Dines Bjarner

Rigorous Domain Descriptions
A Compendium of Examples — a Torso

November 15, 2021: 16:12

The Domain Models are according to this book!!

in Theoretical Computer Science

Dines Bjgrner

Domain

Science and
Engineering

A Foundation for Software Development

@ Springer

Publication date: 11.11.2021. ISBN 978-3-030-73483-1
www.imm.dtu.dk/"db/2021/dd/dd.pdf

© Dines Bjorner

ii

Dines Bjgrner Professor Emeritus

Fredsvej 11 Technical University of Denmark
DK 2840 Holte DK-2800 Kgs.Lyngby
Denmark Denmark

e This version is to not be distributed electronically.
e Please respect the © Dines Bjorner, 2021

Editorial Remarks as of November 15, 2021: 16:12 o

This compendium was collected and edited from 16 reports e

All of those were also accessible on the Internet o

The compendium editing started in July 2021 e

It is ongoing e

A target for a first completion is late Fall 2021 o

Sunday, August 1, 08:24am, 2021, | finished correcting undefined and multiple references e
Later | shall be properly editing each chapter text e

I added Chapter 8 on Sept. 24, 2021 e

iii

Preface

The Triptych Dogma

In order to specify software,

we must understand its requirements. In order to prescribe requirements
we must understand the domain.

So we must study, analyse and describe domains.

Domain Science & Engineering: In [55, Domain Science & Engineering — A Foundation for
Software Development] we introduce the concept of domains and domain descriptions, and
we present a method for analysing & describing domains. Studying the present compendium
presumes that you are either reading or have read [55].

Examples: [55] proposes a rigorous approach to the analysis & description of domains, that is,
[55, Chapters 4, 5 and 7], puts forward a pair of analysis & description calculi. In order to develop,
hone and justify these calculi, I have, over the years, sketched a number of domain descriptions,
some dates back from before the ideas of analysis & description calculi arose.

[55] is full of examples. Each illustrates a methodological point: a principle, a technique or a
tool. But only by studying “across” an entire set of the road transport examples might the reader
get a “feel” for the software engineering of a domain description.

This compendium then serves that purpose.

Caveat: The examplesare “uneven”. Many examples are not completed — remain a torso. Sections
are set aside for narratives and formalisations, but these have yet to be done ! Some references may
be erroneous ! ? Earlier examples do not fully reflect the “final” analysis & description calculi. Most
recent examples do. We have annotated chapter titles with the approximate time of the conception

of their domain description.
fo— B\@@a —

Dines Bjorner. November 15, 2021: 16:12
Fredsvej 11, DK-2840 Holte, Denmark

A Reading Guide

There are three parts:

e Part | contains just Chapter 0. It covers basic modeling techniques for such domains which are
characterised by graph-like endurants.

e Part Il contains Chapters1-16. It covers a wide variety of domains — in the sense that we
primarily aim at.

e Partlll contains Chapters 17-18. The two domains covered here [Stock Exchange and an Internet
based so-called Virtual Shared Memory] somehow fall outside a main characterisation of what
domains are. Chapter 19 contains the bibliography.

Most chapters present the domain description in the following order:

Endurants Perdurants
External Qualities Channels
Parts, obs_P Behaviours
State Signatures
Internal Qualities Definitions
Unique Identifiers System Initialisation
uid_P

all unique identifiers
uniqueness of all parts
Mereology
mereo_P
axiom: wellformedness
Attributes
attributes
attr_A

Note the obs_P, uid_P, mereo_P, attributes, attr_A observer functions.
There are two Appendices:

e A. A Domain Analysis & Description Primer. If you do not have easy access to [55, Bjerner:
Domain Science & Engineering, 2021] then this primer may help you.
e B. An RSL Primer. RSL is a primary tool of all pour domain descriptions.

A first sound Foundation for Software Engineering:

Dines Bjarner

Domain

Software Coftware Software

Engineering 1 Engineering 2 Engineering 3

Science and
Engineering

A Foundation for Software Development

&) Springer

[55, “The Monograph”]

Contents

Part| A Prelude “Domain” Description

0

Graphs [February 2021] e 3
0.1 IntrodUcCtion 4
0.2 Examples of NetWOrKso e et e 5
0.3 Classical Mathematical Models i e 12
0.4 Our General Graph Model e e e 16
0.5 TheNets Domain i e et et 34

Part Il Main Examples

1

Rail Systems [1993-2007, 2020]ttt ettt 37
1.1 Endurants—Rail Netsand Trains i i i 38
1.2 Transcendental Deduction. i 51
1.3 Perdurantst e 53
1.4 ClOSING . ..o 55
Road Transport [2007—2017]ttt e et e e e 57
21 The Road Transport Domain e 58
22 External Qualities.t e 58
23 Internal Qualities i 61
2.4 Perdurants 68
2.5 System Initialisation 74
The Blue Skies [AUGUSE 2021 e 77
31 Introdution e 77
3.2 ENdUrants. ... e 78
33 Perdurants e 78
3.4 CONCIUSION e e e 78
The 7 Seas [AUGUSTE 2021 o e e 79
4.1 IntrodUCioN o 80
42 ENdUIaNtS e e 80
43 Perdurants 93
44 CoNCIUSION e e e 93
PIpelines [2008] oo e 95
51 Photos of Pipeline Units and Diagrams of Pipeline Systems 96
5.2 Non-Temporal Aspects of Pipelines i i i 96
5.3 State Attributes of Pipeline Units 105
5.4 Pipeline ACtiONS it e 107
5.5 CONNECIONS ...ttt e e 110
5.6 On Temporal Aspects of Pipelines i i e 112
57 ACSP Model of Pipelines 112
5.8 CONCIUSION . .. o e 113

vi

10

11

Contents

Simple Credit Card Systems [May 2016] it 115
6.1 INtrodUCHiON e 115
6.2 ENdUrants. i 116
6.3 Perdurants 119
Weather Systems [November 2016] i e e 125
7.1 On Weather Information Systems 126
7.2 Major Parts of a Weather Information System i, 127
7.3 ENAUrants.o e e 128
74 Perdurants e 133
7.5 CONCIUSION . .. ot e e e 139
Automobile Assembly Lines [September 2021] ... 141
8.1 INtrodUCHiON e 143
8.2 A Domain Analysis & Description 144
8.3 DISCUSSION e e 178
8.4 CONCIUSION i e e e e 178
Document Systems [SUMMeEr 2017 ot 181
9.1 IntrodUCtion 182
9.2 A System for Managing, Archiving and Handling Documents 182
9.3 Principal Endurants. 183
9.4 Unique ldentifiers. i 183
9.5 Documents: AFirst View 184
9.6 Behaviours: AnInformal, First View i e e 186
9.7 Channels, A First View e et et e 187
9.8 An Informal Graphical System Rendition e 188
9.9 Behaviour Signatures e 188
0,10 TN . oottt e e e e 189
9.11 Behaviour “States” e 190
9.12 Inter-Behaviour Messagesttt 191
9.13 A General Discussion of Handler and Document Interactions 194
9.14 Channels: AFinal View. et et e 195
9.15 An Informal Summary of Behaviours 195
9.16 The Behaviour ACtiONS i i et et i 198
9.17 Documents in Public Government i e 207
9.18 DocumentsinUrban Planning 207
Urban Planning [Fall 2017 o o e e e e 209
10.1 Structures and Parts 212
10.2 Unique ldentifiers 215
10.3 MereOlogieso e 220
104 ARtributes e 224
10.5 The StruCture COMPILERSttt ettt ettt ettt e e e e et e e e e et et et ta e tiae e ennns 234
10.6 Channel Analysis and Channel Declarations it 236
10.7 The AtOmIC Part TRANSLATORSttt ettt e e et e e et e et et e et ettt 240
10.8 Initialisation of The Urban Space Analysis & Planning System 255
10.9 Further WorkKo o e e 257
Swarms of Drones [November-December 2017] i 261
11.1 Anlinformal Introduction 263
11.2 Entities, Endurants i 264
11.3 Operations on Universe of Discourse Statesttt 280
114 PerdUrants e 283

115 CONCIUSION e e e 300

Contents vii

12

13

14

15

16

Container Terminals [November 2017] e e 301
120 INtrodUCHioON e 304
12,2 Some PiCtUIeS e 304
123 SECT .o 310
124 Main Behaviours. e 311
12,5 ENdUrants. e 313
12.6 Perdurants e 332
127 CONCIUSION . ..o e e 358
Simple Retailer System [January 2021] 361
13.1 Two Approachesto Modeling 364
13.2 The retailer market Case Study e e 364
13.3 Endurants: External Qualities. e 368
13.4 Endurants:Internal Qualities i 372
13.5 Merchandise i 383
13.6 Perdurants e 384
13,7 CONCIUSION e 399
Shipping [Spring/Summer 2007, February—March 2021] 403
14.1 Informal Sketches of the ShippingDomain it 404
14.2 Endurants: External Qualities. e 410
14.3 Endurants: Internal Qualities i 412
14.4 Perdurants 421
Rivers [March—April 2021] e 431
15,1 INtrodUCtion 431
15.2 External Qualities —The Endurants ittt 433
15.3 Internal Qualities i 435
15.4 CONCIUSION e e e e 438
Canals [March—April 2021 e e e e 439
16.1 INtrodUCtion e 440
16.2 Visualisation of Canals. it e e 440
16.3 The ENdUrants. e e e e 442
16.4 CONCIUSION i e e e 473

Part lll Two Postlude “Domain” Examples

17

18

A Stock Exchange [January 2010]ttt 477
17.1 IntrodUCHioON e 477
17.2 The Problem e 477
17.3 A Domain Description. 478
17.4 Tetsuo Tamai’s IEEE Computer Journal Paper iiiiiiiiiiiiiiiiinnnn. 483
An “Extensible” Virtual Shared Memory [May—dJuly 2010] iiiiiiiiinnnn. 493
18.1 INtrodUCHiON e 494
18,2 XU SN TrOS . . ittt e ettt ettt e e e e e e e e e e e e e 497
18.3 XTree OpPerationsttt e 500
184 INAeXiNg 505
18,5 QUEKIES . ..ttt ettt e e e e 507

Part IV Bibliography

19

Bibliography e e 513
19.1 Bibliographical Notes 513
19,2 RefOrENCeS e 513

Part V Appendix

viii

Contents
Domain Analysis & Description: A Primer. e 523
AL DOMaAINS . .. e e 524
A2 ENdUIants. e e e 524
A3 Space,State and Time ... e 535
A PerdUrants e 537
AN RS Primer . ..o o e e e e e e 545
Bl T PS ..ot e 547
B.2 TheRSL Predicate CalCulus it i et eiaeaeens 550
B.3 Concrete RSL Types: Values and Operationsciiiiiiiiiinnnnneennnnnnn 551
B.4 A-Calculus + FUNCHIONS i i et 559
B.5 Other Applicative EXPressSions.t i e 561
B.6 Imperative Constructs 563
B.7 Process CONSIIUCES et 565
B.8 Simple RSL Specifications 566

B.9 RSL Module Specifications i e 567

Part1
A Prelude “Domain” Description

Chapter 0

Graphs [February 2021]

Contents
0.1 INtrodUCtioN. ...ouuiiit i i ittt ittt ittt ittt 4
0.1.1 Critique of Classical Mathematical Modelingof Nets 4
0.1.2 The TheSiS ..o e e 5
0.1.3 Structureof ThisReport 5
0.2 Examples of NEtWOrKScouiiiiiiiiiiiiiiiiiiiiiiiinirinnneetonnnnncenes 5
021 Overland Transport Nets.o i 6
0211 RoadNets 6
021.2 RailNets............ i 6
0.2.1.3 PipelineNets. 6
0.2.2 Natural Treeswith Roots........... i 7
0.2.3 WalerWays ..ottt 7
0.2.3.1 Rivers, Lakes, Deltasand Oceans 8
0.23.2 General ... 8
0.2.3.3 Visualisation of Riversand Canals 10
0.2.3.3.1 Rivers 10
0.2.3.3.2 Deltas ... 11
0.2.3.3.3 Canals and Water Systems......................... 11
0.2.3.3.4 LOCKS. ...\ 11
0.2.4 CONCIUSION e 12
0.3 Classical Mathematical Modelscooiiiiiiiiiiinieneiinniennenaneeannss 12
031 Graphs 14
03.1.1 General Graphs ...t e 14
0.3.1.1.1 Some Mathematics! L. 14
0.3.1.1.2 Some Graphics!l 15
0.3.1.2 Unique ldentification of Vertices and Edges 15
03.1.3 Paths ... 16
0.3.1.4 Directed Graphs ...t e 16
03.1.5 AcyclicGraphs 16
0.3.1.6 Connected Graphsand Treescoiiiiiia.. 16
0.3.1.7 Vertex In- and Out-Degrees of Directed Graphs 16
0.4 Our General Graph Modelciiiiiiiiiiiiiiiiiiiiiieiiinntenneeaaeeannss 16
0.41 The External Qualities 16
0411 A“Global” Graph 17
0.4.1.2 Varietiesof Endurantsl 17
04.1.2.1 Road Net Endurants 17
0.4.1.2.2 RailEndurants............ il 17
0.4.1.2.3 Pipeline Endurants 18
04.1.24 River Net Endurants 18
0.4.2 Internal Qualitiesc. i 19
0.4.21 Uniqueldentifiersl 19
0.4.2.2 AuxiliaryFunctions 20
0.4.2.2.1 Extraction Functions: Unique Identifies 20
0.4.2.2.2 Retrieval Functions 20

0.4.2.3 Wellformedness................ . i 21

4 0 Graphs [February 2021]

0.4.24 Unique Identifier Examples............... 21
0.4.2.4.1 Road Net Identifiers............... 21
0.4.2.4.2 Rail Net Identifiers 21
0.4.2.4.3 Pipeline Net Identifiers 22
0.4.2.44 River Net Identifiers................ 22
0.4.25 Mereologiesccoviiiiiiii e 22
0.4.2.5.1 Mereology of Undirected Graphs 23
0.4.2.5.2 Wellformedness of Mereologies 23
0.4.2.5.3 Mereology of Directed Graphs 23
0.4.2.54 In-and Out-Degreest 24
0.4.2.5.5 Paths of Undirected Graphs........................ 24
0.4.2.5.6 Paths of Directed Graphs 24
0.4.2.5.7 Connectivity i 25
0.4.2.5.8 Acyclic Graphs, Trees and Forests 25
0.4.2.5.9 Forest i 26
0.4.2.5.10 Mereology Examples.................. 26
0.4.2.6 Attributes 30
0.4.2.6.1 Graph Labeling it 30
0.4.2.6.2 General Net Attributes 30
0.4.2.6.3 Road Net Attributes 31
0427 SUMMINGUP .. .o e e 32
0.4.2.7.1 A Summary of The Example Endurant Models 32
0.4.2.7.2 Initial Conclusion on Labeled Graphs and
Example Domains oL, 33
05 TheNets Domain.......couuiiuiiiiiiiiiiiiiiiii ittt iiiiiiieeineinneennnes 34
0.5.1 Some Introductory Definitions oL 34

We study formalisations of graphs as they are found in the conventional Graph Theory literature,
but as we would formalise graphs in the style of Domain Analysis & Description [55, Bjerner,
2021]. The title of this compendium, A Graph Domain, shall indicate that we shall present graphs,
not in the conventional mathematical style, but according to the principles, techniques and tools
of [55]. That is, both as mathematical entities and as, albeit abstract, i.e., not necessarily manifest,
phenomena of the world. As such we shall endow vertices and edges of graphs with unique
identifiablity, mereology — to model the edge/vertex relations, and attributes — to model vertex
and edge labeling, i.e., to model properties of vertices and edges, including directedness! Ap-
pendix A (pages 523-544) presents an ultra-short introduction, a primer, to the domain analysis &
description calculi underlying this compendium.

0.1 Introduction

0.1.1 Critique of Classical Mathematical Modeling of Nets

Classical mathematical modeling of (road and rail) transport nets, river systems, canal systems,
etc., misses some, to us, important points.

The point being that the more-or-less individual elements of these systems, the links (edges)
and hubs (nodes, vertices) each have their unique identity, their mereology and their attributes,
and that it is these internal qualities of edges and nodes that capture the “real” meaning of the
nets.

In the mathematical models graph edges and vertices have no internal qualities: they are treated
merely as syntactic entities.

We strive, in domain analysis & description [55], to model first the syntactic properties of
manifest phenomena, then the semantic properties. Naturally we cannot model their pragmatics!

0.2 Examples of Networks 5

0.1.2 The Thesis

The thesis of this compendium is that the domain analysis & description principles, techniques
and tools as brought forward in [55, 48, 54, 51, 52] is a more proper way to model nets.

0.1.3 Structure of This Report

e In Sect.0.2 we casually pictorialise a number of domains whose compositions basically amount
to graphs. These examples are:

Road Nets [Sect. 0.2.1.1 on the following page],
Railways [Sect. 0.2.1.2 on the next page],
Pipelines [Sect. 0.2.1.3 on the following page],
Rivers [Sect. 0.2.3.1 on page 8] and

Canals [Sect. 0.2.3.3.3 on page 11].

8 8 8 8 8

e In Sect.0.3 we prepare the ground by presenting a minimum account of graphs as they are
usually first introduced in textbooks.

Correlated narratives and formalisations for these domains are shown, spread all over this com-
pendium as follows:

e Road Nets: Sections:

% 0.2.1.1 [Pictures], % 0.4.2.5.10 [Mereology] and
® 0.4.1.2.1 [Endurants],
© 0.4.2.4.1 [Unique Identifiers], » 0.4.2.6.3 [Attributes].

Railways: In the compendium-proper we pictorialise railways in Sect. refnets-ex:Rail Nets
[Pictures]. In all:

® 0.2.1.2 [Pictures], % 0.4.2.4.2 [Unique Identifiers], and
« 1.1 [Endurants], % 1.1.2.2 [Mereology].

Pipelines: Sections:

® 0.2.1.3 [Pictures], % 0.4.2.4.3 [Unique Identifiers], and
» 0.4.1.2.3 [Endurants], % 0.4.2.5.10 [Mereology].

Rivers: Sections:

» 0.2.3.1 [Pictures], % 0.4.2.4.4 [Unique Identifiers], and
® 0.4.1.2.4 [Endurants], % 0.4.2.5.10 [Mereology].

Canals: Other than Sects. 0.2.3.3.3 this compendium does not yet illustrate a systematic canal
system description.

0.2 Examples of Networks

We shall consider a widest set of networks,

6 0 Graphs [February 2021]

0.2.1 Overland Transport Nets

By overland transport nets we mean such which are either placed on the ground, or underground,
as tunnels, or through mountains, also as tunnels, or placed on bridges over valleys, etc.

0.2.1.1 Road Nets

Road nets are for the conveyance of automobiles: private cars, buses, trucks, etc.

Seatiish Frunk fand Map

R

Fig. 0.1 Left: The Netherlands. R: Scotland

Fig. 0.2 L & R: European Road Infrastructure

0.2.1.2 Rail Nets

Rail nets are for the conveyance of passenger and freight trains.
Rail nets and train traffic on these are narrated and formalised in Chapter 1:

0.2.1.3 Pipeline Nets

Pipelines are for the conveyance of fluids: water, natural gas, hydrogen, oil, etc.

0.2 Examples of Networks 7

Fig. 0.4 Oil or Gas Field; European Gas and Hydrogen Pipelines

0.2.2 Natural Trees with Roots

0.2.3 Waterways

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are
used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

Rivers, on the other hand, are naturally flowing watercourses, and typically flow until discharg-
ing their water into a lake, sea, ocean, or another river, while canals are constructed to connect
existing rivers, seas, or lakes. However, occasionally some rivers do not discharge their water into
lakes, seas, oceans, or other rivers. Rivers that do not empty into another body of water might
flow into the ground or simply dry up before reaching another body of water. Additionally, small
rivers can also be referred to as streams, rivulets, creeks, rills, or brooks.

8 0 Graphs [February 2021]

Well Unit Pipe Unit Fork Unit Join Unit
9 D’
O [--r B
() L B I I
D D
Pump Unit Valve Unit Redirector Unit | Sink Unit
W A
© o))
D

Fig. 0.5 Oil unit graphics; a simple oil pipeline.
A pump; a valve; the Trans-Alaska Pipeline System (TAPS); TAPS pipes, re-directors and ‘heat pipes’.

Fig. 0.6 A Japanese Maple [Portland, Oregon, US] and an Angel Oak Tree [South Carolina, US]

0.2.3.1 Rivers, Lakes, Deltas and Oceans

By waterways we mean rivers, canals, lakes and oceans — such as are navigable by vessels: barges,
boats and ships.

Disclaimer: At present (“great”) lakes and the oceans (there are two!) are not included in this
modeling effort.

0.2.3.2 General

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are

0.2 Examples of Networks 9

Fig. 0.8 A Dragon Tree [Yemen] and an Aspen Tree Root [Colorado, US]

used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

Rivers, on the other hand, are naturally flowing watercourses, and typically flow until discharg-
ing their water into a lake, sea, ocean, or another river, while canals are constructed to connect
existing rivers, seas, or lakes. However, occasionally some rivers do not discharge their water into
lakes, seas, oceans, or other rivers. Rivers that do not empty into another body of water might
flow into the ground or simply dry up before reaching another body of water. Additionally, small
rivers can also be referred to as streams, rivulets, creeks, rills, or brooks.

The natural water system of the earth includes 71% ocean with land continents being traversed
by brooks, rivers, lakes and river deltas.

Headwaters are streams and rivers (tributaries) that are the source of a stream or river.

A tributary is a river or stream that flows into another stream, river, or lake.

A delta is a large, silty area at the mouth of a river at which the river splits into many different
slow-flowing channels that have muddy banks. New land is created at deltas. Deltas are often
triangular-shaped, hence the name (the Greek letter “delta’ is shaped like a triangle).

The trunk is the main course of river.

Confluence: In geography, a confluence (also: conflux) occurs where two or more flowing
bodies of water join together to form a single flow. A confluence can occur in several configurations:
at the point where a tributary joins a larger river (main stem); or where two streams meet to become
the source of a river of a new name; or where two separated channels of a river (forming a river
island) rejoin at the downstream end.

10 0 Graphs [February 2021]
Towns and Harbours: In this report we model towns. That is, we therefore also model that

towns have harbours - allowing river (and canal) vessels to berth (a place for mooring in a harbour)
for cargo loading, unloading and resting.

0.2.3.3 Visualisation of Rivers and Canals

0.2.3.3.1 Rivers

Figures 0.9 and 0.10 illustrate a number of rivers.

Gulf of Guinea

EQU‘?GUMA

SAO TOME *
AN PRINCIEE

Atlantic
Ocean

o 250 Miles
0 250 Kilometars

Major Rivers and Lakes Used for Migration in the United States

Fig. 0.9 The Congo and the US Rivers

Fig. 0.10 The Amazon and The Danube Rivers

0.2 Examples of Networks 11

0.2.3.3.2 Deltas

We illustrate four deltas, Fig. 0.11:

Mediterranean Sea

o 125 2
-

Fig. 0.11 The Ganges, Mississippi, Pearl and the Nile Deltas

0.2.3.3.3 Canals and Water Systems

We illustrate just four ship/barge/boat and water level control canal systems, Figs.0.12, 0.13, 0.14
on the following page and 0.15 on page 13.

PANAMA CANAL
EXPANSION

mcFIco.

@8 © 0 @ © OVOOEBIO CEG o

Fig. 0.12 UK Canals and The Panama Canal

The rightmost figure of Fig. 0.15 is from the Dutch Rijkswaaterstaat: www.rijkswaterstaat.nl/english/.

0.2.3.3.4 Locks

Alock is a device used for raising and lowering boats, ships and other watercraft between stretches
of water of different levels on river and canal waterways. The distinguishing feature of a lock is a
fixed chamber in which the water level can be varied. Locks are used to make a river more easily

12 0 Graphs [February 2021]

Vanern

Available draught

BREST
Brittany

RENNES

Anjou Loire

NANTES BESANGON

Charente

Q Aquitaine
BORDEAUX

Provence

G

TOULOUSE MARSEILLE

()

Fig. 0.14 French Rivers and Canals

navigable, or to allow a canal to cross land that is not level. Later canals used more and larger
locks to allow a more direct route to be taken.!
We illustrate a number of locks: Figs. 0.16 on the facing page and 0.17 on page 14.

0.2.4 Conclusion

0.3 Classical Mathematical Models

We refer to standard textbooks in Graph Theory:

! https://en.wikipedia.org/wiki/Lock (water_navigation)

0.3 Classical Mathematical Models 13

= o 7 \
| o / J : / ’ \\\
NETHERLANDS e ‘

Enlarize this map
Capyrighi 2006 Eupoamals

Fig. 0.15 Dutch Rivers and Canals

Fig. 0.16 Inland Canal Locks

Claude Berge: Graphs [11, 12, 1958-1978, 1st-2nd ed.]

Oystein Ore: Graphs and their Uses [127, 1963]

Frank Harrary: Graph Theory [97, 1972]

J.A. Bondy and U.S.R. Murty: Graph Theory with Applications [73, 1976]
S. Even: Graph Algorithms [81, 1979]

or these Wikipedia Web pages:

14 0 Graphs [February 2021]

Fig. 0.17 Harbour Canal Locks

a. Graph Theory
en.m.wikipedia.org/wiki/Graph theory

b. Graphs: Discrete Mathematics
en.m.wikipedia.org/wiki/Graph_(discretemathematics)

c. The Hamiltonian Path Problem
en.m.wikipedia.org/wiki/Hamiltonian_path_problem

d. Glossary of Graph Theory
en.wikipedia.org/wiki/Glossary of graph theory terms

0.3.1 Graphs

0.3.1.1 General Graphs

We refer to en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#A.

0.3.1.1.1 Some Mathematics!

From (a.): in one restricted but very common sense of the term,a graph is an ordered pair

e G=(V,E), where
V, is a set of vertices (also called nodes or points), and

o EC{{x,y}|x,y€V}is a set of edges (also called links or lines), which are unordered pairs of
vertices.

e If x = y then the edge s a 1-loop, cf. upper leftmost edge of GO of Fig. 0.18 on the facing page.

To avoid ambiguity, this type of object may be called precisely an undirected simple graph, cf.
graph GO of Fig.0.18.

0.3 Classical Mathematical Models 15

5

Fig. 0.18 Graphs

T

e5
e3
@
e2 el
G3 @

G4

0.3.1.1.2 Some Graphics!

Figure 0.18 shows five similarly “shaped” graphs. Figure 0.19 shows how these could have been
drawn differently.

Fig. 0.19 Graphs

0.3.1.2 Unique Identification of Vertices and Edges

There is no way it can be avoided?. It simply makes no sense to not bring in that vertices and
edges are uniquely identified. So we identify vertices and edges, cf. graph G1 of Fig. 0.18. When,
in classical graph theory, labeling of vertices and edges is introduced it is either for convenience
of reference or for property attribution, as we shall later see.

With unique identification there is no problem with multiple edges between any pair of vertices.

2 Sections 2.2.2.1 and 2.2.2.2 of [55, Bjerner] makes this clear: Unique identifiablity is an unavoidable fact of any
world.

16 0 Graphs [February 2021]

0.3.1.3 Paths

A vertex path is a sequence, (V;,Vj,...;V,Vk11,.--,V,), of two or more vertices such that vertex v
is adjacent to vertex Vi1 if there is an edge between them. Similar notion of edge paths and
vertex-edge-vertex paths can be defined.

Graphs thus define possibly infinite sets of possibly infinite paths.

0.3.1.4 Directed Graphs

Directed graphs have directed edges, shown, in graph pictures, by affixing arrows to edges, see
graph G2 of Fig. 0.18 on the preceding page.

e G and V is as before, but o EC{(x,y)lxyeV,}

Directed graphs still define possibly infinite sets of possibly infinite paths. The vertex sequence
(vu,vc,vd,vf,vf) is a path of graph G2 of Fig. 0.18 on the previous page.

0.3.1.5 Acyclic Graphs

An acyclic graph is a graph none of whose vertex paths contain any vertex at most once. Graph
G3 of Fig. 0.18 on the preceding page is an acyclic graph.

0.3.1.6 Connected Graphs and Trees

A graph is connected if and only if for any two its vertices v;,v; there exists a path from v; to v;. A
graph that is connected and is acyclic is a tree, cf. graph G4 of Fig. 0.18 on the previous page.
0.3.1.7 Vertex In- and Out-Degrees of Directed Graphs

By the in-degree of a vertex of a [directed] graph is meant the number of edges incident upon that
vertex. By the out-degree of a vertex of a [directed] graph is meant the number of edges emanating
from that vertex. In an un-directed graph the in- and out-degrees of any vertex are identical. In an

acyclic graph there necessarily must be one or more vertices whose in-degrees are zero. And in an
acyclic graph there necessarily must be one or more vertices whose out-degrees are zero.

0.4 Our General Graph Model

0.4.1 The External Qualities

We refer to [55, Chapter 4].

1. Our domain is that of graphs.
2. From graphs one can observe sets of vertices,
3. and edges.

type

0.4 Our General Graph Model 17

1. G
2.V
3. E
value
2. obs_Vs: G — V-set
3. obs_Es: G — E-set

Please notice that nothing is said about how vertices and edges relate. That is an issues of mere-
ology, cf. [55, Sect. 5.3.1].

0.4.1.1 A “Global” Graph

4. For ease of reference we can postulate a[n arbitrary] graph.

value

4. gG

0.4.1.2 Varieties of Endurants

Some domains warrant explication (e.g., renaming) of the vertices and edges or “collapsing” these
into sets over a variety of units.

0.4.1.2.1 Road Net Endurants

5. A road as a pair of hubs and links.
6. Substitute vertices for hubs, H, i.e., street intersections,
7. and edges for links, L, i.e., street segment with no intersections.

type

5. RN = H-set x L-set [~ G for Graphs]
6. H[=~V for Graphs]

7. L[~ E for Graphs]

0.4.1.2.2 Rail Endurants

8. So a graph, i.e., a railway net, RN, consists of a set of rail units.
9. A rail units is

either a simple, linear [or curved] unit, LU,
or a switch, SU,

or a cross-over, XU,

or a cross-over switch, CS,

or ...

e a0 T

We refer to Fig. 1.1 on page 39 of Sect. 1.1.1.1 on page 38.

type
8. RN = RU-set [=~ G for Graphs]

18

9.

9a
9b
9c
9d

0 Graphs [February 2021]

RU==LU|SU|XU|XS|SC

. LU LiU

. SU::SiU
. XUz XiU
. CS :: CiS

9e. ..

Again; here we say nothing more about these units.

0.4.1.2.3 Pipeline Endurants

10.
11.

12.

So a graph, i.e., a pipeline net, PN, consists of a set of pipeline units, PLU.
A pipeline units is

either a source (a well), WU,
or a pump, PU,

or a pipe, LU,

or a valve, VU,

or a fork, FU,

or ajoin, JU,

g. or a sink, SU.

-0 N o

All pipeline units are distinct.

type
10. PN

11.

PLU==WU|PU|LU|VU]|FU|JU|SU

11a. WU W

11b. PU P

11c. LU L

11d. VU 1V

11e. FU: F

11f. JU = J

11g. SU = S

value

11. obs_PLUs: PN — PLU-set
axiom

12.

WUNPU={} A WUNLU={} A WUNLU={} A WUNVU={}A WUNFU={} A WUNJU={} A WUNSU={} A
. PUNLU={} A PUNVU={}A PUNFU={} A PUNJU={} A PUNSU={} A

. LUNVU={} A LUNFU={} A LUNJU={} A LUNSU=(} A

. VUNFU={} A VUNJU={} A VUNSU=(} A

. FUNJU={} A FUNSU=(} A

. JUNSU=({}

Again; here we say nothing more about these units.

0.4.1.2.4 River Net Endurants

13.

14.
15.
16.

A river netis modeled as a graph, more specifically as a tree. The root of that river net tree is the
mouth (or delta) of the river net. The leaves of that river net tree are the sources of respective
trees. Paths from leaves to the root define flows of water.

We can thus, from a river net observe vertices

and edges.

River vertices model either a source: $0:S0, a mouth: mo:MO, or possibly some confluence:
ko:KO.

0.4

17.

Our General Graph Model 19

A river may thus be “punctuated” by zero or more confluences, k:KO.

A confluence defines the joining a ‘main’ river with zero® or more rivers into that ‘main’ river.
We can talk about the “upstream” and the “downstream” of rivers from their confluence.
River edges model stretches: st:ST.

A stretch is a linear sequences of simple, se:SE, or composite ce:CE, river elements.

18. River elements are either simple: (ch) river channels, which we shall call river channels: CH, or
(la)lakes: LA, or (lo)locks: LO, or (wa) waterfalls (or rapids): WA, or (da) dams: DA, or (to) towns
(cities, villages): t0:TO*%; or composite, ce:CE: a dam with a lock, (da:DA,la:LA), a town with
a lake, (t0:TO,la:LA), etcetera; even a town with a lake and a confluence, t0:TO,la:LA ko:KO.
Etcetera.

type

13. RIN

14. V

15. E

16. SO, MO, KO

17. ST = (SE|CE)*

18. CH, LA, LO, WA, KO, DA, TO

18. SE=CH|LA|LO|WA|DA|TO

18. Dalo, Walo, TolLa, TolLaKo, ...

18. CE = DalLo | Walo | ToLa | ToLaKo | ...
value

16. obs_Vs: RiN — V-set

16. axiom

16. Y g:G,vs:V-setvs € obs_Vs(g) = vs#{}
16. A Y v:Vev e vs = is_SO(v) V is_.KO(v) V is_ZMO(v)
17. obs_Es: RiN — E-set

17. axiom

17. ¥ g:G,es:E-set-es € obs_Es(g) = es+#{}
17. A Y eE-eeces=is ST(e)

17. obs.ST:E — ST

13. xir_In_Degree_0_Vertices: RiN — SO-set
13. xir_Out_Degree_0_Vertex: RIN - MO

0.4.2 Internal Qualities

We refer to [55, Chapter 5]

0.4.2.1 Unique Identifiers

We refer to [55, Sect. 5.2]

19.
20.

Each vertex has a unique identifier.
Each edge has a unique identifier.

3 Normally, though, one would expect, not zero, but one

% Towns is here really a synonym for river harbours, places along the river (or a canal) where river vessels can stop
(moor) for the loading and unloading of cargo and for resting.

20 0 Graphs [February 2021]

SO @ Source

O Simple or composite river element
LO @ Confluence
@ Mouth

CH

WalLo:(WA,LO)

DaLo:(DA,LO)
ToLaKo:(TO,LA,KO)

ToKo:(TO,KO)

SO

Fig. 0.20 The “Composition” of a River Net: Right Tree is an abstraction of the Left Tree

type

19. V_UI

20. E_UI

value

19. uid_V:V — V_UI
20. uid_E: E — E_UI

0.4.2.2 Auxiliary Functions
0.4.2.2.1 Extraction Functions: Unique Identifies

21. We can calculate the set of all unique vertex identifiers of a graph,
22. and all unique edge identifiers of a graph,
23. and all unique identifiers of vertices and edges of a graph.

value

21. xtr.V_Uls: G — V_Ul-set, xtr_V_Uls(g) = { uid_v(v) | v:V-v € obs_Vs(g) }
22. xtr_[E_Uls: G — El-set, xtr_E_Uls(g) = { uid_E(e) | e:E-e € obs_Es(g) }
23. xtr.U_Uls: G — (VI|El)-set, xtr_Uls(g) = xtr_V_Uls(g) U xtr_E_Uls(g)

0.4.2.2.2 Retrieval Functions

24. Given a unique vertex identifier of a graph one can retrieve, from the graph, the vertex of that
identification.

25. Given a unique edge identifier of a graph one can retrieve, from the graph, the edge of that
identification.

value

0.4 Our General Graph Model 21

24, retrV:V.Ul - G>V

24. retr V(v_ui)(g) = let v:V - v € obs_Vs(g) A v_ui = uid_V(v) in v end, pre: e_ui € xtr_E_UIs(Q)
25. retrE:El -GS E

25. retr_E(ei)(g) = let e:E - e € obs_Es(g) A e_ui = uid_E(e) in e end, pre: e_ui € xir_.E_Uls(g)

0.4.2.3 Wellformedness

26. Vertex and edge identifiers are all distinct.
27. Each vertex and each edge has a distinct unique identifier.

axiom
26. V g:G - xtr_V_Uls(g) n xtr_E_Uls(g) = {}
27. card obs_Vs(g)=card xtr_V_Uls(g) A card obs_Es(g)=card xtr_E_Uls(g)

0.4.2.4 Unique Identifier Examples

We giver four examples: roads, rails, pipelines and rivers.

0.4.2.4.1 Road Net Identifiers

Very simple,

28. substitute vertex identifiers, VI, with hub identifiers, HI, and
29. substitute edge identifiers, El, with link identifiers, LI,

in type and unique observer function definitions.

type
28. HI [= VI for Graphs]
29. LI[= El for Graphs]

0.4.2.4.2 Rail Net Identifiers

30. With every rail net unit we associate a unique identifier.
31. That is, no two rail net units have the same unique identifier.

type

30. Ul

value

30. uid_NU: NU — Ul

axiom

31. VY uii,uij:Ul « uiii = uij = uid_NU(ui_i)=uid_NU(ui_j)

22 0 Graphs [February 2021]

0.4.2.4.3 Pipeline Net Identifiers

32. With pipeline units a type WU, PU, LU, VU, FU, JU and SU we associate a single unique
identifier sort: Ul.

32. Ul==WU_UI|PU_UI'| LU_UI'| VU_UI'| FU_UI | JU_UI | SU_UI

0.4.2.4.4 River Net Identifiers

We shall associate unique identifiers both with vertices, edges and vertex and edge elements.

33. River net vertices and edges have unique identifiers.

34. River net sources, confluences and mouths have unique identifiers.

35. River net stretches have unique identifiers.

36. River net channels, lakes, locks, waterfalls, dams and towns as well as combinations of these,
that is, simple and composite river entities have unique identifiers.

type

33. V.Ul E_UI

34. SO_UI, KO_UI, MO_UI

35. ST_UI

36. CH_UI, LA_UI, LO_UI, WA_UI, DA_UI, TO_UI, DaLo_Ul, WalLo_UI, ToLa_Ul, ToLaKo_Ul, ...
value

33. uid_V: V-V_UIl, uid_E: E— E_U

34. uid_SO: SO—S0_UI, uid_KO: KO—KO_UI, uid_.MO: MO—MO_UI,

35. uid_ST: ST-»ST_UI

36. uid_CH: CH—CH_UI, uid_LA: LA—LA_Ul, uid_LO: LO—LO_Ul, uid_-WA: WA—WA_UI,
36. uid_DA: DA—DA_UI, uid_TO: TO—-TO_UI,

36. uid_Dalo: DaLo—Dalo_UI, uid_-WalLo: WaLo—Walo_Ul, uid_ToLa: ToLa—TolLa_Ul,
36. uid_ToLaKo: ToLaKo—TolLaKo_Ul, ...

37. All these identifiers are distinct.

The M operator takes the pairwise intersection of the types in its argument list and examines them
for disjointedness.

axiom
37. m(V_ULE_UIL,SO_UI,KO_UI,MO_UI,ST_UI,CH_UI,
37. LA_UI,LO_UILWA_UI,DA_UI, TO_Ul,DaLo_Ul,WaLo_Ul,ToLa_Ul,ToLaKo_UI)

38. There are [many] other constraints, please state them !

38. [left as exercise to the reader !]

0.4.2.5 Mereologies

We refer to [55, Sect. 5.3]. We shall formalise a number of mereologies:

e of undirected graphs — typically road, air and sea transport nets,
e and “general” directed graphs —

0.4 Our General Graph Model 23

0.4.2.5.1 Mereology of Undirected Graphs

39. The mereology of a vertex is the set of unique identifiers of the edges incident upon the vertex.
40. The mereology of an edges is the one-or two element set of the unique identifiers of the [1-loop]
vertex, respectively the vertices which the edge is connecting.

type

39. V_Mer = E_Ul-set

40. E_Mer = V_Ul-set

value

39. mereo_V:V — V_Mer

40. mereo_E: E — E_Mer

axiom

39. V¥ g:G,v:V - v € obs_Vs(g) = mereo_V(v)Cxtr_E_Uls(g)
40. ¥ g:G,e:E - e € obs_Es(g) = mereo_E(e)Cxtr_V_Uls(g)

0.4.2.5.2 Wellformedness of Mereologies

41. The vertex mereology must record unique edge identifiers of the graph.

42. The edge mereology must record unique vertex identifiers of the graph.

43. If a vertex mereology identify edges then these edge mereologies must identify that vertex,
and, vice versa

44. If an edge mereology identify vertices then these vertex mereologies must identify that edge.

axiom

41. Y g:G,v:V-v eobs_Vs
42. ¥ g:G,e:E - e e obs_Es
43. YV g:G,v:V+veobs_Vs
44. V g:G,e:E - e € obs_Es

—~

g) = mereo_V(v)cxtr_Els(g)
g) = mereo_E(e)cxtr_Vis(g)
g) = V ei € mereo_V(v) = uid_V(v) € mereo_E(e)
g) = V vi € mereo_E(e) = uid_E(e) € mereo_V(v)

—_—

0.4.2.5.3 Mereology of Directed Graphs

45. The mereology of a vertex is a pair of the set of unique identifiers of the edges incident upon
the vertex and the set of unique identifiers of the edges emanating from the vertex —

46. and these must all be of the graph.

47. The mereology of an edge is a one or two element set of pairs of vertex identifiers —

48. and these must all be of the graph.

type

45. V_Mer = E_Ul-set x E_Ul-set
47. E_Mer = (V_UI x V_Ul)-set
value

45. mereo V:V —» G — V_Mer
47. mereo.E: E —» G — E_Mer
axiom

46. VY g:G,v:V - v e obs_Vs(g) =
46. let (e_ui_s.i,e_ui_s_e) = V_Mer(v) in e_ui_s_i U e_ui_s_e C xtr E_Uls(g) end
48. VY g:G,e:E - e e obs_Es(g) =
48. letp.v_ui_s = V_Mer(e) in

24 0 Graphs [February 2021]

48. letv_ui_s = { v_uii,v_ui-e | (v_ui.i,v_ui_e):(V_UIXV_Ul)«(v_ui.i,v_ui_e)ep_v_uis } in
48. v_ui_s C xtr_V_Uls(g) end end

0.4.2.5.4 In- and Out-Degrees

49. The in-degree of a vertex of a directed graph is the number of edges incident upon that vertex.
50. The out-degree of a vertex of a graph is the number of edges emanating that vertex.

49. in_degee_V:V — G — Nat

49. in_degree(v)(vs,es) = let (uis_i,_)=mereo_V(v) in card uis_i end, pre v € vs
50. out_.degee_V:V — G — Nat

50. out_degree(v)(vs,es) = let (_,uis_e)=mereo_V(v) in card uis_e end, pre v € vs

0.4.2.5.5 Paths of Undirected Graphs

We shall only illustrate vertex-edge-vertex paths for given graphs, g.

51. A vertex-edge-vertex path is a sequence of zero or more edges.

52. That is, the empty sequence, (), is a vertex-edge-vertex path, [the first basis clause].

53. Ifeis anedge of g, then the two elements ((vi, ej, vk)), ((vk,ej, vi)), where e is the unique identifier
of e whose mereology is {vi,vj}, are vertex-edge-vertex paths.

54. In ((vi,ej,vk)) we refer to vi is the first vertex identifier and vk as the second. Vice versa in
{(vk,ej,vi)).

value
54. fVIfEP: EP — VI, fVIfEP(ep:((vi,ej,vk)) ep’) = vi, pre: ep#()
54. IVIIEP: EP — VI, IVIIEP(ep:ep” {(vi,ej,vk))) = VK, pre: ep#()

55. If p and p’ are paths of g such that the last vertex identifier of the last element of p is the same as
the first vertex identifier of the first element of p’, then the sequence p followed by the sequence
p’ is a vertex-edge-vertex path of g [the inductive clause].

56. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type

51. EP =E%

51. edge_paths: G — EP-set
51. edge_paths(g) =

52. letps = {{)}

53. U {((vi,uid_E(e),vk)),{(vk,uid_E(e),vi))|e:E-e € xtr_Es(g)A{vi,vk}Cmereo_E(e)}
55. U {p p’Ip,p":EP-{p,p’}CpSAIVIIEP(9)=fVIfEP(p’)} in
56. psend

0.4.2.5.6 Paths of Directed Graphs

51. A vertex-edge-vertex path is a sequence of zero or more edges.
52. That is, the empty sequence, (), is a vertex-edge-vertex path, [the first basis clause].

0.4 Our General Graph Model 25

57. If e is an edge of g, and if (vi,vj) is in the mereology of e, then the {(vi,ej, vk)), where ¢j is the
unique identifier of ¢ is a vertex-edge-vertex path.

55. If p and p’ are paths of g such that the last vertex identifier of the last element of p is the same as
the first vertex identifier of the first element of p’, then the sequence p followed by the sequence
p’ is a vertex-edge-vertex path of g [the inductive clause].

56. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type

51. EP=E%

51. edge_paths: G — EP-set
51. edge_paths(g) =

52. letps = {{)}

57. U {{(vi,uid_E(e),vk))|e:E-e € xtr_.Es(g)A(vi,vk)emereo_E(e)}
55. U {p p’lp,p":EP+{p,p’}CpsAIVIIEP(9)=fVIfEP(p’)} in
56. psend

Notice that the difference in the two definitions of (overload-named) edge_paths differ only in in
the last terms of items 53 and 57.

0.4.2.5.7 Connectivity

58. For every pair of vertices we can calculate the set of all paths connecting these in a graph.

58. all_connected_paths: (VxV) - G — EP-set
58. all_connected_paths(vi,vj) =
58. {ep|ep:EP -ep e edge_paths(g) - ep[1] = (uid_V(vi),_,), epl[lenep] = (_, ,uid_V(vj))}

59. Two vertices, V;,V;, of a graph, g, are_connected if there is a path from v; to v; in g.

value
59. are_connected: (VxV) — G — Bool
59. are_connected(vi,vj)(g) = all_connected_paths(vi,vj) # {}

60. A graph is_connected if there is a path from every vertex to every other vertex.

value
60. is_connected: G — Bool
60. is_connected(g) =V vi,vj:V - {vi,vj} € obs_Vs(g) - are_connected(vi,vj)(g)

0.4.2.5.8 Acyclic Graphs, Trees and Forests

61. A cycle is a path which begins and ends at the same vertex.

62. An acyclic graph is a graph having no graph cycles.

63. A bipartite graph (or bi-graph) is a graph whose vertices can be divided into two disjoint and
independent sets, V', V", such that every edge connects a vertex in V' to one in V"’. Acyclic
graphs are bipartite.

64. By a tree we® shall understand a connected, acyclic graph such that there are no two distinct
paths from any given pair of in-degree-0 and out-degree-0 vertices.

5 Our definition is OK, but there are more encompassing definitions of trees.

26

0 Graphs [February 2021]

65. A disjoint graph is a set of two or more graphs such that no two of these graphs, G, g’, have

vertices in g with edges to g’.

66. A forest is a disconnected set of trees, hence form a disjoint graph of distinct trees.

62.
62.
62.
62.
63.
63.
64.
64.
65.
65.
66.
66.

is_a_cycle: EP — Bool

is_a_cycle(ep) = let (vi, ,)=ep[1], (_, ,vi')=ep[len ep]in vi = vi’ end
is_acyclic: G — Bool

is_acyclic(g) = !9 ep:EP - ep € edge_paths(g) A is_a_cycle(ep)
is_bipartite: G — Bool

is_bipartite(g) = ... [exercise for the reader]

is_a_tree: G — Bool

is_a_tree(g) = ... [exercise for the reader]
is_disjoint_graph: G — Bool

is_disjoint_graph(g) = ... [exercise for the reader]

is_a_forest: G — Bool

is_a_forest(g) = ... [exercise for the reader |

Fig. 0.21 Undirected, Directed, Acyclic, Bipartite, Tree and Disjoint Graphs

0.4.2.5.9 Forest

A forest is an undirected graph without cycles (a disjoint union of un-rooted trees), or a directed
graph formed as a disjoint union of rooted trees.

0.4.2.5.10 Mereology Examples

We present mereology examples of both undirected and directed graphs.

Mereology of Undirected Graph Examples: We present mereology examples of road nets and
railway tracks.

67.
68.

Road Nets

The mereology of road nets follow that of undirected graphs:

substitute V for H and VI for HI, and
substitute E for L and El for LI.

We refer to Sect. 0.4.2.5.10 on the facing page.

0.4 Our General Graph Model 27

67. H_.Mer = L_Ul-set x L_Ul-set
68. L_Mer = (H_UI x H_UIl)-set, axiom Y Im:L_Mer-cardime{0,1,2}

e Rail Nets

We refer to Chapter 1.

Mereology of directed Graph Examples: In some circumstances we may model mereologies of
directed graphs in terms of attributes. An example is that of road nets. Road nets, usually, can be
considered undirected graphs. But discrete dynamically set and reset traffic signals as well as road
signs may render streets and their intersection, i.e., links and hubs, “directed”. We then model this
“directedness”, as we shall see, in Sect. 0.4.2.6.3 on page 31, in terms of programmable attributes.

¢ Pipeline Nets
We refer to Sects. 0.2.1.3 on page 6, 0.4.1.2.3 on page 18 and 0.4.2.4.3 on page 22.

69. Wells have exactly one connection to an output unit — which is usually a pump.

70. Pipes, pumps, valves and re-directors have exactly one connection from an input unit and one
connection to an output unit.

71. Forks have exactly one connection from an input unit and exactly two connections to distinct
output units.

72. Joins have exactly two connections from distinct input units and one connection to an output
unit.

73. Sinks have exactly one connection from an input unit — which is usually a valve.

74. Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit
identifiers.

type

74 PM’=(Ul-setxUl-set), PM={|(iuis,ouis):PM’-iuis N ouis={}|}
value

74 mereo_PE: PE —» PM

The well-formedness inherent in narrative lines 69-73 are formalised:

axiom [Well-formedness of Pipeline Systems, PL (0)]
¥ pl:PL,pe:PE - pe € all_pipeline_uits(pl) =
let (ivis,ouis)=mereo_PE(pe) in
case (card iuis,card ouis) of

69 (0,1) — is_We(pe),
70 (1,1) — is_Pi(pe)Vvis_Pu(pe)Vvis_Va(pe),
71 (1,2) — is_Fo(pe),
72 (2,1) — is_Jo(pe),
73 (1,0) — is_Si(pe), _ — false
end end

To express full well-formedness we need express that pipeline nets are acyclic. To do so we first
define a function which calculates all routes in a net.

Two pipeline units, pe; with unique identifier 7t;, and pe; with unique identifier 7, that are
connected, such that an outlet marked 7t; of p; “feeds into” inlet marked 7; of p;, are said to share
the connection (modeled by, e.g., {(7;, 7;)})

75. The observed pipeline units of a pipeline system define a number of routes (or pipelines):
Basis Clauses:
76. The null sequence, (), of no units is a route.

28 0 Graphs [February 2021]

77. Any one pipeline unit, pe, of a pipeline system forms a route, {pe), of length one.
Inductive Clauses:

78. Let ri {pe;)y and (pej)'\rj be two routes of a pipeline system.

79. Let pe; ; and pe;,. be the unique identifiers pe;, respectively pe;.

80. If one of the output connectors of pe; is pe; ,

81. and one of the input connectors of pe; is pe;,.,

82. then r; (pe;,pe;) 1 is a route of the pipeline system.
Extremal Clause:

83. Only such routes which can be formed by a finite number of applications of the clauses form a
route.

type

75. R=PE?

value

75 routes: PL = R-infset

75 routes(ps) =

75 let cpes = pipeline_units(pl) in
76 letrs = {{)}

77 U {{pe)|pe:PE-pe € cpes} U

82 U {ri {pe.iy {pe_jy T1j | pei,pej:PE - {pe_i,pe_j}ccpes

78 A ri{pe.i),(pe_jy Tj:R - {ri {pe_i),(pe_jy Tj}Crs

79,80 A pe.i-ui = uid_PE(pe_i) A pe_i_ui € xtr.oUQOs(pe_i)
79,81 A pe_j_ui = uid_PE(pe_j) A pe_j_ui € xtr_iUls(pej)} in

83 rs end end

xtriUls: PE — Ul-set, xtr_iUls(u)

= let (iuis,_)=mereo_PE(pe) in iuis end
xtroUls: PE — Ul-set, xtr_oUls(u) =

let (_,ouis)=mereo_PE(pe) in ouis end

84. The observed pipeline units of a pipeline system forms a net subject to the following constraints:

unit output connectors, if any, are connected to unit input connectors;
unit input connectors, if any, are connected to unit output connectors;
there are no cyclic routes;

nets has all their connectors connected, that is, “starts” with wells
and “ends” with sinks.

C o T

value

84. wf_Net: PL — Bool

84. wf_Net(pl) =

84. letcpes = all_pipeline_units{pl} in

84. V pe:PE - pe € cpes = let (iuis,ouis) = mereo_PE(pe) in

84. axiom 69.—73.

84a. AV pe_:Ul-pe_ui € ivis =

84a. 3 pe’:PE-pe’#pepe’isin cpesAuid_PE(pe’)=pe_uiApe_uiextr_iUls(pe’)
84b. AV pe_ui:Ul-pe_ui € ouis =

84b. 3 pe’:PE-pe’#peApe’isin cpesAuid_PE(pe’)=pe_uiApe_uiextr_oUls(pe’)
84c. AV r:Rereroutes(pl) =

84c. ~3i,j:Nat-i#jAfi,jle inds rAr(i)=r(j)

84d. A dwe:We-we € us Ar(1) =mkWe(we)

84e. A dsi:Si-sieus Ar(lenr) = mkSi(si)

75. end end

0.4

85.

86.

Our General Graph Model 29

River Nets

The mereology of a river vertex is a pair: a set of unique identifiers, E_UI, of river edges, i.e.,
stretches, linear sequences of simple and composite river elements, incident upon the vertex,
and a set of unique identifiers, E_UI, of river edges emanating from the vertex. If the vertex is
a source then the first element of this pair is empty. If the vertex is a mount then the second
element of this pair is empty. For a confluence vertex both elements of the pair are non-empty.
The mereology of a river edge, that is, the linear sequence of simple and composite river
elements between two adjacent vertices, is a pair: the first element is a unique identifier of a
river vertex and so is the second element of the pair.

We present the river net mereology in two forms. The first was with respect to its graph rendition.
The second is with respect to its river element rendition.

87.

88.

89.

90.

85.
86.
87.
88.
89.
90.

91.
92.

93.
94.

95.

The mereology of a source is just the single unique identifier of the first simple or composite
river element of the stretch emanating from the source.

The mereology of a confluence is a triplet: the single unique identifier of the last simple or
composite river element of the stretch of the main river incident upon the source, a set of
unique identifier of the last simple or composite river element of the stretches of the tributary
rivers incident upon the source, and the single unique identifier of the first simple or composite
river element of the main river stretch emanating from the confluence.

The mereology of a mouth is just the single unique identifier of the last simple or composite
river element of the stretch incident upon the mouth

The mereologies of simple and composite river elements are pairs: of the unique identifier of
the river elements, including sources and confluences, upstream adjacent to the river element
being “mereologised”, and of the unique identifier of the river elements, including confluences
and mouths, downstream adjacent to the river element being “mereologised”.

Mer_V = E_Ul-set x E_Ul-set

Mer_E = V_UI x V_UI

Mer_SO = SE_UI | CE_UI

Mer_KO = (SE_UI|CE_UI) x (SE_UI|CE_Ul)-set x (SE_UI|CE_UI)
Mer_MO = SE_UI | CE_UI

Mer_RE = (SO_UI|CO_UI|SE_UI|CE_UI) x (SE_UI|ICE_UI|CO_UIIMO_UI)

The unique vertex and edge identifiers must be identifiers of the vertices and edges of a graph.
Similarly, the unique source, confluence and mouth identifiers must be identifiers of respective
sources, confluences and mouths of a graph.

And likewise for simple and composite element identifiers.

No two sources, confluences, mouths, simple and composite elements have identical unique
identifiers.

There are other constraints, please state them !

axiom

91
92
93
94
95

. [left as exercise to the reader !]
. [left as exercise to the reader ! |
. [left as exercise to the reader ! |
. [left as exercise to the reader ! |
. [left as exercise to the reader ! |

30 0 Graphs [February 2021]

0.4.2.6 Attributes

We refer to [55, Sect. 5.4]

Attributes of discrete endurants ascribe to them such properties that endow these, typical man-
ifest entities with substance. External qualities of endurants allow us to reason about atomicity
and compositions, whether as Cartesian-like products, as sets or as sequences; but not much more !
The internal quality of unique identification allows us to speak of, i.e., analyse and describe mul-
tiplicities of same sort endurants. The internal quality of mereology allows us to relate discrete
endurants either topologically or otherwise. But it is the internal quality of possessing one or more
attributes, i.e., properties — usually many more than we may actually care to define, that really
sets different sort parts “apart” (!) and allows us to reason more broadly, more domain-specifically,
about endurants.

0.4.2.6.1 Graph Labeling

It is quite common, in fact usually normal, to so-called “label” vertices and edges of graphs;
that is, either none, or all, rarely only some proper subset. Such labeling is used for two distinct
purposes: Either such labeling occur in only one of these forms, sometimes, though, in both; the
situation is confusing. In our approach we clearly analyse labeling into two separate forms: the
unique identification of distinct parts, and the ascription of attributes, sometimes the same, or
“overlapping”® to more than one part, or even part sort. One should take care of the following:
whereas distinct parts “receive” distinct unique identification, such distinct parts may be ascribed
the same attribute value.

One may classify attributes in two different ways: into either static, monitorable and program-
mable as introduced by M.A.Jackson, [107], and as slightly “simplified” in [55, Sect. 5.4.2.3]; or as
either measurable (by for example electro-, chemical or mechanical instruments) or referable (one
can talk about histories of events) or both ! Anyone part may be ascribed attributes of any mix and
composition of these classifications.

If you sense some uneasiness about the issue of graph labeling as it is treated in for example
operations, where graphs are a stable work horse, then you are right!

0.4.2.6.2 General Net Attributes

Let us informally recall some general facts about the concept of attributes such as we introduce
them in [55, Sect.5.4].

96. We can speak of the set of names of attribute types. If A is the type of an attributes, the nA is
the name of that type.

97. For every part sort, P, we can thus speak of the set, or a suitably chosen, to be modeled, subset
of attributes types in terms of their names.

98. Of course, different attribute names must designate distinct, i.e., non-overlapping attribute
values of that type.

Likewise informally:

type

96. nA, A

value

96. name_of_attribute: A — nA,nAname_of_attribute(A) = nA

6 By “overlapping” assignment of attribute to different parts we mean that two or more parts may be assigned the
same attribute type.

0.4 Our General Graph Model 31

97. attributes: P — nA-set

97. attributes(p) = {nAi,nA;,....nAL}

axiom

98. V p:P, anms:{nA;nA,,...nAct:nA-set:anmsCattributes(p)= Vi j,.... ke AiNA;={}AA;NA;=({IA...

0.4.2.6.3 Road Net Attributes

99.

100.

101.

102.

103.

104.

105.

Link Attributes:

Standard “bookkeeping” link attributes are road name, length, name of administrative authority
and others. These are static attributes.

Standard “control” attributes model the dynamically settable direction of flow along a link: its
current link state as well as the space of all such link states.

Standard “event history” attributes model the time-stamped chronologically ordered sequence,
for example latest first, of automobiles entering, stopping along (say parking) and leaving a
link. A first element in such a list denotes “entering”. The last element “leaving”. Any element
in-between, pairwise, “stopping” (for example for parking) and “starting” (resume driving).
Hub Attributes:

Standard “bookkeeping” hub attributes are road intersection name, name of administrative
authority and others. These are static attributes.

Standard “control” attributes model the dynamically settable direction of flow along into and
out of a hubs: its current hub state as well as the space of all such hub states.

Standard “event history” attributes model the time-stamped chronologically ordered sequence,
for example latest first, of automobiles entering, stopping along (say parking) and leaving a
hub. A first element in such a list denotes “entering”. The last element “leaving”. Any element
in-between, pairwise, “stopping” (for example for parking) and “starting” (resume driving).
We assume a sort of automobile identifiers.

type

99. Road_Name, Length, Admin_Auth, ...

100. LX = (H_UIXH_Ul)-set; axiom VY lo:LX-card lo € {0,1,2}; LQ = LX-set
101. L_History = A_Ul » TIME*

102. Intersection_Name, Admin_Auth, ...

103. HX = (L_UIxL_Ul)-set

103. HQ = HX-set

104. H_History = A_Ul +» TIMIE*

105. A_UI

value

99. attr_.Road_Name:: L—Road_Name, attr_Length: L—Length, attr_Admin_Auth: L—Admin_Auth, ...
100. attr LX: L—>LZX, attr_LQ: L—>LQO

101. attr_L_History: L—L_History

102. attr_Intersection_name:: H—Intersection_name, attr_.Admin_Auth: H—Admin_Auth, ...
103. attr HX: H—>HX, attr HQ: H->HQ

104. attr_H_History: H—H_History

We omit narrating and formalising attributes for Road_Surface Temperature, Road Mainte-
nance_Condition, etc., etc.

Elucidation of Road Net History Attributes

The above was a terse rendition. Below we elucidate, in two steps.

All Events are Historized!

32 0 Graphs [February 2021]

The above “story” on road net history attributes was a “lead-in”! To get you started on the
notion of event histories. They are not recorded by anyone. They do occur. That is a fact. We can
talk about them. So they are attributes. But they occur without our consciously talking about them.

So they are chronicled.

106.
107.
108.
109.
110.
111.

112.
113.

More Detailed Road Unit Histories

Also, the “story” was simplified. Here is a slightly more detailed history rendition of:

Attributed vents related to automobiles on roads.

Automobiles enter a link.

Automobiles stop along the link at a

fraction of the distance between the entered and the intended destination hubs.

Automobiles Restart.

Automobiles may make U-turns along a link at fraction of the distance between the entered
and the originally intended destination hubs.

Eventually automobiles leave a link, entering a hub.

Same story for automobiles at a hub.

type

106. L_Hist = A_Ul » (A_L_Event x TIMIE)*

106. A_L_Event == Enter | Stop | ReStart | U_Turn | Leave
107. Enter :: H_UI

108. Stop :: H.UIl x Frac x H_UI

109. Frac = Real; axiom VY f:Frac - 0<f<1

110. ReStart ;...

111. U_Turn :: H_UIl x Frac x H_UI

112. Leave :: H.UI

¢ Requirements: Recording Events

So all events are chronicled. Not by the intervention of any device, but by “the sheer force of
fate” ! So be it — in the domain. But if you are to develop software for a road net application: be it
a road pricing system, or a traffic control system, or other — something related to automobile and
road events, then recording these events may be necessary. If so, you have to develop requirements
from, for example, a domain description of this kind. We refer to [55, Chapter 9: Requirements].
More specifically you have to extend the domain, [55, Sect. 9.4.4: Domain Extension] — sensors
that record the position of cars’. And this sensing may fail, and thus and implementation of the
recording of hub and link histories may leave “holes” — and the requirements must then prescribe
which kind of safeguards the thus extended road net system must provide.

0.4.2.7 Summing Up
0.4.2.7.1 A Summary of The Example Endurant Models

We summarise “the tip of the icebergs” by recording here the main domains, but now in a concrete
form; that is, with concrete types for main sorts instead of abstract types with observers.
River nets form graphs. Similarly can be done for all the examples. First we recall graphs.

e Graphs: SeeItems. 1 on page 16,2 on page 16,3 on page 16,19 on page 19,20 on page 19, 39
on page 23, 45 on page 23,40 on page 23 and 47 on page 23.

7 These sensors may be photo-electric or electronic and placed at suitable points along the road net, or they may be
satellite borne. To work properly we assume that automobiles emit such signals that let their identity be recorded.

0.4 Our General Graph Model 33

type [Endurants]

1. G = V-set x E-set

2.V

3. E

type [Unique Identifiers]

19. V_UI

20. E_UI

type [Mereology]

39. V_Mer = E_Ul-set; 45. V_Mer = E_Ul-set X E_Ul-set [Un—directed; Directed Graphs |
40. E_Mer = V_Ul-set; 47. E_Mer = (V_UIl x V_UIl)-set [Un—directed; Directed Graphs]

e Roads: SeeItems 8 on page 17,5 on page 17,7 on page 17, 67 on page 26 and 68 on page 26.

type [Endurants]

5. RN = H-set x L-set [~ G for Graphs]

6. H[=~V for Graphs]

7. L[~ E for Graphs]

type [Unique Identifiers]

28. HI [= VI for Graphs]

29. LI [= El for Graphs]

type [Mereology]

67. H_Mer = Ll-set x Ll-set [~ V_Mer for Graphs]

68. L_Mer = (HI x HI)-set, axiom VY Im:L_Mer-cardlme({0,1,2} [= E_Mer for Graphs]

e Rails: See Chapter1.
e Pipelines: See Items 10 on page 18,11 on page 18,32 on page 22 and 74 on page 27.

type [Endurants]

10. PN = PLU-set [= G for Graphs]

11. PLU==WU |PU|LU|VU|FU|JU|SU [=(VIE) for Graphs]

type [Unique Identifiers]

32. Ul==WU_UIl|PU_UI'|LU_UI'| VU_UI | FU_UI | JU_UI | SU_UI

type [Mereology |

74 PM’ =(Ul-setxUl-set), PM={|(iuis,ouis):PM’-iuis N ouis={}|} [= V_MerUE_Mer for Graphs]

e Rivers: See Items 13 on page 18,14 on page 18,15 on page 18, Sect. 0.4.2.4.4 on page 22, 85
on page 29 and 86 on page 29.

type [Endurants]

13. RiN

14. V

15. E

type [Unique Identifiers]

33. V_Ul, E_UI

type [Mereology |

85. Mer.V = E_Ul-set x E_Ul-set
86. Mer_E=V_UlxV_UI

0.4.2.7.2 Initial Conclusion on Labeled Graphs and Example Domains

We have shown basic models of abstract undirected and directed graphs. And we have shown
four examples:

34 0 Graphs [February 2021]

e road nets, e pipeline nets and
e rail nets, e river nets.

Road, rail, pipeline and river elements are all uniquely identified. The road and river nets were
basically modeled as as graphs with vertices (hubs, respectively sources, confluences and mouths)
and edges (links, respectively stretches of simple and composite river elements). The rail and
pipeline nets we modeled as sets of rail and pipeline units with the mereology implying edges.
Labels, such as they are “practiced” in conventional graph theory, are introduced by may of
attributes. Attributes were also used to model dynamically varying “directedness” of edges.
We can conclude the following

e There is now a firm foundation for the labeling of graphs:

« the origin of vertex and edge labeling is
o the unique identifiers and/or
o the attributes
of the endurant parts that vertices and edges designate; and
« there really can be no vertex or edge labeling unless the origin is motivated in
o the unique identification and/or
o the attribution
of the vertex and edge parts.

0.5 The Nets Domain

0.5.1 Some Introductory Definitions

Definition: By a net domain, or, for short, just a net, we shall understand a domain of the kind
illustrated in Sect. 0.4, that is, a domain the mereology of whose main parts model graphs m
Definition: By a dynamic net domain, or, for short, just a dynamic net, we shall understand
a net whose mereology — or a corresponding attribute notion — may change =
Definition: By a nets domain, or, for short, just nets, (notice the suffix ‘s’, we shall understand
a domain each of whose instances is a dynamic net domainm

MORE TO COME

Part 11
Main Examples

Chapter 1

Rail Systems [1993-2007, 2020]

Contents
1.1 Endurants —RailNetsand Trainsccciiiiiiiiiiiiiiineneeenennncnnnnns 38
1.1.1 External Qualities 38
1.1.1.1 Rail Nets 38
1.1.1.1.1 TheEndurants..................................... 38
1.1.1.1.2 AllNetUnits 39
L1012 TraINS . 39
1.1.1.2.1 TheEndurants..................................... 39
1.1.1.2.2 AllTrains 39
1.1.2 Internal Qualities 40
1.1.21 Uniqueldentifiers i i 40
1.1.2.1.1 All Net Unit Unique Identifiers...................... 40
1.1.2.1.2 Trains ... 40
1.1.2.1.3 Retrieve Net Units 41
1122 Mereologyo.oiniiii e 41
1.1.2.2.1 RailUnits 41
1.1.2.2.2 Well-formed Mereologies........................... 42
1.1.2.2.3 Trains ... 42
1.1.2.24 Routescoiiiiii 42
1.1.2.2.4.1 Route Types, 42
1.1.2.2.4.2 Initial Routes 43
1.1.2.2.4.3 Next Route Elements 43
1.1.2.2.4.4 Previous Route Elements 43
1.1.2.24.5 AllRoutes 44
1.1.2.2.4.6 Isolated Rail Net Units 44
1.1.2.2.4.7 A Delineation: Train Stations.......... 45
1.1.2.2.4.8 All Stations of a Railway System 45
1.1.2.2.4.9 RailLines ..., 46
1.1.2.3 Attributes 47
1.1.2.3.1 RailNets. ... 47
11232 OpenRoutesl 48
1.1.2.3.3 StationNamesl 48
1.1.2.3.4 Trains ... 49
1.1.2.3.5 Anlintentional Pull 49
1.1.2.3.6 History Attributes 50
1.1.2.3.7 The Intentional Pull Revisited 50
1.2 Transcendental Deductionccciiiiiiiiiiiiiiiieeennennennccnncnnnnns 51
121 General ... 51
1.22 ANOte ONTIIMIEutttt e e et 51
1.23 Train Traffic. 51
1.2.3.1 Well-formed Train Traffics 52
1.3 Perdurants.........c.ceiiiiiiiiiiiieeneeeeeneeneenecaesassnnsnnsnssssssnssnnnnns 53
131 Channels. ... 53
1.3.2 Behaviour Signatures 54
1.3.3 Behaviour Definitions 54

37

38 1 Rail Systems [1993-2007, 2020]

1.3.3.1 Rail Unit Behaviours 54
1.3.3.2 TrainBehaviour 55
S 0 o = T 55

This model evolved over many years. A first, beautiful model was developed in 1993 by the late
Seren Prehn8. Over the years variations of this model went into several papers [68, 69, 19, 61,21, 22,
23,130, 24, 151, 131]. We refer to Railways —a compendium imm.dtu.dk/"dibj/train-book.pdf.
The current model is a complete rewrite of earlier models. These earlier models were not based on
the endurant/perdurant, the atomic/compound [set and composite] externalities and the unique
identifier, mereology and attribute paradigms. The present model is.

The example is quite extensive. Anything smaller really makes no sense: does not bring across
the issues of what it takes to describe a domain nor the scale of domain descriptions.

The example is that of a railway system’s net of rail units and trains.

1.1 Endurants — Rail Nets and Trains

1.1.1 External Qualities

1.1.1.1 Rail Nets
1.1.1.1.1 The Endurants

114. The example is that of a railway system.

115. We focus on the railway net [and, later, trains]. They can be observed from the railway system.

116. The railway net embodies a set of [railway] net units.

117. A net unit is either a straight or curved linear unit, or a simple switch, i.e., a turnout, unit® or
a simple cross-over, i.e., a rigid crossing unit, or a single switched cross-over, i.e., a single slip
unit, or a double switched cross-over, i.e., a double slip unit, or a terminal unit.

We refer to Figure 1.1 on the next page.

type

114. RS

115. RN

value

115. obs_RN: RS — RN

type

116. NUs = NU-set

116. NU=LU|PU|RU|SU|DU|TU
value

117. obs_NUs: RN — NU-set

8 Seren Prehn was a brilliant student of mine 1975-1980. He became a leading member of Dansk Datamatik Center
[62], and later the CR company in Denmark, from 1980 onward. He spent a 2 year sabbatical from CR with me
at the UNU/IIST, the United Nations International Institute for Software Technology in Macau, 1992-1994. Sadly he
passed away in the spring of 2006.

9 https://en.wikipedia.org/wiki/Railroad _switch

1.1 Endurants — Rail Nets and Trains 39

Track / Line / Segment Turnout/ Point
/ Linear Unit 1 Switch Unit

Rwit, !

T T y/Switchable Crossover

' ‘
N

===

Linear Unit

Switch :1:

Simple Crossover Unit Switchable Crossover B é B é
/ Rigid Crossing X Unit/ Double Slip > i e
! t t t t :
yow. SV F PR
< A = ! | | 5&4 | | '
- .
2 .
.
.
.

7) . : 4
/ r/v/ [/ L ! Crossover Siding
— — Station
[L] [C—"""1 Connectors - in-between are Units b Connector Connection | [R]

Fig. 1.1 Left: Four net units; Right: A railway net

1.1.1.1.2 All Net Units

118. From a railway system net one can observe, i.e., extract, all the rail net units.
119. We let rs denote the value of of an arbitrary chosen railway system,
120. and we let nus denote the value of the set of all railway units.

value
118. xtr_NUs: RS — NU-set
118. xtr_NUs(rs) = obs_NUs(obs_RN(rs))

119. rs:RS
120. nus = obs_NUs(rs)

1.1.1.2 Trains
1.1.1.2.1 The Endurants

121. We shall, simplifying, consider trains as atomic parts.
122. From a railway system one can observe a finite, let us decide, non-empty set of trains.

type

121. Train

122. TS = Train-set
value

122. 0obs_TS:RS —» TS
axiom

122. VY rs:RS - obs_TS(rs)#{}

1.1.1.2.2 All Trains

123. We let trains denote the value of the set of all trains.

value
123. trains = { t|t:Train - obs_TS(rs) }

40 1 Rail Systems [1993-2007, 2020]

1.1.2 Internal Qualities

1.1.2.1 Unique Identifiers

Rail Units

124. With every rail net unit we associate a unique identifier.
125. That is, no two rail net units have the same unique identifier.

type

124. Ul

value

124. uid_NU: NU — Ul

axiom

125. V uid,ui_j:Ul « uiii = uij = uid_NU(ui_i)=uid_NU(ui_j)

1.1.2.1.1 All Net Unit Unique Identifiers

126. From a railway system net one can observe, i.e., extract, the set of all the unique rail unit
identifiers of all the rail net units.

127. We let uis denote the set of all railway units of the arbitrarily chosen railway system cum railway
net.

value

126. xtr_Uls: RS — Ul-set

126. xtr_Uls(rs) = { uid_NU(nu) | nu:NU - nu € obs_NUs(obs_RN(rs)) }
127. uis = xtr_Uls(rs)

1.1.2.1.2 Trains

128. Trains have unique identifiers.

129. We let tris denote the set of all train identifiers.

130. No two distinct trains have the same unique identifier.
131. Train identifiers are distinct from rail net unit identifiers.

type

128. TI

value

128. uid_Train: Train — TI

129. tris = { uid_Train(t) | t:Train - t € trains }

axiom

130. either: card trains = card tris

130. or:VYrs:RS-

130. ¥ train_a,train_b:Train - {train_a,train_b}Cobs_TS(rs) =
130. train_a#train_b = uid_Train(train_a)=uid_Train(train_b)
131. wis N tris = {}

1.1 Endurants — Rail Nets and Trains

1.1.2.1

.3 Retrieve Net Units

41

132. Given a net unit unique identifier and a railway net one can retrieve the net unit with that
identifier.

value

132. retr.NU: Ul - RS 5 NU

132. retr_.NU(ui)(rs) = let nu:NU - nu € xtr_.NUs(rs) A uid_NU(nu)=ui in nu end

132.

1.1.2.2

1.1.2.2

pre: ui € xtr_Uls(rs)

Mereology

.1 Rail Units

The mereology of a rail net unit expresses its topological relation to other rail net units and trains.

133. Every rail unit is conceptually related to every train.
134. A linear rail unit is connected to exactly two distinct other rail net units of any given rail net.

135. A point unit is connected to exactly three distinct other rail net units of any given rail net.

136. A rigid crossing unit is connected to exactly four distinct other rail net units of any given rail

net.

137. A single and a double slip unit is connected to exactly four distinct other rail net units of any
given rail net.

138. A terminal unit is connected to exactly one distinct other rail net unit of any given rail net.

139. So we model the mereology of a railway net unit as a pair of sets of rail net unit unique
identifiers distinct from that of the rail net unit.
140. Trains can run on every rail unit of any rail system.

ua

Linear

- ux
ul

({ua}{ux})
({ux}.{ua})

Point

ui

({ua}{ux,uy})
({ux,uy}{ua})

ux

ua

ub

Rigid
Crossinng

>

ul

({ua,ub},{ux,uy})
({ux,uy},{ua,ub})

ux

uy

Double
_ Slip B

({ua,ub},{ux,uy})
({ux,uy},{ua,ub})

Fig. 1.2 Four Symmetric Mereologies

type

139. Unit_Mereo = (Ul-setxUl-set) x Tl-set
value

139. mereo_NU: NU — Unit_Mereo
axiom

139. V nu:NU -

139.

133. tris =tris A

139. case (card uis_i,card usi_o) =
134. (is_.LU(nu) — (1,1),

135.

let ((uis_i,uis_0),tris)=mereo_NU(nu) in

is_.PU(nu) — (1,2) v (2,1),

42 1 Rail Systems [1993-2007, 2020]

136. is.RU(nu) — (2,2),

137. is-SU(nu) — (2,2), is.DU(nu) — (2,2),
138. is.-TU(nu) — (1,0) v (0,1),

139. __ — chaos) end

139. A uis_inuis_o={}
139. A uid-NU(nu) ¢ (uis_i U uis_o)
139. end

1.1.2.2.2 Well-formed Mereologies

141. The unique identifiers of any rail unit mereology of a rail net must be of rail units of that net
and

142. the set of train identifiers of any rail unit mereology of a rail net must be the set of all train
identifiers of that railway system.

value

141. wf_Mereology: RS — Bool

141. wf_Mereology(rs) =

141. let (nus,uis) = (xtr_.NUs xtr_Uls)(rs) in
141. VY nuNU-nuenus-

141. let ui = uid_NU(nu), ((iuis,ouis),tris) = mereo_NU(nu) in
141. Ui ¢ iuis U ouis A iuis N ouis ={}A iuis U ouis C uis
142. Atris = tris

141. end end

1.1.2.2.3 Trains

143. Trains can run on every rail unit of any rail system.

We omit consideration of trains communicating with other trains as well as with net management.
We leave such “completions” to the reader.

type

143. Train_Mereo = Ul-set

value

143. mereo_Train_Mereo: Train — Train_Mereo
axiom

143. V rs:RS -V train:Train
143. Y train:Train - train € obs_TS(rs) = mereo_Train_Mereo(train)=retr_Uls(rs)

1.1.2.2.4 Routes

We decompose the analysis into several preparatory steps.

1.1.2.2.4.1 Route Types

144. A route is a finite or infinite sequence of one or more route elements.

1.1 Endurants — Rail Nets and Trains 43

145. A route element is a [route] triple of three distinct net unit identifiers, the net unit identifier of
an immediately preceding rail unit, the net unit identifier of the present rail unit, the net unit
identifier of an immediately succeeding rail unit, irrespective of whether the preceding and
succeeding units are actually in the route as analysed.

type

144. R =TU®

145. TUI = UIxUIxUI

axiom

145. V (pui,ui,sui):TUI « card{pui,ui,sui}=3

144. VY r:R-ViNat- {ii+1}Cindsr =

144. let (pui,ui,sui)=r[i], (pui’,ui’,sui’)=r[i+1] in
144. Sui = pui’ A ui#ui’ A pui # ... end

1.1.2.2.4.2 Initial Routes

146. We define an auxiliary function which, for any given railway system, calculates the finite set of
all its initial routes — where an initial route is a one element route triplet of a non-terminal net
unit.

value

146. initial_routes: RS — R-set

146. initial_routes(rs) =

146. let (nus,uis) = (retr_.NUs,retr_UlIs)(rs) in
146. { {(pui,ui,sui)), {(sui,ui,pui))

146. | nu:NU « nu € nus A ~is_TU(nu) A

146. let (ui,(puis,suis)) = (uid_ZNU,mereo_NU)(nu) in
146. pui € puis A sui € suis end }

146. assert: [there are up to eight triplets in the above set |
146. end

1.1.2.2.4.3 Next Route Elements

147. Give a route element, i.e., a triplet (pui,ui,sui), one can calculate the set of one or two next route
triplet designating the net unit with identifier sui.

value

147. next_route_elements: TUl - RS — R-set

147. next_route_elements(_,ui,sui)(rs) =

147. let (puis U {ui},suis) = mereo_NU(retr_NU(sui)(rs)) in

147. { {(pui,uid_NU(retr_.NU(sui)(rs)),sui’)) | pui:Ul-puiepuisAsui’esuis }
147. assert: [there are either one or two triplets in the set above.]
147. end

1.1.2.2.4.4 Previous Route Elements

148. Give a route element, i.e., a triplet (pui,ui,sui), one can calculate the set of one or two previous
route triplet designating the net unit with identifier sui.

44

1 Rail Systems [1993-2007, 2020]

value

148. previous_route_elements: TUl - RS — R-set

148. previous_route_elements(pui,ui,)(rs) =

148. let (puis,suis U {ui}) = mereo_NU(retr_NU(pui)(rs)) in

148. { ((pui’,uid_NU(retr_NU(pui)(rs)),pui)) | pui’ € puis U suis }
148. assert: [there are either one or two triplets in the set above |
148. end

1.1.2.2.4.5 All Routes

149.
150.
151.

152.
153.
154.
155.
156.

A route is a finite or infinite sequence of triplets.

The analysis function routes calculates a potentially infinite set of routes.

The set rs is recursively defined.

It is the smallest set, i.e., fix-point, satisfying the equation.

rs is initialised, i.e., the base step, with the set of initial routes of the railway system.
The induction step (152-155) “adds”

next, nr, and

previous, p, triplets

to an arbitrarily selected route (so far calculated).

The pr udf nr element of formula line 152 need not be included as it will be calculated in some
subsequent recursion.

value

150. routes: RS — R-infset
150. routes(rs) =

151. letall_routes =irs U

152, { udrnr, prrudr, pr-udf nr

153. | nr € next_route_elements(udr[len udr])(rs) A
154. pr € previous_route_elements(udr[1])(rs) A
155. udr:R - udr € all_routes } end

1.1.2.2.4.6 Isolated Rail Net Units

We wish to analyse a rail net for the following property: can one reach every rail unit from any
given rail unit ? The analysis function isolated decides on that!

157.

Given two distinct net unit identifiers, ui’ and ui”’, of a railway net, ui”’ is isolated from ui’ if
y
there is no route in the railway net from ui’ to ui”.

value

157. isolated: Ul x Ul - RS — Bool

157. isolated(uif,uit)(rs) =

157. let all_routes = routes(rs) in

157. ~3dr:Route-reall_routes=3i,j:Nat-{i,j}Cinds rAi<jAr(i)=(__,uif,)Ar(j)=(_,uit,) end
157. pre {uif,uit}Cxtr_Uls(rs)

1.1 Endurants — Rail Nets and Trains 45

1.1.2.2.4.7 A Delineation: Train Stations

In preparation for our later introduction of a notion of trains we shall attempt to delineate a notion
of train station. By a train station we shall understand a largest set of connected rail units all
designated as being in that station.

158. We shall therefore, presently, introduce a predicate: in_station that applies to a rail unit and
yields true if it is a designated train station, false otherwise.

159. Based on a rail unit, nu, that satisfies in_station, i.e., in_station(nu) and on the mereology of
stations, i.e., the connected rail units, beginning with nu, we define an analysis function which
calculates the “full” station from nu.

160. Finally we define an analysis function station which, given a station rail unit calculates the
largest set of rail units belonging to the same station.

type

160. Station = NU-set

value

158. in_station: NU — Bool

axiom

160. V st:Station, ¥ nu:NU+nu € st = in_station(nu)
value

159. station: NU - RS — NU-set

159. station(inu)(rs) =

159. letst = {inu} U

159. {nu|

159. stnu:NU - stnu € st A

159. let (ivis,ouis) = mereo_NU(stnu) in

159. let cnus = { get_NU(ui)(rs) | ui:Ul « ui € iuis U ouis } in
159. nu € cnus A in_station(nu) end end }

159. instend
159. pre: in_station(nu)

How we may determine whether a rail unit is a station is left undefined. That is, we refrain from
any (speculation) as to whether stations can be characterised by certain topological features of rail
unit connections.

1.1.2.2.4.8 All Stations of a Railway System

161. We define an analysis function, all_stations, which calculates, from a railway system its set of
two or more stations.

162. We calculate, snus, the set of all station rail units.

163. For each of these we calculate the station to which these station rail units belong.

value

161. all_stations: RS — Station-set

161. all_stations(rs) =

162. let snus = { nu | nu:NU - nu € xtr_.NUs(rs) A in_station(nu) } in
163. { station(nu)(rs) | nu:NU < nu € snus } end

axiom

161. card all_stations(rs) > 2

Two or more rail units, nu, of line 163 may calculate the same station.

46 1 Rail Systems [1993-2007, 2020]

1.1.2.2.4.9 Rail Lines

164. By a trail line we mean a route that connects two neighbouring stations.

165. is_connected_stations: Given two stations it may be that there are no routes connecting them.

166. connecting_line: We can calculate a line, In, that does connect two connected stations.
Given two stations that are connected there will be a number of rail units in both stations that
can serve as end points of their connecting rail line. We would then say that these end point
rail units designate respective station platforms from and to where trains depart, respectively
arrive.

167. is_.immediately_connecting_line: We can inquire as to whether there is an immediately connect-
ing line between two given stations of a railway system.

type

164. LN=R

axiom

164. VY rs:RS -V In:LN - In € routes(rs) =

164. let(_,1ui,)=hdIn, (_,nui,) =In[lenIn]in

164. let 1nu = get_.NU(1ui)(rs), nnu = get_ NU(nnu)(rs) in
164. in_station(1nu) A in_station(nni) end end

value

165. is_connected_stations: Station x Station —» RS — Bool
165. is_connected_stations(fs,ts)(rs) =

165. let all_routes = routes(rs) in

165. dIn:R - In € all_routes *

164. let (_,1ui,)=hdIn, (_,nui,)=In[lenIn]in

164. let 1nu = get NU(1ui)(rs), nnu = get_.NU(nnu)(rs) in
164. fs = 1nu A ts = nnu end end

165. end

165. pre: {fs,ts}Call_stations(rs)

166. connecting_line: Station x Station —» RS — LN
166. connecting_line(fs,ts)(rs) =

165. let all_routes = routes(rs) in

166. let In:R « In € all_routes -

164. let (_,1ui,)=hdIn, (_,nui,) =In[lenIn]in
164. let 1nu = get_.NU(1ui)(rs), nnu = get_NU(nnu)(rs) in
164. fs = 1nu A ts = nnu end end

166. In end end
166. pre: is_connected_stations(fs,ts)(rs)

167. is_immediately_connecting_line: Station x Station —» RS — Bool
167. is_immediately_connecting_line(fs,ts)(rs) =

167. let In = connecting_line(fs,ts)(rs) in

167. ¥ (_,ui,):TUl+(_,ui,)eindsIn =

167. let s = get_ RU(ui)(rs) in

167. s e fs Uts v ~in_station(s) end end

167. pre: is_connected_stations(fs,ts)(rs)

We leave it to the reader to define analysis functions that yield the set of all [immediately]
connecting lines between two stations of a railway system.

1.1 Endurants — Rail Nets and Trains 47

1.1.2.3 Attributes

Attributes are either static, [STA], or monitorable, [MON], or programmable, [PRG].

1.1.2.3.1 Rail Nets

We treat attributes of rail units.

168.
169.

A rail unit is either in a station or is not, STA.

A rail unit is in some state — where a state is a possibly empty set of pairs of unique identifiers
of connected rail units — with these being in respective set of the pair of sets making up the
mereology of the rail unit, PRG.

Figure 1.3 shows the twelve possible state of a point.

Closed i : (i ;
= A

O unlocked point blades

Fig. 1.3 The 12 Possible States of a Turnout Point

170.
171.

172.
173.
174.

If a switch in unlocked, a train coming from either of the converging directs will pass through the
points onto the narrow end, regardless of the position of the points, as the vehicle’s wheels will
force the points to move. Passage through a switch in this direction is known as a trailing-point
movement.

axiom
Y pu:PU * pu € xtr_NUs(ps) = let
{{

s(| ({i},{o01,02})=mereo_RU(pu), w=attr . RUQ(pu) in
w ={{}, {{(,o1)}}, {(o1, I)g, (i, 01)(<)>1,
) (0

M,
{(i,02),(02,i),(01,i)}
i),(01,i

{{(i,02)}}, {(02,)}, {(i,02),(02,i)} , ,
02,i),(01,}}, {{(i,01),(02,i)}}, {{(i,02),(02,i)}}}

{{(i,01),(01,i),(02,i)}}, {{(i,02),

end

A rail unit has a state space — consisting of all the states that a rail unit may attain, STA.

A point or a slip is either un-locked or locked, that is, its blades can be pressed to move, or
cannot.

A rail unit has a length, STA.

A rail unit is either occupied by (a section of) an identified train or is not, PRG.

Et cetera.

type

168. RU_INn_St = Bool [STA]
169. RUZX = (UIxUl)-set [PRG]
170. RUQ = RX-set [STA]

48 1 Rail Systems [1993-2007, 2020]

170. Lock_Status = “un-locked” | “1locked” [PRG]

172. RU_Len [STA]

173. RU_Train == TI | nil” [PRG]

174.

value

168. attr_.RU_In_st: RU — RU_In_St

169. attr RUZ: RU - RUZ

170. attr RUQ: RU — RUQ

170. attr_(PUJRU|SU|DU)_Lock_Status: (PU|RU|SU|DU)—Lock_Status
172. attr RU_Len: RU — RU_Len

173. attr_Train: RU — RU_Train

axiom

169. V rs:RS,ru:RU - rueretr_NUs(rs) =

169. let uis = retr_Uls(rs), (iuis,ouis) = mereo_RU(ru), ¢ = attr_X(ru) in
169. VY (iui,oui):(UIxUl) - (iui,oui)ec = iui€iuisAouicouisAfiui,oui}Cuis
170. Ao € attr_.Q(ru) end

173. A (attr_Train(ru) € tris Vv attr_Train(ru) = “nil”)

174.

For any given switch the state space may be a proper subset of the set of all possible states.

1.1.2.3.2 Open Routes

175. A route is said to be open if all pairs of the first and last element of route triplets are in the
current state of the rail unit designated by the second element of these route triplets.

value

175. is_open_route: R — RS — Bool

175. is_open_route(r)(rs)

175. V¥ (iu,ui,ou):TUI - (iu,ui,ou) € elems r =

175. let ru = get_RU(ui)(rs) in let ¢ = attr_.RUX(ru) in (iu,0u) € 0 end end
175. pre: r € routes(rs)

1.1.2.3.3 Station Names

176. All rail units of a station has the same station name.
177. No two distinct stations have the same name.

value

177. station_name: Station — Station_Name

177. station_name(st) = let ru:RU - ru € st in attr_Name(ru) end
axiom

176. VY rs:RS - let rn = obs_RN(rs) in

176. V st,st’:Station - {st,st’}Cstations(rn) =

176. Y ru,ru’:RU - {ru,ru’}C € st = attr_Name(ru) = attr_Name(ru’)
177. st#st’ = station_name(st)#station_name(st’)

177. end

1.1 Endurants — Rail Nets and Trains 49

1.1.2.3.4 Trains

178. Trains have length with those of a given name having not necessarily the same length.

179. Trains [are expected to] follow a route, Train_Route, and to be, at any time, at a Train_Position.
A Train_Route is a sequence of zero, one or more timed triplets, TUIT, of rail unit identifiers.
A Train_Position is a train attribute. It consists of three elements. Two train routes, ptr (past train
route) and ntr (next train route), and a [current] timed triplet, TUIT, of rail unit identifiers. The
meaning of a Train_Position is that the train has passed the past route, is at the current timed
triplet, and can next enter the next route.

180. No two distinct trains occupy overlapping routes on the net.

181. Trains have a speed and acceleration (or deceleration).

182. ...

type

178. Train_Length [STA]

179. TUIT = TUIXTIMIE

179. Train_Route = TUIT*

179. Train_Position = ptr:Train_Route x TUIT X ntr:Train_Route [PRG]
181. Train_Speed, Train_Acceleration, Train_Deceleration [MON]
182.

value

178. attr_Train_Length: Train — Train_Length

179. attr_Train_Position: Train — Train_Position

181. attr_Train_Speed: Train — Train_Speed

181. attr_Train_Acceleration: Train — Train_Acceleration

181. attr_Train_Deceleration: Train — Train_Deceleration

182.

axiom

179. Vrs:RS-

179. Y tr,tr’:Train - {tr,tr'} C obs_TS(rs) A tr # tr’

179. = is_open_route(attr_Train_Position(train))(rs)

179. A let (trp,trp’) = attr_Train_Position(tr,tr’) in

179. {ruil(_,(rui,),):TTUIT+(_,(rui,_),) € elemens trr}
179. N

179. {ruil(_,(rui’,),):TUI+(_,(rui",),) € elemens trr'} = {}
179. end

1.1.2.3.5 An Intentional Pull

183. For every railway system it is the case that

184. for every rail unit in that system which “records”, as an attribute, a train, there is exactly one
train that in its route position records exactly that rail unit,

185. and vice versa.

axiom

183. Vrs:RS-

184. VYV ru:RU - ru e retr NUs(rs) =

184. if attr_.RU_Train(ru) # “nil” =

184. Al tr:Train « tr € trains(rs) A

184. uid_NU(ru) € {uil(_,ui,_):TUI+ (_,ui,) € elems attr_Train_Position(tr)}

183. A

50 1 Rail Systems [1993-2007, 2020]

185. Vtr:Train - tr € trains(rs) =

185. Y (_,ui,):TUI-(_,ui,_) € elems attr_Train_Position(ir) =
185. attr_RU_Train(get_NU(ui)(rs)) = uid_Train(tr)
183. end

1.1.2.3.6 History Attributes

The attributes and axioms over them — covered above do not relate to time; they are time-
independent. We now treat time-dependent attributes and axioms over them. By TIME we mean
absolute times, like November 15, 2021: 16:12, and by TI we man time intervals, like two hours,
three minutes and five seconds. We shall here consider TIIME to span a definite “period” of time,
say from January 1, 2020, 00:00am to December 31, 2020, 24:00.

186. Of a road unit we can speak of its history as a time-decreasing, ordered sequence of time-
stamped train identifiers.

187. Of a train we can speak of its history as a time-decreasing, ordered sequence of time-stamped
rail unit identifiers.

We could have considered other properties to form or be included in event histories, but abstain.

type

186. RU_Hist = (TIME X TI)* [PRG]

187. TR_Hist = (TIME x Ul)* [PRG]

value

186. attr_.RU_Hist: RU — RU_Hist

187. attr_TR_Hist: Train — TR_Hist

axiom

186. [descending times in rail unit history]
187. [descending times in train history]

1.1.2.3.7 The Intentional Pull Revisited

188. For every railway system it is the case that

189. for every rail unit,

190. if at any time it records a train,

191. then that train’s event history records that rail unit in the route it is occupying at that time, and
192. for every train, if at any time it records a route

193. then exactly the rail units of that route record that train.

... below function has to be redefined ... ‘

axiom

188. Vrs:RS-

189. ¥V ru:RU - ru € retr_.NUs(rs) =

189. let ruh = attr_RU_Hist(ru) in

190. ¥ time:dom ruh - ruh(time) # {} =

191. let {ti} = ruh(time) in

191. let trh = attr_TR_Hist(get_Train(ti)(rs)) in
191. trh(time) # {} A

191. let {r} = trh(time) in

1.2 Transcendental Deduction 51

191. 3 (_,ui,):TUI-(_,ui,) € elems(r) = ruh = get_RU(ui)(rs)
191. end end end end

192. et cetera

193. et cetera

1.2 Transcendental Deduction

1.2.1 General

By a transcendental deduction parts can be “morphed” into behaviours. We consider the following
railway system parts:

e all the railway net units and
e all the trains.

That is, we shall not here consider the railway net management, the train operator, the passenger
and [freight] shipper parts as behaviours.

1.2.2 A Note on TIME

194. We shall consider TIME to stand for a time in a definite interval of times, for example from
January 1, 2020, 00:00 am to December 31, 2020, 23:59:59.

195. That is, TIMIE-interval, is the set of all the designated times in the interval.

196. The operators ¥ [irst] and L[ast] applied to the TIIMIE-interval interval yields the first and last
times of the interval TIME-interval.

197. We shall introduce a time interval quantity, 57:TI—and shall consider 57 tobe, if not infinitesimal
small, then at least “small”, say, in the context of train traffic, 1 second !

198. We shall, loosely, introduce the operator D, applied to the interval TIMEinterval, to yield the
definite set of times such that if 7 is in TIMIE-interval and 7 is not L(TIMIE-interval)then the
next time in TIMEinterval is t+07.

type

194. TIME

195. TIMIE—interval

196. ¥ : TIME-interval —» TIMIE
196. L: TIME-interval —» TIMIE
value

197. 6T:TI[say 1 second]

198. D: TIME-interval » TIMIE-set

1.2.3 Train Traffic

199. By train traffic we shall understand a discrete function, in RSL [92] expressed as a map, over a
closed interval of time from time to trains and their route position.
We model this as shown in formula line 199.

52 1 Rail Systems [1993-2007, 2020]

Here we have taken the liberty of modeling the traffic as being discrete over infinitesimal small
time intervals 7.

type
199. TrainTraffic = Tl #» (TIME = R)

1.2.3.1 Well-formed Train Traffics

200. For every railway system a train traffic is well-formed

a. if all trains cover the same time period;

b. if all train traffics occur on routes of the railway system;

c. if two or more trains do not have overlapping routes at any time; and
d. if each train traffic progresses monotonically.

axiom

200. VY rs:RS-

200. V trtr:TrainTraffic -

200a. same_time_period(trtr)
200b. A routes_of_rs(trtr)(rs)
200c. A disjoint_routes(trtr)(rs)
200d. A monotonic(trtr)(rs)

200a. same_time_period: TrainTraffic — Bool
200a. same_time_period(trtr) = V time,time”:TIME - DOMAIN(time)=IDOM ATN(time’)

value

200b. routes_of_rs: TrainTraffic —» RS — Bool
200b. routes_of_rs(irtr)(rs)

200b. Y 1i:Tl - ti € dom trir >

200b. ¥ time:TIME - time € dom ti
200b. route_of((trtr(ti))(time))(rs)
200b. route_of: R - RS — Bool

200b. route_of(r)(rs) = r € routes(rs)

value

200c. disjoint_routes: TrainTraffic - RS — Bool

200c. disjoint_routes(trtr)(rs) =

200c. VLT - {tit’) <=dom trir A ti#ti’ =

200c. ¥ time:TIME - time € dom ti =

200c. disjoint_routes((trtr(ti))(time), (trtr(ti")) (time))

200c. disjoint_routes: R X R — Bool

200c. disjoint_routes(r,r’) =

200c. {uil(_,ui,):TUI+(_,ui,)e elems rin{uil(_,ui,):TUI-(_,ui,)€ elemsr’} = {}

For a traffic to be monotonic it must be the case that
201. for all trains
202. for two “closely adjacent” times in the domain of that train’s traffic
203. the route positions, #,#’ of any train (at these times) must

1.3 Perdurants 53

204. either be the same.ie.r =7,

205. or truncated by at most the first element, i.e. r’=tlr (being a route of the system),
206. or amended by at most one element, i.e., ¥’=F (tui) (being a route of the system),
207. or both, i.e., ¥'=tl7 {tui) (being a route of the system).

value

200d. monotonic: TrainTraffic = RS — Bool
200d. monotonic(trtr)(rs) =

202. V ti:Tl - ti € dom trir = in

202. Y time,time”: TIME -

202. {time,time’} € IDOM ATIN(trtr(ti))

202. time’>time A time’—time=6t A

203. let (r,r") = ((trtr(ti))(time),(trtr(ti))(time’)) in
204. (r=ryv

205. (r=1tlr A tl r € routes(rs)) v

206. (r'= F{tui) A F{tui) € routes(rs)) v

207. (r'=tl F{tui) A tl F{tuiy € routes(rs))

203. end

1.3 Perdurants

To every part, that is,

208. linear unit, 211. slip (crossing), 214. train
209. turn out, 212. double (crossing),
210. rigid crossing, 213. terminal unit, and

we associate, by a transcendental deduction, a never ending train behaviour which, as a function,
takes some arguments ...—... and otherwise goes on forever (Unit).

value 211. slip: ... — ... Unit
208. linear_unit: ... — ... Unit 212. double: ... — ... Unit
209. turn_out: ... — ... Unit 213. terminal: ... — ... Unit
210. rigid: ... — ... Unit 214. train: ... — ... Unit

The Unit does not refer to the railway units of the domain, but is an RSL ... in effect designating
never ending processes.

1.3.1 Channels

215. Trains and rail net units exchange messages, NT_Msg.
These message will eventually be further defined.

216. Trains potentially communicate with all rail net units.
Rail net units potentially communicate with all trains.

type

215. NT_Msg

channel

216. { ch[{uitri}]:NT_Msg | ui:Ul, tri:TRI - ui € uis A tri € trus }

54 1 Rail Systems [1993-2007, 2020]

In a more realistic railway system domain description a rail net management would monitor trains
and control (set) switches etc.

1.3.2 Behaviour Signatures

We continue sketching some of the railway system behaviour signatures. Rail net unit and train
identifiers become [first] parameters; mereology attributes become [second set of] parameters;
static attributes become [third set of] parameters; programmable attributes become [fourth] pa-
rameters; and channel references become “last” parameters.

value
208. linear_unit: ui:Ul x (_,tris):Unit_Mereo x (RUQxRU_Len) — (RUZXRU_Hist)
— in,out {ch[{ui,ti} |ti: TI-tictris} Unit
209. turn_out: ui:Ul x (_,tris):Unit_Mereo x (RUQxRU_Len) — (RUXxRU_Hist)
— in,out {ch[{ui,ti}]|ti: TI-tictris} Unit
210. rigid: ui:Ul x (_,tris):Unit_Mereo x (RUQxRU_Len) — (RUXxRU_Hist)
— in,out {ch[{ui,ti} |ti: TI-tictris} Unit
211. slip: ui:Ul x (_,tris):Unit_Mereo x (RUQxRU_Len) — (RUXxRU_Hist)
— in,out {ch[{ui,ti}]|ti: Tl-tietris} Unit
212. double: ui:UIl x (_,tris):Unit_.Mereo x (R UOmegaxRU_Le) — (RUZxRU_Hist)
— in,out {ch[{ui,ti}]|ti:Tl-tictris} Unit
213. terminal: ui:Ul x (_,tris):Unit_Mereo x (RUQxRU_Len) — (RUXxRU_Hist)
— in,out {ch[{ui,ti}]|ti:Tl-tictris} Unit

214. train: ti:TIx uis:Train_.Mereo x (TRQxTrain_Length) — (Train_Positionx(TRZXTR_Hist))
— in,out {ch[{ui,ti}JJui:Ul+iicuis} Unit

1.3.3 Behaviour Definitions

We shall illustrate only a narrow aspect of trains on rails. Namely that of the “simulation” of train
traffic as per pre-planned routes. That is we shall not model actual train traffic as per set time
tables — that would entail numerous more formulas than we now show. So it is only an illustration
of how rail and train behaviours might look.

1.3.3.1 Rail Unit Behaviours

We shall only exemplify linear rail unit behaviours.

217. Rail unit behaviours all have in common what we now model as the linear rail unit behaviour.

218. Non-deterministically, external choice, the rail units offers to accept communication from pass-
ing trains, i, as to the time they are passing by —

219. with this information being added to the rail unit history as the rail unit behaviour resumes.

value

217. linear_unit(ui,(ruw,...),(_tris))(ruo,ruh) =

218. let Msg_TR_RU(time,ti) = [0 {ch[{ui,ti}] ? | ti ti:T1 - ti € tris} in
219. linear_unit(ui,(ruw,...),(_tris))(ruo,{(time,ti)y Truh)

217. end

217. pre: ruo € ruw

1.4 Closing 55

1.3.3.2 Train Behaviour

We focus, in our description of train behaviours so6lely on the un-aided movement of trains and,
further, on an “idealised” description.

220.

221.

222.
223.
224.
225.

226.

There are two train positions of interest when describing train movement:

a. the general situation where the train has not yet reached its final destination, and
b. the special situation where the train has indeed reached its final destination

In the former (Item220a.) the train position, at time 7, is at rail unit ui, with the first next unit
being ui’ (and where aui=aui’).

If elapsed time is less than planned time 7,

then the train informs the rail unit behaviour designated by ui that it is currently passing it.
and moves on within the current unit ui, having updated its history;

else, when elapsed time is up, i.e., equals planned time t, the train informs the rail unit it is
now entering that it is so,

updates its history accordingly and moves on to the next unit, ui’

value

221. train(ti,sta,uis)(pr,((bui,ui,aui),7),{((aui’,ui’,nui),z’)y nr),(tro,trh) =
221. let time = record_TIME in

222. iftime <t

223. then ch[{ui,ti}] ! Msg_TR_RU(time,ti) ;

224, train(ti,sta,uis)(pr,((bui,ui,aui),7),{((aui’,u’,nui),7’)y r),(tro{(time,ui)y trh)
225. else ch[{aui’,ti}] ! Msg_TR_RU(time,ti) ; assert: time = 7
226. train(ti,sta,uis)(tp {(t,(bui,ui,aui))),((aui’,ui’,nui),7’),nr),(tro,{(time,ui’))trh)
221. end end
221. pre:tro € tro A avi=aui’ AT <7
227. In the other position (Item 220b.) the train, at time 7, is at rail unit ui, with their bing no next

228.
229.
230.
231.

units to enter.

If elapsed time is less than planned time, 7,

then the train informs the rail unit behaviour designated by ui that it is currently passing it
and moves on within the current unit ui, having updated its history;

else the train journey has ended and the train behaviour “stops”, i.e., ceases to exist!

227. train(ti,sta,uis)((pr,((bui,ui,aui),7),()),(tro,trh)) =

227. let time = record TIME in

228. iftime <t

229. then ch[{ui,ti}] ! Msg_TR_RU(time,ti) ;

230. train(ti,sta,uis)((pr,((bui,ui,aui),7),(}),(tro,{(time,ui)y trh))
231. else skip assert: time = 7

227. end end

227. pre: tro € trw

1.4 Closing

We end our example here. To analyse & describe a proper railway system we would have to
introduce some rail net and train management. Rail net management would monitor the rails,
and, according to train time tables issued by train management, set switches. Train management

56 1 Rail Systems [1993-2007, 2020]

would establish train time tables, pass these onto rail net management, and would monitor and
control trains. We have given, we think, enough clues as how to analyse & describe such railway
systems.

Chapter 2

Road Transport [2007-2017]

Contents
21 The Road Transport Domain...........ccviiiiiiiiiiiiiiiiiiiiiiiiinnenneennes 58
211 Naming.o 58
21.2 Rough Sketch 58
22 External Qualitiescouiiuiiiiniii i e e e 58
221 A Road Transport System, Il — Abstract External Qualities............... 58
2.2.2 Transport System Structure L 59
2.2.3 Atomic Road Transport Parts 59
224 Compound Road Transport Parts i, 59
2241 The Compositescoiiiiiiiiiii i 59
2242 ThePartParts........... ... i 59
225 The Transport System State 60
23 Internal Qualitiescoieiiitiii i i i it et e 61
2.3.1 Uniqueldentifiers i 61
2.3.1.1 Extract Parts from Their Unique Identifiers 61
2.3.1.2 All Unique IdentifiersofaDomain 61
2.3.1.3 Uniqueness of Road Net Identifiers............................ 62
232 Mereology . ..o 62
2.3.21 Mereology Types and Observersooa.. 62
2.3.2.2 Invariance of Mereologiesc i, 63
2.3.22.1 Invarianceof Road Nets............................ 63
2.3.2.2.2 Possible Consequences of a Road Net Mereology .. 64
2.3.2.2.3 Fixed and Varying Mereology 64
233 Attributes ... 64
23.3.1 HubAttributes 64
2.3.3.2 Invariance of TrafficStates 65
23.3.3 LinkAttributes 65
2.3.34 Bus Company Attributesl 66
23.3.5 BusAttributes 66
2.3.3.6 Private Automobile Attributesl 66
2.3.3.7 Intentionality......... 67
24 Perdurantsc.ciuiiiiiiiiiiiii i i i i e i e 68
241 Channels and Communication............... i 68
24.11 Channel Message Types ...t 68
24.1.2 Channel Declarationso i 69
24.2 Behaviours 69
2.4.2.1 Road Transport Behaviour Signatures 69
2.4.21.1 Hub Behaviour Signature 70
2.4.21.2 Link Behaviour Signature 70
2.4.21.3 Bus Company Behaviour Signature 70
2.4.214 Bus Behaviour Signature 71
2.4.2.1.5 Automobile Behaviour Signature 71
2.4.2.2 Behaviour Definitions i 71
24.2.21 Automobile BehaviourataHub 71
24.2.22 Automobile BehaviourOnalLink................... 72

57

58 2 Road Transport [2007-2017]

2.4.2.2.3 Hub Behaviour.................t 73

2.4.2.24 Link Behaviour, 73

2.5 System Initialisationciiiiiiiiiii i i i i ittt 74
251 Initial States 74

2.5.2 Initialisation 74

2.1 The Road Transport Domain

Our universe of discourse in this chapter is the road transport domain.

2.1.1 Naming

type RTS

2.1.2 Rough Sketch

The road transport system that we have in mind consists of a road net and a set of vehicles
such that the road net serves to convey vehicles. We consider the road net to consist of hubs,
i.e., street intersections, or just street segment connection points, and links, i.e., street segments
between adjacent hubs. We consider vehicles to additionally include departments of motor
vehicles (DMVs), bus companies, each with zero, one or more buses, and vehicle associations,
each with zero, one or more members who are owners of zero, one or more vehicles'” O

2.2 External Qualities

A Road Transport System, | — Manifest External Qualities:Our intention is that the manifest
external qualities of a road transport system are those of its roads, their hubs!li.e., road (or street)
intersections, and their links, i.e., the roads (streets) between hubs, and vehicles, i.e., automobiles
— that ply the roads — the buses, trucks, private cars, bicycles, etc. O

2.2.1 A Road Transport System, Il — Abstract External Qualities

Examples of what could be considered abstract external qualities of a road transport domain
are: the aggregate of all hubs and all links, the aggregate of all buses, say into bus companies,

10 This “rough” narrative fails to narrate what hubs, links, vehicles, DMVs, bus companies, buses and vehicle
associations are. In presenting it here, as we are, we rely on your a priori understanding of these terms. But that is
dangerous ! The danger, if we do not painstakingly narrate and formalise what we mean by all these terms, then
readers (software designers, etc.) may make erroneous assumptions.

11 We have highlighted certain endurant sort names - as they will re-appear in rather many upcoming examples.

2.2 External Qualities 59

the aggregate of all bus companies into public transport, and the aggregate of all vehicles into a
department of vehicles. Some of these aggregates may, at first be treated as abstract. Subsequently,
in our further analysis & description we may decide to consider some of them as concretely
manifested in, for example, actual departments of roads.

2.2.2 Transport System Structure

A transport system is modeled as structured into a road net structure and an automobile structure.
The road net structure is then structured as a pair: a structure of hubs and a structure of links.
These latter structures are then modeled as set of hubs, respectively links.

We could have modeled the road net structure as a composite part with unique identity,
mereology and attributes which could then serve to model a road net authority.And we could
have modeled the automobile structure as a composite part with unique identity, mereology and
attributes which could then serve to model a department of vehicles O

2.2.3 Atomic Road Transport Parts

From one point of view all of the following can be considered atomic parts: hubs, links'?, and
automobiles.

2.2.4 Compound Road Transport Parts

2.2.4.1 The Composites

232. There is the universe of discourse, UoD. 233. a road net, RN, and
It is structured into 234. a fleet of vehicles, FV.

BOth are StrucCtUIeS. e e e e e e e e e

type value
232 UoD axiom V uod:UoD - is_structure(uod). 233 obs_RN: UoD — RN
233 RN axiom V rn:RN - is_structure(rn). 234 obs_FV:UoD - FV O

234 FV axiom V fv:FV -« is_structure(fv).

2.2.4.2 The Part Parts

235. The structure of hubs is a set, sH, of atomic hubs, H.

236. The structure of links is a set, sL, of atomic links, L.

237. The structure of buses is a set, SBC, of composite bus companies, BC.

238. The composite bus companies, BC, are sets of buses, sB.

239. The structure of private automobiles is a set, SA, of atomic automobiles, A.

12 Hub = street intersection; link = street segments with no intervening hubs.

60 2 Road Transport [2007-2017]

RN FV
SH SL SBC

BCs PA
rm—my e | VT T T T et L
i sH i CbosL i 1} bclisBC bc_s:sBC : : SA X
! i ! i i ‘ | pmmm—— bl
! i Vol i i i (I it
Pl hiH | [I S i i Lo [
: ! i : i i bl1:B bs1:B i : i latA | !

! | I i I !

: i vl i i : : ! ! :

'
i | h2H | A I SRR D P !
i P P T b12:B bs2B| | 1 ! azA |
i v : o |
‘ BN 1 1 A X

e e ' oo i l
: 1 ' : 1 1) oo) i Pl eee ! :
i ! i i [!

! i ol i i ! P it
! i ! i i : i lara | 0!
i hmH | v L i i bip:B bsq:B ‘ o [
! 1 ! 1 [1
i i i P i

G

Fig. 2.1 A Road Transport System Compounds and Structures

235 H, sH = H-set axiom Y h:H -« is_atomic(h)
236 L, sL =L-set axiom V I:L * is_atomic(l)
237 BC, BCs = BC-set axiom Y bc:BC « is_.composite(bc)
238 B, Bs = B-set axiom Y b:B * is_atomic(b)
239 A, sA = A-set axiom VY a:A ¢ is_atomic(a)
value

235 obs_sH: SH — sH

236 obs.sL: SL — sL

237 obs_sBC: SBC — BCs

238 obs_Bs: BCs — Bs

239 obssA:SA—-sA 0O

2.2.5 The Transport System State

240. Let there be given a universe of discourse, rts. It is an example of a state.
From that state we can calculate other states.

241. The set of all hubs, hs.

242. The set of all links, Is.

243. The set of all hubs and links, hls.
244. The set of all bus companies, bcs.
245. The set of all buses, bs.

246. The set of all private automobiles, as.
247. The set of all parts, ps.

value

240 rts:UoD [240]

241 hs:H-set =:H-set = obs_sH(obs_SH(obs_RN(rts)))

242 Is:L-set =:L-set = obs_sL(obs_SL(obs_RN(rts)))

243 his:(H|L)-set = hsUls

244 bcs:BC-set = obs_BCs(obs_SBC(obs_FV(obs_RN(rts))))
245 bs:B-set = U{obs_Bs(bc)|bc:BC+bc € bes}

246 as:A-set = obs_BCs(obs_SBC(obs_FV(obs_RN(rts))))
247 ps:(UoBI|H|LIBC|B|A)-set = rtsUhlsUbcsUbsUas

2.3 Internal Qualities 61

2.3 Internal Qualities

2.3.1 Unique Identifiers

248. We assign unique identifiers to all parts. b. All links have distinct identifiers.
249. By a road identifier we shall mean a link or a c. All bus companies have distinct identi-
hub identifier. fiers.
250. By a vehicle identifier we shall mean a bus or d. All buses of all bus companies have dis-
an automobile identifier. tinct identifiers.
251. Unique identifiers uniquely identify all parts. e. All automobiles have distinct identifiers.
a. Allhubs have distinct [unique] identifiers. f. All parts have distinct identifiers.
type 251a uid-H:H — H_UI
248 H_UI, L.UI, BC.UI, B_.UI, A_UI 251b uid_L: H — L_UI
249 R.UI=H_UI|L.UI 251c uid_BC: H — BC_UI
250 V_.UI=B_UI|A_UI 251d uid_B: H — B_UI
value 251e uid.A:H — A_UI

2.3.1.1 Extract Parts from Their Unique Identifiers

252.

ty

From the unique identifier of a part we can retrieve, g, the part having that identifier.

pe

252P=H|L|BC|BJ|A

value

252 p:H.Ul-H|L.Ul-L|BC.UI-BC|B.UI-B|A.UI-A
252 p(ui) = let p:(HILIBC|BJA)*pepsAuid_P(p)=ui in p end

2.3.1.2 All Unique Identifiers of a Domain

We can calculate:

253.
254.
255.

256.

257.
258.
259.
260.
261.
262.
263.

the set, h,;s, of unique hub identifiers;

the set, I,,;s, of unique link identifiers;

the map, hl,;m, from unique hub identifiers to the set of unique link iidentifiers of the links connected to the zero,
one or more identified hubs,

the map, Ih,;m, from unique link identifiers to the set of unique hub iidentifiers of the two hubs connected to the
identified link;

the set, r,,;s, of all unique hub and link, i.e., road identifiers;

the set, bcy;s, of unique bus company identifiers;

the set, by;s, of unique bus identifiers;

the set, a,;s, of unique private automobile identifiers;

the set, v,;s, of unique bus and automobile, i.e., vehicle identifiers;

the map, bcb,,;m, from unique bus company identifiers to the set of its unique bus identifiers; and

the (bijective) map, bbc,;bm, from unique bus identifiers to their unique bus company identifiers.

value

253 hy;s:H_Ul-set = {uid_H(h)|h:H*h € hs}

254 1,s:L_Ul-set = {uid_L())|Il:L*l € Is}

257 rys:R_Ul-set = hy,;sUl,;s

255 hl,m:(H.Ulm»L_Ul-set) =

255 [h_ui=luis|h_ui:H_Ulluis:L_Ul-set*h_uieh,;sA(_,luis,__)=mereo_H(n(h_ui))] [cf. tem 270]

62

2 Road Transport [2007-2017]

256 [Ihy,m:(L+Ul»H_Ul-set) =

256 [I_ui=huis | h_ui:L_Ul,huis:H_Ul-set * |_uiel,;s A (_,huis,_)=mereo_L(n(l_ui))] [cf.ltem271]
258 bc,;s:BC_Ul-set = {uid_BC(bc)|bc:BC-bc € bes}

259 b,;s:B_Ul-set = U{uid_B(b)|b:B-b € bs}

260 a,;5:A_Ul-set = {uid_A(a)|a:A-a € as}

261 v,;s:V_Ul-set = b,;s U ay;s

262 bcb,ym:(BC_Ul »B_Ul-set) =

262 [bc_ui - buis | bc_ui:BC_Ul, bc:BC « beebes A be_ui=uid_-BC(bc) A (_,_,buis)=mereo_BC(bc)]
263 bbc,bm:(B_Ul»BC_UIl) =

263 [b_ui — bc_ui | b_ui:B_Ul,bc_ui:BC_ui * bc_ui=dombcb,;mAb_uiebcb,;m(bc_ui)]

2.3.1.3 Uniqueness of Road Net Identifiers

We must express the following axioms:

264.
265.
266.
267.
268.
269.

All hub identifiers are distinct.

All link identifiers are distinct.

All bus company identifiers are distinct.

All bus identifiers are distinct.

All private automobile identifiers are distinct.
All part identifiers are distinct.

axiom

264 card hs = card ;s

265 cardls = card ;s

266 card bcs = card bey;s

267 cardbs = card b,;s

268 cardas = carda,;s

269 card {h,;sUl,;sUbc,;sUb,;sUa,;s}

269 = card h,;s+card [,;s+card be,is+card b;s+carda,;s O

2.3.2 Mereology

2.3.2.1 Mereology Types and Observers

270.

271.

272.

273.

274.

The mereology of hubs is a pair: (i) the set of all bus and automobile identifiers'?, and (ii) the
set of unique identifiers of the links that it is connected to and the set of all unique identifiers
of all vehicles (buses and private automobiles).'*

The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii) the set
of the two distinct hubs they are connected to.

The mereology of a bus company is a set the unique identifiers of the buses operated by that
company.

The mereology of a bus is a pair: (i) the set of the one single unique identifier of the bus company
it is operating for, and (ii) the unique identifiers of all links and hubs'>.

The mereology of an automobile is the set of the unique identifiers of all links and hubs!®.

type

270 H_Mer = V_Ul-setxL_Ul-set
271 L_Mer = V_Ul-setxH_Ul-set
272 BC_Mer = B_Ul-set

2.3 Internal Qualities 63

273 B_Mer = BC_UIxR_Ul-set
274 A_Mer = R_Ul-set

value

270 mereo_H: H — H_Mer

271 mereo_L: L — L_Mer

272 mereo_BC: BC — BC_Mer
273 mereo_B: B — B_Mer

274 mereo_A: A —» A_Mer

2.3.2.2 Invariance of Mereologies

For mereologies one can usually express some invariants. Such invariants express “law-like prop-
erties”, facts which are indisputable.

2.3.2.2.1 Invariance of Road Nets

The observed mereologies must express identifiers of the state of such for road nets:

axiom

270 VY (vuis,luis):H_Mer - luisCl,;s A vuis=v,;s

271 V¥ (vuis,huis):L_Mer « vuis=v,;s A huisCh,;s A cardhuis=2
272 VY buis:H_Mer - buis = b,;s

273 VY (bc_ui,ruis):H_Mer+bc_uiebc,isAruis=r,;s

274 VY ruis:A_Mer - ruis=ry;s

275. For all hubs, h, and links, I, in the same road net,
276. if the hub & connects to link [then link [connects to hub 4.

axiom

275 YhHIL-hehsAlels=

275 let (_,luis)=mereo_H(h), (_,huis)=mereo_L()
276 in uid_L(l)eluis = uid_H(h)ehuis end

277. For all links, I, and hubs, h,, hj, in the same road net,
278. if the I connects to hubs k,; and hy, then h, and hj, both connects to link L.

axiom

277 Y hahbH,lLs{h.ahblChsAlels=

277 let (_,luis)=mereo_H(h), (_,huis)=mereo_L(l)
278 in uid_L(l)€luis = uid_H(h)ehuis end

13 This is just another way of saying that the meaning of hub mereologies involves the unique identifiers of all the
vehicles that might pass through the hub is_of_interest to it.

14 The link identifiers designate the links, zero, one or more, that a hub is connected to is_of_interest to both the
hub and that these links is interested in the hub.

15 _ that the bus might pass through
16 — that the automobile might pass through

64 2 Road Transport [2007-2017]

2.3.2.2.2 Possible Consequences of a Road Net Mereology

279. are there [isolated] units from which one can not “reach” other units ?
280. does the net consist of two or more “disjoint” nets ?
281. et cetera.

We leave it to the reader to narrate and formalise the above properly.

2.3.2.2.3 Fixed and Varying Mereology

Let us consider a road net. If hubs and links never change “affiliation”, that is: hubs are in fixed
relation to zero one or more links, and links are in a fixed relation to exactly two hubs then the
mereology is a fixed mereology. If, on the other hand hubs may be inserted into or removed from
the net, and/or links may be removed from or inserted between any two existing hubs, then the
mereology is a varying mereology.

2.3.3 Attributes

2.3.3.1 Hub Attributes

We treat some attributes of the hubs of a road net.

282. There is a hub state. It is a set of pairs, (| f,lt), of link identifiers, where these link identifiers are
in the mereology of the hub. The meaning of the hub state in which, e.g., (I f,lt) is an element, is
that the hub is open, “green”, for traffic from link I; fo link ;. If a hub state is empty then the
hub is closed, i.e., “red” for traffic from any connected links to any other connected links.

283. There is a hub state space. It is a set of hub states. The current hub state must be in its state
space. The meaning of the hub state space is that its states are all those the hub can attain.

284. Since we can think rationally about it, it can be described, hence we can model, as an attribute
of hubs, a history of its traffic: the recording, per unique bus and automobile identifier, of the
time ordered presence in the hub of these vehicles. Hub history is an event history.

type

282 HX = (L_UIXL_Ul)-set

axiom

282 V h:H - obs_HX(h) € obs_HQ(h)
type

283 HQ = HX-set

284 H_Traffic

284 H_Traffic = (A_UIIB_UI) # (TIME x VPos)*
axiom

284 VY ht:H_Traffic,ui:(A_UIIB_UI) -

284 Ui € dom ht = time_ordered(ht(ui))
value

282 attr HX: H —» HX

283 attr HOQ: H — HO

284 attr_H_Traffic: H — H_Traffic

value

284 time_ordered: (TIME x VPos)* — Bool
284 time_ordered(tvpl) = ...

2.3 Internal Qualities 65

In Item 284 on the facing page we model the time-ordered sequence of traffic as a discrete
sampling, i.e., », rather than as a continuous function, —.

2.3.3.2 Invariance of Traffic States

285. The link identifiers of hub states must be in the set, [;s, of the road net’s link identifiers.

axiom
285 YhiH-hehs =
285 let ho = attr.HX(h) in V¥ (I,,;3,li,;¢"):(L_UIXL_UI) - (1,,;1,1,,;7’) € ho = {Im-,.,l’ .} Clys end

ui;

2.3.3.3 Link Attributes

We show just a few attributes.

286. There is a link state. It is a set of pairs, (h f,ht), of distinct hub identifiers, where these hub
identifiers are in the mereology of the link. The meaning of a link state in which (hy,h;) is an
element is that the link is open, “green”, for traffic from hub h ¢ to hub h;. Link states can have
either 0, 1 or 2 elements.

287. There is a link state space. It is a set of link states. The meaning of the link state space is that its
states are all those the which the link can attain. The current link state must be in its state space.
If a link state space is empty then the link is (permanently) closed. If it has one element then it
is a one-way link. If a one-way link, /, is imminent on a hub whose mereology designates that
link, then the link is a “trap”, i.e., a “blind cul-de-sac”.

288. Since we can think rationally about it, it can be described, hence it can model, as an attribute of
links a history of its traffic: the recording, per unique bus and automobile identifier, of the time
ordered positions along the link (from one hub to the next) of these vehicles.

289. The hub identifiers of link states must be in the set, h,;s, of the road net’s hub identifiers.

type

286 LX = H_Ul-set

axiom

286 VY lo:LXcard lo=2

286 VY I:.L - obs_LX(l) € obs_LQ(])

type

287 LO = LX-set

288 L_Traffic

288 L_Traffic = (A_UIIB_UI) #» (Tx(H_UlxFracxH_Ul))*
288 Frac = Real, axiom frac:Fract - O<frac<1

value

286 attr LX:L — LX

287 attr LQ: L —» LQO

288 attr_L_Traffic: : — L_Traffic

axiom

288 V It:L_Traffic,ui:(A_UI|B_Ul)-ui € dom ht = time_ordered(ht(ui))
289 VIL-lels =

289 letlo = attr LX(l) in V¥ (h;i,h,;7):(H_UIXK_UI) -
289 (hyiihii’) € lo = {huii,h:”.i} C hyis end

66 2 Road Transport [2007-2017]

2.3.3.4 Bus Company Attributes

Bus companies operate a number of lines that service passenger transport along routes of the road
net. Each line being serviced by a number of buses.

290. Bus companies create, maintain, revise and distribute [to the public (not modeled here), and to
buses] bus time tables, not further defined.

type
290 BusTimThbl
value

290 attr_.BusTimTbl: BC — BusTimThbl

There are two notions of time at play here: the indefinite “real” or “actual” time; and the definite
calendar, hour, minute and second time designation occurring in some textual form in, e.g., time
tables.

2.3.3.5 Bus Attributes

We show just a few attributes.

291. Buses run routes, according to their line number, In:LN, in the

292. bustime table, btt:BusTimTbl obtained from their bus company, and and keep, as inert attributes,
their segment of that time table.

293. Buses occupy positions on the road net:

a. either at a hub identified by some h_ui,
b. or on a link, some fraction, f:Fract, down an identified link, 1_ui, from one of its identified
connecting hubs, fh_ui, in the direction of the other identified hub, th_ui.

294. Et cetera.

type

291 LN

292 BusTimThbl

293 BPos == atHub | onLink

293a atHub :: h_ui:H_UI

293b onLink :: fh_ui:H_UIxI_ui:L_Ulxfrac:Fractxth_ui:H_UI
293b Fract = Real, axiom frac:Fract + O<frac<1
294

value

292 attr_.BusTimTbl: B — BusTimTbl

293 attr_.BPos: B — BPos

2.3.3.6 Private Automobile Attributes

We illustrate but a few attributes:

295. Automobiles have static number plate registration numbers.
296. Automobiles have dynamic positions on the road net:

[293a] either at a hub identified by some h_ui,

2.3 Internal Qualities 67

[293b] or on a link, some fraction, frac:Fract down an identified link, I_ui, from one of its
identified connecting hubs, fh_ui, in the direction of the other identified hub, th_ui.

type

295 RegNo

296 APos == atHub | onLink

293a atHub :: h_ui:H_UI

293b onLink ::fh_ui:H_Ul x l_ui:L_Ul x frac:Fract x th_ui:H_UI
293b Fract = Real, axiom frac:Fract + O<frac<1

value

295 attr_.RegNo: A — RegNo

296 attr_APos: A — APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or
backward movement, turning right, left or going straight, etc. The acceleration, deceleration,
even velocity, or turning right, turning left, moving straight, or forward or backward are seen
as command actions. As such they denote actions by the automobile — such as pressing the
accelerator, or lifting accelerator pressure or braking, or turning the wheel in one direction or
another, etc. As actions they have a kind of counterpart in the velocity, the acceleration, etc.
attributes. Observe that bus companies each have their own distinct bus time table, and that these
are modeled as programmable, Item 290 on the preceding page, page 66. Observe then that buses
each have their own distinct bus time table, and that these are model-led as inert, Item 292 on
the facing page, page 66. In Items284 Pg. 64 and 288 Pg. 65, we illustrated an aspect of domain
analysis & description that may seem, and at least some decades ago would have seemed, strange:
namely that if we can think, hence speak, about it, then we can model it “as a fact” in the domain.
The case in point is that we include among hub and link attributes their histories of the timed
whereabouts of buses and automobiles.!”

2.3.3.7 Intentionality

297. Seen from the point of view of an automobile there is its own traffic history, A_Hist, which is a
(time ordered) sequence of timed automobile’s positions;

298. seen from the point of view of a hub there is its own traffic history, H_Traffic Item 284 Pg. 64,
which is a (time ordered) sequence of timed maps from automobile identities into automobile
positions; and

299. seen from the point of view of a link there is its own traffic history, L_Traffic Item 288 Pg. 65,
which is a (time ordered) sequence of timed maps from automobile identities into automobile
positions.

The intentional “pull” of these manifestations is this:

300. The union, i.e. proper merge of all automobile traffic histories, AlIATH, must now be identical
to the same proper merge of all hub, AllHTH, and all link traffic histories, AlILTH.

type

297 A_Hi = (T x APos)*

284 H_Trf= AUl » (TIME x APos)*
288 L_Trf = A_Ul» (TIMIEXxAPos)*
300 AIATH=TIME 4 (AUl 7» APos)

17 In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so strange:
We now know, at least in principle, of technologies that can record approximations to the hub and link traffic
attributes.

68 2 Road Transport [2007-2017]

300 AIHTH=TIMIE 4 (AUl 7» APos)

300 AIILTH =TIMIE 4 (AUl -» APos)

axiom

300 let allA=mrg_AlIATH({(a,attr_A_Hi(a))|a:A-a € as}),
300 allH=mrg_AllHTH({attr_H_Trf(h)|h:H+h € hs}),
300 allL =mrg_AlILTH({attr_L_Trf(I)|Il:L-h € Is}) in
300 allA = mrg_HLT(allH,allL) end

We leave the definition of the four merge functions to the reader! We endow each automobile
with its history of timed positions and each hub and link with their histories of timed automobile
positions. These histories are facts! They are not something that is laboriously recorded, where
such recordings may be imprecise or cumbersome!®. The facts are there, so we can (but may not
necessarily) talk about these histories as facts. It is in that sense that the purpose (‘transport’)
for which man let automobiles, hubs and link be made with their ‘transport’ intent are subject
to an intentional “pull”. It can be no other way: if automobiles “record” their history, then hubs
and links must together “record” identically the same history !.

Intentional Pull — General Transport: These are examples of human intents: they create roads
and automobiles with the intent of transport, they create houses with the intents of living, offices,
production, etc., and they create pipelines with the intent of oil or gas transport m

2.4 Perdurants

In this section we transcendentally “morph” parts into behaviours. We analyse that notion and
its constituent notions of actors, channels and communication, actions and events.

The main transcendental deduction of this chapter is that of associating with each part a
behaviour. This section shows the details of that association. Perdurants are understood in terms
of a notion of state and a notion of time.

State Values versus State Variables: Item 247 on page 60 expresses the value of all parts of a
road transport system:

247. ps:(UoB|HILIBC|B|A)-set = rtsUhlsUbcsUbsUas.

301. We now introduce the set of variables, one for each part value of the domain being modeled.
301. { variable vp:(UoB|H|L|BC|BJA) | vp:(UoBIHILIBC|BJA) * vpeps }

Buses and Bus Companies A bus company is like a “root” for its fleet of “sibling” buses. But a
bus company may cease to exist without the buses therefore necessarily also ceasing to exist. They
may continue to operate, probably illegally, without, possibly. a valid bus driving certificate. Or
they may be passed on to either private owners or to other bus companies. We use this example
as a reason for not endowing a “block structure” concept on behaviours.

2.4.1 Channels and Communication

2.4.1.1 Channel Message Types

We ascribe types to the messages offered on channels.

18 or thought technologically in-feasible — at least some decades ago!

2.4 Perdurants 69

302. Hubs and links communicate, both ways, with one another, over channels, hl_ch, whose indexes
are determined by their mereologies.

303. Hubs send one kind of messages, links another.

304. Bus companies offer timed bus time tables to buses, one way:.

305. Buses and automobiles offer their current, timed positions to the road element, hub or link they
are on, one way.

type

303 H_L_Msg, L_.H_Msg

302 HL-Msg = H_.L_Msg | L_.F_Msg
304 BC_B_Msg =T x BusTimThbl
305 V_R_Msg =T x (BPos|APos)

2.4.1.2 Channel Declarations

306. This justifies the channel declaration which is calculated to be:

channel

306 { hl_ch[h_ui,l_ui]:H_L_Msg

306 | h_ui:H_ULl_ui:L_Uli € hy;sAj € Ihy,m(h_ui) }
306 U

306 { hl_ch[h_ui,l_ui]:L.H-Msg

306 | h_ui:H_ULl_ui:L_Ul*l_ui € 1,;sAi € Ihy,ym(1_ui) }

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus
companies need communicate to all its buses, but not the buses of other bus companies. Buses of
a bus company need communicate to their bus company, but not to other bus companies.

307. This justifies the channel declaration which is calculated to be:

channel
307 {bc_b_ch[bc_ui,b_ui] | bc_ui:BC_UI, b_ui:B_UI
307 + bc_ui € beyis A b_ui € by;s }: BC_B_Msg

We shall argue for vehicle to road element channels based on the mereologies of those parts. Buses
and automobiles need communicate to all hubs and all links.

308. This justifies the channel declaration which is calculated to be:

channel
308 {v_r_ch[v_ui,rui] | v_ui:V_Ulr_ui:R_UI
308 e v._uieysAruierys }: V_.R_Msg

2.4.2 Behaviours

2.4.2.1 Road Transport Behaviour Signatures

We first decide on names of behaviours. In the translation schemas we gave schematic names
to behaviours of the form Mp. We now assign mnemonic names: from part names to names of
transcendentally interpreted behaviours and then we assign signatures to these behaviours.

70 2 Road Transport [2007-2017]

2.4.2.1.1 Hub Behaviour Signature

309. huby,:

a. there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b. then there are the programmable attributes;

c. and finally there are the input/output channel references: first those allowing communication
between hub and link behaviours,

d. and then those allowing communication between hub and vehicle (bus and automobile)
behaviours.

value

309 huby, .

309a h_ui:H_Ulx(vuis,luis,_):H_-MerxHQ

309b — (HIxH_Traffic)

309¢ — in,out { hl_ch[h_ui,l_ui] | l_ui:L_Ul*l_ui € luis }
309d { ba_r_ch[h_ui,v_ui] | v_ui:V_Ulev_uievuis } Unit
309a pre: vuis = vys A luis = I;s

2.4.2.1.2 Link Behaviour Signature

310. link,:

a. there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b. then there are the programmable attributes;

c. and finally there are the input/output channel references: first those allowing communication between hub
and link behaviours,

d. and then those allowing communication between link and vehicle (bus and automobile) behaviours.

value

310 link;,.:

310a l_ui:L_Ulx(vuis,huis,):L_MerxLQ

310b — (LXxL_Traffic)

310c — in,out { h_l_ch[h_ui,l_ui] | h_ui:H_Ul:h_ui € huis }
310d { ba_r_ch[I_ui,v_ui] | v_ui:(B_UI|A_Ul)*v_uievuis } Unit
310a pre: vuis = vy;s A huis = hy;s

2.4.2.1.3 Bus Company Behaviour Signature

311. bus_companyy,,,:

a. there is here just a “doublet” of arguments: unique identifier and mereology;

b. then there is the one programmable attribute;

c. and finally there are the input/output channel references allowing communication between the bus company
and buses.

value

311 bus_companyy,:

311a bc_ui:BC_UIx(_,_,buis):BC_Mer

311b — BusTimThl

311c in,out {bc_b_ch[bc_ui,b_ui]|b_ui:B_Ul*b_uicbuis} Unit
311a pre: buis = by;s A huis = hy;s

2.4 Perdurants 71
2.4.2.1.4 Bus Behaviour Signature

312. busy,:

a. there is here just a “doublet” of arguments: unique identifier and mereology;

b. then there are the programmable attributes;

c. and finally there are the input/output channel references: first the input/output allowing communication
between the bus company and buses,

d. and the input/output allowing communication between the bus and the hub and link behaviours.

value
312 bus, :

ui *

312a b_ui:B_UIx(bc_ui,_,ruis):B_Mer

312b — (LN x BTT x BPOS)

312c — out bc_b_ch[bc_ui,b_ui],

312d {ba_r_ch[r_ui,b_ui]|r_ui:(H_UI|L_Ul)+ui€v,;s} Unit
312a pre: ruis = rys A be_ui € bey;s

2.4.2.1.5 Automobile Behaviour Signature

313. automobile,,;:

a. there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b. then there is the one programmable attribute;

c. and finally there are the input/output channel references allowing communication between the automobile
and the hub and link behaviours.

value

313 automobile,,:

313a a_ui:A_UIx(_,_,ruis):A_Merxrn:RegNo

313b — apos:APos

313c in,out {ba_r_ch[a_ui,r_ui]|r_ui:(H_UI|L_Ul)*r_uieruis} Unit
313a pre:ruis =r,s Aaui€ays O

2.4.2.2 Behaviour Definitions

We only illustrate automobile, hub and link behaviours.

2.4.2.2.1 Automobile Behaviour at a Hub

We define the behaviours in a different order than the treatment of their signatures. We “split”
definition of the automobile behaviour into the behaviour of automobiles when positioned at a
hub, and into the behaviour automobiles when positioned at on a link. In both cases the behaviours
include the “idling” of the automobile, i.e., its “not moving”, standing still.

314. We abstract automobile behaviour at a Hub (hui).
315. The vehicle remains at that hub, “idling”,

316. informing the hub behaviour,

317. or, internally non-deterministically,

a. moves onto a link, tli, whose “next” hub, identified by th_ui, is obtained from the mereology
of the link identified by tl_ui;
b. informs the hub it is leaving and the link it is entering of its initial link position,

72

C.

2 Road Transport [2007-2017]

whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning (0)
of that link,

318. or, again internally non-deterministically,

319. the vehicle “disappears — off the radar

314
314
315
316
317
317a
317a
314
317b
317b
317¢
317¢
318
319

24.2.

7

automobile, ; (a_ui,({},(ruis,vuis),{}),rn)
(apos:atH(fl_ui,h_ui,tl_ui)) =
(ba_r_ch[a_ui,h_ui] ! (record _TIMIE(),atH(fl_ui,h_ui,tl_ui));
automobile, ; (a_ui,({},(ruis,vuis),{}),rn)(apos))
I
(let ({fh_ui,th_ui},ruis’)=mereo_L(p(tl_ui)) in
assert: fh_ui=h_ui A ruis=ruis’
let onl = (tl_ui,h_ui,0,th_ui) in
(ba_r_ch[a_ui,h_ui] ! (record_TIMIE(),onL(onl)) ||
ba_r_ch[a_ui,tl_ui] ! (record_TIMI(),onL(onl))) ;
automobile,,; (a-ui,({},(ruis,vuis),{}),rn)
(onL(onl)) end end)

Il
stop

2.2 Automobile Behaviour On a Link

320. We abstract automobile behaviour on a Link.

a.

C.
d.

320
320

Internally non-deterministically, either
i. the automobile remains, “idling”, i.e., not moving, on the link,
ii. however, first informing the link of its position,

. or

i. if if the automobile’s position on the link has not yet reached the hub, then
1. then the automobile moves an arbitrary small, positive Real-valued increment along
the link
2. informing the hub of this,
3. while resuming being an automobile ate the new position, or
ii. else,
1. while obtaining a “next link” from the mereology of the hub (where that next link
could very well be the same as the link the vehicle is about to leave),
2. the vehicle informs both the link and the imminent hub that it is now at that hub,
identified by th_ui,
3. whereupon the vehicle resumes the vehicle behaviour positioned at that hub;
or
the vehicle “disappears — off the radar” !

automobile, , (a_ui,({},ruis,{}),rno)
(vp:onL(fh_ui,l_ui,f,th_ui)) =

320(a)ii (ba_r_ch[thui,aui]!atH(lui,thui,nxt_lui) ;
320(a)i automobile,,, (a_ui,({},ruis,{}),rno)(vp))

320b

I

320(b)i (if not_yet_at_hub(f)
320(b)i then
320(b)il (let incr = increment(f) in

314

let onl = (tl_ui,h_ui,incr,th_ui) in

2.4 Perdurants 73

320(b)i2 ba-r_ch[l_ui,a_ui] ! onL(onl) ;

320(b)i3 automobile, , (a-ui,({},ruis,{}),rno)
320(b)i3 (onL(onl))

320(b)i end end)

320(b)ii else

320(b)iit (let nxt_lui:L_Ul-nxt_lui € mereo_H(p(th_ui)) in
320(b)ii2 ba_r_ch[thui,aui]latH(l_ui,th_ui,nxt_lui) ;
320(b)ii3 automobile, ; (a_ui,({},ruis,{}),rno)
320(b)ii3 (atH(l_ui,th_ui,nxt_lui)) end)
320(b)i end)

320c]

320d stop

320(b)i1 increment: Fract — Fract

2.4.2.2.3 Hub Behaviour

321. The hub behaviour

non-deterministically, externally offers

to accept timed vehicle positions —

which will be at the hub, from some vehicle, v_ui.

The timed vehicle hub position is appended to the front of that vehicle’s entry in the hub’s
traffic table;

e. whereupon the hub proceeds as a hub behaviour with the updated hub traffic table.

The hub behaviour offers to accept from any vehicle.

g. A post condition expresses what is really a proof obligation: that the hub traffic, ht” satisfies
the axiom of the endurant hub traffic attribute Item 284 Pg. 64.

fn oo

lma)

value

321 huby, (h_ui,(,(luis,vuis)),hw)(ho,ht) =

321a]

321b {let m = ba_r_ch[h_ui,v_ui] ? in

321c assert: m=(_,atHub(_,h_ui,))
321d let ht’ = ht + [h_ui = (m)y ht(h_ui)] in
321e huby, ,(h_ui,(,(luis,vuis)),(hw))(ho,ht’)
321f | v_ui:V_Ulv_uievuis end end }

321g post: V v_ui:V_Ul-v_ui € dom ht'=time_ordered(ht’(v_ui))

2.4.2.2.4 Link Behaviour

322. The link behaviour non-deterministically, externally offers

323. to accept timed vehicle positions —

324. which will be on the link, from some vehicle, v_ui.

325. The timed vehicle link position is appended to the front of that vehicle’s entry in the link’s
traffic table;

326. whereupon the link proceeds as a link behaviour with the updated link traffic table.

327. The link behaviour offers to accept from any vehicle.

328. A post condition expresses what is really a proof obligation: that the link traffic, It satisfies the
axiom of the endurant link traffic attribute Item 288 Pg. 65.

74 2 Road Transport [2007-2017]

322 link; (lui,(_,(huis,vuis),),lo)(lo,lt) =

322

323 { let m = ba_r_ch[l_ui,v_ui] ? in

324 assert: m=(_,onLink(_,I_ui,_,))
325 let I’ = It +[I_ui —» (mYy t(l_ui)] in
326 link; ,(I_ui,(huis,vuis),hw)(ha,It’)
327 | v_ui:V_Ul-v_uievuis end end }

328 post: V v_ui:V_Ul-v_ui € dom It'=time_ordered(It’ (v_ui))

2.5 System Initialisation

2.5.1 Initial States

value
hs:H-set = = obs_sH(obs_SH(obs_RN(rts)))
Is:L-set = = obs_sL(obs_SL(obs_RN(rts)))
bes:BC-set = obs_BCs(obs_SBC(obs_FV(obs_RN(rts))))
bs:B-set = U{obs_Bs(bc)|bc:BC-bc € bes}
as:A-set = obs_BCs(obs_SBC(obs_FV(obs_RN(rts))))

2.5.2 Initialisation

We are reaching the end of this domain modeling example. Behind us there are narratives and
formalisations. Based on these we now express the signature and the body of the definition of a
“system build and execute” function.

329. The system to be initialised is

the parallel compositions (||) of

the distributed parallel composition (||{...]...}) of all hub behaviours,

the distributed parallel composition (||{...]...}) of all link behaviours,

the distributed parallel composition (||{...|...}) of all bus company behaviours,
the distributed parallel composition (||{...|...}) of all bus behaviours, and

the distributed parallel composition (||{...]...}) of all automobile behaviours.

-0 N O

value

329 initial_system: Unit — Unit

329 initial_system() =

329b || { huby,,(h_ui,me,hw)(htrf,ho)

329b | h:H-h € ks, h_ui:H_Ul-h_ui=uid_H(h), me:HMetL-me=mereo_H(h),
329b htrf:H_Traffic-htrf=attr_H_Traffic_H(h),

329b hw:HQ-hw=attr HQ(h), ho:HX-ho=attr HZ(h)Aho € hw }

329a ||

329¢ || { link; (I-ui,me,lw)(Itrf,lo)

329c l:Lel € Is, |_ui:L_Ul-l_ui=uid_L(l), me:LMet-me=mereo_L(l),

329c Itrf:L_Traffic-ltrf=attr_L_Traffic_H(l),

329¢ lw:LQ-lw=attr LQ(l), lo:LEo=attr LE()Alo € lo }

2.5 System Initialisation 75

329a
329d
329d
329d
329a
329¢
329¢
329¢
329a
329f

329f

329f

I

|| { bus_company,, .(bcui,me)(btt)
bc:BC-bc € bes, be_ui:BC_Ul-bc_ui=uid_BC(bc), me:BCMet-me=mereo_BC(bc),
btt:BusTimTbl-btt=attr BusTimTbl(bc) }

I

Il { busy,,(b-ui,me)(In,btt,bpos)
b:B*b € bs, b_ui:B_Ul-b_ui=uid_B(b), me:BMet:me=mereo_B(b), In:LN:pln=attr_LN(b),
btt:BusTimTbl-btt=attr BusTimTbl(b), bpos:BPos-bpos=attr_BPos(b) }

I

|l { automobile, , (a_ui,me,rn)(apos)
a:A-a € as, a_ui:A_Ul-a_ui=uid_A(a), me:AMet*me=mereo_A(a),
rn:RegNo-rno=attr_RegNo(a), apos:APos-apos=attr APos(a) } O

Chapter 3
The Blue Skies [August 2021]

3.2.2.1.1 Obervers

3.2.2.1.3 Axioms

3.2.2.2.1 Obervers
3.2.2.2.2 Axioms

Contents

31 Introdution..........coiiiiiiiiiiiiiiiiiiiiiiieiiiieeiaenaans
3.2 Endurantso.iiiiiiii e,
3.21 External Qualities
3.2.1.1 Partsand Fluids

3212 TheAirState..............................

3.22 InternalQualities
3.22.1 Unique Ildentifiers

3.22.1.2 All Unique ldentifiers

3222 Mereologyccoviiiiiiii

3.2.2.3 Attributes ... L.

33 Perdurants...........cciiiiiiiiiiii e
331 Channels........... ...
332 Behaviours...........
333 Signatures i
3.34 Definitions
335 System...........
34 ConClUSION ..ottt ittt ittt e,

3.1 Introdution

Some early work on this domain was reported in 1995 [18]. From Appendix B of [55] we “lift”

Fig. B.1 Page 349, cf. Fig. 3.1 on the following page.

The aim of this chapter is to [eventually] present a model of the air traffic domain hinted at in

Fig. 3.1 on the next page.

77

78 3 The Blue Skies [August 2021]

ga/agli,]:GAIAG ga/ag[i,jJ: GAJAG

at/talk,j.AT|TA at/talk,j:AT|TA

ar/ra[m,j:AR|RA

Terminal
ontrol
Tower

Terminal
Control
Tower

Control
Ceptre

rc/er[m,n]:RC|CR
rc/cr[m,n]:RC|CR

ac/calk,n]:AC|CA ac/calk,n]:AC|CA

ontinenta
Control
Centre

ontinenta
Control
Centre

gc/cgli,n]:GC|CG cc[n,n’]:CC gcl/cgli,n]:GC|CG

This right 1/2 is a "mirror image" of left 1/2 of the figure

Fig. 3.1 A schematic air traffic system

3.2 Endurants

3.2.1 External Qualities
3.2.1.1 Parts and Fluids
3.2.1.2 The Air State

3.2.2 Internal Qualities
3.2.2.1 Unique Identifiers
3.2.2.1.1 Obervers

3.2.2.1.2 All Unique Identifiers
3.2.2.1.3 Axioms

3.2.2.2 Mereology

3.2.2.2.1 Obervers

3.2.2.2.2 Axioms

3.2.2.3 Attributes

3.3 Perdurants
3.3.1 Channels
3.3.2 Behaviours
3.3.3 Signatures
3.3.4 Definitions

3.3.5 System

Chapter 4
The 7 Seas [August 2021]

Contents
41 Introduction.ccoiiiiiiiiiiiiiiiiiiteieeieetetenenennaans 80
42 Endurantsc..iiiiii i eieeieeiieiaeaaaa, 80
421 External Qualities 80
4.2.1.1 Informal Introduction................................ 80
4.2.1.2 Formal Introduction 85
4.2.1.2.1 Partsand Fluids 85
42122 The7SeasState......................... 85
4.22 Internal Qualities L. 86
4221 Uniqueldentifiers 86
4.2.2.1.1 Observers 86
4.221.2 All Unique Identifiers 86
4.2.2.1.3 AXiom ... 86
4.2.2.14 Extraction of Atomic Elements 86
4222 Mereology ...t 87
42221 Types, Observers and Axioms 87
4.2.2.2.1.1 Seas:.............ooiiiiil. 87
4.2.2.2.1.2 Rivers: 87
4.2.2.2.1.3 Canals and Straits: 87
4.2.2.2.14 Continents:................. 88
4.2.2.2.1.5 Harbours: 88
4.2.2.2.1.6 Vessels: 88
4.2.2.2.2 ARemark................................ 89
4.2.2.2.3 A Domain Axiom......................... 89
4.2.2.3 Attributes ... 89
42231 SEAS. ... 89
4.2.2.3.2 Rivers ... 20
4.2.2.3.3 Canals and Straits 90
4.2.23.4 Continents............................... 91
4.2.2.3.5 Harbours 91
4.2.2.3.6 Vessels i 92
43 Perdurants...........cciiiiiiiiii i it ieie it eeteeieeaeeaeas 93
431 Channels.................. . 93
43.2 Behaviours................. . 93
433 Signatures 93
4.3.4 Definitions 93
43.5 System 93
0 S 07 3 oY [T o o N 93

79

80 4 The 7 Seas [August 2021]

4.1 Introduction

In this model we shall treat waterways, not as fluids, but as solids! That is, we may considers
waterways as parts, and hence, by transcendental deductions, as possibly having behaviours.
Similarly we shall consider many composite endurants, not as elements of structures, but as parts,
while not considering their internal qualities, that is, not considering their possible behaviours.

4.2 Endurants

4.2.1 External Qualities

4.2.1.1 Informal Introduction

e Waterways include seas, rivers and navigable “k”anals.

e One can take the view that there are the following eight seas: the Arctic Ocean, the North Atlantic
Ocean, the South Atlantic Ocean, the Indian Ocean, the North Pacific Ocean, the South Pacific
Ocean, the Southern (or Antarctic) Ocean, and the Kaspian Sea. Another view “collapses” the
north and south into one, leaving just 6 oceans and seas. Yet a third view is that there are just 2
oceans and seas: The Kaspian Sea and the others — since they are all “tightly” connected ! The
Kaspian Sea cannot be reached by ship or boat from the ocean[s]! The Mediterranean and The

4.2 Endurants 81

Black Seas are both considered segments of The Atlantic Ocean. The Arab Sea is considered a
segment of The Indian Ocean. Etcetera.

Arctic Ocean

artfy
866 7 e Baltic Sea
Elrurh Sea

'H'ﬂl"fh R ;
Aflantic | wﬁ
Pacific Siman Modimergpear 1"‘ Pacific

Ceoan

Cleatn “T =Corribean Seo Sea Rad .EIEE‘- LS

’urrblnn Sea

¢ lndian

South Ocean

Atlantic
Ceoan

A World Map of Oceans and Seas

i - _.-q:';_':.. Tk S v p i, Eiiina
S rRamCE W s — i e
e
[ey
¥ s) g]
:1_"";!_ LFAN A v St Ay indis b
i e —) woee ey
\ = T U EfK E¥),
= i =R it v ? s i [,
r ~ — -y, - sk 3 e Carguta
- - o]
wWOARGE T 'l;ﬂ'l—- =
i 3 My
g
Sergage
ALOEEIA
LIEY A rarer % Feesss : .
% B

The Mediterranean and Arab Seas

82 4 The 7 Seas [August 2021]

UKRAINE

BLACK SEA
e SINOP

TURKEY

The Black Sea and the Kaspian Ocean
e By navigable rivers, “k”anals and status mean such rivers, “k”anals and straits that are con-
nected to the seas and can be navigated by boats and ships. Such areas of rivers and “k”anals that
are not navigable by ocean-going boats and ships are area-wise elements of “their” continents.
Notice that we “lump” “k”anals and straits:

Map of Yangtze River Sections

Tuotwe | Topatn e iver Chunpangver nglang Worgorg ||| Yongt |
| e v ot

Xfang
River [

Yangtze River Basin

e

S

The Yang Tse and the Danube Rivers

4.2 Endurants 83

The Gibraltar and Malacca Straits
e By continents we loosely mean some connected land area.

The left map counts Central America, The Caribbean and Middle East as continents !

84 4 The 7 Seas [August 2021]

e By harbours we mean places at the edge of continents, seas, rivers, “k”anals and straits where
vessels can berth, unload and load cargo and/or passengers.

HARBOUR LAYOUT

THANGHAL
HARBOUR

Rotterdam and Shanghai Harbours
e By vessels we mean ocean-going ships and boats. Without loss of generality we omit consider-
ation of such vessels as floats, barges, etc.

Miscellaneous Vessels

4.2 Endurants 85

4.2.1.2 Formal Introduction

4.2.1.2.1 Parts and Fluids

330. “The 7 Seas” is a structure composite of the waterways, the continents, the harbours and the
vessels.

331. The waterways aggregate consists of an structure composite of a fluids: seas, rivers and
“k”anal/straits aggregates.

332. The seas aggregate is a set of seas.

333. The rivers aggregate is a set of [atomic] rivers.

334. The “k”anal/straits aggregate is a set of [atomic] “k”anals and straits.

335. The continents aggregate is a set of [atomic] continents.

336. The harbour aggregate is a set of [atomic] harbours.

337. The Vessel aggregate is a set of [atomic] vessels.

type

330. 7Seas, WA, CA, HA, VA

331. SA, RA, KA

332. Ss = S-set

333. Rs = R-set

334. Ks = K-set

335. Cs = C-set

336. Hs = H-set

337. Vs = V-set

value

330. obs_WA: 7Seas—WA, obs_CA: 7Seas—CA, obs_HA: 7Seas—HA, obsVA: 7Seas—VA
331. obs_SA: WA — SA, obs_RA: WA — RA, obs_KA: WA — KA
332. 0obs_Ss: SA — Ss

333. obs_Rs:RA — Rs

334. obs_Ks: KA — Ks

335. obs_Cs: CA — Cs

336. obs_Hs: HA — Hs

337. obs_Vs:VA — Vs

4.2.1.2.2 The 7 Seas State

338. By “The 7 Seas state” we mean the collection of all atomic “The 7 Seas” endurants — a collection
which is the distributed union of all continents, rivers, canals, continents, harbours and vessels.

value

330. 7seas:7Seas

332. s5:Ss = obs_Ss(obs_SA(obs_WA(7seas)))
333. rs:Rs = obs_Rs(obs_RA(obs_WA(7seas)))

334.
335.
336.
337.
338.

ks:Ks = obs_Ks(obs_KA(obs_WA(7seas)))

¢s:Cs = obs_Cs(obs_CA(7seas))

hs:Hs = obs_Hs(obs_HA(7seas))

vs:Vs = obs_Vs(obs_VA(7seas))
70:(SIRIKIC|H|V)-set = ss U rs U ks U ¢s U hs U vs

Please not the type font names for the state values.

86 4 The 7 Seas [August 2021]

4.2.2 Internal Qualities

4.2.2.1 Unique Identifiers
4.2.2.1.1 Observers

339.

type

339. S|, R, Kl, Cl, HI, VI

value

339. uid_S: S—SI, uid_R: R—RI, uid_K: K—KIl, uid_C: C—Cl, uid_H: H—HI, uid_V: V-VI

4.2.2.1.2 All Unique Identifiers

340. We can calculate the sets of all sea, river, canal, continent, harbor and vessel identifiers,
341. as well as the set of all atomic part and fluid identifiers of the 7 Seas domain.

value

340. sis:Sl-set = {uid_S(s)|s:S-s € ss}

340. ris:Rl-set = {uid_R(r)|r:R-r € rs}

340. kis:Kl-set = {uid_K(k)|k:Kk € ks}

340. cis:Cl-set = {uid_C(c)|c:C-c € cs}
{

(c)
340. his:HI-set = {uid_H(h)|h:H-h € hs}
340. wvis:Vl-set = {uid_V(v)|v:V+v € vs}

341. 7is:(SIRIKICIHIVI)-set = sisUrisUkisUcisUhisUvis

4.2.2.1.3 Axiom

342. All atomic parts and separate fluids have unique identifiers.

axiom
342. card 70 = card ais

4.2.2.1.4 Extraction of Atomic Elements

343. From a sea identifier we can, via the domain state ss, obtain the seal.

344. From a river identifier we can, via the domain state rs, obtain the river.

345. From a canal identifier we can, via the domain state ks, obtain the canal.

346. From a continent identifier we can, via the domain state cs, obtain the continent.
347. From a harbour identifier we can, via the domain state hs, obtain the harbour.
348. From a vessel identifier we can, via the domain state vs, obtain the vessel.

value

343. xtr_S: SI-S; xtr_S(si) = let s:S+s € ss A uid_S(s) = si in s end
344. xtr_R: RI-=R; xtr_R(ri) = letr:R - r € rs A uid_R(r) = riin r end
345. xtrK: KI-K; xtr_K(ki) = let kiK - k € ks A uid_K(k) = ki in k end

4.2 Endurants

346. xtr_C: Cl-C; xtr_C(ci) = let c:C - c € ¢s A uid_C(c) = ciin ¢ end
347. xtr_H: HI-H; xtr_H(hi) = let h:H - h € hs A uid_H(h) = hi in h end
348. xtr_V: VI-V; xtr_V(vi) = let v:V * v € vs A uid_V(v) = viin v end

4.2.2.2 Mereology
4.2.2.2.1 Types, Observers and Axioms

4.2.2.2.1.1 Seas:

349. The mereology of a sea is a triplet of the sets of unique identifiers of

e the vessels that may sail on it,
e the continents that borders it and
e the harbours that confront it.

type

349. MS = Vl-set x Cl-set x Hl-set
value

349. mereo.S: S —» MS

axiom

349. VY s:S:s e ss = let(vis,cis,his) = mereo_S(s) in vis C vis A cis C cis A his C his end

4.2.2.2.1.2 Rivers:

350. The mereology of a river is the triplet of

e the non-empty set of unique identifiers of the continents it is embedded in,
o the [one] unique identifier of the sea (or ocean) it is connected to, and
o the set of unique identifiers of the vessels that may sail on that river.

type

350. MR = Cl-set x S| x Vl-set
value

350. mereo_R: R —» MR
axiom

350. Vr:R:rers = let(cis,si,vis) = mereo_R(r) in {} # cis C cis A si € sis A vis C vis end

4.2.2.2.1.3 Canals and Straits:

351. The mereology of a canal or a strait is the triplet of

e aset of one or two unique identifiers of the seas that the canal or strait connects,
e the set of unique identifiers of the harbours it offers,
e the set of unique identifiers of the vessels that may sail through the canal or strait.

type
351. MK = Sl-set x Hl_set x Vl-set
value

88 4 The 7 Seas [August 2021]

351. mereo K: K - MK

axiom

351. YV riK:k e ks = let (sis,cis,vis) =

mereo_K(k) in 1 <card sis < 2 A sis C sis A his € his A vis C vis end

4.2.2.2.1.4 Continents:

352. The mereology of a continent is the triplet of

o the set of unique identifiers of the [other!®] continents that the continent borders with,
o the set of unique identifiers of the harbours on that continent, and
e the set of unique identifiers of the rivers flowing through that continent.

type

352. MC = Cl-set x Hl_set x Rl-set
value

352. mereo.C: C —» MC

axiom

352. Y ¢:C:c ecs = let(cis,his,ris) = mereo_C(c) in cis C cis A his C his A ris C ris end

4.2.2.2.1.5 Harbours:

353. The mereology of a harbour is the triplet of

e the unique identifier of the continent to which the harbour belongs, and
o the set of unique identifiers of the vessels that may berth at that harbour.

type

353. MH = CI x Vl-set
value

353. mereo_ H: H - MH
axiom

353. V h:H - h € hs = let (ci,vis) = mereo_H(j) in ci € cis A vis € vis end

4.2.2.2.1.6 Vessels:

354. The mereology of a vessel is the pair of

o the set of unique identifiers of the seas on which the vessel may sail, and
e the set of unique identifiers of the harbours at which the vessel may berth,

type

354. MV = Sl-set x Hl-set
value

354. mereo.V:V —» MV
axiom

354. VY v:V - v € vis = let (sis,his) = mereo_V(v) in sis C sis A his C his end

19 The axiom (351) does not model “the other” clause!

4.2 Endurants 89

4.2.2.2.2 A Remark

Please note that we have not [yet] had a need to describe the sea and land ARIEAs of seas and
continents.

4.2.2.2.3 A Domain Axiom

The axioms of Sect. 4.2.2.2.1 pertains to the individual atomic elements of the domain, not to their
occurrence in the context of the aggregates to which they are elements.

355. The mereology of a sea of a domain states the unique identifiers of the vessels that may sail on
it, so we must, vice-versa, expect that the mereology of the identified vessels likewise identify
that sea as one on which it may sail.

axiom

355. Vs S-sess=

355. let (vis,cis,his) = mereo_S(s) in
355. Y vi:Vl - vi € vis =

355. let viV « v = xtr_V(vi) in
355. let (sis,his) = mereo_V(v) in
355. uid_S(s) € sis end end end

We leave it to the reader to narrate and formalise similar “cross-mereology” axioms for [all other]
relevant “pairs” of different sort atomic elements of the domain.

4.2.2.3 Attributes

Seas, rivers, canals, continents and harbours have spatial attributes of kind SURFACE, LINE
and IPOIINT. We refer to [55, Sect. 3.4].

4.2.2.3.1 Seas

356. We ascribe names to seas.

357. Seas spread over contiguous surface (SURFACE).
358. Seas have borders/edges (ILINE).

359.

360.

361.

362.

type

356. SeaName

357. SeaSurface = SURIFACE

358. SeaBorder = ILINE

359.

360.

361.

value

356. attr_SeaName: S — SeaName
357. attr_SeaSurface: S — SeaSurface

90 4 The 7 Seas [August 2021]

358. attr_SeaBorder: S — SeaBorder
359. attr_: —
360. attr_: —
361. attr_: —

4.2.2.3.2 Rivers

363.
364.
365.
366.
367.
368.
369.

type
363.
364.
365.
366.
367.
368.
value
363. attr_:
364. attr_:
365. attr_:
366. attr_:
367. attr_:
368. attr_:

Ll lll

4.2.2.3.3 Canals and Straits

370.
371.
372.
373.
374.
375.
376.

type

370.

371.

372.

373.

374.

375.

value

370. attr_: —

4.2 Endurants

371. attr_:
372. attr_:
373. attr_:
374. attr_:
375. attr_:

Ll Ll

4.2.2.3.4 Continents

377.
378.
379.
380.
381.
382.
383.

type
377.
378.
379.
380.
381.
382.
value
377. attr_:
378. attr_:
379. attr_:
380. attr_:
381. attr_:
382. attr_:

Ll Ll

4.2.2.3.5 Harbours

384.
385.
386.
387.
388.
389.
390.

type
384.
385.
386.
387.
388.
389.

value

91

92 4 The 7 Seas [August 2021]

384. attr_:
385. attr_:
386. attr_:
387. attr_:
388. attr_:
389. attr_:

Ll lll

4.2.2.3.6 Vessels

391. Vessels have names.

392. Vessels have kind: passenger, ordinary freight, crude oil, container, ...

393. Vessels, at any one “point” in time has a position.

394. Vessels, when sailing, follow a route.

395. Vessel positions are well-formed if they are on the current route.

396. Vessels have a speed

397. and a velocity.

398. A vessel is on course if its position (at some time) is on that vessel’s route.

type

391. VesselName

392. VesselKind = ...

393. VesselPos = TIME x POSITION

394. \VesselRoute = BezierCurve

396. VesselSpeed

396. VesselVelocity

value

391. attr_VesselName: V — VesselName

392. attr_VesselKind: V — VesselKind

393. attr_VesselPos: V — VesselPos

394. attr_VesselRoute: V — VesselRoute

396. attr_VesselSpeed: V — Speed

397. attr_VesselVelocity: V — Velocity

398. Vessel_on_course: V — Bool

398. Vessel_on_course(v) = let (vp,) = attr_VesselPos(v) in Position_on_curve(vp,attr_VesselRoute(v)) end
398. Position_on_curve: POSITION x Bezier — Bool

4.4 Conclusion

4.3 Perdurants
4.3.1 Channels
4.3.2 Behaviours
4.3.3 Signatures
4.3.4 Definitions
4.3.5 System

4.4 Conclusion

93

Chapter 5
Pipelines [2008]

Fig. 5.1 The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco_Pipeline

Named after Verdi’s opera

Gas pipeline

3300 kms

2011-2014, first gas flow: 2014; 2017-2019, more pipes
8 billion Euros

Max flow: 31 bemy: billion cubic meters a year
http://www.nabucco-pipeline.com/

95

96 5 Pipelines [2008]

Fig. 5.2 The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

QS Join

Q Fork |

QO Pump | Units
Q valve !

Pipe

® Connection

O oil well
O Oil (Depot) Sink

Pump

Fig. 5.3 An oil pipeline system

5.1 Photos of Pipeline Units and Diagrams of Pipeline Systems

When combining joins and forks we can construct sitches. Figure 5.7 on page 99 shows some
actual switches.
Figure 5.8 on page 100 diagrams a generic switch.

5.2 Non-Temporal Aspects of Pipelines

These are some non-temporal aspects of pipelines. nets and units: wells, pumps, pipes, valves,
joins, forks and sinks; net and unit attributes; and units states, but not state changes. We omit, in
early (i.e., next) chapters, consideration of “pigs” and “pig”-insertion and “pig”-extraction units.

5.2.1 Nets of Pipes, Valves, Pumps, Forks and Joins

399. We focus on nets, n : N, of pipes, 7 : I1, valves, v: V, pumps, p : P, forks, f : F, joins, j:], wells,
w: W and sinks, s: S.

19 See http://en.wikipedia.org/wiki/Nabucco_Pipeline

5.2 Non-Temporal Aspects of Pipelines 97

o=

Fig. 5.4 Pipes

Fig. 5.5 Valves

400. Units, u : U, are either pipes, valves, pumps, forks, joins, wells or sinks.
401. Units are explained in terms of disjoint types of Plpes, VAlves, PUmps, FOrks, JOins, WElls
and SKs.?°

type

20 This is a mere specification language technicality.

98 5 Pipelines [2008]

Fig. 5.6 Oil Pumps and Gas Compressors

399 N, PI, VA, PU, FO, JO, WE, SK
400 U=TIT|V|P|F|J|SIW

400 IT == mkII(pi:PI)

400 V == mkV(va:VA)

400 P == mkP(pu:PU)

400 F == mkF(fo:FO)

400 J == mkJ(jo:JO)

400 W == mkW(we:WE)

400 S == mkS(sk:SK)

5.2.2 Unit Identifiers and Unit Type Predicates

402. We associate with each unit a unique identifier, ui : Ul

403. From a unit we can observe its unique identifier.

404. From a unit we can observe whether it is a pipe, a valve, a pump, a fork, a join, a well or a sink
unit.

type
402 Ul
value
403 obs_Ul: U — Ul
404 is_IT: U — Bool, is_V: U — Bool, ..., is_.J: U — Bool
is_[1(u) = case u of mkPI(_) — true, — false end
is_V(u) = case u of mkV(_) — true, _— false end

is_S(u) = case u of MkS(_) — true, — false end

5.2 Non-Temporal Aspects of Pipelines

F

ig. 5.7 Oil and Gas Switches

5.2.3 Unit Connections

99

A connection is a means of juxtaposing units. A connection may connect two units in which case
one can observe the identity of connected units from “the other side”.

405
406
407
408
409

. With a pipe, a valve and a pump we associate exactly one input and one output connection.
. With a fork we associate a maximum number of output connections, m, larger than one.

. With a join we associate a maximum number of input connections, m, larger than one.

. With a well we associate zero input connections and exactly one output connection.

. With a sink we associate exactly one input connection and zero output connections.

value

405 obs_InCs,obs_OutCs: I1|VIP — {|1:Nat|}

100 5 Pipelines [2008]

x|y = {d}
; y u - {cd}

v [{a.cf}

. connectors

SI0IORAOIOI0

Fig. 5.8 A Switch Diagram

406 obs_inCs: F — {|1:Nat|}, obs_outCs: F — Nat

407 obs_inCs: J — Nat, obs_outCs: J — {|1:Nat|}

408 obs_inCs: W — {|0:Nat|}, obs_outCs: W — {|1:Nat|}

409 obs._inCs: S — {|1:Nat|}, obs_outCs: S — {|0:Nat]|}
axiom

406 V f:F - obs_outCs(f) > 2

407 V j:J - obs_inCs(j) = 2

If a pipe, valve or pump unit is input-connected [output-connected] to zero (other) units, then
it means that the unit input [output] connector has been sealed. If a fork is input-connected
to zero (other) units, then it means that the fork input connector has been sealed. If a fork is
output-connected to # units less than the maximum fork-connectability, then it means that the
unconnected fork outputs have been sealed. Similarly for joins: “the other way around”.

5.2.4 Net Observers and Unit Connections

410. From a net one can observe all its units.
411. From a unit one can observe the the pairs of disjoint input and output units to which it is
connected:

a. Wells can be connected to zero or one output unit — a pump.
b. Sinks can be connected to zero or one input unit — a pump or a valve.

5.2 Non-Temporal Aspects of Pipelines 101

Fig. 5.9 To be treated in a later version of this report: Pig Launcher, Receiver and New and Old Pigs

Initial Injsetion Comprassor.| Final Delivary
Statien r’i”.‘eﬂ’iﬂg Statien

D

——]

I
I
I
I
|
1
I
i
I
i
3

L

r———|4———
L ——[=

f

|

|

|

|
_______ e

Partial Dollvory Block Valve
Stallon Station

Mein Conlrel Reom

Fig. 5.10 Pipeline Diagrams

c. Pipes, valves and pumps can be connected to zero or one input units and to zero or one
output units.

d. Forks, f, can be connected to zero or one input unit and to zero or 1, 2 < n <obs_Cs(f) output
units.

e. Joins, j, can be connected to zero or 1, 2 < n <obs_Cs(j) input units and zero or one output
units.

102 5 Pipelines [2008]

value
410 obs_Us: N — U-set
411 obs_cUls: U — Ul-set x Ul-set
wf_Conns: U — Bool
wf_Conns(u) =
let (iuis,ouis) = obs_cUIs(u) in iuis N ouis = {} A
case U of
411a mkW(_) — card iuis € {0} A card ouis € {0,1},

} }
411b mkS(_) — card iuis € {0,1} A card ouis € {0},
411c mkII(_) — card iuis € {0,1} A card ouis € {0,1},
411¢c mkV(_) — card iuis € {0,1} A card ouis € {0,1},
411c mkP(_) — card iuis € {0,1} A card ouis € {0,1},
411d mkF(_) — card iuis € {0,1} A card ouis € {0}U{2..0bs_inCs(j)},
411e mkJ(_) — card iuis € {0}u{2..0bs_inCs(j)} A card ouis € {0,1}
end end

5.2.5 Well-formed Nets, Actual Connections

412. The unit identifiers observed by the obs_cUIls observer must be identifiers of units of the net.

axiom
412 ¥ n:N,u:U - u € obs_Us(n) =
412 let (iuis,ouis) = obs_cUls(u) in
412 VY ui:Ul - ui € iuis U ouis =
412 3Ju"U-u €obs_Us(n) A u'#u A obs_Ul(u")=ui end

5.2.6 Well-formed Nets, No Circular Nets

413. By a route we shall understand a sequence of units.
414. Units form routes of the net.

type
413 R=UI#
value
414 routes: N — R-infset
414 routes(n) =
414 let us = obs_Us(n) in
414 letrs = {(Wu:U-u € us} U {F t'|r,r:R- {r,r'ICrsAadj(r,r')} in
414 rs end end

415. A route of length two or more can be decomposed into two routes
416. such that the least unit of the first route “connects” to the first unit of the second route.

value
415 adj: R x R — Bool
415 adj(fr,lr) =
415 let (lu,fu)=(fr(len fr),hd Ir) in

5.2 Non-Temporal Aspects of Pipelines 103

417.

416 let (lui,fui)=(obs_Ul(lu),obs_Ul(fu)) in
416 let ((_,luis),(fuis,))=(obs_cUlIs(lu),obs_cUls(fu)) in
416 lui € fuis A fui € luis end end end

No route must be circular, that is, the net must be acyclic.

value

417 acyclic: N — Bool
417 letrs = routes(n) in
417 ~3r:Rer e rs=3i,j:Nat+{i,j}Cinds rAi#jAr(i)=r(j) end

5.2.7 Well-formed Nets, Special Pairs, wfN_SP

418.

We define a “special-pairs” well-formedness function.

a. Fork outputs are output-connected to valves.

b. Join inputs are input-connected to valves.

c. Wells are output-connected to pumps.

d. Sinks are input-connected to either pumps or valves.

value

418 wfN_SP: N — Bool

418 wfN_SP(n) =

418 V r:R-reroutes(n) in

418 VY i:Nat- {i,i+1}Cindsr =

418 case r(i) of A

418a mkF(_) — V u:U-adj{r(i)),{u)) = is_V(u), —true end A
418 case r(i+1) of

418b mkJ(_) — V u:U-adj({u)(r(i))) = is_V(u), _—true end A
418 case r(1) of

418c mkW(_) — is_P(r(2)),_—true end A

418 case r(len r) of

418d mkS(_) — is_P(r(len r—1))Vvis_V(r(len r—1)), —true end

The true clauses may be negated by other case distinctions” is_V or is_V clauses.

5.2.8 Special Routes, |

419.

420.
421.

422.
423.

424.

A pump-pump route is a route of length two or more whose first and last units are pumps and
whose intermediate units are pipes or forks or joins.

A simple pump-pump route is a pump-pump route with no forks and joins.

A pump-valve route is a route of length two or more whose first unit is a pump, whose last
unit is a valve and whose intermediate units are pipes or forks or joins.

A simple pump-valve route is a pump-valve route with no forks and joins.

A valve-pump route is a route of length two or more whose first unit is a valve, whose last unit
is a pump and whose intermediate units are pipes or forks or joins.

A simple valve-pump route is a valve-pump route with no forks and joins.

104 5 Pipelines [2008]

425.

426.

A valve-valve route is a route of length two or more whose first and last units are valves and
whose intermediate units are pipes or forks or joins.
A simple valve-valve route is a valve-valve route with no forks and joins.

value

419-426 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R — Bool
pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvri(n): len n>2

419 ppr(r:{fuy € <luy) = is_P(fu) A is_P(lu) A is_ntfjr(€)
420 sppr(r:fuy € lu)) = ppr(r) A is_mr(¢)
421 pvr(rfuy € <lu)) = is_P(fu) A is_V(r(lenr)) A is_nfjr(€)
422 sppr(r{fuy € <lu)) = ppr(r) A is_mr(¢)

423 vpr(rfuy € <lu)y) = is_V(fu) A is_P(lu) A is_rtfjr(¢)

424 sppr(r{fuy € <lu)) = ppr(r) A is_mr(£)

425 vvr(r:(fuy € lu)) = is_V(fu) A is_V(lu) A is_rfjr(€)

426 sppr(r:{fuy € <lu)) = ppr(r) A is_mr(¢)

is_mtfjris_mtr: R — Bool
is_mfjr(r) = VY u:U-u € elems r=is_I1(u)Vis_F(u)Vis_J(u)
is_mtr(r) = V u:U-u € elems r=is_I1(u)

5.2.9 Special Routes, Il

427.
428.
429.
430.

Given a unit of a route,

if they exist (3),

find the nearest pump or valve unit,
“upstream” and

“downstream” from the given unit.

value

427 dUpPoV: U x R — Bool

427 ADoPoV: U x R — Bool

429 find_UpPoV: U x R = (P|V), pre find_UpPoV(u,r): 3UpPoV(u,r)
430 find_DoPoV: U x R = (P|V), pre find_DoPoV(u,r): ADoPoV(u,r)
427 AUpPoV(u,r) =

427 3i,j Nat{i,jjCinds rai<jAfis_V|is_P}(r(i)) Au=r(j)

427 ADoPoV(u,r) =

427 3i,j Nat{i,jjCinds rAai<jau=r(i)A{is_V]is_P}(r(j))

429 find_UpPoV(u,r) =

429 letij:Nat-{i,jicindsrAi<ja{is_V|is_P}(r(i)) Au=r(j) in r(i) end
430 find_DoPoV(u,r) =

430 letij:Nat-{i,jicindsrAi<jau=r(i)A{is_V]is_P}(r(j)) in r(j) end

5.3 State Attributes of Pipeline Units 105

5.3 State Attributes of Pipeline Units

By a state attribute of a unit we mean either of the following three kinds: (i) the open/close
states of valves and the pumping/not_pumping states of pumps; (ii) the maximum (Ilaminar) oil flow
characteristics of all units; and (iii) the current oil flow and current oil leak states of all units.

431.
432.
433.
434.

435.
436.

Oil flow, ¢ : @, is measured in volume per time unit.

Pumps are either pumping or not pumping, and if not pumping they are closed.

Valves are either open or closed.

Any unit permits a maximum input flow of oil while maintaining laminar flow. We shall assume
that we need not be concerned with turbulent flows.

At any time any unit is sustaining a current input flow of oil (at its input(s)).

While sustaining (even a zero) current input flow of oil a unit leaks a current amount of oil
(within the unit).

type

431 @
432 PX == pumping | not_pumping
432 VX == open | closed

value

-+ OX D - P, <,=>. DX D— Bool
432 obs_PX:P — PX
433 obs VX:V —> VX
434-436 obs_Lami®.obs_Currd,obs_Leak®: U —» @
is_Open: U — Bool
case U of
mkI1(_)—true,mkF(_)—true,mkJ()—true,mkW()—true,mkS()—true,
mkP(_)—obs_PX(u)=pumping,
mkV(_)—obs_VX(u)=open
end
acceptable_Leak®, excessive Leak®: U —» @

axiom

Y u:U - excess_Leak®d(u) > accept_Leak®(u)

5.3.1 Flow Laws

The sum of the current flows into a unit equals the the sum of the current flows out of a unit minus
the (current) leak of that unit. This is the same as the current flows out of a unit equals the current
flows into a unit minus the (current) leak of that unit. The above represents an interpretation
which justifies the below laws.

437. When, in Item 435, for a unit u, we say that at any time any unit is sustaining a current input

flow of oil, and when we model that by obs_Curr®(u) then we mean that obs_Curr®(u) -
obs_Leak®(u) represents the flow of oil from its outputs.

value

437 obs.in®: U — @
437 obs_in®(u) = obs_Currd(u)
437 obs_outd:U —» @

law:

437 VY u:U - obs_out®(u) = obs_Currd(u)—obs_Leak®d(u)

106 5 Pipelines [2008]

438.

Two connected units enjoy the following flow relation:

a. If
i. two pipes, or iv. avalve and a valve, or vii. a pump and a pump, or
ii. apipe and a valve, or v. a pipe and a pump, or viii. a pump and a valve, or
iii. avalve and a pipe, or vi. a pump and a pipe, or ix. a valve and a pump

are immediately connected
b. then
i. the current flow out of the first unit’s connection to the second unit
ii. equals the current flow into the second unit’s connection to the first unit

law:

438a VY u,u’:U - {is_IT,is_V,is_Pis_W}(u'lu”) A adj({uy,{u’)
438a is_[I(u)Vis_V(u)Vis_P(u)Vvis_-W(u) A

438a s [1(U')Vis_V(u')Vis_P(u')Vis_S(U')

438b = obs_out®(u)=obs_ind(u’)

A similar law can be established for forks and joins. For a fork output-connected to, for example,

pipes, valves and pumps, it is the case that for each fork output the out-flow equals the in-flow for
that output-connected unit. For a join input-connected to, for example, pipes, valves and pumps,
it is the case that for each join input the in-flow equals the out-flow for that input-connected unit.
We leave the formalisation as an exercise.

5.3.2 Possibly Desirable Properties

439.

440.

441.

442.

Let r be a route of length two or more, whose first unit is a pump, p, whose last unit is a valve,
v and whose intermediate units are all pipes: if the pump, p is pumping, then we expect the
valve, v, to be open.

Let r be a route of length two or more, whose first unit is a pump, p, whose last unit is another
pump, p’ and whose intermediate units are all pipes: if the pump, p is pumping, then we expect
pump p”, to also be pumping.

Let r be a route of length two or more, whose first unit is a valve, v, whose last unit is a pump,
p and whose intermediate units are all pipes: if the valve, v is closed, then we expect pump p,
to not be pumping.

Let r be a route of length two or more, whose first unit is a valve, v/, whose last unit is a valve,
v”" and whose intermediate units are all pipes: if the valve, v’ is in some state, then we expect
valve v”, to also be in the same state.

desirable properties:

439 VY r:R - spvr(r) A
439 spvr_prop(r): obs_PX(hd r)=pumping = obs_PX(r(len r))=open

440 VY r:R - sppr(r) A
440 sppr_prop(r): obs_PX(hd r)=pumping=0bs_PX(r(len r))=pumping

441 VY r:R - svpr(r) A
441 svpr_prop(r): obs_PX(hd r)=open=o0bs_PX(r(len r))=pumping

5.4 Pipeline Actions

pr """""" pv t
TL Tt T,

OPEN - - oo s = open

closed e = closed

Fig. 5.11 pv: Pump or valve, m: pipe

442 Y r:R - svvr(r) A
442 svvr_prop(r): obs_PX(hd r)=obs_PX(r(len r))

5.4 Pipeline Actions

5.4.1 Simple Pump and Valve Actions

443. Pumps may be set to pumping or reset to not pumping irrespective of the pump state.

444. Valves may be set to be open or to be closed irrespective of the valve state.
445. In setting or resetting a pump or a valve a desirable property may be lost.

value
443 pump_to_pump, pump_to_not_pump: P - N — N
444 valve_to_open, valve_to_close: V—- N — N

value
443 pump_to_pump(p)(n) as n’
443 pre p € obs_Us(n)
443 post let p":P-obs_Ul(p)=obs_UI(p’) in
443 obs_PX(p’)=pumpingAelse_equal(n,n’)(p,p) end
443 pump_to_not_pump(p)(n) as n’
443 pre p € obs_Us(n)
443 post let p’:P-0bs_Ul(p)=0bs_Ul(p’) in
443 obs_PX(p’)=not_pumpingAelse_equal(n,n’)(p,p’) end
444 valve_to_open(v)(n) as n’
443 pre v € obs_Us(n)
444 post let v':V-0bs_Ul(v)=obs_UI(V) in
443 obs_VX(v')=openaelse_equal(n,n’)(v,v’) end
444 valve_to_close(v)(n) as n’
443 pre v € obs_Us(n)
444 post let v':V-0bs_Ul(v)=obs_UI(V) in
443 obs_VZ(v')=closeAelse_equal(n,n’)(v,v") end

value
else_equal: (NxN) — (UxU) — Bool
else_equal(n,n’)(u,u’) =

107

108 5 Pipelines [2008]

obs_Ul(u)=obs_Ul(u")
A u € obs_Us(n)Au’ € obs_Us(n")
A omit_X(u)=omit_Z(u")
A obs_Us(n)\{u}=obs_Us(n)\{u’}
A Y u”:U-u” € obs_Us(n)\{u} = u” € obs_Us(n")\{u’}

omit-X: U — Upg state ——— magic” function

=:Uno_state X Uno_state — Bool
axiom

YV u,u”:U-omit_Z(u)=omit_Z(u’) = obs_Ul(u)=obs_UI(u")

5.4.2 Events

5.4.2.1 Unit Handling Events

446. Let n be any acyclic net.

446. If there exists p,p’,v,v’, pairs of distinct pumps and distinct valves of the net,

446. and if there exists a route, r, of length two or more of the net such that

447. all units, u, of the route, except its first and last unit, are pipes, then

448. if the route “spans” between p and p’ and the simple desirable property, sppr(r), does not hold
for the route, then we have a possibly undesirable event — that occurred as soon as sppr(r) did
not hold;

449. if the route “spans” between p and v and the simple desirable property, spvr(r), does not hold
for the route, then we have a possibly undesirable event;

450. if the route “spans” between v and p and the simple desirable property, svpr(r), does not hold
for the route, then we have a possibly undesirable event; and

451. if the route “spans” between v and v’ and the simple desirable property, svvr(r), does not hold
for the route, then we have a possibly undesirable event.

events:
446 ¥ n:N - acyclic(n) A
446 Ap,p":PvV:V - {p,p’v,v'}Cobs_Us(n)=
446 A dr:R - routes(n) A

447 Y u:U - u € elems(r)\{hd r,r(len r)} = is_[1(i) =
448 p=hd rAp’=r(len r) = ~sppr_prop(r) A

449 p=hd rAv=r(len r) = ~spvr_prop(r) A

450 v=hd rAp=r(len r) = ~svpr_prop(r) A

451 v=hd rAv'=r(len r) = ~svvr_prop(r)

5.4.2.2 Foreseeable Accident Events

A number of foreseeable accidents may occur.

452. A unit ceases to function, that is,

a. a unit is clogged,
b. a valve does not open or close,

5.4 Pipeline Actions 109

c. a pump does not pump or stop pumping.

453. A unit gives rise to excessive leakage.

454. A well becomes empty or a sunk becomes full.
455. A unit, or a connected net of units gets on fire.
456. Or a number of other such “accident”.

5.4.3 Well-formed Operational Nets

457. A well-formed operational net
458. is a well-formed net

a. with at least one well, w, and at least one sink, s,
b. and such that there is a route in the net between w and s.

value
457 wf_OpN: N — Bool
457 wf_OpN(n) =
458 satisfies axiom 412 on page 102 A acyclic(n): ltem 417 on page 103 A
458 wfN_SP(n): satisfies flow laws, 437 on page 105 and 438 on page 106 A
458a JAw:W,s:S - {w,s}]Cobs_Us(n) =
458b I r:R- (w)y T (s) € routes(n)

5.4.4 Orderly Action Sequences

5.4.4.1 Initial Operational Net

459. Let us assume a notion of an initial operational net.
460. Its pump and valve units are in the following states

a. all pumps are not_pumping, and
b. all valves are closed.

value
459 initial_.OpN: N — Bool
460 initial_OpN(n) = wf_OpN(n) A
460a V p:P - p e obs_Us(n) = obs_PX(p)=not_pumping A
460b V¥V v:V-veobs_ Us(n) = obs_ VX(p)=closed

5.4.4.2 Oil Pipeline Preparation and Engagement

461. We now wish to prepare a pipeline from some well, w : W, to some sink, s : S, for flow.

a. We assume that the underlying net is operational wrt. w and s, that is, that there is a route,
r, from w to s.

b. Now, an orderly action sequence for engaging route r is to “work backwards”, from s to w

c. setting encountered pumps to pumping and valves to open.

110 5 Pipelines [2008]

In this way the system is well-formed wrt. the desirable sppr, spvr, svpr and svvr properties.
Finally, setting the pump adjacent to the (preceding) well starts the system.

value
461 prepare_and_engage: W xS — N = N
461 prepare_and_engage(w,s)(n) =
461a letr:R - (wy ¥ (s) € routes(n) in
461b action_sequence({wy F {s))(len{w) T {s))(n) end
461 pre dr:R- (W) F (s) € routes(n)

461c action_sequence: R —- Nat - N —» N

461c action_sequence(r)(i)(n) =

461c if i=1 then n else

461c case r(i) of

461c mkV(_) — action_sequence(r)(i—1)(valve_to_open(r(i))(n)),
461c mkP(_) — action_sequence(r)(i—1)(pump-_to_pump(r(i))(n)),
461c __— action_sequence(r)(i—1)(n)

461c end end

5.4.5 Emergency Actions

462. If a unit starts leaking excessive oil

a. then nearest up-stream valve(s) must be closed,
b. and any pumps in-between this (these) valves and the leaking unit mustbe set to not_pumping
— following an orderly sequence.

463. If, as a result, for example, of the above remedial actions, any of the desirable properties cease
to hold

a. then—aha!
b. Left as an exercise.

5.5 Connectors

The interface , that is, the possible “openings”, between adjacent units have not been explored.
Likewise the for the possible “openings” of “begin” or “end” units, that is, units not having
their input(s), respectively their “output(s)” connected to anything, but left “exposed” to the
environment. We now introduce a notion of connectors: abstractly you may think of connectors
as concepts, and concretely as “fittings” with bolts and nuts, or “weldings”, or “plates” inserted
onto “begin” or “end” units.

464. There are connectors and connectors have unique connector identifiers.

465. From a connector one can observe its uniwue connector identifier.

466. From a net one can observe all its connectors

467. and hence one can extract all its connector identifiers.

468. From a connector one can observe a pair of “optional” (distinct) unit identifiers:

a. An optional unit identifier is
b. either a unit identifier of some unit of the net

5.5 Connectors 111

c.ora ‘‘nil’’ “identifier”.
469. In an observed pair of “optional” (distinct) unit identifiers

e there can not be two ‘ ‘nil’’ “identifiers”.
e or the possibly two unit identifiers must be distinct

type

464 K, KI
value

465 obs Kl: K — Ki

466 obs_Ks: N — K-set

467 xtr KIS: N — Kl-set

467 xtr_Kls(n) = {obs_KIl(k)|k:K:k € obs_Ks(n)}
type

468 oUlp” = (UI|{|nill})x (UI}{Inill})

468 oUlp = {|ouip:oUlp"-wf_oUlp(ouip)|}
value

468 obs_oUlp: K — oUlp

469 wf_oUlp: oUlp" — Bool

469 wf_oUlp(uon,uon’) =

469 uon=nil=uon’#nilvuon’=nil=uon#nilvuon#uon’

470. Under the assumption that a fork unit cannot be adjacent to a join unit

471. we impose the constraint thet no two distinct connectors feature the same pair of actual (distinct)
unit identifiers.

472. The first proper unit identifier of a pair of “optional” (distinct) unit identifiers must identify a
unit of the net.

473. The second proper unit identifier of a pair of “optional” (distinct) unit identifiers must identify
a unit of the net.

axiom
470 ¥ n:N,u,u’:U+{u.u’}Cobs_Us(n)Aadj(u,u’)= ~(is_F(u)Ais_J(u))

471 V¥ k,k":K-obs_KI(k)#obs_KI(k")=

case (obs_oUlp(k),obs_oUlp(k’)) of
((nil,ui),(nil,ui’)) — uizui’,
((nil,ui),(ui’,nil)) — false,
((ui,nil), (nil,ui’)) — false,
((ui,nil),(ui’,nil)) — uizui’,
__ — false

end

¥V n:N,k:K*k € obs_Ks(n) =
case obs_oUlp(k) of
472 (ui,nil) — JUI(ui)(n)
473 (nil,ui) — JUI(ui)(n)
472-473 (ui,ui’) — JUI(ui)(n)AFUI(ui")(n)
end
value
JuUl: Ul - N — Bool
AUI(ui)(n) = 3 u:U-u € obs_Us(n)Aobs_Ul(u)=ui

112 5 Pipelines [2008]

5.6 On Temporal Aspects of Pipelines

The else_qual(u,u’)(n,n’) function definition represents a gross simplification. It ignores the actual
flow which changes as a result of setting alternate states, and hence the net state. We now wish to
capture the dynamics of flow. We shall do so using the Duration Calculus — a continuous time,

integral temporal logic that is semantically and proof system “integrated” with RSL:

Zhou ChaoChen and Michael Reichhardt Hansen

Duration Calculus: A Formal Approach to Real-time Systems
Monographs in Theoretical Computer Science

The EATCS Series

Springer 2004

5.7 A CSP Model of Pipelines

We recapitulate Sect. 5.5 — now adding connectors to our model:

474.
475.

From an oil pipeline system one can observe units and connectors.
Units are either well, or pipe, or pump, or valve, or join, or fork or sink units.

476. Units and connectors have unique identifiers.
477. From a connector one can observe the ordered pair of the identity of the two from-, respectively
to-units that the connector connects.
type
474 OPLS, U,K
476 Ul KI
value

474 obs_Us: OPLS — U-set, obs_Ks: OPLS — K-set

475 is_WeU, is_PiU, is_PuU, is_VaU,

475 is_JoU, is_FoU, is_SiU: U — Bool [mutually exclusive]
476 obs_Ul: U — Ul, obs_KI: K — KiI

477 obs_Ulp: K — (Ul|{nil}) x (Ul|{nil})

Above, we think of the types OPLS, U, K, Ul and Kl as denoting semantic entities. Below, in the
next section, we shall consider exactly the same types as denoting syntactic entities !

478.
479.
480.
481.

482.

483.
484.
485.
486.

There is given an oil pipeline system, opls.

To every unit we associate a CSP behaviour.

Units are indexed by their unique unit identifiers.

To every connector we associate a CSP channel.

Channels are indexed by their unique "k”onnector identifiers.

Unit behaviours are cyclic and over the state of their (static and dynamic) attributes, represented
by u.

Channels, in this model, have no state.

Unit behaviours communicate with neighbouring units — those with which they are connected.
Unit functions, U;, change the unit state.

The pipeline system is now the parallel composition of all the unit behaviours.

Editorial Remark: Our use of the term unit and the RSL literal Unit may seem confusing, and we
apologise. The former, unit, is the generic name of a well, pipe, or pump, or valve, or join, or fork,
or sink. The literal Unit, in a function signature, before the — “announces” that the function takes

5.8 Conclusion 113

no .au*gument.21 The literal Unit, in a function signature, after the — “announces”, as used here,
that the function never terminates.

value

478 opls:OPLS

channel

481 {ch[ki]lk:Kl,k:K-k € obs_Ks(opls) Aki=obs_KI(k)} M
value

486 pipeline_system: Unit — Unit

486 pipeline_system() =

479 || {unit(ui)(u)|u:U-u € obs_Us(opls)Aui=obs_Ul(u)}

480 unit: ui:Ul - U —

484 in,out {ch[ki]lk:K,ki:KI*k € obs_Ks(opls)Aki=obs_KI(k)A

484 let (ui’,ui”)=0bs_Ulp(K) in ui €{ui’,ui”}\{nil} end} Unit
482 unit(ui)(u) = let U’ = U;(ui)(u) in unit(ui)(u’) end

485 U;:ui:Ul - U —
485 in,out {ch[ki]lk:K,ki:KI*k € obs_Ks(opls)Aki=obs_KI(k)A
485 let (ui’,ui”’)=0bs_Ulp(k) in ui €{ui’,ui”}\{nil} end} U

5.8 Conclusion

We have shown draft sketches of aspects of gas/oil pipelines. From a comprehensive such domain
description we can systematically “derive” a set of complementary or alternative requirements
prescriptions for the monitoring and control of individual pipe units, as well as of consolidated
pipelines. Etcetera !

21 Unit is a type name; () is the only value of type Unit.

Chapter 6
Simple Credit Card Systems [May 2016]

Contents
2% N | 414 o Yo 11T £ o 1S 115
6.2 ENAUIraNtsc.cuiiiiiiiiiiiiiieeeeeneennenncnncacennsnsssnsosssassannnns 116
621 CreditCard Systems....... 116
622 Credit Cards.......... ...t 117
6.2.3 BanKS 117
6,24 SOPS . it s 118
6.3 Perdurants..........c.ciiiiiiiiiiiii ittt i ittt ettt 119
6.3.1 Behaviours 119
6.3.2 Channels 119
6.3.3 BehaviourInteractions 120
6.3.4 Credit Card 121
6.3.5 BanKS 122
6.3.6 SNOPS 124

We present an attempt at a model of a simple credit card system of credit card holders, shops and
banks.?2

6.1 Introduction

We present a domain description of an abstracted credit card system. The narrative part of the
description is terse, perhaps a bit too terse.

Credit cards are moving from simple plastic cards to smart phones. Uses of credit cards move
from their mechanical insertion in credit card terminals to being swiped. Authentication (hence
not modelled) moves from keying in security codes to eye iris “prints”, and/or finger prints or
voice prints or combinations thereof.

This document abstracts from all that in order to understand a bare, minimum essence of credit
cards and their uses. Based on a model, such as presented here, the reader should be able to
extend/refine the model into any future technology — for requirements purposes.

22 This model evolved during a PhD course at the University of Uppsala, Sweden.

115

116 6 Simple Credit Card Systems [May 2016]

6.2 Endurants

6.2.1 Credit Card Systems

487. Credit card systems, ccs:CCS, 2consists of three kinds of parts:
488. an assembly, cs:CS, of credit cards??,

489. an assembly, bs:BS, of banks, and

490. an assembly, ss:SS, of shops.

type

487 CCS

488 CS

489 BS

490 SS

value

488 o0bs_CS: CCS — CS
489 obs_BS: CCS — BS
490 o0bs_SS:CCS — SS

491. There are credit cards, c:C, banks b:B, and shops s:S.

492. The credit card part, cs:CS, abstracts a set, soc:Cs, of card.
493. The bank part, bs:BS, abstracts a set, sob:Bs, of banks.
494. The shop part, ss:SS, abstracts a set, s0s:Ss, of shops.

type

491 C,B,S
492 Cs = C-set
493 Bs = B-set
494 Ss = S-set
value

492 obs_CS: CS — Cs, obs_Cs: CS — Cs
493 obs_BS: BS — Bs, obs_Bs: BS — Bs
494 o0bs_SS:SS — Ss, obs_Ss: SS — Ss

495. Assembliers of credit cards, banks and shops have unique identifiers, csi:CSI, bsi:BSI, and ssi:SSI.
496. Credit cards, banks and shops have unique identifiers, ci:CI, bi:BI, and si:SI.

497. One can define functions which extract all the

498. unique credit card,

499. bank and

500. shop identifiers from a credit card system.

495 CSlI, BSI, SSI

496 CI, BI, SI

value

495 uid_CS: CS—CSI, uid_BS: BS—BSI, uid_SS: SS—SSI,

23 The composite part CS can be thought of as a credit card company, say VISA?%. The composite part BS can
be thought of as a bank society, say BBA: British Banking Association. The composite part SS can be thought of
as the association of retailers, say bira: British Independent Retailers Association. The model does not prevent
“shops” from being airlines, or car rental agencies, or dentists, or consultancy firms. In this case SS would be some
appropriate association.

25 We “equate” credit cards with their holders.

6.2 Endurants 117

496 uid_C: C—Cl, uid_B: B—BI, uid_S: S—SI,

498 xtr_Cls: CCS — Cl-set

498 xtr_Cls(ccs) = {uid_C(c)|c:C-c € obs_Cs(obs_CS(ccs))}
499 xtr Bls: CCS — Bl-set

499 «xtr_Bls(ccs) = {uid_B(s)|b:B-b € obs_Bs(obs_BS(ccs))}
500 xtr_Sls: CCS — Sl-set

500 xtr_Sls(ccs) = {uid_S(s)|s:S-s € obs_Ss(obs_SS(ccs))}

501.
502.
503.
504.

For all credit card systems it is the case that

all credit card identifiers are distinct from bank identifiers,
all credit card identifiers are distinct from shop identifiers,
all shop identifiers are distinct from bank identifiers,

axiom

501 V¥ ccs:CCS-

501 let cis=xtr_Cls(ccs), bis=xtr_Bls(ccs), sis = xtr_Sls(ccs) in
502 cis N bis = {}

503 A cisNsis={}

504 A sis N bis = {} end

6.2.2 Credit Cards

505.

506.
507.

508.

509.

A credit card has a mereology which “connects” it to any of the shops of the system and to
exactly one bank of the system,

and some attributes — which we shall presently disregard.

The wellformedness of a credit card system includes the wellformedness of credit card mere-
ologies with respect to the system of banks and shops:

The unique shop identifiers of a credit card mereology must be those of the shops of the credit
card system; and

the unique bank identifier of a credit card mereology must be of one of the banks of the credit
card system.

type

505. CM = Sl-set x Bl

value

505. obs_mereo CM: C —» CM
507 wf_CM_of_C: CCS — Bool
507 wf_CM_of_C(ccs) =

505 let bis=xtr_Bls(ccs), sis=xtr_Sls(ccs) in
505 ¥ ¢:C-c € obs_Cs(obs_CS(ccs)) =
505 let (ccsis,bi)=obs_mereo_CM(c) in
508 Cccsis C sis

509 A bi € bis

505 end end

6.2.3 Banks

Our model of banks is (also) very limited.

118 6 Simple Credit Card Systems [May 2016]

510

511.
512.
513.
514.
515.

516.
517.
518.

519.
520.

. A bank has a mereology which “connects” it to a subset of all credit cards and a subset of all
shops,

and, as attributes:

a cash register, and

aledger.

The ledger records for every card, by unique credit card identifier,

the current balance: how much money, credit or debit, i.e., plus or minus, that customer is owed,
respectively has borrowed from the bank,

the dates-of-issue and -expiry of the credit card, and

the name, address, and other information about the credit card holder.

The wellformedness of the credit card system includes the wellformedness of the banks with
respect to the credit cards and shops:

the bank mereology’s

must list a subset of the credit card identifiers and a subset of the shop identifiers.

type

5
5
5
5

10 BM = Cl-set x Sl-set

12 CR=Bal

13 LG = Cl # (BalxDolxDoEx...)
15 Bal=1Int

value

5
5
5
5
5
5
5
5
5

10 obs_mereo B: B — BM

12 attr CR: B — CR

13 attrLG:B —» LG

18 wf_BM_B: CCS — Bool

18 wf_BM_B(ccs) =

18 let allcis = xtr_Cls(ccs), allsis = xtr_Sls(ccs) in
18 VY b:B - b € obs_Bs(obs_BS(ccs)) in

19 let (cis,sis) = obs_mereo_B(b) in

20 cis C V cis A sis C allsis end end

6.2.4 Shops

521.

The mereology of a shop is a pair: a unique bank identifiers, and a set of unique credit card
identifiers.

522. The mereology of a shop
523. must list a bank of the credit card system,
524. band a subset (or all) of the unique credit identifiers.

We omit treatment of shop attributes.

type
521 SM = Cl-set x Bl

V

alue

521 obs_mereo S: S —» SM

522 wf_SM_S: CCS — Bool

522 wf_SM_S(ccs) =

522 let allcis = xtr_Cls(ccs), allbis = xtr_Bls(ccs) in
522 VY s:S s € obs_Ss(obs_SS(ccs)) =

522 let (cis,bi) obs_mereo_S(s) in

6.3 Perdurants

523 bi € allbis
524 A cis C allcis
522 end end

6.3 Perdurants

6.3.1 Behaviours

525. We ignore the behaviours related to the CCS, CS, BS and SS parts.
526. We therefore only consider the behaviours related to the Cs, Bs and Ss parts.

119

527. And we therefore compile the credit card system into the parallel composition of the parallel

compositions of all the credit card, crd, all the bank, bnk, and all the shop, shp, behaviours.

value

525 ccs:CCS

525 c¢s:CS = obs_CS(ccs),
525 uics:CSI =uid_CS(cs),
525 bs:BS = obs_BS(ccs),
525 uibs:BSI =uid_BS(bs),
525 ss:SS = obs_SS(ccs),
525 uiss:SSI =uid_SS(ss),
526 socs:Cs = obs_Cs(cs),
526 sobs:Bs = obs_Bs(bs),
526 s0ss:Ss = obs_Ss(ss),

value

527 sys: Unit — Unit,

525 sys() =

527 cards,;.;(obs_mereo_CS(cs),...)

527 || |l {crdyiq c()(obs_mereo_C(c))|c:C-c € socs}
527 || banks,;;;(obs_mereo_BS(bs),...)

527 |||l {bnky;q By (obs_mereo_B(b))|b:B-b € sobs}
527 || shops,iss(0bs_mereo_SS(ss),...)

527 |||l {shpuis_ss)(0bs_mereo_S(s))|s:S-s € soss},

525 cards,;s(...) = skip,
525 banks,y(...) = skip,
525 shops,iss(...) = skip

axiom skip || behaviour(...) = behaviour(...)

6.3.2 Channels

528. Credit card behaviours interact with bank (each with one) and many shop behaviours.
529. Shop behaviours interact with bank (each with one) and many credit card behaviours.

530. Bank behaviours interact with many credit card and many shop behaviours.
The inter-behaviour interactions concern:

120 6 Simple Credit Card Systems [May 2016]

531. between credit cards and banks: withdrawal requests as to a sufficient, mk_-Wdr(am), balance on
the credit card account for buying am:AM amounts of goods or services, with the bank response
of either is_OK() or is_NOK(), or the revoke of a card;

532. between credit cards and shops: the buying, for an amount, am:AM, of goods or services:
mk_Buy(am), or the refund of an amount;

533. between shops and banks: the deposit of an amount, am:AM, in the shops’ bank account:
mk_Depost(ui,am) or the removal of an amount, am:AM, from the shops’ bank account:
mk_Removl(bi,si,am)

channel

528 {ch_cb[ci,bi]|ci:Cl,bi:Bl-ci € cis A bi € bis}:CB_Msg
529 {ch_cs|ci,si]|ci:Cl,si:Sl-ci € cis A si € sis}:CS_Msg

530 {ch_sb[si,bi]|si:Sl,bi:Bl-si € sis A bi € bis}:SB_Msg
531 CB_Msg == mk_Wdrw(am:aM) | is_OK() | is_-NOK() | ...
532 CS_Msg == mk_Buy(am:aM) | mk_Ref(am:aM) | ...
533 SB_Msg == Depost | Removl | ...

533 Depost == mk_Dep((ci:Cl|si:Sl),am:aM) |

533 Removl == mk_Rem(bi:Bl,si:Sl,am:aM)

6.3.3 Behaviour Interactions

534. The credit card initiates

a. buy transactions
i. [1.Buy] by enquiring with its bank as to sufficient purchase funds (am:aM);
ii. [2.Buy]if NOK then there are presently no further actions; if OK
iii. [3.Buy] the credit card requests the purchase from the shop — handing it an appropriate
amount;
iv. [4.Buy] finally the shop requests its bank to deposit the purchase amount into its bank
account.
b. refund transactions
i. [1.Refund] by requesting such refunds, in the amount of am:aM, from a[ny] shop; where-
upon
ii. [2.Refund] the shop requests its bank to move the amount am:aM from the shop’s bank
account
iii. [3.Refund] to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as sketched in Fig. 6.1 on the facing
page.

6.3 Perdurants

121

Fig. 6.1 Credit Card, Bank and Shop Behaviours

[1.Buy]
[2.Buy]
[3.Buy]

[4.Buy]

Item 540, Pg.121
Item 549, Pg.123

card ch_cb[ci,bi]!mk_-Wdrw(am) (shown as ... three lines down) and
bank mk_Wdrw(ci,am)=[J{ch_cb[bi,bi]?|ci:Cl-ci € cis}.

Items 542-543, Pg.122 bank ch_cb][ci,bi]lis_[N]JOK() and

Item 540, Pg.121
Item 542, Pg.122
Item 564, Pg.124
Item 565, Pg.124
Item 554, Pg.123

[1.Refund] Item 546, Pg.122

Item 565, Pg.124

[2.Refund] Item 569, Pg.124

Item 558, Pg.123

[3.Refund] Item 570, Pg.124

Item 559, Pg.123

6.3.4 Credit Card

shop (...;ch_cb[ci,bi]?).

card ch_cs|ci,si]!mk_Buy(am) and

shop mk_Buy(am)=[J{ch_cs[ci,si]?|ci:Cl-cie cis}.

shop ch_sb[si,bi]'mk_Dep(si,am) and

bank mk_Dep(si,am)=[]{ch_cs|[ci,si]?|si:Sl-siesis}.

card ch_cs|ci,si]!mk_Ref((ci,si),am) and

shop (si,mk_Ref(ci,am))=[l{si’,ch_sb[si,bi]?|si,si’:SI*{si,si’}CsisAsi=si'}.
shop ch_sb[si,cbi]!mk_Ref(cbi,(ci,si),am and

bank (si,mk_Ref(cbi,(ci,am)))=[{(si’,ch_sb[si,bi]?)|si,si’:Sl{si,si’} CsisAsi=si'}.
shop ch_sb[si,sbi]'mk_Wdr(si,am)) end and

bank (si,mk_Wdr(ci,am))=[]{(si’,ch_sb[si,bi]?)|si,si’:Sl*{si,si'}CsisAsi=si'}

535. The credit card behaviour, crd, takes the credit card unique identifier, the credit card mereology,
and attribute arguments (omitted). The credit card behaviour, crd, accepts inputs from and
offers outputs to the bank, bi, and any of the shops, siesis.

536. The credit card behaviour, crd, non-deterministically, internally “cycles” between buying and
getting refunds.

value

535 crd;.c;: (bi,sis):CM — in,out ch_cb[ci,bi],{ch_cs| ci,si]|si:Slsi € sis} Unit
535 crd,(bi,sis) = (buy(ci,(bi,sis)) [ref(ci,(bi,sis))) ; crd.;(ci,(bi,sis))

537. By am:AM we mean an amount of money, and by si:Sl we refer to a shop in which we have
selected a number or goods or services (not detailed) costing am:AM.

538. The buyer action is simple.

539. The amount for which to buy and the shop from which to buy are selected (arbitrarily).
540. The credit card (holder) withdraws am:AM from the bank, if sufficient funds are available®.

26 First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes
place, otherwise not — and the credit card holder is informed accordingly.

122 6 Simple Credit Card Systems [May 2016]

541. The response from the bank

542. is either OK and the credit card [holder] completes the purchase by buying the goods or services
offered by the selected shop,

543. or the response is “not OK”, and the transaction is skipped.

type

537 AM = Int

value

538 buy: ci:Cl x (bi,sis):CM —

538 in,out ch_cb[ci,bi] out {ch_cs|ci,si]|si:Slsi € sis} Unit
538 buy(ci,(bi,sis)) =

539 let am:aM - am>0, si:Sl - si € sis in

540 let msg = (ch_cb[ci,bi]!'mk_ Wdrw(am);ch_cb[ci,bi]?) in
541 case msg of

542 is_OK() — ch_cs[ci,si]!mk_Buy(am),

543 is_NOK() — skip

538 end end end

544. The refund action is simple.
545. The credit card [handler] requests a refund am:AM
546. from shop si:Sl.
This request is handled by the shop behaviour’s sub-action ref, see lines 562.-571. page 124.

value

544 rfu: ci:Cl x (bi,sis):CM — out {ch_cs[ci,si]|si:Slsi € sis} Unit
544 rfu(ci,(bi,sis)) =

545 let am:AM - am>0, si:Sl - si € sis in

546 ch_cs] ci,si]!mk_Ref(bi,(ci,si),am)

544 end

6.3.5 Banks

547. The bank behaviour, bnk, takes the bank’s unique identifier, the bank mereology, and the
programmable attribute arguments: the ledger and the cash register. The bank behaviour, bk,
accepts inputs from and offers outputs to the any of the credit cards, ciecis, and any of the
shops, si€sis.

548. The bank behaviour non-deterministically externally chooses to accept either ‘withdraw’al
requests from credit cards or ‘deposit’ requests from shops or ‘refund’ requests from credit
cards.

value

547 bnky;.gr: (cis,sis):BM — (LGXCR) —

547 in,out {ch_cb[ci,bi]|ci:Cl-ci € cis} {ch_sb][si,bi]|si:Slsi € sis} Unit
547 bnky((cis,sis))(lg:(bal,doi,doe,...),cr) =

548 wdrw(bi,(cis,sis))(lg,cr)

548 [depo(bi,(cis,sis))(lg,cr)

548 [0 refu(bi,(cis,sis))(lg,cr)

6.3 Perdurants 123

549. The ‘withdraw’ request, wdrw, (an action) non-deterministically, externally offers to accept
input from a credit card behaviour and marks the only possible form of input from credit cards,
mk_Wdrw(ci,am), with the identity of the credit card.

550. If the requested amount (to be withdrawn) is not within balance on the account

551. then we, at present, refrain from defining an outcome (chaos), whereupon the bank behaviour
is resumed with no changes to the ledger and cash register;

552. otherwise the bank behaviour informs the credit card behaviour that the amount can be with-
drawn; whereupon the bank behaviour is resumed notifying a lower balance and ‘withdraws’
the monies from the cash register.

value

548 wdrw: bi:Bl x (cis,sis):BM — (LGXCR) — in,out {ch_cb[bi,ci]|ci:Cl-ci € cis} Unit
548 wdrw(bi,(cis,sis))(lg,cr) =

549 let mk_Wdrw(ci,am) = [{ch_cb[ci,bi]?|ci:Cl-ci € cis} in

548 let (bal,doi,doe) = Ig(ci) in

550 if am>bal

551 then (ch_cb[ci,bi]lis_NOK(); bnky;(cis,sis)(lg,cr))

552 else (ch_cb[ci,bi]lis_OK(); bnky,(cis,sis)(Igt[ci—(bal-am,doi,doe)],cr—am)) end
547 end end

The ledger and cash register attributes, Ig,cr, are programmable attributes. Hence they are modeled
as separate function arguments.

553.

554.

555.

The deposit action is invoked, either by a shop behaviour, when a credit card [holder] buy’s for
a certain amount, am:AM, or requests a refund of that amount. The deposit is made by shop
behaviours, either on behalf of themselves, hence am:AM, is to be inserted into the shops’ bank
account, si:Sl, or on behalf of a credit card [i.e., a customer], hence am:AM, is to be inserted into
the credit card holder’s bank account, si:Sl.

The message, ch_cs|[ci,si]?, received from a credit card behaviour is either concerning a buy [in
which case i is a ci:Cl, hence sale, or a refund order [in which case i is a si:Sl].

In either case, the respective bank account is “upped” by am:AM — and the bank behaviour is
resumed.

value

553 deposit: bi:Bl x (cis,sis):BM — (LGXCR) —

554 in,out {ch_sb[bi,si]|si:Sl*si € sis} Unit

553 deposit(bi,(cis,sis))(lg,cr) =

554 let mk_Dep(si,am) =[] {ch_cs[ci,si]?|si:Sl*si € sis} in
553 let (bal,doi,doe) = Ig(si) in

555 bnky;(cis,sis)(lgt[si—(bal+am,doi,doe)],cr+am)

553 end end

556.
557.
558.

559.

560.
561.

The refund action

non-deterministically externally offers to either

non-deterministically externally accept a mk_Ref(ci,am) request from a shop behaviour, si, or
non-deterministically externally accept a mk_Wdr(ci,am) request from a shop behaviour, si.
The bank behaviour is then resumed with the

credit card’s bank balance and cash register incremented by am and the

shop’ bank balance and cash register decremented by that same amount.

value
556 rfu: bi:Bl x (cis,sis):BM — (LGxXCR) — in,out {ch_sb[bi,si]|si:SI'si € sis} Unit
556 rfu(bi,(cis,sis))(lg,cr) =

124 6 Simple Credit Card Systems [May 2016]

558 (let (si,mk_Ref(cbi,(ci,am))) = [0 {(si’,ch_sb[si,bi]?)|si,si:Sl+{si,si'}CsisAsi=si’} in
556 let (balc,doic,doec) = Ig(ci) in

560 bnk,;(cis,sis)(Igt[ci(balc+am,doic,doec)],cr+am)
556 end end)
557 0O

559 (let (si,mk_Wdr(ci,am)) = [{(si’,ch_sb[si,bi]?)|si,si":Sl+{si,si'}CsisAsi=si’} in
556 let (bals,dois,does) = Ig(si) in

561 bnk,;(cis,sis)(Igt[si(bals—am,dois,does)],cr—am)

556 end end)

6.3.6 Shops

562. The shop behaviour, shp, takes the shop’s unique identifier, the shop mereology, etcetera.

563. The shop behaviour non-deterministically, externally
either

564. offers to accept a Buy request from a credit card behaviour,

565. and instructs the shop’s bank to deposit the purchase amount.

566. whereupon the shop behaviour resumes being a shop behaviour;

567. or

568. offers to accept a refund request in this amount, am, from a credit card [holder].

569. It then proceeds to inform the shop’s bank to withdraw the refund from its ledger and cash
register,

570. and the credit card’s bank to deposit the refund into its ledger and cash register.

571. Whereupon the shop behaviour resumes being a shop behaviour.

value

562 shps;.s;: (Cl-setxBl)x...—in,out: {ch_cs[ci,si]|ci:Cl-ci € cis},{ch_sb[si,bi"]|bi":Bl-bi’isin bis} Unit
562 shpg;((cis,bi),...) =

564 (sal(si,(bi,cis),...)

567 [

568 ref(si,(cis,bi),...)):

562 sal: SIx(Cl-setxBl)x...—in,out: {cs]ci,si]|ci:Cl-ci € cis},sb[si,bi] Unit
562 sal(si,(cis,bi),...) =

564 let mk_Buy(am) = [J{ch_cs][ci,si]?|ci:Cl-ci € cis} in

565 ch_sb[si,bi]!mk_Dep(si,am) end ;

566 shpsi((cis,bi),...)

562 ref: SIx(Cl-setxBl)x...—in,out: {ch_cs[ci,si]|ci:Cl-ci € cis},{ch_sb[si,bi’]|bi":Bl-bi'isin bis} Unit
568 ref(si,(cis,sbi),...) =

568 let mk_Ref((ci,cbi,si),am) = [{ch_cs[ci,si]?|ci:Cl-ci € cis} in

569 (ch_sb][si,cbi]!mk_Ref(cbi,(ci,si),am)

570 || ch_sb[si,sbi]!mk_Wdr(si,am)) end ;

571 shps;((cis,sbi),...)

Chapter 7

Weather Systems [November 2016]

Contents

7.1 On Weather Information Systems................oooiiiiiiiiiiiiiiiiiiiiiie, 126
711 OnaBaseTerminologyooiiiiiiiiii i 126

7.1.2 Somelllustrations 127
7.1.21 WeatherStations.................. ... i 127

7.1.22 WeatherForecasts i 127

7.1.23 Forecast CONSUMEISottt 127

7.2 Major Parts of a Weather Information Systemooiiiiiiiai, 127
2% T =1 4 o 111 £ C- S S 128
731 Partsand Materials 128

7.3.2 Uniqueldentifiers i 129

733 Mereologies 130

734 Attributes ... 130
7.3.4.1 Clock, Timeand Time-intervals................................ 130

7.3.4.2 Locations 131

7343 Weather. 131

7.3.44 WeatherStations.................. ... i 132

7.34.5 Weather Data Interpreterl 132

7.34.6 WeatherForecasts ..., 133

7.3.4.7 Weather ForecastConsumercciiiiieennn. 133

74 Perdurantsiiiiiiiiii it i it ittt ettt ittt 133
7401 AWIS Context. 133

742 Channels............. . 134

743 WIS Behaviours 134

744 CloCK. 135

74.5 Weather Station 135

74.6 Weather DataInterpreter..... 136
7.4.6.1 collectwd 136

7.4.6.2 calculate wf. 137

7.4.6.3 disseminatewf 137

7.4.7 Weather Forecast Consumer................... 138

28 T 0o 4 T (17T o TP 139
751 Referenceto SimilarWork 139

7.5.2 What Have We Achieved ? i, 139

753 WhatNeedstobeDoneNext? 139

7.54 Acknowledgements 139

This document reports a class exercise from a PhD course at the University of Bergen, Nor-
way, November 2016.7 We show an example domain description. It is developed and presented

27 1 thank my host, Prof. Magne Haveraaen for the invitation. The occasion was that of a visit by Mme. Dooren
Tuheirwe from Makerere University, Uganda, and her work with the universty and the Norwegian Meteorological

Institute rm on a joint project on a Weather Information System for Uganda.

126 7 Weather Systems [November 2016]

as outlined in [48]. The domain being described is that of a generic weather information sys-
tem. Four main endurants (i.e., aspects) of a generic weather information system are those of
the weather, weather stations (collecting weather data), weather data interpretation (i.e., metere-
ological institute[s]), and weather forecast consumers. There are, correspondingly, two kinds of
weather information: the weather data, and the weather forecasts. These forms of weather infor-
mation are acted upon: the weather data interpreter (i.e., a metereological institute) is gathering
weather data; based on such interpretations the metereological institute is “calculating” weather
forecasts; and and weather forecast consumers are requesting and further “interpreting” (i.e., ren-
dering) such forecasts. Thus weather data is communicated from weather stations to the weather
data interpreter; and weather forecasts are communicated from the weather data interpreter to
the weather forecast consumers. It is the dual purpose of this technical report to present a do-
main description of the essence of generic weather information systems, and to add to the “pile”
[38, 37, 42, 41, 43, 46, 45, 47] of technical reports that illustrate the use[fulness] of the principles,
techniques and tools of [48].

7.1 On Weather Information Systems

7.1.1 On a Base Terminology

From Wikipedia:

572. Weather is the state of the atmosphere, to the degree that it is hot or cold, wet or dry, calm or
stormy, clear or cloudy, atmospheric (barometric) pressure: high or low.

573. So weather is characterized by temperature, humidity (incl. rain, wind (direction, velocity,
center, incl. its possible mobility), atmospheric pressure, etcetera.

574. By weather information we mean

o either weather data that characterizes the weather as defined above (Item 572),
e or weather forecast, i.e., a prediction of the state of the atmosphere for a given location and
time or time interval.

575. Weather data are collected by weather stations. We shall here not be concerned with technical
means of weather data collection.

576. Weather forecasts are used by forecast consumers, anyone: you and me.

577. Weather data interpretation (i.e., forecasting) is the science and technology of creating weather
forecasts based on time- or time interval-stamped weather data and locations. Weather data
interpretation is amongst the charges of meteorological institutes.

578. Meteorology is the interdisciplinary scientific study of the atmosphere.

579. An atmosphere (from Greek atuoC (atmos), meaning “vapour”, and odatpa (sphaira), mean-
ing “sphere”) is a layer of gases surrounding a planet or other material body, that is held in
place by the gravity of that body.

580. Meteorological institutes work together with the World Meteorological Organization (WMO).
Besides weather forecasting, meteorological institutes (and hence WMO) are concerned also
with aviation, agricultural, nuclear, maritime, military and environmental meteorology, hy-
drometeorology and renewable energy.

581. Agricultural meteorologists, soil scientists, agricultural hydrologists, and agronomists are per-

sons concerned with studying the effects of weather and climate on plant distribution, crop
yield, water-use efficiency, phenology of plant and animal development, and the energy balance
of managed and natural ecosystems. Conversely, they are interested in the role of vegetation
on climate and weather.

7.2 Major Parts of a Weather Information System 127

7.1.2 Some lllustrations

7.1.2.1 Weather Stations

7.2 Major Parts of a Weather Information System

We think of the following parts as being of concern in the kind of weather information systems that
we shall analyse and describe: Figure 7.1 on the next page shows one weather (dashed rounded
corner all embracing rectangle), one central weather data interpreter (cum meteorological institute)
seven weather stations (rounded corner squares), nineteen weather forecast consumers, and one
global clock. All are distributed, as hinted at, in some geographical space. Figure7.2 shows “an
orderly diagram” of “the same” weather information system as Figure 7.1. The lines between pairs
of the various parts shall indicate means communication between the pairs of (thus) connected
parts. Dashed lines “crossing” bundles of these communication lines are labeled ch_xy. These

128 7 Weather Systems [November 2016]

Weather Station
Q Weather Forecast Consumer

7 \
«clocky
\ ’

\Q e

Weather Da&?lnte ret{]
N eteoro glca nstitute

e e mm mm o e mm Em Em Em e o e e e mm o e = = =

Weather

Fig. 7.1 A Weather Information System

labels, ch_xy, designated CSP-like channels. An input, by a weather station (wsi), of weather data
from the weather (wi), is designated by the CSP expression ch_ws[wi,wsi] ?. An output, say from
the weather data interpreter (wdi) to a weather forecast consumer (fci), of a forecast f, is designated
by ch_ic[wdii,fci] I f

7.3 Endurants

7.3.1 Parts and Materials

582. The WIS domain contains a number of sub-domains:

the weather, W, which we consider a material,

the weather stations sub-domain, WSS (a composite part),

the weather data interpretation sub-domain, WDIS (an atomic part),

the weather forecast consumers sub-domain, WFCS (a composite part), and
the (“global”) clock (an atomic part).

C o T

type

582 WIS
582a W
582b WSS
582¢ WDIS
582d WFCS
582e CLK
value

7.3 Endurants 129

Weather Data Interpreter,
i.e., Meteorological Institute

Weather

Fig. 7.2 A Weather Information System Diagram

582a obs_material W: WIS - W
582b obs_part WSS: WIS —» WSS
582c obs_part WDIS: WIS — WDIS
582d obs_part WFCS: WIS - WFCS
582e obs_part CLK: WIS — CLK

583. The weather station sub-domain, WSS, consists of a set, WSs,

584. of atomic weather stations, WS.

585. The weather forecast consumers sub-domain, WECS, consists of a set, WECs,
586. of atomic weather forecast consumers, WEC.

type

583 WSs = WS-set

584 WS

585 WFCs = WFC-set

586 WFC

value

583 obs_part WSs: WSS — WSs
585 obs_part WFCs: WFCS — WFCs

7.3.2 Unique Identifiers

We shall consider only atomic parts.

130 7 Weather Systems [November 2016]

587. Every single weather station has a unique identifier.

588. The weather data interpretation (i.e., the weather forecast “creator”) has a unique identifier.
589. Every single weather forecast consumer has a unique identifier.

590. The global clock has a unique identifier.

type

587 WSI

588 WDII

589 WEFCI

590 CLKI

value

587 uid_.WSI: WS —» WSI

588 uid_WDII: WDIS — WDII
589 uid_.WFCI: WFC — WFCI
589 uid_CLKI: CLK — CLKI

7.3.3 Mereologies

We shall restrict ourselves to consider the mereologies only of the atomic parts.

591. The mereology of weather stations is the pair of the unique clock identifier and the unique
identifier of the weather data interpreter.

592. The mereology of weather data interpreter is the triple of the unique clock identifier, set of
unique identifiers of all the weather stations and the set of unique identifiers of all the weather
forecast consumers.

593. The mereology of weather forecast consumer is the the pair of the unique clock identifier and
the unique identifier of the weather data interpreter.

594. The mereology of the global clock is the triple of the set of all the unique identifiers of weather
stations, the unique identifier of the weather data interpreter, and the set of all the unique
identifiers of weather forecast consumers.

type

591 WSM = CLKI x WDII

592 WDIM = CLKI x WSI-set x WFCl-set

593 WFCM = CLKI x WDII

594 CLKM = CLKI x WDGlI-set x WDII x WFCl-set
value

591 mereo . WSM: WS — WSM

592 mereo WDI: WDI — WDIM

593 mereo WFC: WFC —» WFCM

594 mereo_CLK: CLK —» CLKM

7.3.4 Attributes

7.3.4.1 Clock, Time and Time-intervals

595. The global clock has an autonomous time attribute.

7.3 Endurants 131

596. Time values are further undefined, but times are considered absolute in the sense as representing
some intervals since “the birth of time”, an example, concrete time could be Novemser 15, 2021:
16:12.

597. Time intervals are further undefined, but time intervals can be considered relative in the sense of
representing a quantity elapsed between two times, examples are: 1 day 2 hours and 3 minutes,
etc. When a time interval, ti, is specified it is always to be understood to designate the times
from now, or from a specified time, t, until the time ¢ + ti.

598. We postulate @, ©, and can postulate further “arithmetic” operators, and

599. we can postulate relational operators.

type

595 TIME

596 TI

value

595 attr_TIME: CLK — TIME

598 @: TIMEXTI-TIME, TIXTI-TI

598 o: TIMEXTI-TIME, TIMEXTIME—-TI

599 =, #, <, &, =, > TIMEXTIME—Bool, TIxTI—>Bool, ...

We do not here define these operations and relations.

7.3.4.2 Locations

600. Locations are metric, topological spaces and can thus be considered dense spaces of three
dimensional points.

601. We can speak of one location properly contained (C) within, or contained or equal (<), or equal
(=), or not equal (#) to another location.

type

600. LOC

value

601. C, g, =, #: LOC x LOC — Bool

7.3.4.3 Weather

602. The weather material is considered a dense, infinite set of weather point volumes WP. Some
dense, infinite subsets (still proper volumes) of such points may be liquid, i.e., rain, water in
rivers, lakes and oceans. Other dense, infinite subsets (still proper volumes) of such points may
be gaseous, i.e., the air, or atmosphere. These two forms of proper volumes “border” along
infinite subsets (curved planes, surfaces) of weather points.

603. From the material weather one can observe its location.

type

602 W = WP-infset

602 WP

value

603 attr_LOC: W — LOC

604. Some meteorological quantities are:

132 7 Weather Systems [November 2016]

a. Humidity, c. Wind and
b. Temperature, d. Barometric pressure.

605. The weather has an indefinite number of attributes at any one time.

Humidity distribution, at level (above sea) and by location,
Temperature distribution, at level (above sea) and by location,

Wind direction, velocity and mobility of wind center, and by location,
Barometric pressure, and by location,

etc., etc.

© a0 T

type

604a Hu

604b Te

604c Wi

604d Ba

605a HDL = LOC + Hu
605b TDL =LOC +» Te
605¢c WDL = LOC » Wi
605d BPL =LOC » Ba
605e

value

605a attr_HDL: W — HDL
605b attr_TDL: W — TDL
605¢c attr WDL: W — WDL
605d attr APL: W — BPL
605e

7.3.4.4 Weather Stations

606. Weather stations have static location attributes.
607. Weather stations sample the weather gathering humidity, temperature, wind, barometric pres-
sure, and possibly other data, into time and location stamped weather data.

value
606 attr LOC: WS — LOC

type
607 WD :: mkWD((TIMEXLOC)x(TDLXxHDLxWDLxBPLX...))

7.3.4.5 Weather Data Interpreter

608. Thereis a programmable attribute: weather data repository, wdr:WDR, of weather data, wd:WD,
collected from weather stations.

609. And there is programmable attribute: weather forecast repository, wfr:WFR, of forecasts, wf:WF,
disseminate-able to weather forecast consumers.
These repositories are updated when

610. received from the weather stations, respectively when

611. calculated by the weather data interpreter.

7.4 Perdurants

type

608 WDR
609 WFR
value

610 update_wdr: TIME x WD — WDR — WDR

611

update_wfr: TIME x WF - WFR — WFR

133

It is a standard exercise to define these two functions (say algebraically).

7.3.4.6 Weather Forecasts

612.

613.
614.
615.

Weather forecasts are weather forecast format-, time- and location-stamped quantities, the latter

referred to as wefo:WeFo.

There are a definite number (n>1) of weather forecast formats.
We do not presently define these various weather forecast formats.
They are here thought of as being requested, mMkWFReq, by weather forecast consumers.

type

612 WF = WFF x (TIMEXTI) x LOC x WeFo

613 WFF = WFF1 | WFF2|...| WFFn
614 WFF1, WFF2, ..., WFFn
615 WFReq :: mkWFReq(s_wff:WFF,s_ti:(TIMEXTI),s_loc:LOC)

7.3.4.7 Weather Forecast Consumer

Displays can be rendered (RND): visualized, tabularised, made audible, translated (between

617 rndr.D: RND xD — D
618 abs.D:D—>D

616. There is a programmable attribute, d:D, D for display (!).
617.
languages and language dialects, ...), etc.
618. A rendered display can be “abstracted back” into its basic form.
619. Any abstracted rendered display is identical to its abstracted form.
type
616 D
617 RND axiom
value

616 attr_.D: WFC — D

7.4 Perdurants

7.4.1 A WIS Context

620.

621.
622.
623.
624.

We postulate a given system, wis:WIS.

That system is characterized by
a dynamic weather

and its unique identifier,

a set of weather stations

and their unique identifiers,

619 V d:D, r:RND - abs_D(rndr(r,d)) =d

625.
626.
627.
628.
629.
630.

a single weather data interpreter
and its unique identifier,

a set of weather forecast consumers
and their unique identifiers, and

a single clock

and its unique identifier.

134 7 Weather Systems [November 2016]

631. Given any specific wis:WIS there is [there- weather data interpreter and all weather fore-
fore] a full set of part identifiers, is, of cast consumers.
weather, clock, all weather stations, the

We list the above-mentioned values. They will be referenced by the channel declarations and the
behaviour definitions of this section.

value

620 wis:WIS

621 w:W = obs_material_W(wis)

622 wi:WI = uid_WIl(w)

623 wss:WSs = obs_part_ WSs(obs_part WSS(wis))

624 wsis:WDGlI-set = {uid_WSI(ws)|lws:WS-ws € wss}
625 wdi:WDI = obs_part_ WDIS(wis)

626 wdii:WDII = uid_WDII(wdi)

627 wfcs:WFCs = obs_part WFCs(obs_part WFCS(wis))
628 wfcis:WFl-set = {uid_WFCl(wfc)lwfc:WFC-wfc € wfcs}
629 clk:CLK = obs_part_CLK(wis)

630 clki:CLKI = uid_CLKI(clk)

631 is:(WIWSI|WDII|WFCI)-set = {wi}UwsisU{wdii}Uwfcis

7.4.2 Channels

632. Weather stations share weather data, WD, with the weather data interpreter — so there is a set
of channels, one each, “connecting” weather stations to the weather data interpreter.

633. The weather data interpreter shares weather forecast requests, WFReq, and interpreted weather
data (i.e., forecasts), WF, with each and every forecast consumer — so there is a set of chan-
nels, one each, “connecting” the weather data interpreter to the interpreted weather data (i.e.,
forecast) consumers.

634. The clock offers its current time value to each and every part, except the weather, of the WIS
system.

channel

632 { ch_si[wsi,wdii]:WD | wsi:WSl-wsi € wsis }

633 { ch_ic[wdii,fci]:(WFReq|WF) | fci:FClI-fci € fcis }

634 { ch_cp[clki,i]:TIME | i:(WI|CLKIWSI|WDII|WFCI)-i € is }

7.4.3 WIS Behaviours

635. WIS behaviour, wis_beh, is the
636. parallel composition of all the weather station behaviours, in parallel with the
637. weather data interpreter behaviour, in parallel with the

638. parallel composition of all the weather forecast consumer behaviours, in parallel with the
639. clock behaviour.

value

7.4 Perdurants 135

635 wis_beh: Unit — Unit

635 wis_beh() =

636 || { ws_beh(uid_WSI(ws),mereo_ WS(ws),...) | ws:WS-ws € wss } ||

637 || wdi_beh(uid_WDI(wdi),mereo_WDI(wdi),...)(wd_rep,wf_rep) ||

638 || { wic_beh(uid_WFCl(wfc),mereo_ WDG(wfc),...) | wic:WFC-wfc € wfcs } ||
639 clk_beh(uid_CLKI(clk),mereo_CLK(clk),...)("November 15, 2021: 16:12)

7.4.4 Clock

640.
641.

642.
643.
644.

The clock behaviour has a programmable attribute, t.

It repeatedly offers its current time to any part of the WIS system.
It nondeterministically internally “cycles” between

retaining its current time, or

increment that time with a “small” time interval, o, or

offering the current time to a requesting part.

value

640. clk_beh: clki:CLKI x clkm:CLKM — TIME —

641. out {ch_cp[clki,i]|i:(WSIWDIWFCI)-i ewsisU{wdii}Uwfcis } Unit
640. clk_beh(clki,is)(t) =

642. clk_beh(clki,is)(t)

643. [1 clk_beh(clki,is)(t1®0d)

644. N (Of ch_cp[clki,i] 't | i:(WSIWDIIJWFECI)-i € is } ; clk_beh(clki,is)(t))

7.4.5 Weather Station

645.

646.

647.
648.

649.
650.
651.
652.

653.

The weather station behaviour communicates with the global clock and the weather data
interpreter.

The weather station behaviour simply “cycles” between sampling the weather, reporting its
findings to the weather data interpreter and resume being that overall behaviour.

The weather station time-stamp “sample’ the weather (i.e., meteorological information).

The meteorological information obtained is analysed with respect to temperature (distribution
etc.),

humidity (distribution etc.),

wind (distribution etc.),

barometric pressure (distribution etc.), etcetera,

and this is time-stamp and location aggregated (MkWD) and “sent” to the (central ?) weather
data interpreter,

whereupon the weather data generator behaviour resumes.

value

645 ws_beh: wsi:WSI x (clki,wi,wdii):WDGM x (LOC x ...) —
645 in ch_cp[clki,wsi] out ch_gi[wsi,wdii] Unit

646 ws_beh(wsi,(clki,wi,wdii),(loc,...)) =

648 let tdl = attr_TDL(w),

649 hdl = attr HDL(w),

650 wdl = attr WDL(w),

136 7 Weather Systems [November 2016]

651 bpl = attr.BPL(w), ... in
652 ch_gi[wsi,wdii] ! mkWD((ch_cp[clki,wsi] ?,loc),(tdl,hdl,wdl,bpl,...)) end ;
653 wdg_beh(wsi,(clki,wi,wdii),(loc,...))

7.4.6 Weather Data Interpreter

654. The weather data interpreter behaviour communicates with the global clock, all the weather
stations and all the weather forecast consumers.
655. The weather data interpreter behaviour non-deterministically internally ([T) chooses to
656. either collect weather data,
657. or calculate some weather forecast,
658. or disseminate a weather forecast.
value
654 wdi_beh: wdii:WDIIx(clki,wsis,wfcis):WDIMx...—(WD_RepxWF_Rep)—
654 in ch_cp[clki,wdii], { ch_si[wsi,wdii] | wsi:WSI-wsi € wsis },
654 out { ch_ic[wdii,wfci] | wfci:WFClI-wfci € wfcis } Unit

654 wdi_beh(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep) =
656 collect_wd(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep)

655 M
657 calculate_wf(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep)
655 M

658 disseminate_wf(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep)

7.4.6.1 collect_wd

659.

660.
661.
662.
663.

The collect weather data behaviour communicates with the global clock and all the weather
stations — but “passes-on” the capability to communicate with all of the weather forecast
consumers.

The collect weather data behaviour

non-deterministically externally offers to accept weather data from some weather station,
updates the weather data repository with a time-stamped version of that weather data,

and resumes being a weather data interpreter behaviour, now with an updated weather data
repository.

value

659 collect_wd: wdii:WDIIx(clki,wsis,wfcis):WDIMX...

659 — (WD_RepxWF_Rep) —

659 in ch_cp[clki,wdii], { ch_si[wsi,wdii] | wsi:WSI-wsi € wsis },

659 out { ch_ic[wdii,wfci] | wici:WFCl-wfci € wfcis } Unit

660 collect_wd(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep) =

661 let ((ti,loc),(hdl,tdl,wdl,bpl,...)) = [Q{wsi[wsi,wdii]?|wsi:WSl-wsicwsis} in

662 let wd_rep’ = update_wdr(ch_cp[clki,wdii]?,((ti,loc),(hdl,tdl,wdl,bpl,...)))(wd_rep) in
663 wdi_beh(wdii,(clki,wsis,wfcis),...)(wd_rep’,wf_rep) end end

7.4 Perdurants 137

7.4.6.2 calculate_wf

664.

665.
666.
667.
668.
669.

The calculate forecast behaviour communicates with the global clock — but “passes-on” the
capability to communicate with all of weather stations and the weather forecast consumers.
The calculate forecast behaviour

non-deterministically internally chooses a forecast type from among a indefinite set of such,
and a current or “future” time-interval,

whereupon it calculates the weather forecast and updates the weather forecast repository,

and then resumes being a weather data interpreter behaviour now with the weather forecast
repository updated with the calculated forecast.

value

664 calculate_wf: wdii:WDIIx(clki,wsis,wfcis):WDIMx...—(WD_RepxWF _Rep)—
664 in ch_cp[clki,wdii], { ch_si[wsi,wdii] | wsi:WSI-wsi € wsis },

664 out { ch_ic[wdii,wfci] | wici:WFCl-wfci € wfcis } Unit

665 calculate_wf(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep) =

666 let tWWF = ft1 [T ft2 [] ... [] ftn,

667 ti:(TIMEXTIVAL) - toti>ch_cpl[clki,wdii] ? in

668 let wf_rep’ = update_wfr(calc_wf(tf,ti)(wf_rep)) in

669 wdi_beh(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep’) end end

670.

The calculate_weather forecast function is, at present, further undefined.

value
670. calc.wf: WFF x (TIMEXTI) - WFRep — WF
670. calc_wf(tf ti)(wf_rep) = ,,,

7.4.6.3 disseminate_wf

671.

672.

673.

The disseminate weather forecast behaviour communicates with the global clock and all the
weather forecast consumers —but “passes-on” the capability to communicate with all of weather
stations.

The disseminate weather forecast behaviour non-deterministically externally offers to received
a weather forecast request from any of the weather forecast consumers, wfci, that request is for
a specific format forecast, tf, and either for a specific time or for a time-interval, toti, as well as
for a specific location, loc.

The disseminate weather forecast behaviour retrieves an appropriate forecast and

674. sends it to the requesting consumer —
675. whereupon the disseminate weather forecast behaviour resumes being a weather data inter-
preter behaviour
value
671 disseminate_wf: wdii:WDIIx(clki,wsis,wfcis):WDIMx...—(WD_RepxWF_Rep)—
671 in ch_cp[clki,wdii] in,out { ch_ic[wdii,wfci] | wfci:WFCl-wfci € wfcis } Unit

671 disseminate_wf(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep) =

672 let mkReqWF((tf,toti,loc),wfci) = [Ml{ch-ic[wdii,wfci] ? | wfci:WFCl-wfciewfcis} in
673 let wf = retr WF((tf,toti,loc),wf_rep) in

674 ch_ic[wdii,wfci] ! wf ;

675 disseminate_wf(wdii,(clki,wsis,wfcis),...)(wd_rep,wf_rep) end end

138 7 Weather Systems [November 2016]

676.

The retr WF((tf,toti,loc),wf_rep) function invocation retrieves the weather forecast from the
weather forecast repository most “closely” matching the format, tf, time, toti, and location
of the request received from the weather forecast consumer. We do not define this function.

676. retr WF: (WFFX(TIMEXTI)xLOC) x WFRep — WF
676. retr WF((tf toti,loc),wf_rep) = ...

We could have included, in our model, the time-stamping of receipt (formula Item 672) of re-
quests, and the time-stamping of delivery of requested forecast in which case we would insert
ch_cpl[clki,wdii]? at respective points in formula Items 672 and 674.

7.4.7 Weather Forecast Consumer

677.

678.
679.
680.
681.
682.

683.

684.

679
685.
686.

The weather forecast consumer communicates with the global clock and the weather data
interpreter.

The weather forecast consumer behaviour

nondeterministically internally either

selects a suitable weather cast format, tf,

selects a suitable location, loc’, and

selects, toti, a suitable time (past, present or future) or a time interval (that is supposed to start
when forecast request is received by the weather data interpreter.

With a suitable formatting of this triple, mkReqWF(tf,loc’,toti), the weather forecast consumer
behaviour “outputs” a request for a forecast to the weather data interpreter (first “half” of
formula Item 682) whereupon it awaits (;) its response (last “half” of formula Item 682) which
is a weather forecast, wf,

whereupon the weather forecast consumer behaviour resumes being that behaviour with it
programmable attribute, d, being replaced by the received forecast suitably annotated;

or the weather forecast consumer behaviour

edits a display

and resumes being a weather forecast consumer behaviour with the edited programmable
attribute, d’.

value

677 wfc_beh: wici:WFCI x (clki,wdii):WFCM x (LOC x ..) - D —
677 in ch_cp[clki,wfci],

677 in,out { ch_ic[wdii,wfci] | wici:WFCl-wfci € wfcis } Unit
678 wfc_beh(wfci,(clki,wdii),(loc,...))(d) =

680 let tf = tf1 [1tf2 [] ... [] tfn,

681 loc’:LOC - loc’=locVvloc’#loc,

682 (t,t):(TIMEXTI) - ti>0 in

683 let wf = (ch_ic[wdii,wfci] ! mkReqWF(if,loc’,(t,ti))) ; ch_ic[wdii,wfci] ? in
684 wfc_beh(wfci,(clki,wdii),(loc,...))((tf,loc’,(t,ti)),wf) end end
679 T[]

685 let d’:D {\EQ} rndr_D(d,{\DOTDOTDQT}) in

686 wfc_beh(wfci,(clki,wdii),(loc,...))(d") end

The choice of location may be that of the weather forecast consumer location, or it may be one
different from that. The choice of time and time-interval is likewise a non-deterministic internal
choice.

7.5 Conclusion 139

7.5 Conclusion

7.5.1 Reference to Similar Work

As far as I know there are no published literature nor, to our knowledge, institutional or private
works on the subject of modelling weather data collection, interpretaion and weather forecast
delivery systems.

7.5.2 What Have We Achieved ?

TO BE WRITTEN

7.5.3 What Needs to be Done Next ?

TO BE WRITTEN

7.5.4 Acknowledgements

This technical cum experimental research report was begun in Bergen, Wednesday, November
9, 2016 — inspired by a presentation by Ms. Doreen Tuheirwe, Makarere University, Kampala,
Uganda. I thank her, and Profs. Magne Haveraaen and Jaakko Jarvi of BLDL: the Bergen Language
Design Laboratory, Dept. of Informatics, University of Bergen (Norway), for their early comments,
and Prof. Haveraaen for inviting me to give PhD lectures there in the week of Nov. 6-12, 2016.

Chapter 8

Automobile Assembly Lines [September 2021]

Contents
81 INtrodUCtion.ottt ittt iiit ittt iiateiaeiiaeraaees 143
8.2 A Domain Analysis & DesCrptioncciiiiiiiiiiiiiiiiiiiiiieiennnnnennes 144
821 Anlnitial Domain Sketch. 144
822 Endurants 146
8221 External Qualities 146
8.2.2.1.1 Parts 146
82212 OnMainElements, 149
8.2.2.1.2.1 General:l 149
8.2.2.1.2.2 Assembly Line Element Types: 149
8.2.2.1.3 Automobile Manufacturing: A Wider Context 149
8.22.1.4 An Assembly Plant Taxonomy...................... 150
8.2.2.1.5 Aggregate, Set, Core and Sibling Parts 151
8.2.2.1.5.1 Atomic and Compound Parts:. 151
8.2.2.1.5.2 Aggregates and Sets:................. 151
8.2.2.1.5.3 Cores [Roots] and Siblings:........... 151
82216 TheCoreState..................coiiiiiiiiiiian... 152
8.2.2.1.6.1 State Narrative:....................... 152
8.2.2.1.6.2 Endurant State Formalisation: 152
8.2.2.1.7 Invariant: External Qualities........................ 154
8.2.2.2 Internal Qualities............. 155
8.2.2.2.1 Unique Identifiers 155
8.2.2.2.1.1 Common Unique Identifier Observer: . 155
8.2.2.2.1.2 The Unique Identifier State: 156
8.2.2.2.1.3 Anlnvariant:.......................... 156
8.2.2.2.14 Part Retrieval: 156
8.2.2.2.1.5 The Unique Identifier Indexed
Endurant State:....................... 157
8.2.2.2.1.6 Taxonomy Map with Unique
Identifier Labels: 157
8.2.2.2.1.7 Unique Identifier State Expressions: .. 157
1687. AP, Assembly Plants............ 157
1688. ALA, Assembly Line Aggregates . 158
1689. MAL, Main Assembly Lines 159
1690. SALA, Supply Assembly Line
Aggregates............l 159
1691. SALs=SAL-set, Supply
Assembly LineSets 159
1692. SAL, Supply Assembly Lines 160
1693. SA, Station Aggregates.......... 160
1694. Ss=S-set, StationSet............ 160
1695.S,Stations, 160
1696. ME, Main Elements 161
1697. RA, Robot Aggregates 161

141

142 8 Automobile Assembly Lines [September 2021]

1698. Rs=R-set, RobotSets 161
1699.R,Robots 161
1700. ES, Element Supplies 161
1701, Es=E-set, Element Supply Sets ..161
1702.E,Elements 161
82222 Mereologyccoviii 162
8.2.2.2.2.1 1687. AP: Assembly Plant: 162
8.2.2.2.2.2 1688. ALA: Assembly Line Aggregate: 162
8.2.2.2.2.3 1689. MAL: Main Assembly Line:...... 163
8.2.2.2.24 1690. SALA: Supply Assembly Line
Aggregate:l 163
8.2.2.2.2.5 1691. SALs=SAL-set: Simple
Assembly LineSet: 164
8.2.2.2.2.6 1692. SAL: Simple Assembly Lines: ...164
8.2.2.2.2.7 1693. SA: Station Aggregate:.......... 165
8.2.2.2.2.8 1694. Ss = S-set: Station Sets:......... 165
8.2.2.2.2.9 1695. S: Station: ...l 165
8.2.2.2.210 (696. ME: Main Elements:............. 168
8.2.2.2.2.11 :697. RA: Robot Aggregate: 168
8.2.2.2.2.12 1698. Rs=R-set: Robot Set:............ 169
8.2.2.2.213 (699.R: Robot: 169
8.2.2.2.2.14 (700. ES: Element Supply: 169
8.2.2.2.2.15 (701. Es=E-set: Element Supply Set: ..170
8222216 1702.E:Elements:.................... 170
Comments on the Mereology
Presentation.......................... 170
Distances of Stations from Outlet ...170
82223 Atfributes....... ... 172
8.2.2.2.3.1 1687. AP: Assembly Plant: 172
8.2.2.2.3.2 1688. ALA: Assembly Line Aggregate: 172
8.2.2.2.3.3 1689. MAL: Main Assembly Line:...... 173
8.2.2.2.34 1690. SALA: Supply Assembly Line
Aggregate: 173
8.2.2.2.3.5 1691, SALs: Supply Assembly Line
Set: ... 173
8.2.2.2.3.6 1692. SAL: Supply Assembly Lines:...173
8.2.2.2.3.7 1693. SA: Station Aggregate:.......... 173
8.2.2.2.3.8 1694. Ss=S-set: Station Set: 174
8.2.2.2.3.9 1695. S: Station: 174
8.2.2.2.3.10 :696. ME: Main Element: 175
8.2.2.2.3.11 (697. RA: Robot Aggregate: 175
8.2.2.2.3.12 1698. Rs=R-set: RobotSet:............ 175
8.2.2.2.3.13 (699.R:Robot: 175
8.2.2.2.3.14 :700. ES: Element Supply: 176
8.2.2.2.3.15 1701. Es=E-set: Element Supply Set: ..176
8.2.2.23.16 (702.E:Elements:.................... 176
8223 Comments Wrt. [70] ...t 176
823 Perdurants 177
8.2.3.1 From Parts to Behaviours 177
823.2 Channelso 178
8.2.3.3 ACKOIS ..o 178
8.2.33.1 ActionsandEventsl 178
8.2.3.3.2 Behaviours 178
8.2.3.4 System Initialisation 178
TR T 0 1= o 1 == o o 178
8.4 CONCIUSION ...ttt iiiii it teiieteeennneeeeeanneeeseananeessonnnesacannneeens 178
84.1 Modelsand AXIOMSttt e 178
8.4.2 Learning Forwards, PracticingInReverse............................... 178
8.4.3 Diagrammatic Reasoning 179
8.4.4 The Management of Domain Modeling 179
84.5 ..onemoresection e 180
8.4.6 ..alastsection (?)o 180

8.4.7 Acknowledgments........... 180

8.1 Introduction 143

We interpret Sect. 2 of [70]. That is, we present the domain description of a generic, assembly line manufac-
turing plant, like, for example, an automobile plant. The description is in the style of, i.e., according to the
dogma of [55]. Itis an aim of this report to (i) classify the various notions of [70] in their relationship to domain
analysis & description notions of [55]: endurants and perdurants, external and internal endurant qualities:
unique identifiers, mereologies and attributes, as well as domain versus requirements specifications, i.e.,
descriptions vs. prescriptions.

Caveat
The topic of this report is currently being studied and writing progresses according ly. I have not
checked all item (etc.) references, but will, one day I have a printed copy to work from! I have
also left many stubs to be resolved. Various sections represent “diverse” modeling attempts. It
will be interesting to see which will “survive” ! Since this report will be updated on the net daily
You may wish to not download-copy it, but to reload it, from day-to-day, if need be.

November 15, 2021: 16:12: “Progress”

Mereology “finished”.

“Finished” first round of Attributes.

Speculating on robot tasks.

Unfinished “business” wrt. parts and robot operations.

A Development Document

This report cum paper, may look like a paper. But it is not. It is a report on “work in progress”.

It expresses, in its current form, the way we would, sequentially, develop en experimental
domain model, such as mentioned in Sect. 8.4.4 on page 179, in the item labeled Experiment
on Page 179.

8.1 Introduction

The current author has put forward a theory and a methodology of domain engineering [48, 52, 55].
That methodology is the result of 30 years of experimental development of analyses & descriptions
of numerous domains. See the bibliography entry for [60] to see the variety of domains so studied.
Isolated aspects of the domain of assembly line manufacturing has been a topic of study, also
in computing science, for some years. See, for example, https://en.wikipedia.org/wiki/Cel-
lular manufacturing. These computing science studies have, however, focused, less on overall
assembly lines, and more on their individual manufacturing cells — in this report referred to as
operators (or stations (?)). So when I heard of and read [70] I was ready to myself tackle the domain
analysis & description of an “entire” production line, i.e., a single assembly line complex of a main
and possibly several supply assembly lines.

MORE TO COME

144 8 Automobile Assembly Lines [September 2021]

8.2 A Domain Analysis & Description

8.2.1 An Initial Domain Sketch

We refer to Fig. 8.5 on page 146. In this section we shall give an informal sketch of the domain.
The domain is that of the generic assembly line “core” of a manufacturing plant — think of an
automobile factory 12

© dreamstime.com o l ©) dreamstime.com

Fig. 8.2 Aspects of an Automobile Assembly Line, II

28 For the specific case of automobile factories the assembly line focus thus omits consideration of number of major
components: the motor foundry etc., the paint shop, etc.

8.2 A Domain Analysis & Description 145

Fig. 8.3 Aspects of an Automobile Assembly Line,III

Fig. 8.4 Aspects of an Automobile Assembly Line IV

We thus focus solely on assembly lines?**°. Figure 8.5 shows an idealised layout of an assembly
line. It shows one main assembly line and three supply assembly lines. Assembly lines assemble,
as we shall call them, elements.’! Assembly of elements, from other, the constituent, elements are
performed by robots®? at stations. Stations are linearly ordered within an assembly line. Assembly
lines has a flow direction, i.e., the direction in which increasingly “bigger” elements “flow”. Each
station consists of one or more robots. Robots direct their work at a main element, and apply their
grips to elements supplied from an element supply,® or to a “larger” assembly “fetched” from a
supply assembly line incident at that station !

% https://fen.wikipedia.org/wiki/Assembly line: An assembly line is a manufacturing process (often called a pro-
gressive assembly) in which parts (usually interchangeable parts) are added as the semi-finished assembly moves
from workstation to workstation where the parts are added in sequence until the final assembly is produced. By
mechanically moving the parts to the assembly work and moving the semi-finished assembly from work station to
work station, a finished product can be assembled faster and with less labor than by having workers carry parts to
a stationary piece for assembly.

Assembly lines are common methods of assembling complex items such as automobiles and other transportation
equipment, household appliances and electronic goods.
30 Example supply assembly lines are: (i) engine assembly (where the start of such lines are supplied with already
prepared engine blocks (from a non-assembly line engine foundry and machining shop), (ii-v) four left and right
front and rear door assemblies, (vi-ix) body interior left and right front and rear sofa, and panel assemblies.
31 Other, perhaps more common terms are: products or parts. The term ‘part’ is used in our domain analysis &
description method, [48, 52, 55], for quite other purposes —so that is “out!”
32 Robots are either humans assisted by various machine tools, as in Charlie Chaplin’s movie: ‘Modern Times’
(1936), or are, indeed, robots.
33 That is, a station local storage of elements that are to be joined, at a station, by the help of robots, to the main
element. How the supply elements are introduced to the supply is currently left unspecified.

146 8 Automobile Assembly Lines [September 2021]

|:| An Assembly Plant with three Supply Assembly Lines and a total of 29 Stations

L]
Supply B
[]

Assembly Line (a) B Supply Assembly Line (c)

S
Main Assembly Line Station

‘ ‘ ‘ } ‘ ‘ ‘ ‘ ‘ vvvvvv H ‘ ‘ H H H ‘ ‘ } ‘ } ‘ ‘ ‘ »‘
Supply Assembly Line (b) |:|
|:| \'\ Robot Aggr.
ow = e
.......... /0 -/ -
\ emen
| ROme Supply

a Station enlarged

Fig. 8.5 A simplified Assembly Plant diagram

8.2.2 Endurants

The endurant analysis & description is according to the ontology graph of Fig. 8.6 on the facing
page. The analysis & description is otherwise according to either of [48, 52, 55]. It suffices to have
studied [52].

8.2.2.1 External Qualities

The domain analyser cum describer®*, who is assumed fully familiar with the domain analysis &
description method, [55], starts with analysing and describing external qualities of the domain.
In the case of an assembly plant these are the solid endurants, or, as they are called in [55], the
parts. The domain analyser cum describer, from being familiar with the method, therefore is, all
the time, aware that these (described) parts will, in the transition to the analysis & description
of perdurants, be transcendentally deduced, i.e., “morphed” into behaviours. It is this a-priory
knowledge that guides the analyser cum describer’s determination as to whether parts are to
be modeled as atomic or as compounds, and the decomposition of compound parts into atomic,
aggregate and set parts.

8.2.2.1.1 Parts

The domain, that is, the universe of discourse, is that of an assembly plant - say for automobiles,
for machinery or for electronic gadgets.

687. In an assembly plant, AP, we can observe

3 The notion of ‘domain analyser cum describer” covers one, individually (as the author of this paper) working
person, or a well-managed group of two or more persons, all “equally” familiar with the method of [55].

8.2 A Domain Analysis & Description 147

Phenomena of Natural and Artefactual Universes of Discourse

= Describables Indescribables

Endurants Endurants

Perdurants '

 : External Qualities

i M Describer "states”

Parts Species P

- ‘
. < !
1 o 1
! L
'
£ R NP SRR SRR IR
;] ‘g'& o Vg '
i P o !
o B L0
: R @ i :
i 2 k= :
N
: 8 o S i '
‘ g5 P ‘
' 5 a [N :
° o’

Unique Identifiers

Fig. 8.6 The simple Ontology Graph underlying our Analysis & Description

688. an assembly line aggregate, ALA®.

689. From an assembly line aggregate one can observe a composite of a main assembly line, MAL,
690. and aggregate of supply assembly lines, SALA,

691. with the latter being sets SALs = SAL-set.

692. of supply assembly lines,

693. From main and supply assembly lines one can observe aggregates of stations, SA,
694. which are sets Ss = S-set3

695. of two or more stations S. From a station one can observe

696. a main element, ME, (an assembly37),

697. an aggregate robot, RA, which is

698. a set, Rs = R-set,?8 of

699. one or more robots, R, and

35 We omit observations of motor works (foundry, machining, etc.), body shop (pressing, etc.), paint shop, etc.

36 Linear Lines: The mereology of sect. 8.2.2.2.2 will order these in a linear sequence

%7 https://www.merriam-webster.com/dictionary/assembly: Assembly: the fitting together of manufactured ele-
ments into a complete machine, structure, or unit of a machine

38 [70]: Our interpretation of ‘operator’: robot perform processes which consists of tasks. These are perdurants, that
is, an operator will, subsequently, in this report be transcendentally “morphed” into s set of one or more concurrent
processes. These processes are then subject, in the domain model, to invariants, and in a subsequent requirements
“model” into constraints.

148

700. an aggregate, ES, of [“supply”] elements®,
701. which are sets, ESs = E-set,
702. of manufacturing elements E.

type

687. AP

688. ALA

689. MAL

690. SALA
691. SALs = SAL-set
692. SAL

693. SA

694. Ss = S-set
695. S

696. ME

697. RA

698. Rs = R-set
699. R

700. ES

701. Es = E-set

8 Automobile Assembly Lines [September 2021]

702. E
value
688. obs_ALA: AP — ALA

689. obs_MAL: ALA — MAL
690. obs_SALA: ALA — SALA
691. obs_SALs: SALA — SALs
693. obs_SA: (MAL|SAL) — SA
694. obs_Ss: SA — Ss
696.0bs_ME: S - ME
697.0bs_.RA: S —» RA
698.0bs_Rs: RA — Rs
700.0bs_ES: S — ES
701.0bs_Es: ES — Es

axiom

694. V ss:Ss - card ss > 1

698. Vrs:Rs+cardrs >0

Figure 8.7 repeats Fig. 8.5 on page 146, but now marked with the names of composite sorts

introduced in Items 687-701.

,,,

MAL
i R \\\ \\\
. \\ Robot"x;_lggr. p
Flow: “atRobot (T An Assembly Plant with

KO robat 3 Supply Assembly Lines
|| Robot Blement | _ | and 29 Stations
' Supply [TCfmee, ES

AP a Station enlarged

Fig. 8.7 A simplified Assembly Plant diagram marked with composite endurant sort names

% These are local storage, usually simple, mostly atomic solid or fluid elements such as bolts & nuts, glue, etc.

8.2 A Domain Analysis & Description 149

8.2.2.1.2 On Main Elements

This section is an aside.
In this section we shall discuss what is meant here by a main element, that is, “what is in store”
— what will/might come up later on.

8.2.2.1.2.1 General:

The main element is here modeled as a solid endurant. It is a “place-holder” for “the thing for
which the manufacturing plant” is intended. The plan is to endow main elements with an attribute
[Sect. 8.2.2.2.3.10 on page 175]: That attribute may itself be thought of as being a solid endurant.
We shall then use the term part*’ Robots, then, perform operations on the main element. These
operations are functions, which are attributes of robots. As functions they take the main element
[main] part attribute and a set of element supply elements and yield an updated main element
part. So You may think of the main element as a “container” for that main part. There may be
no contents of the container, in which case the main element’s part attribute is "nil". Its content
is “received” from the main element of the previous station, if there is one, else from an element
supply. A content that a station can no longer contribute to is “passed” on to the next station, or
“fused” in, if from a supply assembly line, as a supply element, to a main assembly line elements,
or, to an outside, the “ready product!”

8.2.2.1.2.2 Assembly Line Element Types:

The type of main elements is a pair: the type that is stroven for, that is, the assembly line type, and
the type of the element “currently residing in” the main elements. So each station is particularly
typed by its “current” main element type.

8.2.2.1.3 Automobile Manufacturing: A Wider Context

These are, roughly the principal components of automobile manufacturing®!:

e Chassis: The chassis of the car is the baseline component. All other parts are integrated on,
or within the chassis. This is typically a welded frame that’s initially attached to a conveyor
that moves along a production line. As the frame progresses, the car is literally “built from the
frame up” to create a final product. Parts that are sequentially applied to the chassis include
the engine, front and rear suspension, gas tank, rear-end and half-shafts, transmission, drive
shaft, gear box, steering box, wheel drums and the brake system.

e Body: Once the “running gear” is integrated within the frame, the body is constructed as a
secondary process. First, the floor pan is positioned properly, then the left and right quarter
panels are positioned and welded to the floor structure. This step is followed by adding the
front/rear door pillars, the body side panels, rear deck, hood and roof. The entire process is
typically executed by robotic machines.

¢ Paint: Before painting the vehicle, a quality control team inspects the body as it sits. Skilled
workers look for dents, abrasives or other deformations that could create a finishing problem
when undergoing the painting process. Once this step is completed, the car is automatically
“dipped” with primer, followed by a layer of undercoat and dried in a heated paint bay. Once

40 Not to be confused with the Design Analysis & Description concept of parts, i.e., solid endurants.
41 This account is taken, ad verbatim, from: https: //itstillruns.com/car-manufacturing-process-5575669.html.

150 8 Automobile Assembly Lines [September 2021]

the primer/undercoat process is finished, the car is again “dipped” with the base coat and again
dried before moving the assembly to the next stage.

e Interior: After the structure is entirely painted, the body is moved to the interior department in
the plant. There, all of the internal components are integrated with the body. These components
include: instrumentation, wiring systems, dash panels, interior lights, seats, door/trim panels,
headliner, radio, speakers, glass, steering column, all weather-striping, brake and gas pedals,
carpeting and front/rear fascias.

e Chassis/Body Mating: The two central major assemblies are next mated for final setup and
roll-out. Again, this process is executed via computer and control machines to ensure speed,
and perfect the fit between the body assembly and the chassis. Once the car is rolling on its
own, it’s driven to the final quality control point, inspected and placed in a waiting line for
transportation to its final dealer destination.

8.2.2.1.4 An Assembly Plant Taxonomy

Figure 8.8 “graphs” the composition of solid endurants of an assembly plant according to the
endurant composition of Items 687-701 on page 148.

API1

) SA SALs = () SAL-set
P /// b .16
. SALe @SAL .- @®SAL
R SR 7 :
. "SA @
\\\ /// /‘/,/ e //‘/v |9 \\\\ \\\
\ // s ‘ %\ S \,, \\\
- 110, 14 111

A ME ES RA

E|"nil" 15 112
@ Es :/v’b\E—Set Rs :\Q R-set

Fig. 8.8 The Composition of Solid Endurants of an Assembly Plant (AP)
Larger red framed boxes designate set parts.
ti, tp refer to item i page 148.

8.2 A Domain Analysis & Description 151

Some diagram explications: (i) the top left dashed triangle shall show an endurant composition
as does the main, large, dashed triangle; (ii) the vertical dotted lines “hanging down” from two
SALs “hint” at the “tree” emanating down from the “middle” SAL; and (iii) the horisontal dots,
...,in SAL, S, R and E “lines” hint at any number, 0 or more, of these endurants !

8.2.2.1.5 Aggregate, Set, Core and Sibling Parts
We review*?, as an aside, the [55, Monograph] concepts of atomic, compound, aggregates, sets,
core or root, and sibling parts.

8.2.2.1.5.1 Atomic and Compound Parts:

Atomic parts are solid endurants whose possibly “internal” composition is ignored. Compound
parts are solid endurants which we further analyse into core (or, equivalently, root) and sibling
parts.

8.2.2.1.5.2 Aggregates and Sets:

Compound parts are either composites of one or more parts of different sorts, i.e., like Cartesians,
but where we avoid modeling a composite as a Cartesian of a definite number of parts — since we
may, “later”, wish to “add” additional parts, or are [finite] sets of zero, one or more parts of the
same sort.

We use the term aggregate to cover both kind of compounds. Usually, however, we use aggregates
for composites, and sets for sets !

8.2.2.1.5.3 Cores [Roots] and Siblings:

With compound parts we distinguish between the core part and the sibling parts.

The core part is understood as follows: It is to be considered a “proper” part although it may
sometime be more of an abstraction than a solid ! Consider the following example: a car, as seen
from the point of view of an automobile plant, is a composite, with a core, the car as a whole, as
“somehow” embodied in the overall software that monitors and co-controls various of the car’s
siblings; these siblings are then further aggregates, each with their cores and siblings. Immediate
car siblings could be the chassis, the motor, the engine train, the body. The chassis, as an aggregate,
has, usually, four wheels, etc. The body, as an aggregate, has, perhaps, four doors, a trunk and a
hood. And each of these, the chassis, motor, engine train, body; etc., has their cores.

We now “formalise” the notion of the core of a compound.

e We do so by introducing an otherwise not further defined [binary or distributive] operator, ©.
e Itapplies to a pair of parts:

% oneis an aggregate, cp, and
« the other, sp, is
o either a single one of its siblings, p;,
o or a set of these, {p;,pj, .., pi},
© ie., cpops, “somehow removes” ps from p.

We now apply the © systematically to all components of our domain.

42 The treatment of part cores (in [55] called roots) is here augmented with the © operation — not mentioned in [55].

152 8 Automobile Assembly Lines [September 2021]

e The ‘core’ of an atomic part is that part.
e The ‘core’ of a composite part is that part “minus” (©) its “sibling” parts:

Let p be a composite part,

then p; = obs_P1(p), p2 = 0bs_Pa(p), ..., pm = 0bs_P,,(p) are its sibling parts
[where obs_Pq, obs_P;, ..., obs_P,, are the observers of parts p (of type P)].
The ‘core’ of p, i.e., core_P(p), is then p© {p1,p2, ..., pm} : Px.

8 8 8 8

e The ‘core’ of a set of parts is that part “minus” (©) its “sibling” parts:

« Let ps be a set part (of type Ps = Q —set),
© ‘core’ of ps, i.e., core_Ps(ps), is then ps©{q1,92,...,qu} : Psx.

Subsequently introduced unique identifier, mereology and attribute observers apply to core parts
as they do to non-core parts.

8.2.2.1.6 The Core State

To encircle the notion of domain core states we need characterise:

e the state narratively, Sect. 8.2.2.1.6.1; and
e the state formally, Sect. 8.2.2.1.6.2.

8.2.2.1.6.1 State Narrative:

We shall now narrate the assembly plant domain state. We start by referring to Fig. 8.9 on the
facing page.

703. We shall model the assembly plant state, o, by a set of xore parts composed as follows:

16871146 %3 (AP) the assembly plant kore apy:AP;
168871147 (ALA) the assembly line aggregate xore ala:ALA;
16891147 (MAL) the main assembly line kore, mal.:MAL,;
16907147 (SALA) the aggregate of supply assembly lines xore, sala,:SALA;
169170147 (SALs) the consolidated** set of all sets of assembly line xores, csals,:ALs,;
16937147 (SA) the consolidated® set of all station aggregates cssa:SA-set;
16947147 (Ss) the consolidated set of all assembly lines’ station set xores, €85,:SSy;
16957147 (S) the consolidated set of all assembly lines’ station xores, €5x:Sy;
16961147 (ME) the consolidated set of all main element kores, csme,:ME,;
16971147 (RA) the consolidated set of all robot aggregates «ores, csra:RA-set;
1698147 (Rs) the consolidated set of all robot set xores, csrs:Rsy;
169911147 (R) the consolidated set of all robot kores, csr:Rsy;
170071148 (ES) the consolidated set of all element supply xores, cses:ES-set;
17011148 (Es) the consolidated set of all kore elements, cse:E-set;

704. as a set, 0s,.

8.2.2.1.6.2 Endurant State Formalisation:

705. We consolidate the main and the supply assembly lines into one kind of assembly line, AL,
706. and their corresponding [consolidated] sets.

43 |item mpage labels refers to narrative item on page; the corresponding formalisation is found on page[s] 148-148.
4 _ from both the main assembly line and from all the supply assembly lines
45 Henceforth, by consolidated, we mean as in footnote 44.

8.2 A Domain Analysis & Description

MAL
SA @ c:als K
oo { malK '
sal_Iy .
sail_nK }

| - consolidate

Fig. 8.9 Red/Blue text labels designate contributions to domain state

type

705. AL = MAL | SAL
706. AlLs = AL-set

vaue

1687 1 146.
1687 1 146.

1688 147.
1688 147.

1689 147.
1689 147.

1690t 147.
1690t 147.

ap:AP
ap APy = core_AP(ap)

ala:ALA = obs_ALA(ap)
ala,.:ALA, = core_ALA(ala)

mal:MAL = obs_MAL(ala)
mal:MAL, = core_MAL (ala)

sala:SALA = obs_SALA(ala)
sala,.:SALA, = core_SALA(sala)

1691 1w 147. csals:AL-set = {mal} U obs_SALs(sala)
1691 1w 147. csals,:AL-set, = U{core_AL(al)|al:AL-al € csal}

153

154 8 Automobile Assembly Lines [September 2021]

1693 7t 147. cssa:SA-set = {obs_SA(al)|al:AL-al € csal}
1693 1 147. cssa,.:SA-set, = U{core_SA(sa)|sa:SA-sa € cssa}

1694 1 147. css:S-set = U{obs_Ss(sa)|sa:SA-sa € cssa}
1694 147, css,:S-set, = U{core_Ss(obs_Ss(s))|s:S+s € css}

16957 147. cs:S-set = Ucss
16957147, cs,:S-set, = {core_S(s)|s:S+s € cs})

1696 7 147. csme:ME-set = U{obs_ME(s)|s:S*s € css}
1696 7 147. csme,:ME-set, = core_ME(csme)

1697 t147. csra:RA-set = U{obs_RA(s)|s:S*s € css}
1697 w147. csra,.:RA-set, = core_RA(csra)

1698 1 147. csrs:R-set = U{obs_Rs(ra)ra:RA-ra € csra}
1698 w147, csrsyi = core_R(csrs)

1699 1 147. crs:R-set = U{obs_Rs(ra)|ra:RA-ra € csra}
1699 w147, crs, i = core_R(csrs)

17007t 148. cses:ES = U{obs_ES(s)|s:S-s € csra}
17007t 148. cses,: = core_ES(cses)

1701w 148. cse:E-set = U{obs_Es(es)|es:ES-s € cses}
1701 w148, csey: = core_E(cse)

704. o4:(APJALAIMAL|SALA|SALs|Ss|SIME|RA|Rs|RIES|ES|E)-set =
704. {apy} U {ala} U {mal,} U {sala,} U csals, U cssa, U
704. €SS U €8y U csmey U csra, U csrs, U csrye U cses, U csey

8.2.2.1.7 Invariant: External Qualities

707. No two assembly lines, whether main or supply, are equal;
708. no two stations in same or different assembly lines are equal;
709. no two robots in different stations are equal;

710. no two main elements are equal;

711. no two element supplies in different stations are equal;

712. etc.
707. VY ali,alj:AlL+{al.,al_j}Ccsal =
707.
707.
707.
708. V s.,sj:S{s.,s_j}Ccsal =
708.
708.
708.

709. VY ri,rj:Re{rirjiCcsr =
709.

8.2 A Domain Analysis & Description 155

709.

709.

710. V me_i,me_j:ME+{me_i,me_j}Ccsme =
710.

710.

710.

711. V es.,es_j:ES+{es.i,es_j|Ccses =
711.

711,

711.

712. ..

8.2.2.2 Internal Qualities

External qualities can be said to represent manifestation: that an endurant can be seen and touched.
Internal qualities gives “contents” to the manifests in three ways:

e by the obvious endowment of solid endurants with unique identification [55, Sect.5.2],

e by stating relations between solid endurants, whether topological or conceptual, e.g., opera-
tional, in the form of mereologies [55, Sect.5.3], and

e by giving “flesh & blood, body & soul” to these endurants in the form of wide ranging attributes
[55, Sect. 5.4].

8.2.2.2.1 Unique Identifiers
We shall show that many of the concerns of [70] have their “root” in the unique identification of
solid endurants of the domain.

713. All parts, whether compound or atomic, have unique identifiers.

type
713. API, ALAI, MALI, SALAI, SALsl, SALI, SAl, Ss, SI, MEI, RAI, Rsl, RI, ESI, Esl, El

value 713. uid_SAL: SAL—SALI, 713. uid_Rs: Rs—Rsl,
713. uid_AP: AP—API, 713. uid_SA: SA—>SAI, 713. uid_R: R—Rl,
713. uid_ALA: AL—ALAI, 713. uid_Ss: Ss—Ssl, 713. uid_ES: ES—EI,
713. uid_MAL: MAL—MALI, 713. uid_S: S-S, 713. uid_E: E—EI

713. uid_SALA: SALA—SALAI, 713. uid_-ME: ME—MEI,
713. uid_SALs: SALs—SALsl, 713. uid_-RA: RA—RAI,

8.2.2.2.1.1 Common Unique Identifier Observer:

714. Given thatis_P(p) holds if p is of type P, and is false otherwise, we can define a common unique
identifier observer function for all assembly plant types.

type

714. P = AP|ALAIMAL|SALA|SALs|SA|Ss|SIME|RA|Rs|RIES|Es|E

714. Pl = API|ALAIIMALI|SALAIISALsI|SAI|Ssl|SIIMEIRAIRsI|RIIESI|ESI|EI
value

714. uid: P — PI

156

value
714.
714.
714.
714.
714.
714.
714.
714.

8 Automobile Assembly Lines [September 2021]

714. is_S(p)—uid_S(p),

uid(p) = 714. is_ME(p)—uid_ME(p),
is_AP(p)—uid_AP(p), 714. is_.RA(p)—uid_RA(p),
is_ALA(p)—uid_ALA(p), 714. is_Rs(p)—uid_Rs(p),
is_.MAL(p)—uid_MAL(p), 714. is_R(p)—uid_R(p),
is_SALA(p)—uid_SALA(p), 714. is_ES(p)—uid_ES(p),
is_SALs(p)—uid_SALs(p), 714. is_Es(p)—uid_Es(p),
is_SA(p)—uid_SA(p), 714. is_E(p)—uid_E(p),
is_Ss(p)—uid_Ss(p), 714. —false

8.2.2.2.1.2 The Unique Identifier State:

As for endurant parts, cf.Sect. 8.2.2.1.6.2 on page 152, we can define a state of all endurant
parts” unique identifiers. To do so we make use of the uid_E observers as also being distribu-
tive, that is, if uid_E is applied to a set of solid endurants, say {e;,ey,...,€,}, then the result is
{uid_E(e;1),uid_E(e2),...,uid_E(e;)}.

687,i4. uid_ap = uid_AP(ap)

688,;4- uid_ala = uid_ALA(ala)

689,,;4. uid_mal = uid_MAL(mal)

690,,;;. uid_sala = uid_SALA(sala)

691,,5. wuid_csal = U{uid_SAL(sal)|sal:SAL-sal € csal}

692,,;. uid_csals = U{uid_SALs(sals)|sals:SALs-sals € csals}

693,,4. uid_cssa = U{uid_SA(sa)|sa:SA-sa € cssa}

694,,;. uid_css = U{uid_Ss(ss)|ss:Ss*ss € css}

695,;;. uid_cs = U{uid_S(s)|s:S+s € css}

696,,;;. uid_csme = U{uid_ME(me)me:ME-me € csme}

697 ;4. uid_csra = U{uid_RA(ra)|ra:RA-ra € csra}

698,,;4. uid_csrs = U{uid_Rs(rs)|rs:Rs-rs € csrs}

699,,;5. uid_csr = U{uid_R(R)|r:Rer € csr}

700,;5. uid_cses = U{uid_ES(es)|es:ES-es € cses}

7014 uid_cse = U{uid_Es(es)|es:Es-es € cse}

704,,;. uid_s_o:(APJALIMAL|SALA|SALs|SAL|SA|Ss|SIME|RA|Rs|R|ES|Es)-set =
704,4. {uid_ap} U {uid_ala} U {uid_mal} U {uid_sala} U uid_csal U uid_cssa U
704 ;4. uid_css U uid_csme U uid_csra U uid_csr U uid_cses U uid_cse
8.2.2.2.1.3 An Invariant:

715. All parts are uniquely identified, cf. [tem 704 on page 154 and Item 704,,;; on page 156.

715.

card s_o = card uid_s_o

8.2.2.2.1.4 Part Retrieval:

716. From a unique identifier of a domain and the domain endurant state we can obtain the identified
endurant.

8.2 A Domain Analysis & Description 157

value

716. retr.End: Ul — P-set - P

716. retr_.End(ui)(c) = let p*p € 0 A uid(p) = uiin p end
axiom

716. c=s o AUicuidsoApesSo

8.2.2.2.1.5 The Unique Identifier Indexed Endurant State:

We can define a map from unique identifiers of endurant parts to these.

value 694, . uid_css > css,
704. o, = 695,. uid_cs > cs,
687,. [uid_ap — ap, 696,. uid_csme > csme,
688,. uid_ala v ala, 697,. uid_csra — csra,
689,. uid_mal v~ mal, 698, . uid_csrs — csrs,
690,. uid_sala v~ sala, 699, . uid_csr +— csr,
691,. uid_csal — csal, 700,. uid_cses — cses,
692,. uid_csals — csals, 701,. uid_cse — cse |
693,. uid_cssa v+ cssa,

We leave it to the reader to state the type of the 0,;; value!

8.2.2.2.1.6 Taxonomy Map with Unique Identifier Labels:

Figure 8.10 on the following page?® repeats Figs. 8.8 on page 150 and 8.9 on page 153. In Fig.8.10
lines are now labeled with appropriate unique identifiers. This leads up to Fig. 8.11 on page 159.

Figure 8.11 on page 159 is a first, a graphical, two-dimensional expression. We shall comment
on the graphics.

First one may say that Fig. 8.11 shows “horisontally” what Figs. 8.8-8.10 shows “vertically”.

Then we note that compound composites and compound sets are expressed as maps from
unique part identifiers to parts (which include these unique identifiers).

And finally we note that each compound part is expressed as a pair: px,map, the px labels the
upper left outside of the map —such that the parentheses of the pair, (px,map), is shown just before
px and ends after map.

8.2.2.2.1.7 Unique Identifier State Expressions:

We now present the proper Unique Identifier State Expression formula sketched in Fig.8.11. It
will be defined in terms of the generate unique identifier state expression function g-uise.

[687 on page 146] AP, Assembly Plants

717. The unique identifier state expression for the assembly plant is the pair of the assembly plant
core, apk, and the unique identifier state expression for the assembly line aggregate.

value
717. g-uise(ap) = (apk,g-uise(ala))
717. where: apk=core_AP(ap) A ala=obs_ALA(ap)

46 A difference between Fig.8.10 and Figs.8.8-8.9 is that in Fig.8.10 we have “moved” the left MAL taxonomy
triangle a level down, to “level"with the right SAL triangles.

158 8 Automobile Assembly Lines [September 2021]

AP

SALs = ¢ SAL-set

sl

MAL SAL® @SAL .- @SAL
0| L s :
"SA @
, s
P2 s /,:»/bx?_SéL\
””””” sk
e %\ . Se

L meijo es | j K aij_k
' Repeat 7 ME ES

ei_j_k ess [j_k
E|"nil" @ | Es =v/¢)\E—set Rs =0 R-set
. T
o0 - o0 °
E E E R R R

Fig. 8.10 Taxonomy with Unique Identifier Labels

[688 on page 147] ALA, Assembly Line Aggregates

718. The unique identifier state expression for the assembly line aggregate, ala, is the pair of the
assembly line aggregate core, alax, and the singleton map from the unique identifier of the
assembly line aggregate to that aggregate — expressed as a core-part annotated map.

value

718. g_uise(ala) =

718 (alax,

718/ [uid_ALA(ala)—

718/ [uid_MAL (mal)—g_uise(mal),
718/ uid_SALA(sala)—g_uise(sala)]])

The one-liner, Item 718, just above, is too “complex”, better, we think, is the 4 liner just below,
i.e., Items718”-718""".

value

718. g_uise(ala) =

718.
718."
718.7"

(alax,
[uid_ALA(ala)
— [uid_MAL(rmal) — g_uise(mal),

8.2 A Domain Analysis & Description 159

ap = (apk,[(alak, [(malk, [sak, [fsask T N1
(| (sask, (s_ik. [me_i - me ME 0 HARID)

| es_i-es ES §

(rak, (rs,[rii—-rl, R D)

: r2.i -r2, R

mal_i - sa_i - sas_i-| s_ji-|raj-rs_i -

P B S I

" lgimiloph © I o) ;

B \\\s‘lmllar | 3) @ " é ol mi -~ m R |

. < . <y nun - ~ -

a|a_| o, =L (f) Lo Lo e P R
salak, [~ (salsk, [.. Sigipnila il Ry
(((sal i T |- “\‘\SIm/Iar o)IBID)
(sa_i_j_Kkk, [Fra T
_ o A content as for dash lined
sala_i - | salas_i — |sal_i_j -| sa_i_j_k —| the sa_i->(sak.[...])
| "box" above
"3 <
< 9l 3 O ottt
o S 2 << nL - J

<l <L AL naL JJ0]

Fig. 8.11 Unique Identifier State Expression

718.7" uid_SALA(sala) — g-uise(sala)]])
718. where: alax=core_AP(ala) A mal = obs_MAL(ala) A sala = obs_SALA(ala)

[689 on page 147] MAL, Main Assembly Lines

719. The unique identifier state expression for the main assembly line, mal, is the pair of the main
assembly line core, malx, and the map from the unique identifier of its station assembly, sa, and
the unique identifier state expression for the station assembly.

value
719. g_uise(mal) =
719. (malx,

719. [uid_MAL(mal) +— [uid_SA(sa) — g-uise(sa)]])
719. where: malk=core_MAL(mal) A sa = obs_SA(mal)

[690 on page 147] SALA, Supply Assembly Line Aggregates

720. The unique identifier state expression for the supply assembly line aggregate, sala, is the pair of
the supply assembly line aggregate core, salax, and the singleton map from the unique identifier
of the set of assembly lines to that set — expressed as a core-part annotated map.

value
720. g_uise(sala) =
720. (salax,

720. [uid_SALA(sala) — [uid_SALs(sals) — g_uise(sals)]])
720. where: sals = obs_SALs(sala) A

[691 on page 147] SALs=SAL-set, Supply Assembly Line Sets

—|

160 8 Automobile Assembly Lines [September 2021]

721.

722.

723.

724.

725.

The unique identifier state expression for the supply assembly line set, sals, is the pair of the
supply assembly line set core, salsx, and the map from the unique identifier of each of the
supply assembly lines to that set — expressed as a core-part annotated map.

value

721. g_uise(sals) =

721. (salsk,

721. [uid_SAL(sal) — g-uise(sal) | sal:SAL - sal € sals])
721. where:

[692 on page 147] SAL, Supply Assembly Lines

The unique identifier state expression for the supply assembly line, sal, is the pair of the main
assembly line core, salk, and the singleton map from the unique identifier of its station assembly,
sa, and the unique identifier state expression for that station assembly.

value
722. g.uise(sal) =
722. (salx ,

722. [uid_SAL(sal) — [uid_SA(sa) — g_uise(sa)]])
722. where: salk=core_SAL(sal) A sa = obs_SA(sal)

[693 on page 147] SA, Station Aggregates

The unique identifier state expression for the station aggregate, sa, is the pair of the station
aggregate core, salk, and the map from the unique identifier of each of the stations to that set —
expressed as a core-part annotated map.

value
723. g-uise(sa) =
723. (sax,

723. [uid_SA(sa) — g_uise(ss))
723. where: sax = core_SA(sa) A ss = obs_Ss(sa)

[694 on page 147] Ss=S-set, Station Set

The unique identifier state expression for a set of stations, ss, is the pair of the station set
core, ssk, and the singleton map from the unique identifier of each of the stations to that set —
expressed as a core-part annotated map.

value

724. g_uise(ss) =

724. (ssx

724. [uid_Ss(s) > g_uise(s) | s:S+sess 1)
724. where:

[695 on page 147]S, Stations

The unique identifier state expression for stations, s, is the pair of the station core, sk, and the
map from

e the unique identifier of that stations’ main element to that main element, considered an
atomic,

8.2 A Domain Analysis & Description 161

726.

727.

¢ the unique identifier of that stations’ element supply to that element supply, here considered
an “atomic” (!), and

e the unique identifier of that stations’ robot aggregate to the unique identifier state expression
for that robot aggregate.

value
725. g_uise(s) =
725. (s«

725. [uid_ME(me) me ,

725. uid_ES(es) > es ,

725. uid_RA(ra) — g_uise(ra) 1)

725. where: sk = core_S(s) A me = obs_ME(s) A es = obs_ES(s) A ra = obs_RA(s)

[696 on page 147] ME, Main Elements
Item 725 above expresses that g_uise(me) = me.
[697 on page 147] RA, Robot Aggregates

The unique identifier state expression for robot aggregates, ra, is a pair of the robot aggregate
core, rax, and the singleton map from unique identifier of the robot aggregate to the unique
identifier state expression for the set of robots, rs, of that aggregate.

value
726. g_uise(ra) =
726. (rax,

726. [uid_Rs(rs) — g_uise(rs) 1)
726. where: rs = obs_Rs(ra)
[698 on page 147] Rs=R-set, Robot Sets

The unique identifier state expression for robot sets, rs, is a pair of the robot set core and the
map from the unique identifiers of the robots of the set to these robots.

value
727. g-uise(rs) =
727. (rsx,

727. [ud_R(r)—>r|rR-rers])

[699 on page 147] R, Robots

Item 727 expresses that g_uise(r) = r.

[700 on page 148] ES, Element Supplies

Item 725 on the facing page above expresses that g_uise(es) = es.

[701 on page 148] Es=E-set, Element Supply Sets

Item 725 on the facing page hence expresses that g_uise(ess) = ess.

[702 on page 148] E, Elements

Item 725 on the facing page hence expresses that g_uise(e) = e.

162 8 Automobile Assembly Lines [September 2021]

8.2.2.2.2 Mereology

Observation of endurant parts does not itself leave any trace as to their taxonomy, nor does the
identification of observed parts.

Mereology is what brings forth the taxonomy structures that is rendered, one way or another,
in all the figures shown so far!

We shall show that many of the concerns of [70] have their “root” in mereology-properties of the
domain; and we shall show that the topological aspects of the mereology “supports” Microsoft’s
Automated Graph Layout Tool [125].

We express the mereology properties as relations between the mereology of the endurant being
inquired, some or all elements of the mereology of the “ancestor” endurant, and some or all
elements of the mereology of the “descendant” endurant(s).

Common to all mereo_P observers we “retrieve” the “predecessor” part, from the overall
endurant state, and observe its mereology, while also “retrieving” the “descendant” parts, also
from the overall endurant state, given their identifiers from the mereology of the part under
observation, and then correlate them.

We then end up with a a set of mereology types, a set of corresponding mereology observer
signatures [not definitions], and a set of corresponding axioms. For any given domain the mere-
ology expresses some property that holds and that property transpires as the fix-point solution to
the mutually [but not recursively] — sort-of simultaneous[ly] — expressed axioms [in the form of
equations].

The overall property of the mereologies presented here is to secure that no two parts have
identical mereologies.

That should be a provable property of what is presented below.

e The following numbered paragraphs start with the :tem number of the endurant, whose name
is given next. The item numbers are formally defined on page 148.

8.2.2.2.2.1 1687. AP: Assembly Plant:

728. The mereology of an assembly plant is

e the unique identifier of its assembly line aggregate — such that
a. the successor part’s mereology identifies the assembly plant.

type

728. AP_Mer = ALAI

value

728. mereo_AP: AP — AP_Mer
axiom

728. let alai = mereo_AP(ap) in
728a.let (api,_) = mereo_ALA(retr_ALA(alai)) in retr_AP(api) = ap end end

8.2.2.2.2.2 1688. ALA: Assembly Line Aggregate:

729. The mereology of an assembly line aggregate is a pair

o of the unique identifier of the main assembly line

e and the unique identifier of the supply assembly line aggregate — such that
a. the [assembly plant’s, i.e., the] predecessor’s successor is that assembly line aggregate and
b. the two successors’ ancestor are likewise.

8.2 A Domain Analysis & Description 163

type

729. ALA_Mer = APl x (MALIxXSALAI)
value

729. mereo_ALA: ALA — ALA_Mer
axiom

729. let (api,(mali,salai)) = mereo_ALA(ala) in

729a. let alai = mereo_AP(retr_AP(api)),

729b. (alai’,) = mereo_MAL(retr_.MAL(mali)),
729b. (alai”,) = mereo_SALA(retr_SALA(salai)) in
729a. alai = uid_ALA(ala) A

729b. alai = alai’ = alai” end end

8.2.2.2.2.3 1689. MAL: Main Assembly Line:

730. The mereology of a main assembly line aggregate is

e the pair of the unique identifier of an assembly line aggregate and
e the unique identifier of a station aggregate — such that
a. the main assembly line’s unique identifier is the same as the [assembly line aggregate]
ancestor’s successor and
b. [station aggregate] successor’s ancestor.

type

730. MAL_Mer = ALAI x SAl

value

730. mereo_MAL: MAL — MAL_Mer
axiom

730. let (alai,sai) = mereo_MAL(mal), mali = uid_.MAL(mal) in
730a. let (_,(mali’,)) = mereo_ALA(retr_ALA(alai’)),

730b. (mali”,) = mereo_SA(retr_SA(sai)) in

730a. mali = mali’ A

730b. mali = mali” end end

8.2.2.2.2.4 1690. SALA: Supply Assembly Line Aggregate:

731. The mereology of a supply assembly line aggregate is

e the unique identifier of an assembly line aggregate and

e a pair of the unique identifier of a supply assembly line set — such that
a. the [assembly line aggregate] predecessor’s successor and
b. the [supply line set] successor’s predecessor
supply line aggregate identifiers are the same.

type

731. SALA_Mer = ALAI x SALslI

value

731. mereo_SALA: SALA — SALA_Mer
axiom

731. let (alai,salsi) = mereo_SALA(sala), salai=uid_SALA(sala) in
731. let (_,(_ ,salai’)) = mereo_ALA(retr_ALA(alai)),

164 8 Automobile Assembly Lines [September 2021]

731. (salai”,) = mereo_SALs(retr_SALs(salsi)) in
731a. salai = salai’ A
731b. salai = salai’ end end

8.2.2.2.2.5 1691. SALs=SAL-set: Simple Assembly Line Set:

732. The mereology of a set of simple assembly lines is a pair of

e the unique identifier of a supply assembly line aggregate and
e a set of the unique identifiers of station aggregates — such that
a. the [supply line aggregate] predecessor’s successor and
b. each individual simple assembly line’s predecessor
supply line set identifiers are the same.

type

732. SALs_Mer = SALAI x SAl-set

value

732. mereo_SALs: SALs — SALAI x SAl-set
axiom

732. let (salai,sais) = mereo_SALs(sals), salsi = uid_SALs(sals) in

732. let (_,salsi’) = mereo_SALA(retr_SALA(salai)) in

732a. salsi = salsi’ A

732b. V sai:SAl-sai € sais = let (sals”,) = mereo_SA(retr_SA(sai)) in salsi=sals” end
732. end end

8.2.2.2.2.6 1692. SAL: Simple Assembly Lines:

733. The mereology of a simple assembly line is a pair of

e the unique identifier of a [predecessor] supply assembly line set and
e the unique identifier of a [successor] station assembly — such that
a. the [supply assembly line set] predecessor’s and
b. the [station assembly] successor’s
simple assembly line identifiers are the same and that of the simple assembly line being
observed.

type

733. SAL_Mer= SALsl x SAl

value

733. mereo_SAL: SAL — SAL_Mer

axiom

733. let (salsi,sai) = mereo_SAL(sal), sali = uid_SAL(sal) in

733. let (_,sali’) = mereo_SALs(retr_SALs(salsi)), (sali’i,) = mereo_SA(retr_SA(sai)) in
733a. sali = sali’ A

733b. sali = sali”

733. end end

8.2 A Domain Analysis & Description 165

8.2.2.2.2.7 1693. SA: Station Aggregate:

734. The mereology of a station aggregate is a pair of

e the unique identifier of the [simple assembly line] predecessor and
e the unique identifier of the [station set] successor — such that
a. their station aggregate (successor), respectively (predecessor) station aggregate identifiers
are the same as that of the station aggregate being observed.

type

734. SA_Mer = SALI x Ssl
value

734. mereo_SA: SA — SA_Mer
axiom

734. let (sali,ssi) = mereo_SA(sa), sai = uid_SA(sa) in
734. let (_,sai’) = mereo_SAL(retr_SAL(sali)), (sai”’,) = mereo_Ss(retr_Ss(ssi)) in
734a. sai = sai’ = sai” end end

8.2.2.2.2.8 1694. Ss = S-set: Station Sets:

735. The mereology of a station set is a pair of

e the unique identifier of a [predecessor] station aggregate and
e a set of unique identifiers of [successor] stations — such that
a. that station aggregate’s successor and
b. that each successor station’s predecessor
unique identifiers are the same as that of the observed station set.

type

735. Ss_Mer = SAl x Sl-set
value

735. mereo_Ss: Ss — Ss_Mer
axiom

735. let (sai,sis) = mereo_Ss(ss), ssi = uid_Ss(ss) in
735a. let (_,ssi’) = mereo_(retr_SA(sai)) in ssi = ssi’ end
735b. V si:Sl - si e ssi-let (ssi”’,) = mereo_S(retr_S(si)) in ssi = ssi” end end

8.2.2.2.2.9 1695. S: Station:

For all but stations the mereologies of solid endurants have modeled the part-hood relation “part
of” (in the sense of “sub-part of). All taxonomy figures*” show this “sub-part” relation by means
of the lines connection the es. Figure 8.5 on page 146 show two additional [topological] part-
hood relations: “adjacent to” and “incident upon”. Two stations of a simple assembly line may be
adjacent to one another. The last station of a supply assembly line is incident upon a station of a
main assembly line. The first station of any assembly line has no predecessor. The last station of a
main assembly line has no successor.

736. Thus the mereology of a station, s identified by si, is a pair of,

47 Figs. 8.6 on page 147, 8.7 on page 148, 8.8 on page 150, 8.9 on page 153 and 8.10 on page 158

166 8 Automobile Assembly Lines [September 2021]

a. first a pair, modeling “part of”:
i. the unique identifier of a station set, ssi, the predecessor of s,
ii. the unique identifiers of a triplet [(mei, esi, rai)] of successors of s:
1. a main element mei,
2. an element supply, esi, and
3. arobot aggregate rai,
and
b. then a pair, (nsi,psi), modeling, nsi “[next] adjacent to”, and, psi “[previous] incident upon”
such that,
i. for the first of the pair, i.e., nsi, is
1. either “nil” for the “last” station, the outlet, of a main line,
2. or is the next station of a main or supply line,
3. or, for s being the “downstream last” of a supply line station, identifies a mainline
station.
ii. for the second of the pair, psi is [again] a pair: (plsi, Islsi)), where
1. plsi is the station identifier of a station of the line to which s belongs, where
e plsiis "nil”, if 5 is the “first, upstream”, station of its line, or
e plsi properly identifies an “upstream” immediately previous station,
and where Islsi is
2. either "nil”, ie., station s is not one incident upon by a supply assembly line,
3. or is the proper identifier of a supply assembly line’s “downstream, last” station such
that
¢ no two main line stations have the same supply assembly line incident upon them,
and
e where the number of supply assembly lines exactly equal the number of main line
stations that have supply assembly lined incident upon them.

All of the above must satisfy the following invariants:
c. the unique identifier, si, of 5, is in the the set of unique station identifiers of the predecessor,
and such that the unique identifiers of

d. the main element’s,
e. the element supply’s, and
f. the robot aggregate’s

predecessors are all the same as that of the station under observation — and such that

g. the stations, ss, of the ancestor station set do indeed form a linear sequence;

h. si” and si” [in (si’,si”’)] are indeed station identifiers of that sequence — or one is that of the
next-but-last station of a supply assembly line and the other is that of a station of a main
assembly line;

i. s’ [in ("nil",si’)] is indeed a station identifier of that sequence; and

j. si’ [in (s7’,"nil")] is indeed a station identifier of that sequence.

We model the notion of linear sequences [here of stations].

k. LetIs:LS=S" stand for a linear sequence of two or more stations S.
1. Let ss stand for a set of two or more stations, i.e., SS€Ss=S-set.
m. Then let linear_Ss be the function which “converts” ss to Is.*8

48 Tt is not a matter of whether or not an ss€Ss=S-set may form a linear sequence. They simply do! An assembly
plant’s assembly lines simply are linear ! Constellations of stations not forming linear sequences do not contribute
to a proper assembly plant!

8.2 A Domain Analysis & Description

type
736. S_Mer = (Ssl x (MEI x ESI x RAI)) x ((opt-Slxopt_Sl)xopt_Sl)
736. opt.Sl=({|"nil”|}| SI)

value

736. S_Mer: S — S_Mer

axiom

736. let ((ssi,(mei,esi,rai)),((si_b,si_a),si_sl)) = S_Mer(s), si = uid_S(s) in
736. let (_,sis) = mereo_Ss(retr_Ss(ssi)), (si’,_) = mereo_ME(retr_.ME(mei)),

736. (si”,_) = mereo_ES(retr_ES(esi)), (si””’,) = mereo_RA(retr_RA(rai)) in

736(b)ii. si € sis A
736d. si=si" A

736e. si=si" A

736f. si=si"”’ end end

)i. Vs:S-let(,(bsi,asi)) =S_Mer(s) in
736(a)i. b_si#"nil”Aa_si#"nil” v
736(a)i. b_si="nil”Aa_si#"nil” v
736(a)i. b_si#"ni1l”Aa_si="nil” end

type
736k. LS=95"

axiom
736k. VIs:LS-lenls > 1

736k. is_linear: LS — Bool

736k. is_linear(ls) =

736k. Alet (_,(null,_))=mereo_S(Is[1]) in null = "nil” end

736k. A VYiNat-{ii+1}CindsIs =

736k. let (_,(_,si-a)) = S_Mer(ls[i]),

736k. (_,(sib,)) =S _Mer(ls[i+1]) in si_a = uid_S(Is[i]) = si_b end
736k. Alet(,(,s-uid)) = mereo_S(Is[lenls]) in

736k. A (s_uid = "nil” v is.MAL_S(retr_S(s_uid))) end

value

736k. isZMAL_S: S — Bool

736k. is_MAL_S(s) =

736k. let ((ssi,),) = mereo_S(s) in

736Kk. let (sai,_) = mereo_Ss(retr_Ss(ssi)) in
736k. let ali = mereo_SA(retr_SA(ssi)) in

167

168 8 Automobile Assembly Lines [September 2021]

736kK. is_.MALI(ali) end end end

736l. ss:Ss, axiom card ss > 1
736g. linear_Ss: S-set —» S*

736g. linear_Ss(ss) =

7369. let Is:LS - elems Is = ss A

7369. YV i:Nat - {i,i+1}Cinds Is =

7369. let (_,(_,a_si)) = mereo_S(Is[i])
736g. let (_,(b_si,)) = mereo_S(Is[i+1]) in
736g. a_si=b_siend

736g. Is end end

8.2.2.2.2.10 :696. ME: Main Elements:

737. The mereology of a main element is a singleton

e of the unique identifier of its predecessor station — such that
a. that station identifies that main element.

type

737. ME_Mer = Sl

value

737. mereo_ME: ME —» ME_Mer
axiom

737a. let si = mereo_.ME(me), mei = uid_-ME(me) in
737a. let (_,(mei’, ,)) = mereo_S(retr_S(si)) in
737a. mei = mei’ end end

8.2.2.2.2.11 1697. RA: Robot Aggregate:

738. The mereology of a robot aggregate is

e a pair of the unique identifier of a station (the predecessor) and
e a unique identifier of a robot set (the successors) — such that

a. the station predecessor identifies the robot aggregate, and

b. the identified robot set identifies the same robot aggregate.

type

738. RA_Mer = Sl x Rsl

value

738. mereo_RA: RA — RA_Mer
axiom

738. let (si,rsi) = mereo_RA(ra), rai = uid_RA(ra) in
738. let(_,(rai’, ,),)= mereo_S(retr_S(si)),
738. (rai”’,_) = mereo_Rs(retr_Rs(rsi)) in

738a. rai=rai’ A

738b. rai =rai” end end

8.2 A Domain Analysis & Description 169

8.2.2.2.2.12 1698. Rs=R-set: Robot Set:

739. The mereology of a robot set is a pair of

e the unique identifier of a robot aggregate and

e a set of unique identifiers of robots — such that
a. the identified robot aggregate identifies the robot set, and
b. all the identified robots also identifies that robot set.

type

739. Rs_Mer = RAI x Rl-set
value

739. mereo_Rs: Rs — Rs_Mer
axiom

739. let (rai,ris) = mereo_Rs(rs), rsi = uid_Rs(rs) in
739a. let (_,rsi’) = mereo_RA(retr_.RA(rai)) in rsi = rsi’ end
739a. VY ri:Rl -« ri e ris = let rsi” = mereo_R(retr_R(ri)) in rsi = rsi” end end

8.2.2.2.2.13 1699. R: Robot:

740. The mereology of a robot is

e asingleton of the unique identifier of a robot set — such that.
a. that robot set identifies the robot.

type

740. R_Mer = Rsl

value

740. mereo_Rs: Rs —» Rs_Mer
axiom

740. letrsi = mereo_R(r), ri = uid_R(r) in
740a. let (_,ris) = mereo_Rs(retr_Rs(rsi)) in ri € ris end end

8.2.2.2.2.14 (700. ES: Element Supply:

741. The mereology of an element supply is a pair of

e the unique identifier of a station and
e the unique identifier of an element supply set — such that
a. the identified station identifies the element supply, and
b. the identified element supply set identifies the element supply.

type

741. ES_Mer = Sl x Esl

value

741. mereo_ES: ES — ES_Mer
axiom

741. let (si,esi) = mereo_ES(es), esi = uid_ES(es) in

741. let ((_,(_,esi’,)),) = mereo_ES(retr_.ES(esi)), esi” = uid_ES(es) in
741a. esi=esi’ A

741b. esi = esi” end end

170 8 Automobile Assembly Lines [September 2021]

8.2.2.2.2.15 1 701. Es=E-set: Element Supply Set:

742. The mereology of an element supply set is a pair of

e the unique identifier of an element supply aggregate and

e a set of unique identifiers of elements — such that
a. the identified element supply aggregate identifies the element supply set and
b. the all the element identifiers identifies the element supply set.

type

742. Es_Mer = ESI x El-set
value

742. mereo_Es: Es — Es_Mer
axiom

742. let (esi,eis) = mereo_Es(es), es_i = uid_Es(es) in
742a. let (_,es.j) = mereo_Es(retr_.Es(esi)) in es_i = es_jend A
742b. VY ei:El-ei € eis = let es_k = mereo_E(retr_E(ei)) in es_i = es_k end end

8.2.2.2.2.16 1 702. E: Elements:

743. The mereology of an element is

e asingleton of the unique identifier of an element supply set — such that
a. this identifier identifies the element’s supply set.

type

743. E_Mer = Esl

value

743. mereo_E: E —» ES_Mer
axiom

743. let esi = mereo_E(e), eis = uid_E(e) in
743a. let (_,eis’) = mereo_Es(retr_Es(esi)) in eis = eis’ end end

Comments on the Mereology Presentation

It is all very tedious: Mereology after mereology — of each and all of the solid endurants. Their
narratives and formalisations, expression-wise, all follow the same “pattern”, and the “contents”
follow, almost mechanical, from the taxonomy figures49 and, wrt. stations, from Figs. 8.5 on
page 146 and 8.7 on page 148.

I have not followed a strict narrative for the 16 mereology presentations, and even the formulas
differ slightly. Once I get time I will probably device a IXIEX macro so as to generate consistent
narratives.

Distances of Stations from Outlet

Paths:

We shall examine an ordering, <, on stations. To this end we introduce the notion of paths. A path
is a sequence of station identifiers such that

744. A path is a non-empty sequence of station identifiers such that
745. the first identifier is that of the first station of a main assembly line,

4 Figs. 8.6 on page 147, 8.7 on page 148, 8.8 on page 150, 8.9 on page 153 and 8.10 on page 158

8.2 A Domain Analysis & Description 171

746. and such that
747. adjacent identifiers of a path are those of neighbouring stations,

a. whether of the same assembly line,
b. or of
i. the first station of a supply assembly line
ii. and of the station of the main assembly line onto which supply assembly line is joined.

type

744. Path = SI*

axiom [paths of an assembly plant]

744. VY p:Path:-lenp>0A

745. let (siy p’ = p, ss:Ss = obs_Ss(obs_SA(mal)) in

745, let s:S - s € ss A let (,(,nil))=mereo_S(s) in nil="nil” Asi=uid_S(s) end end
746. A

747. YV i:Nat - {i,i+1}Cinds p =

747. let (_,(pi,_)) = mereo_S(retr_S(i)), (_,(_,si)) = mereo_S(retr_S(i+1)) in
747a. (pi=p(i+1) A si=p(i))

746. \Y

747(b)i. (

747(b)i. A

747(b)ii. ...)

744, end end

Set of all Paths:
From an assembly plant we can then generate the set of all paths.

748.
749.
750.
751.
752.
753.

748.
749.
750.
751.
752.
753.

Distance:
Given any station of an assembly plant we can then calculate its distance from the main line outlet.

754.
755.
756.
757.
758.
759.

754.
755.
756.

172 8 Automobile Assembly Lines [September 2021]

757.
758.
759.

The < Relation:

760. Given any two stations of an assembly plant we can then express which of the two “precedes”
the other wrt. distance from the main line outlet.

760.

8.2.2.2.3 Attributes

General

The real action of an assembly line is focused in the stations. The robots apply elements to the
contents of the main element. So, in treating now the attributes of assembly lines, we shall in this
early version of this project report, focus on the role of elements.

Elements and Parts

The term ‘part’ is a main term of the domain analysis & description method [55] that we use.
It is not to be confused with the same term, i.e., part, used, normally, in connection with machine
parts, part assembly, etc. The term Main Element is used to name the solid endurant of a station,
namely that which, so-to-speak, “holds” the main object of concern: the thing being assembled.
We shall think of main elements to be some form of manifest “carrier”. We shall then ascribe
such main elements an attribute, and here we shall switch to the use of the term part, namely a
main part. So element supplies, which we hitherto explained as containing elements for use in the
assembly of main parts, could, as well be called parts. Whereas solid endurants such as stations
and robot will, later, be “morphed”, i.e., transcendentally deduced, into behaviours, we shall not
morph main parts into behaviours — not as long, at least, as they stay within the assembly lines.
Once a main part has left a main assembly line, “from” its last station, then it may, in some other
domain model, attain “life” in the form of a behaviour.>?

Relationship to [70]

We shall show that many of the concerns of [70] have their “root” in attribute-properties of the
domain.

Specifics

8.2.2.2.3.1 1687. AP: Assembly Plant:

We omit treatment of assembly plant attributes.

8.2.2.2.3.2 1688. ALA: Assembly Line Aggregate:

We presently omit treatment of assembly line aggregate attributes.

50 The main parts leaving the main assembly line of an automobile factory, in an orderly fashion, may then, as an
automobile, be able to leave by its own means !

8.2 A Domain Analysis & Description 173

8.2.2.2.3.3 1689. MAL: Main Assembly Line:

With every supply assembly line we associate the attributes

761. that it is a main assembly line, and that
762. the main elements of its stations contain parts of a specific (to be finalised) element type.

type

761. AL_Typ = "Main”

762. ME_Typ = E_Typ

value

761. attr AL_Typ: MAL — AL_Typ
762. attr ME_Typ: MAL — ME_Typ

8.2.2.2.3.4 1690. SALA: Supply Assembly Line Aggregate:

We presently omit treatment of supply assembly line aggregate attributes.

8.2.2.2.3.5 1691. SALs: Supply Assembly Line Set:

We presently omit treatment of supply assembly line set attributes.

8.2.2.2.3.6 1692. SAL: Supply Assembly Lines:

With every supply assembly line we associate the attributes that

763. it is a supply assembly line’?,

764. the main elements of its stations contain parts of a specific (to be finalised) element type,
765. it “feeds” into an identified main line station, and that

766. it is either “feeding” into the main line at the “left” or at the “right” !
type

763. AL_Typ = "Supply”

764. ME_Typ = E_Typ

766. Feed == "Left”|"Right”

value

763. attr AL_Typ: SAL — AL_Typ

764. attr ME_Typ: SAL — ME_Typ

765. attr MAL_S: SAL — Sl

766. attr_Feed: SAL — Feed

8.2.2.2.3.7 1693. SA: Station Aggregate:

We presently omit treatment of station aggregate attributes.

51 — where main assembly lines are “Main” !

174 8 Automobile Assembly Lines [September 2021]

8.2.2.2.3.8 1694. Ss=S-set: Station Set:

We presently omit treatment of station set attributes.

8.2.2.2.3.9 1695. S: Station:

We first discuss some of the réles played by the robots, main element part and element supply of
a station.

e Robots of a station are capable, at any one time of performing one of a set of one or more
operations. Robots and their operations have names, RNm respectively OpNm.
So we can attribute a station with

type
767. CAP = RNm » OpNm-set

We allow two or more robots of any one station to “feature” the same, named operation !
e Operations, OP, are functions from a main element part and

% either a single part provided by a supply line, if the operation is performed at a main line
station, and
o either
@ or a set of elements provided by that stations element supply

% to an updated main element part.

type
768. OP = ME_Part x (ME_Part|E-set) —» ME_Part

e So a Station can be given the following attribute:

type
768. OPS = OpNm -» OP

Two or more differently named operations may, in fact, designate identical operations !
e Operations have types:

type
OpTyp = ME_Part_Typ x (ME_Part_Typ | E_Typ*) x ME_Part_Typ

So we assume that there are (meta-) functions like:

value
type_of: E — E-Typ, ME_Part — ME_Part_Typ, is_of_type: EXE_Typ — Bool, etc.

We now “return” to our attribute “ascription story” proper!
With a station we can associate the following attributes:

767. The named operations that can be performed by it robots;

768. the catalogue of these operations;

769. the area of the assembly floor covered by the station;

770. the identified zones (sub-areas) into which the station is divided;

8.2 A Domain Analysis & Description 175

type

767. RNm, OpNm

767. CAP = RNm s OpNm-set

768. OPS = OpNm » OP

768. OP = ME_Part x (ME_Part|E-set) —» ME_Part
769. Sta_Area = AREA

770. Zones = Zld #» Zone

770. Zone = Zone_Area

770. Zone_Area = AREA

value

767. attr_.CAP: S — CAP

768. attr.OPS: S — OPS

769. attr_StaArea: S — StaArea

770. attr.Zones: S — Zones

axiom

770. [U of zone areas = station area |

8.2.2.2.3.10 1696. ME: Main Element:

With main elements we associate the following programmable attribute:

771. the main part, mp:ME_Part and
772. the types of the main part before, during and after robot operations, i.e., as it enters the station,
during its stay at the station, and as it leaves the station.

type

771. ME_Part

772. ME_Part_Types = E_Typ*
value

771. attr_Part: ME — ME_Part
772. attr ME_Part_Types ME — ME_Part_Types

Caveat: The above type model is a bit simplified ! Shall/must be reviewed !

8.2.2.2.3.11 1697. RA: Robot Aggregate:
Caveat: It seems that either stations or robot aggregates must have some form of awareness,

expressed in the form of an attribute, of the tasks to be collectively, co-operatively performed by
the ensemble of robots. | am currently contemplating such a model !

8.2.2.2.3.12 1698. Rs=R-set: Robot Set:

We presently omit treatment of robot set attributes.

8.2.2.2.3.13 :1699. R: Robot:

With a robot we can associate the following attributes:

773. the zone to which it is allocated;

176 8 Automobile Assembly Lines [September 2021]

774. the operations it can perform and their type;
775. where we leave unspecified these element (i.e., part) types.
776. ...

type

773. R_Zone = Zone

774. R_Ops = OpNm 5 OpTyp
774. OpTyp = ME_Part_Typ x (ME_Part_Typ|E_Typ*) x ME_Part_Typ
775. ME_Part_Typ, E_Typ

776.

value

773. attr_RZone: R — RZone
774. attr ROps: R — ROps
775.

776.

8.2.2.2.3.14 (700. ES: Element Supply:

An element supply can be characterised by

777. a catalogue of element “quantities on hand” and their type.
type
777. ES_QoH_Typ = E_Typ X Nat

value
777. attr ES_QoH_Typ: ES — ES_QoH_Typ

8.2.2.2.3.15 (1 701. Es=E-set: Element Supply Set:

We presently omit treatment of element set attributes.

8.2.2.2.3.16 :702. E: Elements:

An element (i.e., a part) can be characterised by

778. its type
type
778. E_Typ

value
778. attr_[E_Typ: E — E_Typ

8.2.2.3 Comments wrt. [70]

We shall now relate the various segments of our model to [70].

TO BE WRITTEN

8.2 A Domain Analysis & Description 177

8.2.3 Perdurants

8.2.3.1 From Parts to Behaviours

We refer the reader to Figs. 8.5 on page 146 and 8.8 on page 150 — summarised in Fig. 8.12.

l:l An Assembly Plant with three Supply Assembly Lines and a total of 29 Stations
s]
Assembly Line (a) Supply Assembly Line (c)
, .]] s
Main Assembly Line Station

1 e e e

L]
Supply Assembly Line (b) I:l
(]

" [Robot Agar.

Flow: -

SA SALs = 4 SAL-set

\ TS
. SALe SAL “@ SAL

! Repeat

S 110, 114 111
X7 ME ES RA
s E|"il" 115 12

Rs :\’(VJFR*Sel

deo. -0 |ge-w
E E E R R R

o[Es =‘b_Efsel

Fig. 8.12

By transcendental deduction, see [55, Chapter 5], we “morph” core parts, py, i.e., including
atomic parts, into behaviours .

Behaviour g, coordinates behaviour f,, with the rest of the manufacturing plant — remember:
the assembly line complex is only one among several factory elements.

Behaviour f,, coordinates the main assembly line behaviours with that of the behaviour of the
supply assembly lines aggregate.

Behaviour f,,, coordinates the main assembly line’s stations.

Behaviour f,, coordinates the total of all supply lines.

Behaviours B, coordinates the specific supply assembly line’s stations.

Behaviour g, coordinates the interaction between the stations of an assembly line.

Behaviour s coordinates the specific station’s elements (main element, robots and element
supply) as well as that station’s interaction with neighbouring stations.

Behaviour S, participates in the main elements interaction with its station’s robots.

e Behaviour S, responds to its station’s robots’ requests for supply elements.
e Behaviour ,; coordinates the specific station’s robots.

178 8 Automobile Assembly Lines [September 2021]

e Behaviours f3; interacts with its station’s main element, its other robots, and its element supply.
e Behaviours 5, —is presently left unspecified.

8.2.3.2 Channels

8.2.3.3 Actors

8.2.3.3.1 Actions and Events

8.2.3.3.2 Behaviours

8.2.3.4 System Initialisation

8.3 Discussion

We shall relate the model of Sect. 8.2 to [70]. To us [70] both describes and prescribes: describes
some aspects of the problem domain and prescribes some requirements.

TO BE WRITTEN

8.4 Conclusion

We shall discuss whether the kind of work reported in [70] could be supported, made easier, made
more complete, given that their domain is first properly described.

8.4.1 Models and Axioms

TO BE WRITTEN

8.4.2 Learning Forwards, Practicing In Reverse

The Danish philosopher Sgren Kierkegaard (1813-1855) is quoted as saying

Life can only be understood backwards; but it must be lived forwards.

Now, why do we bringing that quote here ?! We do so for the following, slightly, if not radically
less “lofty” reason: We learn forward, bit-by-bit, not seeing the overall picture before at the end.
Then, when we shall practice what we have been taught, what we have learnt, we apply that
knowledge, so-to-speak, backwards, knowing where what we shall end up with from the start of
that “doing it”.

When You study [55] You learn the subject forward. But having hopefully understood the
domain modeling discipline, You You practice it “sort-of” in reverse.

My reason for bring the Sgren Kierkegaard quote is to make You remember “that” !

8.4 Conclusion 179

8.4.3 Diagrammatic Reasoning

One, of many, observations of this report, are the examples of what I shall refer to as diagrammatic
reasoning™2.

One way in which this is manifested, in this compendium is in Figs. 8.5 on page 146, 8.6 on
page 147, 8.7 on page 148, 8.8 on page 150, 8.9 on page 153 and 8.10 on page 158. You may
think that the number of these figures is a bit high. Very well, but they helped this “seasoned
domain engineer” to come to grips with the seeming complexities of the domain being modeled.
The internal relationships between these figures is obvious, “when You look at them !”, and their
“external” relations to the narration & formalisation items should also be “obvious” !

8.4.4 The Management of Domain Modeling

A Domain Modeling Development Plan

We outline a plan for the commercial/professional development of a domain model for a “real”
[say automobile] assembly plant:

e Study:

% A domain is suggested.

% One or two seasoned domain engineers cum scientists , the initiation team, make inquiries
about the domain:
o Visit one or more such domain sites.
o Search the Internet for reliable accounts on the domain.
o Read technical/scientific papers about the domain.

% Atsome point the initiation team decides to do one or more experimental domain modeling
efforts.

o Experiment:

« They follow the dogma of [55] — “strictly”.

% (This report is an example of such an experimental research and engineering development.)

« They may waver along different paths, maybe abandon/abort certain modeling directions,
eventually reaching some, usually, incomplete domain analysis & description documenta-
tion.

® They may decide to do another, and, perhaps, subsequently yet another experimental
research and engineering development.

« Eventually they either abandon the attempt to go after a fully complete, professional
domain model, or they conclude that a satisfactory, complete modeling project is
professionally and commercial viable.

e Apply:
% The first step in a professional and commercial domain modeling project is that of creating

a staff plan:
@ An outcome of a final domain modeling experiment is that the main taxonomy of the

domain has been settled upon.

52

e Gerard Allwein and Jon Barwise (ed.) (1996).
Logical Reasoning with Diagrams. Oxford University Press.
e https://en.wikipedia.org/wiki/Diagrammatic_reasoning.

180 8 Automobile Assembly Lines [September 2021]

« For each of the main categories of endurants one or two domain engineers [cum scien-
tists] are then to be allocated to the project.
® A development graph®® is developed.
o A budget is established.
o Negotiations with customer finally establish the financial foundation for the project®*.
o The commercial development project starts.
o First the endurant aspects are modeled — with
o external qualities being first modeled [55, Chapter 4], then with
o internal qualities:
+ unique identification [55, Sect. 5.2],
+ mereologies [55, Sect.5.3], and
+ attributes [55, Sect.5.4] — including notably intentional pull — which has not been
illustrated in this report [55, Sect. 5.5].
 Then perdurants:
states [55, Sect.7.2],
channels [55, Sect.7.5],
actor, i.e., action, event and behaviour, signatures [55, Sect.7.6],
their definitions [55, Sect.7.7], and
system initialisation [55, Sect.7.8].
© Etcetera!
% Each project member either “sticks” to the initially assigned endurant (hence perdurant)
area throughout the project, or members have their subject areas “rotated”.

8 8 8 8 8

Special circumstances may mandate variations to the above development plan.

For a reasonably “complete”, i.e., covering essential aspects of, say an automobile manufacturing
plant’s assembly lines, it is roughly estimated that a group of well-educated domain engineers
cum scientists would number 8-10, and that it would take 18-24 months to do the “Apply” phase
of a domain modeling development project.

8.4.5 ... one more section ...
8.4.6 ... a last section (?) ...

8.4.7 Acknowledgments

TO BE WRITTEN

53 For the notion of Development Graphs see [15, 16, 17].
54 One cannot assume that the customer explicitly funds the Study and Experiment phases of the project.

Chapter 9
Document Systems [Summer 2017]

I had, over the years, since mid 1990s, reflected upon the idea of “what is a document ?”. A most
recent version, as I saw it in 2017, was “documented” in Chapter?7 [58]. But, preparing for my
work, at TongJi University, Shanghai, September 2017, see Chapter 10, I reworked my earlier notes
[58] into what is now this chapter.

Contents
9.1 IntrodUcChion.oiiiiii i e s 182
9.2 A System for Managing, Archiving and Handling Documents 182
9.3 Principal Endurantscoiuiiiiiiiiiiiiiiiii ittt ittt 183
9.4 Uniqueldentifiersccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiietrinnaeeeonssnnssnes 183
9.5 Documents: AFirst VIieW ..ottt iiiiiiiiiiiiiiiinnees 184
9.5.1 Documentldentifiers 184
9.52 Document Descriptors. 184
9.5.3 Document Annotations 185
9.54 Document Contents: Text/Graphics i 185
9.5.5 Document Histories 185
9.5.6 A Summary of Document Attributesl 185
9.6 Behaviours: AnInformal, First Viewccoiiiiiiiiiiiiiiiiiiiiiiiinnennn. 186
9.7 Channels, AFIrst VieWooiuiiiiiiiiii ittt ietineeennnneeeecannneenns 187
9.8 An Informal Graphical System Renditionooiiiiiii, 188
9.9 Behaviour Signaturescciiiiiiiiiiiiiii i s 188
L 80 (0 T2 = 189
9.10.1 Time and Time Intervals: Types and Functions 189
9.10.2 A Time BehaviourandaTimeChannel.................. 190
9.10.3 AnlInformal RSL Construct i 190
9.11 Behaviour “States”.ouiiiiiiii i i it e ettt 190
9.12 Inter-Behaviour Messages...........ccouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeneenees 191
9.12.1 Management Messages with Respect to the Archive 191
9.12.2 Management Messages with RespecttoHandlers....................... 192
9.12.3 Document Access Rights L 192
9.12.4 Archive Messages with Respect to Management 193
9.12.5 Archive Message with Respectto Documents........................... 193
9.12.6 Handler Messages with Respectto Documents 193
9.12.7 Handler Messages with Respect to Management 194
9.12.8 A Summary of Behaviour Interactions 194
9.13 A General Discussion of Handler and Document Interactions 194
9.14 Channels: AFIinal View.c.ooiiiiiiiiiiiiii ittt tiieieiaiiaenannss 195
9.15 An Informal Summary of Behaviourscooiiiiiiiiiiiiiinie, 195
9.15.1 The Create Behaviour: Left Fig. 9.3 onpage196........................ 195
9.15.2 The Edit Behaviour: Right Fig. 9.3 onpage196......................... 195
9.15.3 The Read Behaviour: Left Fig. 9.4 onpage 196 196
9.15.4 The Copy Behaviour: Right Fig. 9.4 onpage 196 196
9.15.5 The Grant Behaviour: Left Fig. 9.5 onpage 197......................... 197
9.15.6 The Shred Behaviour: Right Fig. 9.5 onpage197....................... 197
9.16 The Behaviour ACHIONSoiiiiiiiiiiiiiiii ittt iiieieiaiiaenannss 198

181

182 9 Document Systems [Summer 2017]

9.16.1 Management Behaviour 198
9.16.1.1 Management Create Behaviour: Left Fig. 9.3 on page 196 198
9.16.1.2 Management Copy Behaviour: Right Fig. 9.4 on page 196..... 199

9.16.1.3 Management Grant Behaviour: Left Fig. 9.5 on page 197 200
9.16.1.4 Management Shared Behaviour: Right Fig. 9.5 on page 197 ...201
9.16.2 Archive Behaviour.......... 201
9.16.2.1 The Archive Create Behaviour: Left Fig. 9.3 on page 196 201
9.16.2.2 The Archive Copy Behaviour: Right Fig. 9.4 on page 196...... 202
9.16.2.3 The Archive Shred Behaviour: Right Fig. 9.5 on page 197 202
9.16.3 Handler Behaviours 203
9.16.3.1 The Handler Create Behaviour: Left Fig. 9.3 on page 19%...... 203
9.16.3.2 The Handler Edit Behaviour: Right Fig. 9.3 onpage 19%. 203
9.16.3.3 The Handler Read Behaviour: Left Fig. 9.4 on page 196 204
9.16.3.4 The Handler Copy Behaviour: Right Fig. 9.4 on page 196 204
9.16.3.5 The Handler Grant Behaviour: Left Fig. 9.5 on page 197....... 205
9.16.4 Document Behaviours 205

9.16.4.1 The Document Edit Behaviour: Right Fig. 9.3 on page 196205
9.16.4.2 The Document Read Behaviour: Left Fig. 9.4 on page 19..... 206
9.16.4.3 The Document Shred Behaviour: Right Fig. 9.5 on page 197 ..206

9.16.5 CONCIUSION 207
9.17 Documents in Public Governmentccoiiiiiiiiiiiiiiinnieeeennnnneenns 207
9.18 DocumentsinUrbanPlanning.............cooiiiiiiiiiiiiiiiiiiiiiiiiininne, 207

We domain analyse and suggest a description of a domain of documents. We emphasize that
the model is one of several possible. Common to these models is that we model “all” we can say
about documents - irrespective of whether it can also be “implemented” ! The model(s) are not
requirements prescriptions — but we can develop such from our domain description.

You may find that the model is overly detailed with respect to a number of “operations” and
properties of documents. We find that these operations must be part of the very basis of a document
domain in order to cope with documents such as they occur in, for example, public government,
see Appendix sect. 9.17, or in urban planning, see Appendix Sect. 9.18.

9.1 Introduction

We analyse a notion of documents. Documents such as they occur in daily life. What can we say
about documents — regardless of whether we can actually provide compelling evidence for what
we say ! That is: we model documents, not as electronic entities — which they are becoming, more-
and-more, but as if they were manifest entities. When we, for example, say that “this document
was recently edited by such-and-such and the changes of that editing with respect to the text
before is such-and-such”, then we can, of course, always claim so, even if it may be difficult or
even impossible to verify the claim. It is a fact, although maybe not demonstrably so, that there
was a version of any document before an edit of that document. It is a fact that some handler did
the editing. It is a fact that the editing took place at (or in) exactly such-and-such a time (interval),
etc. We model such facts.
This research note unravels its analysis &> description in stages.

9.2 A System for Managing, Archiving and Handling Documents

The title of this section: A System for Managing, Archiving and Handling Documents immedi-
ately reveals the major concepts: That we are dealing with a system that manages, archives and

55 We use the logo gram & between two terms, A & B, when we mean to express one meaning.

9.4 Unique Identifiers 183

handles documents. So what do we mean by managing, archiving and handling documents, and
by documents ? We give an ultra short survey. The survey relies on your prior knowledge of what
you think documents are ! Management decides to direct handlers to work on documents. Man-
agement first directs the document archive to create documents. The document archive creates
documents, as requested by management, and informs management of the unique document
identifiers (by means of which handlers can handle these documents). Management then grants
its designated handler(s) access rights to documents, these access rights enable handlers to edit,
read and copy documents. The handlers’ editing and reading of documents is accomplished by
the handlers “working directly” with the documents (i.e., synchronising and communicating with
document behaviours). The handlers’ copying of documents is accomplished by the handlers
requesting management, in collaboration with the archive behaviour, to do so.

9.3 Principal Endurants

By an endurant we shall understand “an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time.” Were we to “freeze” time we
would still be able to observe the entire endurant. This characterisation of what we mean by an
‘endurant’ is from [48, Manifest Domains: Analysis & Description]. We begin by identifying the
principal endurants.

779. From document handling systems one can observe aggregates of handlers and documents.
We shall refer to ‘aggregates of handlers’ by M, for management, and to ‘aggregates of docu-
ments’ by A, for archive.

780. From aggregates of handlers (i.e., M) we can observe sets of handlers (i.e., H).

781. From aggregates of documents (i.e., A) we can observe sets of documents (i.e., D).

type

779 S, M, A

value

779 obs.M:S —> M
779 obsA:S— A
type

780 H, Hs = H-set
781 D, Ds = D-set
value

780 obs_Hs:M — Hs
781 obs_Ds: A — Ds

9.4 Unique Identifiers

The notion of unique identifiers is treated, at length, in [48, Manifest Domains: Analysis & De-
scription].

782. We associate unique identifiers with aggregate, handler and document endurants.
783. These can be observed from respective parts”.

5% How these decisions come about is not shown in this research note — as it has nothing to do with the essence of
document handling, but, perhaps, with ‘management’.

57 [48, Manifest Domains: Analysis & Description] explains how “parts’ are the discrete endurants with which we
associate the full complement of properties: unique identifiers, mereology and attributes.

184 9 Document Systems [Summer 2017]

type

782 MIP8, AIP?, HI, DI
value

783 uid_MI®0: M — M
783 uid_Al°l: A — Al
783 uid_HI: H — HI
783 uid_DI: D — DI

Asreasoned in [48, Manifest Domains: Analysis & Description], the unique identifiers of endurant
parts are indeed unique: No two parts, whether composite, as are the aggregates, or atomic, as are
handlers and documents, can have the same unique identifiers.

9.5 Documents: A First View

A document is a written, drawn, presented, or memorialized representation of thought. The word
originates from the Latin documentum, which denotes a “teaching” or “lesson”.®> We shall, for
this research note, take a document in its written and/or drawn form. In this section we shall
survey the concept a documents.

9.5.1 Document Identifiers

Documents have unique identifiers. If two or more documents have the same document identifier
then they are the same, one (and not two or more) documents).

9.5.2 Document Descriptors

With documents we associate document descriptors. We do not here stipulate what document
descriptors are other than saying that when a document is created it is provided with a descriptor
and this descriptor “remains” with the document and never changes value. In other words, it is
a static attribute.®® We do, however, include, in document descriptors, that the document they
describe was initially based on a set of zero, one or more documents — identified by their unique
identifiers.

58 We shall not, in this research note, make use of the (one and only) management identifier.
5 We shall not, in this research note, make use of the (one and only) archive identifier.

60 Cf. Footnote 58: hence we shall not be using the uid_MI observer.

61 Cf. Footnote 59: hence we shall not be using the uid_Al observer.

62 From: https://en.wikipedia.org/wiki/Document

6 You may think of a document descriptor as giving the document a title; perhaps one or more authors; perhaps a
physical address (of, for example, these authors); an initial date; as expressing whether the document is a research,
or a technical report, or other; who is issuing the document (a public institution, a private firm, an individual
citizen, or other); etc.

9.5 Documents: A First View 185

9.5.3 Document Annotations

With documents we also associate document annotations. By a document annotation we mean a
programmable attribute, that is, an attribute which can be ‘augmented’ by document handlers. We
think of document annotations as “incremental”, that is, as “adding” notes “on top of” previous
notes. Thus we shall model document annotations as a repository: notes are added, i.e., annotations
are augmented, previous notes are not edited, and no notes are deleted. We suggest that notes be
time-stamped. The notes (of annotations) may be such which record handlers work on documents.
Examples could be: “November 15, 2021: 16:12: This is version V.”, “This document was released
on November 15, 2021: 16:12.”, “November 15, 2021: 16:12: Section X.Y.Z of version III was
deleted.”, “November 15, 2021: 16:12: References to documents doc; and doc; are inserted on
Pagesp and g, respectively.” and “November 15, 2021: 16:12: Final release.”

9.5.4 Document Contents: Text/Graphics

The main idea of a document, to us, is the written (i.e., text) and/or drawn (i.e., graphics) contents.
We do not characterise any format for this contents. We may wish to insert, in the contents,
references to locations in the contents of other documents. But, for now, we shall not go into such
details. The main operations on documents, to us, are concerned with: their creation, editing,
reading, copying and shredding. The editing and reading operations are mainly concerned with
document annotations and text/graphics.

9.5.5 Document Histories

So documents are created, edited, read, copied and shreded. These operations are initiated by the
management (create), by the archive (create), and by handlers (edit, read, copy), and at specific
times.

9.5.6 A Summary of Document Attributes

784. As separate attributes of documents we have document descriptors, document annotations,
document contents and document histories.

785. Document annotations are lists of document notes.

786. Document histories are lists of time-stamped document operation designators.

787. A document operation designator is either a create, or an edit, or a read, or a copy, or a shred
designator.

788. A create designator identifies

a. a handler and a time (at which the create request first arose), and presents
b. elements for constructing a document descriptor, one which
i. besides some further undefined information
ii. refers to a set of documents (i.e., embeds reference to their unique identifiers),
c. a (first) document note, and
d. an empty document contents.

789. An edit designator identifies a handler, a time, and specifies a pair of edit/undo functions.

186 9 Document Systems [Summer 2017]

790. A read designator identifies a handler.

791. A copy designator identifies a handler, a time, the document to be copied (by its unique
identifier, and a document note to be inserted in both the master and the copy document.

792. A shred designator identifies a handler.

793. An edit function takes a triple of a document annotation, a document note and document
contents and yields a pair of a document annotation and a document contents.

794. An undo function takes a pair of a document note and document contents and yields a triple of
a document annotation, a document note and a document contents.

795. Proper pairs of (edit,undo) functions satisfy some inverse relation.

There is, of course, no need, in any document history, to identify the identifier of that document.

type

784 DD, DA, DC, DH

value

784 attr.DD: D — DD

784 attr_.DA: D — DA

784 attr.DC: D — DC

784 attr.DH: D — DH

type

785 DA = DN*

786 DH = (TIME x DO)*

787 DO == Crea | Edit | Read | Copy | Shre
788 Crea :: (HI x TIME) x (Dl-set x Info) x DN x {|”empty_DC”|}

788(b)i Info = ...

value

788(b)ii embed_Dls_in_DD: Dl-set x Info — DD
axiom

788d "empty_DC” € DC

type

789 Edit :: (HI x TIME) x (EDIT x UNDO)
790 Read : (HI x TIME) x DI

791 Copy :: (HI x TIME) x DI x DN

792 Shre :: (HI x TIME) x DI

793 EDIT = (DA x DN x DC) — (DA x DC)
794 UNDO = (DA x DC) — (DA x DN x DC)
axiom

795 V mkEdit(_,(e,u)):Edit -

795 ¥ (da,dn,dc):(DAXDNxDC) -

795 u(e(da,dn,dc))=(da,dn,dc)

9.6 Behaviours: An Informal, First View

In [48, Manifest Domains: Analysis & Description] we show that we can associate behaviours with
parts, where parts are such discrete endurants for which we choose to model all its observable
properties: unique identifiers, mereology and attributes, and where behaviours are sequences of
actions, events and behaviours.

e The overall document handler system behaviour can be expressed in terms of the parallel
composition of the behaviours

9.7 Channels, A First View 187

796. of the system core behaviour,
797. of the handler aggregate (the management) behaviour
798. and the document aggregate (the archive) behaviour,

with the (distributed) parallel composition of
799. all the behaviours of handlers and,

the (distributed) parallel composition of
800. at any one time, zero, one or more behaviours of documents.
o To express the latter

801. we need introduce two “global” values: an indefinite set of handler identifiers and an indef-
inite set of document identifiers.

value
801 his:HI-set, dis:Dl-set

796 sys(...)
797 || mgtm(...)
798 | arch(...)

799 || lI{hdir(...)li:HIiehis}
800 || [l{docu;(dd)(da,dc,dh)|i:Dl-icdis}

For now we leave undefined the arguments, (...) etc., of these behaviours. The arguments of the doc-
ument behaviour, (dd)(da,dc,dh), are the static, respectively the three programmable (i.e., dynamic)
attributes: document descriptor, document annotation, document contents and document history.
The above expressions, Items 797-800, do not define anything, they can be said to be “snapshots”
of a “behaviour state”. Initially there are no document behaviours, docu;(dd)(da,dc,dh), Item 800.
Document behaviours are “started” by the archive behaviour (on behalf of the management and
the handler behaviours). Other than mentioning the system (core) behaviour we shall not model
that behaviour further.

9.7 Channels, A First View

Channels are means for behaviours to synchronise and communicate values (such as unique
identifiers, mereologies and attributes).

802. The management behaviour, mgtm, need to (synchronise and) communicate with the archive
behaviour, arch, in order, for the management behaviour, to request the archive behaviour

e to create (ab initio or due to copying)
e or shred document behaviours, docu;,

and for the archive behaviour

e to inform the management behaviour of the identity of the document(behaviour)s that it
has created.

channel
802 mgtm_arch_ch:MA

188 9 Document Systems [Summer 2017]

803.

804.

805.

806.

The management behaviour, mgtm, need to (synchronise and) communicate with all handler be-
haviours, hdlr; and they, in turn, to (synchronised) communicate with the handler management
behaviour, mgtm. The management behaviour need to do so in order

e to inform a handler behaviour that it is granted access rights to a specific document, subse-
quently these access rights may be modified, including revoked.

channel
803 {mgtm_hdIr_ch[i]:MH|i:HIi € his}

The document archive behaviour, arch, need (synchronise and) communicate with all docu-
ment behaviours, docu i and they, in turn, to (synchronise and) communicate with the archive
behaviour, arch.

channel
804 {arch_docu_ch[j]:ADIh:DlI+j € dis}

Handler behaviours, hdlr;, need (synchronise and) communicate with all the document be-
haviours, docu;, with which it has operational allowance to so do so®, and document be-
haviours, docu;, need (synchronise and) communicate with potentially all handler behaviours,
hdlr;, namely those handler behaviours, hdlr; with which they have (“earlier” synchronised
and) communicated.

channel
805 {hdIr_docu_ch[i,j]:HD|i:HI,j:DI-i € hisAj € dis}

At present we leave undefined the type of messages that are communicated.

type
806 MA, MH, AD, HD

9.8 An Informal Graphical System Rendition

Figure 9.1 on the facing page is an informal rendition of the “state” of a number of behaviours:
a single management behaviour, a single archive behaviour, a fixed number, 1y, of one or more
handler behaviours, and a variable, initially zero number of document behaviours, with a maxi-
mum of these being 7,. The figure also indicates, again rather informally, the channels between
these behaviours: one channel between the management and the archive behaviours; n;, channels
(ny, is, again, informally indicated) between the management behaviour and the #; handler be-
haviours; n; channels (1, is, again, informally indicated) between the archive behaviour and the
ny document behaviours; and nj, X 11y channels (15 X 1 is, again, informally indicated) between the
ny, handler behaviours and the n; document behaviours

9.9 Behaviour Signatures

807. The mgtm behaviour (synchronises and) communicates with the archive behaviour and with

808.

all of the handler behaviours, hdlr;.
The archive behaviour (synchronises and) communicates with the mgtm behaviour and with
all of the document behaviours, docu;.

% The notion of operational allowance will be explained below.

9.10 Time 189

mgtm_arch_ch 1 1 {hdir_docu_ch[i,j]li:HI,j:DI...} 1n_h*n_d

Y

arch_docu_ch[h]lj:DI...
arch %’ [X)

Fig. 9.1 An Informal Snapshot of System Behaviours

809. The signature of the generic handler behaviours, hdlr; expresses that they [occasionally] receive
“orders” from management, and otherwise [regularly] interacts with document behaviours.

810. The signature of the generic document behaviours, docu; expresses that they [occasionally]
receive “orders” from the archive behaviour and that they [regularly] interacts with handler
behaviours.

value

807 mgtm: ... — in,out mgtm_arch_ch, {mgtm_hdlr_ch[i]|i:HI-i € his} Unit
808 arch:... — in,out mgtm_arch_ch, {arch_docu_ch[j]|j:DI+j € dis} Unit
809 hdlr;:... — in mgtm_hdlr_ch[i], in,out {hdlr_docu_ch[i,j]|j:Dl-jedis} Unit
810 docu;: ... — in mgtm_arch_ch, in,out {hdir_docu_ch[i,j]li:HI'i € his} Unit

9.10 Time

9.10.1 Time and Time Intervals: Types and Functions

811. We postulate a notion of time, one that covers both a calendar date (from before Christ up till
now and beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD,
HH:MM:SS).
812. And we postulate a notion of (signed) time interval —between two times (say: + YY:MM:DD:HH:MM:SS).
813. Then we postulate some operations on time: Adding a time interval to a time obtaining a time;
subtracting one time from another time obtaining a time interval, multiplying a time interval
with a natural number; etc.
814. And we postulate some relations between times and between time intervals.

type

811 TIME

812 TIME_INTERVAL

value

813 add: TIME_INTERVAL x TIME — TIME

813 sub: TIME x TIME — TIME_INTERVAL

813 mpy: TIM_INTERVALE x Nat — TIME_INTERVAL

814 <,<,=,#,2,>: (TIMEXTIME)|(TIME_INTERVALXTIME_INTERVAL)) — Bool

190 9 Document Systems [Summer 2017]

9.10.2 A Time Behaviour and a Time Channel

815. We postulate a[n “ongoing”] time behaviour: it either keeps being a time behaviour with
unchanged time, t, or — internally non-deterministically — chooses being a time behaviour
with a time interval incremented time, t+ti, or — internally non-deterministically — chooses to
[first] offer its time on a [global] channel, time_ch, then resumes being a time behaviour with
unchanged time., t

816. The time interval increment, ti, is likewise internally non-deterministically chosen. We would
assume that the increment is “infinitesimally small”, but there is no need to specify so.

817. We also postulate a channel, time_ch, on which the time behaviour offers time values to whoever
so requests.

value

815 time: TIME — time_ch TIME Unit

815 time(t) = (time(t) [time(t+ti) [1 time_chlt ; time(t))
816 ti:TIME_INTERVAL ...

channel

817 time_ch:TIME

9.10.3 An Informal RSL Construct

The formal-looking specifications of this report appear in the style of the RAISE [93] Specification
Language, RSL [92]. We shall be making use of an informal language construct:

o wait i.
wait is a keyword; ti designates a time interval. A typical use of the wait construct is:
e .. ptA ;waitti; ptB; ...

If at specification text point ptA we may assert that time is ¢, then at specification text point ptB
we can assert that time is f+1i.

9.11 Behaviour “States”

We recall that the endurant parts, Management, Archive, Handlers, and Documents, have prop-
erties in the form of unique identifiers, mereologies and attributes. We shall not, in this research
note, deal with possible mereologies of these endurants. In this section we shall discuss the en-
durant attributes of mgtm (management), arch (archive), hdlrs (handlers), and docus (documents).
Together the values of these properties, notably the attributes, constitute states — and, since we as-
sociate behaviours with these endurants, we can refer to these states also a behaviour states. Some
attributes are static, i.e., their value never changes. Other attributes are dynamic.65 Document
handling systems are rather conceptual, i.e., abstract in nature. The dynamic attributes, therefore,
in this modeling “exercise”, are constrained to just the programmable attributes. Programmable
attributes are those whose value is set by “their” behaviour. For a behaviour we shall show
the static attributes as one set of parameters and the programmable attributes as another set of
parameters.

65 We refer to Sect. 3.4 of [48], and in particular its subsection 3.4.4.

9.12 Inter-Behaviour Messages 191

value p: Static — Program — ... Unit

818. For the management endurant/behaviour we focus on one programmable attribute. The man-
agement behaviour needs keep track of all the handlers it is charged with, and for each of these
which zero, one or more documents they have been granted access to (cf.Sect. 9.12.3 on the
next page). Initially that management directory lists a number of handlers, by their identifiers,
but with no granted documents.

819. For the archive behaviour we similarly focus on one programmable attribute. The archive
behaviour needs keep track of all the documents it has used (i.e., created), those that are
available (and not yet used), and of those it has shredded. Initially all these three archive
directory sets are empty.

820. For the handler behaviour we similarly focus on one programmable attribute. The handler
behaviour needs keep track of all the documents it has been charged with and its access rights
to these.

821. Document attributes we mentioned above, cf. Iltems 784-787.

type

818 MDIR = HI # (DI ANm-set)

819 ADIR = avail:Dl-set x used:Dl-set x gone:Dl-set

820 HDIR = DI 7» ANm-set

821 SDATR = DD, PDATR = DA x DC x DH

axiom

819 V (avail,used,gone):ADIR - avail N used = {} A gone C used

We can now “complete” the behaviour signatures. We omit, for now, static attributes.

value

807 mgtm: MDIR — in,out mgtm_arch_ch, {mgtm_hdlr_ch[i]|i:HI-i € his} Unit

808 arch: ADIR — in,out mgtm_arch_ch, {arch_docu_ch[j]|j:Dl+ € dis} Unit

809 hdlr;: HDIR — in mgtm_hdIr_ch[i], in,out {hdlr_docu_ch[i,j]|j:Dlsjedis} Unit

810 docu;: SDATR — PDATR — in mgtm_arch_ch, in,out {hdlr_docu_ch[i,j]li:HI‘i € his} Unit

9.12 Inter-Behaviour Messages

Documents are not “fixed, innate” entities. They embody a “history”, they have a “past”. Somehow
or other they “carry a trace of all the "things” that have happened/occurred to them. And, to us,
these things are the manipulations that management, via the archive and handlers perform on
documents.

9.12.1 Management Messages with Respect to the Archive

822. Management create documents. It does so by requesting the archive behaviour to allocate a
document identifier and initialize the document “state” and start a document behaviour, with
initial information, cf. Item 788 on page 185:

a. the identity of the initial handler of the document to be created,
b. the time at which the request is being made,

192 9 Document Systems [Summer 2017]

c. a document descriptor which embodies a (finite) set of zero or more (used) document
identifiers (dis),

d. a document annotation note dn, and

e. an initial, i.e., “empty” contents, "empty DC".

type
788. Crea :: (HI x TIME) x (Dl-set x Info) x DN x {|”empty_DC”|} [cf. formula ltem 788, Page 186]

823. The management behaviour passes on to the archive behaviour, requests that it accepts from
handlers behaviours, for the copying of document:

823 Copy :: DI x HI x TIME x DN [cf. Item 833 on page 194]

824. Management schreds documents by informing the archive behaviour to do so.

type
824 Shred :: TIME x DI

9.12.2 Management Messages with Respect to Handlers

825. Upon receiving, from the archive behaviour, the “feedback” the identifier of the created docu-
ment (behaviour):

type
825. Create_Reply :: NewDoclD(di:DlI)

826. the management behaviour decides to grant access rights, acrs:ACRS®®, to a document handler,
hi:HI.

type
826 Gran :: HIl x TIME x DI x ACRS

9.12.3 Document Access Rights

Implicit in the above is a notion of document access rights.

827. By document access rights we mean a set of action names.
828. By an action name we mean such tokens that indicate either of the document handler operations
indicate above.

type
827 ACRS = ANm-set
828 ANm = {|"edit”,'read”,”copy”|}

% For the concept of access rights see Sect. 9.12.3.

9.12 Inter-Behaviour Messages 193

9.12.4 Archive Messages with Respect to Management

To create a document management provides the archive with some initial information. The archive
behaviour selects a document identifier that has not been used before.

829. The archive behaviour informs the management behaviour of the identifier of the created
document.

type
829 NewDoclD :: DI

9.12.5 Archive Message with Respect to Documents

830. To shred a document the archive behaviour must access the designated document in order to
stop it. No “message”, other than a symbolic "stop", need be communicated to the document
behaviour.

type
830 Shred :: {|"stop”|}

9.12.6 Handler Messages with Respect to Documents

Handlers, generically referred to by hdlr;, may perform the following operations on documents:
edit, read and copy. (Management, via the archive behaviour, creates and shreds documents.)

831. To perform an edit action handler hdlr; must provide the following:

the document identity — in the form of a (i:Hl,j:DI) channel hdir_docu_ch index value,
the handler identity, 7,

the time of the edit request,

and a pair of functions: one which performs the editing and one which un-does it!

type
831 Edit :: DI x HI x TIME x (EDIT x UNDOQ)

832. To perform a read action handler hdlr; must provide the following information:

e the document identity — in the form of a di:DI channel hdlr_docu_ch index value,
e the handler identity and
o the time of the read request.

type
832 Read :: DI x HI x TIME

194 9 Document Systems [Summer 2017]

9.12.7 Handler Messages with Respect to Management

833. To perform a copy action, a handler, hdlr;, must provide the following information to the
management behaviour, mgtm:

e the document identity,

e the handler identity — in the form of an hi:HI channel mgtm_hdlr_ch index value,
e the time of the copy request, and

e a document note (to be affixed both the master and the copy documents).

833 Copy :: DI x HI x TIME x DN [cf. tem 823 on page 192]

How the handler, the management, the archive and the “named other” handlers then enact the
copying, etc., will be outlined later.

9.12.8 A Summary of Behaviour Interactions

Figure 9.2 summarises the sources, out, resp. !, and the targets, in, resp. ?, of the messages covered
in the previous sections.

mkGrant
mgtm (X X}
mkCopy
-
mkCreate
mkCopy mkNewDoclD mkEdit mkEditComplete
mkShred mkRead mkReadComplete

Y

Fig. 9.2 A Summary of Behaviour Interactions

9.13 A General Discussion of Handler and Document Interactions

We think of documents being manifest. Either a document is in paper form, or it is in electronic
form. In paper form we think of a document as being in only one — and exactly one — physical
location. In electronic form a document is also in only one — and exactly one — physical location.
No two handlers can access the same document at the same time or in overlapping time intervals.
If your conventional thinking makes you think that two or more handlers can, for example, read
the same document “at the same time”, then, in fact, they are reading either a master and a copy
of that master, or they are reading two copies of a common master.

9.15 An Informal Summary of Behaviours 195

9.14 Channels: A Final View

We can now summarize the types of the various channel messages first referred to in Items 802,
803, 804 and 805.

type

802 MA = Create (ltem 822 on page 191)

802 | Shred (ltem 822d on page 192)

802 | NewDocID (ltem 829 on page 193)
803 MH = Grant (Item 822c on page 192)

803 | Copy (Iltem 833 on the preceding page)
804 AD = Shred (ltem 830 on page 193)

805 HD = Edit (ltem 831 on page 193)

805 | Read (ltem 832 on page 193)

805 | Copy (Iltem 833 on the preceding page)

9.15 An Informal Summary of Behaviours

9.15.1 The Create Behaviour: Left Fig. 9.3 on the following page

834.

835.

836.

837.

838.

839.

[1] The management behaviour, at its own volition, initiates a create document behaviour. It
does so by offering a create document message to the archive behaviour.

a. [1.1] That message contains a meaningful document descriptor,
b. [1.2] an initial document annotation,

c. [1.3] an “empty” document contents and

d. [1.4] a single element document history.

(We refer to Sect. 9.12.1 on page 191, Items 822-822e.)

[2] The archive behaviour offers to accept that management message. It then selects an available
document identifier (here shown as k), henceforth marking k as used.

[3] The archive behaviour then “spawns off” document behaviour docuy — here shown by the
“dash—dotted” rounded edge square.

[4] The archive behaviour then offers the document identifier kK message to the management
behaviour.

(We refer to Sect. 9.12.4 on page 193, Item 829.)

[5] The management behaviour then

a. [5.1] selects a handler, here shown as i, i.e., hdlr;,
b. [5.2] records that that handler is granted certain access rights to document k,
c. [5.3] and offers that granting to handler behaviour i.

(We refer to Sect. 9.12.2 on page 192, Item 826 on page 192.)
[6] Handler behaviour i records that it now has certain access rights to document i.

9.15.2 The Edit Behaviour: Right Fig. 9.3 on the next page

1

Handler behaviour i, at its own volition, initiates an edit action on document j (where i has edit-
ing rights for document j). Handler i, optionally, provides document j with a(annotation) note.

196 9 Document Systems [Summer 2017]

o e * ** mom . **
:[3
e SHLY
1 H

1 - : i
kareatel: i\mkNewDocld CREATE EDIT mkRead‘ b ‘
: 1

i ; |mkReadComplete
]

1
ST i[5
The dofted ine means: “e.mm.s g

Initialising the document.

Fig. 9.3 Informal Snapshots of Create and Edit Document Behaviours

While editing document j handler i also “selects” an appropriate pair of edit/undo functions
for document j.

2 Document behaviour j accepts the editing request, enacts the editing, optionally appends the
(annotation) note, and, with handler i, completes the editing, after some time interval ti.

3 Handler behaviour i completes its edit action.

9.15.3 The Read Behaviour: Left Fig. 9.4

1 Handler behaviour i, at its own volition, initiates a read action on document j (where i has
reading rights for document j). Handler i, optionally, provides document j with a(annotation)
note.

2 Document behaviour j accepts the reading request, enacts the reading by providing the handler,
i, with the document contents, and optionally appends the (annotation) note, and, with handler
i, completes the reading, after some time interval ti.

3 Handler behaviour i completes its read action.

mkCopy

_________ ¥ Yol =11
mgtm oe| niri ee 12 [miGrane ~ 77 00
i 13} I
Y
P! i 9 [8], mkGrant
- i I
i ! !
READ mkRead\ i : mkReadComplete 1 | mkCopy | mkNewDocID COPY
[! !
i : T The dotted line mean:
i-arch 1[5 intalsing the documen.
21 [ST
arch ® e | docij|®® | docu_1 3L _ o
These dot-dashed lines
mean: Obtaining the

document "data” !

Fig. 9.4 Informal Snapshots of Read and Copy Document Behaviours

9.15.4 The Copy Behaviour: Right Fig. 9.4

1 Handler behaviour i, at its own volition, initiates a copy action on document j (where i has
copying rights for document j). Handler i, optionally, provides master document j as well as
the copied document (yet to be identified) with respective (annotation) notes.

9.15 An Informal Summary of Behaviours 197

2

8

9

The management behaviour offers to accept the handler message. As for the create action, the
management behaviour offers a combined copy and create document message to the archive
behaviour.

The archive behaviour selects an available document identifier (here shown as k), henceforth
marking k as used.

The archive behaviour then obtains, from the master document j its document descriptor, dd;,
its document annotations, daj, its document contents, dc;, and its document history, dh;.

The archive behaviour informs the management behaviour of the identifier, k, of the (new)
document copy,

while assembling the attributes for that (new) document copy: its document descriptor, ddj, its
document annotations, day, its document contents, dcy, and its document history, dhy, from these
“similar” attributes of the master document j,

while then “spawning off” document behaviour docuy — here shown by the “dash-dotted”
rounded edge square.

The management behaviour accepts the identifier, k, of the (new) document copy, recording the
identities of the handlers and their access rights to k,

while informing these handlers (informally indicated by a “dangling” dash-dotted line) of their
grants,

10 while also informing the master copy of the copy identity (et cetera).
11 The handlers granted access to the copy record this fact.

9.15.5 The Grant Behaviour: Left Fig. 9.5

This behaviour has its

1
2

Item [1] correspond, in essence, to Item [9] of the copy behaviour — see just above — and
Item [2] correspond, in essence, to Item [11] of the copy behaviour.

"0 micren : ** o e
8 SO Py gy oo VPR MO WY) | [

GRANT mkShred | | SHRED

i
1
I
]
I
I
arch LA N) docu_1 I
I

mkShred

Fig. 9.5 Informal Snapshots of Grant and Shred Document Behaviours

9.15.6 The Shred Behaviour: Right Fig. 9.5

The management, at its own volition, selects a document, j, to be shredded. It so informs the
archive behaviour.

The archive behaviour records that document j is to be no longer in use, but shredded, and
informs document j’s behaviour.

198 9 Document Systems [Summer 2017]

3 The document j behaviour accepts the shred message and stops (indicated by the dotted
rounded edge box).

9.16 The Behaviour Actions

To properly structure the definitions of the four kinds of (management, archive, handler and
document) behaviours we single each of these out “across” the six behaviour traces informally
described in Sects. 9.15.1-9.15.6. The idea is that if behaviour f is involved in 7 traces, 71,72, ..., Tr,
then behaviour f shall be defined in terms of T non-deterministic alternative behaviours named

PPy Pre-

9.16.1 Management Behaviour

840. The management behaviour is involved in the following action traces:

a. create Fig. 9.3 on page 196 Left

b. copy Fig. 9.4 on page 196 Right

c. grant Fig. 9.5 on the preceding page Left

d. shred Fig. 9.5 on the previous page Right
value

840 mgtm: MDIR — in,out mgtm_arch_ch, {mgtm_hdIr_ch[hi]|hi:HI-hi € his} Unit
840 mgtm(mdir) =

840a mgtm_create(mdir)

840b [1 mgtm_copy(mdir)

840c [1 mgtm_grant(mdir)

840d [1 mgtm_shred(mdir)

9.16.1.1 Management Create Behaviour: Left Fig. 9.3 on page 196

841. The management create behaviour
842. initiates a create document behaviour (i.e., a request to the archive behaviour),
843. and then awaits its response.

value

841 mgtm_create: MDIR — in,out mgtm_arch_ch, {mgtm_hdir_ch[hi]|hi:HI-hi € his} Unit
841 mgtm_create(mdir) =

842 [1] let hi = mgtm_create._initiation(mdir) ; [Left Fig. 9.3 on page 196]

843 [5] mgtm_create_awaits_response(mdir)(hi) end [Left Fig. 9.3 on page 196]

The management create initiation behaviour

844. selects a handler on behalf of which it requests the document creation,
845. assembles the elements of the create message:

e by embedding a set of zero or more document references, dis, with some information, info,
into a document descriptor, adding
e a document note, dn, and

9.16 The Behaviour Actions 199

e and initial, that is, empty document contents, "empty DC",

846. offers such a create document message to the archive behaviour, and
847. yields the identifier of the chosen handler.

value

842 mgtm_create_initiation: MDIR — in,out mgtm_arch_ch, {mgtm_hdIr_ch[hi]lhi:HI-hi € his} HI
842 mgtm_create_initiation(mdir) =

844 let hi:HI - hi € dom mdir,

845 [1.2-.4] (dis,info):(Dl-setxInfo),dn:DN - is_meaningful(embed_Dls_in_DD(dis,info))(mdir) in
846 [1.1] mgtm_arch_ch ! mkCreate(embed_Dls_in_DD(ds,info),dn,”empty_DC")

847 hi end

845 is_meaningful: DD — MDIR — Bool [left further undefined]

The management create awaits response behaviour

848. starts by awaiting a reply from the archive behaviour with the identity, di, of the document
(that that behaviour has created).

849. It then selects suitable access rights,

850. with which it updates its handler/document directory

851. and offers to the chosen handler

852. whereupon it resumes, with the updated management directory, being the management be-
haviour.

value

843 mgtm_create_awaits_response: MDIR — HI — in,out mgtm_arch_ch, {mgtm_hdIr_ch[hi]lhi:HI-hi € his} Unit
843 mgtm_create_awaits_response(mdir) =

848 [5] let mkNewDoclID(di) = mgtm_arch_ch ? in

849 [5.1] let acrs:ANm-set in

850 [5.2] let mdir’ = mdir t [hi ~— [di — acrs]]in

851 [5.3] mgtm_hdir_ch[hi] ! mkGrant(di,acrs)

852 mgtm(mdir’) end end end

9.16.1.2 Management Copy Behaviour: Right Fig. 9.4 on page 196

853. The management copy behaviour

854. accepts a copy document request from a handler behaviour (i.e., a request to the archive
behaviour),

855. and then awaits a response from the archive behaviour;

856. after which it grants access rights to handlers to the document copy.

value

853 mgtm_copy: MDIR — in,out mgtm_arch_ch, {mgtm_hdlr_ch[hi]|hi:HI:hi € his} Unit
853 mgtm_copy(mdir) =

854 [2] let hi = mgtm_accept_copy_request(mdir) in

855 [8] letdi = mgtm_awaits_copy_response(mdir)(hi) in

856 [9] mgtm_grant_access._rights(mdir)(di) end end

857. The management accept copy behaviour non-deterministically externally ([) awaits a copy
request from a[ny] handler (i) behaviour —
858. with the request identifying the master document, j, to be copied.

200 9 Document Systems [Summer 2017]

859.
860.

The management accept copy behaviour forwards (!) this request to the archive behaviour —
while yielding the identity of the requesting handler.

857. mgtm_accept_copy_request: MDIR —

857. in,out mgtm_arch_ch, {mgtm_hdlr_ch[hi]|hi:HI+hi € his} HI
857. mgtm_accept_copy_request(mdir) =

858. let mkCopy(di,hi,t,dn) = [{mgtm_hdir_ch[i]?|i:HI-i € his} in
859. mgtm_arch_ch ! mkCopy(di,hi,t,dn) ;

859. hi end

The management awaits copy response behaviour

861.

862.

863.

awaits a reply from the archive behaviour as to the identity of the newly created copy (di) of
master document j.

The management awaits copy response behaviour then informs the ‘copying-requesting’ han-
dler, hi, that the copying has been completed and the identity of the copy (di) —

while yielding the identity, di, of the newly created copy.

840b. mgtm_awaits_copy_response: MDIR — HI —

840b. in,out mgtm_arch_ch, {mgtm_hdIr_ch[hi]|hi:HI-hi € his} DI
840b. mgtm_awaits_copy_response(mdir)(hi) =

861. [8] let mkNewDoclID(di) = mgtm_arch_ch ? in

862. mgtm_hdir_ch[hi] | mkCopy(di) ;

863. di end

The management grants access rights behaviour

864.
865.

selects suitable access rights for a suitable number of selected handlers.
It then offers these to the selected handlers.

856. mgtm_grant_access_rights: MDIR — DI —

856. in,out {mgtm_hdIlr_ch[hi]|hi:HI:hi € his} Unit

856. mgtm_grant_access_rights(mdir)(di) =

864. let diarm = [hiracrs|hi:Hl,arcs:ANm-set hi € dom mdirAarcsc(diarm(hi))(di)] in
865. | {mgtm_hdir_ch[hi]'mkGrant(hi,time_ch?.di,acrs) |

865. hi:Hl,acrs:ANm-set-hi € dom diarmAacrsc(diarm(hi))(di)} end

9.16.1.3 Management Grant Behaviour: Left Fig. 9.5 on page 197

The management grant behaviour

866.
867.
868.
869.
870.

is a variant of the mgtm_grant_access_rights function, Items 864-865.

The management behaviour selects a suitable subset of known handler identifiers, and

for these a suitable subset of document identifiers from which

it then constructs a map from handler identifiers to subsets of access rights.

With this the management behaviour then issues appropriate grants to the chosen handlers.

type

MDIR = HI 7 (DI 7 ANm-set)

value

866 mgtm_grant: MDIR — in,out {mgtm_hdIr_ch[hi]|hi:HI-hi € his} Unit
866 mgtm_grant(mdir) =

867 let his C dom dir in

9.16 The Behaviour Actions 201

868 let dis € U{dom mdir(hi)|hi:HI-hi € his} in

869 let diarm = [hi»acrs|hi:HI,di:Dl,arcs:ANm-set- hi € hisadi € disAnacrsc(diarm(hi))(di)] in
870 [[{mgtm_hdIr_ch[hi]!mkGrant(di,acrs) |

870 hi:HI,di:Dl,acrs:ANm-set-hi € dom diarmadi € disAacrsC(diarm(hi))(di)}

866 end end end

9.16.1.4 Management Shared Behaviour: Right Fig. 9.5 on page 197

The management shred behaviour

871. initiates a request to the archive behaviour.

872. First the management shred behaviour selects a document identifier (from its directory).
873. Then it communicates a shred document message to the archive behaviour;

874. then it notes the (to be shredded) document in its directory

875. whereupon the management shred behaviour resumes being the management behaviour.

value

871 mgtm_shred: MDIR — out mgtm_arch_ch Unit

871 mgtm_shred(mdir) =

872 let di:DlI - is_suitable(di)(mdir) in

873 [1] mgtm_arch_ch ! mkShred(time_ch?,di) ;

874 let mdir’ = [hir>mdir(hi)\{di}|hi:HI-hi € dom mdir] in
875 mgtm(mdir’) end end

9.16.2 Archive Behaviour

876. The archive behaviour is involved in the following action traces:

a. create Fig. 9.3 on page 196 Left
b. copy Fig. 9.4 on page 196 Right
c. shred Fig. 9.5 on page 197 Right

type

819 ADIR = avail:Dl-set x used:Dl-set x gone:Dl-set

axiom

819 V (avail,used,gone):ADIR - avail N used = {} A gone C used

value

876 arch: ADIR — in,out mgmt_arch_ch, {arch_docu_ch[di]|di:DI-di € dis} Unit
876a arch(adir) =

876a arch_create(adir)

876b [1 arch_copy(adir)

876¢ [1 arch_shred(adir)

9.16.2.1 The Archive Create Behaviour: Left Fig. 9.3 on page 196

The archive create behaviour

877. accepts a request, from the management behaviour to create a document;

202 9 Document Systems [Summer 2017]

878.
879.
880.

881.

it then selects an available document identifier;

communicates this new document identifier to the management behaviour;

while initiating a new document behaviour, docuy;, with the document descriptor, dd, the initial
document annotation being the singleton list of the note, an, and the initial document contents,
dc — all received from the management behaviour — and an initial document history of just one
entry: the date of creation, all

in parallel with resuming the archive behaviour with updated programmable attributes.

876a. arch_create: AATTR — in,out mgmt_arch_ch, {arch_docu_ch[di]|di:DI-di € dis} Unit
876a. arch_create(avail,used,gone) =

877. [2] let mkCreate((hi,t),dd,an,dc) = mgmt_arch_ch ? in

878. let di:Dl-di € avail in

879. [4] mgmt_arch_ch | mkNewDoclD(di) ;

880. [3] docuy;(dd)((an),dc,<(date_of_creation)>)

881. || arch(avail\{di},usedu{di},gone)

876a. end end

9.16.2.2 The Archive Copy Behaviour: Right Fig. 9.4 on page 196

The archive copy behaviour

882.
883.
884.
885.

886.
887.

888.

accepts a copy document request from the management behaviour with the identity, j, of the
master document;

it communicates (the request to obtain all the attribute values of the master document, j) to that
document behaviour;

whereupon it awaits their communication (i.e., (dd,da,dc,dh));

(meanwhile) it obtains an available document identifier,

which it communicates to the management behaviour,

while initiating a new document behaviour, docu,;, with the master document descriptor, dd, the
master document annotation, and the master document contents, dc, and the master document
history, dh (all received from the master document),

in parallel with resuming the archive behaviour with updated programmable attributes.

876b. arch_copy: AATTR — in,out mgmt_arch_ch, {arch_docu_ch[di]|di:Dl-di € dis} Unit
876b. arch_copy(avail,used,gone) =
882. [3] let mkDoclID(j,hi) = mgtm_arch_ch ? in

883. arch_docu_ch[j] ! mkReqgAttrs() ;

884. let mkAttrs(dd,da,dc,dh) = arch_docu_ch[j] ? in
885. let di:Dl - di € avail in

886. mgtm_arch_ch | mkCopyDocID(di) ;

887. [6,7] docuy;(augment(dd,”copy” j,hi),

887. augment(da,”’copy”,hi),dc,

887. augment(dh,(”’copy” date_and_time,j,hi)))

888. || arch(avail\{di},usedu{di},gone)
876b. end end end

where we presently leave the [overloaded] augment functions undefined.

9.16.2.3 The Archive Shred Behaviour: Right Fig. 9.5 on page 197

The archive shred behaviour

9.16 The Behaviour Actions 203

889. accepts a shred request from the management behaviour.

890. It communicates this request to the identified document behaviour.

891. And then resumes being the archive behaviour, noting however, that the shredded document
has been shredded.

876¢. arch_shred: AATTR — in,out mgmt_arch_ch, {arch_docu_ch[di]|di:DI-di € dis} Unit
876c¢. arch_shred(avail,used,gone) =

889. [2] let mkShred(j) = mgmt_arch_ch ? in

890. arch_docu_ch[j] ! mkShred() ;

891. arch(avail,used,goneufj})

876c. end

9.16.3 Handler Behaviours

892. The handler behaviour is involved in the following action traces:

a. create Fig. 9.3 on page 196 Left

b. edit Fig. 9.3 on page 196 Right

c. read Fig. 9.4 on page 196 Left

d. copy Fig. 9.4 on page 196 Right

e. grant Fig. 9.5 on page 197 Left
value

892 hdlry,;: HATTRS — in,out mgtm_hdlr_ch[hi],{hdIr_docu_ch[hi,di]|di:Dl-diedis} Unit
892 hdir,;(hattrs) =

892a hdlr_createy,;(hattrs)

892b [1 hdIr_edity,;(hattrs)

892c [1 hdlr_read;;(hattrs)

892d [1 hdIr_copyy;(hattrs)

892e [1 hdIr_grant;,;(hattrs)

9.16.3.1 The Handler Create Behaviour: Left Fig. 9.3 on page 196

893. The handler create behaviour offers to accept the granting of access rights, acrs, to document
di.

894. It according updates its programmable hattrs attribute;

895. and resumes being a handler behaviour with that update.

892a hdir_createy;: HATTRS x HHIST — in,out mgtm_hdIr_ch[hi] Unit
892a hdIr_createy;(hattrs,hhist) =

893 let mkGrant(di,acrs) = mgtm_hdlr_ch[hi] ? in

894 let hattrs’ = hattrs + [hi — acrs]in

895 hdlr_createy;(hattrs’,augment(hhist,mkGrant(di,acrs))) end end

9.16.3.2 The Handler Edit Behaviour: Right Fig. 9.3 on page 196

896. The handler behaviour, on its own volition, decides to edit a document, di, for which it has
editing rights.

204 9 Document Systems [Summer 2017]

897.

898.
899.
900.
901.
902.

The handler behaviour selects a suitable (...) pair of edit/undo functions and a suitable (annota-
tion) note.

It then communicates the desire to edit document di with (e,u) (at time t=time_ch?).

Editing take some time, #i.

We can therefore assert that the time at which editing has completed is f+ti.

The handler behaviour accepts the edit completion message from the document handler.

The handler behaviour can therefore resume with an updated document history.

892b hdIr_edit,;: HATTRS x HHIST — in,out {hdlr_docu_ch[hi,di]|di:DI-diedis} Unit
892b hdIr_edity;(hattrs,hhist) =

896 [1] letdi:Dl-die dom hattrs A “edit” € hattrs(di) in

897 [1] let (e,u):(EDITXUNDQO)-...,n:AN - ... in

898 [1] hdlr_docu_ch[hi,di] ! mkEdit(hi,t=time_ch?,e,u,n) ;

899 [2] letti:TIME_LINTERVAL - ... in

900 [2] waitti; assert: time_ch? = t-+ti

901 [3] Ilet mkEditComplete(ti’,...) = hdlr_docu_ch[hi,di] ? in assert ti’ = ti

902 hdlir,;(hattrs,augment(hhist,(di,mkEdit(hi,t,ti,e,u))))

892b end end end end

9.16.3.3 The Handler Read Behaviour: Left Fig. 9.4 on page 196

903.

904.

905.
906.
907.
908.

The handler behaviour, on its own volition, decides to read a document, di, for which it has
reading rights.

It then communicates the desire to read document di with at time t=time_ch? — with an anno-
tation note (n).

Reading take some time, fi.

We can therefore assert that the time at which reading has completed is +ti.

The handler behaviour accepts the read completion message from the document handler.

The handler behaviour can therefore resume with an updated document history.

892c¢ hdlr_edit,;: HATTRS x HHIST — in,out {hdIr_docu_ch[hi,di]|di:DI-diedis} Unit
892c hdlr_edity;(hattrs,hhist) =

903 [1] letdi:DI-di € dom hatirs A “read” € hattrs(di), n:N - ... in

904 [1] hdlr_docu_ch[hi,di] ! mkRead(hi,t=time_ch?,n) ;

905 [2] letti:TIME_LINTERVAL - ... in

906 [2] waitti; assert: time_ch? = t-+ti

907 [3] let mkReadComplete(ti,...) = hdlr_.docu_ch[hi,di] ? in

908 hdlr,;(hattrs,augment(hhist,(di,mkRead(di,t,ti))))

892c end end end

9.16.3.4 The Handler Copy Behaviour: Right Fig. 9.4 on page 196

909.

910.
911.

912.

The handler [copy] behaviour, on its own volition, decides to copy a document, di, for which
it has copying rights.

It communicates this copy request to the management behaviour.

After a while the handler [copy] behaviour receives acknowledgment of a completed copying
from the management behaviour.

The handler [copy] behaviour records the request and acknowledgment in its, thus updated
whereupon the handler [copy] behaviour resumes being the handler behaviour.

9.16 The Behaviour Actions 205

892d hdlIr_copyy,;: HATTRS X HHIST — in,out mgtm_hdir_ch[hi] Unit

892d hdlIr_copyy;(hattrs,hhist) =

909 [1]letdi:Dl-die dom hattrs A “copy” € hattrs(di) in

910 [1] mgtm_hdIr_ch[hi] ! mkCopy(di,hi,t=time_ch?) ;

911 [10] let mkCopyComplete(di’,di) = mgtm_hdir_ch[hi] ? in

912 [10] hdlir,;(hattrs,augment(hhist,time_ch?,(mkCopy(di,hi,,t),mkCopyComplete(di’))))
892d end end

9.16.3.5 The Handler Grant Behaviour: Left Fig. 9.5 on page 197

913. The handler [grant] behaviour offers to accept grant permissions from the management be-
haviour.
914. In response it updates its handler attribute while resuming being a handler behaviour.

892e hdir_grant,;: HATTRS x HHIST — in,out mgtm_hdir_ch[hi] Unit
892e hdir_granty;(hattrs,hhist) =

913 [2] let mkGrant(di,acrs) = mgtm_hdIr_ch[hi] ? in

914 [2] hdlIr;(hattrst[diacrs],augment(hhist,time_ch?,mkGrant(di,acrs)))
892e end

9.16.4 Document Behaviours

915. The document behaviour is involved in the following action traces:

a. edit Fig. 9.3 on page 196 Right

b. read Fig. 9.4 on page 196 Left

c. shred Fig. 9.5 on page 197 Right
value

915 docuy;: DD x (DA x DC x DH) —

915 in,out arch_docu_ch[di], {hdlr_docu_ch[hi,di]|hi:HI-hiehis} Unit
915 docuy;(dattrs) =

915a docu_edit;;(dd)(da,dc,dh)

915b [1 docu_read;;(dd)(da,dc,dh)

915¢ [1 docu_shred,;(dd)(da,dc,dh)

9.16.4.1 The Document Edit Behaviour: Right Fig. 9.3 on page 196

916. The document [edit] behaviour offers to accept edit requests from document handlers.

a. The document contents is edited, over a time interval of ti, with respect to the handlers edit
function (),

b. the document annotations are augmented with respect to the handlers note (1), and

c. the document history is augmented with the fact that an edit took place, at a certain time,
with a pair of edit/undo functions.

917. The edit (etc.) function(s) take some time, ¢, to do.
918. The handler behaviour is notified, mkEditComplete(...) of the completion of the edit, and

206

9 Document Systems [Summer 2017]

919. the document behaviour is then resumed with updated programmable attributes.

value

915a
915a
916
916a
916b
916¢
917
918
919
915a

docu_edit;: DD x (DA x DC x DH) — in,out {hdIr_docu_ch[hi,di]|hi:HI-hichis} Unit
docu_edity;(dd)(da,dc,dh) =
[2] let mkEdit(hi,t,e,u,n) = [J{hdIr_docu_ch[hi,di]?|hi:HI-hichis} in
[2] letdc = e(dc),
da’ = augment(da,((hi,t),("edit”,e,u),n)),
dn’ = augment(dh,((hi,t),("edit”,e,u))) in
let ti = time_ch? — tin
hdlr_docu_ch[hi,di] ! mkEditComplete(ti,...) ;
docug;(dd)(da’,dc’,dh’)
end end end

9.16.4.2 The Document Read Behaviour: Left Fig. 9.4 on page 196

920. The The document [read] behaviour offers to receive a read request from a handler behaviour.
921. The reading takes some time to do.

922. The handler behaviour is advised on completion.

923. And the document behaviour is resumed with appropriate programmable attributes being

updated.
value
915b docu_ready;: DD x (DA x DC x DH) — in,out {hdIr_docu_ch[hi,di]jhi:HI-hiehis} Unit
915b docu_read;;(dd)(da,dc,dh) =
920 [2]let mkRead(hi,t,n) = {hdir_docu_ch[hi,di]?|hi:HI-hichis} in
921 [2]letti:TIME_LINTERVAL - ... in
921 [2] waitti;
922 [2] hdIr_docu_ch[hi,di] ! mkReadComplete(ti,...) ;
923 [2] docugy;(dd)(augment(da,n),dc,augment(dh, (hi,tti,”read”)))
915b end end

9.16.4.3 The Document Shred Behaviour: Right Fig. 9.5 on page 197

924. The document [shred] behaviour offers to accept a document shred request from the archive
behaviour —
925. whereupon it stops !

value

915¢c
915¢c

docu_shred;;: DD x (DA x DC x DH) — in,out arch_docu_ch[di] Unit
docu_shredy;(dd)(da,dc,dh) =

924 [3] let mkShred(...) = arch_docu_ch[di] ? in

925

stop

915c [3] end

9.18 Documents in Urban Planning 207

9.16.5 Conclusion

This completes a first draft version of this document. The date time is: November 15, 2021: 16:12.
Many things need to be done. First a careful checking of all types and functions: that all used names
have been defined. The internal non-deterministic choices in formula Items 840 on page 198, 876
onpage 201,892 on page 203 and 915 on page 205, need be checked. I suspect there should, instead,
be some mix of both internal and external non-deterministic choices. Then a careful motivation
for all the other non-deterministic choices.

9.17 Documents in Public Government

Public government, in the spirit of Charles-Louis de Secondat, Baron de La Bréde et de Mon-
tesquieu (or just Montesquieu), has three branches:

e the legislative,
e the executive, and
e the judicial.

Our interpretation of these, with respect to documents, are as follows.

o The legislative branch produces laws, i.e., documents. To do so many preparatory documents
are created, edited, read, copied, etc. Committees, subcommittees, individual lawmakers and
ministry law office staff handles these documents. Parliament staff and legislators are granted
limited or unlimited access rights to these documents. Finally laws are put into effect, are
amended, changed or abolished.

The legislative branch documents refer to legislative, executive and judicial branch documents.

e The executive branch produces guide lines, i.e., documents. Instructions on interpretation and
implementation of laws; directives to ministry services on how to handle the laws; et cetera.
These executive branch documents refer to legislative, executive and judicial branch documents.

e The judicial branch produces documents. Police cite citizens and enterprises for breach of
law. Citizens and enterprise sue other citizens and/or enterprises. Attorneys on behalf of the
governments, or citizens or enterprises prepare statements. Court proceedings are recorded.
Justices pass verdicts.

The judicial branch documents refer to legislative, executive and judicial branch documents.

9.18 Documents in Urban Planning

A separate research note [71, Urban Planning Processes] analyses & describes a domain of urban
planning. There are the geographical documents:

e geodetic,

e geotechnic,

e meteorological,

e and other types of geographical documents.

In order to perform an informed urban planning further documents are needed:

e auxiliary documents which
e requirements documents which

208 9 Document Systems [Summer 2017]

Auxiliary documents presents such information that “fill in” details concerning current ownership
of the land area, current laws affecting this ownership, the use of the land, et cetera. Requirements
documents express expectations about the (base) urban plans that should result from the base
urban planning. As a first result of base urban planning we see the emergence of the following
kinds of documents:

e base urban plans
¢ and ancillary notes.

The base urban plans deal with

e cadestral,
e cartographic and
e zoning

issues. The ancillary notes deal with such things as insufficiencies in the base plans, things that
ought be improved in a next iteration base urban planning, etc. The base plans and ancillary notes,
besides possible re-iteration of base urban planning, lead on to “derived urban planning” for

light, medium and heavy industry zones,
mixed shopping and residential zones,
apartment building zones,

villa zones,

recreational zones,

et cetera.

After these “first generation” derived urban plans are well underway, a “second generation”
derived urban planning can start:

transport infrastructure,

water and waste resource management,
electricity, natural gas, etc., infrastructure,
et cetera.

And so forth. Literally “zillions upon zillions” of strongly and crucially interrelated documents
accrue.

Urban planning evolves and revolves around documents.

Documents are the only “tangible” results or urban planning.5’

67 Once urban plans have been agreed upon by all relevant authorities and individuals, then urban development
(“build”) and, finally, “operation” of the developed, new urban “landscape”. For development, the urban plans
form one of the “tangible” inputs. Others are of financial and human and other resource nature.

Chapter 10
Urban Planning [Fall 2017]

Contents

10.1 Structures and Parts ..ottt e 212
10.1.1 The Urban Space, Clock, Analysis & Planning Complex 212
10.1.2 The Analyser Structure and Named Analysers 212
10.1.3 The Planner Structure o 213
10.1.4 Atomic Parts 213
10.1.5 Preview of Structuresand Partsl 214
10.1.6 Planner Nameso i 214
10.1.7 Individual and Sets of AtomicPartsl 215
10.2 Unique ldentifierscooiiiiiiiiiiiiiiiiiiiiiiiiiiiiieettrinnneeeonnsnnssnes 215
10.2.1 Urban Space Unique Identifier 216
10.2.2 Analyser Unique Identifiers 216
10.2.3 Master Planner Server Unique Identifier................................. 216
10.2.4 Master Planner Unique Identifier 216
10.2.5 Derived Planner Server Unique Identifier................................ 217
10.2.6 Derived Planner Unique Identifier, 217
10.2.7 Derived Plan Index Generator Identifier 217
10.2.8 Plan Repository 217
10.2.9 Uniqueness of Identifiers L 218
10.2.10 Indices and Index Sets..............c.. i 218
10.2.11 Retrieval of Parts from their Identifiers 219
10.2.12 A Bijection: Derived Planner Names and Derived Planner Identifiers. 219
10.3 MereOlogies. ..o vvuiitiitti ittt ittt ittt i i i 220
10.3.1 CloCK Mereologyouiiti it e s 220
10.3.2 Urban Space Mereology 221
10.3.3 Analyser Mereologyttt 221
10.3.4 Analysis Depository Mereology i 221
10.3.5 Master Planner Server Mereology ..ot 222
10.3.6 Master Planner Mereology i 222
10.3.7 Derived Planner Server Mereologyc..oiiiiiiiiiniiniann. 222
10.3.8 Derived Planner Mereology, 223
10.3.9 Derived Planner Index Generator Mereologyccoinnn. 223
10.3.10 Plan Repository Mereology 223
104 ARHDUTES ..ottt e i e e 224
10.4.1 Clock Attribute 224
10.4.1.1 Time and Time Intervals and their Arithmetic 224
10.4.1.2 The Attribute 224
10.4.2 Urban Space Attributes 225
104.21 TheUrbanSpace........... ... i, 225
10.4.2.2 The Urban Space Attributesol 225
10.4.2.2.1 Main Part and Attributes 226

10.4.2.2.2 Urban Space Attributes — Narratives and
Formalisation............. 226
10.4.2.2.3 General Form of Attribute Models 226

209

210 10 Urban Planning [Fall 2017]

10.4.2.24 Geodetic Attribute[s]................. ..ol 227
10.4.2.2.5 Cadastral Attribute[s] 227
10.4.2.2.6 Geotechnical Attribute[s] 227
10.4.2.2.7 Meteorological Attribute[s]......................... 228
10.4.2.2.8 Socio-Economic Attribute[s] 228

10.4.2.2.9 Law Attribute[s]: State, Province, Region, City
and District Ordinances 229
10.4.2.2.10 Industry and Business Economics 229
10.4.2.2.11 Etcetera 229
10.4.2.2.12 The Urban Space Attributes — A Summary.......... 229
10.4.2.2.13 Discussion 229
10.4.3 SCHPES ... i 230
10.4.4 Urban Analysis Attributes 230
10.4.5 Analysis Depository Attributes 230
10.4.6 Master Planner Server Attributes 231
10.4.7 Master Planner Attributes. 231
10.4.8 Derived Planner Server Attributes 232
10.4.9 Derived Planner Attributes 232
10.4.10 Derived Planner Index Generator Attributes 232
10.4.11 Plan Repository Attributes.............. 233
10.4.12 A System Property of Derived Planner Identifiers 233
10.5 The Structure COMPILERS ...uvuttnueereereennennenneneensennsnnsnnsnnsensansanes 234
10.5.1 A UNIVERSE OF DISCOURSE COMPILER ...ttt et ttie et iie e et iiieee e 234
10.5.2 The ANALYSER STRUCTURE COMPILER ...t vvun ittt tteee et it e e e iiieee e 234
10.5.3 The PLANNER STRUCTURE COMPILER . . . ottt et tee e et tiee e e eeieee e 235
10.5.3.1 The MASTER PLANNER STRUCTURE COMPILERovvrrrunnnnnnnn. 235
10.5.3.2 The DerIVED PLANNER STRUCTURE COMPILER ... vvvveevvinnnennnn. 235
10.5.3.3 The Derivep PLANNER PAIR STRUCTURE COMPILERonvnennnn. 235
10.6 Channel Analysis and Channel Declarations..............cociiiiiiiiiiiiiinne.. 236
10.6.1 TheclkchChannel i, 236
10.6.2 Thetus.achChannel............ i, 237
10.6.3 Thetus.mpschChannel........... i i, 237
10.6.4 TheaadchChannel i, 237
10.6.5 Thead.schChannel i, 238
10.6.6 Themps.mp.chChannel........... i i, 238
10.6.7 ThepprchChannel.......... i 238
10.6.8 The p.dpxgchChannel........... i 239
10.6.9 TheprscchChannel....... 239
10.6.10 Thedps_.dp.chChannel....... 240
10.7 The AtOMIC Part TRANSLATORS « vt vttt ternneeeeeenneeeesnnseeeesnnnseeessnennans 240
10.7.1 The CLOCK TRANSLATOR . . .\ttt vttt ettt et e e e e i i eeaas 240
10.7.1.1 The Transtate CLK Function 240
10.7.1.2 Theclock Behaviour i, 240
10.7.2 The URBAN SPACE TRANSLATOR . ..t v ettt et e tee e et iie e e e iieeee s 241
10.7.2.1 The Transtate . TUS Function 241
10.7.2.2 Theurb_spa Behaviour................ 241
10.7.3 The ANALYSERgum,, i:[1:71] TRANSLATORooiiiiiiiiiiii ... 243
10.7.3.1 The TRANSLATE_AH,W,/ Function, 243
10.7.3.2 The analyser,,,-/ Behaviour ... 243
10.7.4 The ANALYSIS DEPOSITORY TRANSLATOR\t vtttttitiiinnnnnns 244
10.7.4.1 The TransLaTe_AD Function 244
10.7.4.2 The ana_.dep Behaviour 245
10.7.5 The DerivED PLANNER INDEX GENERATOR TRANSLATOR . .\ v vvvvrvnnnnnnnnnnn 245
10.7.5.1 The Transtate_ DPXG(dpxg) Function..................., 245
10.7.5.2 Thedpxg Behaviour............ i 246
10.7.6 The PLAN REPOSITORY TRANSLATOR ...ttt vtvuttttttnii i 246
10.7.6.1 The TransLaTE_lPR Function 246
10.7.6.2 The plan_rep Behaviour 247
10.7.7 The MASTER SERVER TRANSLATOR .. .ottt ittt tee e it e eeieee e 247
10.7.7.1 The TranstatTEE MPS Function............, 247
10.7.7.2 The master_server Behaviour 248
10.7.8 The MASTER PLANNER TRANSLATOR tvuuntttttieeeeiie et eiiieee e 248

10.7.8.1 The Transtate_ MP Function 248

10 Urban Planning [Fall 2017] 211

10.7.8.2 The Master urban_planning Function 249

10.7.8.3 The master_planner Behaviour 250

10.7.8.4 The initiate derived servers and derived planners Behaviour . .. 250

10.7.9 The DERIVED SERVERy;, i2[1:p] TRANSLATOR.oooiiiii 251

10.7.9.1 The TransLate DPS,,, Functionoo .. 251

10.7.9.2 The derived_server Behaviour 252

10.7.10 The DERIVED PLANNERy,, 1:[1:p] TRANSLATORo 253

10.7.10.1 The TRANSLATE_DPdpm,,’. Function 253

10.7.10.2 The derived_urban_planning Function 253

10.7.10.3 The derived_planner,,; Behaviour............................. 254

10.8 Initialisation of The Urban Space Analysis & Planning System 255

10.8.1 Summary of Partsand Part Names............. 255

10.8.2 Summary of of Unique Identifiers 255

10.8.3 Summaryof Channels 256

10.8.4 Thelnitial System 256

10.8.5 The Derived Planner System 257

10.9 FUurther WOorkK. ..ottt ittt ittt iiiiiieeinetaneennees 257

10.9.1 Reasoning About Deadlock, Starvation, Live-lock and Liveness 257

10.9.2 DocumentHandling 257

10.9.2.1 Urban Planning Documents 257

10.9.2.2 A Document HandlingSystem................................. 258

10.9.3 Validation and Verification (V&V)........ i 258

10.9.4 Urban Planning Project Management 258

10.9.4.1 Urban Planning Projects 258

10.9.4.2 Strategic, Tactical and Operational Management............... 259

10.9.4.2.1 Project Resourcesccooiiiiiiiiiii... 259

10.9.4.2.2 Strategic Management 259

10.9.4.2.3 Tactical Management 259

10.9.4.24 Operational Management 259

10.9.4.3 Urban Planning Management.................................. 260
ENDURANTS

By an entity we shall understand a phenomenon, i.e., something that can be observed, i.e., be

seen or touched by humans, or that can be conceive d as an abstraction of an entity. We further

demand that an entity can be objectively described

By an endurant we shall understand an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we

would still be able to observe the entire endurant.

By a discrete endurant we shall understand an endurant which is separate, individual or

distinct in form or concept.

By a part we shall understand a discrete endurant which the domain engineer chooses to endow
with internal qualities®® such as unique identification, mereology, and one or more attributes. We
shall define these three categories in Sects. 10.2, 10.3, respectively Sect. 10.4. We refer in general to

[48].
In this, a major section of this report, we shall cover

Sect.10.1: Parts,

Sect.10.2: Unique Identifiers,
Sect.10.3: Mereology, and
Sect.10.4: Attributes.

68
or a component — such as these are defined in [48].

— where by external qualities of an endurant we mean whether it is discrete of continuous, whether it is a parts,

212 10 Urban Planning [Fall 2017]

10.1 Structures and Parts

From an epistemological® point of view a study of the parts of a universe of discourse is often

the way to understand “who the players” of that domain are. From the point of view of [48]
knowledge about parts lead to knowledge about behaviours. This is the reason, then, for our
interest in parts.

10.1.1 The Urban Space, Clock, Analysis & Planning Complex

The domain-of-interest, i.e., the universe of discourse for this report is that of the urban space
analysis & planning complex — where the ampersand, ‘&’, shall designate that we consider this
complex as ‘one”!

926. The universe of discourse, UoD, is here seen as a structure of four elements:

a. a clock, CLK,

b. the urban space, TUS,

c. an analyser aggregate, AA,
d. the planner aggregate, PA,

type
926 UoD, CLK, TUS, AAG, PA

value

926a o0bs_CLK: UoD — CLK
926b obs_TUS: UoD — TUS
926¢c obs_AAG: UoD — AAG
926d obs_PA: UoD — PA

The clock and the urban space are here considered atomic, the analyser aggregate, AA, and the the
planner aggregate, PA, are here seen as structures.

10.1.2 The Analyser Structure and Named Analysers

927. The analyser structure consists of

a. a structure, AC, which consists of two elements:
i. a structure of an indexed set, hence named analysers,
ii. Aanm1 s Aanmzy Py Aanmnr

and
928. an atomic analysis depository, AD.

There is therefore defined a set, ANmS, of

929. analyser names: {anmy,anmy, ..., anmy,}, where n > 0.

type
927 AA, AC, A, AD
927(a)| A= Aanm1 I Aanmz [..o Aanmn

% Epistemology is the branch of philosophy concerned with the theory of knowledge.

10.1 Structures and Parts 213

929 ANms = {|lanm,,anmy, ..., anm,|}
value

927a obs_AC: AA —» AC

927(a)ii 0bs_ACuum,: AC — Agum;, i:[1..n]
928 obs_AD: AA —» AD

Analysers and the analysis depository are here seen as atomic parts.

10.1.3 The Planner Structure

930. The composite planner structure part, consists of

a. a master planner structure, MPA, which consists of
i. an atomic master planner server, MPS, and
ii. an atomic master planner, MP, and
b. a derived planner structure, DPA, which consists of
i. a structure in the form of an indexed set of (hence named) derived planner structures,
DPCnm]., j : [1..p], which each consists of
1. a atomic derived planner servers, DPSnm]., j:[1..p],and
2. a atomic derived planners, DP,,, i j:[l.pl;
c¢. an atomic plan repository, PR, and
d. an atomic derived planner index generator, DPXG.

type
930 PA, MPA, MPS, MP, DPA, DPCnmj, DPSnm]., Danj, i;f1.p]

value
930a obs_MPA: PA — MPA
930(a)i obs_MPS: MPA — MPS
930(a)ii obs_MP: MPA — MP
930b obs_DPA: PA — DPA
930(b)i obs_DPCnm].: DPA — DPCnmj, iX[1..p]
930(b)i1 obs_DPSnm].: DPCnm]. — DPSW,]., ix[1..p]
930(b)i2 obs_Dan].: DPCnm]. — DP,W,]., ix[1..p]
930c obs_PR: PA — PR
930d obs_DPXG: — DPXG

We have chosen to model as structures what could have been modeled as composite parts. If we
were to domain analyse & describe management & organisation facets of the urban space analysis

& planning domain then we might have chosen to model some of these structures instead as
composite parts.

10.1.4 Atomic Parts

The following are seen as atomic parts:

214 10 Urban Planning [Fall 2017]

clock, e cach server in the indexed set of derived
urban space, planner Serveryns,

analysis deposit,

each analyser in the indexed set of
analyseryuy,s,

master planner server,

e master planner, e plan repository and

e each planner in the indexed set of derived
p]annernm].s,

e derived planner index generator.

We shall return to the these atomic part sorts when we explore their properties: unique identifiers,
mereologies and attributes.

10.1.5 Preview of Structures and Parts

Let us take a preview of the parts, see Fig. 10.1.

1 AC ~ ey :
TUS CLK : Pl Anm_1| [A_nm_2 A nm_n :
: I
1
! 1
! 1
| A |
N I I ;
—_— L e i
AG
PA
TSI nnoIIIoIIIoIIIoIInoIInnInnnInng
1 | | ‘ | | | | | o
: | MPS | | DPst | |DPS_nm2 | (DPS_nm_g 3:
! ‘ ! - I ‘ s
©oowec | | eca . DPCm2 | DPCamp
| |]
I I - | ! I
‘ I | | |
o] 1 L : ‘ i
| | | | !
i | |opam1| | |DPm2| | oP_m_p| !
| | | I | | |
| i
\ : DPYG | | : : : : g
— " o ‘ DPA i "
1 L T e ,f,f,f,f,f,f,\l

Fig. 10.1 The Urban Analysis and Planning System: Structures and Atomic Parts

10.1.6 Planner Names

931. There is therefore defined identical sets of derived planner aggregate names, derived planner
server names, and derived planner names: {dnmy,dnmy,...,dnmy}, where g > 0.

type
931 DNms = {|dnmy,dnmy, ..., dnmy|}

10.2 Unique Identifiers 215

10.1.7 Individual and Sets of Atomic Parts

In this closing section of Sect.10.1.7 we shall identify individual and sets of atomic parts.

932.

933.
934.
935.
936.
937.
938.
939.
940.
941.
942.
943.

We postulate an arbitrary universe of discourse, uod:UoD and let that be a constant value from
which we the calculate a number of individual and sets of atomic parts.
There is the clock, clk:CLK,

the urban space, tus:TUS,

the set of analysers, agum;:Aanm;, i:[1..n],

the analysis depository, ad,

the master planner server, mps:MPS,

the master planner, mp:MP,

the set of derived plannner servers, {dps,m;.DPS;,, | i:[1..p]},

the set of derived planners, {dpum,:DP ;| i:[1..p]},

the derived plan index generator, dpxg,

the plan repository, pr, and

the set of pairs of derived server and derived planners, sps.

value

932 wuod : UoD

933 clk : CLK = obs_CLK(uod)

934 tus: TUS = obs_TUS(uod)

935 ans : Agun-set, i[1.n] =

935 { obs_Auun,(aa) | aa€(obs_AA(uod)), i:[1..n]}
936 ad : AD = obs_AD(obs_AA(uod))

937 mps : MPS = obs_MPS(obs_MPA(uod))

938 mp : MP = obs_MP(obs_MPA(uod))

939 dpss : DPS,;-set, il[1..p] =

939 { obs_DPS,,,,, (dpCyum;) |

939 dpCiim; :DPCyy;*dpCyrim; €008 _DPCS,;;1,;, (0bs _DPA(uod)), i:[1..p] }
940 dps : DPyy,-set, i:[1..p] =

940 { 0bs_DP;,. (dpCpum,) |

940 dpCyum; :DPCyyy;*dpCyyym; €008_DPCS,;,,,(0bs _DPA(uod)), i:[1..p] }

941 dpxg : DPXG = obs_DPXG(uod)

942 pr: PR = obs_PR(uod)

943 spsps : (DPS;,,XDPy;,)-set, i:[1..p] =

943 { (0bs_DPS,;;,;(dpCpm;),008_DPyyp, (APCris;)) |

943 dpCyum; :DPCyyy;*dpCyim; € 0bs_DPCS,,;,, (0bs_DPA(uod)), iz[1..p] }

10.2 Unique ldentifiers

We introduce a notion of unique identification of parts. We assume (i) that all parts, p, of any
domain P, have unique identifiers, (ii) that unique identifiers (of parts p:P) are abstract values (of
the unique identifier, 7, sort II_UI of parts p:P), (iii) such that distinct part sorts, P; and P;, have
distinctly named unique identifier sorts, say I1_.Ul; and I1_Ul}, (iv) that all 7:I1_Ul; and 7t;:I11_Ul;
are distinct, and (v) that the observer function uid_P applied to p yields the unique identifier, say
m:[1_UI, of p.

The analysis & description of unique identification is a prerequisite for talking about mere-

ologies of universes of discourse, and the analysis & description of mereologies are a means for
understanding how parts relate to one another.

216 10 Urban Planning [Fall 2017]

Since we model as structures what elsewhere might have been modeled as composite parts we
shall only deal with unique identifiers of atomic parts.

10.2.1 Urban Space Unique ldentifier

944. The urban space has a unique identifier.

type
944 TUS_UI
value

944 uid_TSU: TSU — TUS_UI

10.2.2 Analyser Unique Identifiers

945. Each analyser has a unique identifier.
946. The analysis depository has a unique identifier.

type

945 AUl = A ULy, | AUl | - | AU,
946 AD_UI

value

945 uid_A: Ay, — A ULy, i [1.1]

946 uid_AD: AD — AD_UI

axiom
945 VY aup, Aum; *
945 let a_uiym; = Uid_A(aum,) in a_Uiyy,, ~ nm; end

The mathematical symbol = (in this report) denotes isomorphy.

10.2.3 Master Planner Server Unique Identifier

947. The unique identifier of the master planner server.

type
947 MPS_UI
value

947 uid_MPS: MPS — MPS_UI

10.2.4 Master Planner Unique Identifier

948. The unique identifier of the master planner.

type
948 MP_UI

10.2 Unique Identifiers 217

value
948 uid_MP: MP — MP_UI

10.2.5 Derived Planner Server Unique Identifier

949. The unique identifiers of derived planner servers.

type

949 DPS_Ul = DPS_Uly, | DPS_Ulym, | ... | DPS_UInmP
value

949 uid_DPS: DPS,,;, = DPS_Ul,yy,, i : [1..p]

axiom

949 V dpsuu, :DPS,, *
949 let dps_uiym,, = uid_DPS(dps;,;;) in dps_uiy,; ~ nm; end

10.2.6 Derived Planner Unique Identifier

950. The unique identifiers of derived planners.

type

950 DP_Ul = DP_Ulyy, | DP_Ulyy, | ... | DP_UInW,p
value

950 uid_DP: DP,;,;,, — DP_Uly,, i:[1..p]

axiom

950 Y dpyum; DP s, *
950 let dP_Uinm, = Uid_DP(dp,u,) in dp_Uiyy, =~ nm; end

10.2.7 Derived Plan Index Generator Identifier

951. The unique identifier of derived plan index generator:

type
951 DPXG_UI
value

951 uid_DPXG: DPXG — DPXG_UI

10.2.8 Plan Repository

952. The unique identifier of plan repository:

type
952 PR_UI

218 10 Urban Planning [Fall 2017]

value
952 uid_PR: PR — PR_UI

10.2.9 Uniqueness of Identifiers

953. The identifiers of all analysers are distinct.

954. The identifiers of all derived planner servers are distinct.
955. The identifiers of all derived planners are distinct.

956. The identifiers of all other atomic parts are distinct.

957. And the identifiers of all atomic parts are distinct.

953 cardans = carday,;s

954 card dpss = card dps,;;s

955 carddps = card dp,,;s

956 card{clky;, tus,;,ad,;, mps,;, mpy;, dpxgui,plas,} = 7

957 Nl(ans,dpss,dps, {clk,;, tus,i,ady;, mps,:, mpyi, dpxgui, plas,})={}

10.2.10 Indices and Index Sets

It will turn out to be convenient, in the following, to introduce a number of index sets.

958. There is the clock identifier, clk,;:CLK_UI.

959. There is the urban space identifier, tus,;: TUS_UI.

960. There is the set, a,;5:A_Ul-set, of the identifiers of all analysers.

961. The analysis depository identifier, ad,;.

962. There is the master planner server identifier, mps,;:MPS_UI.

963. There is the master planner identifier, mp,,;:MP_UL.

964. There is the set, dps,;s:DPS_Ul-set, of the identifiers of all derived planner servers.
965. There is the set, dp,;s:DP_Ul-set, of the identifiers of all derived planners.

966. There is the derived plan index generator identifier, dpxg,;:DPXG_UL.

967. And there is the plan repository identifier, pr,,;:PR_UL.

value

958 clk,; : CLK_UI = uid_CLK(uod)

959 tus,; : TUS_UI = uid_TUS(uod)

960 a,;s: A_Ul-set ={uid_A(a)la:A-a € ans}

961 ad,; : AD_UI = uid_AD(ad)

962 mps,; : MPS_UI = uid_MPS(mps)

963 mp,;: MP_Ul = uid_MP(mp)

964 dps,;s : DPS_Ul-set = {uid_DPS(dps)|dps:DPS-dps € dpss}
965 dp,;s: DP_Ul-set = {uid_DP(dp)|dp:DP-dp € dps}
966 dpxg,i - DPXG_UI = uid_DPXG(dpxg)

967 pr,i: PR.UI =uid_PR(pr)

968. There is also the set of identifiers for all servers: ps,;s:(MPS_UI|DPS_UI)-set,
969. there is then the set of identifiers for all planners: ps,;s:(MP_UI|DP_Ul)-set,
970. there is finally the set of pairs of paired derived planner server and derived planner identifiers.

10.2 Unique Identifiers 219

971. there is a map from the unique derived server identifiers to their “paired” unique derived
planner identifiers, and
972. there is finally the reverse map from planner to server identifiers.

value

968 s,;s : (MPS_UIIDPS_Ul)-set = {mps,;} U dps,;s

969 pyis : (MP_UIIDP_Ul)-set = {mp,;} U dp,;s

970 sips : (DPS_UIXDP_Ul)-set = {(uid_DPS(dps),uid_DP(dp))|(dps,dp):(DPSxDP)-(dps,dp)esps}
971 si_pi_m : DPS_Ul »DP_UI = [uid_DPS(dps)—uid_DP(dp)|(dps,dp):(DPSxDP)-(dps,dp)esps]
972 pisiom : DP_Ul#»DPS_UI = [uid_DP(dp)~—uid_DPS(dps)|(dps,dp):(DPSxDP)-(dps,dp)esps]

10.2.11 Retrieval of Parts from their Identifiers

973. Given the global set dpss, cf. 939 on page 215, i.e., the set of all derived servers, and given a
unique planner server identifier, we can calculate the derived server with that identifier.

974. Given the global setdps, cf. 940 on page 215, the set of all derived planners, and given a unique
derived planner identifier, we can calculate the derived planner with that identifier.

value

973 c.s:dpss » DPS_Ul — DPS

973 c_s(dpss)(dps_ui) = let dps:DPS-dps edpssAuid_DPS(dps)=dps_ui in dps end
974 c_p:dps —» DP_Ul — DP

974 c_p(dps)(dp_ui) = let dp:DP-dp edpsAuid_DPS(dp)=dp_ui in dp end

10.2.12 A Bijection: Derived Planner Names and Derived Planner Identifiers

We can postulate a unique relation between the names, dn:DNm-set, i.e., the names dneDNms,
and the unique identifiers of the named planners:

975. We can claim that there is a function, extr_DNm, from the unique identifiers of derived planner
servers to the names of these unique identifiers.

976. Similarly can claim that there is a function, extr_DNm, from the unique identifiers of derived
planners to the names of these unique identifiers.

value

975 extr_.Nm: DPS_Ul - DNm

975 extr.Nm(dps_ui) = ...

976 extr Nm: DP_Ul - DNm

976 extr Nm(dp_ui) = ...

axiom

975 V dps.uil,dps_ui2:DPS_ui - dps_ui1#dps_ui2 = extr_Nm(dps_uil) # extr_-Nm(dps_uit)
976 V dp_uil,dp_ui2:DP_ui « dp_ui1#dp_ui2 = extr.Nm(dp_ui1) # extr_.Nm(dp_ui1)

977. Let dps_ui_.dnm:DPS_UI_DNm, dp_ui_dnm:DP_UI_LDNm stand for maps from derived planner
server, respectively derived planner unique identifiers to derived planner names.

978. Let nm_dp_ui:Nm_DP_Ul, nm_dp_ui:Nm_DP_Ul stand for the reverse maps.

979. These maps are bijections.

220 10 Urban Planning [Fall 2017]

type

977 DPS_UI.DNm: DPS_UI s DP_Nm

977 DP_UI.LDNm: DP_Ul s DP_Nm

978 DNm_DPS_UI: DP_Nm - DP_UI

978 DNm_DP_UI: DP_Nm - DP_UI

axiom

979 V dps_ui_dnm:DPS_UI_LDNm « dps_ui_.dnm~!-dps_ui_dnnm = Ax.x
979 V dp_ui_.dnm:DP_UI_DNm - dp_ui_dnm~!.dp_ui_dnnm = Ax.x

979 V dnm_dps_ui:DNm_DPS_UI - dnm_dps_ui~!-dnm_dps_ui = Ax.x
979 V dnm_dp_ui:DNm_DP_UI - dp_ui_dnm~-dnm_dps_ui = Ax.x

that is:

979 V dps_ui_dnm:DPS_UI_DNm, dp_ui_dnm:DP_UI_DNm, dps_ui:DPS_UI -

979 dps_ui € dom dps_ui_-dnm = dp_ui_-dnm(dps_ui-dnm(dps_ui)) = dps_ui
et cetera!

980. The function mk_DNm_DUI takes the set of all derived planner servers, respectively derived
planners and produces bijective maps, dnm_dps_ui, respectively dnm_dp_ui.

981. Let dnm_dps_ui:DNm_DPS_Ul and

982. dnm_dp_ui:DNm_DP_UI

stand for such [global] maps.

value

980 mk_Nm_DPS_UI: DPS,,; -set - DNm_DPS_UI

980 mk_Nm_DPS_Ul(dpss) = [uid_DPS(dps)—extr_.Nm(uid_DPS(dps))|dps:DPS-dps € dpss]
980 mk_Nm_DP_UI: DP,;;;,-set — DNm_DP_UI

980 mk_Nm_DP_Ul(dps) = [uid_DP(dp)—extr_-Nm(uid_DP(dp))|dp:DP-dps € dps]

981 nm_dps_ui:Nm_DPS_UI = mk_Nm_DPS_Ul(dps)
982 nm_dp_ui:Nm_DP_UI = mk_-Nm_DP_Ul(dps)

10.3 Mereologies

Mereology (from the Greek uepoc ‘part’) is the theory of part-hood relations: of the relations of
part to whole and the relations of part to part within a whole”®.

Part mereologies inform of how parts relate to other parts. As we shall see in the section on
perdurants, mereologies are the basis for analysing & describing communicating between part
behaviours.

Again: since we model as structures what is elsewhere modeled as composite parts we shall
only consider mereologies of atomic parts.

10.3.1 Clock Mereology

983. The clock is related to all those parts that create information, i.e., documents of interest to other
parts. Time is then used to time-stamp those documents. These other parts are: the urban space,
the analysers, the planner servers and the planners.

70 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [75].

10.3 Mereologies 221

type

983 CLK_Mer = TSU_UIXA_Ul-setxMPS_UIxMP_UIxDPS_Ul-setxDP_Ul-set
value

983 mereo_CLK: CLK — Clk_Mer

axiom

983 mereo_CLK(uod) = (tusy,;,a,is, mps,;, mpy;, dps,is, dp,is)

10.3.2 Urban Space Mereology

The urban space stands in relation to those parts which consume urban space information: the
clock (in order to time stamp urban space information), the analysers and the master planner
server.

984. The mereology of the urban space is a triple of the clock identifier, the identifier of the master
planner server and the set of all analyser identifiers. all of which are provided with urban space
information.

985. The constraint here is expressed in the ‘the”: for the universe of discourse it must be the master
planner aggregate unique identifier and the set of exactly all the analyser unique identifiers for
that universe.

type

984 TUS_Mer = CLK_UI x A_Ul-set x MPS_UI
value

984 mereo_TUS: TUS — TUS_Mer

axiom

985 mereo_TUS(tus) = (clk,;,a,is, mpsyi)

10.3.3 Analyser Mereology

986. The mereology of a[ny] analyser is that of a triple: the clock identifier, the urban space identifier,
and the analysis depository identifier.

type

986 A_Mer = CLK_UI x TUS_UI x AD_UI
value

986 mereo A: A — A_Mer

10.3.4 Analysis Depository Mereology

987. The mereology of the analysis depository is a triple: the clock identifier, the master planner
server identifier, and the set of derived planner server identifiers.

type

987 AD_Mer = CLK_UIl x MPS_UI x DPS_UlI-set
value

987 mereo_AD: AD — AD_Mer

222 10 Urban Planning [Fall 2017]

10.3.5 Master Planner Server Mereology

988. The master planner server mereology is a quadruplet of the clock identifier (time is used to
time stamp input arguments, prepared by the server, to the planner), the urban space identifier,
the analysis depository and the master planner identifier.

989. And for all universes of discourse these must be exactly those of that universe.

type

988 MPS_Mer = CLK_UI x TUS_UI x AD_UIl x MP_UlI
value

988 mereo_MPS: MPS — MPS_Mer

axiom

989 mereo_MPS(mps) = (clk,;, tus,;, ad,;, mp,;)

10.3.6 Master Planner Mereology

990. The mereology of the master planner is a triple of: the clock identifier’!, master server identi-
fier’?, derived planner index generator identifier’®, and the plan repository identifier’*.

type

990 MP_Mer = CLK_UI x MPS_UI x DPXG_UI x PR_UI
value

990 mereo_MP: MP — MP_Mer

axiom

990 mereo MP(mp) = (clky;, mps,i,Apxgui,Prui)

10.3.7 Derived Planner Server Mereology

991. The derived planner server mereology is a quadruplet of:

the clock identifier’®, the set of all analyser
identifiers’®, the plan repository identifier,””
and the derived planner identifier’s.

type
991 DPS_Mer = CLK_UI x AD_UI x PLAS_UI x DP_UI
value

71 From the clock the planners obtain the time with which they stamp all information assembled by the plannner.
72 from which the master planner obtains essential input arguments

73 in collaboration with which the master planner obtains a possibly empty set of derived planning indices

74 with which it posits and from which it obtains summaries of all urban planning plans produced so far.

75 From the clock the servers obtain the time with which they stamp all information assembled by the servers.
76 From the analysers the servers obtain analyses.

77 In collaboration with the plan repository the planners deposit plans etc. and obtains summaries of all urban
planning plans produced so far

78 The server provides its associated planner with appropriate input arguments.

10.3 Mereologies 223

991 mereo_DPS: DPS — DPS_Mer

axiom

991 V (dps,dp):(DPSxDP) - (dps,dp)esps =

991 mereo_DPS(dps) = (clk,;,ad,;,plas,;,uid_DP(dp))

10.3.8 Derived Planner Mereology

992. The derived planner mereology is a quadruplet of:

the clock identifier, the derived plan server
identifier, the derived plan index generator
identifier, and the plan repository identifier.

type

992 DP_Mer = CLK_UIl x DPS_UIl x DPXG_UI x PR_UI
value

992 mereo_DP: DP — DP_Mer

axiom

992 V (dps,dp):(DPSxDP) - (dps,dp)esps =
992 mereo_DP(dp) = (clk,;,uid_DPS(dps),dpxgi,prui)

10.3.9 Derived Planner Index Generator Mereology

993. The mereology of the derived planner index generator is the set of all planner identifiers: master
and derived.

type

993 DPXG_Mer = (MP_UI|DP_Ul)-set
value

993 mereo_ DPXG: DPXG — DPXG_Mer
axiom

993 mereo_DPXG(dpxg) = psuis

10.3.10 Plan Repository Mereology

994. The plan repository mereology is the set of all planner identifiers: master and derived.

994 PR_Mer = (MP_UI|DP_UI)-set
value

994 mereo_PR: PR — PR_Mer
axiom

994 mereo_PR(pr) = ps,s

224 10 Urban Planning [Fall 2017]

10.4 Attributes

Parts are typically recognised because of their spatial form and are otherwise characterised by
their intangible, but measurable attributes. That is, whereas endurants, whether discrete (as are
parts and components) or continuous (as are materials), are physical, tangible, in the sense of
being spatial (or being abstractions, i.e., concepts, of spatial endurants), attributes are intangible:
cannot normally be touched, or seen, but can be objectively measured. Thus, in our quest for
describing domains where humans play an active role, we rule out subjective “attributes”: feelings,
sentiments, moods. Thus we shall abstain, in our domain science also from matters of aesthetics.
A formal concept, that is, a type, consists of all the entities which all have the same qualities. Thus
removing a quality from an entity makes no sense: the entity of that type either becomes an entity
of another type or ceases to exist (i.e., becomes a non-entity)

10.4.1 Clock Attribute

10.4.1.1 Time and Time Intervals and their Arithmetic

995.
996.
997.
998.
999.
1000.
1001.
1002.

Time is modeled as a continuous entity.

One can subtract two times and obtain a time interval.

There is an “infinitesimally” smallest time interval, 6t:T.

Time intervals are likewise modeled as continuous entities.

One can add or subtract a time interval to, resp. from a time and obtain a time.
One can compare two times, or two time intervals.

One can add and subtract time intervals.

One can multiply time intervals with real numbers.

type

995 T

996 TI

value

996 sub: TxT—TI

997 ot:TI

999 add,sub: TIXT—->T

1000 <,<,=,2,>: ((TXN|(TIXTI) — Bool
1001 add,sub: TI x Tl — TI

1002 mpy: Tl X Real — TI

10.4.1.2 The Attribute

1003. The only attribute of a clock is time. It is a programmable attribute.

type

1003 T

value

1003 attr.T:CLK—>T

axiom

1003 V clk:CLK -

1003 let (1,t') = (attr_CLK(clk);attr_CLK(clk)) in
1003 t<t’ end

10.4 Attributes 225

The *; in an expression (a;b) shall mean that first expression a is evaluated, then expression b.

10.4.2 Urban Space Attributes

10.4.2.1 The Urban Space

1004.
1005.
1006.

We shall assume a notion of the urban space, tus:TUS, from which we can observe the attribute:
an infinite, compact Euclidean set of points.
By a point we shall understand a further undefined atomic notion.

1007. By an area we shall understand a concept, related to the urban space, that allows us to speak

of “a point being in an area” and “an area being equal to or properly within another area”.

1008. To an[y] urban space we can associate an area; we may think of an area being an attribute of

the urban space.

type

1004 TUS

1005 PtS = Pt-infset

value

1004 attr_PtS: TUS — Pt-infset

type

1006 Pt

1007 Area

value

1008 attr_Area: TUS — Area

1007 is_Pt.in_Area: Pt x (TUS|Area) — Bool
1007 is_Area_within_Area: Area x (TUS|Area) — Bool

10.4.2.2 The Urban Space Attributes

By urban space attributes we shall here mean the facts by means of which we can characterize
that which is subject to urban planning: the land, what is in and on it: its geodetics, its cadastra’®,
its meteorology, its socio-economics, its rule of law, etc. As such we shall consider ‘the urban
space’ to be a part in the sense of [48]. And we shall consider the geodetic, cadastral, geotechnical,
meteorological, “the law” (i.e., state, province, city and district ordinances) and socio-economic
properties as attributes.

79 Cadastra: A Cadastra is normally a parcel based, and up-to-date land information system containing a record of
interests in land (e.g. rights, restrictions and responsibilities). It usually includes a geometric description of land
parcels linked to other records describing the nature of the interests, the ownership or control of those interests,
and often the value of the parcel and its improvements. See http://www.fig.net/

226

10 Urban Planning [Fall 2017]

10.4.2.2.1 Main Part and Attributes

One way of observing the urban space is presented: to the left, in the framed box, we narrate the

story; to the right, in the framed box, we formalise it.

10p9. The Urban Space (TUS) has the following

a.
b.
c.
d.
e

f.
g.

type
1009

PointSpace attributes,
Geodetic attributes,
Cadastre attributes,
Geotechnical attributes,

. Meteorological attributes,

Law attributes,
Socio-Economic attributes, etcetera.

TUS, PtS, GeoD, Cada, GeoT, Met, Law, SocEco, ...

value

1009a attr_Pts: TUS — PtS

1009b attr_GeoD: TUS — GeoD
1009c attr_Cada: TUS — Cada
1009d attr_GeoT: TUS — GeoT
1009¢e attr_Met: TUS — Met

1009f attr_Law: TUS — Law

1009g attr_SocEco: TUS — SocEco

The attr_A: P — A is the signature of a postulated attribute (observer) function. From parts of
type P it observes attributes of type A. attr_A are postulated functions. They express that we can

always observe attributes of type A of parts of type P.

10.4.2.2.2 Urban Space Attributes — Narratives and Formalisation

We describe attributes of the domain of urban spaces. As they are, in real life. Not as we may record
them or represent them (on paper or within the computer). We can “freely” model that reality as
we think it is. If we can talk about and describe it, then it is so! For meteorological attributes it
means that we describe precipitation, evaporation, humidity and atmospheric pressure as these
physical phenomena “really” are: continuous over time ! Similar for all other attributes. Etcetera.

10.4.2.2.3 General Form of Attribute Models

1010. We choose to model the General Form of Attributes, such as geodetical, cadastral, geotechnical,
meteorological, socio-economic, legal, etcetera, as [continuous] functions from time to maps
from points or areas to the specific properties of the attributes.

1011. The points or areas of the properties maps must be in, respectively within, the area of the urban
space whose attributes are being specified.

type

1010 GFA =T — ((Pt|Area) s Properties)

value

1011

wf_GFA: GFA x TUS — Bool

10.4 Attributes 227

1011 wf_GFA(gfa,tus) =
1011 let area = attr_Area(tus) in
1011 ViT-te Dgfa=

1011 Y pt:Pt - pt € dom gfa(t) = is_Pt.in_Area(pt,area)
1011 A 'Y ar:Area - ar € dom gfa(t) = is_within_Area(ar,area)
1011 end

D is a hypothesized function which applies to continuous functions and yield their domain !

10.4.2.2.4 Geodetic Attribute[s]

1012. Geodetic attributes map points to

a. land elevation and what kind of land it is; and (or) to
b. normal and current water depths and what kind of water it is.

1013. Geodetic attributes also includes road nets and what kind of roads;
1014. etcetera,

type

1012 GeoD =T — (Pt # ((Land|Water) x RoadNet X ...))

1012a Land = Elevation x (Farmland|Urban|Forest|Wilderness|Meadow|Swamp|...)

1012b Water = (NormDepth x CurrDepth) x (Spring|Creek|River|Lake|Dam|Sea|Ocean|...)
1013 RoadNet = ...

1014

10.4.2.2.5 Cadastral Attribute[s]

A cadastre is a public register showing details of ownership of the real property in a district,
including boundaries and tax assessments.

1015. Cadastral maps shows the boundaries and ownership of land parcels. Some cadastral maps
show additional details, such as survey district names, unique identifying numbers for parcels,
certificate of title numbers, positions of existing structures, section or lot numbers and their
respective areas, adjoining and adjacent street names, selected boundary dimensions and ref-
erences to prior maps.

1016. Etcetera.

type
1015 Cada =T — (Area #» (Owner x Value x ...))
1016 ...

10.4.2.2.6 Geotechnical Attribute[s]

1017. Geotechnical attributes map points to

a. top and lower layer soil etc. composition, by depth levels,
b. ground water occurrence, by depth levels,

c. gas, oil occurrence, by depth levels,

d. etcetera.

228 10 Urban Planning [Fall 2017]

type

1017 GeoT = (Pt #» Composition)

1017a Composition = VerticalScaleUnit x Composite*

1017b Composite = (Soil|GroundWater|Sand|Gravel|Rock]...|Oil|Gas|...)
1017¢ Soil,Sand,Gravel,Rock,...,Oil,Gas,... = [chemical analysis]
1017d ...

10.4.2.2.7 Meteorological Attribute[s]

1018. Meteorological information records, for points (of an area) precipitation, evaporation, humidity,
etc,;

a. precipitation: the amount of rain, snow, hail, etc.; that has fallen at a given place and at the
time-stamped moment®?, expressed, for example, in milimeters of water;

evaporation: the amount of water evaporated (to the air);

atmospheric pressure;

air humidity;

etcetera.

e o T

1018 Met =T — (Pt # (Precip x Evap x AtmPress x Humid X ...))
1018a Precip = MMs [milimeters]

1018b Evap = MMs [milimeters]

1018c AtmPress = MB [milibar]

1018d Humid = Percent

1018e ...

10.4.2.2.8 Socio-Economic Attribute[s]

1019. Socio-economic attributes include time-stamped area sub-attributes:

income distribution;

housing situation, by housing category: apt., etc.;
migration (into, resp. out of the area);

social welfare support, by citizen category;
health status, by citizen category;

etcetera.

-0 N o

type

1019 SocEco =T — (Area #» (IncxHouxMigxSoWexHealx...))

1019a Inc=...

10190 Hou=...

1019¢ Mig = {|"in",’out”|} # ({|’'male”,’female”|} # (Agegroup x Skills x HealthSumm X ...))
1019d SoWe = ...

1019e CommHeal = ...

1019f

80 _ that is within a given time-unit

10.4 Attributes 229
10.4.2.2.9 Law Attribute[s]: State, Province, Region, City and District Ordinances

1020. By the law we mean any state, province, region, city, district or other ‘area’ ordinance®!.

1021. ...

type

1020 Law

value

1020 attr_Law: TUS — Law

type
1020 Law = Area s Ordinances
1021

10.4.2.2.10 Industry and Business Economics

TO BE WRITTEN

10.4.2.2.11 Etcetera

TO BE WRITTEN

10.4.2.2.12 The Urban Space Attributes — A Summary

Summarising we can model the aggregate of urban space attributes as follows.

1022. Each of these attributes can be given a name.
1023. And the aggregate can be modelled as a map (i.e., a function) from names to appropriately
typed attribute values.

type

1022 TUS_Attr .Nm = {|"pts”,’ged”,’cad”,"get",’law”,’eco”,...|}

1023 TUSm = TUS_Attr Nm + TUS_Attr

axiom

1023 V tusm:TUSmM « ¥ nm:TUS_Attr Nm - nm € dom tusm =

1023 case (nm,mtusm(nm)) of

1023 (("pts”,v) — is_PtS(v), "ged”,v) — is_GeoD(v), ("cad”,v) — is_CaDa(v),
1023 ("get”,v) — is_GeoT(v), ("law”,v) — is_Law(v), ("eco”,v) — is_Eco(v), ...
10283 end

10.4.2.2.13 Discussion

TO BE WRITTEN

81 Ordinance: a law set forth by a governmental authority; specifically a municipal regulation: for ex.: A city
ordinance forbids construction work to start before 8 a.m.

230 10 Urban Planning [Fall 2017]

10.4.3 Scripts

The concept of scripts is relevant in the context of analysers and planners.

By a script we shall understand the structured, almost, if not outright, formally expressed,
wording of a procedure on how to proceed, one that may have legally binding power, that is,
which may be contested in a court of law.

Those who contract urban analyses and urban plannings may wish to establish that some
procedural steps are taken. Examples are: the vetting of urban space information, the formulation
of requirements to what the analysis must contain, the vetting of that and its “quality”, the order
of procedural steps, etc. We refer to [50, 57].

Alny] script, as implied above, is “like a program”, albeit to be “computed” by humans.

Scripts may typically be expressed in some notation that may include: graphical renditions that,
for example, illustrate that two or more independent groups of people, are expected to perform
a number of named and more-or-less loosely described actions, expressed in, for example, the
technical (i.e., domain) language of urban analysis, respectively urban planning.

The design of urban analysis and of urban planning scripts is an experimental research project
with fascinating prospects for further understanding what urban analysis and urban planning is.

10.4.4 Urban Analysis Attributes

1024. Each analyser is characterised by a script, and
1025. the set of master and/or derived planner server identifiers — meaning that their “attached”
planners might be interested in its analysis results.

type

1024 A_Script = A_Scriptyum, | A-Scriptaum, | ... | A_Scriptaum,
1025 A_Mer = (MPS_UI|IDPS_UI)-set

value

1024 attr_A_Script: A — A_Scripts

1025 attir_.A_Mer: A —» A_Mer

axiom

1025 V a:A-a € ans = attr_A_Mer(a) C ps,is

10.4.5 Analysis Depository Attributes

The purpose of the analysis depository is to accept, store and distribute collections of analyses;
it accepts these analysis from the analysers. it stores these analyses “locally”; and it distributes
aggregates of these analyses to plan servers.

1026. The analysis depository has just one attribute, AHist. It is modeled as a map from analyser
names to analysis histories.

1027. An analysis history is a time-ordered sequence, of time stamped analyses, most recent analyses
first.

type

1026 AHist = ANm 4 (s_T:T x s_Anal:Analgu,,)*
value

1026 attr_AHist: AD — AHist

10.4 Attributes 231

axiom

1027 V ah:AHist, anm:ANm - anm € dom ah =
1027 Y i:Nat « {i,i+1}Cinds ah(anm) =

1027 s_T((@h(nm))[i]) > s_T((@ah(nm))[i+1])

10.4.6 Master Planner Server Attributes

The planner servers, whether for master planners or derived planners, assemble arguments for
their associated (i.e., “paired’) planners. These arguments include information auxiliary to other
arguments, such as urban space information for the master planner, and analysis information
for all planners; in addition the server also provides requirements that are resulting planner
plans are expected to satisfy. For every iteration of the planner behaviour the pair of auxiliary
and requirements information is to be renewed and the renewed pairs must somehow “fit” the
previously issued pairs.

1028. The programmable attributes of the master planner server are those of aux:AUXiliaries and
req:REQuirements.

1029. We postulate a predicate function, fit_mAux_mReq, which takes a pair of pairs auxiliary and
requirements arguments, and yields a truth value.

type

1028 mAUX, mREQ

value

1028 attr-mAUX: MPS — mAUX

1028 attr mMREQ: MPS — mREQ

1029 fittmAUX_mReq: (MAUXxmREQ)x(mAUXxmREQ) — Bool
1029 fittmAUX_mReq(arg_prev,arg_new) = ...

10.4.7 Master Planner Attributes

The master planner has the following attributes:

1030. a master planner script which is a static attribute;

1031. an aggregate of script “counters”, a programmable attribute; the aggregate designates pointers
in the master script where resumption of master planning is to take place in a resumed planning;

1032. a set of names of the analysers whose analyses the master planner is, or may be interested in,
a static attribute; and

1033. aset of identifiers of the derived planners which the master planner may initiate static attribute.

type 1030 attr_MP_Script: MP — MP _Script
1030 MP_Script 1031 attr_Script_Pts: MP — MP_Script_Pts
1031 MP_Script_Pt 1032 attr_ ANms: MP — ANms

1031 MP_Script_Pts = MP_Script_pt-set 1033 attr_DPUls: MP — DPUIs

1032 ANms = ANm-set axiom

1033 DPUIs = DP_Ul-set 1032 attr_.ANms(mp) € ANms

value 1033 attr_DPNms(mp) € DNms

232 10 Urban Planning [Fall 2017]

10.4.8 Derived Planner Server Attributes

1034. The programmable attributes, of the derived planner servers are those of aux:AUXiliaries and
req:REQuirements, one each of an indexed set.

1035. We postulate anindexed predicate function, fit_mAux_-mReq, which takes a pair of pairs auxiliary
and requirements arguments, and yields a truth value.

type

1}6%8 dAUX = dAUX g, | dAUX g, | - | dAUanmp
1028 dREQ = dREQy;,, | dREQum, | --. | dREQdW,p
value

1034 attr dAUX g, MPSy,,, — dAUX g,

1034 attr dREQg,,;: MPSg,,,, — dREQgy,

1035 fit JAUX_dReq ;- dReQm,: (AAUX g, XAREQg,,,) X (AAUX 3, XdREQdnm;) — Bool
1035 fit. dAUX_dReq;(arg-prev,,arg-new,,,) = ...

10.4.9 Derived Planner Attributes

1036. a derived planner script which is a static attribute;

1037. an aggregate of script “counters”, a programmable attribute; the aggregate designates points in
the derived planner script where resumption of derived planning is to take place in a resumed
planning;

1038. a set of identifiers of the analysers whose analyses the master planner is, or may be interested
in, a static attribute; and

1039. a set of identifiers of the derived planners which any specific derived planner may initiate, a

static attribute.
type 1036 attr_MP_Script: MP — MP _Script
1036 DP_Script 1037 attr_Script_Pts: MP — Script_Pts
1037 DP_Script_pt 1038 attr_ANms: MP — ANms
1037 DP_Script_Pts = DP_Script_pt* 1039 attr DNms: MP — DNms
1038 ANms axiom
1039 DNms 1038 attr_AUIs(mp) € ANms
value 1039 attr DPUIs(mp) € DNms

10.4.10 Derived Planner Index Generator Attributes

The derived planner index generator has two attributes:

1040. the set of all derived planner identifiers (a static attribute), and
1041. a set of already used planner identifiers (a programmable attribute).

type

1040 AI_DPUIls = DP_Ul-set

1041 Used_DPUls = DP_Ul-set

value

1040 attr_All_LDPUls: DPXG —
All_DPUls

10.4 Attributes 233

1041 attr_Used_DPUls: DPXG —
Used_DPUIs

axiom

1040 attr_All_DPUls(dpxg) = dp,;s

1041 attr_.Used_DPUls(dpxg) C dp,;s

10.4.11 Plan Repository Attributes

The réle of the plan repository is to keep a record of all master and derived plans. There are two
plan repository attributes.

1042. A bijective map between derived planner identifiers and names, and
1043. a pair of a list of time-stamped master plans and a map from derived planner names to lists of
time-stamped plans, where the lists are sorted in time order, most recent time first.

type

1042 NmUIm = DNm - DP_UI

1043 PLANS = ((MP_UIIDP_UI) s (s_t:Txs_pla:PLA)*)

value

1042 attr.NmUIm: PR - NmUIm

axiom

1042 ¥ bm:NmUIm - bm~1(bm) = Ax.x

value

1042 attr_.PLANS: PR — PLANS

axiom

1043 let plans = attr_PLANS(pr) in

1043 dom plans C {mp,;}Udp,;s

1043 VY pui:(MP_UIIDP_Ul)-pui € {mp,;}Udp,;s = time_ordered(plans(pui))
1043 end

value

1043 time_ordered: (s_t:Txs_pla:PLA)* — Bool

1043 time_ordered(isl) = V i:Nat-{i,i+1}Cinds ts| = s_i(sl(i)) > s_t(tsl(i+1))

10.4.12 A System Property of Derived Planner Identifiers

Let there be given the set of derived planners dps.

1044. The function reachable identifiers is the one that calculates all derived planner identifiers
reachable from a given such identifier, dp_ui:DP_UI, in dps.

a. We calculate the derived planner, dp:DP, from dp_ui.

b. We postulate a set of unique identifiers, uis, initialised with those that can are in the
attr_DPUls(dp) attribute.

c. Then we recursively calculate the derived planner identifiers that can be reached from any
identifier, ui, in uis.

d. The recursion reaches a fix-point when there are no more identifiers “added” to uis in an
iteration of the recursion.

1045. A derived planner must not “circularly” refer to itself.

234 10 Urban Planning [Fall 2017]

value

1044 reachable_identifiers: DP-set x DP_Ul — DP_Ul-set

1044 (dps)(dp-ui) =

1044a let dp = c_p(dps)(dp-ui) in

1044b let uis = attr_DPUIs(dp) U

1044c {uilui:DP_Ul-ui € uis A ui € reachable_identifiers(dps)(ui)}
1044d in uis end end

1045 VY ui:DP_Ul - ui € dp,;s = ui ¢ names(dps)(ui)

The seeming “endless recursion” ends when an iteration of the dns construction and its next does
not produce new names for dns — a least fix-point has been reached.

10.5 The Structure ComPILERS

10.5.1 A Un1veRSE OF DiscoursE COMPILER

In this section, i.e., all of Sect. 10.5.1, we omit complete typing of behaviours.

1046. The universe of discourse, 1od, BEHAVIOUR_SIGNATURE; and TRANSLATES into the of its four elements:

a. the translation of the atomic clock, see Item 10.7.1 on page 240,

b. the translation of the atomic urban space, see Item 10.7.2 on page 241,
c. the compilation of the analyser structure, see Item 10.5.2,

d. the compilation of planner structure. see Item 10.5.3 on the facing page,

value

1046 BeHaviour_SigNATURE_UOD(10d) =

1046a TransLate_CLK(clk),

1046b Transrate_TUS(fus),

1046¢c BeHaviour_SieNATURE_AA(obs_AA(uod)),
1046d BeHaviour_SigNATURE_PA(0obs_PA(uod))

The ComriLer apply to, as here, structures, or composite parts. The TRansLaTOR apply to atomic
parts. In this section, i.e., Sect. 10.5.1, we will explain the obvious meaning of these functions: we
will not formalise their type, and we will make some obvious short-cuts.

10.5.2 The ANALYSER STRUCTURE COMPILER

1047. Compiling the analyser structure results in an RSL-Text which expresses the separate

a. translation of each of its n analysers, see Item 10.7.3 on page 243, and
b. the translation of the analysis depository, see Item 10.7.4 on page 244.

1047 BeHAviouR_SIGNATURE AA(aa) =
1047a { TRANSLATE_Agym, (00S_Agnm, (aa)) | i:[1.1] },
1047b TransLaTe_AD(obs_AD(aa))

10.5 The Structure CompILERS 235

10.5.3 The PLANNER STRUCTURE COMPILER

1048. The planner structure, pa:PA, compiles into four elements:

a. the compilation of the master planner structure, see Item 10.5.3.1,

b. the translation of the derived server index generator, see Item 10.7.5 on page 245,
c. the translation of the plan repository, see Item 10.7.6 on page 246, and

d. the compilation of the derived server structure, see Item 10.5.3.2.

1048 BeHAviouR_SiGNATURE_PA(pa) =

1048a Benaviour_SienaTure_MPA(obs_MPA(pa)),
1048b TransLate_DPXG(obs_.DPXG(pa)),
1048¢c TransLaTe_.PR(0bs_PR(pa)),

1048d BeHaviour_SianaTure_DPA(obs_DPA(pa))

10.5.3.1 The MasTER PLANNER STRUCTURE COMPILER
1049. Compiling the master planner structure results in an RSL-Text which expresses the separate
translations of the

a. the atomic master planner server, see Item 10.7.7 on page 247 and
b. the atomic master planner, see Item 10.7.8 on page 248.

1049 BeHAviour_SigNATURE MPA(mpa) =
1049a TransLate_MPS(obs_MPS(mpa)),
1049b TransLaTE-MP(0bs_MP(mpa))

10.5.3.2 The DeriveEp PLANNER STRUCTURE COMPILER

1050. The compilation of the derived planner structure results in some RSL-Text which expresses the
set of separate compilations of each of the derived planner pair structures, see Item 10.5.3.3.

1050 BeHaviour_SigNATURE_DPA(dpa) = { BEHAVIOUR_SIGNATURE(ObS_DPCnm].(pa)) [i:[1.p]}

10.5.3.3 The Derivep PLANNER PAIR STRUCTURE COMPILER

1051. The compilation of the derived planner pair structure results in some RSL-Text which expresses

a. the results of translating the derived planner server, see Item 10.7.9 on page 251 and
b. the results of translating the derived planner, see Item 10.7.10 on page 253.

1051 BEHAVIOUR_SIGNATURE_DPCnm]. (dpcnm].), i[1.p] =
1051a TRANSLATE_DPSnm].(ObS_DPSnmj(denmj)),
1051b TransLate_DPyyy, (0bS_DP i, (dPChim;))

236 10 Urban Planning [Fall 2017]

10.6 Channel Analysis and Channel Declarations

The transcendental interpretation of parts as behaviours implies existence of means of communi-
cation & synchronisation of between and of these behaviours. We refer to Fig. 10.2 for a summary
of the channels of the urban space analysis and urban planning system.

MORE TO COME

e ™ ; oo TS oSSt TTTTTTTTTT I
: Pt

tus:TUS < cIk:CLI> : o eh " |a_anm_1| [a,anm_2| e e aanmn| | :

- — = N dkoh | o

X {tus_a_chl[j]lj:a_ui_s} 4 4 - 1

| |

1 ‘ - .

: ad — - P {a,ad,ch[ﬂl;.a,un,s} |

clk_ch N :

—— R .

tus_mps_ch {ad_s_ch([i]liz{mps_ui} U a_ui_s}
/ - P clk_ch

:" _mps:MP 7 } — YK\“ 777777777777777777 - ‘ 777777 (1:
1 \ 1
:\ Yy~ _l/ '\ |dps_nm_1 : \ | dps_nm_2 :) lgdps nm_p :;'
| \ | Y = {pr_s_chli]li:s_ui_s} 1
:: mps_jnp_ch : orPR : s p_ch[dps_un]: : K,p,ch[dps,uiﬂ : ce o : s,p,ch[dp,ui,p]:i:
| | | ‘
e | [T
! T T : L TS :{p_pr_ch[i]li:p_ui_s}; do nm 13'
] | | dp_nm 1| |dp_nm_2 | | dpnmpy h
] N AN
! | | : | {P_dpxg_ch[l]ll:p_U|_§} : i
| DPXG | ;o | \ ‘::
I LT T T T T T T T ST T.T.T.T.T

Fig. 10.2 The Urban Space and Analysis Channels and Behaviours

10.6.1 The clk_ch Channel

The purpose of the clk_ch channel is, for the clock, to propagate Time to such entities who
inquire. We refer to Sects. 10.3.1 on page 220, 10.3.2 on page 221, 10.3.3 on page 221, 10.3.5 on
page 222,10.3.6 on page 222,10.3.7 on page 222 and 10.3.8 on page 223 for the mereologies that
help determine the indices for the clk_ch channel.

1052. There is declared a (single) channel clk_ch
1053. whose messages are of type CLK_MSG (for Time).

The clk_ch is single. There is no need for enquirers to provide their identification. The clock “freely”
dispenses of “its” time.

type
1052 CLK.MSG =T

10.6 Channel Analysis and Channel Declarations 237

channel
1053 clk_ch:CLK_.MSGch-clk-010

10.6.2 The tus_a_ch Channel

The purpose of the tus_a_ch channel is, for the the urban space, to propagate urban space attributes
to analysers. We refer to Sects. 10.3.2 and 10.3.3 for the mereologies that help determine the indices
for the tus_a_-ch channel.

1054. There is declared an array channel tus_a_ch whose messages are of
1055. type TUS_MSG (for a time stamped aggregate of urban space attributes, TUSm, cf. Item 1023
on page 229).

type

1055 TUS_MSG =T x TUSm

channel

1054 {tus_a_ch[a_ui]:TUS_MSG|a_ui:A_Ul-a_ui € a,;s} ch-tus-a-000

The tus_a_ch channel is to offer urban space information to all analysers. Hence it is an array
channel over indices ANms, cf. Item 929 on page 212.

10.6.3 The tus_mps_ch Channel

The purpose of the tus_.mps_ch channel is, for the the urban space, to propagate urban space
attributes to the master planner server. We refer to Sects. 10.3.2 and 10.3.5 for the mereologies that
help determine the indices for the tus_mps_ch channel.

1056. There is declared a channel tus_mps_ch whose messages are of
1055 type TUS_MSG (for a time stamped aggregate of urban space attributes, TUSm, cf. Item 1023
on page 229).

type
1055 TUS_MSG =T x TUSm
channel

1056 tus_mps_ch:TUS_MSGch-tus-mps-000

The tus_s_ch channel is to offer urban space information to just the master server. Hence it is a
single channel.

10.6.4 The a_ad_ch Channel

The purpose of the a_ad_ch channel is, for analysers to propagate analysis results to the analysis
depository. We refer to Sects. 10.3.3 and 10.3.4 for the mereologies that help determine the indices
for the a_ad_ch channel.

1057. There is declared a channel a_ad_ch whose time stamped messages are of
1058. type A_MSG (for analysis message).

238 10 Urban Planning [Fall 2017]

type

1058 A_MSGum, = (s-T:T x s_A:AnalysiSun,), i:[1:1]

1058 A_MSG = A_MSGyu,|A-MSGis, |...| A-MS G,
channel

1057 {a_ad_ch[a_ui]:A_MSGja_ui:A_Ul-a_ui € a,;s}ch-a-ad-000

10.6.5 The ad_s_ch Channel

The purpose of the ad_s_ch channel is, for the analysis depository to propagate histories of analysis
results to the server. We refer to Sects.10.3.4, 10.3.5 and 10.3.7 for the mereologies that help
determine the indices for the ad_s_ch channel.

1059. There is declared a channel ad_s_ch whose messages are of
1060. type AD_MSG (defined as A_Hist for a histories of analyses), see Item 1026 on page 230.

type
1060 AD_MSG = A_Hist
channel

1059 {ad_s_ch[s_ui]|s_ui:(MPS_UIDPS_Ul)-s_ui e{mps,;}Udps,;s}:AD_MSGch-ad-dps-000

The ad_s_ch channel is to offer urban space information to the master and derived servers. Hence
it is an array channel.

10.6.6 The mps_mp_ch Channel

The purpose of the mps_mp_ch channel is for the master server to propagate comprehensive
master planner input to the master planner. We refer to Sects. 10.3.5 and 10.3.6 for the mereologies
that help determine the indices for the mps_mp_ch channel.

1061. There is declared a channel mps_mp_ch whose messages are of

1062. type MPS_MSG which are quadruplets of time stamped urban space information, TUS_MSG,
see Item 1055 on the preceding page, analysis histories, A_Hist, see Item 1060, master planner
auxiliary information, mAUX, and master plan requirements, mREQ.

type
1062 MPS_MSG = TUS_MSGxAD_MSGxmAUXxmREQ
channel

1061 mps_-mp_ch:MPS_MSGch-mps-mp-000

The mps_mp_ch channel is to offer MPS_MSG information to just the master server. Hence it is a
single channel.

10.6.7 The p_pr_ch Channel

The purpose of the p_pr_ch channel is, for master and derived planners to deposit and retrieve
master and derived plans to the plan repository. We refer to Sects.10.3.6 and 10.3.10 for the
mereologies that help determine the indices for the p_pr_ch channel.

10.6 Channel Analysis and Channel Declarations 239

1063. There is declared a channel p_pr_ch whose messages are of
1064. type PLAN_MSG - for time stamped master plans.

type

1064 PLAN_MSG =T x PLANS

channel

1063 {p_prch[p_ui]:PLAN_MSG|p_ui:(MP_UI|DP_Ul)+-p_ui € p,;s} ch-mp-pr-000

The p_pr_ch channel is to offer comprehensive records of all current plans to all the the planners.
Hence it is an array channel.

10.6.8 The p_dpxg_ch Channel

The purpose of the p_dpxg-ch channel is, for planners to request and obtain derived planner index
names of, respectively from the derived planner index generator. We refer to Sects.10.3.6 and
10.3.9 for the mereologies that help determine the indices for the mp_dpxg_ch channel.

1065. There is declared a channel p_dpxg-ch whose messages are of
1066. type DPXG_MSG. DPXG_MSG messages are

a. either request from the planner to the index generator to provide zero, one or more of an
indicated set of derived planner names,
b. or to accept such a (response) set from the index generator.

type

1066 DPXG_MSG = DPXG_Req | DPXG_Rsp

1066a DPXG_Req :: DNm-set

1066b DPXG_Rsp :: DNm-set

channel

1065 {p-dpxg-ch[ui]:DPXG_-MSGjui:(MP_UI|DP_Ul)-ui € p,;s} ch-mp-ix-000

10.6.9 The pr_s_ch Channel

The purpose of the pr_s_ch channel is, for the plan repository to provide master and derived plans
to the derived planner servers. We refer to Sects.10.3.10 and 10.3.7 for the mereologies that help
determine the indices for the pr_dps_ch channel.

1067. There is declared a channel pr_dps_ch whose messages are of
1068. type PR_.MSGd, defined as PLAp, cf.Item 1043 on page 233.

type
1068 PR_MSG = PLANS
channel

1067 {pr_s_ch[ui]:PR_.MSGd|ui:(MPS_UI|DPS_UlI)-ui € s,;s}ch-pr-dps-000

240 10 Urban Planning [Fall 2017]

10.6.10 The dps_dp_ch Channel

The purpose of the dps_dp_ch channel is, for derived planner servers to provide input to the derived
planners. We refer to Sects.10.3.7 and 10.3.8 for the mereologies that help determine the indices
for the dps_dp_ch channel.

1069. There is declared a channel dps_dp_ch[ui_nm_j], one for each derived planner pair.

1070. The channel messages are of type DPS_MSG,,;. These DPS_MSG,,,; messages are quadruplets
of analysis aggregates, AD_MSG, urban plan aggregates, PLANS, derived planner auxiliary
information, dAUXnmj, and derived plan requirements, dAUXnmj.

type

1070 DPS_MSGnm]. = AD_MSGxPLANSdiUXM,].deEOnm]., j:[1..pl
channel

1069 {dps_dp_ch[ui]:DPS_MSGnmjlui:DPS_UI-ui € dps,;sjch-dps-dp-000

10.7 The Atomic Part TRANSLATORS

10.7.1 The cLock TRANSLATOR

We refer to Sect. 10.4.1.2 for the attributes that play a role in determining the clock signature.

10.7.1.1 The TransraTe_CLK Function

1071. The TransLaTeE_CLK(clk) results in three text elements:

a. the value keyword,
b. the signature of the clock definition,
c. and the body of that definition.

The clock signature contains the unique identifier of the clock; the mereology of the clock,
cf.Item 10.3.1 on page 220; and the attributes of the clock, in some form or another: the pro-
grammable time attribute and the channel over which the clock offers the time.

value

1071 Transcate_CLK(clk) =

1071a ” value

1071b clock: T — out clk_ch Unit

1071c clock(uid_CLK(clk),mereo_CLK(clk))(attr_T(clk)) = ...”

10.7.1.2 The clock Behaviour

The purpose of the clock is to show the time. The “players” that need to know the time are: the
urban space when informing requestors of aggregates of urban space attributes, the analysers
when submitting analyses to the analysis depository, the planners when submitting plans to the
plan repository.

1072. We see the clock as a behaviour.

10.7 The Atomic Part TRANSLATORS 241

1073. It takes a programmable input, the current time, t.

1074. It repeatedly emits the some next time on channel clk_ch.

1075. Each iteration of the clock it non-deterministically, internally increments the current time by
either nothing or an infinitisimally small time interval 6 i, cf.Item 997 on page 224.

1076. In each iteration of the clock it either offers this next time, or skips doing so;

1077. whereupon the clock resumes being the clock albeit with the new, i.e., next time.

value

1074 oti:Tl = ... cf. Iltem 997 on page 224

1072 clock: T — out clk_ch Unit

1073 clock(uid_clk,mereo_clk)(t) =

1075 lett’ = (t+6ti) [1 tin

1076 skip [1 clk_chlt’ ;

1077 clock(uid_clk,mereo_clk)(t’) end

1077 pre: uid_clk = clk,; A

1077 mereo_clk = (tus,;,a,is, Mpsyi, Mpyi, dps.is, dpis)

10.7.2 The UrBaN SpaceE TRANSLATOR

We refer to Sect. 10.4.2.2 for the attributes that play a role in determining the urban space signature.

10.7.2.1 The TransLaTE_TUS Function

1078. The TransraTte-TUS(tus) results in three text elements:

a. the value keyword
b. the signature of the urb_spa definition,
c. and the body of that definition.

The urban space signature contains the unique identifier of the urban space, the mereology of
the urban space, cf. Item 10.3.2 on page 221, the static point space attribute.

value
1078 TransLATE_TUS(tus) =
1078a ” value

1078b urb_spa: TUS_UIl x TUS_Mer — Pts —
1078b out ... Unit
1078c urb_spa(uid_TUS(tus),mereo_TUS(tus))(attr_Pts(tus)) = ... ”

We shall detail the urb_spa signature and the urb_spa body next.

10.7.2.2 The urb_spa Behaviour

The urban space can be seen as a behaviour. It is “visualized” as the rounded edge box to the left
in Fig. 10.3 on the next page. It is a “prefix” of Fig. 10.3 on the following page. In this section we
shall refer to many other elements of our evolving specification. To grasp the seeming complexity
of the urban space, its analyses and its urban planning functions, we refer to Fig. 10.3 on the next

page.
1079. To every observable part, like tus:TUS, there corresponds a behaviour, in this case, the urb_spa.

242 10 Urban Planning [Fall 2017]

Smm— ettt .
! e Do
tus:TUS clkCLK) | clk_ch a_anm_1| |a_anm_2 a_anm_n :
=] t N 0 > |
: _ _ . !
! |
! ad — - - 1
! |
| [
~— L _l __________________________ ;
Y

Fig. 10.3 The Urban Space and Analysis Behaviours

1080. The urb_spa behaviour has, for this report, just one static attribute, the point space, Pts.

1081. The urb_spabehaviour has the following biddable and programmable attributes, the Cadastral,
the Law and the SocioEconomic attributes. The biddable and programmable attributes “trans-
late” into behaviour parameters.

1082. The urb_spa behaviour has the following dynamic, non-biddable, non-programmable at-
tributes, the GeoDetic, GeoTechnic and the Meterological attributes The non-biddable, non-
programmable dynamic attributes “translate”, in the conversion from parts to behaviours, to
input channels etc.

the_urb_spa behaviour offers its attributes, upon demand,

1083. to a urban space analysis behaviours, tus_ana.i and one master urban server.
1084. The urb_spa otherwise behaves as follows:

it repeatedly “assembles” a tuple, tus, of all attributes;

then it external non-deterministically either offers the tus tuple
to either any of the urban space analysis behaviours,

or to the master urban planning behaviour;

in these cases it resumes being the urb_spa behaviour;

or internal-non-deterministically chooses to

update the law, the cadastral, and the socio-economic attributes;
whereupon it resumes being the urb_spa behaviour.

5@ -0 0 T

channel

1082 attr_Pts_ch:Pts, attr_GeoD_ch:GeoD, attr_GeoT_ch:GeoT, attr_Met_ch:Met
1083 tus_mps_ch:TUSm

1083 {tus_a_ch[ai]lai € a,;s}:TUSmM

value

1079 urb_spa: TUS_UI x TUS_Mer —

1080 Pts —

1081 (CadaxLawxSoc_Ecox...) —

1082 in attr_Pts_ch, attr_.GeoD_ch, attr_GeoT_ch, attr_Met_ch —
1083 out tus_mps_ch, {tus_ana_ch[ai]jai € [a_1...a.a]} — Unit

1084 urb_spa(pts)(pro) =

1084a let geo = ["pts”attr_Pts_ch?’ged’—attr_GeoD_ch?,’cad”—cada,’get"—attr geoT_ch?,
1084a "met’—attr_Met_ch?,’law’—law,"eco”—eco,...] in

1084c (({tus_a_ch[ai]!geolai € a,;s}

1084b]

10.7 The Atomic Part TRANSLATORS 243

1084d tus_mps_chlgeo) ;

1084e urb_spa(pts)(pro)) end

1084f M

10849 let pro’:(CadaxLawxSoc_Ecox...)-fit_pro(pro,pro’) in
1084h urb_spa(pts)(pro’) end

1084g fit_pro: (CadaxLawxSoc_Ecox...) x (CadaxLawxSoc_Ecox...) — Bool

We leave the fitness predicate fit_pro further undefined. It is intended to ensure that the biddable
and programmable attributes evolve in a commensurate manner.

10.7.3 The ANALYSERg;m;, i:[1 : 1] TRANSLATOR

We refer to Sect. 10.4.4 for the attributes that play a réle in determining the analyser signature.

10.7.3.1 The TRANSLATE_A,mmj Function

1085. The TRANSLATE_Aanmj (aanmj) results in three text elements:

a. the value keyword,
b. the signature of the analyserammj definition,
c. and the body of that definition.

The analysery,,; signature contains the unique identifier of the analyser, the mereology of the
analyser, cf.Item 10.3.3 on page 221, and the attributes, here just the programmable attribute of
the most recent analysisaanm]. performed by the analyser,,, -

type

1085 Analysis = Analysis,,, |Analysis,m, ...|Analysis;,

value

1085 TRANSLATE Ay, (Qnm,):

1085 7 value

1085 analyser,,: (uid_Axmereo_A) —

1085 Analysis;;;, —

1085 in tus_a_ch[uid_A(aum,)]

1085 out a_ad_ch[uid_A(a;m,) |

1085 analyserm-j(uid_A(anmi),mereo_A(anmi))(ananmi) =.. "7

10.7.3.2 The analyser,,j/. Behaviour

Analyses, or various kinds, of the urban space, is an important prerequisite for urban planning.
We therefore introduce a number, 1, of urban space analysis behaviours, analysis,, (for anm; in
the set {anmy,...,anm,}. The indexing designates that each analysis,, caters for a distinct kind
of urban space analysis, each analysis with respect to, i.e., across existing urban areas: ..., (1;)
traffic statistics, (4;) income distribution, ..., (ax) health statistics, (a;) power consumption, ..., (a,)
... . We shall model, by an indexed set of behaviours, ana;, the urban [space] analyses that are an
indispensable prerequisite for urban planning.

244 10 Urban Planning [Fall 2017]

1086. Urban [space] analyser, tus_ana;, for a; € [a;...4,], performs analysis of an urban space whose
attributes, except for its point set, it obtains from that urban space — via channel tus_ana_ch and

1087. offers analysis results to the mp_beh and the n derived behaviours.

1088. Urban analyser, ana,,, otherwise behaves as follows:

a. The analyser obtains, from the urban space, its most recent set of attributes.

b. The analyser then proceeds to perform the specific analysis as “determined” by its index a;.

c. The result, tus_ana,,, is communicated whichever urban, the master or the derived, planning
behaviour inquires.

d. Whereupon the analyser resumes being the analyser, improving and/or extending its analy-
sis.

type

1085 Analysis = AnalysiSm, |Analysisaum, |...|Analysisaum,

value

1088 analyser,,i(a_ui,a_mer)(analysis;;) =

1088a let tusm = tus_a_ch[a_ui] ? in

1088b let analysis; . = perform_analysis;(tusm)(analysis) in
1088c [Ma_ad_ch[a_ui] ! (clk_ck?,analysis’) ;

nmi

1088d analyser;(a_ui,a-mer)(analysis’) end end
1088b perform_analysis,,,, : TUSm — Analysis,,,, — Analysis,,,,
1088b perform_analysis,,,, (tusm)(analysis,,,,) = ...

10.7.4 The AnarLysis DErPosITORY TRANSLATOR

We refer to Sect.10.4.5 for the attributes that play a role in determining the analysis depository
signature.

10.7.4.1 The TransLaTe_AD Function

1089. The TransrLaTE_AD(ad) results in three text elements:

a. the value keyword
b. the signature of the ana_dep definition,
c. and the body of that definition.

The ana_dep signature essentially contains the unique identifier of the analyser, the mereology
of the analyser, cf.Item 10.3.4 on page 221, and the attributes, in one form or another: the
programmable attribute, a_hist, see Item 1026 on page 230, the channels over which ana_dep
either accepts time stamped analyses, Analysis,, , from analyser,,,, or offers a_hists to either the
master planner server or the derived planner servers.

value
1089 TransraTE_AD(ad) =
1089a 7 value

1089b ana_dep: (A_Ul x A_Mer) — AHist —
1089b in {a_ad_ch[i]lli:A_Uli € a;s}
1089b out {ad_s_ch[i]li:A_Uli € s,;s} Unit

1089c ana_dep(ui_A(ad),mereo_A(ad))(attr_AHist(ad)) = ... ”~

10.7 The Atomic Part TRANSLATORS 245

10.7.4.2 The ana_dep Behaviour

The definition of the analysis depository is as follows.

1090. The behaviour of ana.dep is as follows: non-deterministically, externally ([]), ana_dep
1091. either (], line 1093) offers to accept a time stamped analysis from some analyser ([If ... | ... }),

a. receiving such an analyses it “updates” its history,
b. and resumes being the ana_dep behaviour with that updated history;

1092. or offers the analysis history to the master planner server
and resumes being the ana_dep behaviour;
1093. or offers the analysis history

a. to whichever ([I{ ... | ... }) planner server offers to accept a history
b. and resumes being the ana_dep behaviour with that updated history.

value
1090 ana_dep(a_ui,a_mer)(ahist) =
1091 [{(let ana = a_ad_ch[i] ? in

1091a let ahist’ = ahistt[i—(ana) (ahist(i))] in
1091b ana_dep(a_ui,a_mer)(ahist’) end end)

1091b | i:A_Uli€ a,;s}

1092 [] (ad_mps_chlahist ; ana_dep(a_ui,a_mer)(ahist))
1093 [

1093a ({ ad_s_ch[j]'ahist

1093a | j:(MPS_UIIDPS_Ul)<jes,;s};

1093b ana_dep(a_ui,a_mer)(ahist))

10.7.5 The DeriveEp PLANNER INDEX GENERATOR TRANSLATOR

We refer to Sect. 10.4.10 for the attributes that play a r6le in determining the derived planner index
generator signature.

10.7.5.1 The TransLate_DPXG(dpxg) Function

1094. The TransLaTE_DPXG(dpxg) results in three text elements:

a. the value keyword
b. the signature of the dpxg behaviour definition,
c. and the body of that definition.

The signature of the dpxg behaviour definition has many elements: the unique identifier of the dpxg
behaviour, the mereology of the dpxg behaviour, cf.Item 10.3.9 on page 223, and the attributes
in some form or another:the unique identifier, the mereology, and the attributes, in some form
or another: the programmable attribute All_LDPUIs, cf. Item 1040 on page 232, the programmable
attribute Used_DPUIs, cf.Item 1041 on page 232, the mp_dpxg_ch input/output channel, and the
dp-dpxg_ch input/output array channel.

value
1094 Transrate DPXG(dpxg) =
1094a 7 value

246 10 Urban Planning [Fall 2017]

1094b dpxg_beh: (DPXG_UIxDPXG_Mer) —

1094b (All_LDPUIsxUsedDPUIS) —

1094b in,out {p_dpxg_ch[i]li:(MP_UIIDP_Ul)-iep,;s} Unit

1094c dpxg-beh(uid_DPXG(dpxg),mereo_DPXG(dpxg))(all_dpuis,used_dpuis) = ...”

10.7.5.2 The dpxg Behaviour

1095. The index generator otherwise behaves as follows:

a. It non-deterministically, externally, offers to accept requests from any planner, whether mas-
ter or server. The request suggests the names, req, of some derived planners.

b. The index generator then selects a suitable subset, sel_dpuis, of these suggested derived
planners from those that are yet to be started.

c. It then offers these to the requesting planner.

d. Finally the index generator resumes being an index generator, now with an updated
used_dpuis programmable attribute.

value

1095 dpxg: (DPXG_UIXDPXG_-Mer) — (All_LDPUIsxUsed_DPUls) —
1095 in,out mp_dpxg-ch,

1095 {p-dpxg_ch[j]lj:(MP_UIIDP_Ul):je{p,;s}} Unit

1095 dpxg(dpxg_ui,dpxg_mer)(all_dpuis,used_dpuis) =

1095a [0 { let req = p_dpxg_c[j] ? in

1095b let sel_dpuis = all_dpuis \ used_dpuis - sel_dpuis C req-dpuis in
1095¢ dp_dpxg_ch[j] ! sel_dpuis ;

1095d dpxg(dpxg_ui,dpxg_mer)(all_dpuis,used_dpuisuUsel_dpuis) end end
1095 [j:(MP_UIIDP_Ul)+jepy;s }

10.7.6 The PLaN REPOSITORY TRANSLATOR

We refer to Sect.10.4.11 for the attributes that play a réle in determining the plan repository
signature.

10.7.6.1 The TransLaTE_PR Function

1096. The TransLaTE_PR(pr) results in three text elements:

a. the value keyword,
b. the signature of the plan repository definition,
c. and the body of that definition.

The plan repository signature contains the unique identifier of the plan repository, the mereology
of the plan repository, cf. Item 10.3.10 on page 223, and the attributes: the programmable plans,
cf. 1043 on page 233, and the input/out channel p_pr_ch.

value

1096 Transrate PR(pr) =

1096a ” value

1096b plan_rep: PLANS —

10.7 The Atomic Part TRANSLATORS 247

1096b in {p_prch[i]li:(MP_UIIDP_Ul)-iep,;s}
1096b out {s_pr_ch[i]li:(MP_UIDP_Ul)-ics,;s} Unit
1096¢ plan_rep(plans)(attr_AlIDPUIs(pr),attr_UsedDPUIs(pr)) = ... ”

10.7.6.2 The plan_rep Behaviour

1097. The plan repository behaviour is otherwise as follows:

a. The plan repository non-deterministically, externally chooses between
i. offering to accept time-stamped plans from a planner, p,;, either the master planner or
anyone of the derived planners,
ii. from whichever planner so offers,
iii. inserting these plans appropriately, i.e., at p,;, as the new head of the list of “there”,
iv. and then resuming being the plan repository behaviour appropriately updating its pro-
grammable attribute;
b. or
i. offering to provide a full copy of its plan repository map
ii. to whichever server requests so,
iii. and then resuming being the plan repository behaviour.

value
1097a plan_rep(pr_ui,ps_uis)(plans) =

1097(a)i [0 { let (t,plan) = p_pr_ch[i] ? in assert: i € dom plans
1097 (a)iii let plans’ = plans t [i—{(t,plan))y plans(i)] in
1097(a)iv plan_rep(pr_ui,ps_uis)(plans’) end end

1097(a)ii [i:(MP_UIIDP_Ul)-iep,;s }

1097b [

1097(b)i [0 { sprch[i] ! plans ; assert: i € dom plans

1097 (byiii plan_rep(pr_ui,ps_uis)(plans)

1097/(b)ii [i:(MP_UIIDP_Ul)-iep,;s }

10.7.7 The MASTER SERVER TRANSLATOR

We refer to Sect. 10.4.6 for the attributes that play a r6le in determining the master server signature.

10.7.7.1 The TransLaTte_MPS Function

1098. The TransLATE_MPS(mps) results in three text elements:

a. the value keyword,
b. the signature of the master_server definition,
c. and the body of that definition.

The master_server signature contains the unique identifier of the master server, the mereology
of the master server, cf.Item 10.3.5 on page 222, and the dynamic attributes of the master
server: the most recently, previously produced auxiliary information, the most recently, previously
produced plan requirements information, the clock channel, the urban space channel, the analysis
depository channel, and the master planner channel.

248

value

10 Urban Planning [Fall 2017]

1098 TransLATE-MPS(mps) =

1098a
1098b
1098b
1098b
1098c

” value
master_server: (IMAUXxmREQ) —
in clk_ch, tus_.m_ch, ad_s_ch[uid_MPS(mps)]
out mps_mp_ch Unit

master_server(uid_MPS(mps),mereo_MPS(mps))(attr-mAUX(mps),attr mREQ(mps)) = ...

10.7.7.2 The master_server Behaviour

1099. The master_server obtains time from the clock, see Item 1100c, information from the urban
space, and the most recent analysis history, assembles these together with “locally produced”

a. auxiliary planner information and
b. plan requirements

as input, MP_ARG, to the master planner.
1100. The master server otherwise behaves as follows:

a. it obtains latest urban space information and latest analysis history, and

b. then produces auxiliary planning and plan requirements commensurate, i.e., fit, with the
most recently, i.e., previously produced such information;

c. it then offers a time stamped compound of these kinds of information to the master planner,

d. whereupon the master server resumes being the master server, albeit with updated pro-
grammable attributes.

type
1099a
1099b
1099
value
1100
1100a
1100b
1100c
1100d
1100

1100b
1100b

mAUX
mREQ
mARG = (T x ((MAUX x mREQ) x (TUSm x AHist)))

master_server(uid,mereo)(aux,req) =
let tusm = tus_m_ch ?, ahist = ad_s_ch[mps_ui] 7,
maux:mAUX, mreq:mREQ - fit_ AuxReq((aux,req),(maux,mreq)) in
s_p_ch[uid] ! (clk_ch?,((maux,mreq),(tusm,ahist))) ;
master_server(uid,mereo)(maux,mreq)
end

fitAuxReq: (MAUXxmREQ)x(mAUXxmREQ) — Bool
fitAuxReq((aux,req),(maux,mreq)) = ...

10.7.8 The MasTER PLANNER TRANSLATOR

We refer to Sect.10.4.7 for the attributes that play a réle in determining the master planner signa-

ture.

10.7.8.1 The TransLaTe_MP Function

1101. The TransrLate_MP(mp) results in three text elements:

10.7 The Atomic Part TRANSLATORS 249

a. the value keyword,
b. the signature of the master_planner definition,
c. and the body of that definition.

The master_planner signature contains the unique identifier of the master planner, the mereology
of the master planner, cf.Item 10.3.6 on page 222, and the attributes of the master planner: the
script, cf. Sect. 10.4.3 on page 230 and Item 1024 on page 230, a set of script pointers, cf. Item 1031
on page 231, a set of analyser names, cf.Item 1032 on page 231, a set of planner identifiers,
cf. Item 1033 on page 231, and the channels as implied by the master planner mereology.

value
1101 Transvate MP(mp) =
1101a ” value

1101b master_planner: Mmp,;:P_UIXMP _Merx(ScriptxANmsxDPUIs) —

1101b Script_Pts —

1101b in clk_ch, mps_mp_ch, ad_ps_ch[mp,;]

1101b out p_prch[mp,]

1101b in,out p_dpxg_ch[mp,;] Unit

1101c master_planner(uid_MP(mp),mereo_MP (mp),

1101c (attr_Script(mp),attr ANms(mp),attr_DPUIs(mp)))(attr_Script_Ptrs(mp)) = ... ~

10.7.8.2 The Master urban_planning Function

1102. The core of the master_planner behaviour is the master_urban_planning function.

1103. It takes as arguments: the script, a set of analyser names, a set of derived planner identifiers,
a set of script pointers, and the time-stamped master planner argument, cf. Item 1099 on the
preceding page;

1104. and delivers, i.e., yields, a set of “remaining” derived planner identifiers, an updated set of
script pointers, and a master result:M_RES, i.e., a master plan, mp:M_PLAN together with the
time stamped master argument from which the plan was constructed.

1105. The master urban planning function is not defined by other than a predicate:

a. the “remaining” derived planner identifiers is a subset of the arguments derived planner
identifiers;

b. the “resulting” master argument is the same as the input master argument, i.e., it is “carried
forward”;

c. the arguments: the script, the analyser names, the derived planner identifiers, the set of
script pointers, the time-stamped master planner argument, and the result plan otherwise
satisfies a predicate P(script,anms,dpuis,ptrs,marg)(mplan) expressing that the result mplan
is an appropriate plan in view of the other arguments.

type

1104 M_PLAN

1104 M_RES = M_PLAN x DPUl-set x M_ARG

value

1103 master_urban_planning:

1103 Script x ANm-set x DP_Ul-set x Script_Ptr-set x M_ARG
1104 — (DP_Ul-set x Script_Ptr-set) x M_RES
1102 master_urban_planning(script,anms,dpuis,ptrs,marg)
1105a as ((dpuis’,ptrs’),(mplan,marg’))

1105a dpuis’ C dpuis

1105b A marg’ = marg

250

1105¢c

10 Urban Planning [Fall 2017]

A P(script,anms,dpuis,ptrs,marg)(mplan)

1102 P: ((ScriptxANM-setxDP_Ul-setxScript_Ptr-setxM_ARGxMPLANXScript_Ptr-set)

1102

x (DP_Ul-setxScript_Pir-setxM_ARGxMPLAN)) — Bool

1102 P((script,anms,dpuis,ptrs,marg,mplan,ptrs),(dpuis’,ptrs’,marg,mplan)) = ...

10.7.8.3

The master_planner Behaviour

1106. The master_planner behaviours is otherwise as follows:

a. The master_planner obtains, from the master server, its time stamped master argument,

cf.

-0 a0 o

i.

ii.

iii.
iv.

value

Item 1099 on page 248;

it then invokes the master urban planning function;

the time-stamped result is offered to the plan repository;
if the result is OK as a final result,

then the behaviour is stopped;

otherwise

the master planner inquires the derived planner index generator as for such derived
planner identifiers which are not used;

the master planner behaviour is the resumed with the appropriately updated pro-
grammable script pointer attribute, in parallel with

the distributed parallel composition of the parallel behaviours of the derived servers
and the derived planners

. designated by the derived planner identifiers transcribed into (nm_dps_ui) derived server,

respectively into (nm_dp_ui) derived planner names. For these transcription maps we refer
to Sect. 10.2.12 on page 219, Item 981 on page 220.

1106 master_planner(uid,mereo,(script,anms,puis))(ptrs) =

1106a
1106b
1106¢c
1106d
1106e
1106f
1106(f)i
1106(f)ii
1106

10.7.8.4

The init_

let (1,((maux,mreq),(tusm,ahist))) = mps_-mp_ch ? in
let ((dpuis’,ptrs’),mres) = master_urban_planning(script,anms,dpuis,ptrs) in
p-pr_ch[uid] ! mres ;
if completed(mres) assert: ptrs’ = {}

then init_der_serv_planrs(uid,dpuis’)

else

init_der_serv_plans(ui,dpuis)
|| master_planner(uid,mereo,(script,anms,puis))(ptrs’)
end end end

The initiate derived servers and derived planners Behaviour

der_serv_planrs behaviour plays a central role. The outcome of the urban planning func-

tions, whether for master or derived planners, result in a possibly empty set of derived planner
identifiers, dpuis. If empty then that shall mean that the planner, in the iteration, of the planner
behaviour is suggesting that no derived server/derived planner pairs are initiated. If dpuis is not
empty, say consists of the set {dpuii,dpuij,...,dpuik} then the planner behaviour is suggesting that

derived

server/derived planner pairs whose planner element has one of these unique identifiers,

be appropriately initiated.

1107. The i

nit_der_serv_planrs behaviour takes the unique identifier, uid, of the “initiate issuing”

planner and a suggested set of derived planner identifiers, dpuis.

10.7 The Atomic Part TRANSLATORS 251

1108. It then obtains, from the derived planner index generator, dpxg, a subset, dpuis’, that may be
equal to dpuis.

It then proceeds with the parallel initiation of

1109. derived servers (whose names are extracted, extr_Nm, from their identifiers, cf.Item 975 on
page 219),

1110. and planners (whose names are extracted, extr_-Nm, from their identifiers, cf.Item 976 on
page 219)

1111. for every dp_ui in the set dpuis’.

However, we must first express the selection of appropriate arguments for these server and planner
behaviours.

1112. The selection of the server and planner parts, making use of the identifier to part mapping
nms_dp_ui and nm_dp_ui, cf. Items 981- 982 on page 220;

1113. the selection of respective identifiers,

1114. mereologies, and

1115. auxiliary and

1116. requirements attributes.

value

1107 init_der_serv_planrs: uid:(DP_UIIMP_Ul) x DP_Ul-set — in,out pr_-dpxg[uid] Unit
1107 init_der_serv_planrs(uid,dpuis) =

1108 let dpuis’ = (pr_dpxg_ch[uid] ! dpuis ; pr_dpxg_ch[uid] ?) in

1112 Il { Iet p = c_p(dp-ui), s = c_s(nms_dp_ui(dp_ui)) in

1113 let ui_p = uid_DP(p), ui_s = uid_DPS(s),

1114 me_p = mereo_DP(p), me_s = mereo_DPS(s),

1115 aux_p = attr_sAUX(p), aux_s = attr_sAUX(s),

1116 req-p = attr_sREQ(p), req-s = attr_sREQ(s) in

1109 derived_serverextr_Nm(dp_ui)(ui_s,me_s,(aux_s,req_s)) I
1110 derived_plannerextr_Nm(dp_ui)(ui_p,me_p,(aux_p,req_p))
1111 | dp_ui:DP_Ul-dpui € dpuis’ end end }

1107 end

10.7.9 The DERIVED SERVERy;, i:[1 : p] TRANSLATOR

We refer to Sect. 10.4.8 for the attributes that play a role in determining the derived server signature.

10.7.9.1 The TRANSLATE_DPS”,”/ Function

1117. The TransLaTE-D PS(dpsnmj) results in three text elements:

a. the value keyword,
b. the signature of the derived_server definition,
c. and the body of that definition.

The derived_server,,, signature of the derived server contains the unique identifier; the mereology,
cf.Item 10.3.7 on page 222 — used in determining channels: the dynamic clock identifier, the
analysis depository identifier, the derived planner identifier; and the atiributes which are: the
auxiliary, dAUXnm]. and the plan requirements, dREQnm]..

252 10 Urban Planning [Fall 2017]

value
1117 Transtate DPS(dpsum;) =

1117a ” value

1117b derived_servernm].:

1117b DPS_UInmjxDPS_Mernmj - (DAUXnmjdeEQnmj) —

1117b in clk_ch, ad_s_ch[uid_DPS(dpsnmj)]

1117b out s_p_ch[uid_DPS(dpsnm].)] Unit

1117¢c derived_server,,, J

1117¢c (uid_DPS(dpsnmj),mereo_DPS(dpsnmj)),(attr_dAUX(dpsnmj),attr_dREQ(dpsnmj)) = ..

10.7.9.2 The derived_server Behaviour

The derived_server is almost identical to the master server, cf.Sect.10.7.7.2, except that plans
replace urban space information.

1118. The derived_server obtains time from the clock, see Item 1119¢, , and the most recent analysis
history, assembles these together with “locally produced”

a. auxiliary planner information and
b. plan requirements

as input, MP_ARG, to the master planner.
1119. The master server otherwise behaves as follows:

a. it obtains latest plans and latest analysis history, and

b. then produces auxiliary planning and plan requirements commensurate, i.e., fit, with the
most recently, i.e., previously produced such information;

c. it then offers a time stamped compound of these kinds of information to the derived planner,

d. whereupon the derived server resumes being the derived server, albeit with updated pro-
grammable attributes.

type

1118a dAUXnm].

1118b dREQnmj

1118 dARGnmj =(Tx ((dAUXnm]. X dREQnmj) X (PLANS x AHist)))
value

1119 derived_servernm].(uid,mereo)(aux,req) =

1119a let plans = ps_pr_ch[uid] ?, ahist = ad_s_ch[uid] ?,

1119b daux:dAUX, dreq:dREQ - fitAuxReqnm].((aux,req),(daux,dreq)) in
1119¢ s_p_ch[uid] ! (clk_ch?,((maux,mreq),(plans,ahist))) ;

1119d derived_servernm].(uid,mereo)(daux,dreq)

1119 end

11190 fitAuxRequm;: (dAUXm; xdREQyum,) < (dAUX i xdREQy,) — Bool
1119b fitAuxReq;((aux,req),(daux,dreq)) = ...

You may wish to compare formula Items1118-1119d above with those of formula Items 1099-
1100d of Sect. 10.7.7.2 on page 248.

10.7 The Atomic Part TRANSLATORS 253

10.7.10 The DErIVED PLANNERy;;;, :[1 : p] TRANSLATOR

We refer to Sect.10.4.9 for the attributes that play a role in determining the derived planner
signature.

10.7.10.1 The TRANSLATE_DPd]()nm/. Function

This function is an “almost carbon copy” of the TransLare_MPdp,,;,; function. Thus Items 1120~
1120c are “almost the same” as Items 1101-1101c on page 249.

1120. The TRANSLATE_DP(,W,].) results in three text elements:

a. the value keyword,
b. the signature of the derived_plannernm]. definition,
c. and the body of that definition.

The derived_planner,,, signature of the derived planner contains the unique identifier, the mere-
ology, cf.Item 10.3.8 on page 223 and the attributes: the script, cf. Sect. 10.4.3 on page 230 and
Item 1024 on page 230, a set of script pointers, cf. Item 1037 on page 232, a set of analyser names,
cf.Item 1038 on page 232, a set of planner identifiers, cf. Item 1039 on page 232, and the channels
as implied by the master planner mereology.

value

1120 Transrate_DP(dp) =

1120a ” value

1120b derived_planner: dp,;:DP_UIxXDP_Merx(ScriptxANmsxDPUIs) — Script_Pts —

1120b in s_p_ch[dp,i], clkch, ad_ps_ch[dp,;]

1120b out p_prch[dp,]

1120b in,out p_dpxg_ch[dp,;] Unit

1120c derived_planner(uid_DP(dp),mereo_DP(dp),

1120c (attr_Script(dp),attr_ ANms(dp),attr_DPUIs(dp)))(attr_Script_Ptrs(dp)) = ... ”

10.7.10.2 The derived_urban_planning Function

This function is an “almost carbon copy” of the master_urban_planning function. Thus Items 1121-
1124c on the following page are “almost the same” as Items 1102—-1105c on page 249.

1121. The core of the derived_planner behaviour is the derived_urban_planning function.

1122. It takes as arguments: the script, a set of analyser names, a set of derived planner identifiers,
a set of script pointers, and the time-stamped derived planner argument, cf.Item 1099 on
page 248;

1123. and delivers, i.e., yields, a set of “remaining” derived planner identifiers, an updated set of
script pointers, and a master result, M_RES, i.e., a master plan, mp:M_PLAN together with the
time stamped master argument from which the plan was constructed.

1124. The master urban planning function is not defined by other that a predicate:

a. the “remaining” derived planner identifiers is a subset of the arguments derived planner
identifiers;

b. the “resulting” master argument is the same as the input master argument, i.e., it is “carried
forward”;

254 10 Urban Planning [Fall 2017]

c. the arguments: the script, the analyser names, the derived planner identifiers, the set of script
pointers, the time-stamped master planner argument, and the result plan otherwise satisfies
a predicate Py, (SCripty,m,,anms,dpuis,ptrs,marg .,) (dplan,,,;) expressing that the result
mplan is an appropriate plan in view of the other arguments.

type

1123 D_PLANg,

1123 D_RES;,,, = D-PLAN,,,, X DP_Ul-set x D_ARG;,,,,

value

1122 derived_urban_planning;,,, :

1122 Scriptyu,, X ANm-set x DP_Ul-set x Script_Ptr-set X D_ARG ;.
1123 — (DP_Ul-set x Script_Ptr-set) x D_RES;,,,,

1121 derived_urban_planningy,,, (script,anms,dpuis,ptrs,darg)

1124a as ((dpuis’,ptrs’),(dplan,ptrs’darg’))

1124a dpuis’ € dpuis

1124b A darg’ = darg

1124c A Panm; (sCript,anms,dpuis,ptrs,darg),((dpuis’,ptrs’),(dplan,ptrs’darg’))

1121 Py, ((Scriptyy,, XANM-setxDP _Ul-setxScript_Ptr-setxD_ARG,,,,,)
1121 x(DP_Ul-setxScripty,, -Ptr-setxD_RES,,,,)) — Bool
1121 Py, ((sCripta,m,,anms,dpuis,ptrs,darg,y»,,),(dp-uis’,ptrs’,dres)) = ...

10.7.10.3 The derived_planner,,,,,,/. Behaviour

This behaviour is an “almost carbon copy” of the derived_plannernm/ behaviour. Thus Items 1125-
1125k are “almost the same” as Items 1106— 1106(f)v on page 250.

1125. The derived_planner behaviour is otherwise as follows:

a. The derived_planner obtains, from the derived server, its time stamped master argument,
cf.Item 1099 on page 248;

it then invokes the derived urban planning function;

the time-stamped result is offered to the plan repository;

if the result is OK as a final result,

then the behaviour is stopped;

otherwise

the derived planner inquires the derived planner index generator as for such derived planner
identifiers which are not used;

the derived planner behaviour is the resumed with the appropriately updated programmable
script pointer attribute, in parallel with

the distributed parallel composition of the parallel behaviours of the derived servers

and the derived planners

designated by the derived planner identifiers transcribed into (nm_dps_ui) derived server,
respectively into (nm_dp_ui) derived planner names. For these transcription maps we refer
to Sect. 10.2.12 on page 219, Item 981 on page 220.

7 R e 0T

-

=

value

1106 derived_planner,,,, (uid,mereo,(scripty,,, anms,puis))(ptrs) =

1106a let (t,((dauxgyy,,dreda.,,),(plans,ahist))) = s p_ch[uid] ? in

1106b let ((dpuis’,ptrs’),dres;,,,) = derived_urban_planning g, (scripts,,,anms,dpuis,ptrs) in
1106¢c p_prch[uid] ! dresg, ;

1106d if completed(dres,,,)

10.8 Initialisation of The Urban Space Analysis & Planning System 255

1106e then init_der_serv_planrs(uid,dpuis’) assert: ptrs’ = {}
1106f else

1106(f)i init_der_serv_plans(uid,dpuis’)

1106(f)ii || derived_planner(uid,mereo, (scripty,,,, ,anms,puis))(ptrs’)
1106 end end end

10.8 Initialisation of The Urban Space Analysis & Planning System

Section 10.5 presents a compiler from structures and parts to behaviours. This section presents
an initialisation of some of the behaviours. First we postulate a global universe of discourse, uod.
Then we summarise the global values of parts and part names. This is followed by a summaries
of part qualities — in four subsections: a summary of the global values of unique identifiers; a
summary of channel declarations; the system as it is initialised; and the system of derived servers

and planners as they evolve.

10.8.1 Summary of Parts and Part Names

value

932 on page 215 uod : UoD

933 on page 215 clk : CLK = obs_CLK(uod)

934 on page 215 tus: TUS = obs_TUS(uod)

935 on page 215 ans : Agum;-set, i[1..n] = { obs_Auuy, (aa) | aa€(obs_AA(uod)), i:[1..n]}
936 on page 215 ad : AD = obs_AD(obs_AA(uod))

937 on page 215 mps : MPS = obs_MPS(obs_MPA(uod))

938 on page 215 mp : MP = obs_MP(obs_MPA(uod))

939 on page 215 dpss : DPS,;,-set, i:[1..p] =

939 on page 215 { obs_DPS,;,,, (dpCum,) |

939 on page 215 dpCyim;:DPC,ym,*dpCyim; €008 _DPCS,;;,, (0bs _DPA(uod)), i:[1..p] }
940 on page 215 dps : DPy,-set, i:[1..p] =

940 on page 215 { 0bs_DP,,,,, (dpCpm;) |

940 on page 215 dpCyim; :DPC,y;*dpCyim; €008 _DPCS,;;,, (0bs _DPA(uod)), i:[1..p] }
941 on page 215 dpxg : DPXG = obs_DPXG(uod)

942 on page 215 pr: PR = obs_PR(uod)

943 on page 215 spsps : (DPS,;;,;XDPy,,,)-set, i:[1..p] =

943 on page 215 { (0bs_DPS,;;,,(dpCpm,),008_DP ., (APCriy,)) |

943 on page 215 dpCyim;:DPC,y;*dpCyim; € 0bs_DPCS,,, (obs_DPA(uod)), i:[1..p] }

10.8.2 Summary of of Unique Identifiers

value

958 on page 218 clk,; : CLK_Ul = uid_CLK(uo0d)

959 on page 218 tus,; : TUS_UI = uid_TUS(uod)

960 on page 218 a,;s: A_Ul-set = {uid_A(a)|a:A-a € ans}
961 on page 218 ad,;: AD_Ul = uid_AD(ad)

256

962
963
964
965
966
967

967
969
970
971
972

on page 218
on page 218
on page 218
on page 218
on page 218
on page 218

10 Urban Planning [Fall 2017]

mpsy; : MPS_UI = uid_-MPS(mps)
Mpy; -
dps,;s - DPS_Ul-set = {uid_DPS(dps)|dps:DPS-dps € dpss}
dp,is : DP_Ul-set = {uid_DP(dp)|dp:DP-dp € dps}

dpxgy; - DPXG_UI = uid_DPXG(dpxg)

Prui :

MP_UI = uid_MP(mp)

PR_UI = uid_PR(pr)

on page 218 s,;s : (MPS_UIIDPS_UI)-set = {mps,;} U dps,;s

on page 218 py;s : (MP_UIIDP_Ul)-set = {mp,;} U dpys

on page 218 sips : (DPS_UIXDP_Ul)-set = {(uid_DPS(dps),uid_DP(dp))|(dps,dp):(DPSxDP)+(dps,dp)esps}
on page 219 si_pi_m : DPS_Ul#»DP_UIl = [uid_DPS(dps)—uid_DP(dp)|(

on page 219 pi_si.m : DP_Ul»DPS_UI = [uid_DP(dp)—uid_DPS(dps)|(dps,dp):(DPSxDP)+(dps,dp)esps]

dps,dp):(DPSxDP)+(dps,dp)esps]

10.8.3 Summary of Channels

channel

1053
1054
1056
1057
1059
1061
1063
1065
1067
1069

on page 236
on page 237
on page 237
on page 237
on page 238
on page 238
on page 239
on page 239
on page 239
on page 240

clk_ch:CLK_MSGch-clk-010

{tus_a_ch[a_ui]:TUS_MSG|a_ui:A_Ul-a_ui € a,;s} ch-tus-a-000
tus_mps_ch:TUS_MSGch-tus-mps-000

{a_ad_ch[a_ui]:A_.MSGla_ui:A_Ul-a_ui € a,;s}ch-a-ad-000
{ad_s_ch[s_ui]|s_ui:(MPS_UI|DPS_Ul)-s_ui e{mps,;}Udps,;s}:AD_MSGch-ad-dps-000
mps_-mp_ch:MPS_MSGch-mps-mp-000
{p_pr_ch[p_ui]:PLAN_MSG|p_ui:(MP_UI|DP_Ul)-p_ui € p,;s} ch-mp-pr-000
{p-dpxg_ch[ui]:DPXG_MSG]ui:(MP_UI|DP_Ul)-ui € p,;s} ch-mp-ix-000
{pr_s_ch[ui]:PR_MSGd|ui:(MPS_UI|DPS_UI)-ui € s,;s}ch-pr-dps-000
{dps_dp_ch[ui]:DPS_MSGnmjlui:DPS_UI-ui € dps,;sjch-dps-dp-000

10.8.4 The Initial System

1078c

1071c

1085

1071c

1096¢

1094c

1098c

1101c
1101c

on page 241
on page 2”40
on page 24|1|3
on page 2”40
on page 2“46
on page 2“45
on page 2”47
on page 2“49
on page 249

urb_spa(uid_TUS(tus),mereo_TUS(tus))(attr_Pts(tus))
clock(uid_CLK(clk),mereo_CLK(clk))(attr_T(clk))

I {analyser,; (uid_A(ay;,),mereo_A(a,;))(@nauum;) | ui;:A_UID * ui; € a,;s}
ana_dep(ui_A(ad),mereo_A(ad))(attr_AHist(ad))
plan_rep(plans)(attr_AlIDPUIls(pr),attr_UsedDPUIs(pr))
dpxg-beh(uid_DPXG(dpxg),mereo_DPXG(dpxg))(all_dpuis,used_dpuis)
master_server(uid_MPS(mps),mereo_MPS(mps))(attr-mAUX (mps),attr mREQ(mps))

master_planner(uid_MP(mp),mereo_MP (mp),
(attr_Script(mp),attr ANms(mp),attr_DPUIs(mp)))(attr_Script_Ptrs(mp))

10.9 Further Work 257

10.8.5 The Derived Planner System

1117c on page 251 { derived_server,,, J
1117¢ on page 251 (uid_DPS(dpst),mereo_DPS(dpsnm]_))(attr_dAUX(dpst),attr_dREO(dpst))

[
1120c on page 253 derived_planner(uid_DP(dpnmj),mereo_DP(dpnmj),

1120c on page 253 (attr_Script(dpnmj),attr_ANms(dpnmj),attr_DPUIs(dpnmj)))
1120c on page 253 | j:[1.p]}

10.9 Further Work

10.9.1 Reasoning About Deadlock, Starvation, Live-lock and Liveness

The current author is quite unhappy about the way in which he has defined the urban planning, or-
acle and repository behaviours. Such issues as which invariants are maintained across behaviours
are not addressed. In fact, it seems to be good practice, following Dijkstra, Lamport and others, to
formulate appropriate such invariants and only then “derive” behaviour definitions accordingly.
In a rewrite of this research note, if ever, into a proper paper, the current author hopes to follow
proper practices. He hopes to find younger talent to co-author this effort.

10.9.2 Document Handling

I may appear odd to the reader that I now turn to document handling. One central aspect of
urban planning, strange, perhaps, to the reader, is that of handling the “zillions upon zillions”
of documents that enter into and accrue from urban planning. If handling of these documents is
not done properly a true nightmare will occur. So we shall briefly examine the urban planning
document situation ! From that we conclude that we must first try understand:

e What do we mean by a document?

10.9.2.1 Urban Planning Documents

The urban planning functions and the urban planning behaviours, including both the base and
the n derived variants, rely on documents. These documents are created, edited, read, copied,
and, eventually, shredded by urban-planners. Editing documents result in new versions of “the
same” document. While a document is being edited or read we think of it as not being accessible
to other urban-planners. If urban-planners need to read a latest version of a document while that
version is subject to editing by another urban planner, copies must first be made, before editing,
one for each “needy” reader. Once, editing has and readings have finished, the “reader” copies
need, or can, be shredded.

258 10 Urban Planning [Fall 2017]

10.9.2.2 A Document Handling System

In Chapter9 we sketch[ed] a document handling system domain.®? That is, not a document
handling software system, not even requirements for a document handling software system, but
just a description which, in essence, models documents and urban planners’ actions on documents.
(The urban planners are referred to as document handlers.) The description further models two
‘aggregate’ notions: one of ‘handler management’, and one of ‘document archive’. Both seem
necessary in order to “sort out” the granting of document access rights (that is, permissions to
perform operations on documents), and the creation and shredding of documents, and in order
to avoid dead-locks in access to and handling of documents.

10.9.3 Validation and Verification (V&V)

By validation of a document we shall mean: the primarily informal and social process of checking
that the document description meets customer expectations.

Validation serves to get the right product.

By verification of a document we shall mean: the primarily formal, i.e., mathematical process
of checking, testing and formal proof that the model, which the document description entails,
satisfies a number of properties.

Verification serves to get the product right.

By validation of the urban planning model of this document we shall understand the social
process of explaining the model to urban planning stakeholders, to obtain their reaction, and to
possibly change the model according to stakeholder objections.

By verification of the urban planning model of this document we shall understand the formal
process, based on formalisations of the argument and result types of the description, of testing,
model checking and formally proving properties of the model.

MORE TO COME

10.9.4 Urban Planning Project Management

In this research note we have focused on the urban planning project behaviours, their interactions,
and their information “passing”. Usually publications about urban planning: research papers,
technical papers, survey papers, etcetera, focus on specific “functions”. In this research note we
do not. We focus instead on what we can say about the domain of urban planning: the fact, or
the possibility, that an initial, a core, here referred to as a base, urban planning effort (i.e., project,
hence behaviour) can “spew off”, generate, a number of (derived, i.e., in some sense subsidiary),
more specialised, urban planning projects.

10.9.4.1 Urban Planning Projects

We think of a comprehensive urban planning project as carried out by urban planners. Asis evident
from the model the project consists of one base urban planning project and up to n derived urban
planning projects. The urban planners involved in these projects are professionals in the areas of
planning:

82 T had, over the years, since mid 1990s, reflected upon the idea of “what is a document ?”. A most recent version,
as I saw itin 2017, was “documented” in Chapter 7 [58]. But, preparing for my work, at TongJi University, Shanghai,
September 2017, I reworked my earlier notes [58] into what is now Chapter9.

10.9 Further Work 259

e master urban planning issues: @« industries, « water,
« residential and shopping, ® waste,
@ geodesy, % apartment buildings, o etcetera;
« geotechniques, ® villas,
« meteorology, ® recreational, e societal infrastructures:
® etcetera;
e master urban plans: @ health care,
e technological infrastructures: % schools,
« cartography, ® police,
% cadestral matters, % transport, % fire brigades,
% zoning; « electricity, ® efcetera;
« telecommunications,
e derived urban planning issues: @ gas, e etcetera, etcetera, etcetera!

To anyone with any experience in getting such diverse groups and individuals of highly skilled
professionals to work together it is obvious that some form of management is required. The
term ‘comprehensive’ was mentioned above. It is meant to express that the comprehensive urban
planning project is the only one “dealing” with a given geographic area, and that no other urban
planning projects “infringe” upon it, that is, “deal” with sub-areas of that given geographic area.

10.9.4.2 Strategic, Tactical and Operational Management

We can distinguish between

e strategic,
e tactical and
e operational

management.

10.9.4.2.1 Project Resources

But first we need take a look at the resources that management is charged with:

e the urban planners, i.e., humans, o office space,
e time, e support technologies: computing etc.,
e finances, e etcetera.

10.9.4.2.2 Strategic Management

By strategic management we shall understand the analysis and decisions of, and concerning,
scarce resources: people (skills), time, monies: their deployment and trade-offs.

10.9.4.2.3 Tactical Management

By tactical management we shall understand the analysis and decisions with respect to budget and
time plans, and the monitoring and control of serially reusable resources: office space, computing.
10.9.4.2.4 Operational Management

By operational management we shall understand the monitoring and control of the enactment,
progress and completion of individual deliverables, i.e., documents, the quality (adherence to

260 10 Urban Planning [Fall 2017]

“standards”, fulfillment of expectations, etc.) of these documents, and the day-to-day human
relations.

10.9.4.3 Urban Planning Management

The above (strategic, tactical & operational management) translates, in the context of urban
planning, into:

TO BE WRITTEN

Chapter 11
Swarms of Drones [November—December 2017]

Contents
11.1 AnlInformal Introductionttt ittt 263
11.1.1 Describable Entities 263
11.1.1.1 The Endurants: Parts i, 263
11.1.1.2 ThePerdurants i 264
11.1.2 The Contribution of [48] i 264
11.1.3 The Contribution of This Report i 264
11.2 Entities, Endurants.coiiiiiiiiiii ittt ittt ittt 264
11.2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types...... 265
11.2.1.1 Universe of DiSCOUISE.ttt 265
11.2.1.2 The Enterpriseot e i 266
11.2.1.3 From Abstract Sorts to Concrete Types 266
11.2.1.3.1 The Auxiliary Function xtr Ds: 266
11.2.1.3.2 CommandCenterc.oiiiiiieannn.. 267
11.2.1.3.3 Command Center Decomposition 267
11.2.2 Unique Identifiers 267
11.2.2.1 The Enterprise, the Aggregates of Drones and the Geography . 267
11.2.2.2 Unique Command Center Identifiers........................... 268
11.2.2.3 Unique Drone Identifiers 268
11.2.2.3.1 Auxiliary Function: xtr.dis:......................... 268
11.2.2.3.2 Auxiliary Function: xtr_D: 269
11.23 Mereologies i 269
11.2.3.1 Definition ... 269
11.2.3.2 Origin of the Concept of Mereology as Treated Here 269
11.2.3.3 Basic Mereology Principle i 269
11.2.3.4 Engineering versus Methodical Mereology 270
11.2.3.5 Planner Mereologyo, 270
11.2.3.6 Monitor Mereology i 271
11.2.3.7 Actuator Mereologycoviiiiiiiiiiiiii it 271
11.2.3.8 Enterprise Drone Mereology.............c.cooiiiiiiiiiiiieennnn. 272
11.2.3.9 ‘Other Drone Mereologyoviitiiiniiiiniieninnnnns 272
11.2.3.10 Geography Mereology............ 273
11.24 Attributeso 273
11.24.1 TheTime Sort. et 273
11.2.4.2 PoSItiONS 274
11.2.4.2.1 A Neighbourhood Concept......................... 274
11.2.4.3 Flight Plans e e 274
11.2.44 Enterprise Drone Attributes 275
11.2.44.1 Constituent Types 275
11.2.4.4.2 Attributes. o 276
11.2.4.4.3 Enterprise Drone Attribute Categories: 276
11.2.4.5 ‘Other’ Drones Attributes............t 276
11.2.4.5.1 ConstituentTypes ..., 276
11.2.4.5.2 Attributes.......... .. 276
11.2.4.6 Drone DynamicCst 277

261

262 11 Swarms of Drones [November—-December 2017]

11.2.4.7 DronePositions.............. i 277

11.2.4.8 Monitor Attributes............. 277

11.2.4.9 Planner Attributes. 278
11.2.4.9.1 Swarms and Businesses: 278

11.2.4.9.2 Planner Directories:.............. it 278

11.2.4.10 Actuator Attributes............ 279
11.2.4.11 Geography Attributes 280
11.2.4.11.1 Constituent Types:. 280

11.2.4.11.2 Attributes......... .. 280

11.3 Operations on Universe of Discourse States.................coovviiiiiiinin. 280
11.3.1 The NotionofaState, 281
11.3.2 Constants i 281
11.3.3 Operations 281
11.3.3.1 ADroneTransfer........... ..ot 281

11.3.3.2 An Enterprise Drone Changing Course 282
11.3.3.3 A Swarm Splittinginto TwoSwarms 282

11.3.3.4 Two Swarms Joining to form One Swarm 282

11.3.3.5 Efcetera ... 282

B =T [283
11.4.1 System Compilation 283
11.4.1.1 The Compile Functions 283

11.4.1.2 Some CSP Expression Simplifications 285

11.4.1.3 The Simplified Compilation...................., 285

11.4.2 An Early Narrative on Behaviours, 286
11.4.2.1 Either Endurants or Perdurants, Not Both! 286

11.4.2.2 Focus on Some Behaviours, Not All! 286

11.4.2.3 The Behaviours — a First Narrative............................. 287

1143 Channels 287
11.4.3.1 ThePartChannelsc i 288
11.4.3.1.1 General Remarks:. ..., 288

11.4.3.1.2 Part Channel Specifics............................. 288

11.4.3.2 Attribute Channels, General Principles 290
11.4.3.3 The Case Study Attribute Channels............................ 290
11.4.3.3.1 ‘Other Drones:c.ooiiiiiiiieiiiieeennnnnn. 290

11.4.3.3.2 Enterprise Drones:.............. 290

11.4.3.3.3 Geography:........ 291

11.4.4 The Atomic Behaviours............ i 291
11.4.4.1 Monitor Behaviour 291

11.4.4.2 Planner Behaviour i 292
11.4.4.2.1 The Auxiliary transfer Function 292

11.4.4.2.2 The Auxiliary flight_planning Function 293

11.4.4.3 Actuator Behaviour 294

11.4.4.4 ‘Other Drone Behaviour i, 295
11.4.4.5 Enterprise Drone Behaviour 296

11.4.4.6 Geography Behaviour.......... i 299

B TR 0T o T 11T T o 300

We speculate®® on a domain of swarms and drones monitored and controlled by a command
center in some geography. Awareness of swarms is registered only in an enterprise command
center. We think of these swarms of drones as an enterprise of either package deliverers, crop-
dusters, insect sprayers, search & rescuers, traffic monitors, or wildfire fighters — or several of
these, united in a notion of an enterprise possibly consisting of of “disjoint” businesses. We
analyse & describe the properties of these phenomena as endurants and as perdurants: parts one
can observe and behaviours that one can study. We do not yet examine the problem of drone air
traffic management®. The analysis & description of this postulated domain follows the principles,
techniques and tools laid down in [48].

83 A young researcher colleague, Dr. Yang ShaoFa, of the Software Institute of the Chinese Academy of Sciences in
Beijing, at our meeting in Beijing, early November 2017, told me that he was then about to get involved in algorithms
for drone maneuvering. So, true to me thinking, that, in order to reflect on such algorithms, one ought try understand
the domain. So I sketched the model of this chapter in the week, attending the ICFEM'2017 conference in Xi’An,
and presented the model to Dr. Yang upon my return to Beijing.

8 www.nasa.gov/feature/ames/first-steps-toward-drone-traffic-management, www.sciencedirect.com/science/ar-
ticle/pii/S2046043016300260

11.1 An Informal Introduction 263

11.1 An Informal Introduction

11.1.1 Describable Entities

11.1.1.1 The Endurants: Parts

In the universe of discourse we observe endurants, here in the form of parts, and perdurants, here
in the form of behaviours.

The parts are discrete endurants, that is, can be seen or touched by humans, or that can be
conceived as an abstraction of a discrete part.

We refer to Fig. 11.1.

UoD: Universe of Discourse

CC: Command Center Geography: G |

i
CA: Actuator ~ CP: Planner ~ CM: Monitor i
i

AED: Aggregate of Enterprise Drones AOD: Aggregate of 'Other’ Drones
‘ ("EDs: Set of Enterprise Drones h ODs: Set of ‘other’ drones
| | 00 00 0.0 \:) ° \: !
‘ 1 ed:ED ed:ED.. edED.. 'gtiiC_)lz_f"i?‘?______________?d_(qu i
& J

Fig. 11.1 Universe of Discourse

There is a universe of discourse, uod:UoD. The universe of discourse embodies: an enterprise,
e:E. The enterprise consists of an aggregate of enterprise drones, aed:AED (which consists of
a set, eds:EDs, of enterprise drones). and a command center, cc:CC; The universe of discourse
also embodies a geography, g:G. The universe of discourse finally embodies an aggregate of
‘other’” drones, aod:AOD (which consists of a set, 0ds:0ODs, of these ‘other’ drones). A drone is an
unmanned aerial vehicle.8> We distinguish between enterprise drones, ed:ED, and ‘other’ drones,
0d:0D. The pragmatics of the enterprise swarms is that of providing enterprise drones for one
or more of the following kinds of businesses:3® delivering parcels (mail, packages, etc.)®”, crop
dusting®®, aerial spraying®, wildfire fighting®, traffic control’!, search and rescue”?, etcetera. A
notion of swarm is introduced. A swarm is a concept. As a concept a swarm is a set of drones. We

8 Drones are also referred to as UAVs.

86 http://www.latimes.com/business/la-fi-drone-traffic-20170501-htmlstory.html

87 https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011 and https://www.digitaltrends.com/cool-
tech/amazon-prime-air-delivery-drones-history-progress/

8 http://www.uavcropdustersprayers.com/, http://sprayingdrone.com/

89 https://abjdrones.com/commercial-drone-services/industry-specific-solutions/agriculture/

90 https://www.smithsonianmag.com/videos/category/innovation/drones-are-now-being-used-to-battle-wildfires/

o1 https://business.esa.int/sites/default/files/Presentation%200n%20UAV %20Road %20Surface%20Monitoring
%20and %20Traffic%20Information_0.pdf

92 http://sardrones.org/

264 11 Swarms of Drones [November—-December 2017]

associate swarms with businesses. A business has access to one or more swarms. The enterprise
command center, cc:CC, can be seen as embodying three kinds of functions: a monitoring service,
cm:CM, whose function it is to know the locations and dynamics of all drones, whether enterprise
drones or ‘other” drones; a planning service, cp:CP, whose function it is to plan the next moves
of all that enterprise’s drones; and an actuator service, ca:CA, whose functions it is to guide that
enterprise’s drones as to their next moves. The swarm concept “resides” in the command planner.

11.1.1.2 The Perdurants

The perdurants are entities for which only a fragment exists if we look at or touch them at any
given snapshot in time, that is, were we to freeze time we would only see or touch a fragment of
the perdurant.

The major ***

MORE TO COME

11.1.2 The Contribution of [48]

The major contributions of [48] are these: a methodology®® for analysing & describing manifest
domains®, where the methodology builds on an ontological principle of viewing the domains as
consisting of endurants and perdurants. Endurants possess properties such as unique identifiers,
mereologies, and attributes. Perdurants are then analysed & described as either actions, events,
or behaviours. The techniques to go with the ***

The tools are *** MORE TO COME
MORE TO COME

11.1.3 The Contribution of This Report

TO BE WRITTEN

We relate our work to that of [124].

The main part of this report is contained in the next three sections: endurants; states, constants,
and operations on states; and perdurants.

11.2 Entities, Endurants

By an entity we shall understand a phenomenon, i.e., something that can be observe d, i.e., be
seen or touched by humans, or that can be conceived as an abstraction of an entity. We further
demand that an entity can be objectively described.

% By a methodology we shall understand a set of principles for selecting and applying a number of techniques,
using tools, to — in this case — analyse & describe a domain.

%4 A manifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”, and
perdurant, that is temporally “fleeting” entities. Endurant entities are either parts or components or materials.
Perdurant entities are either actions or events or behaviours.

11.2 Entities, Endurants 265

By an endurant we shall understand an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we
would still be able to observe the entire endurant.

11.2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types

By a discrete endurant we shall understand an endurant which is separate, individual or distinct
in form or concept.

By a part we shall understand a discrete endurant which the domain engineer chooses to endow
with internal qualities such as unique identification, mereology, and one or more attributes. We
shall define the concepts of unique identifier, mereology and attribute later in this report.

Atomic parts are those which, in a given context, are deemed to not consist of meaningful,
separately observable proper sub-parts.

Sub-parts are parts.

Composite parts are those which, in a given context, are deemed to indeed consist of meaningful,
separately observable proper sub-parts.

By a sort we shall understand an abstract type.

By a type we shall here understand a set of values “of the same kind” —where we do not further
define what we mean by the same kind”.

By an abstract type we shall understand a type about whose values we make no assumption
[as to their atomicity or composition.

By a concrete type we shall understand a type about whose values we are making certain
assumptions as to their atomicity or composition, and, if composed then how and from which
other types they are composed.

11.2.1.1 Universe of Discourse

By a universe of discoursee shall understand that which we can talk about, refer to and whose en-
tities we can name. Included in that universe is the geography. By geography we shall understand
a section of the globe, an area of land, its geodesy, its meteorology, etc.

1126. In the Universe of Discourse we can observe the following parts:

a. an atomic Geography,
b. a composite Enterprise,
c. and an aggregate of ‘Other”® Drones.

type

1126 UoD, G, E, AOD

value

1126a obs_G:UoD — G
1126b obs_E: UoD — E
1126¢c obs_AOD: UoD — AOD

5 We apologize for our using the term ‘other’ drones. These ‘other’ drones are not necessarily adversary or enemy
drones. They are just there — coexisting with the enterprise drones.

266 11 Swarms of Drones [November—-December 2017]

11.2.1.2 The Enterprise

1127. From an enterprise one can observe:

a. a(n enterprise) command center. and
b. an aggregate of enterprise drones.

type

1127a CC

1127a AED

value

1127a obs_CC: E — CC
1127b obs_AED: E — AED

11.2.1.3 From Abstract Sorts to Concrete Types

1128. From an aggregate of enterprise drones, AED, we can observe a possibly empty set of drones,
EDs

1129. From an aggregate of ‘other’ drones, AOD, we can observe a possibly empty set, ODs, of ‘other’
drones.

type

1128 ED

1128 EDs = ED-set

1129 OD

1129 ODs = OD-set

value

1128 obs_EDs: AED — EDs
1129 obs_ODs: AOD — ODs

Drones, whether “other’ or ‘enterprise’, are considered atomic.

11.2.1.3.1 The Auxiliary Function xtr_Ds:

We define an auxiliary function, xtr_Ds.

1130. From the universe of discourse we can extract all its drones;
1131. similarly from its enterprise;

1132. similarly from the aggregate of enterprise drones; and

1133. from an aggregate of ‘other’ drones.

1130 xtr_Ds: UoD — (ED|OD)-set

1130 xtr_.Ds(uod) =

1130 U{xtr_Ds(obs_AED(obs_E(uod)))} U xtr_Ds(obs_AOD(uod))
1131 xtr_.Ds: E — ED-set

1131 xtr_Ds(e) = xtr_Ds(obs_AED(e))

1132 «xtr_.Ds: AED — ED-set

1132 xtr_Ds(aed) = obs_EDs(obs_EDs(aed))

1133 xtr_.Ds: AOD — OD-set

1133 xtr_.Ds(aod) = obs_ODs(aod)

11.2 Entities, Endurants 267

1134. In the universe of discourse a drone cannot be both among the enterprise drones and among
the ‘other” drones.

axiom

1134 V uod:UoD,e:E,aed:ES,aod:AOD -

1134 e=obs_E(uod)Aaed=obs_AED(e)Aaod:obs_AOD(uod)
1134 = xtr_.Ds(aed) N xtr_Ds(aod) ={}

The functions are partial as the supplied swarm identifier may not be one of the universe of
discourse, etc.

11.2.1.3.2 Command Center

A Simple Narrative Figure 11.1 on page 263 shows a graphic rendition of a space of interest. The
command center, CC, a composite part, is shown to include three atomic parts: An atomic part,
the monitor, CM. It monitors the location and dynamics of all drones. An atomic part, the planner,
CP. It plans the next, “friendly”, drone movements. The command center also has yet an atomic
part, the actuator, CA. It informs “friendly” drones of their next movements. The planner is where
“resides” the notion of a enterprise consisting of one or more businesses, where each business has
access to zero, one or more swarms, where a swarm is a set of enterprise drone identifiers.

The purpose of the control center is to monitor the whereabouts and dynamics of all drones (done
by CM); to plan possible next actions by enterprise drones (done by CP); and to instruct enterprise
drones of possible next actions (done by CA).

11.2.1.3.3 Command Center Decomposition

From the composite command center we can observe

1135. the center monitor, CM;
1136. the center planner, CP; and
1137. the center actuator, CA .

type value

1135 CM 1135 obs.CM: CC — CM
1136 CP 1136 obs_.CP: CC — CP
1137 CA 1137 obs_.CA: CC — CA

11.2.2 Unique Identifiers

Parts are distinguishable through their unique identifiers. A unique identifier is a further unde-
fined quantity which we associate with parts such that no two parts of a universe of discourse are
identical.

11.2.2.1 The Enterprise, the Aggregates of Drones and the Geography

1138. Although we may not need it for subsequent descriptions we do, for completeness of descrip-
tion, introduce unique identifiers for parts and sub-parts of the universe of discourse:

a. Geographies, 9:G, have unique identification.

268 11 Swarms of Drones [November—-December 2017]
b. Enterprises, e:E, have unique identification.

c. Aggregates of enterprise drones, aed:AED, have unique identification.

d. Aggregates of ‘other” drones, aod:AOD, have unique identification.

e. Command centers, cc:CC, have unique identification.

type

1138 Gl, El, AEDI, AODI, CCI
value

1138a uid_G: G — Gl

1138b uid_E: E — El

1138c uid_AED: AED — AEDI
1138d uid_OD: AOD — AQDI
1138e uid_CC: CC — CCI

11.2.2.2 Unique Command Center Identifiers

1139. The monitor has a unique identifier.
1140. The planner has a unique identifier.
1141. The actuator has a unique identifier.

type value

1139 CMI 1139 uid_CM: CM — CMI
1140 CPI 1140 uid_CP: CP — CPI
1141 CAl 1141 uid_CA: CA — CAl

11.2.2.3 Unique Drone ldentifiers

1142. Drones have unique identifiers.

a. whether enterprise or
b. ‘other’” drones

type

1142 DI =EDI| ODI
value

1142a uid_ED: ED — EDI
1142b uid_OD: OD — ODI

11.2.2.3.1 Auxiliary Function: xtr_dis:

1143. From the aggregate of enterprise drones;
1144. From the aggregate of ‘other” drones;
1145. and from the two parts of a universe of discourse: the enterprise and the ‘other’ drones.

value
1143 xtr_dis: AED — Dl-set

1143 xtr_dis(aed) = {uid_ED(ed)|ed:ED-ed € obs_EDs(aed)}
1144 xtr_dis: AOD — Dl-set

1144 xtr_dis(aod) = {uid_D(od)|od:OD-od € obs_ODs(aod)}

11.2 Entities, Endurants 269

1145 «xtr_dis: UoD — Dl-set
1145 xtr_dis(uod) = xtr_dis(obs_AED(uod)) U xtr_dis(obs_AOD(uod))

11.2.2.3.2 Auxiliary Function: xtr_D:

1146. From the universe of discourse, given a drone identifier of that space, we can extract the
identified drone;

1147. similarly from the enterprise;

1148. its aggregate of enterprise drones; and

1149. and from its aggregate of ‘other’ drones;

1146 xtr.D: UoD — DI - D

1146 xtr_D(uod)(di) = let d:D - d € xtr_Ds(uod)Auid_D(d)=di in d end
1146 pre: di € xtr_dis(soi)

1147 xtr.D:E - DI > D

1147 xtr_D(e)(di) = let d:D - d € xtr_Ds(obs_ES(e))Auid_D(d)=di in d end
1147 pre: di € xtr_dis(e)

1148 xtr.D: AED - DI > D

1148 xtr_.D(aed)(di) = = 1let d:D - d € xtr_Ds(aed)Auid_D(d)=di in d end
1148 pre: di € xtr_dis(es)

1149 xtr.D: AOD — DI =D

1149 xtr_.D(aod)(di) = let d:D - d € xtr_Ds(aod)Auid_D(d)=di in d end
1149 pre: di € xtr_dis(ds)

11.2.3 Mereologies

11.2.3.1 Definition

Mereology is the study and knowledge of parts and their relations (to other parts and to the
“whole”) [75].

11.2.3.2 Origin of the Concept of Mereology as Treated Here

We shall [thus] deploy the concept of mereology as advanced by the Polish mathematician, logician
and philosopher Stanistaw Léschniewski. Douglas T. (“Doug”) Ross’® also contributed along the
lines of our approach [142] — hence [51] is dedicated to Doug.

11.2.3.3 Basic Mereology Principle

The basic principle in modelling the mereology of a any universe of discourse is as follows:

Let p’ be a part with unique identifier p/,. Let p be a sub-part of p” with unique identifier p;;. Let
the immediate sub-parts of p be p1,p2,...,pn With unique identifiers py,,,p2,,,...,pn,- That p has

% Doug Ross is the originator of the term CAD for computer aided design, of APT for Automatically Programmed
Tools, a language to drive numerically controlled manufacturing, and also SADT for Structure Analysis and Design
Techniques

270 11 Swarms of Drones [November—-December 2017]

mereology (pz’.d, {p1, 0240+ -1 Pn})- The parts p;, for 1 < j <n for n>2, if atomic, have mereologies
Pid, {plid,pgid,...,pj_lid,pj+1id,...,pnid}) — where we refer to the second term in that pair by m; and if
composite, have mereologies (piz, (n,m’)), where the m’ term is the set of unique identifiers of the
sub-parts of p;.

11.2.3.4 Engineering versus Methodical Mereology

We shall restrict ourselves to an engineering treatment of the mereology of our universe of dis-
course. That is in contrast to a strict, methodical treatment. In a methodical description of the
mereologies of the various parts of the universe of discourse one assigns a mereology to every
part: to the enterprise, the aggregate of ‘other’ drones and the geography; to the command center
of the enterprise and its aggregate of drones; to the monitor, the planner and the actuator of the
command center; to the drones of the aggregate of enterprise drones, and to the drones of the
aggregate of ‘other’ drones. We shall “shortcut” most of these mereologies. The reason is this:
The pragmatics of our attempt to model drones, is rooted in our interest in the interactions be-
tween the command center’s monitor and actuator and the enterprise and ‘other” drones. For
“completeness” we also include interactions between the geography’s meteorology and the above
command center and drones. The mereologies of the enterprise, E, the enterprise aggregate of
drones AED, and the set of (enterprise) drones, EDs, do not involve drone identifiers. The only
“thing” that the monitor and actuator are interested in are the drone identifiers. So we shall thus
model the mereologies of our universe of discourse by omitting mereologies for the enterprise,
the aggregates of drones, the sets of these aggregates, and the geography, and only describe the
mereologies of the monitor, planner and actuator, the enterprise drones and the ‘other’ drones.

11.2.3.5 Planner Mereology

1150. The planner mereology reflects the center planners awareness’” of the monitor, the actuator,,
and the geography of the universe of discourse.

1151. The plannner mereology further reflects that a eureka®® is provided by, or from, an outside
source reflected in the autonomous attribute Cmdl. The value of this attribute changes at its
own volition and ranges over commands that directs the planner to perform either of a number
of operations.

Eureka examples are: calculate and effect a new flight plan for one or more designated swarms
of a designated business; effect the transfer of an enterprise drone from a designated swarm of a
business to another, distinctly designated swarm of the same business; etcetera.

type

1150 CPM = (CAl x CMI x Gl) x Eureka
1151 Eureka == mkNewFP(BIxSl-setxPlan)
1151 | mkChgDB(fsi:Slxtsi:SIxdixDlI)
1151 [...

value

1150 mereo.CP: CP — CPM

1151 Plan = ..

%7 That “awareness” includes, amongst others, the planner obtaining information from the monitor of the where-
abouts of all drones and providing the actuator with directives for the enterprise drones — all in the context of the
land and “its” meteorology.

%8 "Eureka” comes from the Ancient Greek word eppnxa hetireka, meaning “I have found (it)”, which is the first
person singular perfect indicative active of the verb eupnkw heurisko "I find”.[1] It is closely related to heuristic,
which refers to experience-based techniques for problem solving, learning, and discovery.

11.2 Entities, Endurants 271

We omit expressing a suitable axiom concerning center planner mereologies. Our behavioural
analysis & description of monitoring & control of operations on the space of drones will show that
command center mereologies may change.

11.2.3.6 Monitor Mereology

The monitor’s mereology reflects its awareness of the drones whose position and dynamics it is
expected to monitor.

1152. The mereology of the center monitor is a pair: the set of unique identifiers of the drones of the
universe of discourse, and the unique identifier of the center planner.

type
1152 CMM = Dl-set x CPI
value

1152 mereo_.CM: CM —» CMM

1153. For the universe of discourse it is the case that

a. the drone identifiers of the mereology of a monitor must be exactly those of the drones of
the universe of discourse, and

b. the planner identifier of the mereology of a monitor must be exactly that of the planner of
the universe of discourse.

axiom

1153 V uod:UoD,e:E,cc:CC,cp:CP,cm:CM,g:G -

1153 e=obs_E(uod)Acc=0bs_CC(e)Acp=0bs_CP(cc)Acm=0obs_CM(cc) =
1153 let (dis,cpi) = mereo_CM(cm) in

1153a dis = xtr_dis(uod)

1153b A cpi = uid_CP(cp) end

11.2.3.7 Actuator Mereology

The center actuator’s mereology reflects its awareness of the enterprise drones whose position
and dynamics it is expected to control.

1154. The mereology of the center actuator is a pair: the set of unique identifiers of the business
drones of the universe of discourse, and the unique identifier of the center planner.

type
1154 CAM = EDl-set x CPI
value

1154 mereo_CA: CA — CAM

1155. For all universes of discourse

a. the drone identifiers of the mereology of a center actuator must be exactly those of the
enterprise drones of the space of interest (of the monitor), and

b. the center planner identifier of the mereology of a center actuator must be exactly that of the
center planner of the command center of the space of interest (of the monitor)

272 11 Swarms of Drones [November—-December 2017]

axiom

1155 V uod:UoD,e:E,cc:CC,cp:CPca:CA -

1155 e=obs_E(uod)Acc=0bs_CC(e)Acp=0bs_CP(cc)Aca=obs_CA(cc) =
1155 let (dis,cpi) = mereo_CA(ca) in

1155a dis = tr_dis(e)

1155b A cpi = uid_CP(cp) end

11.2.3.8 Enterprise Drone Mereology

1156. The mereology of an enterprise drone is the triple of the command center monitor, the command
center actuator®’, and the geography.

type
1156 EDM = CMI x CAl x Gl
value

1156 mereo_ED: ED — EDM

1157. For all universes of discourse the enterprise drone mereology satisfies:

a. the unique identifier of the first element of the drone mereology is that of the enterprise’s
command monitor,

b. the unique identifier of the second element of the drone mereology is that of the enterprise’s
command actuator, and

c. the unique identifier of the third element of the drone mereology is that of the universe of
discourse’s geography.

axiom

1157 V uod:UoD,e:E,cm:CM,ca:CA,ed:ED,g:G -

1157 e=obs_E(uod)Acm=0bs_CM(obs_CC(e))Aca=obs_CA(obs_CC(e))
1157 A ed e xtr_.Ds(e)Ag=0obs_G(uod) =

1157 let (cmi,cai,gi) = mereo_D(ed) in

1157a cmi = uid_CMM(ccm)

1157b A cai = uid_CAl(cai)

1157¢ A gi = uid_G(g) end

11.2.3.9 ‘Other’ Drone Mereology

1158. The mereology of an ‘other” drone is a pair: the unique identifier of the monitor and the unique
identifier of the geography.

type
1158 ODM = CMI x Gl
value

1158 mereo_OD: OD — ODM

We leave it to the reader to formulate a suitable axiom, cf. axiom 1157.

% The command center monitor and the command center actuator and their unique identifiers will be defined in
Items 1135, 1137 on page 267, 1139 and 1141 on page 268.

11.2 Entities, Endurants 273

11.2.3.10 Geography Mereology

1159. The geography mereology is a pair'®

the set of all drones.

of the unique of the unique identifiers of the planner and

type

1159 GM = CPI x CMI x Dl-set
value

1159 mereo.G: G —» GM

We leave it to the reader to formulate a suitable axiom, cf. axiom 1157 on the facing page.

11.2.4 Attributes

We analyse & describe attributes for the following parts: enterprise drones and ‘other” drones,
monitor, planner and actuator, and the geography. The attributes, that we shall arrive at, are
usually concrete in the sense that they comprise values of, as we shall call them, constituent types.
We shall therefore first analyse & describe these constituent types. Then we introduce the part
attributes as expressed in terms of the constituent types. But first we introduce three notions core
notions: time, Sect. 11.2.4.1, positions, Sect. 11.2.4.2, and flight plans, Sect.11.2.4.3.

11.2.4.1 The Time Sort

1160. Let the special sort identifier T denote times
1161. and the special sort identifier TI denote time intervals.
1162. Let identifier time designate a “magic” function whose invocations yield times.

type

1160 T

1160 TIT

value

1160 time: Unit—> T

1163. Two times can not be added, multiplied or divided, but subtracting one time from another
yields a time interval.

1164. Two times can be compared: smaller than, smaller than or equal, equal, not equal, etc.

1165. Two time intervals can be compared: smaller than, smaller than or equal, equal, not equal, etc.

1166. A time interval can be multiplied by a real number.

Etcetera.

value

1163 ©: Tx T — TI

1164 <,<,=,#,>,>: T x T — Bool
1165 <,<,=,#,>2,>: TI X TI — Bool
1166 ®: TI x Real — TT

100 30.11.2017: I think!

274 11 Swarms of Drones [November—-December 2017]

11.2.4.2 Positions

Positions (of drones) play a pivotal role.

1167. Each position being designated by
1168. longitude, latitude and altitude.

type
1168 LO, LA, AL
1167 P=LO x LA x AL

11.2.4.2.1 A Neighbourhood Concept

1169. Two positions are said to be neighbours if the distance between them is small enough for a

drone to fly from one to the other in one to three minutes’ time — for drones flying at a speed
below Mach 1.

value
1169 neighbours: P x P — Bool

We leave the neighbourhood proposition further undefined.

11.2.4.3 Flight Plans

A crucial notion of our universe of discourse is that of flight plans.

1170. A flight plan element is a pair of a time and a position.
1171. A flight plan is a sequence of flight plan elements.

type
1170 FPE=Tx P
1171 FP = FLE*

1172. such that adjacent entries in flight plans

a. record increasing times and
b. neighbouring positions.

axiom

1172 V fp:FPRi:Nat - {i,i+1}Cindsfp =
1172 let (t,p)=fpli], (t',p’)=fpli+1] in
1172a t<t

1172b A neighbours(p,p’)

1172 end

11.2 Entities, Endurants 275

11.2.4.4 Enterprise Drone Attributes
11.2.4.4.1 Constituent Types

1173. Enterprise drones have positions expressed, for example, in terms of longitude, latitude and
altitude. 11

1174. Enterprise drones have velocity which is a vector of speed and three-dimensional, i.e., spatial,
direction.

1175. Enterprise drones have acceleration which is a vector of increase/decrease of speed per time
unit and direction.

1176. Enterprise drones have orientation which is expressed in terms of three quantities: yaw, pitch

and roll.102

We leave speed, direction and increase/decrease per time unit unspecified.

type

1173 POS =P

1174 VEL = SPEED x DIRECTION

1175 ACC = IncrDecrSPEEDperTimeUnit x DIRECTION
1176 ORI = YAW x PITCH x ROLL

1174 SPEED = ...

1174 DIRECTION = ...

1175 IncrDecrSPEEDperTimeUnit = ...

Pitch Axis
A

Roll Axis

Yaw Axis

Fig. 11.2 Aircraft Orientation

101 T ongitude is a geographic coordinate that specifies the east-west position of a point on the Earth’s surface. It is
an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda. Meridians (lines
running from the North Pole to the South Pole) connect points with the same longitude. Latitude is a geographic
coordinate that specifies the northsouth position of a point on the Earth’s surface. Latitude is an angle (defined
below) which ranges from 0° at the Equator to 90° (North or South) at the poles. Lines of constant latitude, or
parallels, run eastwest as circles parallel to the equator. Altitude or height (sometimes known as depth) is defined
based on the context in which it is used (aviation, geometry, geographical survey, sport, and many more). As a
general definition, altitude is a distance measurement, usually in the vertical or "up” direction, between a reference
datum and a point or object. The reference datum also often varies according to the context.

102 Yaw, pitch and roll are seen as symmetry axes of a drone: normal axis, lateral (or transverse) axis and longitudinal
(or roll) axis. See Fig. 11.2.

276 11 Swarms of Drones [November—-December 2017]

11.2.4.4.2 Attributes

1177. One of the enterprise properties is that of its dynamics which is seen as a quadruple of velocity,
acceleration, orientation and position. It is recorded as a reactive attribute.

1178. Enterprise drones follow a flight course, as prescribed in and recorded as a programmable
attribute, referred to a the future flight plan, FFP.

1179. Enterprise drones have followed a course recorded, also a programmable attribute, as a past
flight plan list, PFPL.

1180. Finally enterprise drones “remember”, in the form of a programmable attribute, the geography
(i.e., the area, the land and the weather) it is flying over and in!

type
1180 ImG = AXLxW
1177 DYN = s_vel:VEL x s_acc:ACC x s_ori:ORI x s_pos:POS

1178 FPL=FP
1179 PFPL = FP*
value

1177 attr_.DYN: ED — DYN
1178 attr_.FPL: ED — FPL
1179 attr_.PFPL: ED — PFPL
1180 attr_ImG: ED — ImG

Enterprise, as well as ‘other” drone, positions must fall within the Euclidian Point Space of the
geography of the universe of discourse. We leave that as an axiom to be defined — or we could
decide that if a drone leaves that space then it is lost, and if drones suddenly “appear, out of the
blue”, then they are either “brand new”, or “reappear”.

11.2.4.4.3 Enterprise Drone Attribute Categories:

The position, velocity, acceleration, position and past position list attributes belong to the reactive
category. The future position list attribute belong to the programmable category. Drones have a
“zillion” more attributes — which may be introduced in due course.

11.2.4.5 ‘Other’ Drones Attributes

11.2.4.5.1 Constituent Types

The constituent types of ‘other” drones are similar to those of some of the enterprise drones.

11.2.4.5.2 Attributes

1181. ‘Other’ drones have dynamics, dyn:DYN.
1182. ‘Other’ drones “remember”, in the form of a programmable attribute, the immediate geography,
ImG (i.e., the area, the land and the weather) it is flying over and in !

type

1182 A, L, W

1182 ImG = AXLxW
value

1181 attr_.DYN: OD — DYN

11.2 Entities, Endurants 277

1182 attr_ImG: OD — ImG

11.2.4.6 Drone Dynamics

1183. By a timed drone dynamics, TiDYN, we understand a quadruplet of time, position, dynamics
and immediate geography.

1184. By a current drone dynamics we shall understand a drone identifier-indexed set of timed drone
dynamics.

1185. By a record of [traces of] timed drone dynamics we shall understand a drone identifier-indexed
set of sequences of timed drone dynamics.

type

1183 TiDYN =T x POS x DYN x ImG

1184 CuDD = (EDI + TiDYN) U (ODI + TiDYN)
1185 RoDD = (EDI + TiDYN") U (ODI # TiDYN")

We shall use the notion of current drone dynamics as the means whereby the monitor ascertains
(obtains, by interacting with drones) the dynamics of drones, and the notion of a record of [traces
of] drone dynamics in the monitor.

11.2.4.7 Drone Positions

1186. For all drones whether enterprise or ‘other’, their positions must lie within the geography of
their universe of discourse.

axiom

1186 V uod:UoD,e:E,q:G,d:(ED|OD) -

1186 e = obs_E(uod) A g = obs_G(uod) A d € xtr_Ds(uod) =

1186 let eps = attr_.EPS(g), (_, ,p) = attr_DYN(d) in p € eps end

11.2.4.8 Monitor Attributes

The monitor “sits between” the drones whose dynamics it monitors and the planner which it
provides with records of drone dynamics. Therefore we introduce the following.

1187. The monitor has just one, a programmable attribute: a trace of the most recent and all past time-
stamped recordings of the dynamics of all drones, that is, an element rodd:RoDD, cf. Item 1185.

type

1187 MRoDD = RoDD

value

1187 attr. MRoDD: CM — MRoDD

The monitor “obtains” current drone dynamics, cudd:CuDD (cf. Item 1184) from the drones and
offers records of [traces of] drone dynamics,(cf. Item 1185) rodd:RoDD, to the planner.

278 11 Swarms of Drones [November—-December 2017]
11.2.4.9 Planner Attributes
11.2.4.9.1 Swarms and Businesses:

The planner is where all decisions are made with respect to where enterprise drones should
be flying; which enterprise drones fly together, which no longer — (with this notion of “flying
together” leading us to the concept of swarms); which swarms of enterprise drones do which
kinds of work — (with this notion of work specialisation leading us to the concept of businesses.)

1188. The is a notion of a business identifier, Bl.

type
1188 BI

11.2.4.9.2 Planner Directories:

Planners have three directories. These are attributes, BDIR (businesses), SDIR (swarms) and DDIR
(drones).

1189. BDIR records which swarms are resources of which businesses;

1190. SDIR records which drones “belong” to which swarms.

1191. DDIR “keeps track” of past and present enterprise drone positions, as per enterprise drone
identifier.

1192. We shall refer to this triplet of directories by TDIR

type

1189 BDIR = Bl #» Sl-set

1190 SDIR = S| + Dl-set

1191 DDIR = DI #» RoDD

1192 TDIR = BDIR x SDIR x DDIR
value

1189 attr_.BDIR: CP — BDIR

1190 attr_.S