyzer
cum describer – though, as You can see, these names were here formed by “suffixing” Is to
relevant part names

1.6.2.1.1 Unique Identity Observer Functions. Once a domain has been analysed
into all its parts, we can ascertain these by an informal function. The inquiry do-
main part type names(rts:RTS)11 yields the type names of their unique identifiers – and
hence of their observer functions, uid P12:

5: describe unique identifiers

let {η P1,η P2,...,η Pn} = record domain part type names(rts:RTS) in
“type

P1I, P2I, ..., PnI;
value

uid P1: P1→P1I, uid P2: P2→P2I,..., uid Pn: Pn→PnI ”
end

The “...” texts are the MOLA texts “generated”, i.e., written down, by the domain de-
scriber. They are domain model specification units.

We have thus introduced a core domain modeling tool the uid ... observer function,
one to be “applied” mentally by the domain describer, and one that appears in (MOLA)
domain descriptions

The uid ... observer function is “applied” by the domain describer, it is not a com-
putable function.

1.6.2.1.2 Uniqueness of Parts No two parts have the same unique identifier.

Example 22 Road Transport Uniqueness:

variable
hsuids:AHI-set := { uid (h) | h:H•u∈σ }
lsuids:ALI-set := { uid (l) | l:L•u∈σ }

11We leave it to the reader to define domain part type names(rts:RTS).
12Cf. Sects. 1.6.1.3.3– 1.6.1.4 on page 34
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asuids:SAI-set := { uid (a) | a:A•u∈σ }
σuids:(HI|LI|AI)-set := { uid (u) | u:(H|L|A)•u∈σ }

axiom
� card σ = card σuids

We have chosen, for the same reason as given in Sect. 1.6.1.5 on page 35, to model a
unique identifier state. The � prefix in the axiom then expresses that changes of parts or
addition of parts to and deletions of parts from the domain shall maintain their uniqueness.

1.6.2.2 Mereology

Definition 48 Mereology, I: Mereology is a theory of [endurant] part-hood relations: of
the relations of an [endurant] parts to a whole and the relations of [endurant] parts to
[endurant] parts within that whole

Example 23 Mereology: Examples of mereologies are that a link is topologically con-
nected to exactly two specific hubs, that hubs are connected to zero, one or more specific
links, and that links and hubs are open to specific subsets of automobiles

Mereologies can be expressed in terms of unique identifiers.

Example 24 Mereology Representation: For our ‘running road transport example’ the
mereologies of links, hubs and automobiles can thus be expressed as follows:

• mereo L(l) = {hi′,hi′′} where hi,hi′,hi′′ are the unique identifiers of the hubs that the
link connects, i.e., are in hsuids;

• mereo H(h) = {li1,li2,...,lin} where li1,li2,...,lin are the unique identifiers of the links
that are imminent upon (i.e., emanates from) the hub, i.e., are in lsuids; and

• mereo A(a) = {ri1,ri2,...,rim} where ri1,ri2,...,rim are unique identifiers of the road (hub
and link) elements that make up the road net, i.e., are in hsuids∪lsuids

Once the unique identifiers of all parts of a domain has been described we can analyses
and describe their mereologies. The inquiry: mereo P(p) yields a mereology type (name),
say PMer, and its description13:

6: describe Mereology

“type
PM = MereoP

value
mereo P: P → PM

13Cf. Sects. ??– 1.6.1.4 on page 34
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axiom
A(pm:PM)”

where MereoP is a type expression over unique identifier types of the domain; mereo P is
the mereology observer function for parts p:P; and A(pm:P) is an axiom that secures that
the unique identifiers of any part are indeed of parts of the domain.

1.6.2.3 Attributes

1.6.2.3.1 General.

Definition 49 Attributes: Attributes are properties of endurants that are not spatially
observable, but can be either physically (electronically, chemically, or otherwise) measured
or can be objectively spoken about

Attributes are of types and, accordingly have values.

7: record attribute type names

• value

record attribute type names: P → ηT-set

record attribute type names(p:P) as ηT-set

Example 25 Road Net Attributes, I: Examples of attributes are: hubs have states,
hσ:HΣ: the set of pairs of link identifiers, (f li,tli), of the links from and to which auto-
mobiles may enter, respectively leave the hub, hubs have state spaces, hω:HΩ: the set of
hub states “signaling” which states are open, i.e., green; links that have lengths, LEN; and
automobiles have road net positions, APos, either at a hub, atH, or on a link, onL, some
fraction, f:Real, down a link, identified by li, from a hub, identified by fhi, towards a hub,
identified by thi.

type
HΣ = (LI×LI)-set
HΩ = HΣ-set
LEN = Nat m
APos = atH | onL
atH :: HI
onL :: LI × (fhi:HI × f:Real × thi:HI)

value

attr HΣ: H → HΣ
attr HΩ: H → HΩ
attr LEN: L → LEN
attr APos: A → APos

axiom
∀ (li,(fhi,f,thi)):onL • 0<f<1

∧li∈lsuids∧{fhi,thi}⊆hsuids∧...
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8: describe Endurant attributes of e:E

let {η A1,ηA2,...,ηAn} = record attribute type names(e:E) in
“ type

A1, A2, ..., An
value

attr A1: E → A1, attr A2: E → A2, ..., attr An: E → An
axiom

∀ a1:A1, a2:A2, ..., an:An: A(a1,a2,...,an) ”
end

1.6.2.3.2 Michael A. Jackson’s Attribute Categories. Michael A. Jackson [58] has
suggested a hierarchy of attribute categories: from static to dynamic values – and within
the dynamic value category: inert values, reactive values, active values – and within the dy-
namic active value category: autonomous values, biddable values and programmable values.
We refer to [59, M. A. Jackson] and [23, Chapter 5, Sect. 5.4.2.3 ] for details. We summarize
Jackson’s attribute categorization in Fig. 1.2.

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

Figure 1.2: Michael Jackson’s Attribute Categories

Example 26 Road Net Attributes, II: The link length and hub state space attributes
are static, hub states and automobile positions programmable. Automobile speed and
acceleration attributes, which we do not model, are monitorable

The attributes categorization determines, in the next major section on perdurants, the
treatment of hub, link and automobile behaviours.
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1.6.3 Intentional Pull

to be written

1.7 Perdurant Concepts

The main contribution of this section is that transcendentally deducing perdurants from
endurant parts, in particular behaviours “of” parts.

1.7.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those
(endurant) parts which we, as domain analysers cum describers, have endowed with all
three kinds of internal qualities: unique identifiers, mereologies and attributes. We shall
use the CSP [55] constructs of RSL [47] to model concurrent behaviours.

1.7.2 Actors – A Synopsis

This section provides a summary overview.

Definition 50 Actors: An actor is anything that can initiate an action, an event or a
behaviour

1.7.2.1 Action

Definition 51 Actions: An action is a function that can purposefully change a state

Example 27 Road Net Actions: These are some road transport actions: an automobile
leaving a hub, entering a link; leaving a link, entering a hubs; entering the road net; and
leaving the road net

1.7.2.2 Event

Definition 52 Events: An event is a function that surreptitiously changes a state

Example 28 Road Net Events: These are some road net events: The blocking of a link
due to a mud slide; the failing of a hub traffic signal due to power outage; an automobile
failing to drive; and the blocking of a link due to an automobile accident

We shall not formalize events.
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1.7.2.3 Behaviour

Definition 53 Behaviours: A behaviour is a set of sequences of actions, events and
behaviours

Concurrency is modeled by the sets of sequences. Synchronization and communication of
behaviours are effected by CSP output/inputs: ch[{i,j}] !value/ch[{i,j}] ?.

Example 29 Road Net Traffic: Road net traffic can be seen as a behaviour of all the
behaviours of automobiles, where each automobile behaviour is seen as sequence of start,
stop, turn right, turn left, etc., actions; of all the behaviours of links where each link
behaviour is seen as a set of sequences (i.e., behaviours) of “following” the link entering,
link leaving, and movement of automobiles on the link; of all the behaviours of hubs (etc.);
of the behaviour of the aggregate of roads, viz. The Department of Roads, and of the
behaviour of the aggregate of automobiles, viz, The Department of Vehicles.

We shall, in this paper, consider aggregates as purely conceptual structures. That is,
structures have no behaviour (counterparts).

1.7.3 Channel

Definition 54 Channel: A channel is anything that allows synchronisation and commu-
nication of values between two behaviours

Example 30 Road Transport Interaction Channel:

channel { ch[ {ui,uj} ] | {ui,ij}:(HI|LI|AI)-set • ui 6=uj∧{ui,uj}⊆σuids } M

Channel array ch is indexed by a “pair” of distinct unique hub, link and automobile iden-
tifiers of the domain. We shall later outline M, the type of the “messages” communicated
between automobile, hub and link behaviours

1.7.4 Behaviours

We single out the perdurants of behaviours – as they relate directly to the parts of Sect.1.6.
The treatment is “divided” into three sections.

1.7.4.1 Behaviour Signature

Definition 55 Behaviour Signature: By the behaviour signature, for a part p, we shall
understand a pair: the name of the behaviour and a function type expression as indicated:

value
p: Uidp→14 Mereop→Sta Valsp→Mon Refsp→Prgr Valsp → { ch[{i,j}] | ... } Unit

14We have Schönfinckel’ed https://en.wikipedia.org/wiki/Moses Schönfinkel#Further reading

(Curried https://en.wikipedia.org/wiki/Currying) the function type
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where Uidp is the type of unique identifiers of part p; Mereop is the type of the mereology
of part p; Sta Valsp is a Cartesian15 of the type of static attributes of part p; Mon Refsp is
a Cartesian16 of the names of the types of monitorable attributes of part p; Prgr Valsp is
a Cartesian17 of the type of programmable attributes of part p; { ch[{i,j}] | ... } specifies
the channels over which part p may communicate; and Unit is the type name for the ()
value18

Example 31 Road Transport Behaviour Signatures:

value
hub: HI→MereoH→(HΩ×...)→(...)→(HHist×...)

→{ch[ {uid H(p),ai} ]|ai:AI•ai∈asuid} Unit
link: LI→MereoL→(LEN×...)→(...)→(LHist×...)

→{ch[ {uid L(p),ai} ]|ai:AI•ai∈asuid} Unit
automobile: AI→MereoA→(...)→(ηAVel×ηHAcc×...)→(APos×AHist×...)

→{ch[ {uid H(p),ri} ]|ri:(HI|LI)•ri∈hsuid∪lsuid} Unit

Here we have suggested additional part attributes: programmable hub and link histories,
HHist, LHist, monitorable automobile velocity and acceleration, AVel, AAcc; and omitted
other such part attributes: ’...’

1.7.4.2 Behaviour Description

Behaviour descriptions rely strongly on CSPs’ [55] expressivity. Leaving out some details
( , ‘...’), and without “further ado”, we exemplify.

Example 32 Automobile Behaviour at Hub:

1. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,

(b) or, internally non-deterministically,

(c) leaves the hub entering a link,

(d) or, internally non-deterministically,

(e) stops.

1 automobile(ai)(ris)(...)(apos:atH(hi), ) ≡
1a automobile remains in hub(ai)(ris)(...)(apos:atH(hi), )
1b ⌈⌉
1c automobile leaving hub(ai)(ris)(...)(apos:atH(hi), )
1d ⌈⌉
1e automobile stop(ai)(ris)(...)(apos:atH(hi), )

15– where the Cartesian may “degenerate” to the non-Cartesian of no, or just one type identifier
16cf. footnote 15
17cf. footnote 15
18– You may “read’ () as the value yielded by a never-terminating function
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2. [1a] The automobile remains in the hub:

(a) time is recorded,

(b) the automobile remains at that hub, “idling”,

(c) informing (“first”) the hub behaviour.

2 automobile remains in hub(ai)(ris)(...)(apos:atH(hi), ) ≡
2a let τ = record TIMEin
2c ch[ {ai,hi} ] ! τ ;
2b automobile(ai)(ris)(...)(apos:atH(hi), )
2 end

3. [1c] The automobile leaves the hub entering link li:

(a) time is recorded;

(b) hub is informed of automobile leaving and link that it is entering;

(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the
vehicle behaviour positioned at the very beginning (0) of that link.

3 automobile leaving hub(ai)({li}∪ris)(...)(apos:atH(hi), ) ≡
3a let τ = record TIMEin
3b (ch[ {ai,hi} ] ! τ ‖ ch[ {ai,li} ] ! τ) ;
3c automobile(ai)(ris)(...)(onL(li,(hi,0, ))) end
3 pre: [hub is not isolated]

The choice of link entered is here expressed (3) as a non-deterministic choice19. One can
model the leave hub/enter link otherwise.

4. [1e] Or the automobile “disappears — off the radar” !

4 automobile stop(ai)(ris),(...)(apos:atH(hi), ) ≡ stop

19– as indicated by the pre- condition: the hub mereology must specify that it is not isolated. Automo-
biles can never leave isolated hubs.
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1.7.4.3 Behaviour Initialization

For every manifest part it must be described how its behaviour is initialized.

Example 33 Road Transport Initialization: We “wrap up” the main example of this
paper: We omit treatment of monitorable attributes.

5. Let us refer to the system initialization as an action.

6. All hubs are initialized,

7. all links are initialized, and

8. all automobiles are initialized.

value
5. rts initialization: Unit → Unit
5. rts initialization() ≡
6. ‖ { hub(uid H(l))(mereo H(l))(attr HΩ(l))(attr HΣ(l))| h:H • h ∈ hs }
7. ‖ ‖ { link(uid L(l))(mereo L(l))(attr LEN(l),...)(attr LΣ(l))| l:L • l ∈ ls }
8. ‖ ‖ { automobile(uid A(a))(mereo A(a))(attr APos(a)) | a:A • a ∈ as }

We have here omitted possible monitorable attributes. For hs, ls, as we refer to Sect. 1.6.1.5
on page 35

1.8 Closing

to be written

1.8.1 Summary

This chapter has introduced the main concepts of domains such as we shall treat (analyse
and describe) domains.20 The next many chapters shall now systematically treat the
domain description language, MOLA, and the analysis and description of domains, including
the domain of computing ! That treatment takes concept by concept and provides proper
definitions and introduces appropriate analysis and description prompts; one-by-one, in an
almost pedantic, hence perhaps “slow” progression !

In-between, here-and-there, we shall “smuggle” concepts of domain analysis & description
tools and techniques. These are then covered more systematically in Chapter32.

1.8.2 Conclusion

to come

20We have omitted treatment of living species: plants and animals – the latter including humans.
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1.9 Exercises

Exercise 4 XDom:

Exercise 5 YDom:

Exercise 6 ZDom:
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In this chapter we shall introduce the programming cum modelling language MOLA’s concept
of Booleans. George Boole (1815–1864) was an English mathematician, philosopher, and
logician. Boolean logic is credited with laying the foundations for the Information Age.

Motivation: Logic
Logic is an indispensable tool in analyzing and understanding domains.

Study Hint: This chapter covers two “faces” of logic. The first “face”, Sects.2.1–
2.6, cover essential, basic material while Sect.2.7 covers more advanced material.
Students should learn the basics, teachers the advance material.

To reason1 is to form logic judgments2 – to express assertions3. Logic is the study and
practice of correct4 reasoning. In all of mathematics and in all of the exact sciences their
practitioners use logic to argue and to conclude their findings – “Logic has the important
function of saying what follows from what” [62, Chapter 1 § 1].

2.1 A Basis for Logic

Based on the Danish philosopher Kai Sørlander’s work [83–88] we postulate the following.

1reason: the power of the mind to think, understand, and form judgments logically
2judgment: the ability to make considered decisions or come to sensible conclusions
3assertion: a confident and forceful statement of fact or belief
4correct: the quality or state of being free from error, accurate
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2.1.1 The Possibility of Truth

The possibility of truth, that an assertion – made by humans – may either hold, be true,
or not hold, i.e., be false, is shared by us all. That is, the possibility of truth, is taken for
granted.

2.1.2 The Principle of Contradiction

Once we accept that the possibility of truth cannot be denied, we have also accepted the
principle of contradiction, that is, that an assertion and its negation cannot both be
true.

2.2 Truth Values true, false and Type Bool

2.2.1 Truth Values

So how do we express truth values. Well, no one has ever seen the truth values. But we
can give them names:

• true, false

true and false are literals. They are part of MOLA.

2.2.2 Truth Type

By a type we mean a class of values. We can give names to types. The name of the truth
type is Bool.5 Bool is a literal. It is part of MOLA.

2.3 Motivation: Simple Reasonings

To see, better, why logic “surrounds us”, i.e., is an indispensable element in our daily life:
reflections and communications, we present some informal examples.

Example 34 Informal Correct Reasoning, I:

9. Two plus three equals five.

10. Two plus three is not equal to six

5Bool, for Boolean, in honour of the mathematician George Boole, 1815–1864, professor at Queen’s
College, Cork in Ireland.
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In the “Two plus three equals five” example there are three sub-terms: (a) “Two plus
three”, (b) “equals” and (c) “five”. Terms (a) and (c) stand for numbers, in this case
2, respectively 3. Term (b) stand for an equality relation between [whatever] (a) and (c)
stands for. That relation either holds, or does not hold.

The relation in the “Two plus three is not equal to six” is ”not equal”; it is the negation
of an equality relation. That relation either holds, or does not hold.

Exercise 7 Correct Reasoning: The teacher asks the students, in groups of 1 or 2, to work
out a number of examples of correct reasoning. These exercises are then to be discussed in
class, as lead by the teacher, as to their meaningfulness

Example 35 Informal Incorrect Reasoning: Two examples of syllogisms6:

11. The Eiffel Tower is higher than the sounds of the bells of the Notre Dame church.

12. A stone is deaf. My grandmother is deaf. So my grandmother is a stone

In the “The Eiffel Tower is higher than the sounds of the bells of the Notre Dame church”
example the truth relation: “is higher” fails. It fails because its to operands: “The Eiffel
Tower” and “the sounds of the bells of the Notre Dame church” are in-commensurable:
cannot be compared. We say that these to terms, the operands, are of different type. One
is of type, say building, with attribute height, in this case a little over 300 meters; the
other is of type bell, with attribute decibel (dB, power of sound), in some cases 85dB.

The type concept, basically absent from mathematics, is of overwhelming importance
to us: in informatics and computer science. We shall use to the concept of type in all
chapters and focus on it, in particular, in Sect.6.1 and in Chapter12.

Exercise 8 Incorrect Reasoning: The teacher asks the students, in groups of 1 or 2, to
work out a number of examples of incorrect reasoning. These exercises are then to be
discussed in class, as lead by the teacher, as to their incorrectness

2.4 Logical Operations and Relations

2.4.1 General Form of Assertions

The general forms of logical assertions are

• it is the case that “such-and-such” is true.

• it is not the case that “such-and-such” is true.

If we replace the not by ∼ and the “such-and-such” with b and otherwise abbreviate, then
the above can be expressed as:

• b respectively ∼ b
6syllogism: an instance of a form of reasoning in which a conclusion is drawn from two given or assumed

propositions (premises); a common or middle term is present in the two premises but not in the conclusion,
which may be invalid (e.g. all dogs are animals; all animals have four legs; therefore all dogs have four
legs).
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2.4.2 Informal and “Formal” Assertions

In example 34 on page 51 there were two informal examples:

13. “Two plus three equals [=] five” and

14. “Two plus three is not equal [6=] to six”.

We illustrate, now, how they can be “formalised”:

13. (2+3) = 5

14. (2+3) 6= 5

We can extend example 34 on page 51 by yet some informal examples:

Example 36 Informal Correct Reasoning, II:

15. “Two plus three equals [=] five and [∧] two plus three is not equal [6=] to six”:
(((2 + 3) = 5)) ∧ ((2 + 3) 6=6),

16. “Two plus three equals five or [∨] two plus three is equal to six”:
(((2 + 3) = 5) ∨ (2 + 3))=6,

17. “Two plus three equals five is not [6=] false”:
¬(¬((2 + 3) = 5))

Etcetera:

18. “Two plus three is not equal to six”:
(2 + 3) 6= 6

19. “Two plus three equals five and two plus three is not equal to six”

20. “Two plus three equals five or two plus three is equal to six”

21. “Two plus three equals five is not false”

22. “Two plus three is not equal to six”

23. “Two smaller than three and three smaller than four imply two plus three smaller
than seven” and

24. “It is not the case that the Eiffel Tower is higher than the sounds of the bells of the
Notre Dame church”
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2.5 Model Theory

In mathematical logic, model theory is the study of the relationship between formal theories
(a collection of sentences in a formal language expressing statements about a mathematical
structure), and their models (those structures in which the statements of the theory hold)7.

The formal language statements are here expressed in terms of the Boolean connectives:
∧,∨,∼,⊃, and ≡; and the models are here expressed in terms of the truth tables of this
section.

The examples of the previous section illustrate combinations of assertions by means of
the logic[al] operators:

• “and”, ∧, • “or”, ∨, • “not” ∼, and • “imply”, ⊃,

and the relation[al] operator:

• “is equivalent to” ≡.

We shall now explain the operations denoted by these operators and the “is equivalent
to” relation. We shall assume that the arithmetic operators “plus” etc. +,−, ∗, / and
arithmetic, i.e., number, relations “smaller” etc. <,≤,=, 6=, >,≥ are known to the reader.

2.5.1 Negation: “not”, ∼
The general form of a negated logical assertion was ∼ b.

• it is not the case that “such-and-such” is true.

We explain the “meaning” of not, i.e., ∼, as it appears in ∼ b:

• If b is true then ∼ b is false.

• If b is false then ∼ b is true.

• If b is chaos then ∼ b is chaos.

We need this last clause to explain the meaning of Example 36.20 on the preceding page.
This is summarised in Table 2.1 on the next page.

2.5.2 Conjunction: “and”, ∧
We proceed to explain the conjunction operator as it appears in a ∧ b.

• If a is true and b is true then a ∧ b is true.

• If a is true and b is false then a ∧ b is false.

7Chang and Keisler: https://books.google.dk/books?id=uiHq0EmaFp0C&pg=PA1&redir esc=y#v=-
onepage&q&f=false
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∼
true false
false true
chaos chaos

Table 2.1: Negation: “not”, ∼

• If a is true and b is chaos then a ∧ b is chaos.

• If a is false and b is true then a ∧ b is false.

• If a is false and b is false then a ∧ b is false.

• If a is false and b is chaos then a ∧ b is false.

• If a is chaos and b is true then a ∧ b is chaos.

• If a is chaos and b is false then a ∧ b is chaos.

• If a is chaos and b is chaos then a ∧ b is chaos.

This is summarised in Table 2.2.

∧ true false chaos

true true false chaos
false false false false
chaos chaos chaos chaos

Table 2.2: Conjunction: “and”, ∧

2.5.3 Disjunction: “or”, ∨
We proceed to explain the disjunction operator as it appears in a ∨ b.

• If a is true and b is true then a ∨ b is true.

• If a is true and b is false then a ∨ b is true.

• If a is true and b is chaos then a ∨ b is true.

• If a is false and b is true then a ∨ b is true.

• If a is false and b is false then a ∨ b is false.

• If a is false and b is chaos then a ∨ b is chaos.
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• If a is chaos and b is true then a ∨ b is chaos.

• If a is chaos and b is false then a ∨ b is chaos.

• If a is chaos and b is chaos then a ∨ b is chaos.

This is summarised in Table 2.3.

∨ true false chaos

true true true true
false true false chaos
chaos chaos chaos chaos

Table 2.3: Disjunction: “or”, ∨

2.5.4 Implication: “imply”, ⊃
• If a is true and b is true then a ⊃ b is true.

• If a is true and b is false then a ⊃ b is false.

• If a is true and b is chaos then a ⊃ b is chaos.

• If a is false and b is true then a ⊃ b is true.

• If a is false and b is false then a ⊃ b is true.

• If a is false and b is chaos then a ⊃ b is true.

• If a is chaos and b is true then a ⊃ b is chaos.

• If a is chaos and b is false then a ⊃ b is chaos.

• If a is chaos and b is chaos then a ⊃ b is chaos.

This is summarised in Table 2.4.

⊃ true false chaos

true true false chaos
false true true true
chaos chaos chaos chaos

Table 2.4: Implication: “imply”, ⊃

You might wonder that why is p ⊃ q true when p is false.
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This is because the implication guarantees that when p and q are true then the im-
plication is true. But the implication does not guarantee anything when the premise p is
false. There is no way of knowing whether or not the implication is false since p did not
happen. This situation is similar to the “Innocent until proven Guilty” stance, which means
that the implication p ⊃ q is considered true until proven false. Since we cannot call the
implication p ⊃ q q false when p is false, our only alternative is to call it true.

2.5.5 Equivalence: “if-and-only-if”, ≡
Without further ado:

≡ true false chaos

true true false chaos
false true true chaos
chaos chaos chaos chaos

Table 2.5: Equivalence: “if-and-only-if”, ≡

2.5.6 Equality: “is equal to, is not equal to”, =, 6=
The symbols = and 6= stand for relations.

Definition 56 Relation: By a relation we shall, in this book, mean a mathematical concept
which expresses the way in which two or more things are connected; a thing’s effect on or
relevance to another

For the time being, when we have only formally introduced Boolean values and informally
relied on numbers relations, like = and 6=, connect either a pair of Boolean[ value]s or a
pair of numbers. Thus, in a = b, if a is the same [value] as is b, then a = b is said to hold,
to be true, otherwise false. If a stands for a Boolean and b for a number then a = b makes
no sense, and we say that a = b stands for chaos.

2.6 The if .. then ... else ...end Conditional

Sections2.5.1–2.5.4 informally introduced, in the observer’s language, the if .. then ...
else ...end construct. We “lift” that construct to be a construct of the object language:

• if P then Q else R end

where P is any Boolean expression and Q and R are, in general, any expression of the
object language. In this chapter they are [just] Boolean expressions.
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2.7 Proof Systems

2.7.1 Model Theory

Model theory was firs covered in Sect. 2.5 on page 54.

more to come

2.7.2 Axioms

Definition 57 Axiom: An axiom, postulate, or assumption is a statement that is taken to
be true, to serve as a premise or starting point for further reasoning and arguments. The
word comes from the Ancient Greek word αξιωµα (axōma), meaning that which is thought
worthy or fit or that which commends itself as evident

more to come

2.7.3 Proof Theory

to come

2.7.4 Deduction Rules

https://personal.math.ubc.ca/~cytryn/teaching/scienceOneF10W11/handouts/OS.-

proof.3inference.html

Definition 58 Deduction Rule: In mathematical logic, a deduction theorem is a meta-
theorem that justifies doing conditional proofs from a hypothesis in systems that do not
explicitly axiomatize that hypothesis, i.e. to prove an implication A⊃B, it is sufficient to
assume A as an hypothesis and then proceed to derive B

2.7.4.1 Modus Ponens

P ⇒ Q ;P
Q

2.7.4.2 Modus Tollens

P ⇒ Q ; ∼ Q
∼ P

2.7.4.3 Hypothetical Syllogism

P ⇒ Q ; Q ⇒ R
P ⇒ R
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2.7.4.4 Disjunctive Syllogism

P ∨ Q ; ∼ P
Q

2.7.4.5 Constructive Dillemma

(P ⇒ Q) ∧ (R ⇒ S) ; P ∨ R

Q ∨ S

2.7.4.6 Destructive Dillemma

(P ⇒ Q) ∧ (R ⇒ S) ; ∼ Q ∨ ∼ S

∼ P ∨ ∼ T

2.7.4.7 Simplification

P ∧ Q
P

2.7.4.8 Conjunction

P ; Q
P ∧ Q

2.7.4.9 Addition

P
P ∨ Q

2.7.5 Proofs

to come

2.7.6 Proof Systems Summary

to come

2.8 Syntax

By syntax we shall mean the arrangement of elements (e.g., words or parts) and their com-
position (e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or
parts) in a language or model. [By words and phrases we mean those of a (written/spoken)
laguages; and by parts we mean those of a domain model.]
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We present, below, a first version of a syntax, a so-called BNF Grammar8 9, of Boolean
expressions, that is, expressions whose value are either of the Boolean truth values.

BNF Grammar: Boolean Expressions

<Boolean-expr> ::= true | false
| (∼<Boolean-expr>)
| (<Boolean-expr><InfixBoolean-op><Boolean-expr>)
| b
| ...
| if <Boolean-expr>

then <Boolean-expr>
else <Boolean-expr> end

<InfixBoolean-op> ::= ∧ | ∨ |⊃|=|6=|≡

The BNF Grammar shall be understood as follows:

• true and false are a Boolean expressions.

• The pair ∼ followed by a Boolean expression of is a Boolean expression.

• The parenthesized triplet of two Boolean expressions separated by a Boolean opera-
tor, either ∧, or ∨, or ⊃, or =, or 6=, or ≡, in that order, left-to-right, is a Boolean
expression. then b is a Boolean expression.

• Let b be an identifier standing for a Boolean truth value, then b is a Boolean expres-
sion.

• There are many more kinds of Boolean expressions: over sets (Sect. 3.4.1 on page 68),
numbers (Sect. 4.3.1 on page 79), Cartesians (Sect. 8.4 on page 113), lists (Sect. 10.3
on page 137), maps (Sect. 11.3 on page 147), etc.

• The if-then-else-end clause is a Boolean expression if the then and else clauses are
Boolean expressions.

2.9 Summary and Conclusion

to be written

8https://en.wikipedia.org/wiki/Backus-Naur form
9A BNF Grammar, syntactically, is a set of one or more BNF Rules. A rule has three elements: a left

hand side so-called non-terminal [syntax category] name, shown within <...> brackets; a definition symbols:
::=, and a right hand side syntax expression. The right hand side syntax expression consists of one or
more syntax sub-expressions separated by vertical bars (|). A syntax sub-expression is a definite sequence
of zero, one or more either a terminal , i.e., a literal (like true, false, if, then or else), or non-terminal names
– identifiers not “surrounded” by <...>. Semantically a BNF Grammar defines, from one point of view, a
possibly infinite set of texts consisting of terminals.
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2.9.1 Summary

It is all very simple: We have introduced

• truth values true and false, Sect.2.2.1;

• the Boolean type Bool ,Sect.2.2.2;

• the Boolean operations denoted by the Boolean operators ∼,∨,∧,⊃,=, 6= and ≡,
Sect.2.5;

• the model theory truth tables, Sect.2.4; and

• the if ... then ... else ... end MOLA language clause, Sect.2.6.

The less simple things were: in Sect.2.7, Proof Systems:

• More on Model Theory , Sect. 2.7.1 on page 58;

• on Axioms, Sect. 2.7.2 on page 58;

• on Proof Theory , Sect. 2.7.3 on page 58;

• on Deduction Rules, Sect. 2.7.4 on page 58; and

• on Proofs, Sect. 2.7.5 on page 59.

Our coverage of the former, “the simple”, is sufficient for this book. Our coverage of the
later, “the less simple”, is only presented here in order to entice the curious and capable
reader onto real mathematical Logic!̇

2.9.2 Conclusion

Mathematics may, by some, be called “The Queen of Sciences”10. We may agree, but add:
“Mathematical Logic is the first, primus inter pares11, among the mathematical disciplines” !

We refer the student to some seminal textbooks in mathematical logic.

• Under-graduate Texts:

– Smullyan, Raymond: A Beginner’s Guide to Mathematical Logic, Dover Books on
Mathematics.ISBN 0486492370;

– Enderton, Herbert (2001). A mathematical introduction to logic (2nd ed.). Boston
MA: Academic Press. ISBN 978-0-12-238452-3;

– Mendelson, Elliott (1997). Introduction to Mathematical Logic (4th ed.). London:
Chapman & Hall. ISBN 978-0-412-80830-2;

10– where “Physics is the King of Sciences – with the Queen, i.e., Mathematics, supporting all the sciences.
11– first among equals
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– van Dalen, Dirk (2013). Logic and Structure. Universitext. Berlin: Springer.
doi:10.1007/978-1-4471-4558-5. ISBN 978-1-4471-4557-8;

– van Dalen, Dirk (2013). Logic and Structure. Universitext. Berlin: Springer.
doi:10.1007/978-1-4471-4558-5. ISBN 978-1-4471-4557-8.

• Under-graduate Texts:

– Barwise, Jon, ed. (1989). Handbook of Mathematical Logic. Studies in Logic and
the Foundations of Mathematics. Amsterdam: Elsevier. ISBN 9780444863881;

– Kleene, Stephen Cole.(1952), Introduction to Metamathematics. New York: Van
Nostrand. (Ishi Press: 2009 reprint);

– Kleene, Stephen Cole. (1967), Mathematical Logic. John Wiley. Dover reprint,
2002. ISBN 0-486-42533-9;

– Shoenfield, Joseph R. (2001) [1967]. Mathematical Logic (2nd ed.). A .K. Peters;
ISBN 9781568811352.

2.10 Exercises

Exercise 9 XLogic:

Exercise 10 YLogic:

Exercise 11 ZLogic:
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a Band of Musicians a Bevy of Beauties

a Bunch of Crooks a Crew of Sailors

a Deck of Cards a Fleet of Ships

a Flock of Geese a Gang of Outlaws

a Group of People a Herd of Cattle

a Mop of Hair a Pack of Dogs

a Posse of Vigilantes a Pride of Lions

a School of Dolphins a Suite of Bells

a Swarm of Flies a Volley of Arrows

– all are examples of sets of entities of a specified type

Motivation: Sets
Around us, in our world, in any universe, sets abound – as the above text illustrate. The
concept of sets can be said to be a universal: can be justified by rational arguments,
cf. [83–87]. There is no way around it, we cannot escape the notion of sets when creating
domain models. [We are not using sets because they happen to be a foundation for
mathematics. It’s the other way around: Mathematics cannot escape dealing with sets !]

Study Hint: This chapter should be studied carefully. Sections3.7–3.8 are more
for reference – for the mature, capable reader.

In this chapter we shall introduce the programming cum modelling language MOLA’s concept
of Sets. The German mathematicians Ernst Zermelo (1871–1953) and Abraham Fraenkel
(1891–1965) made major contributions to the mathematical concept of sets [1, 44, 45].

The present chapter and chapters 8, 10 and 11, are similarly structured1.

3.1 Informal Presentations of Sets: Venn Diagrams

Figure 3.1 on the facing page shows five Venn2 Diagrams. You should think of the shaded
areas to “contain” a number of [set] elements. Consider, for example, the leftmost diagram.
You are to interpret, to understand the two shaded circles, labeled A and B, as designating,
standing for possibly infinite sets of entities. Some entities of set A may also be entities of
set B.
The set union, cup, of A and B, i.e., A∪B [see the second diagram from the left in Fig.3.1],
is then the set of elements of either A or B or both.

The set intersection, cup, of A and B, i.e., A∩B [see the third diagram from the left in
Fig.3.1], is then the set of elements of both A and B.

1Editorial note: But not yet in the “similarly structured” form that I would wish !
2John Venn, FRS, FSA (1834–1923) was an English mathematician, logician and philosopher noted

for introducing Venn diagrams, which are used in logic, set theory, probability, statistics, and computer
science [Wikipedia].



65

B
A A U B [union]

A

U

B [intersection]
A \ B [difference] A / B [projection]

Figure 3.1: Two sets, set union, intersection, difference \, and complement /

The set difference, \, of A and B, i.e., A\B [see the fourth diagram from the left in
Fig.3.1], is then the set of elements of A which are not elements of B.

The set complement, /, of A and B, i.e., A/B [see the fifth diagram from the left in
Fig.3.1], is then the set of elements of B which are not elements of A.

Definition 59 Set: By a set we shall, loosely, understand an unordered collection of dis-
tinct elements (i.e., entities) — something for which it is meaningful to speak about the
following operations: (i) an entity being a member of a set (or not), ∈; (ii) the union
(merging) of two or more sets into a set (of all the elements of the argument sets), ∪; (iii)
the intersection of two or more sets into a set (of those elements which are in all argument
sets) ∩; (iv) the complement of one set with respect to another set \ or /; (v) whether one
set is a proper subset or just a subset of another set, ⊂ and ⊆, or whether they are equal
or not, =, resp. 6=; and (vi) the cardinality of a (finite) set (i.e., how many members it
“contains”) card; etc.

3.2 Set Presentations

The present section is structured into two subsections, as are Sects.10.1 and 11.1.

3.2.1 Set Enumeration

Let a 1, a 2, ..., a n, ... stand for some distinct elements, then

value { a 1, a2, ..., a n }, respectively { a 1, a2, ..., a n, ... }

expresses an informal, abstract way of explicitly enumerating a finite, respectively infinite
sets of n element. It is the use of further unidentified ais and the ellipses: “...” that makes
the presentation informal and abstract. The first ellipses to “abstract” from having to
enumerate all a elements, the second ellipses to indicate infinity. A formal, concrete, finite
set example could be:

Example 37 A Basket of Fruits: Let a 1, a 2, a 3 stand for three distinct apples, p 1, p 2
for two distinct pears, and o for a single orange, then

value { a 1, p 2, a 3, a 2, o }

then exemplifies a basket, a finite set, of fruits
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3.2.2 Set Comprehension

Definition 60 Set Comprehension: By a set comprehension we shall mean the description
of a possibly infinite set in terms of a predicate that the comprehended set elements must
satisfy

Exercise 12 A Set Example: Let fact name the factorial function, then

{ fact(i) | i:Nat • i ∈ {1..6} }

expresses a simple set of six elements, the first six factorials. Here the predicate is i:Nat
• i ∈ {1..6}

Let A be some type with elements a 1, a 2, ..., a n, ... and let aset be a finite or infinite
set of element in A. Let p:P be a predicate over elements of A, and let q:Q be a function
over [perhaps not all] a:A yielding elements b of type B. Then the last line in the below
five lines of two MOLA specification units3

type
A, B

value

aset:A-set, p: A→Bool, q: A
∼→B

qaset:B-set = { q(a) | a:A, aset:A-set • a ∈ aset ∧ p(a) }

expresses a set comprehension. In short: it denotes the set of all those q(a) of type B
for which, “such that” (|), the a, of type A, is in aset and the property p(a) holds. The
comprehended sets may be finite or infinite !

The signs { and } can be said to form and delineate the set. The | separates the text
between the { and } into two texts. To the left of | is an expression, here just a. To the
right of | there are two texts separated by a •. Between | and • the clause defines the
type of a, hence its “larger” range, and its actual range aset. Between • and }, the as are
limited here to within aset, and the predicate clause, p(a), delimits the as to those which
satisfy that predicate, i.e., for which as holds, i.e,, is true.

Set comprehension, in general, usually applies to a set s, of elements of type, say A.
Comprehension then results in a set, say, of type B elements.

These latter elements, q(a), derive from such s elements, a, which satisfy some predicate,
P(a). The resulting elements, p(a) follows .

3.3 Set Types

Let [the arbitrarily chosen, capital letter identifier] A name a type of entities, and let [the
likewise arbitrarily chosen, capital letter identifier] B name the type of sets of A entities,
then the three MOLA specification units

3cf. definition 16 on page 9.
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• [1:] type A

• [2:] type Bf = A-set

• [3:] type Bi = A-infset

introduces type A and defines Bf and Bi. Bf , respectively Bi define collections of finite
cardinality respectively possibly infinite cardinality sets of A entities. By cardinality we mean
the quantity of entities of a set.

The above type introduction and type definitions shall be understood as follows:

• [1:] There is the literal, the keyword, type.

– A is [a perhaps arbitrarily chosen] type identifier ;

– here it denotes some further undefined space of values.

• [2–3:] There is the literal, the keyword, type and an equal symbol, =.

Together they “signal”, to the reader, that what follows is the definition of a type.

– with left-hand side type identifiers, here Bf and Bi, being the names of the type
being defined,

– with a right-hand side type expression, here A-set, respectively A-set.

– [2.] Bf defines a space of finite sets of elements of A – even though A may
contain an infinite number of elements.

– [3.] Bi defines a space of both finite and infinite sets of elements of A – where,
if A is a space of finite “size”, then Bi will not contain infinite sets !

3.4 Model Theory: Sets

Let e1, e2, . . . , en be arbitrary elements (i.e., mathematical entities). Let us assume, with-
out loss of generality (of what we shall have to say next), that they are all distinct and
elementary, i.e., atomic. That is, no ei involve functions, or other sets, etc. Then when
writing {e1, e2, . . . , en} we mean the set, which we may name s, of n distinct elements ei
for i = 1 . . . n. {} designates the empty set (of no elements). { and } are the set-forming
braces.

We take membership, ∈, of a set, e ∈ s, to be a further unexplained primitive function.
e ∈ s holds, i.e., is true, if e is one of the ei for i = 1 . . . n. Otherwise the expression e ∈ s
is false.

Based on the membership function we can now define4 the standard collection of oper-
ations over sets. Let e, s, s′ designate any element and any two sets.

4The below explications, 3.1–3.8, are all in the classical style of mathematics.
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3.4.1 Set Operations

First we introduce and explain set-forming operations. The operation names, i.e., the set
forming operators are: ∪,∩, \ and /.

3.1. The union, ∪, of two sets, s and s′, is the set of entities e which are either in s or
(∨) in s′ [or in both].

3.2. The intersection, ∩, of two sets, s and s′, is the set of entities e which are both in s
and (∧) in s′.

3.3. The difference, \, of two sets, s and s′, is the set of entities e which are in s but not
( 6∈) in s′.

3.4. A set is a projection, /, of a set s′ with respect to another set s, if its entities e are
in s′ and not in ( 6∈) s.

In mathematics, not MOLA:

s ∪ s′ = {e | e ∈ s ∨ e ∈ s′} (3.1)

s ∩ s′ = {e | e ∈ s ∧ e ∈ s′} (3.2)

s \ s′ = {e | e ∈ s ∧ e 6∈ s′} (3.3)

s / s′ = {e | e ∈ s′ ∧ e 6∈ s} (3.4)

3.4.2 Set Relations

First we introduce and explain set relations. The relation names, i.e., the set forming
operators are: ⊂,⊆,= and 6=.

3.5. A set s is a proper subset (⊂) of another set s′ if for all (∀) entities e in s implies
(⇒) that e is also in s′, and (∧) there exists (∃) an entity e′ in s′ which is not in (/∈)
s.

3.6. A set s is a subset (⊆) of another set s′ if for all (∀) entities e in s implies (⇒) that
e is also in s′.

3.7. Two sets s and s′ are equal (=) if they are subsets of each other.

3.8. Two sets s and s′ are not equal ( 6=) if they are not equal .

In mathematics, not MOLA:

s ⊂ s′ = ∀e • e ∈ s ⇒ e ∈ s′ ∧ ∃e • e ∈ s′ ∧ e 6∈ s (3.5)

s ⊆ s′ = ∀e • e ∈ s ⇒ e ∈ s′ (3.6)

s = s′ = s ⊆ s′ ∧ s′ ⊆ s (3.7)

s 6= s′ = ¬(s = s′) (3.8)
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3.4.3 Set Arithmetics

Presupposing knowledge of natural numbers, see Chapter4, we can define the cardinality
of a finite set as the number of its [distinct] entities: the cardinality of the empty set is 0;
and the cardinality of a non-empty set s consisting of an entity e and a set s′ [of which e
is not an element) is 1 plus the cardinality of s′.

card({}) = 0 (3.9)

card({e} ∪ s) = 1 + card(s) (3.10)

3.4.4 Relations

Let X stand for any set and R for a relations relations over sets. From https://en.wi-

kipedia.org/wiki/Relation (mathematics) [Wikipedia] we “unabashedly lift”:

• Reflexive: for all x ∈ X, xRx. For ex-
ample, ≥ is a reflexive relation but >
is not.

• Irreflexive: for all x ∈ X , ¬xRx. For
example, > is an irreflexive relation,
but ≥ is not.

• Symmetric: for all x, y, zX , if xRy
then yRx. For example, “is a blood
relative of” is a symmetric relation, be-
cause x is a blood relative of y if and
only if y is a blood relative of x.

• Antisymmetric: for all x, y ∈ X , if
xRy and yRx then x = y. For exam-
ple, ≤ is an antisymmetric relation; so
is >, but vacuously so (the condition
in the definition is always false).

• Asymmetric: for all x, y ∈ X , if xRy
then ¬yRx. A relation is asymmetric
if and only if it is both antisymmetric
and irreflexive. For example, > is an
asymmetric relation, but ≥ is not.

• Transitive: for all x, y, z ∈ X , if xRy
and yRz then xRz. A transitive re-
lation is irreflexive if and only if it is
asymmetric. For example, “is ances-
tor of” is a transitive relation, while
”is parent of” is not.

• Equivalence: A relation that is reflex-
ive, symmetric, and transitive. It is
also a relation that is symmetric, tran-
sitive, and serial, since these properties
imply reflexivity.

• Partial Order: A relation that is re-
flexive, antisymmetric, and transitive.

• Strict Partial Order: A relation that
is irreflexive, antisymmetric, and tran-
sitive.

• Total Order: A relation that is reflex-
ive, antisymmetric, transitive and con-
nected.

• Strict Total Order: A relation that
is irreflexive, antisymmetric, transitive
and connected.
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3.5 Playing Around with Sets

In this and in Sects.4.4, 8.5, 10.4, and 11.4, we present a number of “standard” examples
of operations on sets, numbers, Cartesians, lists and maps. In this section with sets.

3.5.1 Classical Functions of Sets

Example 38 Power Set:

25. Let A be any non-function type, and

26. let sa:SA be any [finite] set of A elements.

27. The power set of sa, psa, is a set of sets of A elements such that any and only subsets
of sa, including the empty subset are in psa.

type
25. A
26. SA = A-set
27. PSA = SA-set
value
26. sa:SA
27. power set: SA → PSA
27. power set(sa) ≡ { ssa | ssa:SA • ssa ⊆ sa }

Example 39 Set Union Closure: A collection, or family, of sets is considered union-closed
if the union of any two sets in the family equals any existing set in the family5.

28. Let A be any type and sa be any [finite] set of elements of A.

29. The function set union closure, applied to any sa yields the set union closure of sa.

type
28. A
value
28. sa:A-set
29. set union closure: A-set → A-set
29. set union closure(sa) ≡ { ssa1 ∪ ssa2 | ssa1,ssa2:A-set • ssa1 in sa ∧ ssa3 in sa }

Example 40 The Partitioning Problem: A classical problem in management is the par-
titioning problem.

5https://www.quantamagazine.org/long-out-of-math-an-ai-programmer-cracks-a-pure-math-problem-
20230103/?mc cid=ca0d0b5110&mc eid=783b63461a



71

30. Let A be any non-function type,

31. S be the type of finite sets of a : A,
and

32. P be the type of finite sets of elements
of S.

33. p : P is a partition of s : S,

(a) if the union of all sets in p is s,

(b) if for all s′, s′′ in S both are sub-
sets of s and both are in p,

(c) and they have no elements in
common.

34. Partitions of s : S are maximal sets

(a) of partitions such there there

(b) does not exist a p′ : P

(c) not in ps and

(d) p′ : P a partition of s.

type
30. A
31. S = A-set
32. P = S-set
value
33. is partition: P × S → Bool
33. is partition(p,s) ≡
33a. ∪ p = s ∧
33b. ∀ s′,s′′:S • s′⊆s ∧ s′′⊆s ∧ s′ ∈ p ∧ s′′ ∈ p
33c. ⇒ s′ ∩ s′′ = {}

34. partitions: S → P-set
34. partitions(s) as ps
34a. • ∀ p:P • p ∈ ps ⇒ is partition(p,s)
34b. ∧ ∼∃ p′:P •

34c. p′ 6∈ ps ∧
34d. is partition(p′,s)

3.5.2 Functions over Sets

3.5.2.1 Sum of Number Sets

35. Let S be the type of finite sets of natural numbers.

36. Then function sum of numbers sum the numbers of sets s S:

(a) The cases construct examines set s.

(b) If it is empty, {}, then the sum is 0;

(c) If it is not empty, then s can be expressed as the union, ∪, of a singleton set of
a number n and the set s′ such that their union is s, in shich case the sum of s
is the sum of n and the sum of s′.



72

type
35. S = Nat-set
value
36. sum of numbers: S → Nat
36. sum of number(s) ≡
36a. case s of:
36b. {} → 0,
36c. {n} ∪ s′ → n + sum of number(s′)
36. end

Another other version of sum of numbers is:

value
36.′ sum of numbers(s) ≡
36a.′ if s={}
36b.′ then 0
36c.′ else let n:Nat • n ∈ s in n + sum of numbers(s\{n})
36.′ end

3.5.2.2 Equal Sum Partitions of Number Sets

37. Let PS be set of sets of natural numbers.

38. An equal sum partition set of numbers is a partition, on ps:PS, all of whose element
sets have the same sum.

type
37. PS = (Nat-set)-set
value
38. equal sum part set: PS → Bool
38. equal sum part set(ps) ≡
38. is partition(ps) ∧ ∀ s,s′:Nat-set•{s,s′}⊆ps ∧ sum of numbers(s)=sum of numbers(s′)

3.5.2.3 A Sociology Example

39. Let c:C stand for a citizen c of type C.

40. Let g:G stand for a group g of citizens of type of G.

41. Let s:S stand for any set of groups, respectively the type of all such.

42. Two otherwise distinct groups are related to one another if they share at least one
citizen, the liaisons, l:L.
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43. A network n:N is a set of groups such that for every group in the network one can
always find another group with which it shares liaisons.

Solely using the set data type and the concept of subtypes, we can model the above:

type
39. C
40. G′ = C-set, G = {| g:G′

• g 6={} |}
41. S = G-set
42. L′ = C-set, L = {| ℓ:L′ • ℓ 6={} |}
43. N′ = S, N = {| s:S • wf S(s) |}
value
41. wf S: S → Bool
41. wf S(s) ≡ ∀ g:G • g ∈ s ⇒ ∃ g′:G • g′ ∈ s ∧ share(g,g′)
42. share: G×G → Bool
42. share(g,g′) ≡ g 6=g′ ∧ g ∩ g′ 6= {}
42. liaisons: G×G → L
42. liaisons(g,g′) = g ∩ g′ pre share(g,g′)

Annotations: L stands for proper liaisons (of at least one liaison). G′, L′ and N′ are the
“raw” types which are constrained to G, L and N. {| binding:type expr • bool expr |} is the
general form of the subtype expression. For G and L we state the constraints “in-line”,
i.e., as direct part of the subtype expression. For N we state the constraints by referring
to a separately defined predicate. wf S(s) expresses — through the auxiliary predicate —
that s contains at least two groups and that any such two groups share at least one citizen.
liaisons is a “truly” auxiliary function in that we have yet to “find an active need” for this
function!

The example is a model of a social structure suggested by [89, Fei XaioTong’s book
From the Soil – The Foundations of Chinese Society: XiangTu ZhongGuo]6.

3.6 Syntax

By syntax we shall mean the arrangement of elements (e.g., words or parts) and their com-
position (e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or
parts) in a language or model. [By words and phrases we mean those of a (written/spoken)
laguages; and by parts we mean those of a domain model.]

We present, below, a second version7 of a syntax, a so-called BNF Grammar8, of set

6https://en.wikipedia.org/wiki/Fei Xiaotong
7Section 2.8 on page 59 brought a first version
8https://en.wikipedia.org/wiki/Backus-Naur form
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expressions, that is, expressions whose value are sets9.

BNF Grammar: Set Expressions

<Set-Expr> ::= {}
| { <Expr-sequence> }
| { <Id> | <IdTypList> • <Pred-expr> }
| <Set-Expr> <Set-op> <Set-Expr>

<IdTypList> ::= <Id>:<Type-expr>
| <IdTypList>, <Id>:<Type-expr>

<Set-op> ::= ∪ | ∩
<Expr-sequence> ::= <Constant>

| <Variable>
| <Expression> , <Expr-sequence>

<Type-expr> ::= ...
<Pred-expr> ::= ...
<Constant> ::= ...
<Variable> ::= <Id>

<Boolean-expr> ::= <Set-Expr> <Set-relation> <Set-Expr> | ...
<Set-relation> ::= =|6=|⊂|⊆
<Arith-expr> ::= card <Set-Expr> | ...

The BNF Grammar above also shows rudiments of the syntax of Boolean and arithmetic
expressions (...).10

3.7 The Zermelo Fraenkel Axiom System for Sets

We “lift” from https://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html.
The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel set theory . In the

following, ∃ stands for “there exists”, ∀ means “for all”, ∈ stands for “is an element of”,
{} for “the empty set”, ⊃ for “implies”, ∧ for “and”, ∨ for ”or”, ≡ for “if-and-only-if”
(identity), and = for “is equal to”. By • we mean: “it is the case that”.

• Axiom of Extensionality: If X and Y
have the same elements, then X = Y .

∀ u • (u∈X ≡ u∈Y ) ⊃ X = Y .

• Axiom of the Unordered Pair11: For any

a and b there exists a set {a, b} that con-
tains exactly a and b.

∀a, ∀b, ∃c, ∀x• (x ∈ c ≡ (x = a∨x = b))

• Axiom of Subsets12: If φ is a property

9{, },∪,∩,=, 6=,⊂,⊆, •, and | (when occurring in a right hand side syntax expression) are terminal
names and literals.

10We shall show BNF Grammars for type expressions, predicate expressions and constants elsewhere.
11Also called Axiom of Pairing
12Also called Axiom of Separation or Axiom of Comprehension
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(with parameter p), then for any X and
p there exists a set Y = {u∈X • φ(u, p)
that contains all those u in X that have
the property φ.

∀X, ∀p, ∃Y , ∀u
• (u∈Y ≡ (u ∈ Z ∧ φ(u, p)))

• Axiom of the Sum Set13: For any X
there exists a set Y= ∪X, the union of
all elements of X.

∀X,∃Y,∀u
• (u ∈ Y ∃z • (z ∈ X ∧ u ∈ z))

• Axiom of the Power Set: For any X
there exists a set Y = B(X), the set of
all subsets of X.

∀X,∃Y,∀u• (u∈Y≡u ⊆ X)

• Axiom of Infinity: There exists an infi-

nite set.

∃S • S = {}∧ ∀x ∈ S • (x ∪ {x} ∈ S)

• Axiom of Replacement: If F is a func-
tion, then for any X there ∃ a set Y =
F [X] = {F (x) : x ∈ X}.

∀x, y, z •
(φ(x, y, p) ∧ (φ(x, z, p) ⊃ (y = z))) ⊃
∀X,∃Y,∀y • (y ∈ Y )

• Axiom of Foundation14: Every
nonempty set has an ∈-minimal
(inclusion-minimal) element.

∀S • (S 6= {}) ⊃(∃x ∈ S • S ∩ x = {})

• Axiom of Choice: Every family of
nonempty sets has a choice function A.

∀x ∈ a,∃A(x, y) ⊃∃y,∀x ∈ a ⊃ A(x, y(z))

The above system of axioms without the axiom of choice is called Zermelo-Fraenkel set
theory, denoted ZF. This system of axioms minus the axiom of replacement (and choice) is
called Zermelo set theory, denoted Z. The set of all axioms (i.e., with the axiom of choice)
is usually denoted ZFC.

3.8 Proofs

to be written

3.9 Closing

to be written

3.9.1 Summary

It is all either very simple.
We have covered a number of set concepts:

• Set Presentations: Enumeration and comprehension, Sect.3.2;

13Also called Axiom of Union
14also called Axiom of Regularity
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• Set Types: type A-set and A-infset, Sect.3.3; and

• Model Theory: Sets: ∈,∪,∩, \, /,=, 6=,⊂,⊆ and card, Sect.3.4.

or less so:

• The Zermelo Fraenkel Axiom System for Sets, Sect.3.7; and

• Proofs, Sect.3.8.

3.9.2 Conclusion

We refer the interested, mature reader to seminal textbooks on set theory.

• P.R. Halmos: Naive Set Theory (1974);

• AA Fraenkel, Y Bar-Hillel, A Levy: Foundations of set theory (1973);

• Suppes: Axiomatic set theory (1972) ;

• Quine: Set theory and its logic (1969); and

• Herbert B. Enderton: Elements of Set Theory (1977).

3.10 Exercises

Exercise 13 XSets: [We refer to Sect. ?? on page ??.]

Exercise 14 YSets: [We refer to Sect. ?? on page ??.]

Exercise 15 ZSets: [We refer to Sect. ?? on page ??.]
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In this chapter we shall introduce the programming cum modelling language MOLA’s concepts
of numbers and numerals.

Motivation: Numbers
Numbers can be motivated by a philosophical argument: First there are sets. Again,
sets can also be motivated by a philosophical argument. Sets were covered already in
Chapter3. Given sets we can speak of the empty set, {}, of no members, corresponding
to the natural number 0, and of the empty set of just one member, say {{}}, corresponding
to the natural number 1. And so forth.

Study Hint: Sections4.1–4.4 provide basic material, Sect.4.5 is more advanced.
more to come

4.1 Number Presentations

4.1.1 Informal

We can speak of Natural numbers: the numbers 0, 1, 2, etc.; Integers: the numbers
..., -2, -1, 0, 1, 2, ..., etc.; and Rational: those that results from the division of one
integer by a non-zero integer. There are other types of numbers, like irrational, complex
and transcendental numbers; but we shall not need them here.

We informally represent the natural numbers by the numerals: 0, 1, 2, etc., as You
known them best, in the radix1 10 decimal number system.

4.1.2 Radix n Numerals

There are many ways of representing numbers.

In the decimal numeral system 10 characters, usually the characters, or digits, 0, 1, 2, 3,
4, 5, 6, 7, 8 and 9, are used as follows: Let xi stand for digits in xn...x1x0, where xn...x1x0

stand for a numeral, then xn...x1x0 denote the number xn ∗ 10n + ... + x1 ∗ 101 + x0 ∗ 100.

In a radix r numeral system the characters, say, a, b, ..., c are used as follows: Let
xi stand for radix r characters in xn...x1x0, where xn...x1x0 stand for a numeral, then
xn...x1x0 denote the number xn ∗ rn + ... + x1 ∗ r1 + x0 ∗ r0.

Let r be “2”, i.e., the binary system. The two “binary digits” are usually expressed
by © and |. Interpret © as 0 and | as 1. |©|||© is then the number also designated by
32 + 8 + 4 + 2 = 46.

1radix: In a positional numeral system, the radix or base is the number of unique digits, including the
digit zero, used to represent numbers. For example, for the decimal system (the most common system in
use today) the radix is ten, because it uses the ten digits from 0 through 9.
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4.2 Types

We refer to the type of natural numbers by the type name (a literal2) Nat, integers by
the type name (a literal) Int, and real by the type name (a literal) Real. They relate as
follows:

• Nat ⊂ Int ⊂ Real,

where ⊂ here stands for type inclusion: all natural numbers form a proper subset of all
integers, and all integers form a proper subset of all reals. The ⊂ operator/operation, as
used here, is not in a MOLA expression. The Nat ⊂ Int ⊂ Real clause is a clause of the
meta language, here mathematics, wit which we explain MOLA.

4.3 Operations on Numbers

4.3.1 The Operations

Let a, b and r stand for numbers; r for reals, e.g., by being numerals, c for positive reals,
let n be a natural number. We take for granted the following operations on numbers:

• a + b: + stands for the binary operation of addition of numbers;

• −a, a−b: − either stands a unary operation that “negates” a number, or it stands for
the binary operation that subtracts the right operand number from the left operand
number;

• a ∗ b: ∗ stands for the binary operation of multiplication of numbers;

• a/b: / stands for the binary operation of division of numbers;

• an: stands for the exponential of a wrt. n;

• a < b: a is properly less than b;

• a ≤ b: a is less than or equal to b, b different from 0;

• a = b: a is equal to b;

• a 6= b: a is not equal to b;

• a ≥ b: a is greater than or equal to b;

• a > b: a is properly greater than b;

• ⌊r⌋: [floor ] the greatest integer less than or equal to r;

2literal: true to fact; not exaggerated; actual or factual
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• ⌈r⌉: [ceil ] the least integer greater than or equal to r;

•
√

(c): the square root of the positive rational number c;

• a↑b: the exponentiation of a to the power b, i.e., a↑b = a ∗ a · · ·a, b times;

• log10(r): Logarithm is inverse function to exponentiation. The logarithm of a number
r to the base 10 is the exponent to which 10 must be raised to produce r.

4.3.2 Operation Types

Let add, min, sub, mpy, div, exp, and max name the addition, negation, subtraction, multi-
plication, division, exponentiation and absolute value operations. We can type3 the values
of these operations. Let NUM stand for the type of numbers, whether natural, integers or
reals.

value
add,sub,mpy,exp: NUM×NUM→NUM

div: NUM×NUM
∼→NUM

max: NUM→NUM

We shall have more to say about numbers and their operations in the next chapter.

4.3.3 Unary and Binary Operations

• The arithmetic operations of
√
. , log10(.), ⌈.⌉, ⌊.⌋ and − are unary: apply to one

argument; ⌈.⌉ and ⌊.⌋ are distributive-fix ; − is a prefix operator.

• The arithmetic operations of +,−, ∗, / and ↑ are binary: apply to two arguments,
and are all infix .

4.3.4 Commutative, Associative and Distributive Properties

We introduce the concepts of commutative, associative, and distributive laws.

• Commutative Law implies: aob = boa for all numbers a, b. Operations + and ∗ are
commutative.

• Associative Law implies: ao(boc) = ao(boc) for all numbers a, b, c. Operations +
and ∗ are associative.

• Distributive Law implies: aomult(boplusc) = (aoplusb)osum(aomultc for all numbers
a, b, c. Operation ∗ [o1] distributes of addition (+) [o2].

3Not type, as on a keyboard, by name the class of values that, in this case, the arithmetic functions
stand for
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4.4 Playing Around with Numbers

In Sects. ?? and 4.4, this, and in Sects.8.5, 10.4, and 11.4, we present a number of
“standard” examples of operations on logic, sets, numbers, Cartesians, lists and maps. In
this section with numbers.

4.4.1 Some Preliminary Remarks

Let m, n be any two, not necessarily distinct natural numbers and i, j any two, not neces-
sarily distinct integers.

value m,n:Nat; i,j:Int

We assume the defintion of the predecessor and successor functions and 0 (zero()).

4.4.2 Functions and Predicates

4.4.2.1 Simple Number Functions

44. The absolute number, a natural number , m, of an integer , i,

45. is

44.
45.

46. The ceiling of a real number r, is the integer, i

47. which is r if r is [also] an integer,

48. or else is the integer which is ...

46. ceil: Real → Int
46. ceil(r) ≡
47. if r:Int then r
48. else ... end

49. The floor of a real number r, is the integer, n

50. which is r if r is [also] an integer r,

51. or else is the integer which is ...
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49. floor: Real → Int
49. floor(r) ≡
50. if r:Int then r
51. else ... end

52. To add4 two natural numbers is to

53. ask is m zero, then the result is n 0 else the result is the same as adding m-1 to n+1,
i.e., pre(m) to suc(n):

52. add: Nat×Nat → Nat
53. add(m,n) ≡ if m=0 then n else add(pre(m),suc(n)) end

54. To subtract5 a number n from a number m is to

55. ask: is n 0 then the result is m else the result is the same as subtracting n-1 to n-1, i.e.,
pre(m) from pre(n):

54. sub: Nat×Nat → Int
55. sub(m,n) ≡ if n=0 then m else sub(pre(m),pre(n)) end

56. To multiply6 two natural numbers m and n is

57. to ask:

(a) If m is 0

(b) then the result is 0,

(c) else

(d) if m is 1

(e) then the result is n

(f) else the result is the same as multiplying pre(n) with the multiplication of sum of m
with predecessor of n:

4usually, in MOLA, we use the operator ‘+’, but shall here “define” that ‘+’ ! The MOLA ‘+’ applies
to all numbers, not just natural numbers.

5usually we use the operator ‘-’, but shall here “define” that ‘-’ ! The MOLA ‘-’ applies to all numbers,
not just natural numbers.

6usually we use the operator ‘*’, but shall here “define” that ‘*’ ! The MOLA ‘*’ applies to all numbers,
not just natural numbers.
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56. mul: Nat×Nat → Nat
57. mul(m,n) ≡
57a. if m=0
57b. then 0
57c. else
57d. if m=1
57e. then n
57f. else mul(sum(n),pre(n)) end end

58. To “lift”, exponentiate, a natural number m to the n’nth power ,7 is

59. to ask:

(a) if m is 0

(b) then the result is 0,

(c) else if m is 1

(d) then the result is m

(e) else the result is the same as the multiplication of m to m to the power of n-1 :

58. exp: Nat×Nat → Nat
59. exp(m,n) ≡
59a. if m=0
59b. then 0
59c. else if m=1
59d. then m
59e. else mul(m,exp(m,pre(n))) end end

60. The modulo of two natural numbers, m, n, is a real number which

61. is the remainder, a real number , of the Euclidean division of m by n, where m is the
dividend and n is the divisor .

60. mod: Nat×Nat → Real
61. mod(m,n) ≡
61.

7Usually, in MOLA expressed as m↑n The MOLA ‘↑’ applies to exponents that are, as here, natural
numbers, but to bases that may be any number, but here we shall define the meaning of that ↑ operator !
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4.4.2.2 Number Theory Functions

Example 41 Fatorials:

Example 42 Primes:

Example 43 Greatest Common Denominator:

Example 44 :

4.4.3 Functions over Booleans, Sets and Numbers

Example 45 Largest Number in Set of Numbers:

62.

63.

62.
63.

Example 46 Sum of Numbers in Sets:

64.

65.

64.
65.

Example 47 Partition of Number Sets:

66.

67.

66.
67.

Example 48 Partition into Equal Weight Sets:

68.

69.

68.
69.
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4.5 Peano’s Axioms

4.5.1 From the Internet

Unabashedly, for the moment, till any possible publication, we “lift” from https://en.-

wikipedia.org/wiki/Peano axioms8:

The Peano axioms define the arithmetical properties of natural numbers, usually repre-
sented as a set N or N. The non-logical symbols for the axioms consist of a constant
symbol 0 and a unary function symbol S.

The first axiom states that the constant 0 is a natural number:

1 0 is a natural number.

Peano’s original formulation of the axioms used 1 instead of 0 as the ”first” natural number,
while the axioms in Formulario mathematico include zero.

The next four axioms describe the equality relation. Since they are logically valid in
first-order logic with equality, they are not considered to be part of ”the Peano axioms” in
modern treatments.[7]

2 For every natural number x, x = x. That is, equality is reflexive.

3 For all natural numbers x and y, if x = y, then y = x. That is, equality is symmetric.

4 For all natural numbers x, y and z, if x = y and y = z, then x = z. That is, equality
is transitive.

5 For all a and b, if b is a natural number and a = b, then a is also a natural number.
That is, the natural numbers are closed under equality.

The remaining axioms define the arithmetical properties of the natural numbers. The
naturals are assumed to be closed under a single-valued ”successor” function S.

6 For every natural number n, S(n) is a natural number. That is, the natural numbers
are closed under S.

7 For all natural numbers m and n, if S(m) = S(n), then m = n. That is, S is an
injection.

8 For every natural number n, S(n) = 0 is false. That is, there is no natural number
whose successor is 0.

8Giuseppe Peano was an Italian mathematician and glottologist. The author of over 200 books and
papers, he was a founder of mathematical logic and set theory, to which he contributed much notation. The
standard axiomatization of the natural numbers is named the Peano axioms in his honor. [Wikipedia].
Born: August 27, 1858, Cuneo, Italy Died: April 20, 1932, Turin, Italy
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The chain of light dominoes, starting with the nearest, can represent N , however, axioms
18 are also satisfied by the set of all light and dark dominoes. The 9th axiom (induction)
limits N to the chain of light pieces (”no junk”) as only light dominoes will fall when the
nearest is toppled.

Axioms 1, 6, 7, 8 define a unary representation of the intuitive notion of natural
numbers: the number 1 can be defined as S(0), 2 as S(S(0)), etc. However, considering
the notion of natural numbers as being defined by these axioms, axioms 1, 6, 7, 8 do not
imply that the successor function generates all the natural numbers different from 0.

The intuitive notion that each natural number can be obtained by applying successor
sufficiently often to zero requires an additional axiom, which is sometimes called the axiom
of induction.

9 If K is a set such that:
0 is in K, and
for every natural number n, n being in K implies that S(n) is in K,
then K contains every natural number.

The induction axiom is sometimes stated in the following form:

10 If φ is a unary predicate such that:
φ(0) is true, and
for every natural number n, φ(n) being true implies that φ(S(n)) is true,
then φ(n) is true for every natural number n.

In Peano’s original formulation, the induction axiom is a second-order axiom. It is now
common to replace this second-order principle with a weaker first-order induction scheme.
There are important differences between the second-order and first-order formulations.

4.5.2 A Formal Functional Formulation

Peano’s axioms are reformulated in MOLA !

value
(m,n,x,y,z):(Nat×Nat×Nat)

1. zero: Unit → Nat
1. zero()

2. eq: Nat × NAT → Bool
2. eq(n,n) ≡ true [eq is reflexive]
3. eq(x,y) ⇒ eq(y,x) [eq is symmetic]
4. eq(x,y)∧eq(y,z) ⇒ eq(x,z) [eq is transitive]
5. ∀ a:Nat,b • eq(a,b) ≡ b:Nat
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is zero: Nat → Bool
is zero(n) ≡ eq(n,zero())

6. suc: Nat → Nat
6. suc(n):Nat [numbers are closed under suc]
7. eq(suc(m),suc(n)) ≡ eq(m,n) [suc is an injection]
8. ∼eq(suc(n),zero()) [there is no natural number whose successor is zero()]

9. K
9. zero():K
9. ∀ n:Nat • n:K⊃suc(n):Nat
9. K [contains every natural numbers]

10. φ:Nat→Bool
10. ∀ a:Nat • (φ(n)⊃φ(suc(n)))⊃∀:b:Nat • φ(b)

4.6 Syntax

By syntax we shall mean the arrangement of elements (e.g., words or parts) and their com-
position (e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or
parts) in a language or model. [By words and phrases we mean those of a (written/spoken)
laguages; and by parts we mean those of a domain model.]

We present, below, a third version9 of a syntax, a so-called BNF Grammar10, of numerals
whose value are numbers.

BNF Grammar: Numerals and Number Expressions

1. <Digit> ::= 0|1|2|3|4|5|6|7|8|9
2. <NatNumeral> ::= <Digit>
3. | <Digit><NatNumeral>
4. <Numeral> ::= <NatNumeral>
5. | <NatNumeral> . <NatNumeral>
6. <Num-Expr> ::= <Numeral>
7. | <Pre-Num-Expr>
8. | <Inf-Num-Expr>
9. <Pre-Num-Expr> ::= <Num-Pre-Op><Num-Expr>

10. <Inf-Num-Expr> ::= <Num-Expr><Num-Inf-Op><Num-Expr>
11. <Pre-Num-Op> ::= −
12. <Inf-Num-Op> ::= −|+|∗|/|↑

9Sections 2.8 on page 59 and 3.6 on page 73 brought a first and second versions
10https://en.wikipedia.org/wiki/Backus-Naur form



88

4.7 Closing

4.7.1 Summary

• Number Presentations, Sect.4.1, more to come

• Number Types, Sect.4.2, more to come

• Operations on Numbers, Sect.4.3, more to come

Section 4.4, Playing Around with Numbers, more to come

• Peano’s Axioms, Sect.4.5, more to come

4.7.2 Conclusion

This chapter has hinted at the wider, and a more serious, topic of Number Theory. The
seminal work on that is:

• Hardy & Wright: Introduction to Number Theory, [49].

4.8 Exercises

Exercise 16 XNumbers: [We refer to Sect. ?? on page ??.]

Exercise 17 YNumbers: [We refer to Sect. ?? on page ??.]

Exercise 18 ZNumbers: [We refer to Sect. ?? on page ??.]
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In this chapter we shall introduce the programming cum modelling language MOLA’s concepts
of names and values and characters and text.

Motivation: Names & Values
Just as nouns and verbs are indispensable for our everyday use of informal language, so
names, in the formal sense of names in any formal specification language, are indispens-
able. Names serve to identify types and values, whether they are names of functions
(corresponding to, say, verbs) or not functions (corresponding to, say, nouns).

Motivation: Characters and Texts, I
Mankind has invented sign languages, from about a 100.000 years ago1 as primitive “scrib-
bling” on cave walls, to characters and texts the latter composed, in sequences, or as we
shall abstract them, as lists, of characters. Most of use learn it, as the second thing we
learn2, from before we go to school ! To read and to write texts.

Motivation: Characters & Text, II
Whatever we write down and later read and edit: it is text composed from characters.
Characters and text formed from these characters are elements, therefore, also of the
MOLA language. We shall not need to express characters and text till late in this book.
But we shall make use of characters and text in examples before that !3 Characters and
text directly express their denotation [designation].

Study Hint: This chapter does not lend itself to direct “translation” into specific
class hour teaching. Rather its “message” should be firmly positioned in teachers’
mind – and show up in class as 23-5 minute “detours” when occasioned ! This
chapter must be studied accordingly: as providing a modicum of knowledge –
and thus read in small quanta !

2https://bss.au.dk/en/cognition-and-behavior-lab/for-participants/examples-of-studi-

es-in-cobe-lab/why-humans-started-using-symbols
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5.1 Names and Values

5.1.1 Identifiers

Definition 61 Identifier: By an identifier we shall understand a sequence of lower- and
uppercase alphabetic characters, say a, b, ..., z, A, B, ..., Z, starting with such an alphabetic
character, but possibly interspersed with digits, one or more, 0, 1, ..., 9, and possibly with
a properly in-fixed, embedded, single underline character, , at most one “at a time !”

Example 49 Identifiers: a, aa, abc, a1, a 1 etc. !

5.1.2 Names

As a teaser we start with this •’ed line:

• 7, |||4, seven5, 007, sieben6, sept7, syv 8

What do Yo see ? You see seven names for one and the same unique mathematical entity.
No one has ever “seen” that value ! In Sect. 4.5 on page 85 we learned some properties of
that value: that it is the successor of the value named 6, the predecessor of the value named
8, etc.

We shall distinguish between

• value names: these are names which denote, i.e., refer to values: Booleans, sets,
numbers, Cartesians, lists, maps, functions, i.e., any kind but types.

• type names: these are names which denote, i.e., refer to types, i.e., special classes of
values.

• variable names: these are names which denote, i.e., refer to so-called “assignable”,
declared MOLA variables.

• channel names: these are names which denote channels, i.e., means of communication
between MOLA behaviours.

5.1.3 Specific Non-function Names

5.1.3.1 Booleans

In Sect. 2.2.1 on page 51 we introduced the two Booleans [bold-faced] identifiers (they are
literals): true and false as names for respective mathematical truth values.

4||| is a binary, i.e., a radix 2, name
5English
6German
7French
8Danish
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5.1.3.2 Numerals

Numerals were introduced in Sect. 4.1 on page 78.
We repeat: we refer to identifiers, i.e., names of numbers as numerals.
So, please, from now on, be careful when You refer to numbers, whether You actually

refer to [speak of] numbers, or to [of] their names: numerals !

Definition 62 Numerals: Numerals come in different “shapes”, each according to whether
you wish to express a natural number or a rational number.

The syntax of natural number numerals is that of a sequence of one or more digits: 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9.

For example: 123456789 !
The syntax of rational, but not necessarily natural, number numerals is that of a se-

quence of two sequences, first one or more digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, then a
period, “.”, and then another sequence of digits.

For example: 1234.56789

5.1.3.3 Value and Types

By a value name we shall understand an identifier which denotes, i.e., stands for a value of
some type.

We, i.e., You (!), introduce value names by a conscious effort. You choose to “set aside”
some value, one that we/You, later in our/Your development of an MOLA specification, a
model, or a program, wish to return to – by referring to it. You do so by writing either of
the the following in MOLA:

either:

value v:T

or:9

value v:T = E(...)

where T is a type [identifier, i.e., the name of a type – one that we/You have already
introduced (i.e., defined), or one that we/You later intend to introduce; and where E(...)
is an expression which supposedly evaluates to a value of type T.

In the either alternative, the value name v is being expressed as “any value of type T”.
In the or alternative, the value name v is being expressed as “the specific value E(...) of

type T”.

5.1.3.4 Variable Names

Although we shall not, for a long “time”, treat the concept of imperative programming
we shall already here outline the most basic concepts of imperative programming, namely
those of variables, their declaration and assignment. The reader may therefore skip this
section till reaching Chapter17.

9The either: and or: is not an element of MOLA !
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Definition 63 Variable: By a variable we shall here understand a “placeholder”, i.e., a
place [“somewhere”] that hold [“keep, store”] values where these placeholder values may
change, by so-called assignment

Definition 64 Variable Declaration: By a MOLA variable declaration we shall here mean a
MOLA specification unit which introduces a variable name, its type and, usually, initial value

as exemplified by:

variable v:T := expr

We say that variable v is declared .

Definition 65 State, I: By a state we shall here mean the “sum total” set of values kept
by, i.e., stored in, a MOLA specification’s declared variables

Definition 66 Assignment: By assignment we shall here understand an action which changes
a state, by replacing its “current” value with that of the assignment

v := expr ;

The above exemplifies a MOLA assignment. The above clause – v := expr ; – is to be
thought of as being interpreted, i.e., evaluated, at some time during the evaluation of the
MOLA specification in which it occurs. “Immediately” before that interpretation the value
of variable v may be one. Immediately “after” the interpretation the value of variable v
will be that of the value of expression expr.

5.1.3.5 Channel Names

Although we shall not, for a long “time”, treat the concept of parallel programming we
shall already here outline two of the most basic concepts of parallel programming, namely
those of behaviour , declaration of channels and communication – between behaviours – over
channels. The reader may therefore skip this section till reaching Chapter18.

By a MOLA behaviour we shall here understand the time-ordered sequence of evaluation
of MOLA clauses: of value and variable names, of simple and composite expressions, of
statements of imperative clauses, if any, and of communication clauses, see below, if any

By a channel we shall here mean a means for communication: synchronisation and
exchange of values between behaviours

By a MOLA channel declaration we shall here mean a MOLA specification unit which
introduces a channel name and the type of its messages
Thus:

channel ch:M
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is an example MOLA specification unit. It introduces the channel name ch and the type,
M of the messages that may be communicated over the channel.

Definition 67 Channel Communication: By channel communication we shall here mean
the expression of the offer, !, of one behaviour, βo, to “output” a value to another behaviour:
ch ! value with the expectation of the offering behaviour, βo, that there is another behaviour,
βi which is willing to input, i.e., to accept, ?, that communication: ch ?

That is:

βo: ch ! value

βi: ch ?

are clauses in respective MOLA specifications of behaviours βi and βo.

5.1.4 Function Names

5.1.4.1 Operator Names

5.1.4.1.1 Boolean Operator Names Section 2.4 on page 52 introduced the Boolean
operators10:

• ∼,∧,∨,⊃, and =.

5.1.4.1.2 Set Operator Names Section 3.4.1 on page 68 introduced the set operators

• ∪,∩,∈, \, ⊂,⊆, 6∈ and card.

5.1.4.1.3 Arithmetic Operator Names Section 4.3.1 on page 79 introduced the arith-
metic operators

• +,−, ∗, /,=, 6=, <,≤, >, and ≥.

5.1.4.1.4 Cartesian Operator Names Section 8.4 on page 113 introduced the Carte-
sian decomposition clause:

• let (a,b,...,c) = C in ... end

We may consider that a “distributed-fix” operator which applies to Cartesian-valued ex-
pressions, C by ascribing user chosen names, i.e., the identifiers a, b, ..., c to its compo-
nents11.

The ‘...’ between in and end above is usually some clause of the general form E(a,b,...,c).
10The • is not an operator name !
11For more on this “pattern-driven” decomposition we refer to Sect. 16.1 on page 186.
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5.1.4.1.5 List Operator Names Section 10.3 on page 137 introduced the list operators

• hd, tl, card, elems, inds, ̂, =, and 6=.

5.1.4.1.6 Map Operator Names Section 11.3 on page 147 introduced the map oper-
ators:

• ·(·), dom, rng, †, ∪, \, /, =, 6=, ≡ and ◦.

5.1.4.2 Function Names and Types

We refer to Chapter6 for coverage of functions, function names and values.

5.1.5 Tokens and Parts

In12 Chapter1 Sects. 1.6.1 on page 30 and 1.6.2 on page 36 we dealt with the external
qualities of endurant parts and their internal qualities. To remind the reader: the internal
qualities are those of unique identifiers Sect.1.6.2.1, mereologies Sect.1.6.2.2 and attributes
Sect.1.6.2.3.

In this section we shall elaborate a bit more on the domain concept of parts, and on a
concept of tokens.

Definition 68 Token: By a token we shall understand a quantity which is of some token
type, is usually referred to by a token name, and has a token value

Definition 69 Token Type: By a token type we shall understand a type, that is, a class
of token values

Definition 70 Token Name: By a token name we shall understand an identifier

Definition 71 Token Value: By a token value we shall understand a quantity which we
can think of as atomic, that is, of no further structure, and which we need not be concerned
with

With parts, whether atomic or composite, we shall associate tokens. Their unique identi-
fiers, cf. Sect. 1.6.2.1 on page 36, are tokens. We may choose to abstract one or more part
attributes in the form of tokens.

Definition 72 Unique Identifier Types and Observers: Let U be any part type and let UI
be the type of its unique identifiers; then the formalization:

12Change: New text inserted: Tokens and Parts
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type
U, UI

value
uid U: U → UI

formalizes how we express introduction and use of (i.e., access to) unique identifiers of
parts in MOLA. The boldfaced uid prefix to a part name shall indicate that uid U is a
meta-function, that is, one that is not describable, but “just does the trick !”.

Definition 73 Attribute Types and Observers: Let U be any part type and let A be the
type of one of its attributes, possibly of token type, then the formalization:

type
A

value
attr A: U → A

formalizes how we express introduction to and us of (i.e., access to) attributes of parts in
MOLA. The boldfaced attr prefix to a part name shall indicate that attr A is a meta-
function, that is, one that is not describable, but “just does the trick !”.

Example 50 Unique Identifier Tokens: With hubs, links and automobiles of a road trans-
port we associate unique identifiers:

type
HI, LI, AI

value
uid H: H → HI
uid L: L → LI
uid A: A → AI

Example 51 Attributes Tokens: With hubs, links and automobiles of a road transport
we associate the respective token attributes.

70. Hubs have street intersection names, HN.

71. Links have street names, LN.

72. Automobiles have makers names (Ford, GM, Tesla), AM.

type
70. HN
71. LN
72. AM
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value
70. attr HN: H → HN
71. attr LN: L → LN
72. attr AM: A → AM

5.2 Characters and Texts

to come

5.2.1 Signs

There is an auxiliary notion of signs. Signs are not “free-standing” MOLA values. They
occur in the context of characters and texts. Here are some example of signs that may
occur as part of MOLA characters, or in MOLA texts.

a, b, ..., z, A, B, ... Z, 0, 1, ..., 9, ., , , ., , ; , .; , : , . , etc.

as per Your choice ! Notice, in the last seven explicitly shown signs, the space, and the
space after the punctuation (etc.) marks as an integral element of the sign,

5.2.2 Characters

to come

5.2.2.1 Character Literals

We shall represent characters in single quoted signs: Example of characters are

’a’, ’b’, ..., ’z’, ’A’, ’B’, ..., ’Z’, ’0’, ’1’, ..., ’9’, ’.’ ’ ’, ’, ’ ’., ’,, ’; ’, ’.; ’, ’: ’, ’. ’,
etc.

5.2.2.2 Character Type

We name the class of all characters Char. Char is a type name.

Char

It is part of MOLA. You do not have to introduce that type. [Since it is directly provided
by MOLA, “built-in” .]

5.2.2.3 Character Operations

to come

=, 6=
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5.2.3 Texts

5.2.3.1 Text Type

to come

Type

to come

5.2.3.2 Text as Character Strings

Texts in MOLA are sequences of signs enclosed in double quotes: ”. An example:

• ”Dines Bjørner, Born 4.10.1937”

5.2.3.3 Text Operations

Texts otherwise are like lists, see Chapter10, That is, the list operators apply to texts:
You can perform the following operations on texts:

• the first, the head, character of a text: hd text [’B’];

• the text of all but the first character, i.e., the tail, of a text: tl text
[”ines Bjørner, Born 4.10.1937”];

• the set of all distinct characters of a text: elems text
[{’D’, ’i’, ’n’, ’e’, ’s’, ’ ’, ’B’, ’j’, ’ø’, ’r’, ’, ’, ’o’, ’4’, ’.’, ’1’, ’0’, ’9’, ’3’, ’7’}];

• the set of all indices of the characters of a text: inds text [{1,..,28}];

• texts can be concatenated: text 1̂text 2̂...̂text n; and

• characters can be selected from a text: text[i]
[”Dines Bjørner, Born 4.10.1837”[9]=ø].

to come

...

to come

5.3 Closing

5.3.1 Summary

to come
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5.3.2 Conclusion

to come

5.4 Exercises

Exercise 19 XNamValChaTxt:

Exercise 20 YNamValChaTxt:

Exercise 21 ZNamValChaTxt:
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Motivation: Functions
All our actions, in whichever domain we are present, are functions. Nothing “functions”
without functions. The things, the entities, observe in the world around us, exhibit two
sides: the stable, static, enduring, lasting kind that let’s us observe them, and the dynamic
side in which these entities transcendentally “morph” into functions: behaviours, actions
and events that occur over times.

Study Hint: This is a short chapter. It relies on our having introduced the
concept of functions already from Chapter2 and in all subsequent chapters till
now. So the chapter summarizes what we have up till now. Read it in one go !
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6.1 Function Definitions

It is a bit too early, in this book, to detail the MOLA concept of function definitions, but
there has to have been already a few examples. So we attempt the follow.

Functions can be defined in a number of ways.

6.1.1 Simple Functions

6.1.1.1 Direct Definition

A direct function definition has the form:

[1.] value
[2.] f: A → B
[3.] f(a) ≡ E(a)

• The above, [1.-3.] is a MOLA specification unit.

• Line [1.] signals, to the reader, that a value, f, is being introduced or defined;

• Line [2.] defines the so-called signature of function f: that its name is f, that the type
of its formal argument is A, that the value is a function, →, and that the type of its
result is B – where A and B are types names introduced or defined elsewhere;

• Line [3.] then presents the formal invocation, f(a), of the function and it “body” of
definition: E(a) – where E(a) is any MOLA expression in which a, the formal argument,
occurs free, but here being bound by the a in the left-hand side f(a).

Example 52 Some Simple Functions: We “immodestly” assume the natural [Nat], inte-
ger [Int], and real [Real] number types and the arithmetic operators of +, -, * and /:

value
sum: Nat × Nat → Nat
sum(a,b) ≡ a+b
min: Nat × Nat → Nat
min(a,b) ≡ a−b
mpy: Nat × Nat → Nat
mpy(a,b) ≡ a∗b
div: Nat × Nat

∼→ Int
div(a,b) ≡ a/b pre: b6=0

Please accept that we are somehow “cheating” in that we use the conventional +, −, ∗, /
operators to explain sum, min, mpy and div – somewhat tautologically ! The idea was to
just show how ordinary function definition [specification units] look like.
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6.1.1.2 Indirect Definition

An indirect function definition has the form:

[1.] value
[2.] f: A → B
[3.] f(a) as b
[4.] pre: as P(a,b)

• The above, [1.-4.] is a MOLA specification unit.

• Line [1.-2.] is as before;

• Line [3.] expresses that the result of f(a) is b

• Line [4.] where a,b satisfies a predicate P(a,b).

Example 53 xxx:

xxx

6.1.2 Partial Functions

The last example above: the division function, illustrated the concept of partial function,
a function that is not defined for some of its arguments – of the type [otherwise] specified.
For such functions we show, in the function signature, that the function is not total, by
→, and by the pre-condition following the function definition body, if possible, the logical
condition for which values of the argument[s] it may fail to evaluate:

type
A, B

value

f: A
∼→ B

f(a) ≡ E(a) pre: P(a)

where P(a,b) is some suitable predicate.
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6.1.3 Recursive Functions

Recursive functions can be defined:

[1.] value
[2.] f: A → B
[3.] f(a) ≡ E(f,a)

Here, in [3.] f may occur [free] in E(f,a) but being bound by the ≡ to the left-hand
occurrence of f in f(a).

Example 54 A Recursive Function Definition:

value
fact: Nat → Nat
fact(n) ≡ if n=0 then 1 else n∗f(n−1) end

6.2 Function Definition and Range Sets

Functions accept argument of their definition set and yield results in their range set.

Definition 74 Definition Set: By the definition set of a function (or a map) is meant the
set or argument values for which the function (or map) is well-defined

Given a defined function, f , we cannot, in general determine its definition set.

Definition 75 Range Set: By the range set of a function (or a map) is meant the set or
result values yielded by the function (or map) when it is applied to argument values of its
definition set

Given a defined function, f , one cannot, in general determine its range set. The reason for
this is that it is in general undecidable whether evaluation of a function, from its non-map
definition, will terminate1. For maps one can determine these sets, see Sect. 11.3 on
page 147.

6.3 Summary and Conclusion

6.3.1 Summary

to be written

1Editorial note: More on this.
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6.3.2 Conclusion

to be written

6.4 Exercises

Exercise 22 XFctTyp:

Exercise 23 YFctTyp:

Exercise 24 ZFctTyp:
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In this chapter we shall elaborate on the concept of infinity.
Infinity is that which is boundless, endless, or larger than any natural number. It is

often denoted by the infinity symbol ∞. Infinity is not a number.
If, wrt. numbers we wish to indicate “the cardinality of an infinite set or list” we use

the Hebrew symbol ℵ0, pronounced Aleph 0.
We “borrow” from a number of sources: https://www.britannica.com/science/in-

finity-mathematics, ... more to come

7.1 Motivation

Chapter on Infinity

D = ... D ...

D = D-set

D = D*

D = D -m-> D

D = D -> D, D = D -~-> D
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7.2 Treatment of Infinity in Terms of Numbers

7.3 Cardinality of Sets

7.4 Countably Infinite Sets

7.5 Closing

7.5.1 Summary

7.5.2 Conclusion

7.6 Exercises

Exercise 25 XInfinity:

Exercise 26 YInfinity:

Exercise 27 ZInfinity:
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In this chapter we shall introduce the programming cum modelling language MOLA’s concept
of Cartesians. The French mathematician Réne Descartes (1596–1650) introduced the
concept that we shall call Cartesians.

Motivation: Cartesians
Humans tend to group, “to pair”, to put in “triplets”, or “quadruplets”, etc., domain
phenomena we observe, concepts we perceive, etc. In domain phenomena this seems
unavoidable: that endurants, parts, are composed from a definite occurrences of sub-
parts, etc.

8.1 Informal Presentations of Cartesians

A Danish Drivers License presents the following fields of information1:

• LN (last name) [1.],

• FN (first name) [2.],

• BD (birth date and country) [3.],

– ID (issue date) [4a.],

– ED (expiry date) [4b.],

– IA (issuing authority) [4c.],

– NI (national identity number) [4d.],

• LI (license id.) [5.],

• S (signature) [7.],

• P (photo) [8.], and C (code) [9.].

By LN, FN, BD, ID, ED, IA, NI, LI, S, P and C we shall here mean both the name of these
fields and their ‘data’. An example driver’s license could then be: (Bjørner,Dines,4 Oct.
1937,...,...,Rigspolitiet,...,...,...)2

We can represent these fields of information as the Cartesian:

• (T,C,LN,FN,NId,ND,G,PN,,ID,ED,I,NI,S,P).

8.2 Formal Presentation of Cartesians

to be written

8.2.1 Formal Presentation of Cartesian Types

In mathematics, the Cartesian3 product of sets s and s′ is defined as the set of all ordered
pairs (x, y) such that x belongs to s and y belongs to s′.

1See photo in Fig. 8.2 on page 116
2– where we have left out more-or-less confidential information, see, Fig. 8.2 on page 116 !.
3René Descartes (born March 31, 1596, Descartes, France, died February 11, 1650, Stockholm, Sweden)

was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence
of modern philosophy and science. Mathematics was central to his method of inquiry, and he connected
the previously separate fields of geometry and algebra into analytic geometry. [Wikipedia]
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• s× s′ ≡ {(x, y)|x ∈ s ∧ y ∈ s′}

In other words: we use the symbols ( and ) to delimit, to enclose, a grouping , (x, y, ..., z),
of two or more entities, x, y, ..., z, to denote a Cartesian.

We justify the introduction of Cartesians as follows:

more to come

8.2.2 Simple Cartesian Type Definitions

Let A,B, ..., C be types, i.e., identifiers denoting types. Then:

• type K = A× B × ...× C

defines K to be a type whose values are Cartesians over elements of types A, B, ..., C, in
that order:

K = {| (a,b,...,c) | a:A, b:B, ..., c:C |}

Here {| and |} are type-forming — rather than set-forming — delimiters.

8.2.3 Named Cartesian Type Definitions

Let mkK be an identifier, then

• type nK :: A× B × ...× C

defines a type of marked (i.e., named) Cartesians:

nK = {| mkK(a,b,...,c) | a:A, b:B, ..., c:C |}

That is: the nK :: ... induces the identifier mknK; the nK is taken from the identifier to
the immediate left of ::; the mk stands for make. The specifier, i.e., You !, must take care
to use the text nK :: ... at most once in a full specification.

8.2.4 Cartesian Element Selectors

For Cartesians, whether simple or named, we can further introduced so-called [Cartesian
element] selectors. Cartesian element selectors are simple functions which apply to Carte-
sians and yield named elements of these. Their definition is as follows:

• type K = (s a:A×s b:B×...×s c:C)

• type K ′ :: (s a:A×s b:B×...×s c:C)

where s a, s b, ..., s c are distinct, are referred to as selectors, and a chosen by You !
Their “meaning” is as follows: Let k be some Cartesian, say (alpha, beta, ..., gamma).

Then s a(k) = alpha, s b(k) = beta, ..., s c(k) = gamma.



112

8.3 Cartesian Expressions

8.3.1 Simple Cartesian Expressions

Given values (say, in the form of variable names) a, b, ..., c of respective types A,B, ..., C,
then

• (a, b, ..., c)

is an expression which evaluates to a Cartesian value in (A,B, ..., C), i.e., in K. Likewise

• mkK(a, b, ..., c)

is an expression which evaluates to a Cartesian value in mkK(A,B, ..., C), i.e., in nK.

8.3.2 “let ... in ... end” Cartesian Expressions

The clause

• let identifier pattern = Ed(...) in ... end

is said to decompose the value of expression Ed(...) into constituent values. Let the value of
expression Ed(...) be a Cartesian in K, then

• let (a,b,...,c) = Ed(...) in E(a, b, ..., c) end

identifies the elements of Ed(...). Similarly Let the value of expression E ′
d(...) be a Cartesian

in mkK, then

• let mkK(a,b,...,c) = E ′
d(...) in E(a,b,...,c) end

identifies the elements of E ′
d(...).

8.3.3 Simple Example of Cartesians

Let LastName, F irstName, BirthDate, IssueDate, ExpiryDate, IssuingAuthority, NatlIdNumber,
License Id., Signature and Photo be the fields, i.e., elements of a, in this case, Danish
DriversLicense. Then

• DL :: LN×FN×BD×ID×ED×IA×NId×LI×S×P

is an example of a Cartesian type which models a [Danish] drivers license. [We omit details
of the types LN, FN,BD, ID,ED, IA,NId, LI, S and P .]
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8.4 Operations on Cartesians

Besides the let ... = E in ... end construction applied to Cartesian E values there is
basically only the relational operator = that can be applied to Cartesians:

• (a1, b2, ..., cm) = (α1, β2, ..., γn)

holds if the number of elements in the two Cartesians is the same, i.e., m = n, for each
element a1 = α1, b2 = β2, ..., cm = γn, and (a1, b2, ..., cm) and (α1, β2, ..., γn) are of the same
type.

8.5 Playing Around with Cartesians

8.5.1 Some Preliminary Remarks

Let a, ai, etcetera be any not necessarily distinct values of some type(s).

value a:A, ..., ai:Ai, ...

We assume the definition of ...

8.5.2 Functions and Predicates

8.5.2.1 Modeling Trees

In this section, and in Sects.8.5.2.1 10.4.2.1 we apply the set, Cartesian, list and map
type concepts to the abstract Modeling of some form of trees.

Figure 8.1 on the next page informally illustrates an abstract concept of trees. Lines
between dots, •, denotes trunks. The bottom dot denote a root. The dots between lines
denote branchings, and the uppermost dots denote leaves.

Dots and trunks are distinctly labeled. Dots in sans serif font; trunks in slanted font.

Example 55 A Cartesian Tree Type:

73. A Cartesian tree, TC , has a root, a [main] trunk, a branching, and4 a set of two or
more Cartesian sub-trees.

74. A root is presently modeled by a [further unspecified] root identifier.

75. A trunk is presently modeled by a name, i.e., a [further unspecified] trunk identifier.

76. A branching is presently modeled by a name, i.e., a [further unspecified] branch
identifier.

4The textual enumeration, separated by commas and ending with and informs us that a Cartesian, ×,
is being defined.
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Figure 8.1: An Abstract Node and Vertex Labeled Tree

77. A Cartesian sub-tree, STC, is either a leaf or 5 is a proper Cartesian sub-tree.

78. A leaf is presently modeled by a name, i.e., a [further unspecified] leaf identifier.

79. A proper Cartesian sub-tree, PTC , has a trunk, a branching and a set of two or more
proper Cartesian sub-trees.

80. Root, branch, trunk and leaf identifiers are all [further undefined] quantities of the
same “kind”, i.e., sort6.

type
73. TC= RT × TR × BR × STC-set
74. RT = RID
75. TR = TID
76. BR = BID
77. STC= LF | PTC

78. LF = LID
79. PTC= TR × BR × PTC-set
79. ID = RID | RID | BID | LID
axiom
73. ∀ ( , , ,sts):TC

• card sts ≥ 2
79. ∀ ( , ,pts):PTC

• card pts ≥ 2

Example 56 Functions over Cartesian Tree Type:

81. (a)

(b)

5The textual either or informs us that a union type, |, is being defined.
6‘sort’ is just another name for ‘type’.
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(c)

(d)

82. (a)

(b)

(c)

(d)

83. (a)

(b)

(c)

(d)

84. (a)

(b)

(c)

(d)

type
81.
value
81a.
81a.
81b.
81c.
81d.

8.5.2.2 Functions over Cartesians

85.

86.

85.
86.

87.

88.

87.
88.
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8.5.2.3 SQL: Towards a Database Query Language

8.5.2.3.1 A Simple Beginning

Example 57 A Single Relation Database:

89. We equip the definition of the drivers license Cartesian with selectors.

90. Let DB be the set of all drivers licenses of a country, say Denmark.

91. Let Sel be either of the selectors of DL.

92. Let UnaryQuery be ...

93. Let query be a function with two formal arguments: a unary query mkUnaryQuery(uq)
and the simple drivers license database db – with that function yielding a set of
elements (of the same type) of drivers licenses.

94. The drivers license database db must satisfy the following unique identity criterion:
there must be a selector, s ...

Figure 8.2: Author’s Danish Drivers License

type
89. DL = (s LN:LN×s FN:FN×s BD:BD×s ID:ID×s ED:ED×s IA:IA×s NId×NId×s S:S×S P:P)
90. DB = DL-set
type
91. Sel = {|s LN|s FN|s BD|s ID|s ED|s IAs NId|s S|s P|}
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92. UnaryQuery :: Sel
value
93. query: UnaryQuery × DB → LN-set|FN-set|BD-set|ID-set|ED-set|IA-set|NId-set|S-set|P-set
93. query(mkUnaryQuery(uq),db) ≡ { uq(k) | k:K • k ∈ db }
axiom
94. ∀ db:DB,∃ uq:Sel • uq=s ID∧card query(mkUnaryQuery(uq),db) = 1

8.5.2.3.2 A Realistic Database

Example 58 SQL:

to be written

8.6 Syntax

By syntax we shall mean the arrangement of elements (e.g., words or parts) and their com-
position (e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or
parts) in a language or model. [By words and phrases we mean those of a (written/spoken)
laguages; and by parts we mean those of a domain model.]

to be written

8.7 Summary and Conclusion

8.7.1 Summary

to be written

8.7.2 Conclusion

to be written

8.8 Exercises

Exercise 28 XCartesians:

Exercise 29 YCartesians:

Exercise 30 ZCartesians:
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9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

In this chapter we shall elaborate on the mathematical concept of graphs.

Motivation: Graphs
Domain phenomena, such as road, bus, rail, airline and shipping routes are, for human
convenience visually, or otherwise abstracted, as graphs.

A special sub-class of graphs are so-called trees. They will be dealt with in Sect.9.2.

9.1 Graphs

Definition 76 Graphs: By a graph we shall here mean a collection of vertices and edges
that join pairs of vertices – or “loops around” a single node

For mathematical introductions to graph theory we refer to [5, 52].

9.1.1 Informal Presentation of Graphs

9.1.1.1 Undirected Graphs

Examples of graphs are:

Figure 9.1 shows four graphs. They are all made up from 7 nodes and 8 edges. The
leftmost is unlabeled. Number two from left has [only] its nodes distinctly labeled. Number
three from left has [only] it edges distinctly labeled. The rightmost has all nodes and edges
distinctly labeled. We do not consider the cases where either nodes, or edges, or all may
have multiply named labels.

The idea of the edges is to express that the pairs of nodes they connect are (or the single
node they “loop around” is) [somehow] “related”. [How they are related is not expressed.]

Edges form paths of length one. Two nodes are said to be immediately connected if
there is an edge between them. In general a path of a graph is a sequence of one or more
adjacent edges where adjacency means that the two edges share [at least] one node.
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A purpose of labeling is to make it easier for You and me to discuss the graph, to refer
to for example, paths, such as the path of number two graph from the left of Fig. 9.1 on
the preceding page, say the one listing the nodes na, ne, nb, nc, nh.

9.1.1.2 Directed Graphs

Figure 9.2 shows four graphs. Again made up from nodes and edges as in Fig.9.1. Now
the edges are directed , i.e., have arrows, some in one direction only, some in both ! Again
the graph nodes and edges are labeled as in Fig. 9.1 on the preceding page.
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Figure 9.2: Directed Graphs: Un-labeled, Node-labeled, Edge-labeled, Fully-labeled

A purpose of having directed graphs is to “narrow” the range of possible paths of a graph.
A edge which is directed from a node, say n to a node, say n′, defines a path (n, n′). Thus
the sequence na, ne, nb, nc, nh is no longer an admissible path of the second graph from
the left of Fig. 9.2.

9.1.2 Formal Representation of Graphs

We shall consider only graphs whose nodes, and possibly also edges, are labeled.
By a formal presentation of graphs we mean one which relies on such mathematical

concepts as sets, Cartesians and, possibly, functions.

9.1.2.1 Set and Cartesian Representation of Graphs

Let V be a type which stands for node, i.e., vertex , labels and E be a type which stands
for edge labels. Then we can present a class, a type, of all vertex and edge labeled directed
graphs as follows.

95. There is a type V of vertex labels.

96. There is a type E of edge labels.

97. A graph is then formalisable as a triplet of vertex labels, edge labels and directed
edge prescriptions, where a directed edge prescription is a triplet of a from vertex
label, an edge label and a to vertex label.
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98. The labels mentioned in directed edge prescriptions must be of the graph,

99. and each edge label mentioned in the set of a graph’s edge labels must be of exactly
one directed edge prescription.

type
95. V
96. E
97. G = V-set × E-set × (V×E×V)-set
axiom
98. ∀ (vs,es,edges):G • ∀ (vf,e,vt):(V×E×V) • {vf,vt} ⊆ vs ∧ e ∈ es
99. ∀ e:E • e ∈ es ⇒ ∃ (vf,e′,vt):(V×E×V) • (vf,e′,vt) ∈ edges ∧ e=e′

The rightmost graph of Fig. 9.2 on the previous page is thus presentable as a value in G:

({na,nb,nc,nd,ne,nf,nh},
{e1,e2,e3,e4,e5,e6,e7,e8},
{(na,e1,ne),(ne,e2,nb),(nb,e2,ne),(nf,e3,nb),(nf,e4,nc),
(nc,e4,nf),(nb,e5,nc),(nh,e6,nc),(nh,e7,nh),(ne,v8,nh)})

The above was an example of the classical graph theory presentation of graphs. In our
rendition we leave out the well-formedness of the (V×E×V)-set wrt. the V-set × E-set
components of G – but see next !

9.1.2.2 A Typed Axiomatic Domain Model of Graphs

We present a domain model of graphs. That is, a model where we do not explicitly model
in terms of Cartesians, but only of abstract types wrt. graphs (G), nodes (N) and edges
(E), and observer functions (obs , uid , mereo and attr ) wrt. how nodes and edges are
observed from graphs, G, and connected,

100. Graphs, G, are to be understood as follows:

(a) From any graph one can obs erve a set, SoN, of nodes, N, and a set, SoE, of
edges, E.

(b) From any node and any edge one can observe their unique identifiers (NI, re-
spectively EI), these are tokens

(c) [“miraculously”] obtained by means of the unique identifier observer uid

(d) and no two nodes or edges of a graph have the same unique identifier –

(e) From any node and any edge one can observe their mereologies, i.e., how they
are connected to respectively edges and nodes –

(f) where the mereology of a node, respectively an edge, is [“miraculously”] obtained
by means of the mereology observer mereo ,



123

(g) and where the mereology of a node is a set of 1, or more edge identifiers, and
the mereology of an edge is a set of 1 or two edge –

(h) and all are identifiers of the graph.

type
100. G
100a. SoN = N-set, N, SoE = E-set, E
100b. NI, EI
100f. NMer = EI-set, EMer = NI-set
value
100. g:G
100a. obs SoN: G → SoN, obs SoE: G → SoE
100c. uid N: N → NI, uid E: E → EI
100d. graph NIs: G → { uid N(n) | n:N•n ∈ obs N(g) }
100d. graph EIs: G → { uid E(e) | e:E•e ∈ obs E(g) }
100f. mereo N: N → NMer, mereo E: E → EMer
axiom
100d. graph NIs(g) ∩ graph EIs(g) = {}
100d. ∧ card graph NIs(g)+card graph EIs(g) = card obs SoN(g) + card obs SoE(g)
100g. ∧ ∀ n:N,e:E • n ∈ obsSoN(g) ∧ e ∈ obs SoE(g)
100g. ⇒ 0 ≤ cardmereo E(e) ≤ 1
100h. ∧ mereo N(n) ∈ graph NIs(g) ∧ mereo E(e) ∈ graph EIs(g)

This (obs , uid and mereo ) observer functions, sets and axiomatic description is sufficient
the describe graphs, no need for a Cartesian (of nodes and edges of a grap) – it is, of course,
“buried” in the two (nodes and edges) obs erver functions.

9.1.2.3 Routes of Graphs

9.1.2.4 Cyclic and Acyclic Graphs

9.1.2.5 Function Representation of Graphs

One way to represent more to come

9.1.3 Playing Around with Graphs

Example 59 Your Home: We shall outline an informal description of a problem “close
to home”, one that lends itself to a graph representation.

• Consider a floor plan of Your home, whether it be a free-standing villa in a garden,
a farm-building, a row-house with front and back yards, or an apartment, with one
or more proper entries (front, ‘kitchen” and/or garden/terrace/balcony doors).
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• Consider each room in Your home, its possible balconies, the [front and/or back]
yard, or, if an apartment, the shared staircase landing – consider them nodes in a
graph.

• Consider each door or opening that allows direct access from one room to another,
between a room and a balcony, or a yard, or a landing – consider them edges in a
graph.

With the above we have presented a case for abstracting what has been described as graphs.
We shall not formalize the kind of graphs implied by the above description – but shall pose
that as an exercise ! 1

We now augment the above description.

• With each room in the house we can associate a number of attributes:

– Rooms have

∗ zero, one or more windows;

∗ a certain floor area and floor-to-ceiling height;

∗ a certain purpose: entry/exit, corridor, kitchen, toilet, bath, living, dining,
sleeping, office, laundry, all-purpose, balcony, terrace, etc.;

∗ or may be designated certain family members: parents, children, pets (i.e.,
animals), or other;

∗ et cetera.

– Doors and openings have

∗ one- or two-way access, entry/exit;

∗ width and height;

∗ blinded or glass;

∗ et cetera.

In modeling the above we may consider the model to be a domain model of homes. In
so doing we may model rooms, doors and openings as parts, cf. Sect. 1.6.1.3 on page 31,
and attributes as internal qualities, cf. Sect. 1.6.2.3 on page 39 of Chapter1. Rooms, doors
and openings, further, have unique identification, cf. Sect. 1.6.2.1 on page 36 and have
mereologies, cf. Sect. 1.6.2.2 on page 38 that informs us as to which rooms are connect
with which other rooms etc. We pose, as an exercise, the modeling of Your Home in the
style of domain model , using the domain modeling tools of obs [endurant ], uid , mereo
and attr observers.2

Example 60 Your Neighbourhood: We shall outline an informal description of a problem
“close to home”, one that lends itself to a graph representation.

1Editorial note: – to be inserted !
2Editorial note: – to be inserted
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• Consider Yourself to live at an address, somewhere.

• Let an address indicate either a “point” on a link immediate between two hubs, that
is an intersection between two immediately adjacent links, i.e., street segment.

• Consider Your closest family, friends, colleagues, acquaintances, etc., not living at
Your address but at other addresses reachable by foot – say within an hours walk –
consider them the addresses of contacts.

• Consider also the contact addresses of all the places You otherwise encounter in Your
daily life: schools, workplaces, shops, libraries, public offices, etc.

• Now let the addresses of all these people and institutions be nodes of a graph.

• And then, first, let the different addresses

•

•

We shall not formalize the kind of graphs implied by the above description – but shall pose
that as an exercise ! 3

Example 61 Road Transport Graphs: We shall outline an informal description of a
problem of everyday experience, one that lends itself to a graph representation. We have
chosen to model multiplicities of sub-trees as Cartesians – the “seeming”, left-to-right
order, as You “read” the domain description, is in deference to espaliers, cf. Fig. 9.6 on
page 130 – but the domain model give next applies to almost all trees, whether natural or
conceptual.

101. The domain is road transport, RT.

102. From a road transport we can observe a Cartesian of (presently just) two entities: a
road net, RN, and a set of automobiles, SA.

103. From a road net we can observe a Cartesian of (presently just) two entities: a set of
hubs, SH, (i.e., street intersections, or important “stops” along a street), and a set
links, SL, (i.e., street segments between immediately “neighbouring” hubs).

104. We presently consider hubs and links atomic.

105. From hubs, links and automobiles we can observe (uid ) that all hubs, links and
automobiles are uniquely identifiable.

And from hubs and links we can observe (mereo ) their mereology :

3Editorial note: – to be inserted !
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106. The mereology of a hub is the set of zero, one or more unique link identifiers. If the
set is empty, the hub is “isolated”: no streets lead into it or out from it. If the set
is singleton: {li}, then a link emanates from and “lops” back at the hub. The link
identifiers must [thus] be of links of the road transport.

107. The mereology of a link is a singleton set of one hub identifier or a set of just two
such: if one, the link “loops back” on the hub it thus both emanates from and is
incident upon. If two, i.e., the only other alternative, then the link connects the two
identified hubs. The hub identifiers must [thus] be of hubs of the road transport.

From links we can observe their length, LEN; and many other attributes which we
[presently]4 shall not cover, likewise for hubs.

108. From automobiles we can observe their location on the road net: at a hub, attr at Hub,
or on a link, attr on Link.

109. The at Hub attribute indicates the hub.

110. The on Link attribute indicates the link, the direction (from→to) it travels on the
link, and the fraction, fraction, along that link, a real number properly between 0 and
1.

type
101. RT
102. RN
102. SA = A-set, A
103. RN = SH × SL
103. SH = H-set
103. SL = L-set
105. HI, LI, AI
106. HMer = LI-set
107. LMer = HI-set; axiom ∀ l:L•1≤card mereo L(l)=2
108. APos = at Hub | on Link
109. atHub :: HI
110. onLink :: LI×(from:HI×fraction:Real×to:HI); axiom ∀ ( ,( ,f, )):OnLink•0<f<1
value
102. obs RN: RT → RN
102. obs SA: RT → SA
103. uid SH: RN → SH
103. uid SL: RN → SL
105. uid H: H → HI, uid L: L → LI, uid A: A → AI,
106. mereo H: H → HMer

4Editorial note: Chapter15 will show time-related link, hub and automobile attributes in Example ??

on page ??.
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107. mereo L: L → LMer
108. attr APos: A → APos
axiom
106. ∀ rt:RT •

106. [Wellformedness of Hub Mereologies]
106. let ( ,his) = hub uids(rt) in (his ∩ (link ids(rt)∪{a}utomobile ids(rt))) = {} end
107. [Wellformedness of Link Mereologies]
107. ∧ ∀ h:H := h ∈ obs SH(obs RN(rt)) ⇒ mereo H(h) ⊆ link uids(rt)
107. [Wellformedness of Automobile Attributes]
109. ∧ ∀ l:L := l ∈ obs SL(obs RN(rt)) ⇒ mereo L(l) ⊆ hub uids(rt)

The above makes use of auxiliary functions – which all yield a pair: a well-formedness
truth value and a set of unique identifiers.

111. hub uids calculates all the unique identifiers of hubs of a road transport.

112. So it retrieves all hubs.

113. And yields the set of all their identifiers, while securing that the automobiles have
distinct identifiers.

111. hub uids: RT → (Bool×HI-set)
111. hub uids(rt) ≡
112. let hs = obs SH(obs RN(rt)) in
113. let his = { uid H(h) | h:H • h ∈ hs } in
113. (card hs=card his,ids) end end

114. link uids calculates all the unique identifiers of links of a road transport.

115. Similar to Item 112.

116. Similar to Item 113.

114. link uids: RT → (Bool×LI-set)
114. link uids(rt) ≡
115. let ls = obs SL(obs RN(rt)) in
116. let lis = { uid L(l) | l:L • l ∈ ls } in
116. (card ls=card lis,ids) end end

117. automobile uids calculates all the unique identifiers of automobiles of a road transport.

118. Similar to Item 112.

119. Similar to Item 113.
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117. automobile uids: RT → (Bool×AI-set)
117. automobile uids(rt) ≡
118. let as = obs SH(obs RN(rt)) in
119. let ais = { uid A(a) | a:A • a ∈ as } in
119. (card as=card ais,ids) end end

120. No hub identifier equals any link or automobile identifier.

121. No link identifier equals any hub or automobile identifier.

122. No automobile identifier equals any hub or link identifier.

axiom
120. (hub ids(rt) ∩ (link ids(rt) ∪ automobile ids(rt))) = {}
121. (link ids(rt) ∩ (hub ids(rt) ∪ automobile ids(rt))) = {}
122. (automobile ids(rt) ∩ (hub ids(rt) ∪ link ids(rt))) = {}

9.2 Trees

Trees abound ! Natural ones and conceptual, abstract ones !

9.2.1 Natural Trees

There are many forms of trees: beech, birch, elms, pines and others resemble one-another
wrt. roots, trunks and branchings. They “share” forms of leaves – where pines have needles.

9.2.1.1 A Prototype Tree: The Beech

The beech tree is “The Danish National tree” ! See Figs.9.3– 9.4 on the facing page

Figure 9.3: Roots and Trunk
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Figure 9.4: Trunks, Branchings and Leaves

9.2.1.2 Banyan Trees

Banyan trees illustrate that one cannot count on all trees each having just one root ! A
main characteristics of a banyan tree is its many roots5 See Fig. 9.5.

Figure 9.5: Banyan Trees

9.2.1.3 Espaliers

Espalier is the horticultural and ancient agricultural practice of controlling woody plant
growth for the production of fruit, by pruning and tying branches to a frame.6 See Fig.9.6.

5A banyan is a fig that develops accessory trunks from adventitious prop roots, allowing the tree to
spread outwards indefinitely. This distinguishes banyans from other trees with a strangler habit that begin
life as an epiphyte, i.e., a plant that grows on another plant, when its seed germinates in a crack or crevice of
a host tree or edifice. The many banyan species include: Ficus microcarpa, which is native to Australia,
Bangladesh, Bhutan, China, India, Malay Archipelago, Nepal, New Caledonia, New Guinea, Pakistan, Ryukyu
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Figure 9.6: Espaliers

9.2.2 Conceptual Trees

9.2.2.1 Genealogy

A genealogy (from Ancient Greek γǫνǫαλoγια (genealoga) “the making of a pedigree”) is
the study and pictorialisation of families, family history, and the tracing of their lineages.
See Fig. 9.7.

Figure 9.7: Some Genealogies

Islands, Southeast Asia, Sri Lanka and Taiwan, and is a significant invasive species elsewhere [Wikipedia].
6Plants are frequently shaped in formal patterns, flat against a structure such as a wall, fence, or trellis,

and also plants which have been shaped in this way. A horizontal espalier Free-standing espaliered fruit
trees (step-over) at Standen, West Sussex. The trees are used to create a fruit border or low hedge.
Espaliers, trained into flat two-dimensional forms, are used not only for decorative purposes, but also

for gardens in which space is limited. In a temperate climate, espaliers may be trained next to a wall that
can reflect more sunlight and retain heat overnight or oriented so that they absorb maximum sunlight by
training them parallel to the equator. These two strategies allow the season to be extended so that fruit
has more time to mature.
A restricted form of training consists of a central stem and a number of paired horizontal branches all

trained in the same plane. The most important advantage is that of being able to increase the growth
of a branch by training it vertically. Later, one can decrease growth while increasing fruit production by
training it horizontally [Wikipedia].
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9.2.2.2 Ontologies and Taxonomies

We refer to Sect. 0.8 on page 11. See Fig. 9.8 for two examples. See also Figs. 1.1 on
page 27 and ?? on page ??7

Figure 9.8: An Ontology and a Taxonomy

9.2.3 Cartesian Trees

We shall illustrate a generic model of trees. The model focus on the components and the
syntactic8 structure of simple trees.

Example 62 Cartesian Trees:
Narration:

123. Let tree (T) roots (R), branchings (B) and leaves (L), be modeled by some, presently
further undescribed types.

124. Let tree trunks [the “straight part of a tree between forks], modeled by type Trunk,
be some other, presently further undescribed type.

125. Let Ti stand for branches into exactly n trunks – where n ranges from 1 to, let, say,
5!9.

7Editorial note: To be inserted !
8By syntax we shall mean the arrangement of elements (e.g., words or parts) and their composition

(e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or parts) in a language
or model. [By words and phrases we mean those of a (written/spoken) laguages; and by parts we mean
those of a domain model.]

9Just a choice, to make things “describable”. It is not many tree forks that branch into more than that
number ! ?
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126. A sub-tree tree, ST, is

(a) either a branching and from 1 to n trunks, Ti, i.e., T1,T2, ..., Tn.

(b) or a set of zero, one or more presently further unspecified leaves, fruits and seeds
(LFS).

127. Trees are now “further described” as the composition of a root, r:R and a sub-tree
st:ST.

128. Roots and branchings have diameter attributes (D). For roots that diameter is mea-
sured at a suitable “uppermost” level.

129. Trunks have length (TL), initial (ID) and f inal (FD) diameters.

130. From a leaf, fruit and seed we can observe the following attributes: Whether a
seasonal or all-year leaf, what kind of fruit (apple, cherry, orange, peach, pear, etc.,
and “within these their sub-types10.

Formalisation:

type
123. T, R, B, L
124. Trunk
125. Ti = T1 | T2 | ... | Tn
125. T1 :: Trunk
125. T2 = Trunk × Trunk
125. ...
125. Tn = Trunk × Trunk × ... × Trunk, axiom n [is typically] ≤ 5
126. ST =
126a. B × Ti
126b. | L-set
127. T = R × ST
128. D = Nat cm
129. TL = Nat cm, ID = Nat cm, FD = Nat cm
130. LFS = L | F | S
130. FruitType = Apple | Cherry | Orange | Peach | Pear | ...
130. AppleType = Ambrosia | Braeburn | BelleDeBoskoop | ...
130. ...
value
128. attr D: (R|B) → D,
129. attr TL: Trunk → TL, attr ID: Trunk → ID, attr FD: Trunk → FD

10For apples there are, e.g., at least these 26 sub-types: Ambrosia, Braeburn, Belle de Boskoop (also
called Goudrenet, etc.), Cameo, Empire, Envy, Fuji, Gala, Golden Delicious, Granny Smith, Gravenstein, Hidden
rose, Holstein, Honeycrisp, Jazz, Jonagold, Lady Alice, Liberty, McIntosh, Mutsu, Opal, Pacific rose, Pazazz,
Pink lady, Red Delicious, Winesap.
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130. attr L: LFS → ...

130. attr FruitType: LFS
∼→ FuitType

130. attr AppleType: LFS
∼→ AppleType

130. ...

Applying the attribute observers attr FruitType and attr AppleType to a leaf/fruit/seed
entitity which is not a fruit, respectively which is not an apple, results in chaos, hence the
attribute functionality is partial (

∼→).
That’s it ! The narrative and the commensurate formalisation says it all ! The final

arbiter is the formalisation.
In Sect. 66 on page 141 and Example 68 on page 150 we shall discuss alternative tree

models – as simple modifications of the present model

9.3 Closing

to come

9.3.1 Summary

to come

9.3.2 Conclusion

to come

9.4 Exercises

Exercise 31 Your Home:

Exercise 32 Your Neighbourhood:

Exercise 33 Properties of Trees: Based on the formalization of Example 62 on page 131
define functions that (1.) calculate the the set of all paths from the root of a tree to all its
leaves, (2.) the (set of) shortest and logest path(s), and (3.) the number of leaves !
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In this chapter we shall introduce the programming cum modelling language MOLA’s concept
of lists.

Motivation: Lists
Humans tend to order certain phenomena or even abstract ideas, concepts. This ordering
may be total, in which case we call them lists. (If they are partial we may refer to them
as trees or lattices.)
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We list the days of a week by <Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday>. We list the months of a year by <January, February, March, April, May, June, July,
August, September, October, November, December>. We list the days of a month by <1,
2, ..., 28>, or <1, 2, ..., 29>, <1, 2, ..., 30>, or <1, 2, ..., 231>, according to the month,
and we list the years of our AC calendar by <0, 1, 2, ..., 2023> and so forth. We say that
Monday is the first day of the week and Sunday is the 7th day of the week; that January is
the 1st month of the year, July the 7th month, and so forth; and so forth.

Definition 77 List: By a list we shall mean the same as by a sequence, or tuple: an
ordered, i.e., an indexed (or indexable), grouping of zero, one or more — not necessarily
distinct entities — all being of a common type, i.e., of a type that can be named. Fur-
thermore, for the “thing” to be classified as a list it must be meaningful to speak of such
list operations as the head, hd, the tail, tl, the distinct elements, elems, the set of all the
indices, inds, the length, and of selecting an i’th element of a list ℓ(i), of concatenating,
̂, two lists, and of inquiring whether two lists are equal (not equal), =( 6=).

10.1 List Presentations

The present section is structured into two subsections, as are Sects.3.2 and 11.1.

10.1.1 List Enumeration

Let a1, a2, ..., an stand for some distinct elements of type A, then

value 〈 a1, a 2, ..., an 〉

expresses an informal, abstract way of explicitly enumerating a list, of type A∗, of n elements.
It is the use of further unidentified ais and the ellipsis: “...” that makes the presentation
informal and abstract. A formal, concrete way would be:

Example 63 A Row of Fruits: Let a1, a2, a3 stand for three distinct apples, p1, p2 for two
distinct pears, and o for a single orange, then

value 〈 a1, a2, p2, p1, a3, o 〉

then exemplifies an arbitrarily, linearly ordered basket, a list, of fruits

10.1.2 List Comprehension

Let A be some type with elements a 1, a 2, ..., a n, ... and let aset be a finite or infinite set
of element in A. Let p:P be a predicate over elements of A, and let f:F be a function over
[perhaps not all] a:A and, optionally, natural numbers i:Nat yielding elements b of type B.
Finally let the [optional] expression m≤i≤n express an ordering of [let us call them] indices
i. Then the last line in
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type
A, B

value

aset = A-set, p: A→Bool, f: A×Nat
∼→B, m,n:Nat

〈 f(a)(i) | a:A[ ,i:Nat ] • a ∈ aset ∧ p(a) [ ∧ m≤i≤n ] 〉

expresses a list comprehension. In short: it denotes the list of all those f(a) of type B for
which the property p(a) holds – and, optionally, listed in the order m≤i≤n.

Precondition: If aset is infinite the optional expression m≤i≤n is omitted, the q function
reduces to q: A→B and the ordering of the bs is arbitrary.

The signs 〈 and 〉 can be said to form and delineate the list. The | separates the text
between the 〈 and 〉 into two texts. To the left of | is an expression, here just q(...). To
the right of | there are two texts separated by a •. Between | and • the clause defines the
type of a, hence its “larger” range, and its actual range aset. Between • and 〉 the as are
limited here to within aset, and the predicate clause, p(a), delimits the as to those which
satisfy that predicate, i.e., for which a holds, i.e, is true.

Example 64 Simple List Examples: Let fact name the factorial function1, then

〈 fact(1),fact(2),fact(3),fact(4),fact(5),fact(6) 〉

expresses a simple list of six elements, the first six factorials. So does:

〈 fact(i) | i:Nat • 1≤i≤6 〉

10.2 List Types

Let A stand for a type whose possibly infinite number of elements include {a1, a2, . . . , an, . . .}.
Types whose values can be considered finite, respectively finite or infinite lists of A

elements can be defined using the suffix ∗ and ω type operators, respectively:

type
A
F = A∗

F = Aω

The above expressions A∗ and Aω are list type expressions

10.3 List Operations

We define the list operations: hd, tl, elems, inds, len, list element selection ℓ(i), concate-
nation ̂, equality =, and inequality 6=.

1fact was defined in Example ?? on page ??.
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10.3.1 Operation Signatures

Signatures:

value
hd: A∗ → A
tl: A∗ → A∗

len: A∗ → Nat
inds: A∗ → Nat-set
elems: A∗ → A-set
.(.): A∗ × Nat → A
̂: A∗ × A∗ → A∗

=: A∗ × A∗ → Bool
6=: A∗ × A∗ → Bool

Examples:

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

10.3.2 Informal Operation Definitions

hd (head) and tl (tail) are assumed primitive operations.

value
len q ≡ if q = 〈〉 then 0 else 1 + len tl q end

inds q ≡ {i|i:Nat•1≤i≤len q}

elems q ≡ {q(i)|i:Nat•i ∈ inds q }

q(i) ≡ if i=1 then let a:A,q′:Q • q=〈a〉̂q′ in a end else tl q(i−1) end
pre: i>0 ∧ q6=〈〉

fq ̂ iq ≡ 〈if 1≤ i≤ len fq then fq(i) else iq(i−len fq) end|i:Nat•i≤len fq+len〉

iq′ = iq′′ ≡ inds iq′=inds iq′′∧∀ i:Nat•i ∈ inds iq′⇒iq′(i)=iq′′(i)
iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

10.4 Playing Around with Lists

10.4.1 Some Preliminary Remarks

Let a, ai, etcetera be any not necessarily distinct values of some type(s).

value a:A, ..., ai:Ai, ...

We assume the definition of ...
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10.4.2 Functions and Predicates

10.4.2.1 Modeling Trees

In Sect.8.5.2.1, this section, and in Sect.11.4.2.1 we apply the set, Cartesian, list and
map type concepts to the abstract modeling of some form of trees.

We remind the reader of Fig. 8.1 on page 114.

Example 65 A List Tree Type:

131. A list tree, TC, has a root, a [main] trunk, a branching, and2 a list of two or more
list sub-trees.

132. A root is presently modeled by a [further unspecified] root identifier.

133. A trunk is presently modeled by a name, i.e., a [further unspecified] trunk identifier.

134. A branching is presently modeled by a name, i.e., a [further unspecified] branch
identifier.

135. A list sub-tree, STC , is either a leaf or 3 is a proper list sub-tree.

136. A leaf is presently modeled by a name, i.e., a [further unspecified] leaf identifier.

137. A proper list sub-tree, PTC , has a trunk, a branching and a list of two or more proper
list sub-trees.

138. Root, branch, trunk and leaf identifiers are all [further undefined] quantities of the
same “kind”, i.e., sort4.

type
131. TL= RT × TR × BR × STL

∗

132. RT = RID
133. TR = TID
134. BR = BID
135. STL= LF | PTL

136. LF = LID
137. PTL= TR × BR × PTL

∗

137. ID = RID | RID | BID | LID
axiom
131. ∀ ( , , ,stl):TL

• len stl ≥ 2
137. ∀ ( , ,ptl):PTL

• len ptl ≥ 2

2The textual enumeration, separated by commas and ending with and informs us that a Cartesian, ×,
is being defined.

3The textual either or informs us that a union type, |, is being defined.
4‘sort’ is just another name for ‘type’.
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to be written

139.

140.

139.
140.

141.

142.

141.
142.

10.4.2.2 Functions over Lists

Figure 10.1 informally illustrates a breadth-first, right-to-left traversal of the tree of Fig. 8.1
on page 114.
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Figure 10.1: A Breadth-first Right-to-Left Tree Traversal

143.

144.

143.
144.
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Figure 10.2: An All-order Tree Traversal: 〈a,b,c,f,l,f,c,g,c,h,m,h,c,b,d,i,d,b,e,j,e,k,e,b,a〉

Figure 10.2 informally illustrates a right-to-left all-order [depth-first] traversal of the tree
of Fig. 8.1 on page 114 in which all nodes are “visited” every time they are ‘passed-by’,
starting from the root.

These are possible “visiting” [depth-first] traversal orders5:

• A pre-order traversal “visits” a node only on first encounter.
Example: 〈a,b,c,f,l,g,h,m,d,i,e,j,k〉

• A post-order traversal “visits” a node only on last encounter.
Example: 〈l,f,c,g,m,h,i,d,j,k,e,b,a〉

• An proper in-order traversal “visits” a branch and root nodes on every encounter
after the first and before the last and leaf nodes “whenever”.
Example: 〈i,c,,g,c,m,c,b,i,b,j,e,k〉

• An all-order traversal “visits” a node on all encounters.
Example: 〈a,b,c,f,l,f,c,g,c,h,m,h,c,b,d,i,d,b,e,j,e,k,e,b,a〉

145.

146.

145.
146.

Example 66 Ordered Trees:

to be written

5Editorial note: Check the examples
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10.5 Syntax

By syntax we shall mean the arrangement of elements (e.g., words or parts) and their com-
position (e.g., phrases or composite parts) to create well-formed structure (e.g., sentences or
parts) in a language or model. [By words and phrases we mean those of a (written/spoken)
laguages; and by parts we mean those of a domain model.]

BNF Grammar: List Expressions

[1.] <List-Expr> ::= 〈〉
[2.] | 〈 <Expr-sequence> 〉
[3.] | 〈 <Id> | <IdTypList> • <Pred-expr> 〉
[4.] | <Pref-List-op> <List-Expr>
[5.] | <List-Expr> <Inf-List-op> <List-Expr>
[6.] <IdTypList> ::= <Id>:<Type-expr>
[7.] | <IdTypList>, <Id>:<Type-expr>
[8.] <Pre-List-op> ::= hd | len | inds
[9.] <Inf-List-op> ::= ̂

[10.] <Expr-sequence> ::= <Constant>
[11.] | <Variable>
[12.] | <Expression> , <Expr-sequence>
[13.] <Type-expr> ::= ...
[14.] <Pred-expr> ::= ...
[15.] <Constant> ::= ...
[16.] <Variable> ::= <Id>
[17.] <List-Index-Expr> ::= <Map-Expr> [ <Id> ]
[18.] <Boolean-expr> ::= <Set-Expr> <Set-relation> <Set-Expr> | ...
[19.] <Set-relation> ::= =|6=|⊂|⊆
[20.] <Arith-expr> ::= card <Set-Expr> | ...

We comment on this grammar:

[1. ] The empty list is a list expression.

[2. ] A non-empty enumeration of one or
more expressions is a list expression.

[3. ] A list comprehension is a list expres-
sion.

[4. ] A pair of a [prefix] list operator and
a list expression is an expression.

[5. ] A triplet of two list expressions in-
fixed by an infix list operator is a list

expression.

As used in [3.], an identifier-type list is

[6. ] either a pair of a value name and a
type identifier,

[7. ] or is a part of such and an identifier-
type list.

[8. ]

[9. ]

[10. ]
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[11. ]

[12. ]

[13. ]

[14. ]

[15. ]

[16. ]

[17. ]

[18. ]

[19. ]

[20. ]

10.6 Closing

to be written

10.6.1 Summary

to be written

10.6.2 Conclusion

to be written

10.7 Exercises

Exercise 34 XLists:

Exercise 35 YLists:

Exercise 36 ZLists:
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In this chapter we shall introduce the programming cum modelling languageMOLA’s concept
of maps.

Motivation: Maps
Maps are here understood as finite definition set, discrete functions, that is as special

sets of pairs of definition set elements, i.e., values, and range set values – where no two
such pairs have the same definition set element.

Such sets of “pairings” occur, perhaps not immediately, in domains, mostly as the
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result of the observers’, Yours and my, abstraction of certain phenomena. Examples
are: (i) in many countries, every person has a unique national identification number , (ii) in
personnel administrations every employee is uniquely associated with various administrative
information: birth-date, address, staff rank, etc., and (iii) in many countries, distinct auto-
mobiles are endowed with a number of characteristics: engine [motor] number, owner, and,
possibly, insurance registration.

From Sect 8.1 on page 110 we adapt the driver’s license and the passport example as
follows:

My Danish DriversLicense maps the following fields: LastName, F irstName, BirthDate,
IssueDate, ExpiryDate, IssuingAuthority, NatlIdNumber, Signature and Photo into re-
spective information.

We can present this as a map:

[ LN7→Bjørner,FN7→Dines,BD 7→4.10.1937,ID 7→...,ED 7→...,IA 7→StatePolice,NId 7→...,S 7→...,P 7→... ]

11.1 Map Presentation

The present section is structured into two subsections, as are Sects.3.2 and 10.1.

11.1.1 Map Enumeration

Let a 1, a 2, ..., a n stand for some distinct elements of type A, and b 1, b 2, ..., b n for
some not necessarily distinct elements of type B, then

value [ a 1 7→b 1, a 2 7→b 2, ..., a n7→b n ]

expresses an informal, abstract way of explicitly enumerating a map of n definition set
elements and card{b 1, b 2, ..., b n} range elements. It is the use of further unidentified
a is and b js and the ellipsis: “...” that makes the presentation informal and abstract. A
formal, concrete way would be:

value [ fact(1) 7→fib(1),fact(2) 7→fib(2),...,fact(6) 7→fib(6) ]

which expresses a map from the first 6 factorial numbers to the first 6 Fibonacci numbers.

11.1.2 Definition and Range Sets of Maps and Functions

Maps accept argument of their definition set and yield results in their range set.
By the definition set of a function (or a map) is meant the set or argument values for

which the function (or map) is well-defined
By the range set of a function (or a map) is meant the set or result values yielded by

the function (or map) when it is applied to argument values of its definition set
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11.1.3 Map Comprehension

Let A be some type with elements a 1, a 2, ..., a n, ... and let aset, bset be finite or infinite
sets of element in A and B respectively. Let p:P and q:Q be predicates over elements of A,
respectively B, and let f:F and g:G be functions over [perhaps not all] a:A, respectively B
yielding elements c of type C, respectively D. Then the last line in

type
A, B

value

aset:A-set, bset:B-set, p:A→Bool, q:A×B→Bool, f:A×B
∼→C, g:A×B

∼→D
[ f(a,b) 7→g(a,b) | a:A,b:B • a ∈ aset ∧ b ∈ bset ∧ p(a) ∧ q(a,b) ]

expresses a map comprehension. In short: it denotes the (finite or infinite) map of all those
f(a) of type C for which the property p(a) holds mapping into those g(a,b) of type D for
which the property q(a,b), i.e., for which q(a,b) holds, i.e, is true

The signs [ and ] can be said to form and delineate the map. The | separates the text
between the [ and ] into two texts. To the left of | is an expression, here just f(a) 7→g(b).
To the right of | there are two texts separated by a •. Between | and • the clause defines
the type of as and bs, its “larger” range. Between • and ] the as and bs are limited here
to within aset respectively bset, and the predicate clauses, p(a), q(a,b), delimits the as and
bs, to those which satisfy that predicate, i.e., for which a, respectively b holds, i.e, is true,
and hence, for which f(a,b), g(a,b) can be applied.

11.2 Map Type

Let A and B stand for types whose possibly infinite number of elements include {a1, a2,. . . ,-
an,. . .} and {b1, b2,. . . ,bm, . . .}.

Types whose values can be considered finite maps from A elements into B elements can
be defined using the infix →m type forming operator:

type
A, B
M = A →m B

11.3 Map Operations

There are eleven map value related operations: •(•), dom, rng, †, ∪, \, /, =, 6=, ≡ and ◦.

value

·(·): M→A
∼→B
example: m(ai)=bi
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dom: M→A-set [ domain of map ]
example: dom [ a1 7→b1,a2 7→b2,...,an7→bn ]={a1,a2,...,an}

rng: M→B-set [ range of map ]
example: rng [ a1 7→b1,a2 7→b2,...,an7→bn ]={b1,b2,...,bn}

†: M×M→M [ override extension ]
example: [ a 7→b,a′7→b′,a′′7→b′′ ]†[ a′7→b′′,a′′ 7→b′ ]=[ a 7→b,a′7→b′′,a′′7→b′ ]

∪: M×M→M [merge ∪ ]
example: [ a 7→b,a′7→b′,a′′7→b′′ ]∪[ a′′′7→b′′′ ]=[ a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′ ]

\: M×A-infset→M [ restriction by ]
example: [ a 7→b,a′7→b′,a′′7→b′′ ]\{a}=[ a′7→b′,a′′7→b′′ ]

/: M×A-infset− M [ restriction to ]
example: [ a 7→b,a′7→b′,a′′7→b′′ ]/{a′,a′′}=[ a′7→b′,a′′7→b′′ ]

=,6=: M×M→Bool
example: m−m, m6=m′

◦: (A→m B)×(B→m C)
∼→(A→m C) [ composition ]

example: [ a 7→b,a′7→b′ ]◦[ b7→c,b′7→c′,b′′7→c′′ ]=[ a 7→c,a′7→c′ ]

The dom operator, for “domain”, stand for “extracting” the definition set, see Sect. 6.2
on page 104, of a map. The rng operator, for “range”, stand for “extracting” the range
set, see Sect. 6.2 on page 104, of a map.

11.4 Playing Around with Maps

11.4.1 Some Preliminary Remarks

Let a, ..., ai, ..., b, ..., bj, ... etcetera be any not necessarily distinct values of some type ,
respectively B.

value
a:A, ..., ai:Ai, ...
b:B, ..., bi:Bj, ...

We assume the definition of ...

11.4.2 Functions and Predicates

11.4.2.1 Modeling Trees

In Sects.8.5.2.1, 10.4.2.1, and in this section we apply the set, Cartesian, list and map
type concepts to the abstract modeling of some form of trees.

We remind the reader of Fig. 8.1 on page 114.

Example 67 A Map Tree Type:
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147. A map tree, TM, has a root, a [main] trunk, a branching, and1 a map from two or
more map sub-tree identifiers to map sub-trees.

148. A root is presently modeled by a [further unspecified] root identifier.

149. A trunk is presently modeled by a name, i.e., a [further unspecified] trunk identifier.

150. A branching is presently modeled by a name, i.e., a [further unspecified] branch
identifier.

151. A map sub-tree, STM, is either a leaf or 2 is a proper map sub-tree.

152. A leaf is presently modeled by a name, i.e., a [further unspecified] leaf identifier.

153. A proper map sub-tree, PTM, has a trunk, a branching and a a map from two or
more map sub-tree identifiers to map sub-trees.

154. Root, branch, trunk, sub-tree and leaf identifiers are all [further undefined] quantities
of the same “kind”, i.e., sort3.

type
147. TM= RT × TR × BR × (TID→m STM)
148. RT = RID
149. TR = TID
150. BR = BID
150. TID
151. STM= LF | PTM

152. LF = LID
153. PTM= TR × BR × (TID→m PTM)
153. ID = RID | RID | BID | TID | LID
axiom
147. ∀ ( , , ,stm):TM

• card dom stm ≥ 2
153. ∀ ( , ,ptm):PTM

• card dom ptm ≥ 2

155.

156.

155.
156.

1The textual enumeration, separated by commas and ending with and informs us that a Cartesian, ×,
is being defined.

2The textual either or informs us that a union type, |, is being defined.
3‘sort’ is just another name for ‘type’.
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157.

158.

157.
158.

11.4.2.2 Functions over Maps

159.

160.

159.
160.

161.

162.

161.
162.

Example 68 Indexed Trees:

to be written
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11.5 Syntax

4

BNF Grammar: Map Expressions

[1.] <Map-Expr> ::= [ ]
[2.] | [ <Idd > 7→ <Idr > ]
[3.] | [ <Id> | <IdTypList> • <Map-expr> ]
[4.] | <Pref-List-op> <Map-Expr>
[5.] | <List-Expr> <Inf-List-op> <List-Expr>
[6.] <IdTypList> ::= <Id>:<Type-expr>
[7.] | <IdTypList>, <Id>:<Type-expr>
[8.] <Pre-Map-op> ::= hd | len | inds
[9.] <Inf-Map-op> ::= ̂

[10.] <Expr-sequence> ::= <Constant>
[11.] | <Variable>
[12.] | <Expression> , <Expr-sequence>
[13.] <Type-expr> ::= ...
[14.] <Pred-expr> ::= ...
[15.] <Constant> ::= ...
[16.] <Variable> ::= <Id>
[17.] <Map-Index-Expr> ::= <Map-Expr> [ <Nat-Number-Expr> ]
[18.] <Boolean-expr> ::= <Set-Expr> <Set-relation> <Set-Expr> | ...
[19.] <Set-relation> ::= =|6=|⊂|⊆
[20.] <Arith-expr> ::= card <Set-Expr> | ...

11.6 Closing

to be written

11.6.1 Summary

to be written

11.6.2 Conclusion

to be written

4Editorial note: The BNF Syntax for Map Expressions has been copied from Sect. 10.5 on page 142.
It is to be final-edited !
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11.7 Exercises

Exercise 37 XMaps:

Exercise 38 YMaps:

Exercise 39 ZMaps:
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Motivation: Types and Sorts
Mankind appears to have been expressing its curiosity with respect to the phenomena
that surrounds us in many ways. One such way has been to classify phenomena observed:
plants, animals, rivers, mountains, etcetera.

Here we observe a “body” of water , and that phenomenon is then further classified
into either being an ocean, an inland sea, a lake, a river , a spring , a canal , or a swimming
pool !

And so forth.

In Sect.12.2 we shall establish an ontology, see Fig. 12.2 on page 160, for guiding us in
analyzing the physical, manifest world around us – that world of which it is meaningful to
say that main components are [more-or-less] man-made, that is, artefactual.

The Swedish botanist, zoologist, taxonomist, and physician, Carl Linnaeus (1707–1778),
formalized binomial nomenclature, the modern system of naming living species, especially
plants. He is known as the “father of modern taxonomy” [92].

Figure 12.1: Carl Linneaus

Definition 78 Type: By a type we shall initially understand a special class 1 of values

Definition 79 Value: By a value we shall initially understand a “thing” – whether a math-
ematical object or a real world phenomena – something that can be ascribed a name and
can be claimed to belong to, to be of some, type

1We say ‘initially’, as we shall later indicate that types – as used in this book – are rather special kinds
of sets.
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12.1 Types

12.1.1 Enumeration of Simple Types

So far we have introduced some simple MOLA types:

• Booleans: Chap.2,

• Sets: Chap.3,

• Numbers: Chap.4,

• Characters &c: Chap.5,

• Functions: Chap.6,

• Cartesians: Chap.8,

• Lists: Chap.10, and

• Maps: Chap.11.

The function type (A→B and A
∼→B) was introduced in Chapter6 – but will be further

elaborated upon in this and later chapters.

12.1.2 Type Expressions

Definition 80 Type Expression: By a type expression we shall understand a syntactic
construct which denotes a type. The syntax of a type expression spans from just being a
type literal (Char, Text, Bool, Num, Nat, Int, Real or Unit2), or an identifier, hence a
type name, to an expression involving type forming operators

Definition 81 Type-forming Operator: By a type-forming operator we shall understand
either of the following pre-, inf-, suffix, and distributed-fix operators: -set, -infset, ×, ∗,
ω, →m , →,

∼→, |, and {|...|}

We elaborate on this:

• Char, Text, Bool, Nat, Int, Real and Unit are (atomic) type expressions,

They denote characters (’a’ etc.), texts (”abc” etc.), the Booleans (true, false), the
natural numbers (0, 1, 2, ...), the integers (..., -2, -1, 0, 1, 2, ...), the reals (rational
and irrational numbers) and ().

• Arbitrarily, i.e., user-chosen, identifiers, like T, stand for type identifiers, if they have
been introduced as atomic expressions in the right hand side of a type definition.

So these are the type expressions, TE, of MOLA:

Char,

Text,

Bool,

TE-set,

TE-infset,

Nat,

Int,

Real,

TId,

2The type Unit is first introduced in Chapter 17
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TE×...×TE,

TE∗,

TEω,

TE→m TE,

TE→TE,

TE
∼→TE,

TE|...|TE,

{|...|}, and

Unit,

where TId is a type name, see Sect. 12.1.3.1, and {|...|} is a sub-type expression, see
Sect. 12.1.3.2 on the next page, are all type expressions.

12.1.3 Type Definitions

Definition 82 Type Definition: By a type definition we shall understand either the type
introduction of a type by just naming it or the full type description of the type by both
naming it and ascribing it some properties:

type T Type introduction

type T = Type-Expression Type description

Both of the above forms are MOLA specification units.

12.1.3.1 Type Names

We name types3 for reason of referencability. By a

Definition 83 Type Name: By a type name we shall understand a literal, or an identifier.
We usually, by convention, start type names with an upper case letter. Type names denote
types. When these types are of syntactic quantities, such as elements of a [programming or
command] language, then we, again by convention, suggest that the subsequent alphabetic
characters of the type identifier are in lower case. For what we might consider semantic
types we suggest all uppercase alphabetic characters. Sometimes we indulge in putting in
“underlines”: ‘ ’, properly between characters, and sometimes we also “tail” the identifier
with a digit (or two !)

These are the type literals introduced so far, or to be introduced (in Chapter17).

• Char,

• Text,

• Bool,

• Nat,

• Int,

• Real, and

• Unit.

The type literal Unit will be introduced in Chapter17.

3The concept of types was most recently covered in Sect. 5.1.3.3 on page 92
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12.1.3.2 Subtypes

The type forming distributed-fix operator, {|...|}, allows us to define subtypes.

Definition 84 Subtype: A type T1 is a subtype of another type T2 if all the values contained
in T1 are also contained in T2. The type T2 may also contain values that are not in
T1 [47, Chapter 11, Page 83 ]

The form of subtype expressions is:

{| binding : type expr • value expr |}

Here binding is an identifier pattern , i.e., a simple form of just a value identifier, or a
parenthesized sequence of [value] identifiers. For example:

id and (id1,id2,...,idn).

type expr, correspondingly, is a single type identifier, or a Cartesian sequence of type iden-
tifiers. For example:

TId, or TId1×TId2×· · ·×TIdn.

And, finally, Boolean expr is a Boolean expression whose value is “bound” to either id, or,
if a Cartesian, to respective idis in (id1,id2,...,idn).

Example 69 Subtype of Factorials:

type Fac = {| f : Nat • ∃ n:Nat • f=fact(n) }

Where we assume that the fact function is defined elsewhere

Example 70 Subtype of Prime Numbers:

type Prim = {| p : Nat • is prime(p) }

Where we assume that the is prime predicate is defined elsewhere

12.1.4 Examples

to be written

12.1.5 Recursive Types

So far we have not considered whether, in type descriptions, the left-hand side type identifier
may occur in the right-hand side type expression. We refer to such type descriptions as
recursive type descriptions, and to their meaning as recursive types.
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12.1.5.1 Some Experiments

Let us “experimentally” consider some examples of recursive type descriptions:

type
[1.] AS = AS-set
[2.] AC = AC×AC
[3.] AL = AL∗

[4.] AM = AM→m AM

What do we [intend to] mean by these ?

[1.] Any AS-set defines {} as one element in AS-set.
So if {} is one such element, then it should follow that {{}} is another such element;
that that {{{}}}, ..., {{{{...}}}}, are more such;
and that {{}, {{}}, ...} are further such; etc. !
So there is a “solution to type AS = AS-set.
But is it meaningful ?

But:

[2.] For type AC = AC×AC is that meaningful ?
There is no “empty” Cartesian element.
{}, 〈〉 and [ ] are “vacuous” i.e., empty] set, list and map values !
So we “rule out” the use of recursion over Cartesians !

However:

[3.-4.] We repeat the [1.] arguments for [3.] and [4.], recursive list and map descriptions.
So we rule them “in” !

But, really, who cares about this “equilibrism”. It is a play with mathematics !4 The
meaning of the above simplest form of recursive descriptions seems to not match phenomena
in a realistic world.

But should we give up recursion !
What about the following type descriptions – where type B is defined elsewhere:

type
[5.] AS = B | AS-set
[6.] AC = B | AC×AC
[7.] AL = B | AL∗
[8.] AM = B | AM→m AM

Now in addition to the “vacuous” solutions there are seemingly meaningful ones also.

4Yes, mathematics do provide a solution to the set, list and map recursions, even though the solution
implies infinite recursion, i.e., infinitely ongoing “embeddings” !
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to come

Example 71 Recursive Phenomena:

Trees:

163. A set-modeled tree is either “gone out”, i.e., no longer a tree, or it is a set of set-
modeled tree trunks, each being a set-modeled tree or a leaf !

164. A Cartesian-modeled tree is a Cartesian of exactly two Cartesian-modeled tree trunks,
each being a Cartesian-modeled tree or a leaf !

165. A list-modeled tree is either “gone out”, i.e., no longer a tree, or it is a list of list-
modeled tree trunks, each being a list-modeled tree or a leaf !

166. A map-modeled tree is either “gone out”, i.e., no longer a tree, or it is a list of
map-modeled tree trunks, each being a map-modeled tree or a leaf !

Phone Directories:

167. A phone directory, PD, say on Your mobile phone, uniquely maps the unique com-
bination of phone owners identity, UOI, to the numbers, PN, of their phones, one or
more !

168. We leave out describing phone owners identity and phone numbers.

File Directories:

169. A file directory maps names of files into files.

170. A file may be either a simple, say text files, or a file directory.

type
Trees:

163. TS = (TST|L)-set, TST = TS | L
164. TC = (TCT×TCT), TCT = TC | L
165. TL = TLT∗, TLT = TL | L
166. TM = TMT∗, TMT = TM | L

Phone Directories:
167. PD = UOI →m PN-set
168. UOI, PN

File Directories:
169. FD = FI →m FILE
170. FILE = TextFiles | FD
170. TextFiles

12.2 Sorts: Domain Types

There is an altogether different approach to types.
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Figure 12.2: A Domain Analysis Ontology

12.2.1 Sorts

12.2.2 Observable Sorts

12.2.2.1 External Qualities

12.2.2.2 Internal Qualities

12.2.2.2.1 Unique Identification

12.2.2.2.2 Mereology

12.2.2.2.3 Attributes

12.3 Closing

to be written
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12.3.1 Summary

to be written

12.3.2 Conclusion

to be written

12.4 Exercises

Exercise 40 XTypes:

Exercise 41 YTypes:

Exercise 42 ZTypes:
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13.1 Space Motivated Philosophically

We motivate the concept of indefinite space as follows.
[86, pp 154] “The two relations asymmetric and symmetric, by a transcendental deduc-

tion, can be given an interpretation: The relation (spatial) direction is asymmetric; and the
relation (spatial) distance is symmetric. Direction and distance can be understood as spatial
relations. From these relations are derived the relation in-between. Hence we must conclude
that we exist in space.

Space is therefore an unavoidable characteristic of any possible world”.
From the direction and distance relations one can derive Euclidean Geometry .
There is but just one space. It is all around us, from the inner earth to the farthest

galaxy. It is not manifest. We can not observe it as we observe a road or a human.

13.2 The SPACE Type

171. There is an abstract notion of (definite) SPACE(s) of further unanalysable points;
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172. and there is a notion of POINT in SPACE.

type
171 SPACE

172 POINT

Space is not an attribute of endurants. Space is just there. So we do not define an observer,
observe space. For us, bound to model mostly artifactual worlds on this earth there is
but one space. Although SPACE, as a type, could be thought of as defining more than
one space we shall consider these isomorphic !

13.3 Spatial Observer

173. A point observer, observe POINT, is a function which applies to physical endurants,
e, and yield a point, ℓ : POINT.

value
173 observe POINT: E → POINT

Where the observe POINT(e) is “taken” we leave up to You ! POINT could be measured,
here “on earth”, in terms of a triplet: (latitude,longitude,altitude)1:

• latitude: is a distance east or west of the prime meridian2.

• longitude: a coordinate that specifies the northsouth position of a point on the surface
of the Earth or another celestial body3.

• altitude: is a distance measurement, usually in the vertical or “up” direction, between
a reference datum and a point or object4.

1https://en.wikipedia.org/wiki/Geographic coordinate system and https://en.wikipedia.-

org/wiki/Spatial reference system
2Lines of longitude, also called meridians, are imaginary lines that divide the Earth. They run north

to south from pole to pole, but they measure the distance east or west. Longitude is measured in degrees,
minutes, and seconds [https://oceanservice.noaa.gov/facts/longitude.html].

3Latitude is given as an angle that ranges from 90 at the south pole to 90 at the north pole, with 0
at the Equator. Lines of constant latitude, or parallels, run eastwest as circles parallel to the equator.
Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the
Earth [https://en.wikipedia.org/wiki/Latitude].

4The exact definition and reference datum varies according to the context (e.g., aviation, geometry,
geographical survey, sport, or atmospheric pressure). Although the term altitude is commonly used to
mean the height above sea level of a location, in geography the term elevation is often preferred for this
usage [https://en.wikipedia.org/wiki/Altitude].
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13.4 Models of Technical Drawings

Technical drawings5, from public authorities cadestral maps, via road net authorities carto-
graphic, i.e., accurate maps of any road segment, car manufacturers drawings of automobile
parts, to architects building plans, with their annotations, are intended to be ”to scale”,
i.e., to be accurate enough the be precise descriptions.

Technical drawings, are models themselves, so, in that sense, there is no reason to model
a model !

For that reason we suggest to not model technical drawings otherwise !
Financial service institutions, i.e., banks, insurance companies, stock trading, trans-

portation, whether of automobiles, ships, trains or aircraft, etc., have no such models – so
we must study models of them in order to understand their domains.

13.5 Spatial Concepts

We suggest, besides POINTs, the following spatial attribute possibilities:

174. EXTENT as a dense set of POINTs;

175. Volume, of concrete type, for example, m3, as the “volume” of an EXTENT such that

176. SURFACEs as dense sets of POINTs have no volume, but an

177. Area, of concrete type, for example, m2, as the “area” of a dense set of POINTs;

178. LINE as dense set of POINTs with no volume and no area, but

179. Length, of concrete type, for example, m.

For these we have that

180. the intersection,
⋂

, of two EXTENTs is an EXTENT of possibly nil Volume,

181. the intersection,
⋂

, of two SURFACEs may be either a possibly nil SURFACE or a
possibly nil LINE, or a combination of these.

182. the intersection,
⋂

, of two LINEs may be either a possibly nil LINE or a POINT.

Similarly we can define

183. the union,
⋃

, of two not-disjoint EXTENTs,

184. the union,
⋃

, of two not-disjoint SURFACEs,

185. the union,
⋃

, and of two not-disjoint LINEs.

5https://en.wikipedia.org/wiki/Technical drawing
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nd:

186. the [in]equality , 6=,=, of pairs of EXTENT, pairs of SURFACEs, and pairs of LINEs.

We invite the reader to first first express the signatures for these operations, then their
pre-conditions, and finally, being courageous, appropriate fragments of axiom systems.

13.6 Metric Space

Definition 85 Definite Space: By a definite space we shall understand a space with a
definite metric

Figure 13.1 diagrams some mathematical models of space. We shall hint a just one of
these spaces.

Figure 13.1: Variety of Abstract Spaces
An arrow from space A to space B implies that A is also a kind of B.

A metric space is an ordered pair (M, d) where M is a set and d is a metric on M , i.e., a
function:

d : M×M → Real

such that for any x, y, z ∈ M , the following holds:

d(x, y) = 0 ≡ x = y identity of indiscernibles (13.1)

d(x, y) = d(y, x) symmetry (13.2)

d(x, z) ≤ d(x, y) + d(y, z) sub-additivity or triangle inequality (13.3)
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Given the above three axioms, we also have that d(x, y) ≥ 0 for any x, y ∈ M . This is
deduced as follows:

d(x, y) + d(y, x) ≥ d(x, x) triangle inequality (13.4)

d(x, y) + d(y, x) ≥ d(x, x) by symmetry (13.5)

2d(x, y) ≥ 0 identity of indiscernibles (13.6)

d(x, y) ≥ 0 non-negativity (13.7)

The function d is also called distance function or simply distance. Often, d is omitted and
one just writes M for a metric space if it is clear from the context what metric is used.

13.7 Summary & Conclusion
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14.1 Geometry

Characterisation: Geometry (from Ancient Greek γǫωǫτρια (geōmetrı́a, land measure-

ment) and from γη̄ (gêm, earth, land), and µǫτρν (métron, a measure) is a branch of
mathematics concerned with properties of space such as the distance, shape, size, and
relative position of figures.

14.1.1 Euclid’s Elementa

https://en.wikipedia.org/wiki/Euclidean geometry
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14.1.1.1 Two Axiom Systems

14.1.1.1.1 Euclid: 1 Euclidean geometry is an axiomatic system, in which all theorems
(”true statements”) are derived from a small number of simple axioms. Until the advent of
non-Euclidean geometry, these axioms were considered to be obviously true in the physical
world, so that all the theorems would be equally true. However, Euclid’s reasoning from
assumptions to conclusions remains valid independent of their physical reality.

Near the beginning of the first book of the Elements, Euclid gives five postulates (ax-
ioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath):

Let the following be postulated:

• To draw a straight line from any point to any point.

• To produce (extend) a finite straight line continuously in a straight line.

• To describe a circle with any centre and distance (radius).

• That all right angles are equal to one another.

• [The parallel postulate]: That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which the angles are less than two right
angles.

Although Euclid explicitly only asserts the existence of the constructed objects, in his
reasoning he also implicitly assumes them to be unique.

The Elements also include the following five common notions:

• Things that are equal to the same thing are also equal to one another (the transitive
property of a Euclidean relation).

• If equals are added to equals, then the wholes are equal (Addition property of equal-
ity).

• If equals are subtracted from equals, then the differences are equal (subtraction
property of equality).

• Things that coincide with one another are equal to one another (reflexive property).

• The whole is greater than the part.

Modern scholars agree that Euclid’s postulates do not provide the complete logical foun-
dation that Euclid required for his presentation. Modern treatments use more extensive
and complete sets of axioms.

1Euclid lived around year 300 BC in Greece
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14.1.1.1.2 Birkhoff: In 1932, George David Birkhoff2 created a set of four postulates
of Euclidean geometry sometimes referred to as Birkhoff’s axioms. These postulates are all
based on basic geometry that can be experimentally verified with a scale and protractor. In
a radical departure from the synthetic approach of Hilbert, Birkhoff was the first to build
the foundations of geometry on the real number system. It is this powerful assumption
that permits the small number of axioms in this system.

Postulates: Birkhoff uses four undefined terms: point, ℓine, δistance and angle (∠). His
postulates are:

• Postulate I: Postulate of Line Measure. The points A,B, ... of any line can be put
into 1 : 1 correspondence with the real numbers x so that | xB−xA |3 = δ(A,B) for
all points A and B.

• Postulate II: Postulate of Point-Line. There is one and only one straight line, ℓ, that
contains any two given distinct points P and Q.

• Postulate III: Postulate of Angle Measure. The rays {ℓ,m, n, ...} through any point
O can be put into 1 : 1 correspondence with the real numbers a (mod 2) so that if A
and B are points (not equal to O) of ℓ and m, respectively, the difference am − aℓ
(mod 2) of the numbers associated with the lines ℓ and m is ∠AOB. Furthermore,
if the point B on m varies continuously in a line r not containing the vertex O, the
number am varies continuously also.

• Postulate IV: Postulate of Similarity. If in two triangles ABC and A′B′C ′ and
for some constant k > 0, d(A′, B′) = kd(A,B), d(A′, C ′) = kδ(A,C) and ∠B′A′C ′4=
±∠BAC, then δ(B′, C ′) = kδ(B,C),∠C ′B′A′ = ±∠CBA, and ∠A′C ′B′ = ±∠ACB.

2George David Birkhoff was an american mathematician (1884–1944)
3By xA and xB we mean the position on the line ℓ of points a and B, and by |xB − xA | we mean the

positive, i.e., numerical, distance between points xB and yA
4By ∠ABC we mean the angle between lines AB and AC
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a moving image of eternity; This thing all things devours:

the number of the movement in respect of the before and the after; Birds, beasts, trees, flowers;

the life of the soul in movement as it passes Gnaws iron, bites steel,

from one stage of act or experience to another; Grinds hard stones to meal;

a present of things past: memory, a present of things present: sight, Slays king, ruins town,

and a present of things future: expectations1 And beats high mountain down.2

Concepts of time fascinate philosophers and scientists [42, 67, 70, 72–77, 79, 90] and [46].

15.1 Time Motivated Philosophically

Definition 86 Indefinite Time: We motivate the abstract notion of time as follows. [86,
pp 159] “Two different states must necessarily be ascribed different incompatible predi-
cates. But how can we ensure so ? Only if states stand in an asymmetric relation to one

1Quoted from [2, Cambridge Dictionary of Philosophy]
2J.R.R. Tolkien, The Hobbit

177



178

another. This state relation is also transitive. So that is an indispensable property of any
world. By a transcendental deduction we say that primary entities exist in time. So every
possible world must exist in time”

Definition 87 Definite Time: By a definite time we shall understand an abstract repre-
sentation of time such as for example year, month, day, hour, minute, second, etc.

15.2 TIME

TIME may occur in endurant attribute descriptions and in perdurant descriptions.

15.2.1 TIME Type and Values

We shall not be concerned with any representation of time. That is, we leave it to the
domain analyser cum describer to choose an own representation [46]. Similarly we shall
not be concerned with any representation of time intervals.3

187. So there is an abstract type Time,

188. and an abstract type TI: TimeInterval.

189. There is no Time origin, but there is a “zero” TIme interval.

190. One can add (subtract) a time interval to (from) a time and obtain a time.

191. One can add and subtract two time intervals and obtain a time interval – with
subtraction respecting that the subtrahend is smaller than or equal to the minuend.

192. One can subtract a time from another time obtaining a time interval respecting that
the subtrahend is smaller than or equal to the minuend.

193. One can multiply a time interval with a real and obtain a time interval.

194. One can compare two times and two time intervals.

type
187 T

188 TI

value
189 0:TI
190 +,−: T × TI → T

191 +,−: TI × TI
∼→ TI

192 −: T × T → TI

193 ∗: TI × Real → TI

194 <,≤,=,6=,≥,>: T × T → Bool
194 <,≤,=,6=,≥,>: TI × TI → Bool
axiom
190 ∀ t:T • t+0 = t

3– but point out, that although a definite time interval may be referred to by number of years, number
of days (less than 365), number of hours (less than 24), number of minutes (less than 60)number of seconds
(less than 60), et cetera, this is not a time, but a time interval.
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15.2.2 TIME Observer

195. We define the signature of the meta-physical time observer.

value
195 record TIME: Unit → T

The time recorder applies to nothing and yields a time. record TIME() occur in action,
event and behavioural descriptions.

• • •

Modern models of time, by mathematicians and physicists evolve around spacetime4 We
shall not be concerned with this notion of time.

Models of time related to domain modeling and programming differs from those of
mathematicians and physicists in focusing on divergence and convergence, zero (Zenon)
time and interleaving time [93] are relevant in studies of real-time, typically distributed
computing systems. We shall also not be concerned with this notion of time. But we shall
refer the able reader to two seminal works on time in respect of modeling and programming:
[94, Zhou Chao Chen & Michael Reichhardt Hansen] and [63, Leslie Lamport].

15.3 Axiom Systems

15.3.1 Johan van Benthem

The following is taken from Johan van Benthem [90]:

196. Let P be a point structure (for example, a set).

197. Think of time as a continuum;

198. the following axioms characterise ordering (<, =, >) relations between (i.e., aspects
of) time points.

199. The axioms listed below are not thought of as an axiom system, that is, as a set of
independent axioms all claimed to hold for the time concept, which we are encircling.

200. Instead van Benthem offers the individual axioms as possible “blocks” from which
we can then “build” our own time system — one that suits the application at hand,
while also fitting our intuition.

201. Time is transitive: If p<p′ and p′<p′′ then p<p′′.

4The concept of Spacetime was first “announced” by Hermann Minkowski, 1907–08 – based on work
by Henri Poincaré, 1905–06, https://en.wikisource.org/wiki/Translation: The Fundamental E-

quations for Electromagnetic Processes in Moving Bodies
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202. Time may not loop, that is, is not reflexive: p 6< p.

203. Linear time can be defined: Either one time comes before, or is equal to, or comes
after another time.

204. Time can be left-linear, i.e., linear “to the left” of a given time.

205. One could designate a time axis as beginning at some time, that is, having no pre-
decessor times.

206. And one can designate a time axis as ending at some time, that is, having no successor
times.

207. General, past and future successors (predecessors, respectively successors in daily
talk) can be defined.

208. Time can be dense: Given any two times one can always find a time between them.

209. Discrete time can be defined.

15.3.1.1 A Continuum Theory of Time

198. [ LIN: Linearity ] ∀ p,p′:P • (p=p′ ∨ p<p′ ∨ p>p′)
199. [ L−LIN: Left Linearity ]
199. ∀ p,p′,p′′:P • (p′<p ∧ p′′<p) ⇒ (p′<p′′ ∨ p′=p′′ ∨ p′′<p′)
200. [ BEG: Beginning ] ∃ p:P • ∼∃ p′:P • p′<p
201. [ END: Ending ] ∃ p:P • ∼∃ p′:P • p<p′

202. [ SUCC: Successor ]
202. [ PAST: Predecessors ] ∀ p:P,∃ p′:P • p′<p
202. [ FUTURE: Successor ] ∀ p:P,∃ p′:P • p<p′

203. [ DENS: Dense ] ∀ p,p′:P (p<p′ ⇒ ∃ p′′:P • p<p′′<p′)
204. [ CDENS: Converse Dense ] ≡ [ TRANS: Transitivity ]
204. ∀ p,p′:P (∃ p′′:P • p<p′′<p′ ⇒ p<p′)
205. [ DISC: Discrete ]
205. ∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p<p′′ ∧ ∼∃ p′′′:P • (p<p′′′<p′′))) ∧
205. ∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p′′<p′ ∧ ∼∃ p′′′:P • (p′′<p′′′<p′)))
206. [ TRANS: Transitivity ] ∀ p,p′,p′′:P • p < p′ < p′′ ⇒ p < p′′

207. [ IRREF: Irreflexitivity ] ∀ p:P • p 6< p
208. [ LIN: Linearity ] ∀ p,p′:P • (p=p′ ∨ p<p′ ∨ p>p′)
209. [ L−LIN: Left Linearity ]
207. ∀ p,p′,p′′:P • (p′<p ∧ p′′<p) ⇒ (p′<p′′ ∨ p′=p′′ ∨ p′′<p′)
207. [ BEG: Beginning ] ∃ p:P • ∼∃ p′:P • p′<p
207. [ END: Ending ] ∃ p:P • ∼∃ p′:P • p<p′

• A strict partial order, SPO, is a point structure satisfying TRANS and IRREF.
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• TRANS, IRREF and SUCC imply infinite models.

• TRANS and SUCC may have finite, “looping time” models.

15.3.2 Wayne Blizzard

Wayne D. Blizard [35, 1980] relates abstracted entities to spatial points and time.
We shall present an axiom system [35, Wayne D. Blizard, 1980] which relate abstracted

entities to spatial points and time. Let A,B, . . . stand for entitites, p, q, . . . for spatial
points, and t, τ for times. 0 designates a first, a begin time. Let t′ stand for the discrete
time successor of time t. Let N(p, q) express that p and q are spatial neighbours. Let =
be an overloaded equality operator applicable, pairwise to entities, spatial locations and
times, respectively. At

p expresses that entity A is at location p at time t. The axioms —
where we omit (obvious) typings (of A, B, P, Q, and T): ′ designates the time successsor
function: t′.

15.3.2.1 A Theory of Time–Space

(I) ∀A∀t∃p : At
p

(II) (At
p ∧At

q) ⊃ p = q

(III) (At
p ∧Bt

p) ⊃ A = B

(IV ) (At
p ∧At′

p ) ⊃ t = t′

(V .i) ∀p, q : N(p, q) ⊃ p 6= q Irreflexivity
(V .ii) ∀p, q : N(p, q) = N(q, p) Symmetry
(V .iii) ∀p∃q, r : N(p, q) ∧N(p, r) ∧ q 6= r No isolated locations

(V I .i) ∀t : t 6= t′

(V I .ii) ∀t : t′ 6= 0
(V I .iii) ∀t : t 6= 0 ⊃ ∃τ : t = τ ′

(V I .iv) ∀t, τ : τ ′ = t′ ⊃ τ = t

(V II) At
p ∧At′

q ⊃ N(p, q)

(V III) At
p ∧Bt

q ∧N(p, q) ⊃ ∼ (At′

q ∧Bt′

p )

(II–IV,VII–VIII): The axioms are universally ‘closed’; that is: We have omitted the
usual ∀A,B, p, q, ts.

(I): For every entity, A, and every time, t, there is a location, p, at which A is located at
time t.

(II): An entity cannot be in two locations at the same time.

(III): Two distinct entities cannot be at the same location at the same time.

(IV): Entities always move: An entity cannot be at the same location at different times.
This is more like a conjecture: Could be questioned.
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(V): These three axioms define N .

(V.i): Same as ∀p :∼ N(p, p). “Being a neighbour of”, is the same as “being distinct
from”.

(V.ii): If p is a neighbour of q, then q is a neighbour of p.

(V.iii): Every location has at least two distinct neighbours.

(VI): The next four axioms determine the time successor function ′.

(VI.i): A time is always distinct from its successor: time cannot rest. There are no
time fix points.

(VI.ii): Any time successor is distinct from the begin time. Time 0 has no prede-
cessor.

(VI iii): Every non–begin time has an immediate predecessor.

(VI.iv): The time successor function ′ is a one–to–one (i.e., a bijection) function.

(VII): The continuous path axiom: If entity A is at location p at time t, and it is at
location q in the immediate next time (t′), then p and q are neighbours.

(VIII): No “switching”: If entities A and B occupy neighbouring locations at time t them
it is not possible for A and B to have switched locations at the next time (t′).

Except for Axiom (IV) the system applies both to systems of entities that “sometimes”
rests, i.e., do not move. These entities are spatial and occupy at least a point in space.
If some entities “occupy more” space volume than others, then we interpret, in a suitable
manner, the notion of the point space P (etc.). We do not show so here.
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Example 73 Road Transport, II:

We present the types of a simple domain model of road transport.

The External Qualities of Parts:

210. There are road transports, RT.

211. From a road transport we can observe
an aggregate of a road net, RN, and
an aggregate of automobiles, AA.

212. From an aggregate of a road net we can
observe an aggregate of street inter-
sections, we shall call them hubs, AH,
and street segments, i.e., links, as we

241
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shall call them, AL, [directly, immedi-
ately] between two hubs.

213. From an aggregate of automobiles we
can observe a set of automobiles, As.

214. From an aggregate of hubs we can ob-
serve a set of hubs Hs.

215. From an aggregate of links we can ob-
serve a set of links Ls.

216. Automobiles A, hubs H, and links L
and are here considered atomic, i.e.,
consists of not further sub-parts.

type
210. RT
211. RN
211. AA
212. AH, AL
213. As = A-set
214. Hs = H-set
215. Ls = L-set
216. A, H, L

value
211. obs RN: RT → RN
211. obs AA: RT → AA
212. obs AH: RN → AH
212. obs AL: RN → AL
213. obs As: AA → As
214. obs Hs: AH → Hs
215. obs Ls: AL → Ls

The Internal Qualities of Parts: Unique Identifiers, Mereologies and Attributes

Automobiles:

217. Automobiles have unique identifiers,

218. are mereologically related to a subset of all hubs and links, and

219. have attributes of position, APos, on the road net [programmable], velocity, AVel
[programmable], history, AHis, of the times, TIME, they left and entered hubs and
links and the road net, and entered the road net, links and hubs.

Hubs:

220. Hubs have unique identifiers,

221. are mereologically related to the one1 or two links it connects (i.e., upon which it is
incident), and

222. have attributes of current signal state, Σ [programmable], signal state space, Ω
[static], and hub history, HHis [programmable], i.e., the times automobiles left and
entered the hub.

Links:

223. Links have unique identifiers,

1One if the link “loops back” to the hub from which it emanates
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224. are mereologically related to the one or two hubs upon which they are incident, and

225. have attributes of length, LEN [static] and link history, LHis [programmable], i.e.,
the times automobiles left and entered the link.

type
Unique Identification:

217. AI
220. HI
223. LI
value
217. uid A: A → AI
220. uid H: H → HI
223. uid L: L → LI

Mereology:
type
218. AM = (HI|LI)-set
221. HM = LI-set
224. LM = HI-set
224. [ axiom ∀ lm:LM•1≤card lm≤2 ]
value
218. mereo A: A → AM
221. mereo H: H → HM
224. mereo L: L → LM

Attributes:
type
219. APos, AVel
219. AHis = (TIME×(HI|LI))∗
222. HΣ = LI-set
222. [ axiom ∀ h:H•card 1≤attr HΣ(h)≤2 ]
222. HΩ = HΣ-set
222. [ axiom ∀ h:H•attr HΣ(h)∈attr HΩ(h) ]
222. HHis = (TIME×AI)∗

225. LEN
222. LHis = (TIME×AI)∗

value
219. attr APos: A → APos
219. attr AVel: A → AVel
219. attr AHis: A → AHis
222. attr HΣ: H → HΣ
222. attr HΩ: H → HΩ
225. attr LEN: L → LEN
225. attr LHis: L → LHis

Intentions and Intentional Pull: We narrate, but do not formalize:

Intentions:

226. The intentions of road transport is

(a) for automobiles to drive on roads: entering and leaving hubs and links, driving
around hubs and along links, sometimes stopping, and

(b) for hubs and links to accommodate automobiles: letting them enter and leave,
drive around or along.

Intentional Pull:

227. For any automobile a in the road net

(a) if at some time τ it is leaving a hub h or a link ℓ,

(b) then that hub or link has recorded that event.

228. For any hub h [link ℓ] of the road net
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(a) if at some time τ it observes an automobile a entering (leaving) that hub [or
link]

(b) then that automobile a has recorded that corresponding event.

• • •

These are the main characteristics of solid road transport endurants, i.e., parts. Other
characteristics, such as the perdurants, i.e., behaviours, actions and events will be exem-
plified later2

37.3 Rail

to be written

37.4 Air

to be written

37.5 Sea

to be written

37.6 Summary and Conclusion

to be written

2 Editorial Note: Remember to develop these examples and insert reference.
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Motivation: ...

We remind the reader of our definitions of the terms: ontology and taxonomy , Sect. 0.8
on page 11.

In this book we have relied on the domain analysis & description ontology , Fig.1.1 of
Sect.1.2 and on the attributes ontology , Fig. ?? on page ?? of Sect. ??. And we have shown
a road transport taxonomy , Fig. ?? on page ?? Sect. ??.

Dels for External Qs, bde O og T, f.eks. T for road transport
og for Attributes, bde O og T, f.eks. T for automobile attrs.: Static, monitoravle

herunder bid-davle og programmellet.
Ontology: one for all domain analysis and description dets., i.e., shared, general.
Taxonomy: one for each domain model, i.e., particular.

43.1 Review of Domain Modeling Ontology and Taxonomies

to be written

43.2 Carl von Linné’s Plant Taxonomy

• https://botanicalsociety.org.za/the-science-of-names-an-introduction-to-plant-taxonomy

• https://www.botanicalartandartists.com/plant-evolution-and-taxonomy.html

• https://en.m.wikipedia.org/wiki/Plant taxonomy
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Plant taxonomy is the science that finds, identifies, describes, classifies, and names
plants. It is one of the main branches of taxonomy (the science that finds, describes,
classifies, and names living things).

Plant identification is a determination of the identity of an unknown plant by com-
parison with previously collected specimens or with the aid of books or identification
manuals. The process of identification connects the specimen with a published name.
Once a plant specimen has been identified, its name and properties are known.

Plant classification is the placing of known plants into groups or categories to show
some relationship. Scientific classification follows a system of rules that standardizes
the results, and groups successive categories into a hierarchy. For example, the family
to which the lilies belong is classified as follows:

– Kingdom: Plantae

– Division: Magnoliophyta

– Class: Liliopsida

– Order: Liliales

– Family: Liliaceae

•
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Chapter 46

Algebras

In this chapter we shall elaborate on the mathematical concept of algebras.

Motivation: Algebras
Computer science has developed a number of interpretations, i.e., uses, of the mathemat-
ical concept of algebras [3,6,7,40,53,64,80]. Most notably this has found a beautiful form
in [81, Sanelle & Tarlecki ].

to be written

In our methodology for analysing and describing domains it seems that we can identify a
number of algebras: an Algebra, Ax, of external qualities of endurants, an Algebra, Au,
of the internal qualities of unique identifiers of endurant, an Algebra, Am, of the internal
qualities of mereologies of endurants, an Algebra, Aa, of the internal qualities of attributes
of endurants, and possibly many more !

much more to come
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Concepts

Contents
A.1 A General Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . 285

This book touches upon a rather large number of new concepts. In a conventional
software engineering setting, and, as in this case, in a technical/scientific book, such an
introduction is unusual. I present this chapter because of the large number of new concepts.
In order for the reader to find the way around, that reader must be made aware of the
background concepts that underlie my treatment of a new branch of software engineering,
the domain science and engineering.

A.1 A General Vocabulary

1. Abstraction:

Conception, my boy, fundamental brain-work,

is what makes the difference in all art

D.G. Rossetti1: letter to H. Caine2

Abstraction is a tool, used by the human mind, and to be applied in the process of
describing (understanding) complex phenomena.

Abstraction is the most powerful such tool available to the human intellect.

Science proceeds by simplifying reality. The first step in simplification is abstrac-
tion. Abstraction (in the context of science) means leaving out of account all those
empirical data which do not fit the particular, conceptual framework within which
science at the moment happens to be working.

1Dante Gabrielli Rosetti, 1828–1882, English poet, illustrator, painter and translator
2T. Hall Caine, 1853–1931, British novelist, dramatist, short story writer, poet and critic.
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Abstraction (in the process of specification) arises from a conscious decision to ad-
vocate certain desired objects, situations and processes as being fundamental; by
exposing, in a first, or higher, level of description, their similarities and — at that
level — ignoring possible differences.

[From the opening paragraphs of [54, C.A.R. Hoare Notes on Data Structuring ]]

2. Computer: A computer is a collection of hardware and software, that is, is a machine
that can be instructed to carry out sequences of arithmetic or logical operations
automatically via computer programming [Wikipedia].

3. Computer Science: is the study and knowledge of the abstract phenomena that
“occur” within computers [DB].

As such computer science includes theory of computation, automata theory, formal
language theory, algorithmic complexity theory, probabilistic computation, quantum com-
putation, cryptography, machine learning and computational biology..

4. Computing Science: is the study and knowledge of how to construct “those things”
that “occur” within computers [DB].

As such computing science embodies algorithm and data structure design, functional-,
logic-, imperative- and parallel programming ; code testing, model checking and specifi-
cation proofs. Much of this can be pursued using formal methods.

5. Conservative Extension: An extension of a logical theory is conservative, i.e., con-
serves, if every theorem expressible in the original theory is also derivable within the
original theory [en.wiktionary.org/wiki/conservative exten-sion].

6. Divide and Conquer: In computer science, divide and conquer is an algorithm design
paradigm based on multi-branched recursion. A divide-and-conquer algorithm works
by recursively breaking down a problem into two or more sub-problems of the same
or related type, until these become simple enough to be solved directly [Wikipedia].

But this book is not about the exciting field of algorithm design.

Yet, the principle of divide and conquer is also very strongly at play here: In the top-
down analysis of a domain into what can be described and what is indescribable, of
describable entities into endurants and perdurants, of endurants into discrete, conjoins
and materials, of discrete into physical parts, structures and living species, and so forth.

7. Domain Engineering: is the engineering of domain descriptions based on the engi-
neering of domain analyses [DB].

8. Domain Requirements: are those requirements which can be expressed sôlely in
terms of domain concepts.
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9. Engineering: is the use of scientific principles to design and build machines, struc-
tures, and other items, including bridges, tunnels, roads, vehicles, and buildings
[Wikipedia].

The engineer walks the bridge between science and technology: analysing man-made
devices for their possible scientific properties and constructing technology based on
scientific insight.

10. Epistemology: is the branch of philosophy concerned with the theory of knowledge
– and is the study of the nature of knowledge, justification, and the rationality of
belief [Wikipedia].

11. Formal Method: By a formal method we shall here understand a method whose
techniques and tools can be understood mathematically.

For formal domain, requirements or software engineering methods formality means the
following:

• There is a set, one or more, specification languages – say for domain descrip-
tions, requirements prescriptions, software specifications, and software coding,
i.e., programming languages.3

• These are all to be formal, that is, to have a formal syntax, a formal semantics,
and a formal, typically Mathematical Logic proof system.

• Some of the techniques and tools must be supported by a mathematical under-
standing.

12. Hardware: The physical components of a computer: electronics, mechanics, etc.
[Wikipedia].

13. Intentional Pull: The concept of intentional pull is a wider notion than that of invari-
ant. Here we are not concerned with pre-/post-conditions on operations. Intentional
pull is exerted between two or more phenomena of a domain when their relation can
be asserted to always hold.

14. Interface Requirements: are those requirements which can be expressed in a com-
bination of both domain and machine concepts. They do so because certain entities,
whither endurants or perdurants, are shared between the domain and the machine.

15. Invariants: The concept of invariants in the context of computing science is most
clearly illustrated in connection with the well-formedness of data structures. Invari-
ants then express properties that must hold, i.e., as a pre-condition, before any
application of an operation to those data structures and shall hold, i.e. as a post-
condition after any application of an operation to those data structures.

3Most formal specification languages are textual, but graphical languages like Petri nets [78],

Message Sequence Charts [57], Statecharts [50], Live Sequence Charts [51], etc., are also for-
mal.
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16. Language: By language we shall, with [Wikipedia], mean a structured system of
communication. Language, in a broader sense, is the method of communication that
involves the use of – particularly human– languages. The ‘structured system’ that
we refer to has come to be known as Syntax, Semantics and Pragmatics.

17. Linguistics: By linguistics we shall mean the scientific study of language.

18. Machine: By a machine we shall understand a combination of software and hard-
ware.

19. Machine Requirements: are those requirements which can be expressed sôlely in
terms of machine concepts.

20. Mathematics: By mathematics we shall here understand a such human endeavours
that makes precise certain facets of language, whether natural or ‘constructed’ (as
for mathematical notation), and out of those endeavours, i.e., mathematical con-
structions, also called theories, build further abstractions.

21. Metaphysics: is the branch of philosophy that examines the fundamental nature of
reality, including the relationship between mind and matter, between substance and
attribute, and between potentiality and actuality [66] [Wikipedia].

In this book we stay clear of metaphysics.

22. Mereology: is the theory of parthood relations: of the relations of part to whole and
the relations of part to part within a whole [39, 82, 91].

The term ‘mereology’ is accredited to the Polish mathematician, philosopher and
logician Stanis law Leśniewski (1886–1939).

23. Method: By a method we shall understand a set of principles and procedures for
selecting and applying a set of techniques using a set of tools in order to construct
an artefact [DB].

24. Methodology: is the comparative study and knowledge of methods [DB].

[The two terms: ’method’ and ’methodology’ are often confused, including used
interchangeably.]

25. Model: A mathematical model is a description of a system using mathematical con-
cepts and language. We shall include descriptions4, prescriptions5 and specifications6

using formal languages as presenting models.

4as for domains
5as for requirements
6as for software
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26. Modelling: Modelling is the act of creating models, which include discrete math-
ematical structures (sets, Cartesians, lists, maps, etc.), and are logical theories rep-
resented as algebras. That is, any given RSL text denotes a set of models, and each
model is an algebra, i.e., a set of named values and a set of named operations on
these. Modelling is the engineering activity of establishing, analysing and using such
structures and theories. Our models are established with the intention that they
“model” “something else” other than just being the mathematical structure or the-
ory itself. That “something else” is, in our case, some part of a reality7, or of a
construed such reality, or of requirements to the, or a reality8, or of actual software9.

27. Narration & Formalisation: To communicate what a domain “is”, one must be
able to narrate of what it consists. To understand a domain one must give a formal
description of that domain. When we put an ampersand, &, between the two terms
we mean to say that they form a whole: not one without the other, either way
around ! In our domain descriptions we enumerate narrative sentences and ascribe
this enumeration to formal expressions.

28. Nondeterminism: Non-determinism is a fundamental concept in computer science.
It appears in various contexts such as automata theory, algorithms and concurrent
computation. . . . The concept was developed from its inception by Rabin & Scott,
Floyd and Dijkstra; as was the interplay between non-determinism and concurrency
[Michal Armoni and Mordechai Ben-Ari].

29. Ontology: is the branch of metaphysics dealing with the nature of being; a set of
concepts and categories in a subject area or domain that shows their properties and
the relations between them [36, 37] [Wikipedia].

30. Operational Abstraction abstract the way in which we express operations on usu-
ally representationally abstracted values. In conventional programming we refer to
operational abstract as procedure abstraction.

31. Philosophy: is the study of general and fundamental questions about existence,
knowledge, values, reason, mind, and language. Such questions are often posed as
problems to be studied or resolved [Wikipedia].

32. Pragmatics: studies the ways in which context contributes to meaning. Pragmat-
ics encompasses speech act theory, conversational implicature, talk in interaction
and other approaches to language behavior in philosophy, sociology, linguistics and
anthropology [68, 69] [Wikipedia].

33. Principle: By a principle we shall, loosely, understand (i) elemental aspect of a craft
or discipline, (ii) foundation, (iii) general law of nature, etc [www.etymonline.com].

7— as in domain modelling
8— as in requirements modelling
9— as in software design
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Among basic principles, to be applied across all phases of software development,
and hence in all phased of software engineering are those of abstraction: conservative
extension, divide and conquer, establishing invariants and intentional pull, narration &
formalisation, non-determinism, operational abstraction, refinement, and representational
abstraction. We refer to their definitions in this chapter.

34. Refinement is a verifiable transformation of an abstract (i.e., high-level) formal spec-
ification into a less abstract, we say more concrete (i.e., low-level) specification or an
executable program. Step-wise refinement allows the refinement of a program, from
a specification, to be done in stages [www.igi-global.com/dictionary].

35. Representational Abstraction abstracts the representation of type values, say in
the form of just plain sorts, or, when concrete types, then in, for example the form
of mathematical sets, or maps (i.e., discrete functions, usually from finite definition
sets into likewise representationally abstracted ranges), or Cartesians (i.e., group-
ings of likewise abstracted elements), etc. In conventional programming we refer to
representational abstract as data abstraction.

36. Requirements: By a requirements we understand (cf., [56, IEEE Standard 610.12]):
“A condition or capability needed by a user to solve a problem or achieve an objective”

In software development the requirements explain what properties the desired soft-
ware should have, not how these properties might be attained. In our, the triptych
approach, requirements are to be “derived” from domain descriptions.

37. Requirements Engineering: is the engineering of constructing requirements [DB].

38. Requirements Prescription: By a requirements prescription we mean a document
which outlines the requirements that some software is expected to fulfill.

39. Requirements Specification: By a requirements specification we mean the sames as
a requirements prescription.

40. Science: is a systematic enterprise that builds and organizes knowledge in the form
of testable explanations and predictions about the universe [Wikipedia].

Science is the intellectual and practical activity encompassing the systematic study
of the structure and behaviour of the physical and natural world through observation
and experiment.

41. Semantics: is the linguistic and philosophical study of meaning in language, pro-
gramming languages, formal logics, and semiotics. It is concerned with the relation-
ship between signifiers — like words, phrases, signs, and symbols — and what they
stand for in reality, their denotation [38] [Wikipedia].

The languages that we shall be concerned with is, on one hand, the language[s]
in which we describe domains, here MOLA, and, on the other hand, the language



291

that emerges as the result of our domain analysis & description: a domain specific
language.

There are basically three kinds of semantics, expressed somewhat simplis-
tically:

• Denotational Semantics model-theoretically assigns a meaning , a de-
notation, to each phrase structure, i.e., syntactic category .

• Axiomatic Semantics or Mathematical Logic Proof Systems is an
approach based on mathematical logic for proving the correctness of
specifications.

• Algebraic Semantics is a form of axiomatic semantics based on alge-
braic laws for describing and reasoning about program semantics in a
formal manner.

42. Semiotics: is the study and knowledge of sign process (semiosis), which is any form
of activity, conduct, or any process that involves signs, including the production of
meaning [Wikipedia].A sign is anything that communicates a meaning, that is not
the sign itself, to the interpreter of the sign. The meaning can be intentional such as
a word uttered with a specific meaning, or unintentional, such as a symptom being
a sign of a particular medical condition. Signs can communicate through any of the
senses, visual, auditory, tactile, olfactory, or gustatory [Wikipedia].

The study and knowledge of semiotics is often “broken down” into the studies, etc.,
of syntax, semantics and pragmatics.

43. Software: is the is the set of all the documents that have resulted from a com-
pleted software development: domain analysis & description, requirements analysis &
prescription, software: software code, software installation manuals, software mainte-
nance manuals, software users guides, development project plans, budget, etc.

44. Software Design: is the engineering of constructing software [DB].

Whereas software requirements engineering focus on the logical properties that de-
sired software should attain, software design, besides focusing on achieving these
properties correctly , also focus on the properties being achieved efficiently .

45. Software Engineering: to us, is then the combination of domain and requirements
engineering with software design [DB].

This is my characterisation of software engineering. It is at the basis of this book as
well as [8–16].

46. Software Development: is then the combination of the development of domain
description, requirements prescription and software design [DB].

This is my characterisation of software engineering. It is at the basis of this book as
well as [8–16].
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47. Syntax: is the set of rules, principles, and processes that govern the structure of
sentences (sentence structure) in a given language, usually including word order
[Wikipedia].

We assume, as an absolute minimum of knowledge, that the reader of this primer is
well aware of the concepts of BNF (Backus Normal Form) Grammars and CFGs (Context
Free Grammars).

48. Syntax, Semantics and Pragmatics: With the advent of computing and their at-
tendant programming languages these concepts of semiotics has taken on a somewhat
additional meaning. When, in computer & computing science and in software engi-
neering we speak of syntax we mean a quite definite and (mathematically) precise
thing. With the advent our ability to mathematically precise describe the semantics
of [certain] programming languages, we similarly mean quite definite and (mathe-
matically) precise things. For natural, i.e., human languages, this is not so. s for
pragmatics there is this to say. Computers have not pragmatics. Humans have.
When, in this book we bring the term ‘pragmatics’ into play we are referring not to
the computer “being pragmatic”, but to our pragmatics, as scientists, as engineers.

49. Taxonomy: is the practice and science of classification of things or concepts, in-
cluding the principles that underlie such classification [Wikipedia].

50. Technique: By a technique we shall, loosely, understand (i) formal practical details in
artistic, etc., expression, (ii) art, skill, craft in work” [www.etymonline.com]. Classical
technique are that of establishing invariants and expressing intentional pull.

51. Technology: is the sum of techniques, skills, methods, and processes used in the
production of goods or services or in the accomplishment of objectives, such as sci-
entific investigation [Wikipedia].

Technology can be the knowledge of techniques, processes, and the like, or it can
be embedded in machines to allow for operation without detailed knowledge of their
workings. Systems (e.g. machines) applying technology by taking an input, changing
it according to the system’s use, and then producing an outcome are referred to as
technology systems or technological systems [Wikipedia].

52. Tool: By a tool we shall, loosely, understand (i) instrument, implement used by a
craftsman or laborer, weapon, (ii) that with which one prepares something, etc. [www.-
etymonline.com].

53. Triptych: The triptych [of software development] centers on the three ‘engineerings’:
domain, requirements and software [DB]. We refer to The Triptych Dogma of Page V.
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B.29 Syntax

We refer to Chapter 29 on page 221.
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We refer to Chapter 30 on page 223.
:

B.31 Pragmatics

We refer to Chapter 31 on page 225.
:
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We refer to Chapter 35 on page 237.
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B.36 Natural Sciences

We refer to Chapter 36 on page 239.
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We refer to Chapter 37 on page 241.
:
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We refer to Chapter 38 on page 245.
:

B.39 Industry

We refer to Chapter 39 on page 249.
:

B.40 Public Services

We refer to Chapter 40 on page 251.
:

B.41 ... Services

We refer to Chapter 41 on page 253.
chapServices:

B.42 Management

We refer to Chapter 42 on page 255.
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C.1 International System of Units

In this section we shall muse about the kind of attributes that are typical of natural parts,
but which may also be relevant as attributes of artefacts. Our departure point is that of
the International System of Units, ISU1.

Typically, when physicists write computer programs, intended for calculating physics
behaviours, they “lump” all of these into the type Real, thereby hiding some important
physics ’dimensions’. In this section we shall review that which is missing !

1https://en.wikipedia.org/wiki/International System of Units
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The subject of physical dimensions in programming languages is rather decisively
treated in David Kennedy’s 1996 PhD Thesis [61] — so there really is no point in trying
to cast new light on this subject other than to remind the reader of what these physical
dimensions are all about.

C.1.1 SI: The International System of Quantities

In physics we operate on values of attributes of manifest, i.e., physical phenomena. The
type of some of these attributes are recorded in well known tables, cf. Tables C.1–C.3.
Table C.1 shows the base units of physics.

Base quantity Name Type
length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Table C.1: Base SI Units

Table C.2 on the next page shows the units of physics derived from the base units. Ta-
ble C.3 shows further units of physics derived from the base units. velocity is speed with three
dimensional direction and is, for example, given as

• velocity, meter per second with direction: m/s

• acceleration, meter per second squared and (longitude,latitude,azimuth)measured in radian: m/s2(r, r, r)

Table C.4 shows standard prefixes for SI units of measure and Tables C.5 show fractions of
SI units.

• • •

The point in bringing this material is that when modelling, i.e., describing domains we
must be extremely careful in not falling into the trap of modelling physics types, etc., as
we do in programming – by simple Reals. We claim, without evidence, that many trivial
programming mistakes are due to confusions between especially derived SI units, fractions
and prefixes.

C.1.2 Units are Indivisible

A volt, kg×m2×s−3×A−1, see Table C.2, is “indivisible”. It is not a composite structure
of mass, length, time, and electric current – in some intricate relationship.

• • •
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Name Type Derived Quantity Derived Type
radian rad angle m/m
steradian sr solid angle m2×m−2

Hertz Hz frequency s−1

newton N force, weight kg×m×s−2

pascal Pa pressure, stress N/m2

joule J energy, work, heat N×m
watt W power, radiant flux J/s
coulomb C electric charge s×A
volt V electromotive force W/A (kg×m2×s−3×A−1)
farad F capacitance C/V (kg−1×m−2×s4×A2)
ohm Ω electrical resistance V/A (kg×m2×s3×A2)
siemens S electrical conductance A/V (kg1×m2×s3×A2)
weber Wb magnetic flux V×s (kg×m2×s−2×A−1)
tesla T magnetic flux density Wb/m2 (kg×s2×A−1)
henry H inductance Wb/A (kg×m2×s−2×A2)
degree Celsius oC temp. rel. to 273.15 K K
lumen lm luminous flux cd×sr (cd)
lux lx illuminance lm/m2 (m2×cd)

Table C.2: Derived SI Units

Physical attributes may ascribe mass and volume to endurants. But they do not reveal the
substance, i.e., the material from which the endurant is made. That is done by chemical
attributes.

C.1.3 Chemical Elements

The chemical elements are, to us, what makes up MATTER. The mole, mol, substance
is about chemical molecules. A mole contains exactly 6.02214076×1023 (the Avogadro
number) constituent particles, usually atoms2, molecules, or ions – of the elements, cf. ’The
Periodic Table’, en.wikipedia.orgwiki/Periodic table, cf. Fig. C.1. Any specific
molecule is then a compound of two or more elements, for example, calciumphosphat:
Ca3(PO4)2.

Moles bring substance to endurants. The physics attributes may ascribe weight and volume
to endurants, but they do not explain what it is that gives weight, i.e., fills out the volume.

2Mole: One mole of a substance is equal to 6.022 × 1023 units of that substance (such as atoms,
molecules, or ions). The number 6.022× 1023 is known as Avogadro’s number or Avogadro’s constant.
The concept of the mole can be used to convert between mass and number of particles.
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Name Explanation Derived Type
area square meter m2

volume cubic meter m3

speed meter per second m/s
wave number reciprocal meter m-1
mass density kilogram per cubic meter kg/m3

specific volume cubic meter per kilogram m3/kg
current density ampere per square meter A/m2

magnetic field strength ampere per meter A/m
substance concentration mole per cubic meter mol/m3
luminance candela per square meter cd/m2

mass fraction kilogram per kilogram kg/kg = 1

Table C.3: Further SI Units

Prefix name deca hecto kilo mega giga
Prefix symbol da h k M G
Factor 100 101 102 103 106 109

Prefix name tera peta exa zetta yotta
Prefix symbol T P E Z Y
Factor 1012 1015 1018 1021 1024

Table C.4: Standard Prefixes for SI Units of Measure

C.2 Spatial Measures

C.2.1 Angle

C.2.2 Latitude, Longitude and Altitude

Latitude and Longitude are the units that represent the coordinates of a geographic coor-
dinate system. Altitude, like elevation, is the is the height above or depth below sea level .

Mean sea level3 (MSL, often shortened to sea level) is an average surface level of one
or more among Earth’s coastal bodies of water from which heights such as elevation may
be measured. The global MSL is a type of vertical datum – a standardized geodetic datum
– that is used, for example, as a chart datum in cartography and marine navigation, or, in
aviation, as the standard sea level at which atmospheric pressure is measured to calibrate
altitude and, consequently, aircraft flight levels. A common and relatively straightforward
mean sea-level standard is instead the midpoint between a mean low and mean high tide
at a particular location.4

3https://en.wikipedia.org/wiki/Sea level
4What is “Mean Sea Level” ? Archived 21 April 2017 at the Wayback Machine (Proudman Oceanographic

Laboratory).
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Prefix name deca hecto kilo mega giga
Prefix symbol da h k M G
Factor 100 101 102 103 106 109

Prefix name tera peta exa zetta yotta
Prefix symbol T P E Z Y
Factor 1012 1015 1018 1021 1024

Prefix name deci centi milli micro nano
Prefix symbol d c m µ n
Factor 100 10−1 10−2 10−3 10−6 10−9

Prefix name pico femto atto zepto yocto
Prefix symbol p f a z y
Factor 10−12 10−15 10−18 10−21 10−24

Table C.5: SI Units of Measure and Fractions

C.3 How to Measure

Metrology5 is the science of measurement, embracing both experimental and theoretical de-
terminations at any level of uncertainty in any field of science and technology, as defined by
the International Bureau of Weights and Measures (BIPM, 2004, ).

much more to come

C.4 Precision, Probability, Statistics and Fuzziness

to be written

C.4.1 Precision

to be written

C.4.2 Probability

to be written

C.4.3 Statistics

to be written

C.4.4 Fuzziness

to be written
5https://www.nist.gov/metrology
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Figure C.1: Periodic Table

C.5 Summary & Conclusion

to be written



Appendix D

MoLa: The Modeling Language
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D.9 Structured Expressions . . . . . . . . . . . . . . . . . . . . . . . . 314
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D.11 CSP: Communicating Sequential Processes . . . . . . . . . . . . . 314

D.1 Identifiers

to be written
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D.2 Constants

Constants name values that do not change,

54. The Boolean true and false names constants. See Item 83 on page 311.

55. The characters a, ..., z, A, ..., Z are constants.

56. Any text is a constant: ”any text is a constant.

57. The empty set {} is names a constant. See Item 89 on page 312.

58. Numerals are constants. See Item 68 on page 310.

59. The empty list <> names a constant. See Item 97 on page 313.

60. The empty map [] names a constant. See Item 98 on page 313.

61. Any expression, a set, Cartesian,list or map enumeration composed solely from con-
stants is a constant.

54. Const ::= true ‖ false
54. ‖ Char
54. ‖ Text
57. ‖ Numeral
58. ‖ {}
59. ‖ 〈〉
60. ‖ [ ]
61. ‖ [see explanation next]

We comment on Item 61: in Sects. D.7.2 on page 312, D.7.4 on page 313, D.7.5 on
page 313, and D.7.6 on page 313, we formally outline the syntax (and, informally, the
meaning) of sets, Cartesians, lists and maps. Wherever, in these expression syntaxes, the
terms stand for constants, the corresponding expression is a constant !

D.3 Names & Identifiers

Names denote types or values of elements of a type (see first line of Sect.D.6 below) or
other1. We give names to Booleans, numbers (i.e., numerals), sets, Cartesians, lists, maps
and functions. We have not yet given a formalized introduction to characters and texts.
So we do that next !

We use to term name to express that we name something, i.e., that the name designates,
denotes, that “thing”; that is, the semantics of the name is that thing !

1By ‘other’ we mean: of states, assignable variables, or channels.
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And we use the term identifier to express a syntactic quantity, usually a sequence of
characters.

Which characters we then choose to allow as elements of an identifiers character se-
quence is then a matter of pragmatics.

Henceforth we shall present the concrete syntax of identifiers, whether of types or of
values or other2.

62. ‘a’, ‘b’, ..., ‘z’ are alphabetic characters, AlphaChar.

63. ‘0’, ‘1’, ..., ‘9’ are digits, Digit.

64. An alphabetic character or a digit is a character.

65. The alphabetic characters are identifiers, ID.

66. An alphabetic character followed by a

(a) [possibly ‘ ’ prefixed underscore and then]

(b) by a suffix identifier is an identifier.

67. Any non-empty sequence of characters

(a) and possibly properly in-fixed underscores, ‘ ’,

(b) is a suffix identifier, SuffixID.

62. AlphaChar ::= a ‖ b ‖ ... ‖ z
63. Digit ::= 0 ‖ 1 ‖ ... ‖ 9
65. Character ::= AlphaChar ‖ Digit
65. ID ::= AlphaChar
66b. ‖ AlphaChar SuffixID
66a. ‖ AlphaChar SuffixID
67. SuffixIdD ::= Character
67a. ‖ Character SuffixID
67b. ‖ Character SuffixID

D.4 Patterns

to be written

2By ‘other’ we mean: of states, assignable variables, or channels.
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D.5 Numerals

Digits are defined in Item 63 above.

68. Digits are numerals.

69. Any digit sequence is a numeral.

70. Any digit sequences separated by a period: ‘.’ is a numeral.

71. A digit is a digit sequence.

72. A digit followed by a digit sequence is a digit sequence.

68. Numeral ::= Digit
68. ‖ DigitSeq
70. ‖ DigitSeq . DigitSeq
71. DigitSeq ::= Digit
72. ‖ Digit DigitSeq

D.6 Types

We shall consider types to be a special kind of sets (where we do not consider what is so
special about theses sets). The symbol ‘::=’ denotes definition, and the symbol ‘‖’ denotes
syntactic alternative.

73. Type Expr ::= Bool ‖ Nat ‖ Int ‖ Real ‖ Char ‖ Text
74. ‖ A-set
74. ‖ A-infset
75. ‖ A×B×...×C
76. ‖ A∗

76. ‖ Aω

77. ‖ A →m B
78. ‖ A → B

78. ‖ A
∼→ B

79. ‖ Type Expr 1 | Type Expr 2 | ... | Type Expr n
80. ‖ ID 3

81. Type Definition ::= ID = Type Expr
82. ‖ ID :: (sel a:A sel b:B ... sel c:C)

Type expressions expresses types. Type definitions define types by giving names, TId, to
types.

3For ID see Item 65 on the previous page
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73. A type expression expresses either that of a Boolean, or a natural number, or an
integer, or a real, or a characters, or a text;

74. or a type expression expresses finite or also infinite sets;

75. or a type expression expresses Cartesians of types A, B, ..., C;

76. or a type expression expresses finite or infinite lists of element of type A;

77. or a type expression expresses maps from elements of type A to elements of type B;

78. or a type expression expresses total, respectively partial functions from elements of
type A to elements of type B;

79. or a type expression expresses the union type of elements of types Type Expr 1, or
types Type Expr 2, ..., or Type Expr n;

80. or a type expression is a type name expressing whatever the definition of that type
name expresses.

A type definition consists of three elements: a type name, ID, and type definition symbol,
either ‘=’ or ‘::’, and a right hand side.

81. The right hand side is a type expression. The type being defined, by some name in
ID, is that of the type expression.

82. The right hand side is a special Cartesian type expression. By (sel a:A sel b:B ...
sel c:C) we mean a Cartesian (omitting the infix ×) whose individual elements can
be sel eted by the selectors, i.e., the [primitive] functions prefixing the Cartesian
component type identifiers (sel A, sel B, ..., sel C).

D.7 Expressions

D.7.1 Boolean

Boolean expressions are such expressions which evaluate to a Boolean value.

83. true and false are Boolean expressions.

84. A triplet of two Boolean expressions with an infix Boolean connective is a Boolean
expression.

85. The existential, unique existential and universal predicate over variables a, b, ..., c
of appropriate types A, B, ..., C, are Boolean expressions.

86. These are the Boolean connectives: ∼, ∧, ∨, ⊃.
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87. A triplet of a pair of set, or a pair of Cartesian, or a pair of list, or a pair of map
expressions in-fixed by a set, Cartesian, list or map relational is a Boolean expression.

88. =, 6=,⊂,⊆ are set relational operators.

89. =, 6= are Cartesian relational operators.

90. =, 6= are list relational operators.

91. =, 6= are map relational operators.

83. Bool Expr ::= true ‖ false
84. ‖ Bool Expr × Bool Conn × Bool Expr
85. ‖ ∃ a:A,b:B,...,c:C • Bool Expr
85. ‖ ∃! a:A,b:B,...,c:C • Bool Expr
85. ‖ ∀ a:A,b:B,...,c:C • Bool Expr
87. ‖ Set Expr Set Rel Set Expr
87. ‖ Cart Expr Car Rel Cart Expr
87. ‖ List Expr List Rel List Expr
87. ‖ Map Expr Map Rel Map Expr
86. Bool Conn ::= ∼
86. ‖ ∧
86. ‖ ∨
86. ‖ ⊃
88. Set Rel ::= =
88. ‖ 6=
88. ‖ ⊂
88. ‖ ⊆
89. Cart Rel ::= =
89. ‖ 6=
90. List Rel ::= =
90. ‖ 6=
91. Map Rel ::= =
91. ‖ 6=

D.7.2 Sets

Set expressions are such expressions which evaluate to a set value.

92. The empty set is a set expression.

93. Set enumeration is a set expression.

94. Set comprehension is a set expression.
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95. A set expression followed by a set [producing] operator followed by a set expression
is a set expression.

96. The operators ∪,∩, \ and / are set producing operators.

92. Set Expr ::= {}
93. ‖ { Expr , Expr , ... , Expr }
94. ‖ { Expr4 | ID:Type Expr,...,ID:Type Expr : Bool expr5}
95. ‖ Set Expr Set Op Set Expr
96. Set Op ::= ∪ ‖ ∩ ‖ \ ‖ /

D.7.3 Arithmetics

Arithmetic expressions are such expressions which evaluate to a number value.

D.7.4 Cartesians

Cartesian expressions are such expressions which evaluate to a Cartesian value.

D.7.5 Lists

List expressions are such expressions which evaluate to a list value.

97. The empty list is a list expression.

D.7.6 Maps

Map expressions are such expressions which evaluate to a map value.

98. The empty map is a map expression.

4This expression is expected to contain the [free] variables defined, hence bound to, the values of the
sequence of one or more type expressions immediately to the right of the BAR.

5This Boolean expression is expected to contain the variables bound to the values of the sequence of
one or more type expressions between the BAR and the Boolean expression.
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D.8 Functions

D.9 Structured Expressions

D.10 Imperative Statements

D.11 CSP: Communicating Sequential Processes



Appendix E

Indexes

E.1 Definitions

1. Abstraction, 201
1. Domain, 3
10. Engineering, 203
10. Formal Method, 6
11. Epistemology, 203
11. Language, 6
12. Formal Language, 7
12. Formal Method:, 203
13. Formal Expression, 8
13. Hardware, 203
14. Formal Evaluation, 8
14. Intentional Pull, 203
15. Descriptions and Models, 9
15. Invariant, 203
16. Machine, 204
16. Specification Units, 9
17. Machine Requirements, 204
17. Speech Act, 10
18. Computer Science, 11
18. Mathematics, 204
19. Computing Science, 11
19. Mereology, 204
2. Computer, 202
2. Concepts of Computing, 3
20. Narration and Formalisation, 205
20. Requirements, I, 12
21. Nondeterminism, 205

21. Requirements, II, 13
22. Machine:, 13
22. Ontology, 205
23. Machine, II, 13
23. Operational Abstraction, 205
24. Abstraction

Operational, 205
24. Requirements, III, 13
25. Philosophy, 205
25. Software, 14
26. Principle

of a Method, 205
26. Program, 14
27. Informatics, 14
27. Method

Principle, 205
28. Information Technology, 15
28. Refinement, 206
29. Domain, 20
29. Representational Abstraction, 206
3. Computer Science, 202
3. Practices of Computing, 4
30. Abstraction

Representational, 206
30. Phenomena, 23
31. Entities, 23
31. Requirements
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Engineering, 206
32. Endurants, 23
32. Engineering

of Requirements, 206
33. Perdurants, 24
33. Science, 206
34. External Qualities, 24
34. Semantics, 206
35. Denotational Semantics, 207
35. Discrete or Solid Endurants, 24
36. Axiomatic Semantics, 207
36. Fluid Endurants, 24
37. Algebraic Semantics, 207
37. Parts, 25
38. Atomic Part, I, 25
38. Semiotics, 207
39. Compound Part, I, 25
39. Software, 207
4. Computing Science, 202
4. Didactics, 4
40. Internal Qualities, 26
40. Software

Design, 207
41. Software

Engineering, 207
41. Unique Identity, 26
42. Engineering

of Software, 207
42. Mereology, I, 26
43. Attributes, 26
43. Software

Development, 207
44. Analysis Prompt, 27
44. Syntax, 208
45. Analysis predicates, 27
45. Taxonomy, 208
46. Analysis function, 27
46. Technique, 208
47. Description Prompt, 27
47. Technique

of a Method, 208
48. Method

Technique, 208

48. State, I, 28
49. Actors, 28
49. Technology, 208
5. Conservative Extension, 202
5. Method, 5
50. Actions, 28
50. Tool, 208
51. Events, 28
51. Triptych, 208
52. Behaviours, 28
53. Channel, 29
54. Domain Analysis, 29
55. Domain Description, 29
56. Relation, 46
57. Set, 51
58. Identifier, 74
59. Numerals, 75
6. Divide and Conquer, 202
6. Principles, 5
60. Variable, 76
61. Variable Declaration, 76
62. State, I, 76
63. Assignment, 76
64. Behaviour, 77
65. Channel, 77
66. Channel Declaration, 77
67. Channel Communication, 77
68. Definition Set, 79
69. Range Set, 79
7. Domain Engineering, 202
7. Procedure, 6
70. Graphs, 91
71. List, 96
72. Definition Set, 104
73. Range Set, 104
74. Type, 112
75. Value, 112
76. Type Expression, 113
77. Type Definition, 114
78. Type Name, 114
79. Type Expression, 114
8. Engineering

of Domain, 202
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8. Technique, 6
80. Type-forming Operator, 114
81. Subtype, 115
82. Definite Space, 131
83. Indefinite Time, 138
84. Definite Time, 138
9. Domain Requirements, 202
9. Tool, 6

action, 28
actor, 28
analysis

domain, 29
function, 27
predicate, 27
prompt, 27

assignment, 76
attribute, 26

behaviour, 28

channel, 29
Compound

part, 25
computing

concepts, 3
practices, 4

concepts
of computing, 3

description
domain, 29
prompt, 27

discrete
endurant, 24

domain
analysis, 29
description, 29

Domain/ Machine Interface, 203

endurant, 23
discrete, 24
fluid, 24
solid, 24

entity, 23
event, 28
external quality, 24

fluid
endurant, 24

identifier, 74
Interface of Domain/ Machine, 203
internal quality, 26

Language, 204
Linguistics, 204
logic, 38

mereology, 26
Metaphysics, 204
Method, 204

Tool, 208
Methodology, 204
Model, 204
Modelling, 205

parts, 25
perdurant, 24
phenomenon, 23
practices

of computing, 4
Pragmatics, 205
Principle, 205
principle, 5
procedure, 5

Requirements, 206
Prescription, 206
Specification, 206

Science
of Computers, 202

solid
endurant, 24

specification
unit, 9

state, 28
syllogism, 39
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technique, 5

Tool

of a Method, 208

tool, 5

type

recursive, 117

Type Description, 114

Type Introduction, 114

unique
identity, 26

unit
of specification, 9

variable, 76

E.2 Concepts

{ open set brace, 59
{} empty set, 59
} close set brace, 59

abstraction
concept, 4
practice, 4

action, 12, 85
adjacent

edge, 110
alphabetic character, 83
animal, 12
artefactual part, 12
assertion, 40
assignment, 85
asymmetric, 161
atomic part, 12

behaviour, 12

cardinality, 59
Cartesian, 99–107
Cartesian product, ×, 100
channel, 85

communication, 86
declaration, 85

character, 82
classification, 144
compound part, 12
computation

concept, 4
prescription concept, 4

concatenation of lists ̂, 127
concept

of abstraction, 4
of computation, 4
of computation prescription, 4
of interpretation, 4
of program, 4
of programming, 4
of specification, 4

conceptualisation of a problem
practice, 4

contradiction
principle, 41

correct
reasoning, 40

decimal system fn:1, 70
declaration

variable, 85
definition

set, 96, 135, 136
definition set

map, 136
digit fn:1, 70
direct function definition, 94
directed

graph, 111
direction, 161
distance, 161
divide-and-conquer

practice, 4
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domain
model

specification units, 31
domains, 3, 23

edge, 110
adjacent, 110
of a graph, 110

elements of list, elems, 127
empty

set ({}), 59
endurant, 12
equality

of lists =, 127
Euclidean Geometry, 161
event, 12

finite cardinality, 59
function

recursive, 96
function definition

direct, 94

graph, 110
directed, 111
edge, 110
labeled, 110
node, 110
path, 110
unlabeled, 110
vertex, 111

head
of list hd, 127

human, 12

identifier, 83, 297
pattern, 147

imperative programming, 84
in-between, 161
indices

of list inds, 127
infinite cardinality, 59
integer

number, 70
interpretation

concept, 4

judgment, 40

labeled
graph, 110

language
of object studied, 7
of observer, 7
sign, 82

length
of list len, 127

list
comprehension, 127
type expression, 127

living species, 12
logic, 40

operator, 45

ma[
comprehension, 137

map
definition set, 136
expression, 137
range set, 136
type expression, 137

membership of set, 59
method, 24

name, 296
narration of a problem

practice, 4
natural

number, 70
natural part, 12
node, 110

of a graph, 110
number

integer, 70
natural, 70
rational, 70

numeral, 70
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object
language, 7

observer
language, 7

parallel programming, 85
part, 12
path, 110

of a graph, 110
pattern

identifier, 147
perdurant, 12
plant, 12
positional numeral system fn:1, 70
possibility of truth, 41
practice

of abstraction, 4
of conceptualisation of a problem, 4
of divide-and-conquer, 4
of narration of a problem, 4
of programming a problem solution, 4
of reasoning, 40

pragmatics, 297
principle, 24

of contradiction, 41
procedure, 24
product

Cartesian ×, 100
program

concept, 4
programming

concept, 4
imperative, 84
parallel, 85

programming a problem solution
practice, 4

radix fn:1, 70
range

set, 96, 136
range set, 135

map, 136
rational

number, 70
read

text, 82
reason, 40
recursive

function, 96
type, 149

descriptions, 149
relation, 45

operator, 45

selection of list element ℓ(i), 127
selector, 101
semantics, 217, 296
set

brace, close: }, 59
brace, open: {, 59
comprehension, 58
finite cardinality, 59
infinite cardinality, 59

sign
language, 82

specification
concept, 4
unit, 58, 85, 94, 95

domain model, 31
units, 58, 146

state, 12
of declared variables, 85

syllogism, 42
symmetric, 161
syntax, 215, 297

tail
of list tl, 127

technique, 24
text, 82
tool, 24
truth

possibility of, 41
tuple

≡ list, 126
type
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constructor
∗: finite lists, 127

definition, 146
description, 146
expression, 127, 146
introduction, 146

type-forming operator, 146

unlabeled

graph, 110

variable
declaration, 85

vertex
of a graph, 111

write
text, 82

E.3 Domain Examples

Domain Examples
Graph Theory

Your Home, 108
Your Neigbourhood, 109

Number Sets
Largest Number in Set of Numbers, 72
Partition into Equal Weight Sets, 72
Partition of Number Sets, 72
Sum of Numbers in Sets, 72

Number Theory, 72
Factorial, 72

Greatest Common Denominator, 72
Primes, 72

Set Theory
Partitioning, 59
Power Set, 58
Set Union Closure, 58

Sociology
Chinese Society, I, 60

Your World
Your Home, 108
Your Neigbourhood, 109

E.4 Other Examples

1. Domains, 23

10. Compound Parts, 28

11. Internal qualities, 28

12. Unique Identities, 28

13. Mereology, 28

14. Attributes, 29

15. Analysis Predicates, 29

16. Analysis Functions, 29

17. Description Prompts, 30

18. A Road System State, 30

19. Road Net Actions, 30

2. Phenomena and Entities, 26

20. Road Net Events, 31

21. Road Net Traffic, 31

22. Informal Correct Reasoning, 37

23. Informal Incorrect Reasoning, 38

24. Further Informal Reasoning, 39

25. A Basket of Fruits, 53

26. Power Set, 58

27. Set Union Closure, 58

28. The Partitioning Problem, 59

29. Sociology, 60

3. Endurants, 26

30. Fatorials, 72

31. Primes, 72

32. Greatest Common Denominator, 72

33. , 72

34. Largest Number in Set of Numbers, 72



322

35. Sum of Numbers in Sets, 72
36. Partition of Number Sets, 72
37. Partition into Equal Weight Sets, 72
38. Identifiers, 79
39. Unique Identifier Tokens, 84
4. Perdurant, 26
40. Attributes Tokens, 84
41. Some Simple Functions, 90
42. xxx, 91
43. A Recursive Function Definition, 92
44. A Cartesian Tree Type, 99
45. Functions over Cartesian Tree Type, 100
46. A Single Relation Database, 102
47. SQL, 103
48. Graphs: Your Home, 108
49. Graphs: Your Neigbourhood, 109

5. External Qualities, 26
50. A Row of Fruits, 112
51. Simple List Examples, 113
52. A List Tree Type, 115
53. A Map Tree Type, 124
54. Subtype of Factorials, 133
55. Subtype of Prime Numbers, 133
56. Road Transport, I, 134
57. Recursive Phenomena, 137
58. Road Transport, II, 138
59. From Road Net Endurants to Automo-

bile Behaviour, 169
6. Solid Endurants, 27
7. Fluid Endurants, 27
8. Parts, 27
9. Atomic Parts, 27

E.5 Symbols

/, 51
=, 51
∩, 51
∪, 51
ℓ(i) list element selection, 96
∈, 51
6=, 51
\, 51
⊂, 51
⊆, 51
×, Cartesian, 84
{

open set brace, 54
{}

empty set, 54
}

close set brace, 54
∗ finite list type constructor, 97
ω list type constructor, 97
̂ list concatenation, 96
= equality

lists, 97

∈ set membership, 54
elems list elements, 97
hd list head, 97
inds list indices, 97
len list length, 97
tl list tail, 97
ℓ(i) list element selection, 97
̂ list concatenation, 97
6= in-equality

lists, 97
Int, 62
Nat, 62
Real, 62
card, 51
chaos

syntax, 9
elems list elements, 96
hd list head, 96
inds list indices, 96
len list length, 96
tl list tail, 96
“and”, ∧, 42
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Sect. 3.6.2, 43
“if-and-only-if”, ≡

Sect. 3.6.5, 45
“imply”, ⊃, 42

Sect. 3.6.4, 44
“is”, =, 42
“not”, ∼, 42

Sect. 3.6.1, 43

“or”, ∨, 42

Sect. 3.6.3, 44

“plus”, +, 42

“smaller”, <, 42

“is equal to”, =, 46

“is not equal to”, 6=, 46

→m finite map type forming constructor, 105

E.6 Text Changes

LogBook, 287

Structure of book section, Chapter 0, 15

Tokens and Parts, 83
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Appendix F

Log Book

• 26.6.2023: Looking back:

– Mid June 2023: Revived the idea that led to this document

– 22.6.2023: Having completed yet a swing through the editing of [27] I established
the main, logic-I, numbers-I, functions-I, types-I, calculations-I,

sets, Cartesians, lists and maps files.

– 23.6.2023:

– 24.6.2023: Established the chapAxiomSystems, chapClosing, chapFormalBases,

chapSyntax, chapSemantics, chapPragmatics, chapFormalBases, chapVerification,

chapRecursiveFunctionTheory files. Established the part structuring.

– 25.6.2023: Established the chapRoadTransport, chapSpace, chapTime, chapAlgebra,

chapRoadTransport, chapSpace, chapMathematicalLogic

Established the chapLogBook file.
Renamed a part and some chapters to reflect the change of focus: introducing the
Triptych dogma as a leading principle of this document.
Established the partTriptych, chapRequirements, chapSoftware files.
Wrote a bit in Chapters0 and 2.

• 27.6.2023: Took the full consequence of the emphasis on domains by establishing ap-
pendix chapters chapRiversCanals, chapStockExchange, chapCreditCard, chapFinanceIndustry

Perhaps more to come.

• 28.6.2023: Added appendix chapter C, Intl.Sys.of Units plus text from earlier writ-
ings – yet to be edited.
Added sections to Chapter 1: Didactics, Method & Methodology, Computer & Com-
puting Science.

• 29.6.2023: Replaced contemplated separate chapters on Functions, resp., Types by
one, “smaller” Chapter6 on Functions and Types – An Introduction.
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• 30.6.2023: Text for Sect. 6 on page 101.
Revision/simplification to Chapter4.

• 1.7.2023: Edited new Appendix Chapter A Concepts. Taken from [23].

• 2.7.2023: Further edit on Appendix Chapter A, Vocabulary.
Work on Chapter3, Sets. First “completion”.

• 3.7.2023: Moved chapter on sets up just before the chapter on numbers.
Inserted definitions of the factorial and the fibonacci functions into Chapter6.
Work on Chapter8, Cartesians. First “completion”.

• 4.7.2023: Work on Chapter10.1

• 5.7.2023: Work on both Power Plant document and this: Inserted new chapters:
Infinity 7 and Graphs and Trees 9.

• 6.7.2023: Work on Power Plant and this doc.: sets, graphs, ...

July: Filling in various chapters

• 29.7.2023: Putting a new chapter, Chapter1, as the first, real chapter of the book.
Beginning to consistently begin “all” chapters with Motivation text.

• 30.7.2023: MOLA. To be done, sooner or later: streamline Chapters 2–4 and 8–11
presentation of logic, number, set, Cartesian, list and map presentations.

• 6.8.23: Plans for several new chapters:

Physics with subsections on

Mechanics

Electricity

Thermodynamics

...

Botanics, Zoology, Biology

Botanics

Herbaria

Plantebestemmelse

Formering ...

Zoology

...

Biology

Conception

Inherited attributes

Family "trees"

...

Geography

Geodecy

Geology

Minerals

Liquids

Meteorology

Weather

Statically

Dynamocally

Renewal

...

Etcetera

1Started studying and sketching a domain model for Nuclear Power Plants !
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And a chapter on Documents:

Two facts:

1. There are the physical, paper

or electronic "official", i.e.,

concrete documents

listed below, and

2. There is the abstraction of

these, say in the form of a

Relational database

Now: specify a query system

for searches/interrogation

****

Employments certificates

Job references

Education certificates

Honourary certificates: orders

Travel: bus, train, air, ship tickets

Savings certificates

AyPurchase certificates

Hotel and restaurant b

Utility contracts:

Water, gas, electricity, radio/TV

licence, naintenace, service

contracts, staff contracts

Also somewhere in a chapter:

Bookkeeping

Accounts

Accounting

Profit and Loss

Resource-allocation

Projects:

Plans

Planning

Monitoring

Resource-allocation

[Bookkeeping]

• 08.08.23: Introduced text Change footnotes, also to 2 Index, cf. Sect. E.6 on page 323
with possibility of using change start and end margin delimiters [ and ].

Worked on Sect.0.13.

• 14.08.2023: Added new chapter, Chapter43, on Ontology & Taxonomies
Decided to attempt three “CACM” papers:

– Domain Science: Modeling – based on Chapter1,

– Domain Science: Facets – based on similarly named chapter of [23], and

– Domain Science: Ontology & Taxonomies – the “parallel” to Chapter43.

• 17.8.2023: “Completed” a first writing of the ’Perdurants’ section.
Sort out overlap sections in chapter on Types and Sorts: Type Expressions ...

2Change: New text inserted: LogBook


