
An Essence of Domain Engineering
A Basis for Trustworthy Aeronautics and Space Software?

Dines Bjørner

DTU Compute, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark
Fredsvej 11, DK–2840 Holte, Denmark

bjorner@gmail.com, www.imm.dtu.dk/˜dibj

Abstract. Before software can be designed one must have a reasonable
grasp of its requirements. Before requirements can be prescribed one
must have a reasonable grasp of the domain in which the software is to
serve. So we must study, analyse and describe the application domain . We
shall argue that domain science & engineering is a necessary prerequisite
for requirements engineering, and hence software design. We survey
elements of domain science & engineering – and exemplify some elements
of domain descriptions. We finally speculate on the relevance of domain
engineering in the context of and aeronautics and space.

Keywords: Formal Methods · Philosophy · Software · Domain Engi-
neering · Requirements Engineering.

1 Introduction

A monograph has been published: [11, Domain Science and Engineering]. We
immodestly claim that the contents of that monograph “heralds” a new , an
initial , phase of software development — a new area of study within the exact
sciences.

An aim of the present paper is to propagate awareness of the aim & objectives
of that book and hence of this new field, also, of computer science – as labeled
by the book title.

Another side-aim is to also introduce the possibility of a Philosophy of In-
formatics1. This, we think, is a first for computer & computing science, to be
“endowed” with a philosophy, as is mathematics [41], physics [14], life sciences

? Invited paper for the The 14th NASA Formal Methods Symposium, https://nfm2022.-
caltech.edu, May 24-27, 2022, Pasadena, California, USA

1 We take informatics to be an amalgam of mostly mathematical nature: com-
puter & computing science and mathematics. Another such amalgam is IT
which we consider as mostly of technological nature: electronics, plasma and
quantum physics, etc. Informatics, to us, is a universe of intellectual quality:
meeting customers expectations, correct wrt. specifications, etc.. IT is then
a universe of material quantity: smaller, bigger, faster, less costly, etc. The
products of informatics [must] satisfy laws of mathematics, in particular of
mathematical logic. The products of IT [must] satisfy the laws of physics.

2 Dines Bjørner

[75], etc. Yes, we are aware of previous attempts2 to include considerations of
specific, detailed, technical issues of theoretical computer science as being of
philosophical nature. But what we are suggesting, is, perhaps immodestly ex-
pressed, of a more foundational kind. In our treatment of a possible philosophy
of informatics we shall “dig deeper”, as directed by [66–69].

The first four lines of the abstract expresses a dogma – the Triptych3 dogma.
In those lines we used the term ‘reasonable’. By ‘reasonable’ we mean that we
can rationally reason about the domain – as do physicists and mathematicians.
To us that means that domain descriptions are expressed in some notation that
allows logical reasoning. Here we shall use RSL, the Raise4 Specification Language
[29, 28]. To express the analysis and description calculi of this paper we shall use
an informal extension of RSL, one whose description functions yield RSL texts,
RSL+Text.

This paper thus serves to propagate the dogma that software development
proceeds from the study, analysis and informal and formal domain descriptions,
via the “derivation” of requirements prescriptions from domain descriptions, to
software design, “derived” from requirements prescriptions.

The paper presents a capsule view of the monograph. For the reasoning
behind the various concepts and the technical details of the domain engineering
method, its principles, techniques and tools, we refer to [11].

By a method we shall understand a set of principles and procedures for
selecting and applying a number of techniques and tools for constructing an
artifact. By a formal method we shall understand a method whose techniques
and tools are given a mathematical understanding. By a formal software devel-
opment method – in the context of the triptych dogma –we shall understand
a formal method which is “built upon”, i.e., utilizes, one or more formal spec-
ification languages, i.e., languages with formal syntax, formal semantics and
proof systems, that are the used to describe, prescribe and design domain de-
scriptions, requirements prescriptions and software – allowing formal tests [34],
formal model checks [20] and formal proofs in order to verify these specifications
and their transformations.

1.1 What is a Domain ?

By a domain we shall understand a rationally describable5 area of a discrete dy-
namics segment of a human assisted reality , i.e., of the world, its solid or fluid
entities: natural [“God-given”] and artefactual [“man-made”] parts, and its liv-
ing species entities: plants and animals including, notably, humans [11, Sect. 4.2,
Defn. 27]. In this paper we shall not cover the ‘living species’ aspects.

2 https://en.wikipedia.org/wiki/Philosophy of computer science
3 Triptych: a picture (such as an altarpiece) or carving in three panels side by

side, or something composed or presented in three parts or sections especially,
like a trilogy

4 Raise: Rigorous approach to industrial software engineering
5 By ‘rationally describable’ we mean that the specification, in this case the

description, must allow for formal, i.e., logical reasoning.

An Essence of Domain Engineering 3

1.2 Structure of Paper

There are four main sections of this paper. Section 2 discusses the problem of
what must, unavoidably, be in any domain description. It does so on the back-
ground of the quest of philosophers – since antiquity – for understanding the
world around us. Sections 3–4 summarise, respectively exemplify, a domain ana-
lysis & description method. The two sections go hand-in-hand. They have, se-
quentially, ‘near-identical’ subsections and paragraphs. Where some aspects of
the method may be omitted in Sect. 3, Sect. 4 may exemplify also those aspects.
Section 5 ‘speculates’ on further perspectives of domain science & engineering.
Its potential for application in aeronautics and space !

2 Philosophy: What Must be in any Domain Description?

Philosophy, since the ancient Greeks, have pondered over the question: which
are the absolutely necessary conditions for describing any world?, that is: what, if
anything, is of such necessity, that it could under no circumstances be otherwise?,
or: which are the necessary characteristics of any possible world? We take these
three as one-and-the-same question.

Philosophers, from Aristotle (384–322 BC) to Immanuel Kant (1724–1804),
and onwards, have contributed to understanding this set of questions. We shall
draw upon the works of the Danish Philosopher Kai Sørlander (1944) [66–69]. We
shall therefore base our search for techniques and tools with which to analyse &
describe domains in Sørlander’s findings. This, in effect means, that we suggest a
philosophy-basis for domain analysis & description! Next we shall therefore first
summarise two thousand five hundred years of trying to answer the question
with which we opened this section.

2.1 The Search

We shall focus only on one aspect of the philosophies of the very many philoso-
phers that are mentioned below — namely their thinking wrt. ontology6 and
epistemology7; for many of these philosophers – from Plato onwards – this is,
but a mere fraction of their great thinking.

This section borrows heavily from [69]. That book is only published in Danish.
So the next three pages, till Sect. 3, is a terse summary of the first 130 pages of
[69].

The Ancient Greeks. The quest for understanding the world around us appears
to have started in ancient Greece. Thales of Miletus [52] (624/623–548/545 BC)
claimed that everything originates from water . Anaximander [21] (610–546 BC)

6 Ontology is the study of of concepts such as existence, being, becoming, and
reality.

7 Epistemology is the study of properties, origin and limits for human knowl-
edge.

4 Dines Bjørner

counter-claimed that ‘apeiron’ (the ‘un-differentiated’, ‘the unlimited’) was
the origin. Anaximenes [51] (586–526 BC) counter-counter-claimed that air was
the basis for everything. Heraklit of Efesos [1] (540-480 BC) suggested that fire
was the basis and that everything in nature was in never-ending ‘‘battle’’.
Empedokles [76] (490–430 BC) synthesized the above into the claim that there
are four base elements: fire, water, air and soil . Parminedes [32] (515–470 BC)
meant that everything that exists is eternal and immutable. Demokrit [1]
(460–370 BC) argues that all is built from atoms . These were [some of] the
natural philosophers, the pre-Socrates philosophers, the ontologists, of Ancient
Greece.

The Sofists. Then came a period of so-called sofists. They maintained that we
cannot reach understanding of the world through common sense. For a time they
thus broke philosophical tradition. It was not their task to reach an understand-
ing of that which exists. Such an understanding, they claimed, was an illusion;
in that they seem to agree with today’s modernism and post-modernism.

Socrates, Plato and Aristotle. Socrates (470–399 BC) [2] broke rank with this.
For him it was a fundamental error to give up on the obligation of common,
universal sense. Socrates, instead of reflecting on the general aspects of ontol-
ogy, put the human in centrum. Plato [3] (427–347 BC) established a Theory of
Ideas of “universal concepts” as of highest reality, that, however, seems to raise
more questions than answering some. Aristotle [4] (384–322 BC) turned Plato’s
thinking upside-down: “concrete things” have primary existence and the uni-
versal concepts are abstractions. Aristotle made precise relations between the
modalities of the necessary, the real and the possible, and suggested a list,
[4, Categories], of ten categories: substance, quantity, quality, relation,
place, time, position, possession, acting and suffering.

The “Middle Ages”. Philosophical thinking – in the European sphere – from
about 300 BC till about 1600 AC was dominated by religious thought – till
shortly after the time of Martin Luther. From ontological arguments philosophy
turned in the direction of epistemological arguments.

From Descartes to Hume. Then a number of philosophical schools succeeded
one another. Sørlander shows that the philosophies of Descartes [24] (1596–
1650), Spinoza [70] (1632–1677), Leibniz [46] (1646–1716), Locke [48] (1632–
1704), Berkeley [7] (1685–1753) and Hume [39] (1711–1776) are individually in-
consistent, and must thus be rejected.

Historicism. Sørlander also rejects the ‘historicism’ philosophies, after Immanuel
Kant, i.e., those of Fichte [43] (1762–1814), Schelling [6] (1775–1854) and Hegel
[31] (1770–1831) as likewise individually inconsistent.

An Essence of Domain Engineering 5

From Aristotle to Kant and onwards Sørlander builds on the thinking of Aris-
totle [4] (384–322) and Immanuel Kant [44] (1724–1804). In doing so, Sørlander
takes up a thread, lost for two hundred years of “radical meaninglessness, loss of
religion, the disappearance of [proper] philosophy – lost in the “historicism” of
the 19th century and the “modernism” of the 20th century, in postmodernism’s
rejection of universal values, the possibility of objective knowledge, or solid foun-
dation for human existence.” ... “In this post-modern age nothing seems to be
absolutely valid, there is no sharp boundary between fiction and science, ev-
erything is dissolved into uncertainty and individual interpretation” No, says
Sørlander, and builds a Philosophy based on rational reasoning. The current
author, obviously, subscribes to the above!

Philosophies of Sciences. The science breakthroughs, in the late 1800s and the
early-to-mid 1900s, in mathematics, physics and biology, brought with it, inde-
pendent of the ‘historicism’ of philosophy, philosophical investigations of these
sciences.

Peano (1858–1932) [45] showed that some of mathematics could be under-
stood axiomatically, i.e., logically. Frege (1848–1925) [26] contributed signifi-
cantly to attempts to build an axiomatic basis for all of mathematics. On the
basis of similar axiom systems non-Euclidean Geometries were then put forward8.
Principia Mathematica [72, Whitehead & Russell] “grandiosely” attempted to ax-
iomatise all of mathematics. Gödel ’s (1906–1978) [30] first incompleteness theo-
rem states that in any formal system F within which a certain amount of arith-
metic can be carried out, there are statements of the language of F which can
neither be proved nor disproved in F. According to the second incompleteness
theorem, such a formal system cannot prove that the system itself is consistent
(assuming it is indeed consistent). These results have had a great impact on the
philosophy of mathematics and logic.

Within physics, Maxwell (1831–1879) [49] Planck (1858–1947) [54] originated
quantum mechanics. Einstein9 (1879–1955), in 1905–1916 changed the study of
physics with his special and general theories of relativity. Bohr10 (1885–1962) [25]
contributed with his understanding of the structure of atoms and with quantum
theory. Heisenberg (1901–1976) [33] contributed further to quantum theory and
is known for the uncertainty principle.

Darwin (1809–1882) [22, Origin of Species], Wallace (1823–1913) [71], and
Mendel (1822–1884) [50] – as did Planck, Einstein, Bohr, Heisenberg, et al. for
physics – founded modern life sciences.

These advances in mathematics and the natural sciences spurred some philoso-
phers on to renewed studies – “as from Kant!”

The 20th Century. The phenomenology of Husserl (1859–1938) [40], is the study
of structures of consciousness as experienced from the first-person point of view

8 https://en.wikipedia.org/wiki/Non-Euclidean geometry
9 https://en.wikipedia.org/wiki/Religious and philosophical views of Albert -

Einstein#Philosophical beliefs
10 https://plato.stanford.edu/entries/qm-copenhagen/

6 Dines Bjørner

[Wikipedia]. Our consciousness, claims Husserl, is characterised by intentional-
ity: an elementary directedness. Husserl’s phenomenology appears to be incon-
sistent in the way it requires a study of our consciousness from “within”, for
example in the a-priory requirements that these concepts are introduced, not as
a result of the study, but “beforehand”.

It appeared then that philosophical studies along the lines “what must in-
evitably be in any description of any domain” additionally required consideration
of our use of language. Wittgenstein (1889–1951) [73, 74] and the Logical Atomism
[53] of Russell (1872–1970) [60–63], made attempts in this direction, but failed.
Wittgenstein realised that in his [74, “Philosophisces Untersuchungen”]. Logical
atomism failed in not finding examples of propositions if they have to be logically
independent of one another.

Logical Positivism, “coming out of” Vienna in the 1920s–1930s, rejected Rus-
sell’s logical atomism and concentrated on the meaning of a sentence as being
[the conditions for] its truth-value: one must be able to describe the circum-
stances under which the sentence can be verified. To them, in the early days,
meaningful propositions, say, in any of the sciences, must have a common lin-
guistic base. Eventually those theses also failed: Neither the verification-criteria,
of, for example Carnap (1891–1970) [15–18], could be verified, nor could the
falsification-criteria of Popper (1902–1994) [55, 57, 58] be falsified.

2.2 Sørlander’s Findings

Three Cornerstones. We can claim that Sørlander bases his philosophical
analyses on three “cornerstones”: (A) an analysis and a conclusion of “what it
means to be rational”; (B) an analysis and a conclusion of what it means to speak
abut “the meaning of a word”; and (C) an analysis and a conclusion of the base
point from which to start the philosophical inquiry into “what must inevitably be
in any domain description”. We shall now review these three bases.

A: Rational Thinking. The following is adapted from [67, Chapter II, Sects. 4–5
Common Sense and Motivation]. Humans are physical entities. Thus we are char-
acterisable by the causal conditions for moving around with purpose. To do so
requires three conditions: We can sense our immediate situation. We have feel-
ings that may result in incentives (encouragements). We have motoric apparatus
that satisfy physical laws. These were the causal conditions for purposeful move-
ments. Further: We possess languages by means of which to express propositions
as to what we sense, our feelings and actions. We express propositions which
reflect that we know, i.e., have knowledge, Finally we have memory from which
we build experience. The above factors, after some further analysis, leads us to
conclude that humans are rational beings.

B: The Implicit Meaning-Theory. The following is adapted from [68, Chapter III,
especially Sect. 9 The Meaning of a Word, Pages 121–122]. On the basis of some
simple considerations of what it means to express oneself by means of language,
i.e., linguistically, Sørlander reaches the interdependence criterion. In saying, or

An Essence of Domain Engineering 7

writing, something, a choice is made. The chosen statement may be inconsis-
tent with something else that one could have chosen to state. That means, that
possible statements stand in consistence relations. What determines such rela-
tions? We can, firstly, say that these relations are determined by the meaning,
of the designations used in the statements. Secondly we can say that meaning of
the designations used in several statements which (thus must) stand in mutual
consistence-relations. It is thus that we arrive at the necessary condition, inter-
dependence criterion, also referred to as the implicit meaning theory, that there
is a mutual dependence between the meaning of designations and the consistence
relations between statements.

For computer scientists, this interdependence criterion is quite familiar. When
defining an abstract data type — that is, its values and operations, as is, for ex-
ample typical in algebraic semantics [64] — one states a number of propositions.
They constrain values and operations, and, together, express their meaning.

C: The Possibility of Truth. The following is adapted from [69, Part III, Chap-
ter 2 “Basis & Method for the Philosophy”]. Where Kant built on human self-
awareness, Sørlander builds on the possibility of truth. One cannot deny that a
proposition may be false. And one cannot accept that a proposition is both true
and false. Hence the possibility of truth.

Building a Foundation.

Logic, Relations, Transcendental Deduction, Space and Time. On the basis of
the principle of contradiction and the implicit meaning theory . Kai Sørlander then
motivates the logical connectives and, from these, the associative, symmetry and
transitive relations, and, based on these, by transcendental deduction, reasons that
space and time follows, not as, with Immanuel Kant, empirical facts, but as logical
necessities.

Multiple, Uniquely Identifiable Entities and States. Again, in a rational manner,
Sørlander, motivates that there must be an indefinite number of entities, that
these are uniquely identifiable, and that they endure in possibly changing states.

Newton’s Laws. Again, in a rational manner, Sørlander, motivates movement and
causality, and, from these, again by transcendental deductions, Newton’s Laws.

2.3 The Basis

The above, i.e., the rational deductions of what must be in any domain de-
scription, is then the foundation on which [11] and the present paper base their
domain analysis & description approach.

8 Dines Bjørner

3 Elements of Domain Science & Engineering

We embark on introducing a number of domain analysis predicates. These are
not mathematical functions. They are informal in the sense of being applied
by human domain analysers cum describers. They can not be formalised. That
would require that we have a formal model of “the world” ! Our domain analysis
& description endeavour seeks such models ! So the reader must bear with me:
The delineations (cum definitions, characterisations) of the domain concepts
that now follow must unavoidably be informal, yet sufficiently precise. Most are
drawn from The Shorter Oxford Dictionary of the English Language [47, 2 vols.,
1987].

3.1 Phenomena, Entities, Endurants and Perdurants

A phenomenon, φ, is an entity, is entity(φ), if it can be observed, i.e., be seen
or touched by humans, or that can be conceived as an abstraction of an entity;
alternatively, a phenomenon is an entity if it exists, it is “being”, it is that which
makes a “thing” what it is: essence, essential nature [47, Vol. I, pg. 665]. If a
phenomenon cannot be so described it is not an entity.

There are an indefinite number of entities in any domain. This follows from
philosophic-analytic reasoning outlined by the philosopher Kai Sørlander [66–
69]. We refer to [11, Sect. 2.2.3] for a summary.

By an endurant, is endurant(e), we shall understand an entity, e, that can
be observed, or conceived and described, as a “complete thing” at no matter
which given snapshot of time; alternatively an entity is endurant if it is capable
of enduring, that is persist, “hold out” [47, Vol. I, pg. 656]. Were we to “freeze”
time we would still be able to observe the entire endurant.

By a perdurant, is perdurant(e), we shall understand an entity, e, for which
only a fragment exists if we look at or touch them at any given snapshot in time.
Were we to freeze time we would only see or touch a fragment of the perdurant
[47, Vol. II, pg. 1552].

External qualities of endurants of a manifest domain are, in a simplifying
sense, those we, for example with our eyes blinded, can touch, hence manifestly
“observe”, and hence speak about abstractly.

Internal qualities of endurants of a manifest domain are those we, with our
eyes open and with instruments, can measure.

3.2 Endurants

Figure 1 presents a graphic structure of the domain concepts such as we have
and shall unveil them.

External Qualities. Our treatment of endurants “follow” the upper ontology
of Fig. 1 in a left-to-right, depth-first traversal of the endurant “tree” (of Fig. 1).

An Essence of Domain Engineering 9

Behaviours

Indescribables

Channels

Actors

Entities = Describables

transcendental injection of endurants into perdurants

Structures

A
to

m
ic

 P
ar

t

Living Species

Unique Identifiers

Mereologies
Attributes

M
E

P
la

n
ts

A
n

im
al

s

Endurants

A

External Qualities

Describer "states"

PerdurantsPerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

Internal Qualities

Discrete Endurants = Solids
Fluid

KP

ASPSSPS

S

Transcendense

E
a

 =
 E

1
|.

..
|E

a

S
P

S
:

S
in

g
le

 S
o

rt
 P

ar
t

S
et

s

A
S

P
S

:
A

lt
er

n
. S

o
rt

s
P

ar
ts

 S
et

s

P
,

P
s

 =
 P

−
s

e
t

K
P

:
C

o
m

p
o

si
te

 P
ar

t

S: Sets

P Physical Parts

E
1

,.
..

,E
c

Compound Parts, CP CP

Deduction "states"

Actions Events
Parts:

Fig. 1. A Domain Description Ontology

Analysis Predicates. Endurants, e [is endurant(e)], are either solid [is so-

lid(e)]; or fluid [is fluid(e)] (such as liquids, gases and plasmas). Solid
endurants appears to be the “work-horse” of the domains we shall be concerned
with. Fluids are presently further un-analysed. A solid , e, is either a part [is -

part(e)]; or a structure [is structure(e)]; or a living species [is living -

species(e)]. A part, p, is either an atomic part [is atomic part(p)]; or a
compound part [is compound part(p)]. An atomic part, by definition, has no
proper sub-parts. It is the domain analyser cum describer who decides which
parts are atomic and which not. Atomic parts are further characterised by their
internal qualities. A compound part is either a composite part [is composite-

(p)]; or a part set [is part set(p)], A part set is either a single sort part set of
parts of the same sort [is single sort set(p)]; or an alternative sort part set
of parts of two or more distinct sorts [is altermative sort set(p)] – with
two or more parts possibly being of the same sort.

A composite part consists of two or more parts (and could be modeled as a
Cartesian of these). A structure is like a compound part but we omit recording
its internal qualities11. A living species is either an animal [is animal(e)]; or a
plant [is plant(e)]. An animal is either a human [is human(e)]; or other.

11 We could omit the concept of structure altogether and just allow compounds
that do not have internal qualities.

10 Dines Bjørner

Observers. Given a compound part we can observe its sub-parts and their sorts.
We formulate these observers in RSL+Text.

• • •

We remind the reader that the analysis and description processes are necessarily
informal. That is, that it is the decision of the domain analyser cum describer
as to whether an entity is an endurant or other, a part or other, etc. Next, in
outlining, ever so briefly, the observer (cum describer) “functions”, the describer
must, repeatedly, decide that endurants are of definite sorts, and must, like-
wise repeatedly, choose names for endurant sorts. [11, Sect. 4.14] discusses that
process in some detail. In reality, to determine, distinctness and names of sorts
require a depth-first analysis, that is, one that analyses the internal qualities of
the sort under investigation, then the external followed by internal qualities of
possible sub-parts, et cetera, till atomic parts or fluids have been analysed, etc.
In this section we first analyse external qualities. Analysis of internal qualities
follow subsequently.

• • •

The next three observer functions reflect analyses pre-requisite to the subsequent
description functions. In the formulas below we introduce two notions: The name
of a type, say type E, as ηE, and the RSL text, of a type name, “ E ”. ηE is an
identifier whose value is “ E ”.

Observe Single Sort Part Sets.
Observing a part, p : P , which is a set of endurants of the same sort, yields a
pair of a set of endurants and the name of the endurant type.

value
obs single sort set: P → E-set × ηE

where E is to be further analysed and described.

Observe Alternative Sorts Part Sets.
Observing a part, p : P , which is a set of endurants of the possibly different sorts,
yields a Cartesian of representative pairs12 of endurants and names of their type.

value
obs alternative sort set: P → (E1 ×ηE1)×(E2 ×ηE2)× ... ×(Em ×ηEm)

where each Ei is to be further analysed and described.
Observe Composite Part.

Observing a part, p : P , which is a composite of endurants of [it is assumed]
different sorts, yields a pair Cartesians of endurants, respectively their type.

value
obs composite: P → (E 1×E 2×...×E m) × (ηE 1×ηE 2×...×ηE m)

where each E i is to be further analysed and described.

12 By ‘representative Cartesian of pairs’ we mean that there is a pair of any part
(of the set) and its type for every possible part type in the Cartesian.

An Essence of Domain Engineering 11

Description Functions. There are three compound-part description functions.
These are summarised in the RSL+Text form next.

We advocate first narrating all formal texts. The literal type prefix type and
sort definitions. The literal value prefix predicate and function signatures and
definitions. Proof obligations are required where sorts are expressed in terms
of concrete types that may define something meaningless if not properly con-
strained.

Caveat: We remind the reader that the above description functions, really, are
not mathematical functions: They are, in a sense, procedural guide-lines to be
followed by domain analysers cum describers: they have to decide on which kind
of parts they are dealing with, of which, already “discovered” or new sorts, hence
sort names to ascribe these, etc.

The External Qualities Frames. The three frames next contain part descriptors
for single sort sets, alternative sort sets, and composites.

describe single sort set(p) as

let (,ηE) = obs single sort set(p) in

“ Narration:

... on sorts ...

... on sort observers ...

... on axioms/proof obligations ...

Formalisation:

type

E

Ps = P-set

value

obs Ps: E→ Ps ”

end

pre: is single sort set(p)

describe alternative sorts set(p) as

let ((,ηE 1),...,(,ηE n))

= obs alternative sorts set(p) in

“ Narration:

... on alternative sorts ...

... on sort observers ...

... on axioms/proof obligations ...

Formalisation:

type

Ea = E 1 | ... | E n

E 1 :: E1, ..., E n :: En

E1 == ..., ..., En == ...

value

obs E i: E→ E i [i=1,...,n]

proof obligation

[disjointness of alt. sorts] ”

end

pre: is alternative sorts set(p)

describe composite(p) as

let (,({ηE1,...,ηEm})) =

= obs composite(p) in

“ Narration:

... on sorts ...

... on sort observers ...

... on axiom/proof obligations ...

Formalisation:

type

E1, ..., Em

value

obs Ei: E→ Ei [i:{1..m}]

proof obligation

[disjoint endurant sorts] ”

end

pre: is composite(p)

Initial Endurant State. An endurant state is any set of domain endurants.

Taxonomy. The taxonomy of a domain is given by the set of endurants sorts
and their observers. A taxonomy can be given a graphic rendition such as shown
in Fig. 2 on page 20.

Internal Qualities. Internal qualities of endurants of a manifest domain are,
in a simplifying sense, those which we may not be able to see or “feel” when
“touching” an endurant, but they can, as we now ‘mandate’ them, be reasoned

12 Dines Bjørner

about, as for unique identifiers and mereologies, or be measured by some physi-
cal/chemical means, or be “spoken of” by intentional deduction, and be reasoned
about, as we do when we attribute properties to endurants. We refer to [11,
Sects. 2.2.3–4, 3.8, and 5.2–5.3] for a fuller discussion of the concepts and unique
identification and mereology.

Unique Identifiers. With each part sort P we associate a further undefined
unique identifier sort Π and a similarly further undefined unique identifier ob-
server uid P such that for all distinct parts p, p′, ..., p′′ of sort P , uid P(p),
uid P(p′), ..., uid P(p′′), yield distinct unique identifiers (π, π′, ..., π′′).

We refer to the leftmost of the three internal qualities frames on Page 13.

Mereology. “Mereology (from the Greek µερoς ‘part’) is a theory of part-hood
relations: of the relations of part to whole and the relations of part to part within
a whole”13.

The mereology relations are here expressed in terms of the unique part iden-
tifiers. Let p:P (p of sort P) be a part with unique identifiers π. Let {p1 :
P1, p2 : P2, ..., pm : Pm} be the set of parts (or respective sorts) to which p
is [mereologically] related. We can express this by stating that mereo P(p) =
{π1 : Π1, π2 : Π2, ..., πm : Πm}, or value mereo P: P→UI-set – i.e., as a set of
unique identifiers. mereo P is the mereology observer.

We shall deploy mereology practically. That is, we are not studying mere-
ology. We are using the ideas of mereology for experimental research and engi-
neering purposes.

For natural endurants, a typical relation is that of the topological “next-to”.
For artefactual endurants typical relations, in addition to topological mereolo-
gies, make explicit how the designers of these artefacts intended their logical,
not necessarily geographical relationship, to be: “next-to”, “to-be-part-of”, “as-
an-element-of-a-set”, et cetera.

We refer to the middle of the three internal qualities frames on Page 13.

Attributes. Whereas unique identification and mereology are both of abstract,
existential, logic nature, attributes are of concrete nature: physical, biological or
historical nature. Attributes have values and attribute values are of types. Two
or more endurants that all have sets of attribute values of the same type, as well as
the same unique identifier type and mereology types, are of the same sort. This is
the endurant sort-determining mantra.

From any part, p:P , we can thus identify a set of attribute type names,
{Ap1 , Ap2 , ...App}, informally:

– attrs P(a) as {ηAp1
,ηAp2

,...,ηApp}.

Given a p:P , attr A obtains the value of attribute A. The attr Apis are attribute
observers of pi:Pi.

13 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009
and [19].

An Essence of Domain Engineering 13

We refer to the rightmost of the three internal qualities frames on Page 13.
Michael A. Jackson [42] has suggested a hierarchy of attribute categories.

– Static attributes: values do not change.
– Dynamic attributes: values can change.

Within the dynamic attribute category there are sub-categories.
• Inert attributes: values are not determined by the endurant, but by “an

outside” (e.g., other endurants).
• Or reactive attributes: values which, if they change, change in response

to external stimuli.
• Or active attributes: values which change of the “own volition” of the

part.
We can define sub-categories of dynamic attributes.
∗ Autonomous attributes: values which change only on the “own voli-

tion” of the part.
∗ Biddable attributes: values, values that may be prescribed14, but may

fail to attain the prescribed value.
∗ And programmable attributes: values which are prescribed.

For our purposes we “reduce” these six categories to three, CAT = STA|MON|PRO:

– static [STA], (static values),
– monitorable [MON] (dynamic, except the programmable values), and the
– programmable (values) [PRO].

The Internal Qualities Frames. The three frames next contain part descriptors
for unique identifiers, mereologies, and attributes.

unique identifier observer(p) as

“ Narration:

on unique identifier sort UI ...

on unique identifier observer ...

on uniqueness of identifiers ...

Formalisation:

type

UI

value

uid P: P→ UI

axiom

[disjoint UIs wrt. all sorts] ”

mereology observer(p) as

“ Narration:

on mereology type ...

on mereology observer ...

on mereology type constraints ...

Formalisation:

type

MT =M(UIi ,...,UIk)

value

mereo P: P→ MT

axiom [Well−formed Mereology]

A(MT): well−formed ”

describe attributes(p) as

let {ηA1 ,...,ηAm} = attrs P(p) in

“ Narration:

on attribute sorts ...

on attribute sort observers ...

attribute sort proof obligations ...

Formalisation:

type

A1 , ..., Am

value

attr A1 : P→A1 ,

attr A1 : P→A2 ,

...,

attr A1 : P→Am

proof obligation [Disjointness]

let P be any part sort in

let a:(A1|...|Am) in

is Ai(a)6=is Aj (a) [i 6=j, i,j:[1..m]]

end end ”

end

14 – by the transcendent part behaviour

14 Dines Bjørner

Intentional Pull. The concept of intentional “pull” is a concept which “parallels”,
we claim, the gravitational pull concept of physics.

For artefacts one can claim that certain parts p:P are created in order to
“serve” other parts q:Q, and vice versa: roads serve to convey transport, and
automobiles serve to transport goods.

Historical events time-stamp record interactions between such parts p and
q. So a historical attribute of p records its interaction with q, and a historical
attribute of q records its interaction with p, and “one cannot have one without
the other”, and this is what we mean by intentional “pull” !

Since we can talk about such events we can also model them as attributes. So
introducing historical attributes for a sort P usually entails also introducing his-
torical attributes for another sort Q, et cetera. And this consequentially implies
that the domain analyser cum describer must express a necessary intentional
“pull” axiom that expresses that “one cannot have one without the other”.

A classical example of intentional pull is found in double bookkeeping which
states that every financial transaction has equal and opposite effects in at least
two different accounts. It is used to satisfy the accounting equation: Assets =
Liabilities + Equity.

3.3 Transcendental Deduction

“A transcendental argument is an argument which elucidates the conditions for
the possibility of some fundamental phenomenon, whose existence is unchal-
lenged or uncontroversial in the philosophical context in which the argument is
propounded” [5, Anthony Brueckner, page 808]. “Such an argument proceeds
deductively, from a premise of asserting the existence of some basic phenomenon
(such as a meaningful discourse, conceptualisation of objective states of affairs,
or the practice of making promises), to a conclusion asserting the existence of
some interesting, substantive enabling conditions for that phenomenon” [5, An-
thony Brueckner, page 808].

An example of a transcendental deduction is that of “morphing”, for ex-
ample, automobile endurants into automobile perdurants. That is: There is the
automobile as, for example, shown at the dealer. It represents a part, an en-
durant. And there is the automobile “speeding” down the road. It represents a
behaviour, a perdurant. The automobile as listed in the manufacturer’s and car
dealer’s catalogues represents an attribute of manufacturers and dealers.

3.4 Perdurants

The emphasis is now on the transcendental deduction of parts into behaviours.
To explain what we mean by behaviours we first introduce actions and events.

Channels will be introduced as a consequence of interacting, that is, communicat-
ing behaviours.

This section is necessarily a mere capsule view of Chapter 7 of [11]. Sec-
tion 4.2, of the main example of this paper, should rectify some lacunae.

An Essence of Domain Engineering 15

Actions, Events and Behaviours.

Actions. By an action we shall understand something that occurs in time, lasting,
however, no time, or, at least, we ignore time – considering actions as indivisible,
taking place as the result of a “willed” [other] action, and usually changing the
state ξ:Ξ15.

The action may, or may not be based on some argument value.

value action: [VAL] → Ξ
∼→ Ξ

Events. By an event we shall understand something that occurs in time, lasting,
however, no time, taking place spontaneously, not as the result of a “willed”
action, but possibly as the result of another event, and usually changing the
state ξ:Ξ.

The event is usually not based on any argument value. The literal Unit can
here be understood as a no argument value.

value event: Unit → Ξ
∼→ Ξ

Behaviours. By a behaviour we shall then understand a set of sequences of
actions, events and [other, sub-] behaviours, some of which relate to, i.e., inter-
act with one another. Behaviours are uniquely identified, subject to the part
mereology, and otherwise based on static (constant) attribute argument values,
dynamic monitorable (variable) attribute argument values, dynamic programmable
(variable) attribute argument values, and channels (for their interaction).

Behaviour Deduction, I: Signature

value behaviour: Uid × Mereo × Static VAL∗ × Mon Attr Name∗

→ Prgr VAL∗ → in|out|in out ch... Unit

The literal Unit will here be understood as defining a never-ending behaviour.
The signature, with Unit, expresses that if the process terminates no value is
returned.

Channels. Interactions – between behaviours – are, as we model them, in RSL

– as inspired by CSP [35, 36, 59, 65, 37], expressed in terms of CSP-like channel
(ch) input/outputs: ch[index] ? , respectively ch[index] ! value, where values [based
on internal qualities] are communicated over indexed channels.

A domain defines a number of mereologies, one for each part (of the state).
These mereologies determine the channels to be declared. Given that any inter-
esting, i.e., to us relevant, domain always consists of an indefinite, larger than 1,

15 We shall forego explaining the state concept Ξ.

16 Dines Bjørner

number of parts, the common channel for all behaviours is an index-able channel
array16:

Channel Deduction

channel {ch[{i,j}]|i,j:UI•{i,j}⊆ [mereologies of the domain]}:M

where M is the type of the values communicated.

Part Behaviours. Parts exist in a context of several parts. (The taxonomy, for
example graphically represented, as in Fig. 2 on page 20, reflects these parts.)
Part behaviours can therefore be expected to interact, i.e., to synchronise and
communicate. A part behaviour can, consequently, be expected to alternate be-
tween either (a) doing an internal non-deterministic choice (de) of 0, 1 or more
“own work” behaviours, or (b) external non-deterministic choice (debc) offering [to
accept] values from an alternative of 0, 1 or more other part behaviours. We can,
schematically, summarise (a-b) as follows:

Behaviour Deduction, II: Part Behaviour Definition Structure

value
part behav(...)(...) ≡

(a) de { own behav i(...)(...) | i ∈ {1..p} }
bc

(b) debc { ext behav j(...)(...) | j ∈ {1..q} }
where: p+q > 0

The de and debc operators are the usual CSP operators on behaviours. The bc op-
erator is like an “or” operator on behaviours. The de, bc and debc operators are
commutative. We shall refer to either of the alternatives of the part behav defi-
nition body as a part alternative.

From Internal Qualities to Behaviour Arguments. By arguments of transcen-
dental nature we shall assign unique part identifiers as static arguments of be-
haviours, part mereologies as determining channel communication, and part at-
tributes as either static or dynamic arguments of behaviours.

Behaviour Deduction, III: Signature, Part p:P

value
behaviourP : PI × mereo P × Stat Attr Vals P × Mon Attr Names

→ Prgr Attr Vals P →
→ in|out|in out {ch[{i,j}] [i,j ∈ mereology of P]} Unit

16 RSL does not have channel arrays. So this is a deviation from RSL.

An Essence of Domain Engineering 17

Mon Attr Names makes use of attrs P.

Part Alternative Behaviours. We shall express behaviours in terms of usually
never-ending functions, behaviour !17 That is:

Behaviour Deduction, IV: Alternative Part Definition, Part p:P

value
alt behav(uid P(p),mereo P(p),Stat Attr Vals P(p),Mon Attr Names(p))

(Prgr Attr Vals P(p)) ≡
let ui=uid P(p), me=mereo P(p), sta=Stat Attr Vals P(p),

mnl=Mon Name list(p), prgr=Prgr Attr Vals P(p) in
let prgr′ = alt behav body(ui,me,sta,mnl)(prgr) in
part behav(ui,mereo,sta,mnl)(prgr′) end end

Behaviour Clauses: Expressions and Statements. Further: alt behav body is a
sequence of one or more action, event and sub-behaviour clauses – usually ending
with an expression:

value
behaviour body(uid,mereo,sta var)(prgr var) ≡ clause 1 ; clause 2 ; ... ; clause m

Clauses are either

– s, simple statements, or
– ch[...] ! expression, output statement, or
– let pattern18 = expression in ... end, value decompositions, or
– e, expressions19, or
– clause a de clause b, internal non-deterministic clauses, or
– clause a debc clause b, external non-deterministic clauses, or
– clause a bc clause b, either/or non-deterministic clauses, or
– clause a ‖ clause b, parallel clauses, or
– skip, skip clause, or
– stop, abort function invocation.

Values of monitorable attributes, of name ηA20, of parts p:P, are expressed as
attr val(uid)(σ) where attr val is defined as:

value
attr val: PI → ηA → Σ → VAL
attr val(pi)(ηA)(σ) ≡ attr A(retr P(pi)(σ))

17 Parts – being the bases for behaviours – persist, endure.
18 where pattern – typically is a “grouping expression” over [free] identifiers
19 ch[{ui,uj}] ? is an expression
20 The type of attribute A names (a single element type) is ηA, and the value is “ A ”.

The type of all attribute names is ηA

18 Dines Bjørner

where σ is the endurants state:

type
Σ = (P|Q|...|R)-set

value
retr P: PI → Σ
retr P(pi)(σ) ≡ let p:P • p ∈ σ • uid P(pi) in p end

Initial System. Given a[n endurant] state, cf. Page 11, one can then define
[a corresponding perdurant] behaviour, namely the parallel (‖) composition of
an invocation of all the corresponding behaviours. This is exemplified as from
Item 69 on page 29.

3.5 The Domain Analysis & Description Process

1. There is the RSL+Text to be developed.

2. There is the Domain.

3. The analyse and describe domain process applies to a Domain and yields, line
12 an RSL+Text. That process proceeds “sequentially”:

4. first external qualities, then
5. unique identifiers,
6. mereologies,
7. attributes,
8. channels

9. behaviour signatures,

10. behaviour definitions, and

11. initial system – yielding

12. a complete RSL+Text21.

type
1. RSL+Text
2. D
value
3. analyse and describe domain: D → > RSL+Text
3. analyse and describe domain(d) ≡
4. let es = analyse and describe external qualities(d) in
5. let is = analyse and describe unique identifiers(es)(d) in
6. let ms = analyse and describe mereologies(es]is)(d) in
7. let as = analyse and describe attributes(es]is]ms)(d) in
8. let cs = analyse and describe channels(es]is]ms]as)(d) in
9. let ss = analyse and describe signatures(es]is]ms]as]cs)(d) in
10. let bs = analyse and describe behaviours(es]is]ms]as]cs]ss)(d) in
11. let si = analyse and describe initial system(es]is]ms]as]cs]ss]bs)(d)(s)
12. in es] is]ms] as] cs] ss] bs] si end end end end end end end end

21 The] operator merges RSL+Texts

An Essence of Domain Engineering 19

4 An Example Domain Description

Initial Remark: We shall illustrate core elements of a domain description of a
road transport system. In doing so we really do not rely on the reader having
already an idea as to what the terms of this road transport system mean – as we
“slowly” unfold it. But at any stage, before the final, the informal meaning that
You, the reader may ascribe to these terms, is not what the formulas express !
At any stage, up to the point of the formal specification that we are unfolding,
this specification denotes a space of meanings according to the RSL semantics
[27]. Initially that space is very large. As we proceed the further formulas narrow
down, restrict, the space. When, at the end, we think we have specified all that
we need specify, the formulas define “exactly” what we mean by a road transport
system. We shall continue this remark at the very end of this section, i.e., just
before Sect. 5.

• • •

The sectioning/paragraph structure of this section follows that of Sect. 3.

4.1 Endurants

External Qualities.

13. We start by identifying and naming the universe of discourse, here a road
transport system.

14. In a road transport system we can observe a structure of a composite in which
we observe an aggregate of a road net and an aggregate of automobiles.

15. Road nets are here seen as structures of composites of aggregates of road
links22 and road hubs23.

16. Link and Hub aggregates are set structures of Links, respectively Hubs.
17. Links and Hubs are considered atomic.
18. Automobile aggregates are set structures of automobiles.
19. Automobiles are considered atomic.

type
13. RTS
14. RN, AA
15. LS, HS
16. Ls = L-set, Hs = H-set
17. L, H
18. As = A-set
19. A

value
14. obs RN: RTS → RN
14. obs AA: RTS → AA
15. obs LS: RN → LS
15. obs HS: RN → HS
16. obs Ls: LS → Ls
16. obs Hs: HS → Hs
18. obs As: AA → As

State.

20. The state, σ,
21. of a road transport system rts consists of
22 A link is a street segment delineated by street intersections.
23 A hub is a street intersection of one or more links.

20 Dines Bjørner

(a) the road net aggregate,
(b) the automobile aggregate,
(c) the links,

(d) the hubs,

(e) the automobiles.

22. For later use we also define the union of all links and hubs.

value
21. rts:RTS
20. σ:Σ = {rn}∪{aa}∪ls∪hs∪as
21a. rn = obs RN(rts)
21b. aa = obs AA(rts)

21c. ls = obs Ls(obs LS(rn))
21d. hs = obs Hs(obs HS(rn))
21e. as = obs As(aa)

22. us:(L|H)-set = ls ∪ hs

Taxonomy. Figure 2 presents a graphic rendition of the taxonomy of road
transport systems.

rts

rn aa

ls

la

hs

ha

l1 lml2 h1h2 hn

a1a2 aq

as

us

Fig. 2. Road Transport System Taxonomy

Internal Qualities.

Unique Identifiers. Road traffic systems, aggregates of links and hubs, and sets
of links, hubs and automobiles are endurant structures, hence have no internal
qualities24.

23. Road nets have unique identification,
24. automobile aggregates likewise,
25. links, hubs and automobiles also !

24 – so we have decided !

An Essence of Domain Engineering 21

type
23. RNI
24. AAI
25. LI, HU, AI
value

23. uid RN: RN → RNI
24. uid AA: AA → AAI
25. uid L: L→LI
25. uid H:H→HI
25. uid A:A→AI

Uniqueness of Parts.

26. All parts (of the state σ) have unique identification. This means that the
number of state components equal the number of [their] unique identifiers.

value
26. rni = uid RN(rn), aai=uid AA(aa),
26. lis = {uid L(l)|l:L•l∈ ls},
26. his = {uid H(h)|h:H•h∈ hs},
26. ais = {uid A(a)|a:A•a∈ as},
26. σuis = {rni}∪{aai}∪lis∪his∪ais
axiom
26. card σ = card σuis

Retrieving Endurants.

27. Given any unique identifier, ui, in σuis, the “corresponding” endurant, e, can
be retrieved from σ.

value
27. retr E: UI → Σ → E
27. retr E(ui)(σ) ≡ let e:E • e ∈ σ ∧ uid E(e) = ui in e end

Mereology.

28. The mereology of a road net aggregate is a pair of the unique identifier of
the automobile aggregate of the road transport system of which the road net
is an aggregate, and a pair of sets of the unique identifiers of the links and
hubs of the road transport system of which the road net is an aggregate.

29. The mereology of an automobile aggregate is a pair of the unique identifiers of
the road net aggregate of the road transport system of which the automobile
aggregate net is a part, and a set of unique identifiers of automobiles of the
automobile aggregate of the road transport system of which the automobile
aggregate is a part.

30. The mereology of a link is a pair of a two element set of hub identifiers and
a set of identifiers of the automobiles that are allowed onto the link – such
that the hub and automobile identifiers are of the road transport system.

31. The mereology of a hubs is a pair of a set of link identifiers and a set of
identifiers of the automobiles that are allowed into the hub – such that the
link and automobile identifiers are of the road transport system.

22 Dines Bjørner

32. The mereology of an automobile is a pair of the identifier of its automobile
aggregate and the set of identifiers of the links and hubs – of the road net
aggregate of the road transport system of which the automobile is a part it
is allowed to travel on.

33. The slanted texts above hint at axiomatic constraints.

type
28. RNM = AAI × (LI-set × HI-set)
29. AAI = RNI × AI-set
30. LM = HI-set × AI-set
31. HM = LI-set × AI-set
32. AM = AAI × (LI|RI)-set
value
28. mereo RN: RN → RNM
29. mereo AA: AA → AAM
30. mereo L: L → LM
31. mereo H: H → HM
32. mereo A: A → AM
axiom

28. let (aai,(lis,his)) = mereo RN(rn) in
28. aai = aai ∧ lis = lis ∧ his = his end
29. let (rni,ais) = mereo AA(aa) in
29. rni = rni ∧ ais ⊆ ais end
30. ∀ l:L • l ∈ ls ⇒
30. let (his,ais) = mereo L(l) in
30. his ⊆ his ∧ ais ⊆ ais end
31. ∀ h:H • h ∈ hs ⇒
31. let (lis,ais) = mereo H(h) in
31. lis ⊆ lis ∧ ais ⊆ ais end
32. ∀ a:A • a ∈ as ⇒
32. let (aai,ris) = mereo H(a) in
32. aai = aai ∧ ris ⊆ lis∪his end

Routes.

34. The observed road net defines a possibly infinite set of finite length routes:
Basis Clauses:

35. The null sequence, 〈〉, of no links or hubs is a route.
36. Any one link or hub, u, of a road net forms a route, 〈u〉, of length one.

Inductive Clauses:
37. Let rî〈ui〉 and 〈uj〉̂rj be two finite routes of a road net.
38. Let uiui and ujui be the unique identifiers for ui, respectively uj .
39. Let the road (hub or link) identifiers of mereology of ui be uis and of uj be

ujs. If uiui is in uis and ujui is in ujs,
40. then rî〈ui, uj〉̂rj is a route of the road net.

Extremal Clause:
41. Only such routes which can be formed by a finite number of applications of

the clauses form a route.

type
34. R = (L|H)∗

value

34 routes: RN
∼→ R-infset

34 routes(rn) ≡
35 let rs = {〈〉}
36 ∪ {〈u〉|u:(L|H)•u ∈ us} ∪
40 ∪ {rî〈ui〉̂〈uj〉̂rj | ui,uj:(L|H) • {ui,uj} ⊆ us
37 ∧ rî〈ui〉,〈uj〉̂rj:R • {rî〈ui〉,〈uj〉̂rj} ⊆ rs
38,39 ∧ ui ui = uid U(ui) ∧ ui ui ∈ xtr UIs(ui)

An Essence of Domain Engineering 23

38,41 ∧ uj ui = uid U(uj) ∧ uj ui ∈ xtr UIs(uj)} in
35 rs end

xtr UIs: (L|H) → UI-set, xtr UIs(u) ≡ let (uis,)=mereo (L|H)(u) in uis end

rs is the smallest [fixed point] set of finite routes that satisfy the equation 35.

42. We can also model routes, as identifier routes, IR, in terms of link and hub
identifiers.

43. Given a road net we can examine whether it is strongly connected, i.e.,
whether any link or hub can be reached from any other link or hub.

44. Et cetera !

type
42. IR = (LI|HI)∗

value
42. i routes: RN → IR-infset
42. i routes(rn) ≡
42. let rs = routes(rn) in
42. { 〈 uid (L|H)(r[i]) | i:Nat • 1≤i≤len r 〉 | r:R • r ∈ rs } end

43. is connected RN: RN → Bool
43. is connected RN(rn) ≡
43. let rs = routes(rn) in
43. ∀ u,u′:(L|H) • {u,u′}⊆ ls ∪ hs ⇒ ∃ r:R • r ∈ rs and {u,u′} ⊆ elems r
43. end

Attributes. We treat attributes only for atomic sorts. And we show only a very
few attribute examples.

Links.

45. Links have lengths.
46. Links have states – sets of zero, one or two pairs of hub identifiers – of their

hub mereology25.
47. Links have state spaces: a set of all relevant link states – the link state must

at any time be in its link state space.

type
45. LEN
46. LΣ = (HI×HI)-set
47. LΩ = LΣ-set
value

25 – zero expresses that the link is [currently] closed for traffic, one if it is [cur-
rently] a one way link, in one or the other direction as indicated by the con-
necting hub identifiers, or two if it is [currently] a two way link

24 Dines Bjørner

45. attr LEN: L → LEN
46. attr LΣ: L → LΣ
47. attr LΩ: L → LΩ
axiom
46. ∀ l:L • l ∈ ls ⇒
46. let (lσ,lω)=(attr LΣ,attr LΩ)(l) in lσ ∈ lω ∧
46. ∀ (hi′,hi′′):(HI×HI) • (hi′,hi′′)∈lσ ⇒ {hi′,hi′′}⊆his end

Hubs.

48. Hubs have states: a set of pairs of link identifiers – of its mereology.26

49. Hubs have state spaces: the set of all relevant hub states – the current hub
state must at any time be in its hub state space.

type
48. HΣ = (LI×LI)-set
49. HΩ = HΣ-set
value
48. attr HΣ: H → HΣ
49. attr HΩ: H → HΩ
axiom
48. ∀ h:H • h ∈ hs ⇒
49. let (hσ,hω)=(attr HΣ,attr HΩ)(h) in hσ ∈ hω ∧
49. ∀ (li′,li′′):(LI×LI) • (li′,li′′)∈hσ ⇒ {li′,li′′}⊆lis end

Automobiles.

50. Automobiles have positions on links or in hubs (programmable attributes).
(a) An automobile on a link position is a triplet of (1) a link identifier of the

road net, (2) and ordered pair of two hub identifiers of the link mereology,
and (3) a real number properly between 0 and 1.27

(b) An automobile at a hub position is a pair of (1) a hub identifier hi of the
road net, and (2) an ordered pair of two link identifiers li′ and li′′ of the
hub mereology.28

51. Automobiles have a (programmable attribute) history of appearing, at times,
at hubs or on links29.

53c Automobiles have (monitorable attribute) speed and acceleration (plus or
minus).

26 – each pair, (lij , lik) expressing that automobiles may [currently] enter the
hub from the links identified by lij and leave the hub to the links identified
by lik

27 – expressing the fraction along the designated link between the two designated hubs.
The type constructor :: is “borrowed” from VDM [23].

28 – expressing that the automobile at hub hi is on its way between links designated
by li′ and li′′

29 We shall define that attribute in items 53c on the facing page

An Essence of Domain Engineering 25

52. Etc.

type
50. APos = onL | atH
50a. onL :: LI × (HI×HI) × F
50a. F = Real, invariant: ∀ f:F • 0<f<1
50b. atH :: HI × (LI×LI)
53c. AHist
51. Vel, Acc
52. ...
value
50. attr APos: A → APos
51. attr Vel: A → Vel, attr Acc: A → Acc
52. ...
axiom
50. ∀ a:A • a ∈ as ⇒
50. let apos = attr APos(a) in
50. case apos:
50a. onL(li,(fhi,thi),) →
50a. li ∈ lis ∧ let (his,) = mereo L(retr L(li)(σ)) in {fhi,thi}⊆his end
50b. atH(hi,(fli,tli)) →
50b. hi ∈ his ∧ let (lis,) = mereo H(retr H(hi)(σ)) in {fli,tli}⊆lis end
51.,52. ...
50. end end

Intentional Pull. We simplify the link, hub and automobile histories – aiming
at just showing an essence of the intentional pull concept.

53. With links, hubs and automobiles we can associate history attributes.

(a) Link history attributes time-stamp record, as an ordered list, the pres-
ence of automobiles.

(b) Hub history attributes time-stamp record, as an ordered list, the presence
of automobiles.

(c) Automobile history attributes time-stamp record, as an ordered list, their
visits to links and hubs.

type
53a. LHist = AI →m TIME∗
53b. HHist = AI →m TIME∗
53c. AHist = (LI|HI) →m TIME∗

value
53a. attr LHist: L → LHist
53b. attr HHist: H → HHist
53c. attr AHist: A → AHist

Wellformedness of Event Histories.
Some observations must be made with respect to the above modelling of time-
stamped event histories.

26 Dines Bjørner

54. Each τ` : TIME∗ is an indefinite list. We have not expressed any criteria for
the recording of events: all the time, continuously ! (?)

55. Each list of times, τ` : TIME∗, is here to be in decreasing, continuous order
of times.

56. Time intervals from when an automobile enters a link (a hub) till it first
time leaves that link (hub) must not overlap with other such time intervals
for that automobile.

57. If an automobile leaves a link (a hub), at time τ , then it may enter a hub
(resp. a link) and then that must be at time τ ′ where τ ′ is some infinitesimal,
sampling time interval, quantity larger that τ . Again we refrain here from
speculating on the issue of sampling !

58. Altogether, ensembles of link and hub event histories for any given automo-
bile define routes that automobiles travel across the road net. Such routes
must be in the set of routes defined by the road net.

As You can see, there is enough of interesting modelling issues to tackle !

Formulation of an Intentional Pull.

59. An intentional pull of any road transport system, rts, is then if:
(a) for any automobile, a, of rts, on a link, ` (hub, h), at time τ ,
(b) then that link, `, (hub h) “records” automobile a at that time.

60. and:
(c) for any link, ` (hub, h) being visited by an automobile, a, at time τ ,
(d) then that automobile, a, is visiting that link, ` (hub, h), at that time.

axiom
59a. ∀ a:A • a ∈ as ⇒
59a. let ahist = attr AHist(a) in
59a. ∀ ui:(LI|HI) • ui ∈ dom ahist ⇒
59b. ∀ τ :TIME • τ ∈ elems ahist(ui) ⇒
59b. let hist = is LI(ui) → attr LHist(retr L(ui))(σ),
59b. → attr HHist(retr H(ui))(σ) in
59b. τ ∈ elems hist(uid A(a)) end end
60. ∧
60c. ∀ u:(L|H) • u ∈ ls∪hs ⇒
60c. let uhist = attr(L|H)Hist(u) in
60d. ∀ ai:AI • ai ∈ dom uhist ⇒
60d. ∀ τ :TIME • τ ∈ elems uhist(ai) ⇒
60d. let ahist = attr AHist(retr A(ai))(σ) in
60d. τ ∈ elems uhist(ai) end end

4.2 Perdurants

Behaviours. We show only the signature and definition of one aspect of one
behaviour. That of an automobile at a hub. We refer to [11, Examples 82–83,
pages 183–184] for the full set of signatures and definitions for link, hub and
automobile behaviours.

An Essence of Domain Engineering 27

Signatures.

61. automobile:

(a) there is the usual “triplet” of arguments: unique identifier, mereology
and static attributes;

(b) then there are two programmable attributes: the automobile position
(cf. Item 50 on page 24), and the automobile history (cf. Item 53c on
page 25);

(c) and finally there are the input/output channel references allowing com-
munication between the automobile and the hub and link behaviours.

We deviate from RSL in expression these signatures. The deviation amounts
to a form of dependent types [38].

62. Similar signatures can be given for

(a) link and
(b) hub behaviours.

We omit the modelling of monitorable attributes.

value
61,61a automobile: ai:AI×(,uis):AM×...
61b → (apos:APos × ahist:AHist)
61c → in out {ch[{ai,ui}]|ai:AI,ui:(HI|LI) • ai∈ais ∧ ui ∈ uis} Unit
62a link: li:LI×(his,ais):LM×LΩ
62a → LΣ
62a → in out {ch[{li,ui}]|li:LI,ui:(AI|HI)-set • ai∈ais ∧ li ∈lis∪his} Unit
62b hub: hi:HI×(,ais):HM×HΩ
62b → HΣ
62b → in out {ch[{ai,ui}]|hi:HI,ai:AI • ai∈ais ∧ hi ∈ uis} Unit

We omit the pre-conditions.

Definitions: Automobile at a Hub.

63. We abstract automobile behaviour at a Hub (hi).

(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.
(f) or, internally non-deterministically,
(g) decides to communicate with the department of vehicles,
(h) or, externally non-deterministically,
(i) is contacted by department of vehicles,

We omit the definition of department of vehicle (i.e., automobile aggregate) be-
haviour.

28 Dines Bjørner

63 automobile(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡
63a (automobile remains in hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63b de
63c automobile leaving hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63d de
63e automobile stop(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63f bc
63g automobile contacts dv(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist))
63h debc
63i dv contacts automobile(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)

64. [63a] The automobile remains in the hub:
(a) the automobile remains at that hub, “idling”,
(b) informing (“first”) the hub behaviour.

64 automobile remains in hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡
64 let τ = record TIME() in
64b ch[ai,hi] ! τ ;
64a automobile(ai,(aai,uis),...)(apos,upd hist(τ ,hi)(ahist))
64 end

64a upd hist: (TIME×I) → (AHist|LHist|HHist) → (AHist|LHist|HHist)
64a upd hist(τ ,i)(hist) ≡ hist † [i 7→ 〈τ〉̂hist(i)]

65. [63c] The automobile leaves the hub entering a link:
(a) tli, whose “next” hub, identified by thi, is obtained from the mereology

of the link identified by tli;
(b) informs the hub it is leaving and the link it is entering,
(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resum-

ing) the vehicle behaviour positioned at the very beginning (0) of that
link.

65 automobile leaving hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡
65a (let ({fhi,thi},ais) = mereo L(retr L(tli)(σ)) in assert: fhi=hi
65b (ch[ai,hi] ! τ ‖ ch[ai,tli] ! τ) ;
65c automobile(ai,(aai,uis),...)
65c (onL(tli,(hi,thi),0),upd hist(τ ,tli)(upd hist(τ ,hi)(ahist))) end)

66. [63e] Or the automobile “disappears — off the radar” !

66 automobile stop(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡ stop

Similar behaviour definitions can be given for automobiles on a link, for links and
for hubs. Together they must reflect, amongst other things: the time continuity of
automobile flow, that automobiles follow routes, that automobiles, links and hubs
together adhere to the intentional pull expressed earlier, et cetera. A specification
of these aspects must be proved to adhere to these properties.

An Essence of Domain Engineering 29

Initial System. The initial system is the parallel composition of

67. the road net aggregate behaviour,
68. the automobile aggregate behaviour,
69. all automobile behaviours,
70. all link behaviours, and
71. all hub behaviours.

value
67. dept of roads(uid RN(rn),mereo RN(rn),...)(...)
68. ‖ dept of vehicles(uid AA(aa),mereo AA(aa),...)(...)
69. ‖ {automobile(uid A(a),mereo A(a),...)(attr Apos(a),attr AHist(a))|a:A•a∈as}
70. ‖ {link(uid L(l),mereo L(l),(attr LEN(l),attr LΩ(l)))(attr LΣ(l),attr LHist(l))|l:L•l∈ls}
71. ‖ {hub(uid H(h),mereo H(h),attr HΩ(h))(attr HΣ(h),attr HHist(h))|h:H•h∈hs}

That’s all folks ! Neat ! ?

• • •

Initial Remark Reviewed: Initially the narratives of the domain description were
scant and their counterpart formalisations left many possible interpretations as
to what these formal types and function signatures really meant. As the do-
main description proceeded – now with perdurants: channels and action, event
and behaviour signatures and definitions – these meanings were narrowed down,
considerably – focusing, finally, on yielding the properties that are deemed nec-
essary and sufficient.

5 Relevance to Aeronautics and Space

The specific relevance of domain engineering to aeronautics and space will be
the subject of this section.

5.1 But First

As a preamble for briefly discussing the relevance of domain engineering to aero-
nautics and space, we ’complete’ our treatment of domain engineering with three
small notes.

Domain Modelling Experiments. It is appropriate to mention that the
method, i.e., the principles, techniques and tools of domain analysis & descrip-
tion, has been “tuned & honed” by extensive “laboratory work”. That is, there
has been experimentally researched and developed a number of less-or-more
“complete” domain models. In reverse chronological order we mention some:

– 2021: Assembly Lines, September, 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/assembly/assembly-line.pdf

30 Dines Bjørner

– 2021: Shipping, April 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/ral/ral.pdf

– 2021: Rivers and Canals, March 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf

– 2021: A Retailer Market, January 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/Retailer/BjornerHeraklit27January2021.pdf

– 2019: Container Terminals, ECNU, Shanghai, China
www.imm.dtu.dk/~dibj/2018/yangshan/maersk-pa.pdf

– 2018: Documents, TongJi Univ., Shanghai, China
www.imm.dtu.dk/~dibj/2017/docs/docs.pdf

– 2017: Urban Planning, TongJi Univ., Shanghai, China
www.imm.dtu.dk/~dibj/2018/BjornerUrbanPlanning24Jan2018.pdf

– 2017: Swarms of Drones, Inst. of Softw., CAS, Peking, China
www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf

– 2013: Road Transport, Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/road-p.pdf

– 2012: Credit Cards, Uppsala, Sweden
www.imm.dtu.dk/~dibj/2016/credit/accs.pdf

– 2012: Weather Information, Bergen, Norway
www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf

– 2010: Web-based Transaction Processing, Techn. Univ. of Vienna, Austria
www.imm.dtu.dk/~dibj/wfdftp.pdf

– 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan
www.imm.dtu.dk/~db/todai/tse-1.pdf, www.imm.dtu.dk/~db/todai/tse-2.pdf

– 2009: Pipelines, Techn. Univ. of Graz, Austria
www.imm.dtu.dk/~dibj/pipe-p.pdf

– 2007: A Container Line Industry Domain, Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/container-paper.pdf

– 2002: The Market, Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/themarket.pdf

– 1995–2004: Railways, Techn. Univ. of Denmark - a compendium
www.imm.dtu.dk/~dibj/train-book.pdf

Requirements Engineering. If our objective for having a domain description
is that it serves as a basis for software development, then a [next] phase of
development is that of requirements engineering. Chapter 9 of [11] shows how to
systematically develop requirements from a domain description.

As we did for domain analysis & description, Sect. 3.5 on page 18, we can
do for requirements development: present an informal, but precise specification
of the requirements analysis & description process.

The “formalisation” below reveals an essence of [11, Chapter 9]. Namely that
the requirements development consists of three major stages: domain require-
ments, DR – which in turn consists of five steps, interface requirements, IR, and
machine requirements, MR. The stages of domain and interface requirements de-
velopment can be further ‘decomposed’ into steps. The pseudo procedure names
these steps. For details we refer to [11, Chapter 9]

An Essence of Domain Engineering 31

value
requirements analysis description: RSL+Text→ D →

(D×D×...×D) → RSL+Text
requirements analysis description(rsl txt)(d)(d1,...,dm) ≡

DR: let dr=(let drp = domain projection(rsl txt)(d) in
let dri = domain requirements instantiation(drp)(d) in
let drd = domain requirements determination(dri)(d) in
let dre = domain requirements extension(drd)(d) in
let drf = domain requirements fitting(dre)((d1,...,dm),d)
in drf end end end end end) in

IR: let irp = interface requirements(drf)(d) in
MR: let mrp = machine requirementsn(irp)(d)

in mrp end end end

Here (d1,...,dm) are the “other” requirements with which ((dre),(...,d)) is to be
fitted; mrp then represents the full set of requirements from which to develop, in
a next phase, the software.

Software Design. The three monographs cum textbooks [8–10] show how to
develop software from requirements prescriptions.

5.2 Air Traffic Control, ATC

On the background of the domain to requirements transformation, [11, Chap-
ter 9], and a similar requirements to software design transformation [10], we
now claim to have a rigorous path of development from domains to trustworthy
software.

An domain, “close”, informally speaking, to that of NASA’s concerns, is air
traffic control, ATC.

Future ATCs. Today’s ATC is primarily radar-based and human-operated.
Tomorrow’s ATC appears headed for satellite-orientation and automation.30

We suggest, in this paper, that major US and European efforts for formulat-
ing the next generation ATCs be supported by pre-domain modeling experiments.

Models of proposed ATCs are neither domain models nor requirements mod-
els. They are models of virtual ATCs, as [13] formulates a family of models
of automobile assembly lines. Such a family can be used to determine values

30 We refer to:

– ICAO: https://www.icao.int/airnavigation/documents/ganp-2016-interact-
ive.pdf

– US: https://www.faa.gov/nextgen/
– Europe: https://www.easa.europa.eu/domains/air-traffic-management

32 Dines Bjørner

of future ATC “parameters”: which ATC components should undertake which
tasks, etc. Their modelling process can also, and this is something new, help
experiment with alternative ATC-component or procedure proposals, as a form
of “sounding boards”.

A Model for Current ATC. In order to develop models for families of ATCs
we suggest to first develop a model of the existing, worldwide ATC. A basis for
such a model is illustrated in Fig. 3.

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

Terminal TerminalAreaArea

Centre Centre

CentreCentre

This right 1/2 is a "mirror image" of left 1/2 of the figure

ch[{...}]:GA|AG

ch[{...}]:AT|TA

ch[{...}]:AR|RA

ch[{...}]:RC|CR
ch[{...}]:AC|CA

ch[{...}]:GC|CG

ch[{...}]:RC|CR
ch[{...}]:AC|CA

ch[{...}]:AT|TA

ch[{...}]:GC|CG

ch[{...}]:GA|AG

ch[{...}]:CC

ch[{...}]:AR|RA

behaviour in/out

Fig. 3. Conventional Air Traffic Control

Thus we challenge the reader to analyse & describe external qualities (as ba-
sically shown in Fig. 3), and states, then internal qualities, first unique iden-
tifiers, mereologies, and attributes; then external qualities, first channels, then
behaviour signatures and definitions, and finally an initial state.

Now the modellers are well prepared for modelling future ATCs.

• • •

The above suggests that domain modelling problems related to aeronautics and
space might also be a good idea !

5.3 An Aeronautics & Space Domain

To properly understand the domain of aeronautics &31 space we must first analyse
various facets of the domain as we see it today. Aeronautics & space, as an

31 We shall use the ampersand, &, instead of ‘and’, to emphasize that we speak of one,
consolidated topic, not two !

An Essence of Domain Engineering 33

endeavour, is pursued in order to explore space, with space exploration missions
“divided” into stages, deploying a variety of technologies, and satellites.32

[I] Types of Space Exploration. There are many kinds of space exploration: earth
observation satellites, spy satellites, communications satellites, military satellites,
satellite navigation, space telescopes, space exploration and space tourism.

[II] Stages of Space Exploration. There are common stages of missions: the launch
phase (assembly, test, and launch operations), the cruise phase, the encounter
phase and depending on the state of spacecraft health and mission funding, the
extended operations phase.

[III] Space Technologies. There are different kinds of space technologies: space-
craft, satellites, space stations and orbital launch.

[IV] Types of Satellites and Applications. And there are many types of satellites
and applications: remote sensing satellites, navigation satellites, geocentric orbit
type satellites, global positioning systems, geostationary satellites, drone satellites,
ground satellites and polar satellites.

• • •

A[n Aeronautics &] Space Control, ASC, Sketch.

An Analysis. Air traffic control, ATC, hinted at in Sect. 5.2, can, in contrast to
a perceived aeronautics & space monitoring, communication and control, i.e., an
air space control, ASC, it seems, be primarily characterised as follows: (a) ATC is
concerned with only one kind of moveable entities: passenger and cargo aircraft
whereas an ASC would have to deal with quite a variety of moveable entities; (b)
ATC is independent of the multitude of national and international air carriers,
whereas, it seems, today’s national aeronautics & space efforts and their moni-
toring, communications and controls are fragmented into national agencies who
are also the [main] stakeholders in the monitored, etc., space efforts; (c) ATC can,
today, be partly identified in terms of aircraft (one, unifying concept), ground
control towers, terminal controls, area controls and continental controls; and (d)
ATC responsibility is shared by many (overflown) nations.

• • •

There is today an estimated 3.500 man-made space objects “up there”, right
now ! Each such space “mission” lasting for up to many years. In contrast there
is, today, an estimated 10.000 aircraft in flight at any moment. Each such flight
lasting between 1/2 hour and 14+ hours. We proceed, therefore, on the assumption
that a global, multi-nation co-ordinated ASC is required.

• • •
32 The following text is adapted from various NASA Web pages found under:

https://www.nasa.gov.

34 Dines Bjørner

The As Yet Unknowns. The above rather terse and simplified analysis left open a
number of issues: (i) Can a perceived, “single”, ASC be devised to handle all facets
of space exploration, applications and technologies ? (ii) Can a perceived ASC, of a
next future, be “pinned down” to two or more separate physical, stationary parts
(and behaviours) such as the aircraft, ground control towers, terminal controls, area
controls and continental controls ? (iii) Is it too early to consolidate matters ?
That is, do political concerns and technological advances stand in the way of
consolidation ?

A Suggestion. It is therefore suggested that the concepts of domain science &
engineering be applied to the issues of whether (α) a national and/or an in-
ternational, or a global, ASC; (β) one or several distinct ASCs, one per type of
space exploration ([I]) or satellite ([IV]) or application ([IV]); and (γ) in case
(β) recommends several, typed, ASCs, how to coordinate these.

In doing so domain science & engineering is being used not to model an ex-
isting, but a contemplated domain ! Thus the modelling may involve modelling
a variety of choices. In [13], the authors show how domain modelling can be for-
mulated such that optimisation of assembly line production can be investigated.
Similar possibilities could be investigated in connection with modelling proposed
aeronautic & space control. Domain science & engineering may cast a new kind
of light on these issues.

Thus it is suggested that the US Government FAA and NASA, and, in Eu-
rope, the EUROCONTROL and ESA, separately or jointly, and these in cooperation
with many other space agencies33, co-operate on researching and experimentally
developing domain models for aeronautics & space.

6 Conclusion

The title of this paper had the prefix ‘An Essence of’. The ‘An’, rather than a
‘The’, shall indicate that there are many essential aspects of domain engineering.
Some essences of domain science & engineering are (i) a basis in philosophy ; (ii)
an interpretation of transcendental deduction; (iii) intentional pull, an interpre-
tation of “gravitational pull” being a core property of domains; and (iv) that
domain analysis & description ‘wavers’ between science and engineering, being
conducted in a context of more-or-less following formal method principles, tech-
niques and tools – yet searching and deciding informally for the entities to analyse
& describe.

There may be other ‘essences’ !34 We refer to [11] for other aspects.

33 ICAO (UN), Roscosmos (Russia), CNSA (China), ISRO (India), JAXA (Japan),

AEB (Brazil), CSA (Canada), ASA (Australia) and others
34 It appears to have become fashionable to include the idea of ‘essence’ in the

title of methods or books:

– https://essence.ivarjacobson.com/services/what-essence: The Es-
sence of Software Engineering. The SEMAT kernel. Ivar Jacobson, Pan-Wei

An Essence of Domain Engineering 35

The proposed domain modelling method of this paper, and hence [11], raises
a great many research issues:

– The issue of intentional pull is also only briefly sketched, paragraph Intentional
Pull Sect., 3.2 on page 14.

– There is the issue of the modelling of continuity, illustrated in paragraph
Intentional Pull of Sect. 4.1 on page 25. In modelling aeronautics & space
there is a more general need for modelling continuity. ‘Formal Methods’,
so far, has yet to “deliver” on this: the ability to freely alternate between
discrete, logical models and continuous, say differential and integral calculus-
based models.

– There is a carefully thought out and apparently complete analysis & descrip-
tion calculus for endurants, but there is no analysis & description calculus
for perdurants ! ?

6.1 Acknowledgments

The front matter preface of [11] ends with an extensive list of acknowledgments.
For this paper I repeat acknowledging three persons: Kai Sørlander from whose
philosophical works and from our personal interaction I have benefited; my editor
at Springer, Ronan Nugent, whose steadfast and tireless work also lies behind [11];
and Klaus Havelund for being a great discussion partner over now many years. I
also thank the NASA Formal Methods Symposium for the invitation which has
afforded me the possibility to correct, clarify and simplify a number of issues wrt.
RSL, RSL+Text, and domain analysis and description methodology: its principles,
techniques and tools.

References

1. Aaronson, S.: Quantum Computing since Democritus. Cambridge University Press
(2013)

2. Ahbel-Rappe, S.: Socrates: A Guide for the Perplexed. A&C Black (Bloomsbury), ISBN
978-0-8264-3325-1 (2011)

3. et al., W.D.R.: Plato’s Theory of Ideas. Oxford University Press (1963)
4. Aristotle: Categories. On Interpretation. Prior Analytics. Harvad University Press

[Loebb Classical Library, translated by H.P. Cooke and Hugh Tredenick] (1938)
5. Audi, R.: The Cambridge Dictionary of Philosophy. Cambridge University Press, The

Pitt Building, Trumpington Street, Cambridge CB2 1RP, England (1995)
6. Berger, B., Whistler, D.: The Schelling Reader. Bloomsbury Publishing PLC (2020)

Ng, Paul E. McMahon, Ian Spence, and Svante Lidman. ACM Queue, Oc-
tober 24, 2012, Volume 10, issue 10.

– https://press.princeton.edu/books/hardcover/9780691225388/-

the-essence-of-software: The Essence of Software: Why Concepts Matter
for Great Design. Daniel Jackson, Nov.16, 2021.

36 Dines Bjørner

7. Berkeley, G.: Philosophical Works, Including the Works on Vision. Everyman edition,
London (1975 (1713))

8. Bjørner, D.: Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theo-
retical Computer Science, the EATCS Series, Springer (2006)

9. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series, Springer (2006), Chapters
12–14 are primarily authored by Christian Krog Madsen.

10. Bjørner, D.: Software Engineering, Vol. 3: Domains, Requirements and Software De-
sign. Texts in Theoretical Computer Science, the EATCS Series, Springer (2006)

11. Bjørner, D.: Domain Science & Engineering – A Foundation for Software Development.
EATCS Monographs in Theoretical Computer Science, Springer (2021)

12. Bjørner, D.: A Domain Science & Engineering Interpretation of Sørlander’s Philoso-
phy, http://www.imm.dtu.dk/~dibj/2022/sorlander/Sorlander.pdf. Tech. rep.,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark (September
2022), currently incomplete.

13. Bjørner, N., Levatich, M., Lopes, N.P., Rybalchenko, A., Vuppalapati, C.: Su-
percharging plant configurations using Z3. In: Stuckey, P.J. (ed.) Integration of
Constraint Programming, Artificial Intelligence, and Operations Research - 18th
International Conference, CPAIOR 2021, Vienna, Austria, July 5-8, 2021, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12735, pp. 1–25. Springer
(2021). https://doi.org/10.1007/978-3-030-78230-6 1, https://doi.org/10.1007/978-
3-030-78230-6 1

14. Butterfield, J., Earmann, J. (eds.): Philosophy of Physics. Elsevier (2006), Handbook
of The Philosophy of Science

15. Carnap, R.: Der Logische Aufbau der Welt. Weltkreis, Berlin (1928)
16. Carnap, R.: The Logical Syntax of Language. Harcourt Brace and Co., N.Y. (1937)
17. Carnap, R.: Introduction to Semantics. Harvard Univ. Press, Cambridge, Mass. (1942)
18. Carnap, R.: Meaning and Necessity, A Study in Semantics and Modal Logic. University

of Chicago Press (1947, 1956)
19. Casati, R., Varzi, A.C.: Parts and Places: the structures of spatial representation. MIT

Press (1999)
20. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.

Springer (2018)
21. Couprie, D.L., Kocandrle, R.: Anaximander: Anaximander on Generation and Destruc-

tion. x (Springer (Briefs in Philosophy Series))
22. Darwin, C.: Origin of Species. Penguin Putnam (2003), introduction by Sir Julian

Huxley
23. Dawes, J.: The VDM-SL reference guide, vol. 18. Pitman London (1991)
24. Descartes, R.: Discours de la méthode. Texte et commentaire par Étienne Gilson. Paris:

Vrin (1987)
25. andHenry Folse, J.F. (ed.): Niels Bohr and the Philosophy of Physics: Twenty-First-

Century Perspectives. Bloomsbury Academic (2019)
26. Frege, G. (ed.): Begriffsschrift – “a formula language, modelled on that of arithmetic,

for pure thought.”. Verlag von Louis Nebert, Halle (1879)
27. George, C., Haxthausen, A.E.: The logic of the RAISE specifi-

cation language. Comput. Artif. Intell. 22(3-4), 323–350 (2003),
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list -
articles&journal issue no=882#abstract 2729

28. George, C.W., Haff, P., Havelund, K., Haxthausen, A.E., Milne, R., Nielsen, C.B.,
Prehn, S., Wagner, K.R.: The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead, England (1992)

An Essence of Domain Engineering 37

29. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series, Prentice-Hall, Hemel
Hampstead, England (1995)

30. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte für Mathematik Physik 38, 173–198 (1931), [English
translation in van Heijenoort 1967, 596–616, and in Gödel, 1986, 144195]

31. Hegel, G.W.F.: Wissenschaft der Logik. Hofenberg (2016 (1812–1816))

32. Heidegger, M.: Parminedes. Indiana University Press (1998)

33. Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science. Harper
Perennial Modern Classics (2007)

34. Hierons, R.M., Bowen, J.P., Harmann, M. (eds.): Formal Methods and Testing: An
Outcome of the Fortest Network. Springer LNCS 4949 (2008)

35. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM
21(8) (Aug 1978)

36. Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science, Prentice-Hall International (1985)

37. Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science, Prentice-Hall International (1985), published electronically: usingcsp.com/-
cspbook.pdf (2004)

38. Hofmann, M.: Syntax and semantics of dependent types. In: Extensional Constructs in
Intensional Type Theory, pp. 13–54. Springer (1997)

39. Hume, D.: Enquiry Concerning Human Understanding. Squashed Editions (2020
(1758))

40. Husserl, E.: Ideas. General Introduction to Pure Phenomenology. Routledge (2012)

41. Irvine, A.D. (ed.): Philosophy of Mathematics. Elsevier Science & Technology (2006)

42. Jackson, M.A.: Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press, Addison-Wesley, Reading, England (1995)

43. James, D., Zoller, G.: Cambridge Companion to Fichte. Cambridge University Press
(2016)

44. Kant, I.: Critique of Pure Reason. Penguin Books Ltd (2007 (1787))

45. Kennedy, H.C. (ed.): Selected works of Giuseppe Peano, with a biographical sketch
and bibliography. London: Allen & Unwin (1973)

46. Leibniz, G.W.: The Philosophical Writings of Leibniz. Hassell Street Press (2021)

47. Little, W., Fowler, H., Coulson, J., Onions, C.: The Shorter Oxford English Dictionary
on Historical Principles. Clarendon Press, Oxford, England (1973, 1987), Two vols.

48. Locke, J.: An Essay Concerning Human Understanding. Penguin Classics (1998 (1689))

49. Maxwell, J.C.: A Treatise on Electricity and Magnetism. Dover reprint (1954 (1892)),
3rd edition, vols. 1–2

50. Mendel, G., Bateson, W. (eds.): Mendel’s Principles of Heredity. Franklin Classics
Trade Press (2018)

51. Mercer, J.E.: The Mysticism Of Anaximenes And The Air. Kessinger Publishing, LLC
(2010)

52. O’Grady, P.: Thales of Miletus. Routledge (Western Philosophy Series) (2002)

53. Pears, D.: Russell’s Logical Atomism. Fontana Collins (1972)

54. Planck, M.: Eight Lectures on Theoretical Physics. Dover Publications (2003 (1915))

55. Popper, K.R.: Logik der Forschung. Julius Springer Verlag, Vienna, Austria (1934
(1935)), english version [56]

56. Popper, K.R.: The Logic of Scientific Dicovery. Hutchinson of London, 3 Fitzroy
Square, London W1, England (1959,. . . ,1979), translated from [55]

38 Dines Bjørner

57. Popper, K.R.: Conjectures and Refutations. The Growth of Scientific Knowledge. Rout-
ledge and Kegan Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD, London,
England (New York, NY, USA) (1963,. . . ,1981)

58. Popper, K.R.: A Pocket Popper. Fontana Pocket Readers, Fontana Press, England
(1983), an edited collection, Ed. David Miller

59. Roscoe, A.W.: Theory and Practice of Concurrency. C.A.R. Hoare Series in Com-
puter Science, Prentice-Hall (1997), http://www.comlab.ox.ac.uk/people/bill.-
roscoe/publications/68b.pdf

60. Russell, B.: On Denoting. Mind 14, 479–493 (1905)
61. Russell, B.: The Problems of Philosophy. Home University Library, London (1912),

oxford University Press paperback, 1959 Reprinted, 1971-2
62. Russell, B.: Introduction to Mathematical Philosophy. George Allen and Unwin, London

(1919)
63. Russell, B.: “Preface,” Our Knowledge of the External World. G. Allen & Unwin, Ltd.,

London (1952)
64. Sannella, D., Tarlecki, A.: Foundations of Algebraic Semantcs and Formal Software De-

velopment. Monographs in Theoretical Computer Science, Springer, Heidelberg (2012)
65. Schneider, S.: Concurrent and Real-time Systems — The CSP Approach. Worldwide

Series in Computer Science, John Wiley & Sons, Ltd., Baffins Lane, Chichester, West
Sussex PO19 1UD, England (January 2000)

66. Sørlander, K.: Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard ·
Rosinante (1994), 168 pages

67. Sørlander, K.: Under Evighedens Synsvinkel [Under the viewpoint of eternity]. Munks-
gaard · Rosinante (1997), 200 pages

68. Sørlander, K.: Den Endegyldige Sandhed [The Final Truth]. Rosinante (2002), 187
pages

69. Sørlander, K.: Indføring i Filosofien [Introduction to The Philosophy]. Informations
Forlag (2016), 233 pages

70. Spinoza, B.: Ethics, Demonstrated in Geometrical Order. The Netherlands (1677)
71. Wallace, A.R.: The Annotated Malaysian Archipelago. National Uniersity of Singapore

Press (2014), edited by John Van Wyhe
72. Whitehead, A.N., Russell, B.: Principia Mathematica, 3 vols. Cambridge University

Press (1910, 1912, and 1913), second edition, 1925 (Vol. 1), 1927 (Vols 2, 3), also
Cambridge University Press, 1962

73. Wittgenstein, L.J.J.: Tractatus Logico–Philosophicus. Oxford Univ. Press, London
((1921) 1961)

74. Wittgenstein, L.J.J.: Philosophical Investigations. Oxford Univ. Press (1958)
75. Wolfe, C.T., Huneman, P., Reydon, T.A. (eds.): History, Philosophy and Theory of the

Life Sciences. Springer (2013)
76. Wright, M.: Empedokles: The Extant Fragments. Hackett Publishing Company, Inc.

(1995)

