
Documents
A Basis for Government1

Dines Bjørner
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

Abstract. At least two facets characterise electronic government: (i) the timely, orderly and human-oriented
delivery of government services to its citizens and private organisations (businesses, etc.), and (ii) the docu-
ments underlying the laws and regulations affording these services – with these documents originating and
emanating from the legislative, the executive and the judicial authorities as first expressed by Charles-Louis
de Secondat, baron de La Brède et de Montesquieu (1689–1755).

It seems that item (ii) is yet to be “in-depth-explored” by the electronic government community re-
searchers – so that, then, is the purpose of this contribution.

We domain analyse and suggest a description of a domain of documents. We emphasize that the model
is one of several possible. Common to these models is that we model “all” we can say about documents –
irrespective of whether it can also be “implemented” ! The model(s) are not requirements prescriptions – but
one can develop such from our domain description.

You may find that the model is overly detailed with respect to a number of “operations” and properties
of documents. We find that these operations must be part of the very basis of a document domain in order
to cope with documents such as they occur in such wide applications as, for example, public government.

Contents

1 Introduction
2 A Document Systems Description

2.1 A System for Managing, Archiving and Handling Documents 3
2.2 Principal Endurants 3
2.3 Unique Identifiers 3
2.4 Documents: A First View 4

2.4.1 Document Identifiers 4
2.4.2 Document Descriptors 4
2.4.3 Document Annotations 4
2.4.4 Document Contents: Text/Graphics 5
2.4.5 Document Histories 5
2.4.6 A Summary of Document Attributes 5

2.5 Behaviours: An Informal, First View 6
2.6 Channels, A First View 7

1 Paper submited for the Elsa Estavez & Tomasz Janowski Festschrift: Digital governance for sustainable development and empow-
ered citizenship, October 3, 2022

Correspondence and offprint requests to: Dines Bjørner, Fredsvej 11, DK2840 Holte, Denmark

2

2.7 An Informal Graphical System Rendition 7
2.8 Behaviour Signatures 8
2.9 Time 8

2.9.1 Time and Time Intervals: Types and Functions 8
2.9.2 A Time Behaviour and a Time Channel 9
2.9.3 An Informal RSL Construct 9

2.10 Behaviour “States” 9
2.11 Inter-Behaviour Messages 10

2.11.1 Management Messages with Respect to the Archive 10
2.11.2 Management Messages with Respect to Handlers 11
2.11.3 Document Access Rights 11
2.11.4 Archive Messages with Respect to Management 11
2.11.5 Archive Message with Respect to Documents 11
2.11.6 Handler Messages with Respect to Documents 11
2.11.7 Handler Messages with Respect to Management 12
2.11.8 A Summary of Behaviour Interactions 12

2.12 A General Discussion of Handler and Document Interactions 12
2.13 Channels: A Final View 13
2.14 An Informal Summary of Behaviours 13

2.14.1 The Create Behaviour: Left Fig. 3 on Page 14 13
2.14.2 The Edit Behaviour: Right Fig. 3 on Page 14 13
2.14.3 The Read Behaviour: Left Fig. 4 on Page 14 13
2.14.4 The Copy Behaviour: Right Fig. 4 on Page 14 14
2.14.5 The Grant Behaviour: Left Fig. 5 on Page 15 15
2.14.6 The Shred Behaviour: Right Fig. 5 on Page 15 15

2.15 The Behaviour Actions 15
2.15.1 Management Behaviour 15

Management Create Behaviour: Left Fig. 3 on Page 14 16
Management Copy Behaviour: Right Fig. 4 on Page 14 17
Management Grant Behaviour: Left Fig. 5 on Page 15 17
Management Shred Behaviour: Right Fig. 5 on Page 15 18

2.15.2 Archive Behaviour 18
The Archive Create Behaviour: Left Fig. 3 on Page 14 18
The Archive Copy Behaviour: Right Fig. 4 on Page 14 19
The Archive Shred Behaviour: Right Fig. 5 on Page 15 19

2.15.3 Handler Behaviours 20
The Handler Create Behaviour: Left Fig. 3 on Page 14 20
The Handler Edit Behaviour: Right Fig. 3 on Page 14 20
The Handler Read Behaviour: Left Fig. 4 on Page 14 21
The Handler Copy Behaviour: Right Fig. 4 on Page 14 21
The Handler Grant Behaviour: Left Fig. 5 on Page 15 21

2.15.4 Document Behaviours 21
The Document Edit Behaviour: Right Fig. 3 on Page 14 22
The Document Read Behaviour: Left Fig. 4 on Page 14 22
The Document Shred Behaviour: Right Fig. 5 on Page 15 23

2.16 Conclusion 23
3 References

1. Introduction

We analyse a notion of documents. Documents such as they occur in daily life. What can we say about
documents – regardless of whether we can actually provide compelling evidence for what we say ! That is:
we model documents, not as electronic entities — which they are becoming, more-and-more, but as if they
were manifest entities. When we, for example, say that “this document was recently edited by such-and-such
and the changes of that editing with respect to the text before are such-and-such”, then we can, of course,
always claim so, even if it may be difficult or even impossible to verify the claim. It is a fact, although maybe
not demonstrably so, that there was a version of any document before an edit of that document. It is a fact
that some handler did the editing. It is a fact that the editing took place at (or in) exactly such-and-such a
time (interval), etc. We model such facts.

3

2. A Document Systems Description

This paper unravels its analysis &2 description in stages.

2.1. A System for Managing, Archiving and Handling Documents

The title of this section: A System for Managing, Archiving and Handling Documents immediately reveals
the major concepts: That we are dealing with a system that manages, archives and handles documents.
So what do we mean by managing, archiving and handling documents, and by documents ? We give an
ultra short survey. The survey relies on your prior knowledge of what you think documents are ! Manage-
ment decides3 to direct handlers to work on documents. Management first directs the document archive
to create documents. The document archive creates documents, as requested by management, and
informs management of the unique document identifiers (by means of which handlers can handle these
documents). Management then grants its designated handler(s) access rights to documents, these
access rights enable handlers to edit, read and copy documents. The handlers’ editing and reading of
documents is accomplished by the handlers “working directly” with the documents (i.e., synchronising
and communicating with document behaviours). The handlers’ copying of documents is accomplished
by the handlers requesting management, in collaboration with the archive behaviour, to do so.

2.2. Principal Endurants

By an endurant we shall understand “an entity that can be observed or conceived and described as a
”complete thing” at no matter which given snapshot of time.” Were we to ”freeze” time we would still be
able to observe the entire endurant. This characterisation of what we mean by an ‘endurant’ is from [1,
Manifest Domains: Analysis & Description]. We begin by identifying the principal endurants.

1 From document handling systems one can observe aggregates of handlers and documents.
We shall refer to ‘aggregates of handlers’ by M, for management, and to ‘aggregates of documents’ by A,
for archive.

2 From aggregates of handlers (i.e., M) we can observe sets of handlers (i.e., H).

3 From aggregates of documents (i.e., A) we can observe sets of documents (i.e., D).

type
1 S, M, A
value
1 obs M: S → M
1 obs A: S → A
type
2 H, Hs = H-set
3 D, Ds = D-set
value
2 obs Hs: M → Hs
3 obs Ds: A → Ds

2.3. Unique Identifiers

The notion of unique identifiers is treated, at length, in [1, Manifest Domains: Analysis & Description].

4 We associate unique identifiers with aggregate, handler and document endurants.

2 We use the logogram & between two terms, A & B, when we mean to express one meaning.
3 How these decisions come about is not shown in this paper – as it has nothing to do with the essence of document handling,
but, perhaps, with ‘management’.

4

5 These can be observed from respective parts4.

type

4 MI5, AI6, HI, DI
value

5 uid MI7: M → MI
5 uid AI8: A → AI
5 uid HI: H → HI
5 uid DI: D → DI

As reasoned in [1, Manifest Domains: Analysis & Description], the unique identifiers of endurant parts are
indeed unique: No two parts, whether composite, as are the aggregates, or atomic, as are handlers and
documents, can have the same unique identifiers.

2.4. Documents: A First View

A document is a written, drawn, presented, or memorialized representation of thought. The word originates
from the Latin documentum, which denotes a “teaching” or “lesson”.9 We shall, for this research note, take
a document in its written and/or drawn form. In this section we shall survey the concept a documents.

2.4.1. Document Identifiers

Documents have unique identifiers. If two or more documents have the same document identifier then they
are the same, one (and not two or more) document(s).

2.4.2. Document Descriptors

With documents we associate document descriptors. We do not here stipulate what document descriptors
are other than saying that when a document is created it is provided with a descriptor and this descriptor
“remains” with the document and never changes value. In other words, it is a static attribute.10 We do,
however, include, in document descriptors, that the document they describe was initially based on a set of
zero, one or more documents – identified by their unique identifiers.

2.4.3. Document Annotations

With documents we also associate document annotations. By a document annotation we mean a pro-
grammable attribute, that is, an attribute which can be ‘augmented’ by document handlers. We think
of document annotations as “incremental”, that is, as “adding” notes “on top of” previous notes. Thus we
shall model document annotations as a repository: notes are added, i.e., annotations are augmented, previ-
ous notes are not edited, and no notes are deleted. We suggest that notes be time-stamped. The notes (of
annotations) may be such which record handlers work on documents. Examples could be: “18 July 2022:
13:46 : This is version V.”, “This document was released on 18 July 2022: 13:46 .”, “18 July 2022: 13:46 :
Section X.Y.Z of version III was deleted.”, “18 July 2022: 13:46 : References to documents doci and docj are
inserted on Pagesp and q, respectively.” and “18 July 2022: 13:46 : Final release.”

4 [1, Manifest Domains: Analysis & Description] explains how ‘parts’ are the discrete endurants with which we associate the
full complement of properties: unique identifiers, mereology and attributes.
5 We shall not, in this research note, make use of the (one and only) management identifier.
6 We shall not, in this research note, make use of the (one and only) archive identifier.
7 Cf. Footnote 5: hence we shall not be using the uid MI observer.
8 Cf. Footnote 6: hence we shall not be using the uid AI observer.
9 From: https://en.wikipedia.org/wiki/Document
10 You may think of a document descriptor as giving the document a title; perhaps one or more authors; perhaps a physical
address (of, for example, these authors); an initial date; as expressing whether the document is a research, or a technical report,
or other; who is issuing the document (a public institution, a private firm, an individual citizen, or other); etc.

5

2.4.4. Document Contents: Text/Graphics

The main idea of a document, to us, is the written (i.e., text) and/or drawn (i.e., graphics) contents. We do
not characterise any format for this contents. We may wish to insert, in the contents, references to locations
in the contents of other documents. But, for now, we shall not go into such details. The main operations on
documents, to us, are concerned with: their creation, editing, reading, copying and shredding. The
editing and reading operations are mainly concerned with document annotations and text/graphics.

2.4.5. Document Histories

So documents are created, edited, read, copied and shreded. These operations are initiated by the
management (create), by the archive (create), and by handlers (edit, read, copy), and at specific times.

2.4.6. A Summary of Document Attributes

6 As separate attributes of documents we have document descriptors, document annotations, document
contents and document histories.

7 Document annotations are lists of document notes.

8 Document histories are lists of time-stamped document operation designators.

9 A document operation designator is either a create, or an edit, or a read, or a copy, or a shred designator.

10 A create designator identifies

a a handler and a time (at which the create request first arose), and presents

b elements for constructing a document descriptor, one which

i besides some further undefined information

ii refers to a set of documents (i.e., embeds reference to their unique identifiers),

c a (first) document note, and

d an empty document contents.

11 An edit designator identifies a handler, a time, and specifies a pair of edit/undo functions.

12 A read designator identifies a handler.

13 A copy designator identifies a handler, a time, the document to be copied (by its unique identifier, and
a document note to be inserted in both the master and the copy document.

14 A shred designator identifies a handler.

15 An edit function takes a triple of a document annotation, a document note and document contents and
yields a pair of a document annotation and a document contents.

16 An undo function takes a pair of a document note and document contents and yields a triple of a document
annotation, a document note and a document contents.

17 Proper pairs of (edit,undo) functions satisfy some inverse relation.

There is, of course, no need, in any document history, to identify the identifier of that document.

type
6 DD, DA, DC, DH
value
6 attr DD: D → DD
6 attr DA: D → DA
6 attr DC: D → DC
6 attr DH: D → DH
type
7 DA = DN∗

8 DH = (TIME × DO)∗

9 DO == Crea | Edit | Read | Copy | Shre
10 Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|}

6

10bi Info = ...
value
10bii embed DIs in DD: DI-set × Info → DD
axiom
10d ′′

empty_DC
′′ ∈ DC

type
11 Edit :: (HI × TIME) × (EDIT × UNDO)
12 Read :: (HI × TIME) × DI
13 Copy :: (HI × TIME) × DI × DN
14 Shre :: (HI × TIME) × DI
15 EDIT = (DA × DN × DC) → (DA × DC)
16 UNDO = (DA × DC) → (DA × DN × DC)
axiom
17 ∀ mkEdit(,(e,u)):Edit •

17 ∀ (da,dn,dc):(DA×DN×DC) •

17 u(e(da,dn,dc))=(da,dn,dc)

2.5. Behaviours: An Informal, First View

In [1, Manifest Domains: Analysis & Description] we show that we can associate behaviours with parts,
where parts are such discrete endurants for which we choose to model all its observable properties: unique
identifiers, mereology and attributes, and where behaviours are sequences of actions, events and behaviours.

• The overall document handler system behaviour can be expressed in terms of the parallel composition of
the behaviours

18 of the system core behaviour,

19 of the handler aggregate (the management) behaviour

20 and the document aggregate (the archive) behaviour,

with the (distributed) parallel composition of

21 all the behaviours of handlers and,

the (distributed) parallel composition of

22 at any one time, zero, one or more behaviours of documents.

• To express the latter

23 we need introduce two “global” values: an indefinite set of handler identifiers and an indefinite set of
document identifiers.

value
23 his:HI-set, dis:DI-set

18 sys(...)
19 ‖ mgtm(...)
20 ‖ arch(...)
21 ‖ ‖{hdlri(...)|i:HI•i∈his}
22 ‖ ‖{docui(dd)(da,dc,dh)|i:DI•i∈dis}

For now we leave undefined the arguments, (...) etc., of these behaviours. The arguments of the document
behaviour, (dd)(da,dc,dh), are the static, respectively the three programmable (i.e., dynamic) attributes: doc-
ument descriptor, document annotation, document contents and document history. The above expressions,
Items 19–22, do not define anything, they can be said to be “snapshots” of a “behaviour state”. Initially
there are no document behaviours, docui(dd)(da,dc,dh), Item22. Document behaviours are “started” by the
archive behaviour (on behalf of the management and the handler behaviours). Other than mentioning the
system (core) behaviour we shall not model that behaviour further.

7

2.6. Channels, A First View

Channels are means for behaviours to synchronise and communicate values (such as unique identifiers,
mereologies and attributes).

24 The management behaviour, mgtm, need to (synchronise and) communicate with the archive behaviour,
arch, in order, for the management behaviour, to request the archive behaviour

• to create (ab initio or due to copying)

• or shred document behaviours, docuj ,

and for the archive behaviour

• to inform the management behaviour of the identity of the document(behaviour)s that it has created.

channel
24 mgtm arch ch:MA

25 The management behaviour, mgtm, need to (synchronise and) communicate with all handler behaviours,
hdlri and they, in turn, to (synchronised) communicate with the handler management behaviour, mgtm.
The management behaviour need to do so in order

• to inform a handler behaviour that it is granted access rights to a specific document, subsequently
these access rights may be modified, including revoked.

channel
25 {mgtm hdlr ch[i]:MH|i:HI•i ∈ his}

26 The document archive behaviour, arch, need (synchronise and) communicate with all document be-
haviours, docuj and they, in turn, to (synchronise and) communicate with the archive behaviour, arch.

channel
26 {arch docu ch[j]:AD|h:DI•j ∈ dis}

27 Handler behaviours, hdlri, need (synchronise and) communicate with all the document behaviours, docuj ,
with which it has operational allowance to so do so11, and document behaviours, docuj, need (synchronise
and) communicate with potentially all handler behaviours, hdlri, namely those handler behaviours, hdlri
with which they have (“earlier” synchronised and) communicated.

channel
27 {hdlr docu ch[i,j]:HD|i:HI,j:DI•i ∈ his∧j ∈ dis}

28 At present we leave undefined the type of messages that are communicated.

type
28 MA, MH, AD, HD

2.7. An Informal Graphical System Rendition

Figure 1 on the next page is an informal rendition of the “state” of a number of behaviours: a single
management behaviour, a single archive behaviour, a fixed number, nh, of one or more handler behaviours,
and a variable, initially zero number of document behaviours, with a maximum of these being nd. The
figure also indicates, again rather informally, the channels between these behaviours: one channel between
the management and the archive behaviours; nh channels (nh is, again, informally indicated) between the
management behaviour and the nh handler behaviours; nd channels (nd is, again, informally indicated)
between the archive behaviour and the nd document behaviours; and nh × nd channels (nd × nd is, again,
informally indicated) between the nh handler behaviours and the nd document behaviours

11 The notion of operational allowance will be explained below.

8

mgtm

arch

mgtm_arch_ch

{mgtm_hdlr_ch[i]|i:HI...}

{arch_docu_ch[h]|j:DI...}

{hdlr_docu_ch[i,j]|i:HI,j:DI...}

n_d

n_h

n_h*n_d

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

Fig. 1. An Informal Snapshot of System Behaviours

2.8. Behaviour Signatures

29 The mgtm behaviour (synchronises and) communicates with the archive behaviour and with all of the
handler behaviours, hdlri.

30 The archive behaviour (synchronises and) communicates with the mgtm behaviour and with all of the
document behaviours, docuj.

31 The signature of the generic handler behaviours, hdlri expresses that they [occasionally] receive “orders”
from management, and otherwise [regularly] interacts with document behaviours.

32 The signature of the generic document behaviours, docuj expresses that they [occasionally] receive “or-
ders” from the archive behaviour and that they [regularly] interacts with handler behaviours.

value
29 mgtm: ... → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
30 arch: ... → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
31 hdlri: ... → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
32 docuj : ... → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

2.9. Time

2.9.1. Time and Time Intervals: Types and Functions

33 We postulate a notion of time, one that covers both a calendar date (from before Christ up till now and
beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD, HH:MM:SS).

34 And we postulate a notion of (signed) time interval— between two times (say:±YY:MM:DD:HH:MM:SS).

35 Then we postulate some operations on time: Adding a time interval to a time obtaining a time; subtracting
one time from another time obtaining a time interval, multiplying a time interval with a natural number;
etc.

36 And we postulate some relations between times and between time intervals.

type
33 TIME
34 TIME INTERVAL
value
35 add: TIME INTERVAL × TIME → TIME
35 sub: TIME × TIME → TIME INTERVAL
35 mpy: TIM INTERVALE × Nat → TIME INTERVAL
36 <,≤,=, 6=,≥,>: ((TIME×TIME)|(TIME INTERVAL×TIME INTERVAL)) → Bool

9

2.9.2. A Time Behaviour and a Time Channel

37 We postulate a[n “ongoing”] time behaviour: it either keeps being a time behaviour with unchanged time,
t, or – internally non-deterministically – chooses being a time behaviour with a time interval incremented
time, t+ti, or – internally non-deterministically – chooses to [first] offer its time on a [global] channel,
time ch, then resumes being a time behaviour with unchanged time., t

38 The time interval increment, ti, is likewise internally non-deterministically chosen. We would assume that
the increment is “infinitesimally small”, but there is no need to specify so.

39 We also postulate a channel, time ch, on which the time behaviour offers time values to whoever so
requests.

value
37 time: TIME → time ch TIME Unit
37 time(t) ≡ (time(t) ⌈⌉ time(t+ti) ⌈⌉ time ch!t ; time(t))
38 ti:TIME INTERVAL ...
channel
39 time ch:TIME

2.9.3. An Informal RSL Construct

The formal-looking specifications of this report appear in the style of the RAISE [5] Specification Language,
RSL [4]. We shall be making use of an informal language construct:

• wait ti.

wait is a keyword; ti designates a time interval. A typical use of the wait construct is:

• ... ptA ; wait ti; ptB ; ...

If at specification text point ptA we may assert that time is t, then at specification text point ptB we can
assert that time is t+ti.

2.10. Behaviour “States”

We recall that the endurant parts, Management, Archive, Handlers, and Documents, have properties in
the form of unique identifiers, mereologies and attributes. We shall not, in this research note, deal with
possible mereologies of these endurants. In this section we shall discuss the endurant attributes of mgtm
(management), arch (archive), hdlrs (handlers), and docus (documents). Together the values of these proper-
ties, notably the attributes, constitute states – and, since we associate behaviours with these endurants, we
can refer to these states also a behaviour states. Some attributes are static, i.e., their value never changes.
Other attributes are dynamic.12 Document handling systems are rather conceptual, i.e., abstract in nature.
The dynamic attributes, therefore, in this modeling “exercise”, are constrained to just the programmable
attributes. Programmable attributes are those whose value is set by “their” behaviour. For a behaviour β
we shall show the static attributes as one set of parameters and the programmable attributes as another set
of parameters.

value β: Static → Program → ... Unit

40 For the management endurant/behaviour we focus on one programmable attribute. The management
behaviour needs keep track of all the handlers it is charged with, and for each of these which zero, one or
more documents they have been granted access to (cf. Sect. 2.11.3 on Page 11). Initially that management
directory lists a number of handlers, by their identifiers, but with no granted documents.

12 We refer to Sect. 3.4 of [1], and in particular its subsection 3.4.4.

10

41 For the archive behaviour we similarly focus on one programmable attribute. The archive behaviour needs
keep track of all the documents it has used (i.e., created), those that are avaliable (and not yet used),
and of those it has shredded. Initially all these three archive directory sets are empty.

42 For the handler behaviour we similarly focus on one programmable attribute. The handler behaviour
needs keep track of all the documents it has been charged with and its access rights to these.

43 Document attributes we mentioned above, cf. Items 6–9.

type
40 MDIR = HI →m (DI →m ANm-set)
41 ADIR = avail:DI-set × used:DI-set × gone:DI-set
42 HDIR = DI →m ANm-set
43 SDATR = DD, PDATR = DA × DC × DH
axiom
41 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used

We can now “complete” the behaviour signatures. We omit, for now, static attributes.

value
29 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
30 arch: ADIR → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
31 hdlri: HDIR → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
32 docuj : SDATR → PDATR → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

2.11. Inter-Behaviour Messages

Documents are not “fixed, innate” entities. They embody a “history”, they have a “past”. Somehow or other
they “carry a trace of all the ”things” that have happened/occurred to them. And, to us, these things are
the manipulations that management, via the archive and handlers perform on documents.

2.11.1. Management Messages with Respect to the Archive

44 Management create documents. It does so by requesting the archive behaviour to allocate a document
identifier and initialize the document “state” and start a document behaviour, with initial information,
cf. Item 10 on Page 5:

a the identity of the initial handler of the document to be created,

b the time at wich the request is being made,

c a document descriptor which embodies a (finite) set of zero or more (used) document identifiers (dis),

d a document annotation note dn, and

e an initial, i.e., “empty” contents, "empty DC".

type
10. Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|} [cf. formula Item 10, Page 5]

45 The management behaviour passes on to the archive behaviour, requests that it accepts from handlers
behaviours, for the copying of document:

45 Copy :: DI × HI × TIME × DN [cf. Item 55 on Page 12]

46 Management schreds documents by informing the archive behaviour to do so.

type
46 Shred :: TIME × DI

11

2.11.2. Management Messages with Respect to Handlers

47 Upon receiving, from the archive behaviour, the “feedback” the identifier of the created document (be-
haviour):

type
47. Create Reply :: NewDocID(di:DI)

48 the management behaviour decides to grant access rights, acrs:ACRS13, to a document handler, hi:HI.

type
48 Gran :: HI × TIME × DI × ACRS

2.11.3. Document Access Rights

Implicit in the above is a notion of document access rights.

49 By document access rights we mean a set of action names.

50 By an action name we mean such tokens that indicate either of the document handler operations indicate
above.

type
49 ACRS = ANm-set
50 ANm = {|′′edit′′,′′read′′,′′copy′′|}

2.11.4. Archive Messages with Respect to Management

To create a document management provides the archive with some initial information. The archive behaviour
selects a document identifier that has not been used before.

51 The archive behaviour informs the management behaviour of the identifier of the created document.

type
51 NewDocID :: DI

2.11.5. Archive Message with Respect to Documents

52 To shred a document the archive behaviour must access the designated document in order to stop it. No
“message”, other than a symbolic "stop", need be communicated to the document behaviour.

type
52 Shred :: {|′′stop′′|}

2.11.6. Handler Messages with Respect to Documents

Handlers, generically referred to by hdlri, may perform the following operations on documents: edit, read
and copy. (Management, via the archive behaviour, creates and shreds documents.)

53 To perform an edit action handler hdlri must provide the following:

• the document identity – in the form of a (i:HI,j:DI) channel hdlr docu ch index value,

• the handler identity, i,

• the time of the edit request,

• and a pair of functions: one which performs the editing and one which un-does it !

13 For the concept of access rights see Sect. 2.11.3.

12

mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

mkGrant

mkCopy

mkShred

mkEditComplete
mkReadCompletemkRead

mkEdit
mkShred
mkCopy

mkCreate mkNewDocID

Fig. 2. A Summary of Behaviour Interactions

type
53 Edit :: DI × HI × TIME × (EDIT × UNDO)

54 To perform a read action handler hdlri must provide the following information:

• the document identity – in the form of a di:DI channel hdlr docu ch index value,

• the handler identity and

• the time of the read request.

type
54 Read :: DI × HI × TIME

2.11.7. Handler Messages with Respect to Management

55 To perform a copy action, a handler, hdlri, must provide the following information to the management
behaviour, mgtm:

• the document identity,

• the handler identity – in the form of an hi:HI channel mgtm hdlr ch index value,

• the time of the copy request, and

• a document note (to be affixed both the master and the copy documents).

55 Copy :: DI × HI × TIME × DN [cf. Item 45 on Page 10]

How the handler, the management, the archive and the “named other” handlers then enact the copying,
etc., will be outlined later.

2.11.8. A Summary of Behaviour Interactions

Figure 2 summarises the sources, out, resp. !, and the targets, in, resp. ?, of the messages covered in the
previous sections.

2.12. A General Discussion of Handler and Document Interactions

We think of documents being manifest. Either a document is in paper form, or it is in electronic form. In
paper form we think of a document as being in only one – and exactly one – physical location. In electronic
form a document is also in only one – and exactly one – physical location. No two handlers can access the
same document at the same time or in overlapping time intervals. If your conventional thinking makes you
think that two or more handlers can, for example, read the same document “at the same time”, then, in

13

fact, they are reading either a master and a copy of that master, or they are reading two copies of a common
master.

2.13. Channels: A Final View

We can now summarize the types of the various channel messages first referred to in Items 24, 25, 26 and 27.

type
24 MA = Create (Item 44 on Page 10) | Shred (Item 44d on Page 10) | NewDocID (Item 51 on Page 11)
25 MH = Grant (Item 44c on Page 10) | Copy (Item 55 on the facing page) |
26 AD = Shred (Item 52 on Page 11)
27 HD = Edit (Item 53 on Page 11) | Read (Item 54 on the preceding page) | Copy (Item 55 on the facing page)

2.14. An Informal Summary of Behaviours

2.14.1. The Create Behaviour: Left Fig. 3 on the next page

56 [1] The management behaviour, at its own volition, initiates a create document behaviour. It does so by
offering a create document message to the archive behaviour.

a [1.1] That message contains a meaningful document descriptor,

b [1.2] an initial document annotation,

c [1.3] an “empty” document contents and

d [1.4] a single element document history.

(We refer to Sect. 2.11.1 on Page 10, Items 44–44e.)

57 [2] The archive behaviour offers to accept that management message. It then selects an available document
identifier (here shown as k), henceforth marking k as used.

58 [3] The archive behaviour then “spawns off” document behaviour docuk – here shown by the “dash–
dotted” rounded edge square.

59 [4] The archive behaviour then offers the document identifier k message to the management behaviour.
(We refer to Sect. 2.11.4 on Page 11, Item 51.)

60 [5] The management behaviour then

a [5.1] selects a handler, here shown as i, i.e., hdlri,

b [5.2] records that that handler is granted certain access rights to document k,

c [5.3] and offers that granting to handler behaviour i.

(We refer to Sect. 2.11.2 on Page 11, Item 48 on Page 11.)

61 [6] Handler behaviour i records that it now has certain access rights to doccument i.

2.14.2. The Edit Behaviour: Right Fig. 3 on the following page

1 Handler behaviour i, at its own volition, initiates an edit action on document j (where i has editing
rights for document j). Handler i, optionally, provides document j with a(annotation) note. While editing
document j handler i also “selects” an appropriate pair of edit/undo functions for document j.

2 Document behaviour j accepts the editing request, enacts the editing, optionally appends the (annotation)
note, and, with handler i, completes the editing, after some time interval ti.

3 Handler behaviour i completes its edit action.

2.14.3. The Read Behaviour: Left Fig. 4 on the next page

1 Handler behaviour i, at its own volition, initiates a read action on document j (where i has reading rights
for document j). Handler i, optionally, provides document j with a(annotation) note.

14

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1[2]

[5] [6][1]

docu_k

hdlr_i

[3]

[4]

mkNewDocID CREATE

The dotted line means:
Initialising the document.

mkCreate

mkCreate mgtm

arch

hdlr_1 hdlr_n_h

docu_n_d docu_1

hdlr_i

[2]
docu_j

[3][1]

mkReadCompletemkReadEDIT

Fig. 3. Informal Snapshots of Create and Edit Document Behaviours

mgtm

arch

hdlr_1 hdlr_n_h

docu_1

hdlr_i

docu_j

[2]

[1]

docu_k

[3]

READ mkRead mkReadComplete

[3]

arch

docu_j

[6]

docu_k

[7] [4]

[5]

[2]

[8]

hdlr_1
[1]

hdlr_i

mgtm [10][9] [11]

COPY

docu_1

hdlr_n_h

mkCopy

mkGrant

mkGrant

These dot−dashed lines

Initialising the document.
The dotted line mean:

mean: Obtaining the
document "data" !

mkCopy mkNewDocID

Fig. 4. Informal Snapshots of Read and Copy Document Behaviours

2 Document behaviour j accepts the reading request, enacts the reading by providing the handler, i, with
the document contents, and optionally appends the (annotation) note, and, with handler i, completes
the reading, after some time interval ti.

3 Handler behaviour i completes its read action.

2.14.4. The Copy Behaviour: Right Fig. 4

1 Handler behaviour i, at its own volition, initiates a copy action on document j (where i has copying
rights for document j). Handler i, optionally, provides master document j as well as the copied document
(yet to be identified) with respective (annotation) notes.

2 The management behaviour offers to accept the handler message. As for the create action, the manage-
ment behaviour offers a combined copy and create document message to the archive behaviour.

3 The archive behaviour selects an available document identifier (here shown as k), henceforth marking k
as used.

4 The archive behaviour then obtains, from the master document j its document descriptor, ddj , its
document annotations, daj , its document contents, dcj , and its document history, dhj .

5 The archice behaviour informs the management behaviour of the identifier, k, of the (new) document
copy,

6 while assembling the attributes for that (new) document copy: its document descriptor, ddk, its document
annotations, dak, its document contents, dck, and its document history, dhk, from these “similar” at-
tributes of the master document j,

7 while then “spawning off” document behaviour docuk – here shown by the “dash–dotted” rounded edge
square.

8 The management behaviour accepts the identifier, k, of the (new) document copy, recording the identities
of the handlers and their access rights to k,

15

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1

hdlr_i

[2][1]

docu_k

GRANT

mkGrant mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_1docu_k docu_j

[1]

[3]

SHRED

mkShred

mkShred

[2]

Fig. 5. Informal Snapshots of Grant and Shred Document Behaviours

9 while informing these handlers (informally indicated by a “dangling” dash-dotted line) of their grants,

10 while also informing the master copy of the copy identity (etcetera).

11 The handlers granted access to the copy record this fact.

2.14.5. The Grant Behaviour: Left Fig. 5

This behaviour has its

1 Item [1] correspond, in essence, to Item [9] of the copy behaviour – see just above – and

2 Item [2] correspond, in essence, to Item [11] of the copy behaviour.

2.14.6. The Shred Behaviour: Right Fig. 5

1 The management, at its own volition, selects a document, j, to be shredded. It so informs the archive
behaviour.

2 The archive behaviour records that document j is to be no longer in use, but shredded, and informs
document j’s behaviour.

3 The document j behaviour accepts the shred message and stops (indicated by the dotted rounded edge
box).

2.15. The Behaviour Actions

To properly structure the definitions of the four kinds of (management, archive, handler and document)
behaviours we single each of these out “across” the six behaviour traces informally described in Sects. 2.14.1–
2.14.6. The idea is that if behaviour β is involved in τ traces, τ1, τ2, ..., ττ , then behaviour β shall be defined
in terms of τ non-deterministic alternative behaviours named βτ1 , βτ2 , ..., βττ .

2.15.1. Management Behaviour

62 The management behaviour is involved in the following action traces:

a create Fig. 3 on the preceding page Left

b copy Fig. 4 on the facing page Right

c grant Fig. 5 Left

d shred Fig. 5 Right

value
62 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
62 mgtm(mdir) ≡
62a mgtm create(mdir)

16

62b ⌈⌉ mgtm copy(mdir)
62c ⌈⌉ mgtm grant(mdir)
62d ⌈⌉ mgtm shred(mdir)

Management Create Behaviour: Left Fig. 3 on Page 14

63 The management create behaviour

64 initiates a create document behaviour (i.e., a request to the archive behaviour),

65 and then awaits its response.

value
63 mgtm create: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
63 mgtm create(mdir) ≡
64 [1] let hi = mgtm create initiation(mdir) ; [Left Fig. 3 on Page 14]
65 [5] mgtm create awaits response(mdir)(hi) end [Left Fig. 3 on Page 14]

The management create initiation behaviour

66 selects a handler on behalf of which it requests the document creation,

67 assembles the elements of the create message:

• by embedding a set of zero or more document references, dis, with some information, info, into a
document descriptor, adding

• a document note, dn, and

• and initial, that is, empty document contents, "empty DC",

68 offers such a create document message to the archive behaviour, and

69 yields the identifier of the chosen handler.

value
64 mgtm create initiation: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
64 mgtm create initiation(mdir) ≡
66 let hi:HI • hi ∈ dom mdir,
67 [1.2−.4] (dis,info):(DI-set×Info),dn:DN • is meaningful(embed DIs in DD(dis,info))(mdir) in
68 [1.1] mgtm arch ch ! mkCreate(embed DIs in DD(ds,info),dn,′′empty_DC′′)
69 hi end

67 is meaningful: DD → MDIR → Bool [left further undefined]

The management create awaits response behaviour

70 starts by awaiting a reply from the archive behaviour with the identity, di, of the document (that that
behaviour has created).

71 It then selects suitable access rights,

72 with which it updates its handler/document directory

73 and offers to the chosen handler

74 whereupon it resumes, with the updated management directory, being the management behaviour.

value
65 mgtm create awaits response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
65 mgtm create awaits response(mdir) ≡
70 [5] let mkNewDocID(di) = mgtm arch ch ? in
71 [5.1] let acrs:ANm-set in
72 [5.2] let mdir′ = mdir † [hi 7→ [di 7→ acrs]] in
73 [5.3] mgtm hdlr ch[hi] ! mkGrant(di,acrs)
74 mgtm(mdir′) end end end

17

Management Copy Behaviour: Right Fig. 4 on Page 14

75 The management copy behaviour

76 accepts a copy document request from a handler behaviour (i.e., a request to the archive behaviour),

77 and then awaits a response from the archive behaviour;

78 after which it grants access rights to handlers to the document copy.

value
75 mgtm copy: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
75 mgtm copy(mdir) ≡
76 [2] let hi = mgtm accept copy request(mdir) in
77 [8] let di = mgtm awaits copy response(mdir)(hi) in
78 [9] mgtm grant access rights(mdir)(di) end end

79 The management accept copy behaviour non-deterministically externally (⌈⌉⌊⌋) awaits a copy request
from a[ny] handler (i) behaviour –

80 with the request identifying the master document, j, to be copied.

81 The management accept copy behaviour forwards (!) this request to the archive behaviour –

82 while yielding the identity of the requesting handler.

79. mgtm accept copy request: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
79. mgtm accept copy request(mdir) ≡
80. let mkCopy(di,hi,t,dn) = ⌈⌉⌊⌋{mgtm hdlr ch[i]?|i:HI•i ∈ his} in
81. mgtm arch ch ! mkCopy(di,hi,t,dn) ;
81. hi end

The management awaits copy response behaviour

83 awaits a reply from the archive behaviour as to the identity of the newly created copy (di) of master
document j.

84 The management awaits copy response behaviour then informs the ‘copying-requesting’ handler, hi, that
the copying has been completed and the identity of the copy (di) –

85 while yielding the identity, di, of the newly created copy.

62b. mgtm awaits copy response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} DI
62b. mgtm awaits copy response(mdir)(hi) ≡
83. [8] let mkNewDocID(di) = mgtm arch ch ? in
84. mgtm hdlr ch[hi] ! mkCopy(di) ;
85. di end

The management grants access rights behaviour

86 selects suitable access rights for a suitable number of selected handlers.

87 It then offers these to the selected handlers.

78. mgtm grant access rights: MDIR → DI → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
78. mgtm grant access rights(mdir)(di) ≡
86. let diarm = [hi 7→acrs|hi:HI,arcs:ANm-set• hi ∈ dom mdir∧arcs⊆(diarm(hi))(di)] in
87. ‖ {mgtm hdlr ch[hi]!mkGrant(hi,time ch?,di,acrs) |
87. hi:HI,acrs:ANm-set•hi ∈ dom diarm∧acrs⊆(diarm(hi))(di)} end

Management Grant Behaviour: Left Fig. 5 on Page 15 The management grant behaviour

88 is a variant of the mgtm grant access rights function, Items 86–87.

89 The management behaviour selects a suitable subset of known handler identifiers, and

90 for these a suitable subset of document identifiers from which

91 it then constructs a map from handler identifiers to subsets of access rights.

18

92 With this the management behaviour then issues appropriate grants to the chosen handlers.

type
MDIR = HI →m (DI →m ANm-set)

value
88 mgtm grant: MDIR → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
88 mgtm grant(mdir) ≡
89 let his ⊆ dom dir in
90 let dis ⊆ ∪{dom mdir(hi)|hi:HI•hi ∈ his} in
91 let diarm = [hi 7→acrs|hi:HI,di:DI,arcs:ANm-set• hi ∈ his∧di ∈ dis∧acrs⊆(diarm(hi))(di)] in
92 ‖{mgtm hdlr ch[hi]!mkGrant(di,acrs) |
92 hi:HI,di:DI,acrs:ANm-set•hi ∈ dom diarm∧di ∈ dis∧acrs⊆(diarm(hi))(di)}
88 end end end

Management Shred Behaviour: Right Fig. 5 on Page 15 The management shred behaviour

93 initiates a request to the archive behaviour.

94 First the management shred behaviour selects a document identifier (from its directory).

95 Then it communicates a shred document message to the archive behaviour;

96 then it notes the (to be shredded) document in its directory

97 whereupon the management shred behaviour resumes being the management behaviour.

value
93 mgtm shred: MDIR → out mgtm arch ch Unit
93 mgtm shred(mdir) ≡
94 let di:DI • is suitable(di)(mdir) in
95 [1] mgtm arch ch ! mkShred(time ch?,di) ;
96 let mdir′ = [hi 7→mdir(hi)\{di}|hi:HI•hi ∈ dom mdir] in
97 mgtm(mdir′) end end

2.15.2. Archive Behaviour

98 The archive behaviour is involved in the following action traces:

a create Fig. 3 on Page 14 Left

b copy Fig. 4 on Page 14 Right

c shred Fig. 5 on Page 15 Right

type
41 ADIR = avail:DI-set × used:DI-set × gone:DI-set
axiom
41 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used
value
98 arch: ADIR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98a arch(adir) ≡
98a arch create(adir)
98b ⌈⌉ arch copy(adir)
98c ⌈⌉ arch shred(adir)

The Archive Create Behaviour: Left Fig. 3 on Page 14 The archive create behaviour

99 accepts a request, from the management behaviour to create a document;

100 it then selects an available document identifier;

101 communicates this new document identifier to the management behaviour;

19

102 while initiating a new document behaviour, docudi, with the document descriptor, dd, the initial document
annotation being the singleton list of the note, an, and the initial document contents, dc – all received
from the management behaviour – and an initial document history of just one entry: the date of creation,
all

103 in parallel with resuming the archive behaviour with updated programmable attributes.

98a. arch create: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98a. arch create(avail,used,gone) ≡
99. [2] let mkCreate((hi,t),dd,an,dc) = mgmt arch ch ? in
100. let di:DI•di ∈ avail in
101. [4] mgmt arch ch ! mkNewDocID(di) ;
102. [3] docudi(dd)(〈an〉,dc,<(date of creation)>)
103. ‖ arch(avail\{di},used∪{di},gone)
98a. end end

The Archive Copy Behaviour: Right Fig. 4 on Page 14 The archive copy behaviour

104 accepts a copy document request from the management behaviour with the identity, j, of the master
document;

105 it communicates (the request to obtain all the attribute values of the master document, j) to that
document behaviour;

106 whereupon it awaits their communication (i.e., (dd,da,dc,dh));

107 (meanwhile) it obtains an available document identifier,

108 which it communicates to the management behaviour,

109 while initiating a new document behaviour, docudi, with the master document descriptor, dd, the master
document annotation, and the master document contents, dc, and the master document history, dh (all
received from the master document),

110 in parallel with resuming the archive behaviour with updated programmable attributes.

98b. arch copy: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98b. arch copy(avail,used,gone) ≡
104. [3] let mkDocID(j,hi) = mgtm arch ch ? in
105. arch docu ch[j] ! mkReqAttrs() ;
106. let mkAttrs(dd,da,dc,dh) = arch docu ch[j] ? in
107. let di:DI • di ∈ avail in
108. mgtm arch ch ! mkCopyDocID(di) ;
109. [6,7] docudi(augment(dd,′′copy′′,j,hi),augment(da,′′copy′′,hi),dc,augment(dh,(′′copy′′,date and time,j,hi)))
110. ‖ arch(avail\{di},used∪{di},gone)
98b. end end end

where we presently leave the [overloaded] augment functions undefined.

The Archive Shred Behaviour: Right Fig. 5 on Page 15 The archive shred behaviour

111 accepts a shred request from the management behaviour.

112 It communicates this request to the identified document behaviour.

113 And then resumes being the archive behaviour, noting however, that the shredded document has been
shredded.

98c. arch shred: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98c. arch shred(avail,used,gone) ≡
111. [2] let mkShred(j) = mgmt arch ch ? in
112. arch docu ch[j] ! mkShred() ;
113. arch(avail,used,gone∪{j})
98c. end

20

2.15.3. Handler Behaviours

114 The handler behaviour is involved in the following action traces:

a create Fig. 3 on Page 14 Left

b edit Fig. 3 on Page 14 Right

c read Fig. 4 on Page 14 Left

d copy Fig. 4 on Page 14 Right

e grant Fig. 5 on Page 15 Left

value
114 hdlrhi: HATTRS → in,out mgtm hdlr ch[hi],{hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
114 hdlrhi(hattrs) ≡
114a hdlr createhi(hattrs)
114b ⌈⌉ hdlr edithi(hattrs)
114c ⌈⌉ hdlr readhi(hattrs)
114d ⌈⌉ hdlr copyhi(hattrs)
114e ⌈⌉ hdlr granthi(hattrs)

The Handler Create Behaviour: Left Fig. 3 on Page 14

115 The handler create behaviour offers to accept the granting of access rights, acrs, to document di.

116 It according updates its programmable hattrs attribute;

117 and resumes being a handler behaviour with that update.

114a hdlr createhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
114a hdlr createhi(hattrs,hhist) ≡
115 let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
116 let hattrs′ = hattrs † [hi 7→ acrs] in
117 hdlr createhi(hattrs

′,augment(hhist,mkGrant(di,acrs))) end end

The Handler Edit Behaviour: Right Fig. 3 on Page 14

118 The handler behaviour, on its own volition, decides to edit a document, di, for which it has editing rights.

119 The handler behaviour selects a suitable (...) pair of edit/undo functions and a suitable (annotation)
note.

120 It then communicates the desire to edit document di with (e,u) (at time t=time ch?).

121 Editing take some time, ti.

122 We can therefore assert that the time at which editing has completed is t+ti.

123 The handler behaviour accepts the edit completion message from the document handler.

124 The handler behaviour can therefore resume with an updated document history.

114b hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
114b hdlr edithi(hattrs,hhist) ≡
118 [1] let di:DI • di ∈ dom hattrs ∧ ′′

edit
′′ ∈ hattrs(di) in

119 [1] let (e,u):(EDIT×UNDO) • ... , n:AN • ... in
120 [1] hdlr docu ch[hi,di] ! mkEdit(hi,t=time ch?,e,u,n) ;
121 [2] let ti:TIME INTERVAL • ... in
122 [2] wait ti ; assert: time ch? = t+ti
123 [3] let mkEditComplete(ti′,...) = hdlr docu ch[hi,di] ? in assert ti′ ∼= ti
124 hdlrhi(hattrs,augment(hhist,(di,mkEdit(hi,t,ti,e,u))))
114b end end end end

21

The Handler Read Behaviour: Left Fig. 4 on Page 14

125 The handler behaviour, on its own volition, decides to read a document, di, for which it has reading
rights.

126 It then communicates the desire to read document di with at time t=time ch? – with an annotation note
(n).

127 Reading take some time, ti.

128 We can therefore assert that the time at which reading has completed is t+ti.

129 The handler behaviour accepts the read completion message from the document handler.

130 The handler behaviour can therefore resume with an updated document history.

114c hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
114c hdlr edithi(hattrs,hhist) ≡
125 [1] let di:DI • di ∈ dom hattrs ∧ ′′

read
′′ ∈ hattrs(di), n:N • ... in

126 [1] hdlr docu ch[hi,di] ! mkRead(hi,t=time ch?,n) ;
127 [2] let ti:TIME INTERVAL • ... in
128 [2] wait ti ; assert: time ch? = t+ti
129 [3] let mkReadComplete(ti,...) = hdlr docu ch[hi,di] ? in
130 hdlrhi(hattrs,augment(hhist,(di,mkRead(di,t,ti))))
114c end end end

The Handler Copy Behaviour: Right Fig. 4 on Page 14

131 The handler [copy] behaviour, on its own volition, decides to copy a document, di, for which it has
copying rights.

132 It communicates this copy request to the management behaviour.

133 After a while the handler [copy] behaviour receives acknowledgement of a completed copying from the
management behaviour.

134 The handler [copy] behaviour records the request and acknowledgement in its, thus updated whereupon
the handler [copy] behaviour resumes being the handler behaviour.

114d hdlr copyhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
114d hdlr copyhi(hattrs,hhist) ≡
131 [1] let di:DI • di ∈ dom hattrs ∧ ′′

copy
′′ ∈ hattrs(di) in

132 [1] mgtm hdlr ch[hi] ! mkCopy(di,hi,t=time ch?) ;
133 [10] let mkCopyComplete(di′,di) = mgtm hdlr ch[hi] ? in
134 [10] hdlrhi(hattrs,augment(hhist,time ch?,(mkCopy(di,hi,,t),mkCopyComplete(di′))))
114d end end

The Handler Grant Behaviour: Left Fig. 5 on Page 15

135 The handler [grant] behaviour offers to accept grant permissions from the management behaviour.

136 In response it updates its handler attribute while resuming being a handler behaviour.

114e hdlr granthi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
114e hdlr granthi(hattrs,hhist) ≡
135 [2] let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
136 [2] hdlrhi(hattrs†[di 7→acrs],augment(hhist,time ch?,mkGrant(di,acrs)))
114e end

2.15.4. Document Behaviours

137 The document behaviour is involved in the following action traces:

a edit Fig. 3 on Page 14 Right

22

b read Fig. 4 on Page 14 Left

c shred Fig. 5 on Page 15 Right

value
137 docudi: DD × (DA × DC × DH) → in,out arch docu ch[di], {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
137 docudi(dattrs) ≡
137a docu editdi(dd)(da,dc,dh)
137b ⌈⌉ docu readdi(dd)(da,dc,dh)
137c ⌈⌉ docu shreddi(dd)(da,dc,dh)

The Document Edit Behaviour: Right Fig. 3 on Page 14

138 The document [edit] behaviour offers to accept edit requests from document handlers.

a The document contents is edited, over a time interval of ti, with respect to the handlers edit function
(e),

b the document annotations are augmented with respect to the handlers note (n), and

c the document history is augmented with the fact that an edit took place, at a certain time, with a
pair of edit/undo functions.

139 The edit (etc.) function(s) take some time, ti, to do.

140 The handler behaviour is notified, mkEditComplete(...) of the completion of the edit, and

141 the document behaviour is then resumed with updated programmable attributes.

value
137a docu editdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
137a docu editdi(dd)(da,dc,dh) ≡
138 [2] let mkEdit(hi,t,e,u,n) = ⌈⌉⌊⌋{hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
138a [2] let dc′ = e(dc),
138b da′ = augment(da,((hi,t),(′′edit′′,e,u),n)),
138c dh′ = augment(dh,((hi,t),(′′edit′′,e,u))) in
139 let ti = time ch? − t in
140 hdlr docu ch[hi,di] ! mkEditComplete(ti,...) ;
141 docudi(dd)(da

′,dc′,dh′)
137a end end end

The Document Read Behaviour: Left Fig. 4 on Page 14

142 The The document [read] behaviour offers to receive a read request from a handler behaviour.

143 The reading takes some time to do.

144 The handler behaviour is advised on completion.

145 And the document behaviour is resumed with appropriate programmable attributes being updated.

value
137b docu readdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
137b docu readdi(dd)(da,dc,dh) ≡
142 [2] let mkRead(hi,t,n) = {hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
143 [2] let ti:TIME INTERVAL • ... in
143 [2] wait ti ;
144 [2] hdlr docu ch[hi,di] ! mkReadComplete(ti,...) ;
145 [2] docudi(dd)(augment(da,n),dc,augment(dh,(hi,t,ti,′′read′′)))
137b end end

23

The Document Shred Behaviour: Right Fig. 5 on Page 15

146 The document [shred] behaviour offers to accept a document shred request from the archive behaviour
–

147 whereupon it stops !

value
137c docu shreddi: DD × (DA × DC × DH) → in,out arch docu ch[di] Unit
137c docu shreddi(dd)(da,dc,dh) ≡
146 [3] let mkShred(...) = arch docu ch[di] ? in
147 stop
137c [3] end

2.16. Conclusion

We have shown an example of an analysis and description of a domain of documents. The method, its
principles, techniques and tools, for analysing and describing domains has been developed in [1, 2] and has
found a monographic in-depth treatment in [3].

3. References

[1] Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/ dibj/2015/faoc/faoc-bjorner.pdf.
Formal Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[2] Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modelling Languages. www.imm.dtu.-
dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering and Methodology, 28(2), April
2019. 68 pages.

[3] Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS Monographs
in Theoretical Computer Science. Springer, 2021.

[4] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen,
Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

[5] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank
Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

