
Dines Bjørner

Rigorous Domain Descriptions

A Compendium of Examples – a Torso

November 15, 2021: 16:12

The Domain Models are according to this book !

Publication date: 11.11.2021. ISBN 978-3-030-73483-1

www.imm.dtu.dk/˜db/2021/dd/dd.pdf

© Dines Bjørner

ii

Dines Bjørner Professor Emeritus

Fredsvej 11 Technical University of Denmark

DK 2840 Holte DK-2800 Kgs.Lyngby
Denmark Denmark

• This version is to not be distributed electronically.
• Please respect the© Dines Bjørner, 2021

Editorial Remarks as of November 15, 2021: 16:12 •

This compendium was collected and edited from 16 reports •

All of those were also accessible on the Internet •

The compendium editing started in July 2021 •
It is ongoing •

A target for a first completion is late Fall 2021 •
Sunday, August 1, 08:24am, 2021, I finished correcting undefined and multiple references •

Later I shall be properly editing each chapter text •

I added Chapter 8 on Sept. 24, 2021 •

iii

Preface

The Triptych Dogma

In order to specify software,

we must understand its requirements. In order to prescribe requirements

we must understand the domain.

So we must study, analyse and describe domains.

Domain Science & Engineering: In [55, Domain Science & Engineering – A Foundation for
Software Development] we introduce the concept of domains and domain descriptions, and
we present a method for analysing & describing domains. Studying the present compendium
presumes that you are either reading or have read [55].

Examples: [55] proposes a rigorous approach to the analysis & description of domains, that is,
[55, Chapters 4, 5 and 7], puts forward a pair of analysis & description calculi. In order to develop,
hone and justify these calculi, I have, over the years, sketched a number of domain descriptions,
some dates back from before the ideas of analysis & description calculi arose.

[55] is full of examples. Each illustrates a methodological point : a principle, a technique or a
tool. But only by studying “across” an entire set of the road transport examples might the reader
get a “feel” for the software engineering of a domain description.

This compendium then serves that purpose.
Caveat: The examples are “uneven”. Many examples are not completed – remain a torso. Sections
are set aside for narratives and formalisations, but these have yet to be done ! Some references may
be erroneous ! ? Earlier examples do not fully reflect the “final” analysis & description calculi. Most
recent examples do. We have annotated chapter titles with the approximate time of the conception
of their domain description.

Dines Bjørner. November 15, 2021: 16:12
Fredsvej 11, DK-2840 Holte, Denmark

iv

A Reading Guide

There are three parts:

• Part I contains just Chapter 0. It covers basic modeling techniques for such domains which are
characterised by graph-like endurants.

• Part II contains Chapters 1–16. It covers a wide variety of domains – in the sense that we
primarily aim at.

• Part III contains Chapters 17–18. The two domains covered here [Stock Exchange and an Internet
based so-called Virtual Shared Memory] somehow fall outside a main characterisation of what
domains are. Chapter 19 contains the bibliography.

Most chapters present the domain description in the following order:

Endurants

External Qualities

Parts, obs_P

State

Internal Qualities

Unique Identifiers

uid_P

all unique identifiers

uniqueness of all parts

Mereology

mereo_P

axiom: wellformedness

Attributes

attributes

attr_A

Perdurants

Channels

Behaviours

Signatures

Definitions

System Initialisation

Note the obs P, uid P, mereo P, attributes, attr A observer functions.

There are two Appendices:

• A. A Domain Analysis & Description Primer. If you do not have easy access to [55, Bjørner:
Domain Science & Engineering, 2021] then this primer may help you.

• B. An RSL Primer. RSL is a primary tool of all pour domain descriptions.

•••

A first sound Foundation for Software Engineering:

. [55, “The Monograph”]

Contents

Part I A Prelude “Domain” Description

0 Graphs [February 2021] . 3
0.1 Introduction . 4
0.2 Examples of Networks . 5
0.3 Classical Mathematical Models . 12
0.4 Our General Graph Model . 16
0.5 The Nets Domain . 34

Part II Main Examples

1 Rail Systems [1993–2007, 2020] . 37
1.1 Endurants – Rail Nets and Trains . 38
1.2 Transcendental Deduction . 51
1.3 Perdurants . 53
1.4 Closing . 55

2 Road Transport [2007–2017] . 57
2.1 The Road Transport Domain . 58
2.2 External Qualities . 58
2.3 Internal Qualities . 61
2.4 Perdurants . 68
2.5 System Initialisation . 74

3 The Blue Skies [August 2021] . 77
3.1 Introdution . 77
3.2 Endurants . 78
3.3 Perdurants . 78
3.4 Conclusion . 78

4 The 7 Seas [August 2021] . 79
4.1 Introduction . 80
4.2 Endurants . 80
4.3 Perdurants . 93
4.4 Conclusion . 93

5 Pipelines [2008] . 95
5.1 Photos of Pipeline Units and Diagrams of Pipeline Systems . 96
5.2 Non-Temporal Aspects of Pipelines . 96
5.3 State Attributes of Pipeline Units . 105
5.4 Pipeline Actions . 107
5.5 Connectors . 110
5.6 On Temporal Aspects of Pipelines . 112
5.7 A CSP Model of Pipelines . 112
5.8 Conclusion . 113

v

vi Contents

6 Simple Credit Card Systems [May 2016] . 115
6.1 Introduction . 115
6.2 Endurants . 116
6.3 Perdurants . 119

7 Weather Systems [November 2016] . 125
7.1 On Weather Information Systems . 126
7.2 Major Parts of a Weather Information System . 127
7.3 Endurants . 128
7.4 Perdurants . 133
7.5 Conclusion . 139

8 Automobile Assembly Lines [September 2021] . 141
8.1 Introduction . 143
8.2 A Domain Analysis & Description . 144
8.3 Discussion . 178
8.4 Conclusion . 178

9 Document Systems [Summer 2017] . 181
9.1 Introduction . 182
9.2 A System for Managing, Archiving and Handling Documents . 182
9.3 Principal Endurants . 183
9.4 Unique Identifiers . 183
9.5 Documents: A First View . 184
9.6 Behaviours: An Informal, First View . 186
9.7 Channels, A First View . 187
9.8 An Informal Graphical System Rendition . 188
9.9 Behaviour Signatures . 188
9.10 Time . 189
9.11 Behaviour “States” . 190
9.12 Inter-Behaviour Messages . 191
9.13 A General Discussion of Handler and Document Interactions . 194
9.14 Channels: A Final View . 195
9.15 An Informal Summary of Behaviours . 195
9.16 The Behaviour Actions . 198
9.17 Documents in Public Government . 207
9.18 Documents in Urban Planning . 207

10 Urban Planning [Fall 2017] . 209
10.1 Structures and Parts . 212
10.2 Unique Identifiers . 215
10.3 Mereologies . 220
10.4 Attributes . 224
10.5 The Structure Compilers . 234
10.6 Channel Analysis and Channel Declarations . 236
10.7 The Atomic Part Translators . 240
10.8 Initialisation of The Urban Space Analysis & Planning System . 255
10.9 Further Work . 257

11 Swarms of Drones [November–December 2017] . 261
11.1 An Informal Introduction . 263
11.2 Entities, Endurants . 264
11.3 Operations on Universe of Discourse States . 280
11.4 Perdurants . 283
11.5 Conclusion . 300

Contents vii

12 Container Terminals [November 2017] . 301
12.1 Introduction . 304
12.2 Some Pictures . 304
12.3 SECT . 310
12.4 Main Behaviours . 311
12.5 Endurants . 313
12.6 Perdurants . 332
12.7 Conclusion . 358

13 Simple Retailer System [January 2021] . 361
13.1 Two Approaches to Modeling . 364
13.2 The retailer market Case Study . 364
13.3 Endurants: External Qualities . 368
13.4 Endurants: Internal Qualities . 372
13.5 Merchandise . 383
13.6 Perdurants . 384
13.7 Conclusion . 399

14 Shipping [Spring/Summer 2007, February–March 2021] . 403
14.1 Informal Sketches of the Shipping Domain . 404
14.2 Endurants: External Qualities . 410
14.3 Endurants: Internal Qualities . 412
14.4 Perdurants . 421

15 Rivers [March–April 2021] . 431
15.1 Introduction . 431
15.2 External Qualities – The Endurants . 433
15.3 Internal Qualities . 435
15.4 Conclusion . 438

16 Canals [March–April 2021] . 439
16.1 Introduction . 440
16.2 Visualisation of Canals . 440
16.3 The Endurants . 442
16.4 Conclusion . 473

Part III Two Postlude “Domain” Examples

17 A Stock Exchange [January 2010] . 477
17.1 Introduction . 477
17.2 The Problem . 477
17.3 A Domain Description . 478
17.4 Tetsuo Tamai’s IEEE Computer Journal Paper . 483

18 An “Extensible” Virtual Shared Memory [May–July 2010] . 493
18.1 Introduction . 494
18.2 XVSM Trees . 497
18.3 XTree Operations . 500
18.4 Indexing . 505
18.5 Queries . 507

Part IV Bibliography

19 Bibliography . 513
19.1 Bibliographical Notes . 513
19.2 References . 513

Part V Appendix

viii Contents

A Domain Analysis & Description: A Primer . 523
A.1 Domains . 524
A.2 Endurants . 524
A.3 Space, State and Time . 535
A.4 Perdurants . 537

B An RSL Primer . 545
B.1 Types . 547
B.2 The RSL Predicate Calculus . 550
B.3 Concrete RSL Types: Values and Operations . 551
B.4 λ-Calculus + Functions . 559
B.5 Other Applicative Expressions . 561
B.6 Imperative Constructs . 563
B.7 Process Constructs . 565
B.8 Simple RSL Specifications . 566
B.9 RSL Module Specifications . 567

Part I

A Prelude “Domain” Description

Chapter 0

Graphs [February 2021]

Contents
0.1 Introduction . 4

0.1.1 Critique of Classical Mathematical Modeling of Nets . 4
0.1.2 The Thesis . 5
0.1.3 Structure of This Report . 5

0.2 Examples of Networks . 5
0.2.1 Overland Transport Nets . 6

0.2.1.1 Road Nets . 6
0.2.1.2 Rail Nets . 6
0.2.1.3 Pipeline Nets . 6

0.2.2 Natural Trees with Roots . 7
0.2.3 Waterways . 7

0.2.3.1 Rivers, Lakes, Deltas and Oceans . 8
0.2.3.2 General . 8
0.2.3.3 Visualisation of Rivers and Canals . 10

0.2.3.3.1 Rivers . 10
0.2.3.3.2 Deltas . 11
0.2.3.3.3 Canals and Water Systems . 11
0.2.3.3.4 Locks . 11

0.2.4 Conclusion . 12
0.3 Classical Mathematical Models . 12

0.3.1 Graphs . 14
0.3.1.1 General Graphs . 14

0.3.1.1.1 Some Mathematics ! . 14
0.3.1.1.2 Some Graphics ! . 15

0.3.1.2 Unique Identification of Vertices and Edges 15
0.3.1.3 Paths . 16
0.3.1.4 Directed Graphs . 16
0.3.1.5 Acyclic Graphs . 16
0.3.1.6 Connected Graphs and Trees . 16
0.3.1.7 Vertex In- and Out-Degrees of Directed Graphs 16

0.4 Our General Graph Model . 16
0.4.1 The External Qualities . 16

0.4.1.1 A “Global” Graph . 17
0.4.1.2 Varieties of Endurants . 17

0.4.1.2.1 Road Net Endurants . 17
0.4.1.2.2 Rail Endurants . 17
0.4.1.2.3 Pipeline Endurants . 18
0.4.1.2.4 River Net Endurants . 18

0.4.2 Internal Qualities . 19
0.4.2.1 Unique Identifiers . 19
0.4.2.2 Auxiliary Functions . 20

0.4.2.2.1 Extraction Functions: Unique Identifies 20
0.4.2.2.2 Retrieval Functions . 20

0.4.2.3 Wellformedness . 21

3

4 0 Graphs [February 2021]

0.4.2.4 Unique Identifier Examples . 21
0.4.2.4.1 Road Net Identifiers . 21
0.4.2.4.2 Rail Net Identifiers . 21
0.4.2.4.3 Pipeline Net Identifiers . 22
0.4.2.4.4 River Net Identifiers . 22

0.4.2.5 Mereologies . 22
0.4.2.5.1 Mereology of Undirected Graphs 23
0.4.2.5.2 Wellformedness of Mereologies . 23
0.4.2.5.3 Mereology of Directed Graphs . 23
0.4.2.5.4 In- and Out-Degrees . 24
0.4.2.5.5 Paths of Undirected Graphs . 24
0.4.2.5.6 Paths of Directed Graphs . 24
0.4.2.5.7 Connectivity . 25
0.4.2.5.8 Acyclic Graphs, Trees and Forests 25
0.4.2.5.9 Forest . 26
0.4.2.5.10 Mereology Examples . 26

0.4.2.6 Attributes . 30
0.4.2.6.1 Graph Labeling . 30
0.4.2.6.2 General Net Attributes . 30
0.4.2.6.3 Road Net Attributes . 31

0.4.2.7 Summing Up . 32
0.4.2.7.1 A Summary of The Example Endurant Models 32
0.4.2.7.2 Initial Conclusion on Labeled Graphs and

Example Domains . 33
0.5 The Nets Domain . 34

0.5.1 Some Introductory Definitions . 34

We study formalisations of graphs as they are found in the conventional Graph Theory literature,
but as we would formalise graphs in the style of Domain Analysis & Description [55, Bjørner,
2021]. The title of this compendium, A Graph Domain, shall indicate that we shall present graphs,
not in the conventional mathematical style, but according to the principles, techniques and tools
of [55]. That is, both as mathematical entities and as, albeit abstract, i.e., not necessarily manifest,
phenomena of the world. As such we shall endow vertices and edges of graphs with unique
identifiablity, mereology – to model the edge/vertex relations, and attributes – to model vertex
and edge labeling, i.e., to model properties of vertices and edges, including directedness ! Ap-
pendix A (pages 523–544) presents an ultra-short introduction, a primer, to the domain analysis &
description calculi underlying this compendium.

0.1 Introduction

0.1.1 Critique of Classical Mathematical Modeling of Nets

Classical mathematical modeling of (road and rail) transport nets, river systems, canal systems,
etc., misses some, to us, important points.

The point being that the more-or-less individual elements of these systems, the links (edges)
and hubs (nodes, vertices) each have their unique identity, their mereology and their attributes,
and that it is these internal qualities of edges and nodes that capture the “real” meaning of the
nets.

In the mathematical models graph edges and vertices have no internal qualities: they are treated
merely as syntactic entities.

We strive, in domain analysis & description [55], to model first the syntactic properties of
manifest phenomena, then the semantic properties. Naturally we cannot model their pragmatics !

0.2 Examples of Networks 5

0.1.2 The Thesis

The thesis of this compendium is that the domain analysis & description principles, techniques
and tools as brought forward in [55, 48, 54, 51, 52] is a more proper way to model nets.

0.1.3 Structure of This Report

• In Sect. 0.2 we casually pictorialise a number of domains whose compositions basically amount
to graphs. These examples are:

⋄⋄ Road Nets [Sect. 0.2.1.1 on the following page],
⋄⋄ Railways [Sect. 0.2.1.2 on the next page],
⋄⋄ Pipelines [Sect. 0.2.1.3 on the following page],
⋄⋄ Rivers [Sect. 0.2.3.1 on page 8] and
⋄⋄ Canals [Sect. 0.2.3.3.3 on page 11].

• In Sect. 0.3 we prepare the ground by presenting a minimum account of graphs as they are
usually first introduced in textbooks.

Correlated narratives and formalisations for these domains are shown, spread all over this com-
pendium as follows:

• Road Nets: Sections:

⋄⋄ 0.2.1.1 [Pictures],
⋄⋄ 0.4.1.2.1 [Endurants],
⋄⋄ 0.4.2.4.1 [Unique Identifiers],

⋄⋄ 0.4.2.5.10 [Mereology] and

⋄⋄ 0.4.2.6.3 [Attributes].

• Railways: In the compendium-proper we pictorialise railways in Sect. refnets-ex:Rail Nets
[Pictures]. In all:

⋄⋄ 0.2.1.2 [Pictures],
⋄⋄ 1.1 [Endurants],

⋄⋄ 0.4.2.4.2 [Unique Identifiers], and
⋄⋄ 1.1.2.2 [Mereology].

• Pipelines: Sections:

⋄⋄ 0.2.1.3 [Pictures],
⋄⋄ 0.4.1.2.3 [Endurants],

⋄⋄ 0.4.2.4.3 [Unique Identifiers], and
⋄⋄ 0.4.2.5.10 [Mereology].

• Rivers: Sections:

⋄⋄ 0.2.3.1 [Pictures],
⋄⋄ 0.4.1.2.4 [Endurants],

⋄⋄ 0.4.2.4.4 [Unique Identifiers], and
⋄⋄ 0.4.2.5.10 [Mereology].

• Canals: Other than Sects. 0.2.3.3.3 this compendium does not yet illustrate a systematic canal
system description.

0.2 Examples of Networks

We shall consider a widest set of networks,

6 0 Graphs [February 2021]

0.2.1 Overland Transport Nets

By overland transport nets we mean such which are either placed on the ground, or underground,
as tunnels, or through mountains, also as tunnels, or placed on bridges over valleys, etc.

0.2.1.1 Road Nets

Road nets are for the conveyance of automobiles: private cars, buses, trucks, etc.

Fig. 0.1 Left: The Netherlands. R: Scotland

Fig. 0.2 L & R: European Road Infrastructure

0.2.1.2 Rail Nets

Rail nets are for the conveyance of passenger and freight trains.
Rail nets and train traffic on these are narrated and formalised in Chapter 1:

0.2.1.3 Pipeline Nets

Pipelines are for the conveyance of fluids: water, natural gas, hydrogen, oil, etc.

0.2 Examples of Networks 7

Fig. 0.3 Example Railway Nets

Fig. 0.4 Oil or Gas Field; European Gas and Hydrogen Pipelines

0.2.2 Natural Trees with Roots

0.2.3 Waterways

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are
used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

Rivers, on the other hand, are naturally flowing watercourses, and typically flow until discharg-
ing their water into a lake, sea, ocean, or another river, while canals are constructed to connect
existing rivers, seas, or lakes. However, occasionally some rivers do not discharge their water into
lakes, seas, oceans, or other rivers. Rivers that do not empty into another body of water might
flow into the ground or simply dry up before reaching another body of water. Additionally, small
rivers can also be referred to as streams, rivulets, creeks, rills, or brooks.

8 0 Graphs [February 2021]

*

D’

L
L"

* LL

Pipe Unit Fork Unit Join Unit

Redirector Unit

D

L’

L

L"

L’
*

D
D"

D’

D
D"

L
D

D

A"
A’

A

A’
A"

Pump Unit

D
L

D
L

Valve Unit

Well Unit

Sink Unit

Pump

Join

Well

Well

Pump

 Valve

Valve

Pump

Sink

Join

Fork Fork Valve

 Valve
Sink

RedirectorRedirector

Redirector

Fig. 0.5 Oil unit graphics; a simple oil pipeline.
A pump; a valve; the Trans-Alaska Pipeline System (TAPS); TAPS pipes, re-directors and ‘heat pipes’.

Fig. 0.6 A Japanese Maple [Portland, Oregon, US] and an Angel Oak Tree [South Carolina, US]

0.2.3.1 Rivers, Lakes, Deltas and Oceans

By waterways we mean rivers, canals, lakes and oceans – such as are navigable by vessels: barges,
boats and ships.

•••

Disclaimer: At present (“great”) lakes and the oceans (there are two !) are not included in this
modeling effort.

0.2.3.2 General

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are

0.2 Examples of Networks 9

Fig. 0.7 Drawings of Banyan Trees

Fig. 0.8 A Dragon Tree [Yemen] and an Aspen Tree Root [Colorado, US]

used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

Rivers, on the other hand, are naturally flowing watercourses, and typically flow until discharg-
ing their water into a lake, sea, ocean, or another river, while canals are constructed to connect
existing rivers, seas, or lakes. However, occasionally some rivers do not discharge their water into
lakes, seas, oceans, or other rivers. Rivers that do not empty into another body of water might
flow into the ground or simply dry up before reaching another body of water. Additionally, small
rivers can also be referred to as streams, rivulets, creeks, rills, or brooks.

The natural water system of the earth includes 71% ocean with land continents being traversed
by brooks, rivers, lakes and river deltas.

Headwaters are streams and rivers (tributaries) that are the source of a stream or river.
A tributary is a river or stream that flows into another stream, river, or lake.
A delta is a large, silty area at the mouth of a river at which the river splits into many different

slow-flowing channels that have muddy banks. New land is created at deltas. Deltas are often
triangular-shaped, hence the name (the Greek letter ’delta’ is shaped like a triangle).

The trunk is the main course of river.
Confluence: In geography, a confluence (also: conflux) occurs where two or more flowing

bodies of water join together to form a single flow. A confluence can occur in several configurations:
at the point where a tributary joins a larger river (main stem); or where two streams meet to become
the source of a river of a new name; or where two separated channels of a river (forming a river
island) rejoin at the downstream end.

10 0 Graphs [February 2021]

Towns and Harbours: In this report we model towns. That is, we therefore also model that
towns have harbours – allowing river (and canal) vessels to berth (a place for mooring in a harbour)
for cargo loading, unloading and resting.

0.2.3.3 Visualisation of Rivers and Canals

0.2.3.3.1 Rivers

Figures 0.9 and 0.10 illustrate a number of rivers.

Fig. 0.9 The Congo and the US Rivers

Fig. 0.10 The Amazon and The Danube Rivers

0.2 Examples of Networks 11

0.2.3.3.2 Deltas

We illustrate four deltas, Fig. 0.11:

Fig. 0.11 The Ganges, Mississippi, Pearl and the Nile Deltas

0.2.3.3.3 Canals and Water Systems

We illustrate just four ship/barge/boat and water level control canal systems, Figs. 0.12, 0.13, 0.14
on the following page and 0.15 on page 13.

Fig. 0.12 UK Canals and The Panama Canal

The rightmost figure of Fig. 0.15 is from the Dutch Rijkswaaterstaat: www.rijkswaterstaat.nl/english/.

0.2.3.3.4 Locks

A lock is a device used for raising and lowering boats, ships and other watercraft between stretches
of water of different levels on river and canal waterways. The distinguishing feature of a lock is a
fixed chamber in which the water level can be varied. Locks are used to make a river more easily

12 0 Graphs [February 2021]

Fig. 0.13 The Swedish Göta Kanal

Fig. 0.14 French Rivers and Canals

navigable, or to allow a canal to cross land that is not level. Later canals used more and larger
locks to allow a more direct route to be taken.1

We illustrate a number of locks: Figs. 0.16 on the facing page and 0.17 on page 14.

0.2.4 Conclusion

0.3 Classical Mathematical Models

We refer to standard textbooks in Graph Theory:

1 https://en.wikipedia.org/wiki/Lock (water navigation)

0.3 Classical Mathematical Models 13

Fig. 0.15 Dutch Rivers and Canals

Fig. 0.16 Inland Canal Locks

• Claude Berge: Graphs [11, 12, 1958–1978, 1st–2nd ed.]
• Oystein Ore: Graphs and their Uses [127, 1963]
• Frank Harrary: Graph Theory [97, 1972]
• J.A. Bondy and U.S.R. Murty: Graph Theory with Applications [73, 1976]
• S. Even: Graph Algorithms [81, 1979]

or these WikipediaWeb pages:

14 0 Graphs [February 2021]

Fig. 0.17 Harbour Canal Locks

a. Graph Theory

en.m.wikipedia.org/wiki/Graph theory

b. Graphs: Discrete Mathematics
en.m.wikipedia.org/wiki/Graph (discrete mathematics)

c. The Hamiltonian Path Problem
en.m.wikipedia.org/wiki/Hamiltonian path problem

d. Glossary of Graph Theory

en.wikipedia.org/wiki/Glossary of graph theory terms

0.3.1 Graphs

0.3.1.1 General Graphs

We refer to en.wikipedia.org/wiki/Glossary of graph theory terms#A.

0.3.1.1.1 Some Mathematics !

From (a.): in one restricted but very common sense of the term,a graph is an ordered pair

• G = (V,E), where
• V, is a set of vertices (also called nodes or points), and
• E ⊆ {{x, y} | x, y ∈ V} is a set of edges (also called links or lines), which are unordered pairs of

vertices.
• If x = y then the edge s a 1-loop, cf. upper leftmost edge of G0 of Fig. 0.18 on the facing page.

To avoid ambiguity, this type of object may be called precisely an undirected simple graph, cf.
graph G0 of Fig. 0.18.

0.3 Classical Mathematical Models 15

G0

e7

e6 e5

e3e4

e2 e1

vd

ve

vc vb

va

vf

G1

e7

e6 e5

e3e4

e2 e1

vd

ve

vc vb

va

vf

G2

e6 e5

e3e4

e2 e1

vd

ve

vc vb

va

vf

G3

G4

Fig. 0.18 Graphs

0.3.1.1.2 Some Graphics !

Figure 0.18 shows five similarly “shaped” graphs. Figure 0.19 shows how these could have been
drawn differently.

va vb

vf vc

ve vd

va vb vc vd ve vf

Fig. 0.19 Graphs

0.3.1.2 Unique Identification of Vertices and Edges

There is no way it can be avoided2. It simply makes no sense to not bring in that vertices and
edges are uniquely identified. So we identify vertices and edges, cf. graph G1 of Fig. 0.18. When,
in classical graph theory, labeling of vertices and edges is introduced it is either for convenience
of reference or for property attribution, as we shall later see.

With unique identification there is no problem with multiple edges between any pair of vertices.

2 Sections 2.2.2.1 and 2.2.2.2 of [55, Bjørner] makes this clear: Unique identifiablity is an unavoidable fact of any
world.

16 0 Graphs [February 2021]

0.3.1.3 Paths

A vertex path is a sequence, 〈vi,v j,...,vk,vk+1,...,v,〉, of two or more vertices such that vertex vk

is adjacent to vertex vk+1 if there is an edge between them. Similar notion of edge paths and
vertex-edge-vertex paths can be defined.

Graphs thus define possibly infinite sets of possibly infinite paths.

0.3.1.4 Directed Graphs

Directed graphs have directed edges, shown, in graph pictures, by affixing arrows to edges, see
graph G2 of Fig. 0.18 on the preceding page.

• G and V is as before, but • E ⊆ {(x, y) | x, y ∈ V, }.

Directed graphs still define possibly infinite sets of possibly infinite paths. The vertex sequence
〈va,vc,vd,v f ,v f 〉 is a path of graph G2 of Fig. 0.18 on the previous page.

0.3.1.5 Acyclic Graphs

An acyclic graph is a graph none of whose vertex paths contain any vertex at most once. Graph
G3 of Fig. 0.18 on the preceding page is an acyclic graph.

0.3.1.6 Connected Graphs and Trees

A graph is connected if and only if for any two its vertices vi,v j there exists a path from vi to v j. A
graph that is connected and is acyclic is a tree, cf. graph G4 of Fig. 0.18 on the previous page.

0.3.1.7 Vertex In- and Out-Degrees of Directed Graphs

By the in-degree of a vertex of a [directed] graph is meant the number of edges incident upon that
vertex. By the out-degree of a vertex of a [directed] graph is meant the number of edges emanating
from that vertex. In an un-directed graph the in- and out-degrees of any vertex are identical. In an
acyclic graph there necessarily must be one or more vertices whose in-degrees are zero. And in an
acyclic graph there necessarily must be one or more vertices whose out-degrees are zero.

0.4 Our General Graph Model

0.4.1 The External Qualities

We refer to [55, Chapter 4].

1. Our domain is that of graphs.
2. From graphs one can observe sets of vertices,
3. and edges.

type

0.4 Our General Graph Model 17

1. G

2. V

3. E
value
2. obs Vs: G→ V-set
3. obs Es: G→ E-set

Please notice that nothing is said about how vertices and edges relate. That is an issues of mere-
ology, cf. [55, Sect. 5.3.1].

0.4.1.1 A “Global” Graph

4. For ease of reference we can postulate a[n arbitrary] graph.

value
4. g:G

0.4.1.2 Varieties of Endurants

Some domains warrant explication (e.g., renaming) of the vertices and edges or “collapsing” these
into sets over a variety of units.

0.4.1.2.1 Road Net Endurants

5. A road as a pair of hubs and links.
6. Substitute vertices for hubs, H, i.e., street intersections,
7. and edges for links, L, i.e., street segment with no intersections.

type
5. RN = H-set × L-set [≃ G for Graphs]

6. H [≃ V for Graphs]

7. L [≃ E for Graphs]

0.4.1.2.2 Rail Endurants

8. So a graph, i.e., a railway net, RN, consists of a set of rail units.
9. A rail units is

a. either a simple, linear [or curved] unit, LU,
b. or a switch, SU,
c. or a cross-over, XU,
d. or a cross-over switch, CS,
e. or ...

We refer to Fig. 1.1 on page 39 of Sect. 1.1.1.1 on page 38.

type
8. RN = RU-set [≃ G for Graphs]

18 0 Graphs [February 2021]

9. RU == LU | SU | XU | XS | SC

9a. LU :: LiU

9b. SU :: SiU
9c. XU :: XiU

9d. CS :: CiS
9e. ...

Again; here we say nothing more about these units.

0.4.1.2.3 Pipeline Endurants

10. So a graph, i.e., a pipeline net, PN, consists of a set of pipeline units, PLU.
11. A pipeline units is

a. either a source (a well), WU,
b. or a pump, PU,
c. or a pipe, LU,
d. or a valve, VU,
e. or a fork, FU,
f. or a join, JU,
g. or a sink, SU.

12. All pipeline units are distinct.

type
10. PN
11. PLU ==WU | PU | LU | VU | FU | JU | SU
11a. WU :: W
11b. PU :: P
11c. LU :: L
11d. VU :: V
11e. FU :: F
11f. JU :: J
11g. SU :: S
value
11. obs PLUs: PN→ PLU-set
axiom
12. WU

⋂
PU={} ∧WU

⋂
LU={} ∧WU

⋂
LU={} ∧ WU

⋂
VU={}∧WU

⋂
FU={} ∧WU

⋂
JU={} ∧WU

⋂
SU={} ∧

12. PU
⋂

LU={} ∧ PU
⋂

VU={}∧ PU
⋂

FU={} ∧ PU
⋂

JU={} ∧ PU
⋂

SU={} ∧
12. LU

⋂
VU={} ∧ LU

⋂
FU={} ∧ LU

⋂
JU={} ∧ LU

⋂
SU={} ∧

12. VU
⋂

FU={} ∧ VU
⋂

JU={} ∧ VU
⋂

SU={} ∧
12. FU

⋂
JU={} ∧ FU

⋂
SU={} ∧

12. JU
⋂

SU={}

Again; here we say nothing more about these units.

0.4.1.2.4 River Net Endurants

13. A river net is modeled as a graph, more specifically as a tree. The root of that river net tree is the
mouth (or delta) of the river net. The leaves of that river net tree are the sources of respective
trees. Paths from leaves to the root define flows of water.

14. We can thus, from a river net observe vertices
15. and edges.
16. River vertices model either a source: so:SO, a mouth: mo:MO, or possibly some confluence:

ko:KO.

0.4 Our General Graph Model 19

A river may thus be “punctuated” by zero or more confluences, k:KO.
A confluence defines the joining a ‘main’ river with zero3 or more rivers into that ‘main’ river.
We can talk about the “upstream” and the “downstream” of rivers from their confluence.

17. River edges model stretches: st:ST.
A stretch is a linear sequences of simple, se:SE, or composite ce:CE, river elements.

18. River elements are either simple: (ch) river channels, which we shall call river channels: CH, or
(la) lakes: LA, or (lo) locks: LO, or (wa) waterfalls (or rapids): WA, or (da) dams: DA, or (to) towns
(cities, villages): to:TO4; or composite, ce:CE: a dam with a lock, (da:DA,la:LA), a town with
a lake, (to:TO,la:LA), etcetera; even a town with a lake and a confluence, to:TO,la:LA,ko:KO.
Etcetera.

type
13. RiN
14. V

15. E
16. SO, MO, KO

17. ST = (SE|CE)∗

18. CH, LA, LO, WA, KO, DA, TO
18. SE = CH | LA | LO |WA | DA | TO

18. DaLo, WaLo, ToLa, ToLaKo, ...
18. CE = DaLo |WaLo | ToLa | ToLaKo | ...
value
16. obs Vs: RiN→ V-set
16. axiom
16. ∀ g:G,vs:V-set•vs ∈ obs Vs(g)⇒ vs,{}

16. ∧ ∀ v:V•v ∈ vs⇒ is SO(v) ∨ is KO(v) ∨ is MO(v)
17. obs Es: RiN→ E-set
17. axiom
17. ∀ g:G,es:E-set•es ∈ obs Es(g)⇒ es,{}
17. ∧ ∀ e:E•e ∈ es⇒ is ST(e)

17. obs ST: E→ ST
13. xtr In Degree 0 Vertices: RiN→ SO-set
13. xtr Out Degree 0 Vertex: RiN→ MO

0.4.2 Internal Qualities

We refer to [55, Chapter 5]

0.4.2.1 Unique Identifiers

We refer to [55, Sect. 5.2]

19. Each vertex has a unique identifier.
20. Each edge has a unique identifier.

3 Normally, though, one would expect, not zero, but one
4 Towns is here really a synonym for river harbours, places along the river (or a canal) where river vessels can stop
(moor) for the loading and unloading of cargo and for resting.

20 0 Graphs [February 2021]

SO

CH

LO

CH

LA

CH

WA

CH

KO
CH CH

CH

CH

SO

CH

SO

CH

SO

MO

CH

CH

DA
CH

SO

ToKo:(TO,KO)

WaLo:(WA,LO)

DaLo:(DA,LO)
ToLaKo:(TO,LA,KO)

Source

Simple or composite river element

Confluence

Mouth

Fig. 0.20 The “Composition” of a River Net: Right Tree is an abstraction of the Left Tree

type
19. V UI

20. E UI

value
19. uid V: V→ V UI

20. uid E: E→ E UI

0.4.2.2 Auxiliary Functions

0.4.2.2.1 Extraction Functions: Unique Identifies

21. We can calculate the set of all unique vertex identifiers of a graph,
22. and all unique edge identifiers of a graph,
23. and all unique identifiers of vertices and edges of a graph.

value
21. xtr V UIs: G→ V UI-set, xtr V UIs(g) ≡ { uid v(v) | v:V•v ∈ obs Vs(g) }

22. xtr E UIs: G→ EI-set, xtr E UIs(g) ≡ { uid E(e) | e:E•e ∈ obs Es(g) }

23. xtr U UIs: G→ (VI|EI)-set, xtr UIs(g) ≡ xtr V UIs(g) ∪ xtr E UIs(g)

0.4.2.2.2 Retrieval Functions

24. Given a unique vertex identifier of a graph one can retrieve, from the graph, the vertex of that
identification.

25. Given a unique edge identifier of a graph one can retrieve, from the graph, the edge of that
identification.

value

0.4 Our General Graph Model 21

24. retr V: V UI→ G
∼
→ V

24. retr V(v ui)(g) ≡ let v:V • v ∈ obs Vs(g) ∧ v ui = uid V(v) in v end, pre: e ui ∈ xtr E UIs(g)

25. retr E: EI→ G
∼
→ E

25. retr E(ei)(g) ≡ let e:E • e ∈ obs Es(g) ∧ e ui = uid E(e) in e end, pre: e ui ∈ xtr E UIs(g)

0.4.2.3 Wellformedness

26. Vertex and edge identifiers are all distinct.
27. Each vertex and each edge has a distinct unique identifier.

axiom
26. ∀ g:G • xtr V UIs(g) ∩ xtr E UIs(g) = {}

27. card obs Vs(g)=card xtr V UIs(g) ∧ card obs Es(g)=card xtr E UIs(g)

0.4.2.4 Unique Identifier Examples

We giver four examples: roads, rails, pipelines and rivers.

0.4.2.4.1 Road Net Identifiers

Very simple,

28. substitute vertex identifiers, VI, with hub identifiers, HI, and
29. substitute edge identifiers, EI, with link identifiers, LI,

in type and unique observer function definitions.

type
28. HI [≡ VI for Graphs]
29. LI [≡ EI for Graphs]

0.4.2.4.2 Rail Net Identifiers

30. With every rail net unit we associate a unique identifier.
31. That is, no two rail net units have the same unique identifier.

type
30. UI
value
30. uid NU: NU→ UI

axiom
31. ∀ ui i,ui j:UI • ui i = ui j ≡ uid NU(ui i)=uid NU(ui j)

22 0 Graphs [February 2021]

0.4.2.4.3 Pipeline Net Identifiers

32. With pipeline units a type WU, PU, LU, VU, FU, JU and SU we associate a single unique
identifier sort: UI.

32. UI ==WU UI | PU UI | LU UI | VU UI | FU UI | JU UI | SU UI

0.4.2.4.4 River Net Identifiers

We shall associate unique identifiers both with vertices, edges and vertex and edge elements.

33. River net vertices and edges have unique identifiers.
34. River net sources, confluences and mouths have unique identifiers.
35. River net stretches have unique identifiers.
36. River net channels, lakes, locks, waterfalls, dams and towns as well as combinations of these,

that is, simple and composite river entities have unique identifiers.

type
33. V UI, E UI
34. SO UI, KO UI, MO UI

35. ST UI
36. CH UI, LA UI, LO UI, WA UI, DA UI, TO UI, DaLo UI, WaLo UI, ToLa UI, ToLaKo UI, ...
value
33. uid V: V→V UI, uid E: E→ E U
34. uid SO: SO→SO UI, uid KO: KO→KO UI, uid MO: MO→MO UI,

35. uid ST: ST→ST UI

36. uid CH: CH→CH UI, uid LA: LA→LA UI, uid LO: LO→LO UI, uid WA: WA→WA UI,
36. uid DA: DA→DA UI, uid TO: TO→TO UI,

36. uid DaLo: DaLo→DaLo UI, uid WaLo: WaLo→WaLo UI, uid ToLa: ToLa→ToLa UI,
36. uid ToLaKo: ToLaKo→ToLaKo UI, ...

37. All these identifiers are distinct.

The ⋓ operator takes the pairwise intersection of the types in its argument list and examines them
for disjointedness.

axiom
37. ⋓(V UI,E UI,SO UI,KO UI,MO UI,ST UI,CH UI,

37. LA UI,LO UI,WA UI,DA UI,TO UI,DaLo UI,WaLo UI,ToLa UI,ToLaKo UI)

38. There are [many] other constraints, please state them !

38. [left as exercise to the reader !]

0.4.2.5 Mereologies

We refer to [55, Sect. 5.3]. We shall formalise a number of mereologies:

• of undirected graphs — typically road, air and sea transport nets,
• and “general” directed graphs —

0.4 Our General Graph Model 23

0.4.2.5.1 Mereology of Undirected Graphs

39. The mereology of a vertex is the set of unique identifiers of the edges incident upon the vertex.
40. The mereology of an edges is the one-or two element set of the unique identifiers of the [1-loop]

vertex, respectively the vertices which the edge is connecting.

type
39. V Mer = E UI-set
40. E Mer = V UI-set
value
39. mereo V: V→ V Mer

40. mereo E: E→ E Mer

axiom
39. ∀ g:G,v:V • v ∈ obs Vs(g)⇒ mereo V(v)⊆xtr E UIs(g)

40. ∀ g:G,e:E • e ∈ obs Es(g)⇒ mereo E(e)⊆xtr V UIs(g)

0.4.2.5.2 Wellformedness of Mereologies

41. The vertex mereology must record unique edge identifiers of the graph.
42. The edge mereology must record unique vertex identifiers of the graph.
43. If a vertex mereology identify edges then these edge mereologies must identify that vertex,

and, vice versa
44. If an edge mereology identify vertices then these vertex mereologies must identify that edge.

axiom
41. ∀ g:G,v:V • v ∈ obs Vs(g)⇒ mereo V(v)⊆xtr EIs(g)

42. ∀ g:G,e:E • e ∈ obs Es(g)⇒ mereo E(e)⊆xtr VIs(g)
43. ∀ g:G,v:V • v ∈ obs Vs(g)⇒ ∀ ei ∈ mereo V(v)⇒ uid V(v) ∈ mereo E(e)

44. ∀ g:G,e:E • e ∈ obs Es(g)⇒ ∀ vi ∈ mereo E(e)⇒ uid E(e) ∈ mereo V(v)

0.4.2.5.3 Mereology of Directed Graphs

45. The mereology of a vertex is a pair of the set of unique identifiers of the edges incident upon
the vertex and the set of unique identifiers of the edges emanating from the vertex –

46. and these must all be of the graph.
47. The mereology of an edge is a one or two element set of pairs of vertex identifiers –
48. and these must all be of the graph.

type
45. V Mer = E UI-set × E UI-set
47. E Mer = (V UI × V UI)-set
value
45. mereo V: V→ G→ V Mer

47. mereo E: E→ G→ E Mer

axiom
46. ∀ g:G,v:V • v ∈ obs Vs(g)⇒

46. let (e ui s i,e ui s e) = V Mer(v) in e ui s i ∪ e ui s e ⊆ xtr E UIs(g) end
48. ∀ g:G,e:E • e ∈ obs Es(g)⇒

48. let p v ui s = V Mer(e) in

24 0 Graphs [February 2021]

48. let v ui s = { v ui i,v ui e | (v ui i,v ui e):(V UI×V UI)•(v ui i,v ui e)∈p v ui s } in
48. v ui s ⊆ xtr V UIs(g) end end

0.4.2.5.4 In- and Out-Degrees

49. The in-degree of a vertex of a directed graph is the number of edges incident upon that vertex.
50. The out-degree of a vertex of a graph is the number of edges emanating that vertex.

49. in degee V: V→ G
∼
→ Nat

49. in degree(v)(vs,es) ≡ let (uis i,)=mereo V(v) in card uis i end, pre v ∈ vs

50. out degee V: V→ G
∼
→ Nat

50. out degree(v)(vs,es) ≡ let (,uis e)=mereo V(v) in card uis e end, pre v ∈ vs

0.4.2.5.5 Paths of Undirected Graphs

We shall only illustrate vertex-edge-vertex paths for given graphs, g.

51. A vertex-edge-vertex path is a sequence of zero or more edges.
52. That is, the empty sequence, 〈〉, is a vertex-edge-vertex path, [the first basis clause].
53. If e is an edge of g, then the two elements 〈(vi,ej,vk)〉, 〈(vk,ej,vi)〉, where ej is the unique identifier

of e whose mereology is {vi,vj}, are vertex-edge-vertex paths.
54. In 〈(vi,ej,vk)〉 we refer to vi is the first vertex identifier and vk as the second. Vice versa in
〈(vk,ej,vi)〉.

value
54. fVIfEP: EP→ VI, fVIfEP(ep:〈(vi,ej,vk)〉̂ ep′) ≡ vi, pre: ep,〈〉

54. lVIlEP: EP→ VI, lVIlEP(ep:ep′ 〈̂(vi,ej,vk)〉) ≡ vk, pre: ep,〈〉

55. If p and p′ are paths of g such that the last vertex identifier of the last element of p is the same as
the first vertex identifier of the first element of p′, then the sequence p followed by the sequence
p′ is a vertex-edge-vertex path of g [the inductive clause].

56. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type
51. EP = Eω

51. edge paths: G→ EP-set
51. edge paths(g) ≡

52. let ps = {〈〉}
53. ∪ {〈(vi,uid E(e),vk)〉,〈(vk,uid E(e),vi)〉|e:E•e ∈ xtr Es(g)∧{vi,vk}⊆mereo E(e)}

55. ∪ {p̂ p′|p,p′:EP•{p,p′}⊆ps∧lVIlEP(9)=fVIfEP(p′)} in
56. ps end

0.4.2.5.6 Paths of Directed Graphs

51. A vertex-edge-vertex path is a sequence of zero or more edges.
52. That is, the empty sequence, 〈〉, is a vertex-edge-vertex path, [the first basis clause].

0.4 Our General Graph Model 25

57. If e is an edge of g, and if (vi,vj) is in the mereology of e, then the 〈(vi,ej,vk)〉, where ej is the
unique identifier of e is a vertex-edge-vertex path.

55. If p and p′ are paths of g such that the last vertex identifier of the last element of p is the same as
the first vertex identifier of the first element of p′, then the sequence p followed by the sequence
p′ is a vertex-edge-vertex path of g [the inductive clause].

56. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type
51. EP = Eω

51. edge paths: G→ EP-set
51. edge paths(g) ≡

52. let ps = {〈〉}

57. ∪ {〈(vi,uid E(e),vk)〉|e:E•e ∈ xtr Es(g)∧(vi,vk)∈mereo E(e)}
55. ∪ {p̂ p′|p,p′:EP•{p,p′}⊆ps∧lVIlEP(9)=fVIfEP(p′)} in
56. ps end

Notice that the difference in the two definitions of (overload-named) edge paths differ only in in
the last terms of items 53 and 57.

0.4.2.5.7 Connectivity

58. For every pair of vertices we can calculate the set of all paths connecting these in a graph.

58. all connected paths: (V×V)→ G→ EP-set
58. all connected paths(vi,vj) ≡
58. { ep | ep:EP • ep ∈ edge paths(g) • ep[1] = (uid V(vi), ,), ep[len ep] = (, ,uid V(vj)) }

59. Two vertices, vi,v j, of a graph, g, are connected if there is a path from vi to v j in g.

value

59. are connected: (V×V)→ G
∼
→ Bool

59. are connected(vi,vj)(g) ≡ all connected paths(vi,vj) , {}

60. A graph is connected if there is a path from every vertex to every other vertex.

value
60. is connected: G→ Bool
60. is connected(g) ≡ ∀ vi,vj:V • {vi,vj} ∈ obs Vs(g) • are connected(vi,vj)(g)

0.4.2.5.8 Acyclic Graphs, Trees and Forests

61. A cycle is a path which begins and ends at the same vertex.
62. An acyclic graph is a graph having no graph cycles.
63. A bipartite graph (or bi-graph) is a graph whose vertices can be divided into two disjoint and

independent sets, V′,V′′, such that every edge connects a vertex in V′ to one in V′′. Acyclic
graphs are bipartite.

64. By a tree we5 shall understand a connected, acyclic graph such that there are no two distinct
paths from any given pair of in-degree-0 and out-degree-0 vertices.

5 Our definition is OK, but there are more encompassing definitions of trees.

26 0 Graphs [February 2021]

65. A disjoint graph is a set of two or more graphs such that no two of these graphs, G, g′, have
vertices in g with edges to g′.

66. A forest is a disconnected set of trees, hence form a disjoint graph of distinct trees.

62. is a cycle: EP→ Bool
62. is a cycle(ep) ≡ let (vi, ,)=ep[1], (, ,vi′)=ep[len ep] in vi = vi′ end
62. is acyclic: G→ Bool
62. is acyclic(g) ≡ !∃ ep:EP • ep ∈ edge paths(g) ∧ is a cycle(ep)

63. is bipartite: G→ Bool
63. is bipartite(g) ≡ ... [exercise for the reader]
64. is a tree: G→ Bool
64. is a tree(g) ≡ ... [exercise for the reader]

65. is disjoint graph: G→ Bool
65. is disjoint graph(g) ≡ ... [exercise for the reader]

66. is a forest: G→ Bool
66. is a forest(g) ≡ ... [exercise for the reader]

Fig. 0.21 Undirected, Directed, Acyclic, Bipartite, Tree and Disjoint Graphs

0.4.2.5.9 Forest

A forest is an undirected graph without cycles (a disjoint union of un-rooted trees), or a directed
graph formed as a disjoint union of rooted trees.

0.4.2.5.10 Mereology Examples

We present mereology examples of both undirected and directed graphs.

Mereology of Undirected Graph Examples: We present mereology examples of road nets and
railway tracks.

• Road Nets

The mereology of road nets follow that of undirected graphs:

67. substitute V for H and VI for HI, and
68. substitute E for L and EI for LI.

We refer to Sect. 0.4.2.5.10 on the facing page.

0.4 Our General Graph Model 27

67. H Mer = L UI-set × L UI-set
68. L Mer = (H UI × H UI)-set, axiom ∀ lm:L Mer•cardlm∈{0,1,2}

• Rail Nets

We refer to Chapter 1.

Mereology of directed Graph Examples: In some circumstances we may model mereologies of
directed graphs in terms of attributes. An example is that of road nets. Road nets, usually, can be
considered undirected graphs. But discrete dynamically set and reset traffic signals as well as road
signs may render streets and their intersection, i.e., links and hubs, “directed”. We then model this
“directedness”, as we shall see, in Sect. 0.4.2.6.3 on page 31, in terms of programmable attributes.

• Pipeline Nets

We refer to Sects. 0.2.1.3 on page 6, 0.4.1.2.3 on page 18 and 0.4.2.4.3 on page 22.

69. Wells have exactly one connection to an output unit – which is usually a pump.
70. Pipes, pumps, valves and re-directors have exactly one connection from an input unit and one

connection to an output unit.
71. Forks have exactly one connection from an input unit and exactly two connections to distinct

output units.
72. Joins have exactly two connections from distinct input units and one connection to an output

unit.
73. Sinks have exactly one connection from an input unit – which is usually a valve.
74. Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit

identifiers.

type
74 PM′=(UI-set×UI-set), PM={|(iuis,ouis):PM′•iuis ∩ ouis={}|}

value
74 mereo PE: PE→ PM

The well-formedness inherent in narrative lines 69–73 are formalised:

axiom [Well−formedness of Pipeline Systems, PL (0)]
∀ pl:PL,pe:PE • pe ∈ all pipeline uits(pl)⇒

let (iuis,ouis)=mereo PE(pe) in
case (card iuis,card ouis) of

69 (0,1)→ is We(pe),

70 (1,1)→ is Pi(pe)∨is Pu(pe)∨is Va(pe),
71 (1,2)→ is Fo(pe),

72 (2,1)→ is Jo(pe),
73 (1,0)→ is Si(pe), → false

end end

To express full well-formedness we need express that pipeline nets are acyclic. To do so we first
define a function which calculates all routes in a net.

Two pipeline units, pei with unique identifier πi, and pe j with unique identifier π j, that are
connected, such that an outlet marked π j of pi “feeds into” inlet marked πi of p j, are said to share

the connection (modeled by, e.g., {(πi,π j)})

75. The observed pipeline units of a pipeline system define a number of routes (or pipelines):
Basis Clauses:

76. The null sequence, 〈〉, of no units is a route.

28 0 Graphs [February 2021]

77. Any one pipeline unit, pe, of a pipeline system forms a route, 〈pe〉, of length one.
Inductive Clauses:

78. Let rî 〈pei〉 and 〈pe j〉̂ r j be two routes of a pipeline system.
79. Let peiui

and pe jui
be the unique identifiers pei, respectively pe j.

80. If one of the output connectors of pei is peiui

81. and one of the input connectors of pe j is pe jui
,

82. then rî 〈pei,pe j〉̂ r j is a route of the pipeline system.
Extremal Clause:

83. Only such routes which can be formed by a finite number of applications of the clauses form a
route.

type
75. R = PEω

value

75 routes: PL
∼
→ R-infset

75 routes(ps) ≡

75 let cpes = pipeline units(pl) in
76 let rs = {〈〉}
77 ∪ {〈pe〉|pe:PE•pe ∈ cpes} ∪

82 ∪ {rî 〈pe i〉̂ 〈pe j〉̂ rj | pei,pej:PE • {pe i,pe j}⊆cpes
78 ∧ rî 〈pe i〉,〈pe j〉̂ rj:R • {rî 〈pe i〉,〈pe j〉̂ rj}⊆rs

79,80 ∧ pe i ui = uid PE(pe i) ∧ pe i ui ∈ xtr oUOs(pe i)

79,81 ∧ pe j ui = uid PE(pe j) ∧ pe j ui ∈ xtr iUIs(pe j)} in
83 rs end end

xtr iUIs: PE→ UI-set, xtr iUIs(u) ≡ let (iuis,)=mereo PE(pe) in iuis end
xtr oUIs: PE→ UI-set, xtr oUIs(u) ≡ let (,ouis)=mereo PE(pe) in ouis end

84. The observed pipeline units of a pipeline system forms a net subject to the following constraints:

a. unit output connectors, if any, are connected to unit input connectors;
b. unit input connectors, if any, are connected to unit output connectors;
c. there are no cyclic routes;
d. nets has all their connectors connected, that is, “starts” with wells
e. and “ends” with sinks.

value
84. wf Net: PL→ Bool
84. wf Net(pl) ≡
84. let cpes = all pipeline units{pl} in
84. ∀ pe:PE • pe ∈ cpes⇒ let (iuis,ouis) = mereo PE(pe) in
84. axiom 69.–73.

84a. ∧ ∀ pe :UI•pe ui ∈ iuis⇒

84a. ∃ pe
′
:PE•pe

′
,pe∧pe

′
isin cpes∧uid PE(pe

′
)=pe ui∧pe ui∈xtr iUIs(pe

′
)

84b. ∧ ∀ pe ui:UI•pe ui ∈ ouis⇒

84b. ∃ pe
′
:PE•pe

′
,pe∧pe

′
isin cpes∧uid PE(pe

′
)=pe ui∧pe ui∈xtr oUIs(pe

′
)

84c. ∧ ∀ r:R•r ∈ routes(pl)⇒
84c. ∼∃ i,j:Nat•i,j∧{i,j}∈ inds r∧r(i)=r(j)

84d. ∧ ∃ we:We • we ∈ us ∧ r(1) = mkWe(we)
84e. ∧ ∃ si:Si • si ∈ us ∧ r(len r) = mkSi(si)

75. end end

0.4 Our General Graph Model 29

• River Nets

85. The mereology of a river vertex is a pair: a set of unique identifiers, E UI, of river edges, i.e.,
stretches, linear sequences of simple and composite river elements, incident upon the vertex,
and a set of unique identifiers, E UI, of river edges emanating from the vertex. If the vertex is
a source then the first element of this pair is empty. If the vertex is a mount then the second
element of this pair is empty. For a confluence vertex both elements of the pair are non-empty.

86. The mereology of a river edge, that is, the linear sequence of simple and composite river
elements between two adjacent vertices, is a pair: the first element is a unique identifier of a
river vertex and so is the second element of the pair.

We present the river net mereology in two forms. The first was with respect to its graph rendition.
The second is with respect to its river element rendition.

87. The mereology of a source is just the single unique identifier of the first simple or composite
river element of the stretch emanating from the source.

88. The mereology of a confluence is a triplet: the single unique identifier of the last simple or
composite river element of the stretch of the main river incident upon the source, a set of
unique identifier of the last simple or composite river element of the stretches of the tributary
rivers incident upon the source, and the single unique identifier of the first simple or composite
river element of the main river stretch emanating from the confluence.

89. The mereology of a mouth is just the single unique identifier of the last simple or composite
river element of the stretch incident upon the mouth

90. The mereologies of simple and composite river elements are pairs: of the unique identifier of
the river elements, including sources and confluences, upstream adjacent to the river element
being “mereologised”, and of the unique identifier of the river elements, including confluences
and mouths, downstream adjacent to the river element being “mereologised”.

85. Mer V = E UI-set × E UI-set
86. Mer E = V UI × V UI

87. Mer SO = SE UI | CE UI

88. Mer KO = (SE UI|CE UI) × (SE UI|CE UI)-set × (SE UI|CE UI)
89. Mer MO = SE UI | CE UI

90. Mer RE = (SO UI|CO UI|SE UI|CE UI) × (SE UI|CE UI|CO UI|MO UI)

91. The unique vertex and edge identifiers must be identifiers of the vertices and edges of a graph.
92. Similarly, the unique source, confluence and mouth identifiers must be identifiers of respective

sources, confluences and mouths of a graph.
93. And likewise for simple and composite element identifiers.
94. No two sources, confluences, mouths, simple and composite elements have identical unique

identifiers.
95. There are other constraints, please state them !

axiom
91. [left as exercise to the reader !]
92. [left as exercise to the reader !]
93. [left as exercise to the reader !]
94. [left as exercise to the reader !]
95. [left as exercise to the reader !]

30 0 Graphs [February 2021]

0.4.2.6 Attributes

We refer to [55, Sect. 5.4]
Attributes of discrete endurants ascribe to them such properties that endow these, typical man-

ifest entities with substance. External qualities of endurants allow us to reason about atomicity
and compositions, whether as Cartesian-like products, as sets or as sequences; but not much more !
The internal quality of unique identification allows us to speak of, i.e., analyse and describe mul-
tiplicities of same sort endurants. The internal quality of mereology allows us to relate discrete
endurants either topologically or otherwise. But it is the internal quality of possessing one or more
attributes, i.e., properties — usually many more than we may actually care to define, that really
sets different sort parts “apart” (!) and allows us to reason more broadly, more domain-specifically,
about endurants.

0.4.2.6.1 Graph Labeling

It is quite common, in fact usually normal, to so-called “label” vertices and edges of graphs;
that is, either none, or all, rarely only some proper subset. Such labeling is used for two distinct
purposes: Either such labeling occur in only one of these forms, sometimes, though, in both; the
situation is confusing. In our approach we clearly analyse labeling into two separate forms: the
unique identification of distinct parts, and the ascription of attributes, sometimes the same, or
“overlapping”6 to more than one part, or even part sort. One should take care of the following:
whereas distinct parts “receive” distinct unique identification, such distinct parts may be ascribed
the same attribute value.

One may classify attributes in two different ways: into either static, monitorable and program-
mable as introduced by M.A. Jackson, [107], and as slightly “simplified” in [55, Sect. 5.4.2.3]; or as
either measurable (by for example electro-, chemical or mechanical instruments) or referable (one
can talk about histories of events) or both ! Anyone part may be ascribed attributes of any mix and
composition of these classifications.

If you sense some uneasiness about the issue of graph labeling as it is treated in for example
operations, where graphs are a stable work horse, then you are right !

0.4.2.6.2 General Net Attributes

Let us informally recall some general facts about the concept of attributes such as we introduce
them in [55, Sect. 5.4].

96. We can speak of the set of names of attribute types. If A is the type of an attributes, the ηA is
the name of that type.

97. For every part sort, P, we can thus speak of the set, or a suitably chosen, to be modeled, subset
of attributes types in terms of their names.

98. Of course, different attribute names must designate distinct, i.e., non-overlapping attribute
values of that type.

Likewise informally:

type
96. ηA, A

value
96. name of attribute: A→ ηA,ηAname of attribute(A) ≡ ηA

6 By “overlapping” assignment of attribute to different parts we mean that two or more parts may be assigned the
same attribute type.

0.4 Our General Graph Model 31

97. attributes: P→ ηA-set
97. attributes(p) ≡ {ηAi,ηA j,...,ηAk}

axiom
98. ∀ p:P, anms:{ηAi,ηA j,...,ηAk}:ηA-set:anms⊆attributes(p)⇒∀i,j,...,k•Ai∩A j={}∧A j∩A j={}∧...

0.4.2.6.3 Road Net Attributes

Link Attributes:

99. Standard “bookkeeping” link attributes are road name, length,name of administrative authority
and others. These are static attributes.

100. Standard “control” attributes model the dynamically settable direction of flow along a link: its
current link state as well as the space of all such link states.

101. Standard “event history” attributes model the time-stamped chronologically ordered sequence,
for example latest first, of automobiles entering, stopping along (say parking) and leaving a
link. A first element in such a list denotes “entering”. The last element “leaving”. Any element
in-between, pairwise, “stopping” (for example for parking) and “starting” (resume driving).
Hub Attributes:

102. Standard “bookkeeping” hub attributes are road intersection name, name of administrative
authority and others. These are static attributes.

103. Standard “control” attributes model the dynamically settable direction of flow along into and
out of a hubs: its current hub state as well as the space of all such hub states.

104. Standard “event history” attributes model the time-stamped chronologically ordered sequence,
for example latest first, of automobiles entering, stopping along (say parking) and leaving a
hub. A first element in such a list denotes “entering”. The last element “leaving”. Any element
in-between, pairwise, “stopping” (for example for parking) and “starting” (resume driving).

105. We assume a sort of automobile identifiers.

type
99. Road Name, Length, Admin Auth, ...
100. LΣ = (H UI×H UI)-set; axiom ∀ lσ:LΣ•card lσ ∈ {0,1,2}; LΩ = LΣ-set
101. L History = A UI →m TIME

∗

102. Intersection Name, Admin Auth, ...
103. HΣ = (L UI×L UI)-set
103. HΩ = HΣ-set
104. H History = A UI →m TIME

∗

105. A UI
value
99. attr Road Name:: L→Road Name, attr Length: L→Length, attr Admin Auth: L→Admin Auth, ...
100. attr LΣ: L→LΣ, attr LΩ: L→LΩ
101. attr L History: L→L History

102. attr Intersection name:: H→Intersection name, attr Admin Auth: H→Admin Auth, ...
103. attr HΣ: H→HΣ, attr HΩ: H→HΩ
104. attr H History: H→H History

We omit narrating and formalising attributes for Road Surface Temperature, Road Mainte-
nance Condition, etc., etc.

Elucidation of Road Net History Attributes

The above was a terse rendition. Below we elucidate, in two steps.

• All Events are Historized !

32 0 Graphs [February 2021]

The above “story” on road net history attributes was a “lead-in” ! To get you started on the
notion of event histories. They are not recorded by anyone. They do occur. That is a fact. We can
talk about them. So they are attributes. But they occur without our consciously talking about them.
So they are chronicled.

• More Detailed Road Unit Histories

Also, the “story” was simplified. Here is a slightly more detailed history rendition of:

106. Attributed vents related to automobiles on roads.
107. Automobiles enter a link.
108. Automobiles stop along the link at a
109. fraction of the distance between the entered and the intended destination hubs.
110. Automobiles Restart.
111. Automobiles may make U-turns along a link at fraction of the distance between the entered

and the originally intended destination hubs.
112. Eventually automobiles leave a link, entering a hub.
113. Same story for automobiles at a hub.

type
106. L Hist = A UI →m (A L Event × TIME)∗

106. A L Event == Enter | Stop | ReStart | U Turn | Leave
107. Enter :: H UI

108. Stop :: H UI × Frac × H UI

109. Frac = Real; axiom ∀ f:Frac • 0<f<1
110. ReStart :: ...
111. U Turn :: H UI × Frac × H UI

112. Leave :: H UI

• Requirements: Recording Events

So all events are chronicled. Not by the intervention of any device, but by “the sheer force of
fate” ! So be it — in the domain. But if you are to develop software for a road net application: be it
a road pricing system, or a traffic control system, or other – something related to automobile and
road events, then recording these events may be necessary. If so, you have to develop requirements
from, for example, a domain description of this kind. We refer to [55, Chapter 9: Requirements].
More specifically you have to extend the domain, [55, Sect. 9.4.4: Domain Extension] – sensors
that record the position of cars7. And this sensing may fail, and thus and implementation of the
recording of hub and link histories may leave “holes” – and the requirements must then prescribe
which kind of safeguards the thus extended road net system must provide.

0.4.2.7 Summing Up

0.4.2.7.1 A Summary of The Example Endurant Models

We summarise “the tip of the icebergs” by recording here the main domains, but now in a concrete
form; that is, with concrete types for main sorts instead of abstract types with observers.

River nets form graphs. Similarly can be done for all the examples. First we recall graphs.

• Graphs: See Items. 1 on page 16, 2 on page 16, 3 on page 16, 19 on page 19, 20 on page 19, 39
on page 23, 45 on page 23, 40 on page 23 and 47 on page 23.

7 These sensors may be photo-electric or electronic and placed at suitable points along the road net, or they may be
satellite borne. To work properly we assume that automobiles emit such signals that let their identity be recorded.

0.4 Our General Graph Model 33

type [Endurants]
1. G = V-set × E-set
2. V
3. E

type [Unique Identifiers]
19. V UI

20. E UI

type [Mereology]
39. V Mer = E UI-set; 45. V Mer = E UI-set × E UI-set [Un−directed; Directed Graphs]
40. E Mer = V UI-set; 47. E Mer = (V UI × V UI)-set [Un−directed; Directed Graphs]

• Roads: See Items 8 on page 17, 5 on page 17, 7 on page 17, 67 on page 26 and 68 on page 26.

type [Endurants]
5. RN = H-set × L-set [≃ G for Graphs]

6. H [≃ V for Graphs]
7. L [≃ E for Graphs]

type [Unique Identifiers]
28. HI [≡ VI for Graphs]
29. LI [≡ EI for Graphs]

type [Mereology]
67. H Mer = LI-set × LI-set [≃ V Mer for Graphs]
68. L Mer = (HI × HI)-set, axiom ∀ lm:L Mer•cardlm∈{0,1,2} [≡ E Mer for Graphs]

• Rails: See Chapter 1.
• Pipelines: See Items 10 on page 18, 11 on page 18, 32 on page 22 and 74 on page 27.

type [Endurants]
10. PN = PLU-set [≃ G for Graphs]

11. PLU ==WU | PU | LU | VU | FU | JU | SU [≃ (V|E) for Graphs]
type [Unique Identifiers]
32. UI ==WU UI | PU UI | LU UI | VU UI | FU UI | JU UI | SU UI

type [Mereology]
74 PM′=(UI-set×UI-set), PM={|(iuis,ouis):PM′•iuis ∩ ouis={}|} [≃ V Mer∪E Mer for Graphs]

• Rivers: See Items 13 on page 18, 14 on page 18, 15 on page 18, Sect. 0.4.2.4.4 on page 22, 85
on page 29 and 86 on page 29.

type [Endurants]
13. RiN

14. V
15. E

type [Unique Identifiers]
33. V UI, E UI

type [Mereology]
85. Mer V = E UI-set × E UI-set
86. Mer E = V UI × V UI

0.4.2.7.2 Initial Conclusion on Labeled Graphs and Example Domains

We have shown basic models of abstract undirected and directed graphs. And we have shown
four examples:

34 0 Graphs [February 2021]

• road nets,
• rail nets,

• pipeline nets and
• river nets.

Road, rail, pipeline and river elements are all uniquely identified. The road and river nets were
basically modeled as as graphs with vertices (hubs, respectively sources, confluences and mouths)
and edges (links, respectively stretches of simple and composite river elements). The rail and
pipeline nets we modeled as sets of rail and pipeline units with the mereology implying edges.

Labels, such as they are “practiced” in conventional graph theory, are introduced by may of
attributes. Attributes were also used to model dynamically varying “directedness” of edges.

We can conclude the following

• There is now a firm foundation for the labeling of graphs:

⋄⋄ the origin of vertex and edge labeling is
◦◦ the unique identifiers and/or
◦◦ the attributes
of the endurant parts that vertices and edges designate; and

⋄⋄ there really can be no vertex or edge labeling unless the origin is motivated in
◦◦ the unique identification and/or
◦◦ the attribution
of the vertex and edge parts.

0.5 The Nets Domain

0.5.1 Some Introductory Definitions

Definition: By a net domain, or, for short, just a net, we shall understand a domain of the kind
illustrated in Sect. 0.4, that is, a domain the mereology of whose main parts model graphs

Definition: By a dynamic net domain, or, for short, just a dynamic net, we shall understand
a net whose mereology – or a corresponding attribute notion – may change

Definition: By a nets domain, or, for short, just nets, (notice the suffix ‘s’, we shall understand
a domain each of whose instances is a dynamic net domain

more to come

Part II

Main Examples

Chapter 1

Rail Systems [1993–2007, 2020]

Contents
1.1 Endurants – Rail Nets and Trains . 38

1.1.1 External Qualities . 38
1.1.1.1 Rail Nets . 38

1.1.1.1.1 The Endurants . 38
1.1.1.1.2 All Net Units . 39

1.1.1.2 Trains . 39
1.1.1.2.1 The Endurants . 39
1.1.1.2.2 All Trains . 39

1.1.2 Internal Qualities . 40
1.1.2.1 Unique Identifiers . 40

1.1.2.1.1 All Net Unit Unique Identifiers . 40
1.1.2.1.2 Trains . 40
1.1.2.1.3 Retrieve Net Units . 41

1.1.2.2 Mereology . 41
1.1.2.2.1 Rail Units . 41
1.1.2.2.2 Well-formed Mereologies . 42
1.1.2.2.3 Trains . 42
1.1.2.2.4 Routes . 42

1.1.2.2.4.1 Route Types . 42
1.1.2.2.4.2 Initial Routes . 43
1.1.2.2.4.3 Next Route Elements 43
1.1.2.2.4.4 Previous Route Elements 43
1.1.2.2.4.5 All Routes . 44
1.1.2.2.4.6 Isolated Rail Net Units 44
1.1.2.2.4.7 A Delineation: Train Stations 45
1.1.2.2.4.8 All Stations of a Railway System 45
1.1.2.2.4.9 Rail Lines . 46

1.1.2.3 Attributes . 47
1.1.2.3.1 Rail Nets . 47
1.1.2.3.2 Open Routes . 48
1.1.2.3.3 Station Names . 48
1.1.2.3.4 Trains . 49
1.1.2.3.5 An Intentional Pull . 49
1.1.2.3.6 History Attributes . 50
1.1.2.3.7 The Intentional Pull Revisited . 50

1.2 Transcendental Deduction . 51
1.2.1 General . 51
1.2.2 A Note on TIME . 51
1.2.3 Train Traffic . 51

1.2.3.1 Well-formed Train Traffics . 52
1.3 Perdurants . 53

1.3.1 Channels . 53
1.3.2 Behaviour Signatures . 54
1.3.3 Behaviour Definitions . 54

37

38 1 Rail Systems [1993–2007, 2020]

1.3.3.1 Rail Unit Behaviours . 54
1.3.3.2 Train Behaviour . 55

1.4 Closing . 55

This model evolved over many years. A first, beautiful model was developed in 1993 by the late
Søren Prehn8. Over the years variations of this model went into several papers [68, 69, 19, 61, 21, 22,
23, 130, 24, 151, 131]. We refer to Railways – a compendium imm.dtu.dk/˜dibj/train-book.pdf.
The current model is a complete rewrite of earlier models. These earlier models were not based on
the endurant/perdurant, the atomic/compound [set and composite] externalities and the unique
identifier, mereology and attribute paradigms. The present model is.

The example is quite extensive. Anything smaller really makes no sense: does not bring across
the issues of what it takes to describe a domain nor the scale of domain descriptions.

The example is that of a railway system’s net of rail units and trains.

1.1 Endurants – Rail Nets and Trains

1.1.1 External Qualities

1.1.1.1 Rail Nets

1.1.1.1.1 The Endurants

114. The example is that of a railway system.
115. We focus on the railway net [and, later, trains]. They can be observed from the railway system.
116. The railway net embodies a set of [railway] net units.
117. A net unit is either a straight or curved linear unit, or a simple switch, i.e., a turnout, unit9 or

a simple cross-over, i.e., a rigid crossing unit, or a single switched cross-over, i.e., a single slip
unit, or a double switched cross-over, i.e., a double slip unit, or a terminal unit.

We refer to Figure 1.1 on the next page.

type
114. RS

115. RN
value
115. obs RN: RS→ RN

type
116. NUs = NU-set
116. NU = LU | PU | RU | SU | DU | TU
value
117. obs NUs: RN→ NU-set

8 Søren Prehn was a brilliant student of mine 1975–1980. He became a leading member of Dansk Datamatik Center
[62], and later the CR company in Denmark, from 1980 onward. He spent a 2 year sabbatical from CR with me
at the UNU/IIST, the United Nations International Institute for Software Technology in Macau, 1992–1994. Sadly he
passed away in the spring of 2006.
9 https://en.wikipedia.org/wiki/Railroad switch

1.1 Endurants – Rail Nets and Trains 39

[L]

Track / Line / Segment
/ Switch Unit

Switchable Crossover

Connectors − in−between are Units

Simple Crossover Unit

/ Linear
Turnout /

/ Rigid Crossing Unit / Double Slip

Unit
Point

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

[R]

Fig. 1.1 Left: Four net units; Right: A railway net

1.1.1.1.2 All Net Units

118. From a railway system net one can observe, i.e., extract, all the rail net units.
119. We let rs denote the value of of an arbitrary chosen railway system,
120. and we let nus denote the value of the set of all railway units.

value
118. xtr NUs: RS→ NU-set
118. xtr NUs(rs) ≡ obs NUs(obs RN(rs))

119. rs:RS

120. nus = obs NUs(rs)

1.1.1.2 Trains

1.1.1.2.1 The Endurants

121. We shall, simplifying, consider trains as atomic parts.
122. From a railway system one can observe a finite, let us decide, non-empty set of trains.

type
121. Train

122. TS = Train-set
value
122. obs TS: RS→ TS
axiom
122. ∀ rs:RS • obs TS(rs),{}

1.1.1.2.2 All Trains

123. We let trains denote the value of the set of all trains.

value
123. trains = { t | t:Train • obs TS(rs) }

40 1 Rail Systems [1993–2007, 2020]

1.1.2 Internal Qualities

1.1.2.1 Unique Identifiers

Rail Units

124. With every rail net unit we associate a unique identifier.
125. That is, no two rail net units have the same unique identifier.

type
124. UI

value
124. uid NU: NU→ UI
axiom
125. ∀ ui i,ui j:UI • ui i = ui j ≡ uid NU(ui i)=uid NU(ui j)

1.1.2.1.1 All Net Unit Unique Identifiers

126. From a railway system net one can observe, i.e., extract, the set of all the unique rail unit
identifiers of all the rail net units.

127. We let uis denote the set of all railway units of the arbitrarily chosen railway system cum railway
net.

value
126. xtr UIs: RS→ UI-set
126. xtr UIs(rs) ≡ { uid NU(nu) | nu:NU • nu ∈ obs NUs(obs RN(rs)) }

127. uis = xtr UIs(rs)

1.1.2.1.2 Trains

128. Trains have unique identifiers.
129. We let tris denote the set of all train identifiers.
130. No two distinct trains have the same unique identifier.
131. Train identifiers are distinct from rail net unit identifiers.

type
128. TI
value
128. uid Train: Train→ TI
129. tris = { uid Train(t) | t:Train • t ∈ trains }
axiom
130. either: card trains = card tris
130. or: ∀ rs:RS •

130. ∀ train a,train b:Train • {train a,train b}⊆obs TS(rs)⇒

130. train a,train b⇒ uid Train(train a),uid Train(train b)
131. uis ∩ tris = {}

1.1 Endurants – Rail Nets and Trains 41

1.1.2.1.3 Retrieve Net Units

132. Given a net unit unique identifier and a railway net one can retrieve the net unit with that
identifier.

value

132. retr NU: UI→ RS
∼
→ NU

132. retr NU(ui)(rs) ≡ let nu:NU • nu ∈ xtr NUs(rs) ∧ uid NU(nu)=ui in nu end
132. pre: ui ∈ xtr UIs(rs)

1.1.2.2 Mereology

1.1.2.2.1 Rail Units

The mereology of a rail net unit expresses its topological relation to other rail net units and trains.

133. Every rail unit is conceptually related to every train.
134. A linear rail unit is connected to exactly two distinct other rail net units of any given rail net.
135. A point unit is connected to exactly three distinct other rail net units of any given rail net.
136. A rigid crossing unit is connected to exactly four distinct other rail net units of any given rail

net.
137. A single and a double slip unit is connected to exactly four distinct other rail net units of any

given rail net.
138. A terminal unit is connected to exactly one distinct other rail net unit of any given rail net.
139. So we model the mereology of a railway net unit as a pair of sets of rail net unit unique

identifiers distinct from that of the rail net unit.
140. Trains can run on every rail unit of any rail system.

ui
ui ui ui

({ux,uy},{ua})
({ua},{ux,uy})

({ux},{ua})
({ua},{ux})

({ux,uy},{ua,ub})
({ua,ub},{ux,uy})

({ux,uy},{ua,ub})
({ua,ub},{ux,uy})

uy

ux

ua
uxua

ua

ub

ux

uy

ua

ub

ux

uy

Linear Point
Rigid

Crossinng
Double

Slip

Fig. 1.2 Four Symmetric Mereologies

type
139. Unit Mereo = (UI-set×UI-set) × TI-set
value
139. mereo NU: NU→ Unit Mereo
axiom
139. ∀ nu:NU •

139. let ((uis i,uis o),tris)=mereo NU(nu) in
133. tris = tris ∧
139. case (card uis i,card usi o) =
134. (is LU(nu)→ (1,1),

135. is PU(nu)→ (1,2) ∨ (2,1),

42 1 Rail Systems [1993–2007, 2020]

136. is RU(nu) → (2,2),

137. is SU(nu)→ (2,2), is DU(nu)→ (2,2),

138. is TU(nu) → (1,0) ∨ (0,1),
139. → chaos) end
139. ∧ uis i∩uis o={}
139. ∧ uid NU(nu) < (uis i ∪ uis o)

139. end

1.1.2.2.2 Well-formed Mereologies

141. The unique identifiers of any rail unit mereology of a rail net must be of rail units of that net
and

142. the set of train identifiers of any rail unit mereology of a rail net must be the set of all train
identifiers of that railway system.

value
141. wf Mereology: RS→ Bool
141. wf Mereology(rs) ≡

141. let (nus,uis) = (xtr NUs,xtr UIs)(rs) in
141. ∀ nu:NU • nu ∈ nus •

141. let ui = uid NU(nu), ((iuis,ouis),tris) = mereo NU(nu) in
141. ui < iuis∪ ouis∧ iuis∩ ouis={}∧ iuis∪ ouis⊆uis

142. ∧ tris= tris
141. end end

1.1.2.2.3 Trains

143. Trains can run on every rail unit of any rail system.

We omit consideration of trains communicating with other trains as well as with net management.
We leave such “completions” to the reader.

type
143. Train Mereo = UI-set
value
143. mereo Train Mereo: Train→ Train Mereo
axiom
143. ∀ rs:RS • ∀ train:Train

143. ∀ train:Train • train ∈ obs TS(rs)⇒ mereo Train Mereo(train)=retr UIs(rs)

1.1.2.2.4 Routes

We decompose the analysis into several preparatory steps.

1.1.2.2.4.1 Route Types

144. A route is a finite or infinite sequence of one or more route elements.

1.1 Endurants – Rail Nets and Trains 43

145. A route element is a [route] triple of three distinct net unit identifiers, the net unit identifier of
an immediately preceding rail unit, the net unit identifier of the present rail unit, the net unit
identifier of an immediately succeeding rail unit, irrespective of whether the preceding and
succeeding units are actually in the route as analysed.

type
144. R = TUIω

145. TUI = UI×UI×UI

axiom
145. ∀ (pui,ui,sui):TUI • card{pui,ui,sui}=3

144. ∀ r:R • ∀ i:Nat • {i,i+1}⊆inds r⇒

144. let (pui,ui,sui)=r[i], (pui′,ui′,sui′)=r[i+1] in
144. sui = pui′ ∧ ui,ui′ ∧ pui , ... end

1.1.2.2.4.2 Initial Routes

146. We define an auxiliary function which, for any given railway system, calculates the finite set of
all its initial routes – where an initial route is a one element route triplet of a non-terminal net
unit.

value
146. initial routes: RS→ R-set
146. initial routes(rs) ≡

146. let (nus,uis) = (retr NUs,retr UIs)(rs) in
146. { 〈(pui,ui,sui)〉, 〈(sui,ui,pui)〉
146. | nu:NU • nu ∈ nus ∧ ∼is TU(nu) ∧

146. let (ui,(puis,suis)) = (uid NU,mereo NU)(nu) in
146. pui ∈ puis ∧ sui ∈ suis end }
146. assert: [there are up to eight triplets in the above set]

146. end

1.1.2.2.4.3 Next Route Elements

147. Give a route element, i.e., a triplet (pui,ui,sui), one can calculate the set of one or two next route
triplet designating the net unit with identifier sui.

value
147. next route elements: TUI→ RS→ R-set
147. next route elements(,ui,sui)(rs) ≡

147. let (puis ∪ {ui},suis) = mereo NU(retr NU(sui)(rs)) in
147. { 〈(pui,uid NU(retr NU(sui)(rs)),sui′)〉 | pui:UI•pui∈puis∧sui′∈suis }

147. assert: [there are either one or two triplets in the set above.]
147. end

1.1.2.2.4.4 Previous Route Elements

148. Give a route element, i.e., a triplet (pui,ui,sui), one can calculate the set of one or two previous
route triplet designating the net unit with identifier sui.

44 1 Rail Systems [1993–2007, 2020]

value
148. previous route elements: TUI→ RS→ R-set
148. previous route elements(pui,ui,)(rs) ≡
148. let (puis,suis ∪ {ui}) = mereo NU(retr NU(pui)(rs)) in
148. { 〈(pui′,uid NU(retr NU(pui)(rs)),pui)〉 | pui′ ∈ puis ∪ suis }
148. assert: [there are either one or two triplets in the set above]
148. end

1.1.2.2.4.5 All Routes

149. A route is a finite or infinite sequence of triplets.
150. The analysis function routes calculates a potentially infinite set of routes.
151. The set rs is recursively defined.

It is the smallest set, i.e., fix-point, satisfying the equation.
rs is initialised, i.e., the base step, with the set of initial routes of the railway system.

152. The induction step (152–155) ”adds”
153. next, nr, and
154. previous, pr, triplets
155. to an arbitrarily selected route (so far calculated).
156. The pr̂ udr̂ nr element of formula line 152 need not be included as it will be calculated in some

subsequent recursion.

value
150. routes: RS→ R-infset
150. routes(rs) ≡
151. let all routes = irs ∪

152. { udr̂ nr, pr̂ udr, pr̂ udr̂ nr

153. | nr ∈ next route elements(udr[len udr])(rs) ∧
154. pr ∈ previous route elements(udr[1])(rs) ∧

155. udr:R • udr ∈ all routes } end

1.1.2.2.4.6 Isolated Rail Net Units

We wish to analyse a rail net for the following property: can one reach every rail unit from any
given rail unit ? The analysis function isolated decides on that !

157. Given two distinct net unit identifiers, ui′ and ui′′, of a railway net, ui′′ is isolated from ui′ if
there is no route in the railway net from ui′ to ui′′.

value
157. isolated: UI × UI→ RS→ Bool
157. isolated(uif,uit)(rs) ≡
157. let all routes = routes(rs) in
157. ∼∃ r:Route•r∈all routes⇒∃ i,j:Nat•{i,j}⊆inds r∧i<j∧r(i)=(,uif,)∧r(j)=(,uit,) end
157. pre {uif,uit}⊆xtr UIs(rs)

1.1 Endurants – Rail Nets and Trains 45

1.1.2.2.4.7 A Delineation: Train Stations

In preparation for our later introduction of a notion of trains we shall attempt to delineate a notion
of train station. By a train station we shall understand a largest set of connected rail units all
designated as being in that station.

158. We shall therefore, presently, introduce a predicate: in station that applies to a rail unit and
yields true if it is a designated train station, false otherwise.

159. Based on a rail unit, nu, that satisfies in station, i.e., in station(nu) and on the mereology of
stations, i.e., the connected rail units, beginning with nu, we define an analysis function which
calculates the “full” station from nu.

160. Finally we define an analysis function station which, given a station rail unit calculates the
largest set of rail units belonging to the same station.

type
160. Station = NU-set
value
158. in station: NU→ Bool
axiom
160. ∀ st:Station, ∀ nu:NU•nu ∈ st⇒ in station(nu)
value
159. station: NU→ RS→ NU-set
159. station(inu)(rs) ≡
159. let st = {inu} ∪

159. { nu |

159. stnu:NU • stnu ∈ st ∧
159. let (iuis,ouis) = mereo NU(stnu) in
159. let cnus = { get NU(ui)(rs) | ui:UI • ui ∈ iuis ∪ ouis } in
159. nu ∈ cnus ∧ in station(nu) end end }
159. in st end
159. pre: in station(nu)

How we may determine whether a rail unit is a station is left undefined. That is, we refrain from
any (speculation) as to whether stations can be characterised by certain topological features of rail
unit connections.

1.1.2.2.4.8 All Stations of a Railway System

161. We define an analysis function, all stations, which calculates, from a railway system its set of
two or more stations.

162. We calculate, snus, the set of all station rail units.
163. For each of these we calculate the station to which these station rail units belong.

value
161. all stations: RS→ Station-set
161. all stations(rs) ≡

162. let snus = { nu | nu:NU • nu ∈ xtr NUs(rs) ∧ in station(nu) } in
163. { station(nu)(rs) | nu:NU • nu ∈ snus } end
axiom
161. card all stations(rs) ≥ 2

Two or more rail units, nu, of line 163 may calculate the same station.

46 1 Rail Systems [1993–2007, 2020]

1.1.2.2.4.9 Rail Lines

164. By a trail line we mean a route that connects two neighbouring stations.
165. is connected stations: Given two stations it may be that there are no routes connecting them.
166. connecting line: We can calculate a line, ln, that does connect two connected stations.

Given two stations that are connected there will be a number of rail units in both stations that
can serve as end points of their connecting rail line. We would then say that these end point
rail units designate respective station platforms from and to where trains depart, respectively
arrive.

167. is immediately connecting line: We can inquire as to whether there is an immediately connect-
ing line between two given stations of a railway system.

type
164. LN = R

axiom
164. ∀ rs:RS • ∀ ln:LN • ln ∈ routes(rs)⇒

164. let (,1ui,) = hd ln, (,nui,) = ln[len ln] in
164. let 1nu = get NU(1ui)(rs), nnu = get NU(nnu)(rs) in
164. in station(1nu) ∧ in station(nni) end end
value
165. is connected stations: Station × Station→ RS→ Bool
165. is connected stations(fs,ts)(rs) ≡

165. let all routes = routes(rs) in
165. ∃ ln:R • ln ∈ all routes •

164. let (,1ui,) = hd ln, (,nui,) = ln[len ln] in
164. let 1nu = get NU(1ui)(rs), nnu = get NU(nnu)(rs) in
164. fs = 1nu ∧ ts = nnu end end
165. end
165. pre: {fs,ts}⊆all stations(rs)

166. connecting line: Station × Station→ RS→ LN
166. connecting line(fs,ts)(rs) ≡

165. let all routes = routes(rs) in
166. let ln:R • ln ∈ all routes •

164. let (,1ui,) = hd ln, (,nui,) = ln[len ln] in
164. let 1nu = get NU(1ui)(rs), nnu = get NU(nnu)(rs) in
164. fs = 1nu ∧ ts = nnu end end
166. ln end end
166. pre: is connected stations(fs,ts)(rs)

167. is immediately connecting line: Station × Station→ RS→ Bool
167. is immediately connecting line(fs,ts)(rs) ≡
167. let ln = connecting line(fs,ts)(rs) in
167. ∀ (,ui,):TUI • (,ui,) ∈ inds ln⇒

167. let s = get RU(ui)(rs) in
167. s ∈ fs ∪ ts ∨ ∼in station(s) end end
167. pre: is connected stations(fs,ts)(rs)

We leave it to the reader to define analysis functions that yield the set of all [immediately]
connecting lines between two stations of a railway system.

1.1 Endurants – Rail Nets and Trains 47

1.1.2.3 Attributes

Attributes are either static, [STA], or monitorable, [MON], or programmable, [PRG].

1.1.2.3.1 Rail Nets

We treat attributes of rail units.

168. A rail unit is either in a station or is not, STA.
169. A rail unit is in some state – where a state is a possibly empty set of pairs of unique identifiers

of connected rail units – with these being in respective set of the pair of sets making up the
mereology of the rail unit, PRG.
Figure 1.3 shows the twelve possible state of a point.

 unlocked point blades

Closed

Fig. 1.3 The 12 Possible States of a Turnout Point

If a switch in unlocked, a train coming from either of the converging directs will pass through the
points onto the narrow end, regardless of the position of the points, as the vehicle’s wheels will
force the points to move. Passage through a switch in this direction is known as a trailing-point
movement.

axiom
∀ pu:PU • pu ∈ xtr NUs(ps)⇒ let ({i},{o1,o2})=mereo RU(pu), ω=attr RUΩ(pu) in
ω = {{}, {{(i,o1)}}, {(o1,i)}, {{(i,o1),(o1,i)}},

{{(i,o2)}}, {(o2,i)}, {(i,o2),(o2,i)}, {(i,o2),(o2,i),(o1,i)},
{{(i,o1),(o1,i),(o2,i)}}, {{(i,o2),(o2,i),(o1,i)}}, {{(i,o1),(o2,i)}}, {{(i,o2),(o2,i)}}}

end

170. A rail unit has a state space – consisting of all the states that a rail unit may attain, STA.
171. A point or a slip is either un-locked or locked, that is, its blades can be pressed to move, or

cannot.
172. A rail unit has a length, STA.
173. A rail unit is either occupied by (a section of) an identified train or is not, PRG.
174. Et cetera.

type
168. RU In St = Bool [STA]
169. RUΣ = (UI×UI)-set [PRG]
170. RUΩ = RΣ-set [STA]

48 1 Rail Systems [1993–2007, 2020]

170. Lock Status =
′′
un-locked

′′
|
′′
locked

′′
[PRG]

172. RU Len [STA]

173. RU Train == TI | `̀nil
′′
[PRG]

174. ...
value
168. attr RU In st: RU→ RU In St

169. attr RUΣ: RU→ RUΣ
170. attr RUΩ: RU→ RUΩ
170. attr (PU|RU|SU|DU) Lock Status: (PU|RU|SU|DU)→Lock Status

172. attr RU Len: RU→ RU Len

173. attr Train: RU→ RU Train
axiom
169. ∀ rs:RS,ru:RU • ru∈retr NUs(rs)⇒
169. let uis = retr UIs(rs), (iuis,ouis) = mereo RU(ru), σ = attr Σ(ru) in
169. ∀ (iui,oui):(UI×UI) • (iui,oui)∈σ⇒ iui∈iuis∧oui∈ouis∧{iui,oui}⊆uis

170. ∧ σ ∈ attr Ω(ru) end
173. ∧ (attr Train(ru) ∈ tris ∨ attr Train(ru) = `̀nil

′′
)

174. ...

For any given switch the state space may be a proper subset of the set of all possible states.

1.1.2.3.2 Open Routes

175. A route is said to be open if all pairs of the first and last element of route triplets are in the
current state of the rail unit designated by the second element of these route triplets.

value
175. is open route: R→ RS→ Bool
175. is open route(r)(rs)
175. ∀ (iu,ui,ou):TUI • (iu,ui,ou) ∈ elems r⇒

175. let ru = get RU(ui)(rs) in let σ = attr RUΣ(ru) in (iu,ou) ∈ σ end end
175. pre: r ∈ routes(rs)

1.1.2.3.3 Station Names

176. All rail units of a station has the same station name.
177. No two distinct stations have the same name.

value
177. station name: Station→ Station Name

177. station name(st) ≡ let ru:RU • ru ∈ st in attr Name(ru) end
axiom
176. ∀ rs:RS • let rn = obs RN(rs) in
176. ∀ st,st′:Station • {st,st′}⊆stations(rn)⇒

176. ∀ ru,ru′:RU • {ru,ru′}⊆ ∈ st⇒ attr Name(ru) = attr Name(ru′)

177. st,st′ ⇒ station name(st),station name(st′)
177. end

1.1 Endurants – Rail Nets and Trains 49

1.1.2.3.4 Trains

178. Trains have length with those of a given name having not necessarily the same length.
179. Trains [are expected to] follow a route, Train Route, and to be, at any time, at a Train Position.

A Train Route is a sequence of zero, one or more timed triplets, TUIT, of rail unit identifiers.
A Train Position is a train attribute. It consists of three elements. Two train routes, ptr (past train
route) and ntr (next train route), and a [current] timed triplet, TUIT, of rail unit identifiers. The
meaning of a Train Position is that the train has passed the past route, is at the current timed
triplet, and can next enter the next route.

180. No two distinct trains occupy overlapping routes on the net.
181. Trains have a speed and acceleration (or deceleration).
182. ...

type
178. Train Length [STA]
179. TUIT = TUI×TIME

179. Train Route = TUIT∗

179. Train Position = ptr:Train Route × TUIT × ntr:Train Route [PRG]
181. Train Speed, Train Acceleration, Train Deceleration [MON]

182. ...
value
178. attr Train Length: Train→ Train Length

179. attr Train Position: Train→ Train Position
181. attr Train Speed: Train→ Train Speed

181. attr Train Acceleration: Train→ Train Acceleration

181. attr Train Deceleration: Train→ Train Deceleration
182. ...
axiom
179. ∀ rs:RS •

179. ∀ tr,tr′:Train • {tr,tr′} ⊆ obs TS(rs) ∧ tr , tr′

179. ⇒ is open route(attr Train Position(train))(rs)
179. ∧ let (trp,trp′) = attr Train Position(tr,tr′) in
179. {rui|(,(rui,),):TTUIT•(,(rui,),) ∈ elemens trr}

179. ∩

179. {rui|(,(rui′,),):TUI•(,(rui′,),) ∈ elemens trr′} = {}

179. end

1.1.2.3.5 An Intentional Pull

183. For every railway system it is the case that
184. for every rail unit in that system which “records”, as an attribute, a train, there is exactly one

train that in its route position records exactly that rail unit,
185. and vice versa.

axiom
183. ∀ rs:RS •

184. ∀ ru:RU • ru ∈ retr NUs(rs)⇒

184. if attr RU Train(ru) , `̀nil
′′
⇒

184. ∃! tr:Train • tr ∈ trains(rs) ∧
184. uid NU(ru) ∈ {ui|(,ui,):TUI • (,ui,) ∈ elems attr Train Position(tr)}

183. ∧

50 1 Rail Systems [1993–2007, 2020]

185. ∀ tr:Train • tr ∈ trains(rs)⇒

185. ∀ (,ui,):TUI • (,ui,) ∈ elems attr Train Position(tr)⇒

185. attr RU Train(get NU(ui)(rs)) = uid Train(tr)
183. end

1.1.2.3.6 History Attributes

The attributes and axioms over them – covered above do not relate to time; they are time-
independent. We now treat time-dependent attributes and axioms over them. ByTIMEwe mean
absolute times, like November 15, 2021: 16:12 , and by TI we man time intervals, like two hours,
three minutes and five seconds. We shall here consider TIME to span a definite “period” of time,
say from January 1, 2020, 00:00am to December 31, 2020, 24:00.

186. Of a road unit we can speak of its history as a time-decreasing, ordered sequence of time-
stamped train identifiers.

187. Of a train we can speak of its history as a time-decreasing, ordered sequence of time-stamped
rail unit identifiers.

We could have considered other properties to form or be included in event histories, but abstain.

type
186. RU Hist = (TIME × TI)∗ [PRG]
187. TR Hist = (TIME × UI)∗ [PRG]

value
186. attr RU Hist: RU→ RU Hist

187. attr TR Hist: Train→ TR Hist

axiom
186. [descending times in rail unit history]
187. [descending times in train history]

1.1.2.3.7 The Intentional Pull Revisited

188. For every railway system it is the case that
189. for every rail unit,
190. if at any time it records a train,
191. then that train’s event history records that rail unit in the route it is occupying at that time, and
192. for every train, if at any time it records a route
193. then exactly the rail units of that route record that train.

... below function has to be redefined ...

axiom
188. ∀ rs:RS •

189. ∀ ru:RU • ru ∈ retr NUs(rs)⇒

189. let ruh = attr RU Hist(ru) in
190. ∀ time:dom ruh • ruh(time) , {} ⇒
191. let {ti} = ruh(time) in
191. let trh = attr TR Hist(get Train(ti)(rs)) in
191. trh(time) , {} ∧

191. let {r} = trh(time) in

1.2 Transcendental Deduction 51

191. ∃ (,ui,):TUI • (,ui,) ∈ elems(r)⇒ ruh = get RU(ui)(rs)

191. end end end end
192. et cetera
193. et cetera

1.2 Transcendental Deduction

1.2.1 General

By a transcendental deduction parts can be “morphed” into behaviours. We consider the following
railway system parts:

• all the railway net units and
• all the trains.

That is, we shall not here consider the railway net management, the train operator, the passenger
and [freight] shipper parts as behaviours.

1.2.2 A Note on TIME

194. We shall consider TIME to stand for a time in a definite interval of times, for example from
January 1, 2020, 00:00 am to December 31, 2020, 23:59:59.

195. That is, TIME-interval, is the set of all the designated times in the interval.
196. The operators F [irst] and L[ast] applied to the TIME-interval interval yields the first and last

times of the interval TIME-interval.
197. We shall introduce a time interval quantity, δτ:TI– and shall consider δτ to be, if not infinitesimal

small, then at least “small”, say, in the context of train traffic, 1 second !
198. We shall, loosely, introduce the operator D, applied to the interval TIMEinterval, to yield the

definite set of times such that if τ is in TIME-interval and τ is not L(TIME-interval)then the
next time in TIMEinterval is τ+δτ.

type
194. TIME
195. TIME−interval

196. F : TIME−interval→ TIME

196. L: TIME−interval→ TIME
value
197. δτ:TI [say 1 second]
198. D: TIME−interval→ TIME-set

1.2.3 Train Traffic

199. By train traffic we shall understand a discrete function, in RSL [92] expressed as a map, over a
closed interval of time from time to trains and their route position.
We model this as shown in formula line 199.

52 1 Rail Systems [1993–2007, 2020]

Here we have taken the liberty of modeling the traffic as being discrete over infinitesimal small
time intervals δτ.

type
199. TrainTraffic = TI →m (TIME →m R)

1.2.3.1 Well-formed Train Traffics

200. For every railway system a train traffic is well-formed

a. if all trains cover the same time period;
b. if all train traffics occur on routes of the railway system;
c. if two or more trains do not have overlapping routes at any time; and
d. if each train traffic progresses monotonically.

axiom
200. ∀ rs:RS •

200. ∀ trtr:TrainTraffic •

200a. same time period(trtr)

200b. ∧ routes of rs(trtr)(rs)
200c. ∧ disjoint routes(trtr)(rs)

200d. ∧ monotonic(trtr)(rs)

200a. same time period: TrainTraffic→ Bool
200a. same time period(trtr) ≡ ∀ time,time′:TIME • DOMAIN(time)=DOMAIN(time′)

value
200b. routes of rs: TrainTraffic→ RS→ Bool
200b. routes of rs(trtr)(rs)

200b. ∀ ti:TI • ti ∈ dom trtr⇒
200b. ∀ time:TIME • time ∈ dom ti

200b. route of((trtr(ti))(time))(rs)
200b. route of: R→ RS→ Bool
200b. route of(r)(rs) ≡ r ∈ routes(rs)

value
200c. disjoint routes: TrainTraffic→ RS→ Bool
200c. disjoint routes(trtr)(rs) ≡

200c. ∀ ti,ti′:TI • {ti,ti′}≤=dom trtr ∧ ti,ti′ ⇒

200c. ∀ time:TIME • time ∈ dom ti⇒
200c. disjoint routes((trtr(ti))(time),(trtr(ti′))(time))

200c. disjoint routes: R × R→ Bool
200c. disjoint routes(r,r′) ≡
200c. {ui|(,ui,):TUI•(,ui,)∈ elems r}∩{ui|(,ui,):TUI•(,ui,)∈ elems r′} = {}

For a traffic to be monotonic it must be the case that
201. for all trains
202. for two “closely adjacent” times in the domain of that train’s traffic
203. the route positions, r,r′ of any train (at these times) must

1.3 Perdurants 53

204. either be the same. i.e. r = r′,
205. or truncated by at most the first element, i.e. r′=tl r (being a route of the system),
206. or amended by at most one element, i.e., r′=r̂ 〈tui〉 (being a route of the system),
207. or both, i.e., r′=tl r̂ 〈tui〉 (being a route of the system).

value
200d. monotonic: TrainTraffic→ RS→ Bool
200d. monotonic(trtr)(rs) ≡
202. ∀ ti:TI • ti ∈ dom trtr⇒ in
202. ∀ time,time′:TIME •

202. {time,time′} ⊆ DOMAIN(trtr(ti))

202. time′>time ∧ time′−time=δτ ∧
203. let (r,r′) = ((trtr(ti))(time),(trtr(ti))(time′)) in
204. (r′= r) ∨

205. (r′= tl r ∧ tl r ∈ routes(rs)) ∨

206. (r′= r̂ 〈tui〉 ∧ r̂ 〈tui〉 ∈ routes(rs)) ∨
207. (r′= tl r̂ 〈tui〉 ∧ tl r̂ 〈tui〉 ∈ routes(rs))

203. end

1.3 Perdurants

To every part, that is,

208. linear unit,
209. turn out,
210. rigid crossing,

211. slip (crossing),
212. double (crossing),
213. terminal unit, and

214. train

we associate, by a transcendental deduction, a never ending train behaviour which, as a function,
takes some arguments ...→... and otherwise goes on forever (Unit).

value
208. linear unit: ...→ ... Unit
209. turn out: ...→ ... Unit
210. rigid: ...→ ... Unit

211. slip: ...→ ... Unit
212. double: ...→ ... Unit
213. terminal: ...→ ... Unit
214. train: ...→ ... Unit

The Unit does not refer to the railway units of the domain, but is an RSL ... in effect designating
never ending processes.

1.3.1 Channels

215. Trains and rail net units exchange messages, NT Msg.
These message will eventually be further defined.

216. Trains potentially communicate with all rail net units.
Rail net units potentially communicate with all trains.

type
215. NT Msg
channel
216. { ch[{ui,tri}]:NT Msg | ui:UI, tri:TRI • ui ∈ uis ∧ tri ∈ trus }

54 1 Rail Systems [1993–2007, 2020]

In a more realistic railway system domain description a rail net management would monitor trains
and control (set) switches etc.

1.3.2 Behaviour Signatures

We continue sketching some of the railway system behaviour signatures. Rail net unit and train
identifiers become [first] parameters; mereology attributes become [second set of] parameters;
static attributes become [third set of] parameters; programmable attributes become [fourth] pa-
rameters; and channel references become “last” parameters.

value
208. linear unit: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len)→ (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
209. turn out: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len)→ (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
210. rigid: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len)→ (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit
211. slip: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len)→ (RUΣ×RU Hist)

→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit

212. double: ui:UI × (,tris):Unit Mereo × (R̀ UOmega×RU Le)→ (RUΣ×RU Hist)
→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit

213. terminal: ui:UI × (,tris):Unit Mereo × (RUΩ×RU Len)→ (RUΣ×RU Hist)
→ in,out {ch[{ui,ti}]|ti:TI•ti∈tris} Unit

214. train: ti:TI× uis:Train Mereo × (TRΩ×Train Length)→ (Train Position×(TRΣ×TR Hist))
→ in,out {ch[{ui,ti}]|ui:UI•ii∈uis} Unit

1.3.3 Behaviour Definitions

We shall illustrate only a narrow aspect of trains on rails. Namely that of the “simulation” of train
traffic as per pre-planned routes. That is we shall not model actual train traffic as per set time
tables – that would entail numerous more formulas than we now show. So it is only an illustration
of how rail and train behaviours might look.

1.3.3.1 Rail Unit Behaviours

We shall only exemplify linear rail unit behaviours.

217. Rail unit behaviours all have in common what we now model as the linear rail unit behaviour.
218. Non-deterministically, external choice, the rail units offers to accept communication from pass-

ing trains, ti, as to the time they are passing by –
219. with this information being added to the rail unit history as the rail unit behaviour resumes.

value
217. linear unit(ui,(ruω,...),(,tris))(ruσ,ruh) ≡

218. let Msg TR RU(time,ti) = ⌈⌉⌊⌋ {ch[{ui,ti}] ? | ti ti:TI • ti ∈ tris} in
219. linear unit(ui,(ruω,...),(,tris))(ruσ,〈(time,ti)〉̂ ruh)

217. end
217. pre: ruσ ∈ ruω

1.4 Closing 55

1.3.3.2 Train Behaviour

We focus, in our description of train behaviours sôlely on the un-aided movement of trains and,
further, on an “idealised” description.

220. There are two train positions of interest when describing train movement:

a. the general situation where the train has not yet reached its final destination, and
b. the special situation where the train has indeed reached its final destination

221. In the former (Item 220a.) the train position, at time τ, is at rail unit ui, with the first next unit
being ui′ (and where aui=aui′).

222. If elapsed time is less than planned time τ,
223. then the train informs the rail unit behaviour designated by ui that it is currently passing it.
224. and moves on within the current unit ui, having updated its history;
225. else, when elapsed time is up, i.e., equals planned time τ, the train informs the rail unit it is

now entering that it is so,
226. updates its history accordingly and moves on to the next unit, ui′

value
221. train(ti,sta,uis)(pr,((bui,ui,aui),τ),〈((aui′,ui′,nui),τ′)〉̂ nr),(trσ,trh) ≡

221. let time = record TIME in
222. if time < τ
223. then ch[{ui,ti}] ! Msg TR RU(time,ti) ;

224. train(ti,sta,uis)(pr,((bui,ui,aui),τ),〈((aui′,ui′,nui),τ′)〉̂ nr),(trσ,〈(time,ui)〉̂ trh)
225. else ch[{aui′,ti}] ! Msg TR RU(time,ti) ; assert: time = τ
226. train(ti,sta,uis)(tp̂ 〈(τ,(bui,ui,aui))〉,((aui′,ui′,nui),τ′),nr),(trσ,〈(time,ui′)〉trh)

221. end end
221. pre: trσ ∈ trω ∧ aui=aui′ ∧ τ < τ′

227. In the other position (Item 220b.) the train, at time τ, is at rail unit ui, with their bing no next
units to enter.

228. If elapsed time is less than planned time, τ,
229. then the train informs the rail unit behaviour designated by ui that it is currently passing it
230. and moves on within the current unit ui, having updated its history;
231. else the train journey has ended and the train behaviour “stops”, i.e., ceases to exist !

227. train(ti,sta,uis)((pr,((bui,ui,aui),τ),〈〉),(trσ,trh)) ≡

227. let time = record TIME in
228. if time < τ
229. then ch[{ui,ti}] ! Msg TR RU(time,ti) ;

230. train(ti,sta,uis)((pr,((bui,ui,aui),τ),〈〉),(trσ,〈(time,ui)〉̂ trh))

231. else skip assert: time = τ
227. end end
227. pre: trσ ∈ trω

1.4 Closing

We end our example here. To analyse & describe a proper railway system we would have to
introduce some rail net and train management. Rail net management would monitor the rails,
and, according to train time tables issued by train management, set switches. Train management

56 1 Rail Systems [1993–2007, 2020]

would establish train time tables, pass these onto rail net management, and would monitor and
control trains. We have given, we think, enough clues as how to analyse & describe such railway
systems.

Chapter 2

Road Transport [2007–2017]

Contents
2.1 The Road Transport Domain . 58

2.1.1 Naming . 58
2.1.2 Rough Sketch . 58

2.2 External Qualities . 58
2.2.1 A Road Transport System, II – Abstract External Qualities 58
2.2.2 Transport System Structure . 59
2.2.3 Atomic Road Transport Parts . 59
2.2.4 Compound Road Transport Parts . 59

2.2.4.1 The Composites . 59
2.2.4.2 The Part Parts . 59

2.2.5 The Transport System State . 60
2.3 Internal Qualities . 61

2.3.1 Unique Identifiers . 61
2.3.1.1 Extract Parts from Their Unique Identifiers . 61
2.3.1.2 All Unique Identifiers of a Domain . 61
2.3.1.3 Uniqueness of Road Net Identifiers . 62

2.3.2 Mereology . 62
2.3.2.1 Mereology Types and Observers . 62
2.3.2.2 Invariance of Mereologies . 63

2.3.2.2.1 Invariance of Road Nets . 63
2.3.2.2.2 Possible Consequences of a Road Net Mereology . . 64
2.3.2.2.3 Fixed and Varying Mereology . 64

2.3.3 Attributes . 64
2.3.3.1 Hub Attributes . 64
2.3.3.2 Invariance of Traffic States . 65
2.3.3.3 Link Attributes . 65
2.3.3.4 Bus Company Attributes . 66
2.3.3.5 Bus Attributes . 66
2.3.3.6 Private Automobile Attributes . 66
2.3.3.7 Intentionality . 67

2.4 Perdurants . 68
2.4.1 Channels and Communication . 68

2.4.1.1 Channel Message Types . 68
2.4.1.2 Channel Declarations . 69

2.4.2 Behaviours . 69
2.4.2.1 Road Transport Behaviour Signatures . 69

2.4.2.1.1 Hub Behaviour Signature . 70
2.4.2.1.2 Link Behaviour Signature . 70
2.4.2.1.3 Bus Company Behaviour Signature 70
2.4.2.1.4 Bus Behaviour Signature . 71
2.4.2.1.5 Automobile Behaviour Signature 71

2.4.2.2 Behaviour Definitions . 71
2.4.2.2.1 Automobile Behaviour at a Hub . 71
2.4.2.2.2 Automobile Behaviour On a Link 72

57

58 2 Road Transport [2007–2017]

2.4.2.2.3 Hub Behaviour . 73
2.4.2.2.4 Link Behaviour . 73

2.5 System Initialisation . 74
2.5.1 Initial States . 74
2.5.2 Initialisation . 74

2.1 The Road Transport Domain

Our universe of discourse in this chapter is the road transport domain.

2.1.1 Naming

type RTS

2.1.2 Rough Sketch

The road transport system that we have in mind consists of a road net and a set of vehicles
such that the road net serves to convey vehicles. We consider the road net to consist of hubs,
i.e., street intersections, or just street segment connection points, and links, i.e., street segments
between adjacent hubs. We consider vehicles to additionally include departments of motor
vehicles (DMVs), bus companies, each with zero, one or more buses, and vehicle associations,
each with zero, one or more members who are owners of zero, one or more vehicles10 ⊓⊔

2.2 External Qualities

A Road Transport System, I – Manifest External Qualities:Our intention is that the manifest
external qualities of a road transport system are those of its roads, their hubs11i.e., road (or street)
intersections, and their links, i.e., the roads (streets) between hubs, and vehicles, i.e., automobiles
– that ply the roads – the buses, trucks, private cars, bicycles, etc. ⊓⊔

2.2.1 A Road Transport System, II – Abstract External Qualities

Examples of what could be considered abstract external qualities of a road transport domain
are: the aggregate of all hubs and all links, the aggregate of all buses, say into bus companies,

10 This “rough” narrative fails to narrate what hubs, links, vehicles, DMVs, bus companies, buses and vehicle
associations are. In presenting it here, as we are, we rely on your a priori understanding of these terms. But that is
dangerous ! The danger, if we do not painstakingly narrate and formalise what we mean by all these terms, then
readers (software designers, etc.) may make erroneous assumptions.
11 We have highlighted certain endurant sort names – as they will re-appear in rather many upcoming examples.

2.2 External Qualities 59

the aggregate of all bus companies into public transport, and the aggregate of all vehicles into a
department of vehicles. Some of these aggregates may, at first be treated as abstract. Subsequently,
in our further analysis & description we may decide to consider some of them as concretely
manifested in, for example, actual departments of roads.

2.2.2 Transport System Structure

A transport system is modeled as structured into a road net structure and an automobile structure.
The road net structure is then structured as a pair: a structure of hubs and a structure of links.
These latter structures are then modeled as set of hubs, respectively links.

We could have modeled the road net structure as a composite part with unique identity,
mereology and attributes which could then serve to model a road net authority. And we could
have modeled the automobile structure as a composite part with unique identity, mereology and
attributes which could then serve to model a department of vehicles ⊓⊔

2.2.3 Atomic Road Transport Parts

From one point of view all of the following can be considered atomic parts: hubs, links12, and
automobiles.

2.2.4 Compound Road Transport Parts

2.2.4.1 The Composites

232. There is the universe of discourse, UoD.

It is structured into

233. a road net, RN, and

234. a fleet of vehicles, FV.

Both are structures. .

type
232 UoD axiom ∀ uod:UoD • is structure(uod).

233 RN axiom ∀ rn:RN • is structure(rn).

234 FV axiom ∀ fv:FV • is structure(fv).

value
233 obs RN: UoD→ RN

234 obs FV: UoD→ FV ⊓⊔

2.2.4.2 The Part Parts

235. The structure of hubs is a set, sH, of atomic hubs, H.
236. The structure of links is a set, sL, of atomic links, L.
237. The structure of buses is a set, sBC, of composite bus companies, BC.
238. The composite bus companies, BC, are sets of buses, sB.
239. The structure of private automobiles is a set, sA, of atomic automobiles, A.

12 Hub ≡ street intersection; link ≡ street segments with no intervening hubs.

60 2 Road Transport [2007–2017]

sLsH

RN

SH SL

FV

SBC

sA
PABCs

h1:H

h2:H

hm:H

l1:L

ln:L

l2:L

b11:B

b1p:B

bs1:B

bsq:B

a1:A

a2:A

ar:A

bs2:Bb12:B

bc1:sBC bc_s:sBC

Fig. 2.1 A Road Transport System Compounds and Structures

235 H, sH = H-set axiom ∀ h:H • is atomic(h)
236 L, sL = L-set axiom ∀ l:L • is atomic(l)
237 BC, BCs = BC-set axiom ∀ bc:BC • is composite(bc)
238 B, Bs = B-set axiom ∀ b:B • is atomic(b)
239 A, sA = A-set axiom ∀ a:A • is atomic(a)
value
235 obs sH: SH→ sH
236 obs sL: SL→ sL
237 obs sBC: SBC→ BCs
238 obs Bs: BCs→ Bs
239 obs sA: SA→ sA ⊓⊔

2.2.5 The Transport System State

240. Let there be given a universe of discourse, rts. It is an example of a state.

From that state we can calculate other states.

241. The set of all hubs, hs.
242. The set of all links, ls.
243. The set of all hubs and links, hls.
244. The set of all bus companies, bcs.
245. The set of all buses, bs.
246. The set of all private automobiles, as.
247. The set of all parts, ps.

value
240 rts:UoD [240]
241 hs:H-set ≡:H-set ≡ obs sH(obs SH(obs RN(rts)))
242 ls:L-set ≡:L-set ≡ obs sL(obs SL(obs RN(rts)))
243 hls:(H|L)-set ≡ hs∪ls
244 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
245 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
246 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
247 ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as

2.3 Internal Qualities 61

2.3 Internal Qualities

2.3.1 Unique Identifiers

248. We assign unique identifiers to all parts.
249. By a road identifier we shall mean a link or a

hub identifier.
250. By a vehicle identifier we shall mean a bus or

an automobile identifier.
251. Unique identifiers uniquely identify all parts.

a. All hubs have distinct [unique] identifiers.

b. All links have distinct identifiers.

c. All bus companies have distinct identi-
fiers.

d. All buses of all bus companies have dis-
tinct identifiers.

e. All automobiles have distinct identifiers.

f. All parts have distinct identifiers.

type
248 H UI, L UI, BC UI, B UI, A UI
249 R UI = H UI | L UI

250 V UI = B UI | A UI
value

251a uid H: H→ H UI

251b uid L: H→ L UI
251c uid BC: H→ BC UI

251d uid B: H→ B UI
251e uid A: H→ A UI

2.3.1.1 Extract Parts from Their Unique Identifiers

252. From the unique identifier of a part we can retrieve, ℘, the part having that identifier.

type
252 P = H | L | BC | B | A
value
252 ℘: H UI→H | L UI→L | BC UI→BC | B UI→B | A UI→A
252 ℘(ui) ≡ let p:(H|L|BC|B|A)•p∈ps∧uid P(p)=ui in p end

2.3.1.2 All Unique Identifiers of a Domain

We can calculate:

253. the set, huis, of unique hub identifiers;
254. the set, luis, of unique link identifiers;
255. the map, hluim, from unique hub identifiers to the set of unique link iidentifiers of the links connected to the zero,

one or more identified hubs,
256. the map, lhuim, from unique link identifiers to the set of unique hub iidentifiers of the two hubs connected to the

identified link;
257. the set, ruis, of all unique hub and link, i.e., road identifiers;
258. the set, bcuis, of unique bus company identifiers;
259. the set, buis, of unique bus identifiers;
260. the set, auis, of unique private automobile identifiers;
261. the set, vuis, of unique bus and automobile, i.e., vehicle identifiers;
262. the map, bcbuim, from unique bus company identifiers to the set of its unique bus identifiers; and
263. the (bijective) map, bbcuibm, from unique bus identifiers to their unique bus company identifiers.

value
253 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}
254 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}
257 ruis:R UI-set ≡ huis∪luis
255 hluim:(H UI→m L UI-set) ≡
255 [h ui 7→luis|h ui:H UI,luis:L UI-set•h ui∈huis∧(,luis,)=mereo H(η(h ui))] [cf. Item 270]

62 2 Road Transport [2007–2017]

256 lhuim:(L+UI→m H UI-set) ≡
256 [l ui 7→huis | h ui:L UI,huis:H UI-set • l ui∈luis ∧ (,huis,)=mereo L(η(l ui))] [cf. Item 271]
258 bcuis:BC UI-set ≡ {uid BC(bc)|bc:BC•bc ∈ bcs}
259 buis:B UI-set ≡ ∪{uid B(b)|b:B•b ∈ bs}
260 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}
261 vuis:V UI-set ≡ buis ∪ auis
262 bcbuim:(BC UI→m B UI-set) ≡
262 [bc ui 7→ buis | bc ui:BC UI, bc:BC • bc∈bcs ∧ bc ui=uid BC(bc) ∧ (, ,buis)=mereo BC(bc)]
263 bbcuibm:(B UI→m BC UI) ≡
263 [b ui 7→ bc ui | b ui:B UI,bc ui:BC ui • bc ui=dombcbuim∧b ui∈bcbuim(bc ui)]

2.3.1.3 Uniqueness of Road Net Identifiers

We must express the following axioms:

264. All hub identifiers are distinct.
265. All link identifiers are distinct.
266. All bus company identifiers are distinct.
267. All bus identifiers are distinct.
268. All private automobile identifiers are distinct.
269. All part identifiers are distinct.

axiom
264 card hs = card huis
265 card ls = card luis
266 card bcs = card bcuis
267 card bs = card buis
268 card as = card auis
269 card {huis∪luis∪bcuis∪buis∪auis}
269 = card huis+card luis+card bcuis+card buis+card auis ⊓⊔

2.3.2 Mereology

2.3.2.1 Mereology Types and Observers

270. The mereology of hubs is a pair: (i) the set of all bus and automobile identifiers13, and (ii) the
set of unique identifiers of the links that it is connected to and the set of all unique identifiers
of all vehicles (buses and private automobiles).14

271. The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii) the set
of the two distinct hubs they are connected to.

272. The mereology of a bus company is a set the unique identifiers of the buses operated by that
company.

273. The mereology of a bus is a pair: (i) the set of the one single unique identifier of the bus company
it is operating for, and (ii) the unique identifiers of all links and hubs15.

274. The mereology of an automobile is the set of the unique identifiers of all links and hubs16.

type
270 H Mer = V UI-set×L UI-set
271 L Mer = V UI-set×H UI-set
272 BC Mer = B UI-set

2.3 Internal Qualities 63

273 B Mer = BC UI×R UI-set
274 A Mer = R UI-set
value
270 mereo H: H→ H Mer

271 mereo L: L→ L Mer
272 mereo BC: BC→ BC Mer

273 mereo B: B→ B Mer

274 mereo A: A→ A Mer

2.3.2.2 Invariance of Mereologies

For mereologies one can usually express some invariants. Such invariants express “law-like prop-
erties”, facts which are indisputable.

2.3.2.2.1 Invariance of Road Nets

The observed mereologies must express identifiers of the state of such for road nets:

axiom
270 ∀ (vuis,luis):H Mer • luis⊆luis ∧ vuis=vuis
271 ∀ (vuis,huis):L Mer • vuis=vuis ∧ huis⊆huis ∧ cardhuis=2

272 ∀ buis:H Mer • buis = buis
273 ∀ (bc ui,ruis):H Mer•bc ui∈bcuis∧ruis=ruis
274 ∀ ruis:A Mer • ruis=ruis

275. For all hubs, h, and links, l, in the same road net,
276. if the hub h connects to link l then link l connects to hub h.

axiom
275 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls⇒
275 let (,luis)=mereo H(h), (,huis)=mereo L(l)
276 in uid L(l)∈luis ≡ uid H(h)∈huis end

277. For all links, l, and hubs, ha,hb, in the same road net,
278. if the l connects to hubs ha and hb, then ha and hb both connects to link l.

axiom
277 ∀ h a,h b:H,l:L • {h a,h b} ⊆ hs ∧ l ∈ ls⇒
277 let (,luis)=mereo H(h), (,huis)=mereo L(l)
278 in uid L(l)∈luis ≡ uid H(h)∈huis end

13 This is just another way of saying that the meaning of hub mereologies involves the unique identifiers of all the
vehicles that might pass through the hub is of interest to it.
14 The link identifiers designate the links, zero, one or more, that a hub is connected to is of interest to both the
hub and that these links is interested in the hub.
15 — that the bus might pass through
16 — that the automobile might pass through

64 2 Road Transport [2007–2017]

2.3.2.2.2 Possible Consequences of a Road Net Mereology

279. are there [isolated] units from which one can not “reach” other units ?
280. does the net consist of two or more “disjoint” nets ?
281. et cetera.

We leave it to the reader to narrate and formalise the above properly.

2.3.2.2.3 Fixed and Varying Mereology

Let us consider a road net. If hubs and links never change “affiliation”, that is: hubs are in fixed
relation to zero one or more links, and links are in a fixed relation to exactly two hubs then the
mereology is a fixed mereology. If, on the other hand hubs may be inserted into or removed from
the net, and/or links may be removed from or inserted between any two existing hubs, then the
mereology is a varying mereology.

2.3.3 Attributes

2.3.3.1 Hub Attributes

We treat some attributes of the hubs of a road net.

282. There is a hub state. It is a set of pairs, (l f ,lt), of link identifiers, where these link identifiers are
in the mereology of the hub. The meaning of the hub state in which, e.g., (l f ,lt) is an element, is
that the hub is open, “green”, for traffic f rom link l f to link lt. If a hub state is empty then the
hub is closed, i.e., “red” for traffic from any connected links to any other connected links.

283. There is a hub state space. It is a set of hub states. The current hub state must be in its state
space. The meaning of the hub state space is that its states are all those the hub can attain.

284. Since we can think rationally about it, it can be described, hence we can model, as an attribute
of hubs, a history of its traffic: the recording, per unique bus and automobile identifier, of the
time ordered presence in the hub of these vehicles. Hub history is an event history.

type
282 HΣ = (L UI×L UI)-set
axiom
282 ∀ h:H • obs HΣ(h) ∈ obs HΩ(h)
type
283 HΩ = HΣ-set
284 H Traffic
284 H Traffic = (A UI|B UI) →m (TIME × VPos)∗

axiom
284 ∀ ht:H Traffic,ui:(A UI|B UI) •

284 ui ∈ dom ht⇒ time ordered(ht(ui))

value
282 attr HΣ: H→ HΣ
283 attr HΩ: H→ HΩ
284 attr H Traffic: H→ H Traffic
value
284 time ordered: (TIME × VPos)∗ → Bool
284 time ordered(tvpl) ≡ ...

2.3 Internal Qualities 65

In Item 284 on the facing page we model the time-ordered sequence of traffic as a discrete
sampling, i.e., →m , rather than as a continuous function,→.

2.3.3.2 Invariance of Traffic States

285. The link identifiers of hub states must be in the set, luis, of the road net’s link identifiers.

axiom
285 ∀ h:H • h ∈ hs⇒
285 let hσ = attr HΣ(h) in ∀ (luii,liuii

′):(L UI×L UI) • (luii,luii
′) ∈ hσ⇒ {luii ,l

′
uii
} ⊆ luis end

2.3.3.3 Link Attributes

We show just a few attributes.

286. There is a link state. It is a set of pairs, (h f ,ht), of distinct hub identifiers, where these hub
identifiers are in the mereology of the link. The meaning of a link state in which (h f ,ht) is an
element is that the link is open, “green”, for traffic f rom hub h f to hub ht. Link states can have
either 0, 1 or 2 elements.

287. There is a link state space. It is a set of link states. The meaning of the link state space is that its
states are all those the which the link can attain. The current link state must be in its state space.
If a link state space is empty then the link is (permanently) closed. If it has one element then it
is a one-way link. If a one-way link, l, is imminent on a hub whose mereology designates that
link, then the link is a “trap”, i.e., a “blind cul-de-sac”.

288. Since we can think rationally about it, it can be described, hence it can model, as an attribute of
links a history of its traffic: the recording, per unique bus and automobile identifier, of the time
ordered positions along the link (from one hub to the next) of these vehicles.

289. The hub identifiers of link states must be in the set, huis, of the road net’s hub identifiers.

type
286 LΣ = H UI-set
axiom
286 ∀ lσ:LΣ•card lσ=2
286 ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

type
287 LΩ = LΣ-set
288 L Traffic

288 L Traffic = (A UI|B UI) →m (T×(H UI×Frac×H UI))∗

288 Frac = Real, axiom frac:Fract • 0<frac<1

value
286 attr LΣ: L→ LΣ
287 attr LΩ: L→ LΩ
288 attr L Traffic: :→ L Traffic
axiom
288 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht⇒ time ordered(ht(ui))

289 ∀ l:L • l ∈ ls⇒
289 let lσ = attr LΣ(l) in ∀ (huii,huii

′):(H UI×K UI) •

289 (huii,huii
′) ∈ lσ⇒ {huii ,h

′
uii
} ⊆ huis end

66 2 Road Transport [2007–2017]

2.3.3.4 Bus Company Attributes

Bus companies operate a number of lines that service passenger transport along routes of the road
net. Each line being serviced by a number of buses.

290. Bus companies create, maintain, revise and distribute [to the public (not modeled here), and to
buses] bus time tables, not further defined.

type
290 BusTimTbl

value
290 attr BusTimTbl: BC→ BusTimTbl

There are two notions of time at play here: the indefinite “real” or “actual” time; and the definite
calendar, hour, minute and second time designation occurring in some textual form in, e.g., time
tables.

2.3.3.5 Bus Attributes

We show just a few attributes.

291. Buses run routes, according to their line number, ln:LN, in the
292. bus time table, btt:BusTimTbl obtained from their bus company, and and keep, as inert attributes,

their segment of that time table.
293. Buses occupy positions on the road net:

a. either at a hub identified by some h ui,
b. or on a link, some fraction, f:Fract, down an identified link, l ui, from one of its identified

connecting hubs, fh ui, in the direction of the other identified hub, th ui.

294. Et cetera.

type
291 LN

292 BusTimTbl
293 BPos == atHub | onLink

293a atHub :: h ui:H UI
293b onLink :: fh ui:H UI×l ui:L UI×frac:Fract×th ui:H UI

293b Fract = Real, axiom frac:Fract • 0<frac<1

294 ...
value
292 attr BusTimTbl: B→ BusTimTbl

293 attr BPos: B→ BPos

2.3.3.6 Private Automobile Attributes

We illustrate but a few attributes:

295. Automobiles have static number plate registration numbers.
296. Automobiles have dynamic positions on the road net:

[293a] either at a hub identified by some h ui,

2.3 Internal Qualities 67

[293b] or on a link, some fraction, frac:Fract down an identified link, l ui, from one of its
identified connecting hubs, fh ui, in the direction of the other identified hub, th ui.

type
295 RegNo
296 APos == atHub | onLink

293a atHub :: h ui:H UI
293b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI

293b Fract = Real, axiom frac:Fract • 0<frac<1

value
295 attr RegNo: A→ RegNo

296 attr APos: A→ APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or
backward movement, turning right, left or going straight, etc. The acceleration, deceleration,
even velocity, or turning right, turning left, moving straight, or forward or backward are seen
as command actions. As such they denote actions by the automobile — such as pressing the
accelerator, or lifting accelerator pressure or braking, or turning the wheel in one direction or
another, etc. As actions they have a kind of counterpart in the velocity, the acceleration, etc.
attributes. Observe that bus companies each have their own distinct bus time table, and that these
are modeled as programmable, Item 290 on the preceding page, page 66. Observe then that buses
each have their own distinct bus time table, and that these are model-led as inert, Item 292 on
the facing page, page 66. In Items 284 Pg. 64 and 288 Pg. 65, we illustrated an aspect of domain
analysis & description that may seem, and at least some decades ago would have seemed, strange:
namely that if we can think, hence speak, about it, then we can model it “as a fact” in the domain.
The case in point is that we include among hub and link attributes their histories of the timed
whereabouts of buses and automobiles.17

2.3.3.7 Intentionality

297. Seen from the point of view of an automobile there is its own traffic history, A Hist, which is a
(time ordered) sequence of timed automobile’s positions;

298. seen from the point of view of a hub there is its own traffic history, H Traffic Item 284 Pg. 64,
which is a (time ordered) sequence of timed maps from automobile identities into automobile
positions; and

299. seen from the point of view of a link there is its own traffic history, L Traffic Item 288 Pg. 65,
which is a (time ordered) sequence of timed maps from automobile identities into automobile
positions.

The intentional “pull” of these manifestations is this:

300. The union, i.e. proper merge of all automobile traffic histories, AllATH, must now be identical
to the same proper merge of all hub, AllHTH, and all link traffic histories, AllLTH.

type
297 A Hi = (T × APos)∗

284 H Trf = A UI →m (TIME × APos)∗

288 L Trf = A UI→m (TIME×APos)∗

300 AllATH=TIME→m (AUI→m APos)

17 In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so strange:
We now know, at least in principle, of technologies that can record approximations to the hub and link traffic
attributes.

68 2 Road Transport [2007–2017]

300 AllHTH=TIME→m (AUI→m APos)

300 AllLTH=TIME→m (AUI→m APos)

axiom
300 let allA=mrg AllATH({(a,attr A Hi(a))|a:A•a ∈ as}),
300 allH=mrg AllHTH({attr H Trf(h)|h:H•h ∈ hs}),
300 allL=mrg AllLTH({attr L Trf(l)|l:L•h ∈ ls}) in
300 allA = mrg HLT(allH,allL) end

We leave the definition of the four merge functions to the reader ! We endow each automobile
with its history of timed positions and each hub and link with their histories of timed automobile
positions. These histories are facts ! They are not something that is laboriously recorded, where
such recordings may be imprecise or cumbersome18. The facts are there, so we can (but may not
necessarily) talk about these histories as facts. It is in that sense that the purpose (‘transport’)
for which man let automobiles, hubs and link be made with their ‘transport’ intent are subject
to an intentional “pull”. It can be no other way: if automobiles “record” their history, then hubs
and links must together “record” identically the same history !.

Intentional Pull – General Transport: These are examples of human intents: they create roads
and automobiles with the intent of transport, they create houses with the intents of living, offices,
production, etc., and they create pipelines with the intent of oil or gas transport

2.4 Perdurants

In this section we transcendentally “morph” parts into behaviours. We analyse that notion and
its constituent notions of actors, channels and communication, actions and events.

The main transcendental deduction of this chapter is that of associating with each part a
behaviour. This section shows the details of that association. Perdurants are understood in terms
of a notion of state and a notion of time .

State Values versus State Variables: Item 247 on page 60 expresses the value of all parts of a
road transport system:

247. ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as.

301. We now introduce the set of variables, one for each part value of the domain being modeled.

301. { variable vp:(UoB|H|L|BC|B|A) | vp:(UoB|H|L|BC|B|A) • vp∈ps }

Buses and Bus Companies A bus company is like a “root” for its fleet of “sibling” buses. But a
bus company may cease to exist without the buses therefore necessarily also ceasing to exist. They
may continue to operate, probably illegally, without, possibly. a valid bus driving certificate. Or
they may be passed on to either private owners or to other bus companies. We use this example
as a reason for not endowing a “block structure” concept on behaviours.

2.4.1 Channels and Communication

2.4.1.1 Channel Message Types

We ascribe types to the messages offered on channels.

18 or thought technologically in-feasible – at least some decades ago!

2.4 Perdurants 69

302. Hubs and links communicate, both ways, with one another, over channels, hl ch, whose indexes
are determined by their mereologies.

303. Hubs send one kind of messages, links another.
304. Bus companies offer timed bus time tables to buses, one way.
305. Buses and automobiles offer their current, timed positions to the road element, hub or link they

are on, one way.

type
303 H L Msg, L H Msg
302 HL Msg = H L Msg | L F Msg
304 BC B Msg = T × BusTimTbl
305 V R Msg = T × (BPos|APos)

2.4.1.2 Channel Declarations

306. This justifies the channel declaration which is calculated to be:

channel
306 { hl ch[h ui,l ui]:H L Msg
306 | h ui:H UI,l ui:L UI•i ∈ huis∧j ∈ lhuim(h ui) }
306 ∪

306 { hl ch[h ui,l ui]:L H Msg
306 | h ui:H UI,l ui:L UI•l ui ∈ luis∧i ∈ lhuim(l ui) }

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus
companies need communicate to all its buses, but not the buses of other bus companies. Buses of
a bus company need communicate to their bus company, but not to other bus companies.

307. This justifies the channel declaration which is calculated to be:

channel
307 { bc b ch[bc ui,b ui] | bc ui:BC UI, b ui:B UI
307 • bc ui ∈ bcuis ∧ b ui ∈ buis }: BC B Msg

We shall argue for vehicle to road element channels based on the mereologies of those parts. Buses
and automobiles need communicate to all hubs and all links.

308. This justifies the channel declaration which is calculated to be:

channel
308 { v r ch[v ui,r ui] | v ui:V UI,r ui:R UI
308 • v ui∈ vuis∧r ui∈ ruis }: V R Msg

2.4.2 Behaviours

2.4.2.1 Road Transport Behaviour Signatures

We first decide on names of behaviours. In the translation schemas we gave schematic names
to behaviours of the form MP. We now assign mnemonic names: from part names to names of
transcendentally interpreted behaviours and then we assign signatures to these behaviours.

70 2 Road Transport [2007–2017]

2.4.2.1.1 Hub Behaviour Signature

309. hubhui
:

a. there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;
b. then there are the programmable attributes;
c. and finally there are the input/output channel references: first those allowing communication

between hub and link behaviours,
d. and then those allowing communication between hub and vehicle (bus and automobile)

behaviours.

value
309 hubhui

:
309a h ui:H UI×(vuis,luis,):H Mer×HΩ
309b → (HΣ×H Traffic)
309c → in,out { h l ch[h ui,l ui] | l ui:L UI•l ui ∈ luis }
309d { ba r ch[h ui,v ui] | v ui:V UI•v ui∈vuis } Unit
309a pre: vuis = vuis ∧ luis = luis

2.4.2.1.2 Link Behaviour Signature

310. linklui
:

a. there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;
b. then there are the programmable attributes;
c. and finally there are the input/output channel references: first those allowing communication between hub

and link behaviours,
d. and then those allowing communication between link and vehicle (bus and automobile) behaviours.

value
310 linklui

:
310a l ui:L UI×(vuis,huis,):L Mer×LΩ
310b → (LΣ×L Traffic)
310c → in,out { h l ch[h ui,l ui] | h ui:H UI:h ui ∈ huis }
310d { ba r ch[l ui,v ui] | v ui:(B UI|A UI)•v ui∈vuis } Unit
310a pre: vuis = vuis ∧ huis = huis

2.4.2.1.3 Bus Company Behaviour Signature

311. bus companybcui
:

a. there is here just a “doublet” of arguments: unique identifier and mereology;
b. then there is the one programmable attribute;
c. and finally there are the input/output channel references allowing communication between the bus company

and buses.

value
311 bus companybcui

:
311a bc ui:BC UI×(, ,buis):BC Mer
311b → BusTimTbl
311c in,out {bc b ch[bc ui,b ui]|b ui:B UI•b ui∈buis} Unit
311a pre: buis = buis ∧ huis = huis

2.4 Perdurants 71

2.4.2.1.4 Bus Behaviour Signature

312. busbui
:

a. there is here just a “doublet” of arguments: unique identifier and mereology;
b. then there are the programmable attributes;
c. and finally there are the input/output channel references: first the input/output allowing communication

between the bus company and buses,
d. and the input/output allowing communication between the bus and the hub and link behaviours.

value
312 busbui

:
312a b ui:B UI×(bc ui, ,ruis):B Mer
312b → (LN × BTT × BPOS)
312c → out bc b ch[bc ui,b ui],
312d {ba r ch[r ui,b ui]|r ui:(H UI|L UI)•ui∈vuis} Unit
312a pre: ruis = ruis ∧ bc ui ∈ bcuis

2.4.2.1.5 Automobile Behaviour Signature

313. automobileaui
:

a. there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;
b. then there is the one programmable attribute;
c. and finally there are the input/output channel references allowing communication between the automobile

and the hub and link behaviours.

value
313 automobileaui

:
313a a ui:A UI×(, ,ruis):A Mer×rn:RegNo
313b → apos:APos
313c in,out {ba r ch[a ui,r ui]|r ui:(H UI|L UI)•r ui∈ruis} Unit
313a pre: ruis = ruis ∧ a ui ∈ auis ⊓⊔

2.4.2.2 Behaviour Definitions

We only illustrate automobile, hub and link behaviours.

2.4.2.2.1 Automobile Behaviour at a Hub

We define the behaviours in a different order than the treatment of their signatures. We “split”
definition of the automobile behaviour into the behaviour of automobiles when positioned at a
hub, and into the behaviour automobiles when positioned at on a link. In both cases the behaviours
include the “idling” of the automobile, i.e., its “not moving”, standing still.

314. We abstract automobile behaviour at a Hub (hui).
315. The vehicle remains at that hub, “idling”,
316. informing the hub behaviour,
317. or, internally non-deterministically,

a. moves onto a link, tli, whose “next” hub, identified by th ui, is obtained from the mereology
of the link identified by tl ui;

b. informs the hub it is leaving and the link it is entering of its initial link position,

72 2 Road Transport [2007–2017]

c. whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning (0)
of that link,

318. or, again internally non-deterministically,
319. the vehicle “disappears — off the radar” !

314 automobileaui
(a ui,({},(ruis,vuis),{}),rn)

314 (apos:atH(fl ui,h ui,tl ui)) ≡
315 (ba r ch[a ui,h ui] ! (record TIME(),atH(fl ui,h ui,tl ui));

316 automobileaui
(a ui,({},(ruis,vuis),{}),rn)(apos))

317 ⌈⌉

317a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in
317a assert: fh ui=h ui ∧ ruis=ruis′

314 let onl = (tl ui,h ui,0,th ui) in
317b (ba r ch[a ui,h ui] ! (record TIME(),onL(onl)) ‖

317b ba r ch[a ui,tl ui] ! (record TIME(),onL(onl))) ;
317c automobileaui

(a ui,({},(ruis,vuis),{}),rn)

317c (onL(onl)) end end)

318 ⌈⌉

319 stop

2.4.2.2.2 Automobile Behaviour On a Link

320. We abstract automobile behaviour on a Link.

a. Internally non-deterministically, either
i. the automobile remains, “idling”, i.e., not moving, on the link,

ii. however, first informing the link of its position,
b. or

i. if if the automobile’s position on the link has not yet reached the hub, then
1. then the automobile moves an arbitrary small, positive Real-valued increment along

the link
2. informing the hub of this,
3. while resuming being an automobile ate the new position, or

ii. else,
1. while obtaining a “next link” from the mereology of the hub (where that next link

could very well be the same as the link the vehicle is about to leave),
2. the vehicle informs both the link and the imminent hub that it is now at that hub,

identified by th ui,
3. whereupon the vehicle resumes the vehicle behaviour positioned at that hub;

c. or
d. the vehicle “disappears — off the radar” !

320 automobileaui
(a ui,({},ruis,{}),rno)

320 (vp:onL(fh ui,l ui,f,th ui)) ≡

320(a)ii (ba r ch[thui,aui]!atH(lui,thui,nxt lui) ;

320(a)i automobileaui
(a ui,({},ruis,{}),rno)(vp))

320b ⌈⌉

320(b)i (if not yet at hub(f)

320(b)i then
320(b)i1 (let incr = increment(f) in
314 let onl = (tl ui,h ui,incr,th ui) in

2.4 Perdurants 73

320(b)i2 ba−r ch[l ui,a ui] ! onL(onl) ;

320(b)i3 automobileaui
(a ui,({},ruis,{}),rno)

320(b)i3 (onL(onl))
320(b)i end end)

320(b)ii else
320(b)ii1 (let nxt lui:L UI•nxt lui ∈ mereo H(℘(th ui)) in
320(b)ii2 ba r ch[thui,aui]!atH(l ui,th ui,nxt lui) ;

320(b)ii3 automobileaui
(a ui,({},ruis,{}),rno)

320(b)ii3 (atH(l ui,th ui,nxt lui)) end)

320(b)i end)

320c ⌈⌉

320d stop
320(b)i1 increment: Fract→ Fract

2.4.2.2.3 Hub Behaviour

321. The hub behaviour

a. non-deterministically, externally offers
b. to accept timed vehicle positions —
c. which will be at the hub, from some vehicle, v ui.
d. The timed vehicle hub position is appended to the front of that vehicle’s entry in the hub’s

traffic table;
e. whereupon the hub proceeds as a hub behaviour with the updated hub traffic table.
f. The hub behaviour offers to accept from any vehicle.
g. A post condition expresses what is really a proof obligation: that the hub traffic, ht′ satisfies

the axiom of the endurant hub traffic attribute Item 284 Pg. 64.

value
321 hubhui

(h ui,(,(luis,vuis)),hω)(hσ,ht) ≡

321a ⌈⌉⌊⌋

321b { let m = ba r ch[h ui,v ui] ? in
321c assert: m=(,atHub(,h ui,))

321d let ht′ = ht † [h ui 7→ 〈m〉̂ ht(h ui)] in
321e hubhui

(h ui,(,(luis,vuis)),(hω))(hσ,ht′)

321f | v ui:V UI•v ui∈vuis end end }
321g post: ∀ v ui:V UI•v ui ∈ dom ht′⇒time ordered(ht′(v ui))

2.4.2.2.4 Link Behaviour

322. The link behaviour non-deterministically, externally offers
323. to accept timed vehicle positions —
324. which will be on the link, from some vehicle, v ui.
325. The timed vehicle link position is appended to the front of that vehicle’s entry in the link’s

traffic table;
326. whereupon the link proceeds as a link behaviour with the updated link traffic table.
327. The link behaviour offers to accept from any vehicle.
328. A post condition expresses what is really a proof obligation: that the link traffic, lt′ satisfies the

axiom of the endurant link traffic attribute Item 288 Pg. 65.

74 2 Road Transport [2007–2017]

322 linklui
(l ui,(,(huis,vuis),),lω)(lσ,lt) ≡

322 ⌈⌉⌊⌋

323 { let m = ba r ch[l ui,v ui] ? in
324 assert: m=(,onLink(,l ui, ,))

325 let lt′ = lt † [l ui 7→ 〈m〉̂ lt(l ui)] in
326 linklui

(l ui,(huis,vuis),hω)(hσ,lt′)
327 | v ui:V UI•v ui∈vuis end end }
328 post: ∀ v ui:V UI•v ui ∈ dom lt′⇒time ordered(lt′(v ui))

2.5 System Initialisation

2.5.1 Initial States

value
hs:H-set ≡ ≡ obs sH(obs SH(obs RN(rts)))
ls:L-set ≡ ≡ obs sL(obs SL(obs RN(rts)))
bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

2.5.2 Initialisation

We are reaching the end of this domain modeling example. Behind us there are narratives and
formalisations. Based on these we now express the signature and the body of the definition of a
“system build and execute” function.

329. The system to be initialised is

a. the parallel compositions (‖) of
b. the distributed parallel composition (‖{...|...}) of all hub behaviours,
c. the distributed parallel composition (‖{...|...}) of all link behaviours,
d. the distributed parallel composition (‖{...|...}) of all bus company behaviours,
e. the distributed parallel composition (‖{...|...}) of all bus behaviours, and
f. the distributed parallel composition (‖{...|...}) of all automobile behaviours.

value
329 initial system: Unit→ Unit
329 initial system() ≡

329b ‖ { hubhui
(h ui,me,hω)(htrf,hσ)

329b | h:H•h ∈ hs, h ui:H UI•h ui=uid H(h), me:HMetL•me=mereo H(h),

329b htrf:H Traffic•htrf=attr H Traffic H(h),

329b hω:HΩ•hω=attr HΩ(h), hσ:HΣ•hσ=attr HΣ(h)∧hσ ∈ hω }
329a ‖

329c ‖ { linklui
(l ui,me,lω)(ltrf,lσ)

329c l:L•l ∈ ls, l ui:L UI•l ui=uid L(l), me:LMet•me=mereo L(l),

329c ltrf:L Traffic•ltrf=attr L Traffic H(l),

329c lω:LΩ•lω=attr LΩ(l), lσ:LΣ•lσ=attr LΣ(l)∧lσ ∈ lω }

2.5 System Initialisation 75

329a ‖

329d ‖ { bus companybcui
(bcui,me)(btt)

329d bc:BC•bc ∈ bcs, bc ui:BC UI•bc ui=uid BC(bc), me:BCMet•me=mereo BC(bc),
329d btt:BusTimTbl•btt=attr BusTimTbl(bc) }

329a ‖

329e ‖ { busbui
(b ui,me)(ln,btt,bpos)

329e b:B•b ∈ bs, b ui:B UI•b ui=uid B(b), me:BMet•me=mereo B(b), ln:LN:pln=attr LN(b),

329e btt:BusTimTbl•btt=attr BusTimTbl(b), bpos:BPos•bpos=attr BPos(b) }
329a ‖

329f ‖ { automobileaui
(a ui,me,rn)(apos)

329f a:A•a ∈ as, a ui:A UI•a ui=uid A(a), me:AMet•me=mereo A(a),
329f rn:RegNo•rno=attr RegNo(a), apos:APos•apos=attr APos(a) } ⊓⊔

Chapter 3

The Blue Skies [August 2021]

Contents
3.1 Introdution . 77
3.2 Endurants . 78

3.2.1 External Qualities . 78
3.2.1.1 Parts and Fluids . 78
3.2.1.2 The Air State . 78

3.2.2 Internal Qualities . 78
3.2.2.1 Unique Identifiers . 78

3.2.2.1.1 Obervers . 78
3.2.2.1.2 All Unique Identifiers . 78
3.2.2.1.3 Axioms . 78

3.2.2.2 Mereology . 78
3.2.2.2.1 Obervers . 78
3.2.2.2.2 Axioms . 78

3.2.2.3 Attributes . 78
3.3 Perdurants . 78

3.3.1 Channels . 78
3.3.2 Behaviours . 78
3.3.3 Signatures . 78
3.3.4 Definitions . 78
3.3.5 System . 78

3.4 Conclusion . 78

3.1 Introdution

Some early work on this domain was reported in 1995 [18]. From Appendix B of [55] we “lift”
Fig. B.1 Page 349, cf. Fig. 3.1 on the following page.

The aim of this chapter is to [eventually] present a model of the air traffic domain hinted at in
Fig. 3.1 on the next page.

77

78 3 The Blue Skies [August 2021]

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

This right 1/2 is a "mirror image" of left 1/2 of the figure

Fig. 3.1 A schematic air traffic system

3.2 Endurants

3.2.1 External Qualities

3.2.1.1 Parts and Fluids

3.2.1.2 The Air State

3.2.2 Internal Qualities

3.2.2.1 Unique Identifiers

3.2.2.1.1 Obervers

3.2.2.1.2 All Unique Identifiers

3.2.2.1.3 Axioms

3.2.2.2 Mereology

3.2.2.2.1 Obervers

3.2.2.2.2 Axioms

3.2.2.3 Attributes

3.3 Perdurants

3.3.1 Channels

3.3.2 Behaviours

3.3.3 Signatures

3.3.4 Definitions

3.3.5 System

3.4 Conclusion

Chapter 4

The 7 Seas [August 2021]

Contents
4.1 Introduction . 80
4.2 Endurants . 80

4.2.1 External Qualities . 80
4.2.1.1 Informal Introduction . 80
4.2.1.2 Formal Introduction . 85

4.2.1.2.1 Parts and Fluids . 85
4.2.1.2.2 The 7 Seas State . 85

4.2.2 Internal Qualities . 86
4.2.2.1 Unique Identifiers . 86

4.2.2.1.1 Observers . 86
4.2.2.1.2 All Unique Identifiers . 86
4.2.2.1.3 Axiom . 86
4.2.2.1.4 Extraction of Atomic Elements . 86

4.2.2.2 Mereology . 87
4.2.2.2.1 Types, Observers and Axioms . 87

4.2.2.2.1.1 Seas: . 87
4.2.2.2.1.2 Rivers: . 87
4.2.2.2.1.3 Canals and Straits: 87
4.2.2.2.1.4 Continents: . 88
4.2.2.2.1.5 Harbours: . 88
4.2.2.2.1.6 Vessels: . 88

4.2.2.2.2 A Remark . 89
4.2.2.2.3 A Domain Axiom . 89

4.2.2.3 Attributes . 89
4.2.2.3.1 Seas . 89
4.2.2.3.2 Rivers . 90
4.2.2.3.3 Canals and Straits . 90
4.2.2.3.4 Continents . 91
4.2.2.3.5 Harbours . 91
4.2.2.3.6 Vessels . 92

4.3 Perdurants . 93
4.3.1 Channels . 93
4.3.2 Behaviours . 93
4.3.3 Signatures . 93
4.3.4 Definitions . 93
4.3.5 System . 93

4.4 Conclusion . 93

79

80 4 The 7 Seas [August 2021]

4.1 Introduction

In this model we shall treat waterways, not as fluids, but as solids ! That is, we may considers
waterways as parts, and hence, by transcendental deductions, as possibly having behaviours.
Similarly we shall consider many composite endurants, not as elements of structures, but as parts,
while not considering their internal qualities, that is, not considering their possible behaviours.

4.2 Endurants

4.2.1 External Qualities

4.2.1.1 Informal Introduction

• Waterways include seas, rivers and navigable “k”anals.
• One can take the view that there are the following eight seas: the Arctic Ocean, the North Atlantic

Ocean, the South Atlantic Ocean, the Indian Ocean, the North Pacific Ocean, the South Pacific
Ocean, the Southern (or Antarctic) Ocean, and the Kaspian Sea. Another view “collapses” the
north and south into one, leaving just 6 oceans and seas. Yet a third view is that there are just 2
oceans and seas: The Kaspian Sea and the others – since they are all “tightly” connected ! The
Kaspian Sea cannot be reached by ship or boat from the ocean[s] ! The Mediterranean and The

4.2 Endurants 81

Black Seas are both considered segments of The Atlantic Ocean. The Arab Sea is considered a
segment of The Indian Ocean. Etcetera.

A World Map of Oceans and Seas

The Mediterranean and Arab Seas

82 4 The 7 Seas [August 2021]

The Black Sea and the Kaspian Ocean
• By navigable rivers, “k”anals and status mean such rivers, “k”anals and straits that are con-

nected to the seas and can be navigated by boats and ships. Such areas of rivers and “k”anals that
are not navigable by ocean-going boats and ships are area-wise elements of “their” continents.
Notice that we “lump” “k”anals and straits:

The Mississippi and the Amazon Rivers

The Yang Tse and the Danube Rivers

4.2 Endurants 83

The Panama and Suez Canals

The Gibraltar and Malacca Straits
• By continents we loosely mean some connected land area.

The left map counts Central America, The Caribbean and Middle East as continents !

84 4 The 7 Seas [August 2021]

• By harbours we mean places at the edge of continents, seas, rivers, “k”anals and straits where
vessels can berth, unload and load cargo and/or passengers.

Singapore and Los Angeles Harbours

Rotterdam and Shanghai Harbours
• By vessels we mean ocean-going ships and boats. Without loss of generality we omit consider-

ation of such vessels as floats, barges, etc.

Miscellaneous Vessels

4.2 Endurants 85

4.2.1.2 Formal Introduction

4.2.1.2.1 Parts and Fluids

330. “The 7 Seas” is a structure composite of the waterways, the continents, the harbours and the
vessels.

331. The waterways aggregate consists of an structure composite of a fluids: seas, rivers and
“k”anal/straits aggregates.

332. The seas aggregate is a set of seas.
333. The rivers aggregate is a set of [atomic] rivers.
334. The “k”anal/straits aggregate is a set of [atomic] “k”anals and straits.
335. The continents aggregate is a set of [atomic] continents.
336. The harbour aggregate is a set of [atomic] harbours.
337. The Vessel aggregate is a set of [atomic] vessels.

type
330. 7Seas, WA, CA, HA, VA

331. SA, RA, KA
332. Ss = S-set
333. Rs = R-set
334. Ks = K-set
335. Cs = C-set
336. Hs = H-set
337. Vs = V-set
value
330. obs WA: 7Seas→WA, obs CA: 7Seas→CA, obs HA: 7Seas→HA, obsVA: 7Seas→VA
331. obs SA: WA→ SA, obs RA: WA→ RA, obs KA: WA→ KA

332. obs Ss: SA→ Ss

333. obs Rs: RA→ Rs
334. obs Ks: KA→ Ks

335. obs Cs: CA→ Cs
336. obs Hs: HA→ Hs

337. obs Vs: VA→ Vs

4.2.1.2.2 The 7 Seas State

338. By “The 7 Seas state” we mean the collection of all atomic “The 7 Seas” endurants – a collection
which is the distributed union of all continents, rivers, canals, continents, harbours and vessels.

value
330. 7seas:7Seas
332. ss:Ss = obs Ss(obs SA(obs WA(7seas)))
333. rs:Rs = obs Rs(obs RA(obs WA(7seas)))
334. ks:Ks = obs Ks(obs KA(obs WA(7seas)))
335. cs:Cs = obs Cs(obs CA(7seas))
336. hs:Hs = obs Hs(obs HA(7seas))
337. vs:Vs = obs Vs(obs VA(7seas))
338. 7σ:(S|R|K|C|H|V)-set = ss ∪ rs ∪ ks ∪ cs ∪ hs ∪ vs

Please not the type font names for the state values.

86 4 The 7 Seas [August 2021]

4.2.2 Internal Qualities

4.2.2.1 Unique Identifiers

4.2.2.1.1 Observers

339.

type
339. SI, RI, KI, CI, HI, VI

value
339. uid S: S→SI, uid R: R→RI, uid K: K→KI, uid C: C→CI, uid H: H→HI, uid V: V→VI

4.2.2.1.2 All Unique Identifiers

340. We can calculate the sets of all sea, river, canal, continent, harbor and vessel identifiers,
341. as well as the set of all atomic part and fluid identifiers of the 7 Seas domain.

value
340. sis:SI-set = {uid S(s)|s:S•s ∈ ss}
340. ris:RI-set = {uid R(r)|r:R•r ∈ rs}
340. kis:KI-set = {uid K(k)|k:K•k ∈ ks}
340. cis:CI-set = {uid C(c)|c:C•c ∈ cs}
340. his:HI-set = {uid H(h)|h:H•h ∈ hs}
340. vis:VI-set = {uid V(v)|v:V•v ∈ vs}
341. 7is:(SI|RI|KI|CI|HI|VI)-set = sis∪ris∪kis∪cis∪his∪vis

4.2.2.1.3 Axiom

342. All atomic parts and separate fluids have unique identifiers.

axiom
342. card 7σ = card ais

4.2.2.1.4 Extraction of Atomic Elements

343. From a sea identifier we can, via the domain state ss, obtain the seal.
344. From a river identifier we can, via the domain state rs, obtain the river.
345. From a canal identifier we can, via the domain state ks, obtain the canal.
346. From a continent identifier we can, via the domain state cs, obtain the continent.
347. From a harbour identifier we can, via the domain state hs, obtain the harbour.
348. From a vessel identifier we can, via the domain state vs, obtain the vessel.

value
343. xtr S: SI→S; xtr S(si) ≡ let s:S • s ∈ ss ∧ uid S(s) = si in s end
344. xtr R: RI→R; xtr R(ri) ≡ let r:R • r ∈ rs ∧ uid R(r) = ri in r end
345. xtr K: KI→K; xtr K(ki) ≡ let k:K • k ∈ ks ∧ uid K(k) = ki in k end

4.2 Endurants 87

346. xtr C: CI→C; xtr C(ci) ≡ let c:C • c ∈ cs ∧ uid C(c) = ci in c end
347. xtr H: HI→H; xtr H(hi) ≡ let h:H • h ∈ hs ∧ uid H(h) = hi in h end
348. xtr V: VI→V; xtr V(vi) ≡ let v:V • v ∈ vs ∧ uid V(v) = vi in v end

4.2.2.2 Mereology

4.2.2.2.1 Types, Observers and Axioms

4.2.2.2.1.1 Seas:

349. The mereology of a sea is a triplet of the sets of unique identifiers of

• the vessels that may sail on it,
• the continents that borders it and
• the harbours that confront it.

type
349. MS = VI-set × CI-set × HI-set
value
349. mereo S: S→ MS
axiom
349. ∀ s:S: s ∈ ss⇒ let (vis,cis,his) = mereo S(s) in vis ⊆ vis ∧ cis ⊆ cis ∧ his ⊆ his end

4.2.2.2.1.2 Rivers:

350. The mereology of a river is the triplet of

• the non-empty set of unique identifiers of the continents it is embedded in,
• the [one] unique identifier of the sea (or ocean) it is connected to, and
• the set of unique identifiers of the vessels that may sail on that river.

type
350. MR = CI-set × SI × VI-set
value
350. mereo R: R→ MR
axiom
350. ∀ r:R: r ∈ rs⇒ let (cis,si,vis) = mereo R(r) in {} , cis ⊆ cis ∧ si ∈ sis ∧ vis ⊆ vis end

4.2.2.2.1.3 Canals and Straits:

351. The mereology of a canal or a strait is the triplet of

• a set of one or two unique identifiers of the seas that the canal or strait connects,
• the set of unique identifiers of the harbours it offers,
• the set of unique identifiers of the vessels that may sail through the canal or strait.

type
351. MK = SI-set × HI set × VI-set
value

88 4 The 7 Seas [August 2021]

351. mereo K: K→ MK

axiom
351. ∀ r:K: k ∈ ks⇒ let (sis,cis,vis) =
mereo K(k) in 1 ≤card sis ≤ 2 ∧ sis ⊆ sis ∧ his ∈ his ∧ vis ⊆ vis end

4.2.2.2.1.4 Continents:

352. The mereology of a continent is the triplet of

• the set of unique identifiers of the [other19] continents that the continent borders with,
• the set of unique identifiers of the harbours on that continent, and
• the set of unique identifiers of the rivers flowing through that continent.

type
352. MC = CI-set × HI set × RI-set
value
352. mereo C: C→ MC
axiom
352. ∀ c:C: c ∈ cs⇒ let (cis,his,ris) = mereo C(c) in cis ⊆ cis ∧ his ⊆ his ∧ ris ⊆ ris end

4.2.2.2.1.5 Harbours:

353. The mereology of a harbour is the triplet of

• the unique identifier of the continent to which the harbour belongs, and
• the set of unique identifiers of the vessels that may berth at that harbour.

type
353. MH = CI × VI-set
value
353. mereo H: H→ MH

axiom
353. ∀ h:H • h ∈ hs⇒ let (ci,vis) = mereo H(j) in ci ∈ cis ∧ vis ∈ vis end

4.2.2.2.1.6 Vessels:

354. The mereology of a vessel is the pair of

• the set of unique identifiers of the seas on which the vessel may sail, and
• the set of unique identifiers of the harbours at which the vessel may berth,

type
354. MV = SI-set × HI-set
value
354. mereo V: V→ MV

axiom
354. ∀ v:V • v ∈ vis⇒ let (sis,his) = mereo V(v) in sis ⊆ sis ∧ his ⊆ his end

19 The axiom (351) does not model “the other” clause !

4.2 Endurants 89

4.2.2.2.2 A Remark

Please note that we have not [yet] had a need to describe the sea and land AREAs of seas and
continents.

4.2.2.2.3 A Domain Axiom

The axioms of Sect. 4.2.2.2.1 pertains to the individual atomic elements of the domain, not to their
occurrence in the context of the aggregates to which they are elements.

355. The mereology of a sea of a domain states the unique identifiers of the vessels that may sail on
it, so we must, vice-versa, expect that the mereology of the identified vessels likewise identify
that sea as one on which it may sail.

axiom
355. ∀ s:S • s ∈ ss⇒
355. let (vis,cis,his) = mereo S(s) in
355. ∀ vi:VI • vi ∈ vis⇒

355. let v:V • v = xtr V(vi) in
355. let (sis,his) = mereo V(v) in
355. uid S(s) ∈ sis end end end

We leave it to the reader to narrate and formalise similar “cross-mereology” axioms for [all other]
relevant “pairs” of different sort atomic elements of the domain.

4.2.2.3 Attributes

Seas, rivers, canals, continents and harbours have spatial attributes of kind SURFACE, LINE
and POINT. We refer to [55, Sect. 3.4].

4.2.2.3.1 Seas

356. We ascribe names to seas.
357. Seas spread over contiguous surface (SURFACE).
358. Seas have borders/edges (LINE).
359.
360.
361.
362.

type
356. SeaName
357. SeaSurface = SURFACE

358. SeaBorder = LINE

359.
360.

361.
value
356. attr SeaName: S→ SeaName

357. attr SeaSurface: S→ SeaSurface

90 4 The 7 Seas [August 2021]

358. attr SeaBorder: S→ SeaBorder

359. attr :→

360. attr :→
361. attr :→

4.2.2.3.2 Rivers

363.
364.
365.
366.
367.
368.
369.

type
363.
364.

365.

366.
367.

368.

value
363. attr :→

364. attr :→
365. attr :→

366. attr :→

367. attr :→
368. attr :→

4.2.2.3.3 Canals and Straits

370.
371.
372.
373.
374.
375.
376.

type
370.
371.

372.

373.
374.

375.

value
370. attr :→

4.2 Endurants 91

371. attr :→

372. attr :→

373. attr :→
374. attr :→

375. attr :→

4.2.2.3.4 Continents

377.
378.
379.
380.
381.
382.
383.

type
377.

378.

379.
380.

381.

382.
value
377. attr :→
378. attr :→

379. attr :→

380. attr :→
381. attr :→

382. attr :→

4.2.2.3.5 Harbours

384.
385.
386.
387.
388.
389.
390.

type
384.

385.

386.
387.

388.

389.
value

92 4 The 7 Seas [August 2021]

384. attr :→

385. attr :→

386. attr :→
387. attr :→

388. attr :→
389. attr :→

4.2.2.3.6 Vessels

391. Vessels have names.
392. Vessels have kind: passenger, ordinary freight, crude oil, container, ...
393. Vessels, at any one “point” in time has a position.
394. Vessels, when sailing, follow a route.
395. Vessel positions are well-formed if they are on the current route.
396. Vessels have a speed
397. and a velocity.
398. A vessel is on course if its position (at some time) is on that vessel’s route.

type
391. VesselName
392. VesselKind = ...
393. VesselPos = TIME × POSITION

394. VesselRoute = BezierCurve
396. VesselSpeed

396. VesselVelocity
value
391. attr VesselName: V→ VesselName

392. attr VesselKind: V→ VesselKind
393. attr VesselPos: V→ VesselPos

394. attr VesselRoute: V→ VesselRoute

396. attr VesselSpeed: V→ Speed
397. attr VesselVelocity: V→ Velocity

398. Vessel on course: V→ Bool
398. Vessel on course(v) ≡ let (vp,) = attr VesselPos(v) in Position on curve(vp,attr VesselRoute(v)) end
398. Position on curve: POSITION × Bezier→ Bool

4.4 Conclusion 93

4.3 Perdurants

4.3.1 Channels

4.3.2 Behaviours

4.3.3 Signatures

4.3.4 Definitions

4.3.5 System

4.4 Conclusion

Chapter 5

Pipelines [2008]

Fig. 5.1 The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

• Named after Verdi’s opera
• Gas pipeline
• 3300 kms
• 2011–2014, first gas flow: 2014; 2017–2019, more pipes
• 8 billion Euros
• Max flow: 31 bcmy: billion cubic meters a year
• http://www.nabucco-pipeline.com/

95

96 5 Pipelines [2008]

Fig. 5.2 The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Fig. 5.3 An oil pipeline system

5.1 Photos of Pipeline Units and Diagrams of Pipeline Systems

When combining joins and forks we can construct sitches. Figure 5.7 on page 99 shows some
actual switches.

Figure 5.8 on page 100 diagrams a generic switch.

5.2 Non-Temporal Aspects of Pipelines

These are some non-temporal aspects of pipelines. nets and units: wells, pumps, pipes, valves,
joins, forks and sinks; net and unit attributes; and units states, but not state changes. We omit, in
early (i.e., next) chapters, consideration of “pigs” and “pig”-insertion and “pig”-extraction units.

5.2.1 Nets of Pipes, Valves, Pumps, Forks and Joins

399. We focus on nets, n : N, of pipes, π :Π, valves, v : V, pumps, p : P, forks, f : F, joins, j : J, wells,
w : W and sinks, s : S.

19 See http://en.wikipedia.org/wiki/Nabucco Pipeline

5.2 Non-Temporal Aspects of Pipelines 97

Fig. 5.4 Pipes

Fig. 5.5 Valves

400. Units, u : U, are either pipes, valves, pumps, forks, joins, wells or sinks.
401. Units are explained in terms of disjoint types of PIpes, VAlves, PUmps, FOrks, JOins, WElls

and SKs.20

type

20 This is a mere specification language technicality.

98 5 Pipelines [2008]

Fig. 5.6 Oil Pumps and Gas Compressors

399 N, PI, VA, PU, FO, JO, WE, SK
400 U = Π | V | P | F | J | S|W
400 Π == mkΠ(pi:PI)

400 V == mkV(va:VA)
400 P == mkP(pu:PU)

400 F == mkF(fo:FO)
400 J == mkJ(jo:JO)

400 W == mkW(we:WE)

400 S == mkS(sk:SK)

5.2.2 Unit Identifiers and Unit Type Predicates

402. We associate with each unit a unique identifier, ui : UI.
403. From a unit we can observe its unique identifier.
404. From a unit we can observe whether it is a pipe, a valve, a pump, a fork, a join, a well or a sink

unit.

type
402 UI

value
403 obs UI: U→ UI

404 is Π: U→ Bool, is V: U→ Bool, ..., is J: U→ Bool
is Π(u) ≡ case u of mkPI()→ true, → false end
is V(u) ≡ case u of mkV()→ true, → false end
...

is S(u) ≡ case u of mkS()→ true, → false end

5.2 Non-Temporal Aspects of Pipelines 99

Fig. 5.7 Oil and Gas Switches

5.2.3 Unit Connections

A connection is a means of juxtaposing units. A connection may connect two units in which case
one can observe the identity of connected units from “the other side”.

405. With a pipe, a valve and a pump we associate exactly one input and one output connection.
406. With a fork we associate a maximum number of output connections, m, larger than one.
407. With a join we associate a maximum number of input connections, m, larger than one.
408. With a well we associate zero input connections and exactly one output connection.
409. With a sink we associate exactly one input connection and zero output connections.

value
405 obs InCs,obs OutCs: Π|V|P→ {|1:Nat|}

100 5 Pipelines [2008]

...
...

...

a

b

c

d

x

y

z

u

v

w

e

f

u

v

...

y

{ c,d }

{ d }

{ a,c,f }

output
connectors

input
connectors

Fig. 5.8 A Switch Diagram

406 obs inCs: F→ {|1:Nat|}, obs outCs: F→ Nat
407 obs inCs: J→ Nat, obs outCs: J→ {|1:Nat|}
408 obs inCs: W→ {|0:Nat|}, obs outCs: W→ {|1:Nat|}
409 obs inCs: S→ {|1:Nat|}, obs outCs: S→ {|0:Nat|}

axiom
406 ∀ f:F • obs outCs(f) ≥ 2
407 ∀ j:J • obs inCs(j) ≥ 2

If a pipe, valve or pump unit is input-connected [output-connected] to zero (other) units, then
it means that the unit input [output] connector has been sealed. If a fork is input-connected
to zero (other) units, then it means that the fork input connector has been sealed. If a fork is
output-connected to n units less than the maximum fork-connectability, then it means that the
unconnected fork outputs have been sealed. Similarly for joins: “the other way around”.

5.2.4 Net Observers and Unit Connections

410. From a net one can observe all its units.
411. From a unit one can observe the the pairs of disjoint input and output units to which it is

connected:

a. Wells can be connected to zero or one output unit — a pump.
b. Sinks can be connected to zero or one input unit — a pump or a valve.

5.2 Non-Temporal Aspects of Pipelines 101

Fig. 5.9 To be treated in a later version of this report: Pig Launcher, Receiver and New and Old Pigs

Fig. 5.10 Pipeline Diagrams

c. Pipes, valves and pumps can be connected to zero or one input units and to zero or one
output units.

d. Forks, f , can be connected to zero or one input unit and to zero or n, 2≤ n ≤obs Cs(f) output
units.

e. Joins, j, can be connected to zero or n, 2 ≤ n ≤obs Cs(j) input units and zero or one output
units.

102 5 Pipelines [2008]

value
410 obs Us: N→ U-set
411 obs cUIs: U→ UI-set × UI-set

wf Conns: U→ Bool
wf Conns(u) ≡

let (iuis,ouis) = obs cUIs(u) in iuis ∩ ouis = {} ∧

case u of
411a mkW()→ card iuis ∈ {0} ∧ card ouis ∈ {0,1},
411b mkS()→ card iuis ∈ {0,1} ∧ card ouis ∈ {0},

411c mkΠ()→ card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},

411c mkV()→ card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
411c mkP()→ card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},

411d mkF()→ card iuis ∈ {0,1} ∧ card ouis ∈ {0}∪{2..obs inCs(j)},
411e mkJ()→ card iuis ∈ {0}∪{2..obs inCs(j)} ∧ card ouis ∈ {0,1}

end end

5.2.5 Well-formed Nets, Actual Connections

412. The unit identifiers observed by the obs cUIs observer must be identifiers of units of the net.

axiom
412 ∀ n:N,u:U • u ∈ obs Us(n)⇒

412 let (iuis,ouis) = obs cUIs(u) in
412 ∀ ui:UI • ui ∈ iuis ∪ ouis⇒

412 ∃ u
′
:U • u

′
∈ obs Us(n) ∧ u

′
,u ∧ obs UI(u

′
)=ui end

5.2.6 Well-formed Nets, No Circular Nets

413. By a route we shall understand a sequence of units.
414. Units form routes of the net.

type
413 R = UIω

value
414 routes: N→ R-infset
414 routes(n) ≡
414 let us = obs Us(n) in
414 let rs = {〈u〉|u:U•u ∈ us} ∪ {r̂ r

′
|r,r
′
:R• {r,r

′
}⊆rs∧adj(r,r

′
)} in

414 rs end end

415. A route of length two or more can be decomposed into two routes
416. such that the least unit of the first route “connects” to the first unit of the second route.

value
415 adj: R × R→ Bool
415 adj(fr,lr) ≡

415 let (lu,fu)=(fr(len fr),hd lr) in

5.2 Non-Temporal Aspects of Pipelines 103

416 let (lui,fui)=(obs UI(lu),obs UI(fu)) in
416 let ((,luis),(fuis,))=(obs cUIs(lu),obs cUIs(fu)) in
416 lui ∈ fuis ∧ fui ∈ luis end end end

417. No route must be circular, that is, the net must be acyclic.

value
417 acyclic: N→ Bool
417 let rs = routes(n) in
417 ∼∃ r:R•r ∈ rs⇒∃ i,j:Nat•{i,j}⊆inds r∧i,j∧r(i)=r(j) end

5.2.7 Well-formed Nets, Special Pairs, wfN SP

418. We define a “special-pairs” well-formedness function.

a. Fork outputs are output-connected to valves.
b. Join inputs are input-connected to valves.
c. Wells are output-connected to pumps.
d. Sinks are input-connected to either pumps or valves.

value
418 wfN SP: N→ Bool
418 wfN SP(n) ≡

418 ∀ r:R • r ∈ routes(n) in
418 ∀ i:Nat • {i,i+1}⊆inds r⇒

418 case r(i) of ∧
418a mkF()→ ∀ u:U•adj(〈r(i)〉,〈u〉)⇒ is V(u), →true end ∧
418 case r(i+1) of
418b mkJ()→ ∀ u:U•adj(〈u〉,〈r(i)〉)⇒ is V(u), →true end ∧
418 case r(1) of
418c mkW()→ is P(r(2)), →true end ∧
418 case r(len r) of
418d mkS()→ is P(r(len r−1))∨is V(r(len r−1)), →true end

The true clauses may be negated by other case distinctions’ is V or is V clauses.

5.2.8 Special Routes, I

419. A pump-pump route is a route of length two or more whose first and last units are pumps and
whose intermediate units are pipes or forks or joins.

420. A simple pump-pump route is a pump-pump route with no forks and joins.
421. A pump-valve route is a route of length two or more whose first unit is a pump, whose last

unit is a valve and whose intermediate units are pipes or forks or joins.
422. A simple pump-valve route is a pump-valve route with no forks and joins.
423. A valve-pump route is a route of length two or more whose first unit is a valve, whose last unit

is a pump and whose intermediate units are pipes or forks or joins.
424. A simple valve-pump route is a valve-pump route with no forks and joins.

104 5 Pipelines [2008]

425. A valve-valve route is a route of length two or more whose first and last units are valves and
whose intermediate units are pipes or forks or joins.

426. A simple valve-valve route is a valve-valve route with no forks and joins.

value
419-426 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R→ Bool

pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr}(n): len n≥2

419 ppr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ is P(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
420 sppr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
421 pvr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ is P(fu) ∧ is V(r(len r)) ∧ is πfjr(ℓ)
422 sppr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
423 vpr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ is V(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
424 sppr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
425 vvr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ is V(fu) ∧ is V(lu) ∧ is πfjr(ℓ)
426 sppr(r:〈fu〉̂ ℓ̂ 〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

is πfjr,is πr: R→ Bool
is πfjr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)∨is F(u)∨is J(u)

is πr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)

5.2.9 Special Routes, II

Given a unit of a route,
427. if they exist (∃),
428. find the nearest pump or valve unit,
429. “upstream” and
430. “downstream” from the given unit.

value
427 ∃UpPoV: U × R→ Bool
427 ∃DoPoV: U × R→ Bool

429 find UpPoV: U × R
∼
→ (P|V), pre find UpPoV(u,r): ∃UpPoV(u,r)

430 find DoPoV: U × R
∼
→ (P|V), pre find DoPoV(u,r): ∃DoPoV(u,r)

427 ∃UpPoV(u,r) ≡

427 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧{is V|is P}(r(i))∧u=r(j)
427 ∃DoPoV(u,r) ≡

427 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧u=r(i)∧{is V|is P}(r(j))

429 find UpPoV(u,r) ≡
429 let i,j:Nat•{i,j}⊆indsr∧i≤j∧{is V|is P}(r(i))∧u=r(j) in r(i) end
430 find DoPoV(u,r) ≡

430 let i,j:Nat•{i,j}⊆indsr∧i≤j∧u=r(i)∧{is V|is P}(r(j)) in r(j) end

5.3 State Attributes of Pipeline Units 105

5.3 State Attributes of Pipeline Units

By a state attribute of a unit we mean either of the following three kinds: (i) the open/close
states of valves and the pumping/not pumping states of pumps; (ii) the maximum (laminar) oil flow

characteristics of all units; and (iii) the current oil flow and current oil leak states of all units.

431. Oil flow, φ :Φ, is measured in volume per time unit.
432. Pumps are either pumping or not pumping, and if not pumping they are closed.
433. Valves are either open or closed.
434. Any unit permits a maximum input flow of oil while maintaining laminar flow. We shall assume

that we need not be concerned with turbulent flows.
435. At any time any unit is sustaining a current input flow of oil (at its input(s)).
436. While sustaining (even a zero) current input flow of oil a unit leaks a current amount of oil

(within the unit).

type
431 Φ
432 PΣ == pumping | not pumping
432 VΣ == open | closed

value
−,+: Φ × Φ→ Φ, <,=,>: Φ × Φ→ Bool

432 obs PΣ: P→ PΣ
433 obs VΣ: V→ VΣ
434–436 obs LamiΦ.obs CurrΦ,obs LeakΦ: U→ Φ
is Open: U→ Bool

case u of
mkΠ()→true,mkF()→true,mkJ()→true,mkW()→true,mkS()→true,

mkP()→obs PΣ(u)=pumping,

mkV()→obs VΣ(u)=open
end

acceptable LeakΦ, excessive LeakΦ: U→ Φ
axiom
∀ u:U • excess LeakΦ(u) > accept LeakΦ(u)

5.3.1 Flow Laws

The sum of the current flows into a unit equals the the sum of the current flows out of a unit minus
the (current) leak of that unit. This is the same as the current flows out of a unit equals the current
flows into a unit minus the (current) leak of that unit. The above represents an interpretation
which justifies the below laws.

437. When, in Item 435, for a unit u, we say that at any time any unit is sustaining a current input
flow of oil, and when we model that by obs CurrΦ(u) then we mean that obs CurrΦ(u) -
obs LeakΦ(u) represents the flow of oil from its outputs.

value
437 obs inΦ: U→ Φ
437 obs inΦ(u) ≡ obs CurrΦ(u)

437 obs outΦ: U→ Φ
law:

437 ∀ u:U • obs outΦ(u) = obs CurrΦ(u)−obs LeakΦ(u)

106 5 Pipelines [2008]

438. Two connected units enjoy the following flow relation:

a. If

i. two pipes, or

ii. a pipe and a valve, or
iii. a valve and a pipe, or

iv. a valve and a valve, or

v. a pipe and a pump, or
vi. a pump and a pipe, or

vii. a pump and a pump, or

viii. a pump and a valve, or
ix. a valve and a pump

are immediately connected
b. then

i. the current flow out of the first unit’s connection to the second unit
ii. equals the current flow into the second unit’s connection to the first unit

law:
438a ∀ u,u

′
:U • {is Π,is V,is P,is W}(u

′
|u
′′
) ∧ adj(〈u〉,〈u

′
〉)

438a is Π(u)∨is V(u)∨is P(u)∨is W(u) ∧
438a is Π(u

′
)∨is V(u

′
)∨is P(u

′
)∨is S(u

′
)

438b ⇒ obs outΦ(u)=obs inΦ(u
′
)

A similar law can be established for forks and joins. For a fork output-connected to, for example,
pipes, valves and pumps, it is the case that for each fork output the out-flow equals the in-flow for
that output-connected unit. For a join input-connected to, for example, pipes, valves and pumps,
it is the case that for each join input the in-flow equals the out-flow for that input-connected unit.
We leave the formalisation as an exercise.

5.3.2 Possibly Desirable Properties

439. Let r be a route of length two or more, whose first unit is a pump, p, whose last unit is a valve,
v and whose intermediate units are all pipes: if the pump, p is pumping, then we expect the
valve, v, to be open.

440. Let r be a route of length two or more, whose first unit is a pump, p, whose last unit is another
pump, p′ and whose intermediate units are all pipes: if the pump, p is pumping, then we expect
pump p′′, to also be pumping.

441. Let r be a route of length two or more, whose first unit is a valve, v, whose last unit is a pump,
p and whose intermediate units are all pipes: if the valve, v is closed, then we expect pump p,
to not be pumping.

442. Let r be a route of length two or more, whose first unit is a valve, v′, whose last unit is a valve,
v′′ and whose intermediate units are all pipes: if the valve, v′ is in some state, then we expect
valve v′′, to also be in the same state.

desirable properties:
439 ∀ r:R • spvr(r) ∧
439 spvr prop(r): obs PΣ(hd r)=pumping⇒ obs PΣ(r(len r))=open

440 ∀ r:R • sppr(r) ∧
440 sppr prop(r): obs PΣ(hd r)=pumping⇒obs PΣ(r(len r))=pumping

441 ∀ r:R • svpr(r) ∧
441 svpr prop(r): obs PΣ(hd r)=open⇒obs PΣ(r(len r))=pumping

5.4 Pipeline Actions 107

π π πi j k
tfpv pv

open
closed closed

open

Fig. 5.11 pv: Pump or valve, π: pipe

442 ∀ r:R • svvr(r) ∧
442 svvr prop(r): obs PΣ(hd r)=obs PΣ(r(len r))

5.4 Pipeline Actions

5.4.1 Simple Pump and Valve Actions

443. Pumps may be set to pumping or reset to not pumping irrespective of the pump state.
444. Valves may be set to be open or to be closed irrespective of the valve state.
445. In setting or resetting a pump or a valve a desirable property may be lost.

value
443 pump to pump, pump to not pump: P→ N→ N

444 valve to open, valve to close: V→ N→ N

value
443 pump to pump(p)(n) as n

′

443 pre p ∈ obs Us(n)

443 post let p
′
:P•obs UI(p)=obs UI(p

′
) in

443 obs PΣ(p
′
)=pumping∧else equal(n,n

′
)(p,p

′
) end

443 pump to not pump(p)(n) as n
′

443 pre p ∈ obs Us(n)
443 post let p

′
:P•obs UI(p)=obs UI(p

′
) in

443 obs PΣ(p
′
)=not pumping∧else equal(n,n

′
)(p,p

′
) end

444 valve to open(v)(n) as n
′

443 pre v ∈ obs Us(n)

444 post let v
′
:V•obs UI(v)=obs UI(v

′
) in

443 obs VΣ(v
′
)=open∧else equal(n,n

′
)(v,v

′
) end

444 valve to close(v)(n) as n
′

443 pre v ∈ obs Us(n)
444 post let v

′
:V•obs UI(v)=obs UI(v

′
) in

443 obs VΣ(v
′
)=close∧else equal(n,n

′
)(v,v

′
) end

value
else equal: (N×N)→ (U×U)→ Bool
else equal(n,n

′
)(u,u

′
) ≡

108 5 Pipelines [2008]

obs UI(u)=obs UI(u
′
)

∧ u ∈ obs Us(n)∧u
′
∈ obs Us(n

′
)

∧ omit Σ(u)=omit Σ(u
′
)

∧ obs Us(n)\{u}=obs Us(n)\{u
′
}

∧ ∀ u
′′
:U•u

′′
∈ obs Us(n)\{u} ≡ u

′′
∈ obs Us(n

′
)\{u

′
}

omit Σ: U→ Uno state −−−
′′
magic

′′
function

=: Uno state × Uno state → Bool
axiom
∀ u,u

′
:U•omit Σ(u)=omit Σ(u

′
) ≡ obs UI(u)=obs UI(u

′
)

5.4.2 Events

5.4.2.1 Unit Handling Events

446. Let n be any acyclic net.
446. If there exists p,p′,v,v′, pairs of distinct pumps and distinct valves of the net,
446. and if there exists a route, r, of length two or more of the net such that
447. all units, u, of the route, except its first and last unit, are pipes, then
448. if the route “spans” between p and p′ and the simple desirable property, sppr(r), does not hold

for the route, then we have a possibly undesirable event — that occurred as soon as sppr(r) did
not hold;

449. if the route “spans” between p and v and the simple desirable property, spvr(r), does not hold
for the route, then we have a possibly undesirable event;

450. if the route “spans” between v and p and the simple desirable property, svpr(r), does not hold
for the route, then we have a possibly undesirable event; and

451. if the route “spans” between v and v′ and the simple desirable property, svvr(r), does not hold
for the route, then we have a possibly undesirable event.

events:
446 ∀ n:N • acyclic(n) ∧
446 ∃ p,p

′
:P,v,v

′
:V • {p,p

′
,v,v

′
}⊆obs Us(n)⇒

446 ∧ ∃ r:R • routes(n) ∧

447 ∀ u:U • u ∈ elems(r)\{hd r,r(len r)} ⇒ is Π(i)⇒
448 p=hd r∧p

′
=r(len r)⇒ ∼sppr prop(r) ∧

449 p=hd r∧v=r(len r)⇒ ∼spvr prop(r) ∧

450 v=hd r∧p=r(len r)⇒ ∼svpr prop(r) ∧
451 v=hd r∧v

′
=r(len r)⇒ ∼svvr prop(r)

5.4.2.2 Foreseeable Accident Events

A number of foreseeable accidents may occur.

452. A unit ceases to function, that is,

a. a unit is clogged,
b. a valve does not open or close,

5.4 Pipeline Actions 109

c. a pump does not pump or stop pumping.

453. A unit gives rise to excessive leakage.
454. A well becomes empty or a sunk becomes full.
455. A unit, or a connected net of units gets on fire.
456. Or a number of other such “accident”.

5.4.3 Well-formed Operational Nets

457. A well-formed operational net
458. is a well-formed net

a. with at least one well, w, and at least one sink, s,
b. and such that there is a route in the net between w and s.

value
457 wf OpN: N→ Bool
457 wf OpN(n) ≡

458 satisfies axiom 412 on page 102 ∧ acyclic(n): Item 417 on page 103 ∧

458 wfN SP(n): satisfies flow laws, 437 on page 105 and 438 on page 106 ∧
458a ∃ w:W,s:S • {w,s}⊆obs Us(n)⇒

458b ∃ r:R• 〈w〉̂ r̂ 〈s〉 ∈ routes(n)

5.4.4 Orderly Action Sequences

5.4.4.1 Initial Operational Net

459. Let us assume a notion of an initial operational net.
460. Its pump and valve units are in the following states

a. all pumps are not pumping, and
b. all valves are closed.

value
459 initial OpN: N→ Bool
460 initial OpN(n) ≡ wf OpN(n) ∧

460a ∀ p:P • p ∈ obs Us(n)⇒ obs PΣ(p)=not pumping ∧
460b ∀ v:V • v ∈ obs Us(n)⇒ obs VΣ(p)=closed

5.4.4.2 Oil Pipeline Preparation and Engagement

461. We now wish to prepare a pipeline from some well, w : W, to some sink, s : S, for flow.

a. We assume that the underlying net is operational wrt. w and s, that is, that there is a route,
r, from w to s.

b. Now, an orderly action sequence for engaging route r is to “work backwards”, from s to w
c. setting encountered pumps to pumping and valves to open.

110 5 Pipelines [2008]

In this way the system is well-formed wrt. the desirable sppr, spvr, svpr and svvr properties.
Finally, setting the pump adjacent to the (preceding) well starts the system.

value

461 prepare and engage: W × S→ N
∼
→ N

461 prepare and engage(w,s)(n) ≡
461a let r:R • 〈w〉̂ r̂ 〈s〉 ∈ routes(n) in
461b action sequence(〈w〉̂ r̂ 〈s〉)(len〈w〉̂ r̂ 〈s〉)(n) end
461 pre ∃ r:R • 〈w〉̂ r̂ 〈s〉 ∈ routes(n)

461c action sequence: R→ Nat→ N→ N
461c action sequence(r)(i)(n) ≡

461c if i=1 then n else
461c case r(i) of
461c mkV()→ action sequence(r)(i−1)(valve to open(r(i))(n)),

461c mkP()→ action sequence(r)(i−1)(pump to pump(r(i))(n)),
461c → action sequence(r)(i−1)(n)

461c end end

5.4.5 Emergency Actions

462. If a unit starts leaking excessive oil

a. then nearest up-stream valve(s) must be closed,
b. and any pumps in-between this (these) valves and the leaking unit must be set to not pumping

— following an orderly sequence.

463. If, as a result, for example, of the above remedial actions, any of the desirable properties cease
to hold

a. then — a ha !
b. Left as an exercise.

5.5 Connectors

The interface , that is, the possible “openings”, between adjacent units have not been explored.
Likewise the for the possible “openings” of “begin” or “end” units, that is, units not having
their input(s), respectively their “output(s)” connected to anything, but left “exposed” to the
environment. We now introduce a notion of connectors: abstractly you may think of connectors
as concepts, and concretely as “fittings” with bolts and nuts, or “weldings”, or “plates” inserted
onto “begin” or “end” units.

464. There are connectors and connectors have unique connector identifiers.
465. From a connector one can observe its uniwue connector identifier.
466. From a net one can observe all its connectors
467. and hence one can extract all its connector identifiers.
468. From a connector one can observe a pair of “optional” (distinct) unit identifiers:

a. An optional unit identifier is
b. either a unit identifier of some unit of the net

5.5 Connectors 111

c. or a ‘‘nil’’ “identifier”.

469. In an observed pair of “optional” (distinct) unit identifiers

• there can not be two ‘‘nil’’ “identifiers”.
• or the possibly two unit identifiers must be distinct

type
464 K, KI

value
465 obs KI: K→ KI
466 obs Ks: N→ K-set
467 xtr KIS: N→ KI-set
467 xtr KIs(n) ≡ {obs KI(k)|k:K•k ∈ obs Ks(n)}

type
468 oUIp

′
= (UI|{|nil|})×(UI|{|nil|})

468 oUIp = {|ouip:oUIp
′
•wf oUIp(ouip)|}

value
468 obs oUIp: K→ oUIp
469 wf oUIp: oUIp

′
→ Bool

469 wf oUIp(uon,uon
′
) ≡

469 uon=nil⇒uon
′
,nil∨uon

′
=nil⇒uon,nil∨uon,uon

′

470. Under the assumption that a fork unit cannot be adjacent to a join unit
471. we impose the constraint thet no two distinct connectors feature the same pair of actual (distinct)

unit identifiers.
472. The first proper unit identifier of a pair of “optional” (distinct) unit identifiers must identify a

unit of the net.
473. The second proper unit identifier of a pair of “optional” (distinct) unit identifiers must identify

a unit of the net.

axiom
470 ∀ n:N,u,u

′
:U•{u.u

′
}⊆obs Us(n)∧adj(u,u

′
)⇒ ∼(is F(u)∧is J(u

′
))

471 ∀ k,k
′
:K•obs KI(k),obs KI(k

′
)⇒

case (obs oUIp(k),obs oUIp(k
′
)) of

((nil,ui),(nil,ui
′
))→ ui,ui

′
,

((nil,ui),(ui
′
,nil))→ false,

((ui,nil),(nil,ui
′
))→ false,

((ui,nil),(ui
′
,nil))→ ui,ui

′
,

→ false
end

∀ n:N,k:K•k ∈ obs Ks(n)⇒

case obs oUIp(k) of
472 (ui,nil)→ ∃UI(ui)(n)
473 (nil,ui)→ ∃UI(ui)(n)

472-473 (ui,ui
′
)→ ∃UI(ui)(n)∧∃UI(ui

′
)(n)

end
value
∃UI: UI→ N→ Bool
∃UI(ui)(n) ≡ ∃ u:U•u ∈ obs Us(n)∧obs UI(u)=ui

112 5 Pipelines [2008]

5.6 On Temporal Aspects of Pipelines

The else qual(u,u′)(n,n′) function definition represents a gross simplification. It ignores the actual
flow which changes as a result of setting alternate states, and hence the net state. We now wish to
capture the dynamics of flow. We shall do so using the Duration Calculus — a continuous time,
integral temporal logic that is semantically and proof system “integrated” with RSL:

Zhou ChaoChen and Michael Reichhardt Hansen

Duration Calculus: A Formal Approach to Real-time Systems
Monographs in Theoretical Computer Science
The EATCS Series
Springer 2004

5.7 A CSP Model of Pipelines

We recapitulate Sect. 5.5 — now adding connectors to our model:

474. From an oil pipeline system one can observe units and connectors.
475. Units are either well, or pipe, or pump, or valve, or join, or fork or sink units.
476. Units and connectors have unique identifiers.
477. From a connector one can observe the ordered pair of the identity of the two from-, respectively

to-units that the connector connects.

type
474 OPLS, U, K
476 UI, KI

value
474 obs Us: OPLS→ U-set, obs Ks: OPLS→ K-set
475 is WeU, is PiU, is PuU, is VaU,

475 is JoU, is FoU, is SiU: U→ Bool [mutually exclusive]
476 obs UI: U→ UI, obs KI: K→ KI

477 obs UIp: K→ (UI|{nil}) × (UI|{nil})

Above, we think of the types OPLS, U, K, UI and KI as denoting semantic entities. Below, in the
next section, we shall consider exactly the same types as denoting syntactic entities !

478. There is given an oil pipeline system, opls.
479. To every unit we associate a CSP behaviour.
480. Units are indexed by their unique unit identifiers.
481. To every connector we associate a CSP channel.

Channels are indexed by their unique ”k”onnector identifiers.
482. Unit behaviours are cyclic and over the state of their (static and dynamic) attributes, represented

by u.
483. Channels, in this model, have no state.
484. Unit behaviours communicate with neighbouring units — those with which they are connected.
485. Unit functions,Ui, change the unit state.
486. The pipeline system is now the parallel composition of all the unit behaviours.

Editorial Remark: Our use of the term unit and the RSL literal Unit may seem confusing, and we
apologise. The former, unit, is the generic name of a well, pipe, or pump, or valve, or join, or fork,
or sink. The literal Unit, in a function signature, before the→ “announces” that the function takes

5.8 Conclusion 113

no argument.21 The literal Unit, in a function signature, after the → “announces”, as used here,
that the function never terminates.

value
478 opls:OPLS
channel
481 {ch[ki]|k:KI,k:K•k ∈ obs Ks(opls)∧ki=obs KI(k)} M
value
486 pipeline system: Unit→ Unit
486 pipeline system() ≡
479 ‖ {unit(ui)(u)|u:U•u ∈ obs Us(opls)∧ui=obs UI(u)}

480 unit: ui:UI→ U→
484 in,out {ch[ki]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧

484 let (ui
′
,ui
′′
)=obs UIp(k) in ui ∈{ui

′
,ui
′′
}\{nil} end} Unit

482 unit(ui)(u) ≡ let u
′
=Ui(ui)(u) in unit(ui)(u

′
) end

485 Ui: ui:UI→ U→
485 in,out {ch[ki]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧

485 let (ui
′
,ui
′′
)=obs UIp(k) in ui ∈{ui

′
,ui
′′
}\{nil} end} U

5.8 Conclusion

We have shown draft sketches of aspects of gas/oil pipelines. From a comprehensive such domain
description we can systematically “derive” a set of complementary or alternative requirements
prescriptions for the monitoring and control of individual pipe units, as well as of consolidated
pipelines. Etcetera !

21 Unit is a type name; () is the only value of type Unit.

Chapter 6

Simple Credit Card Systems [May 2016]

Contents
6.1 Introduction . 115
6.2 Endurants . 116

6.2.1 Credit Card Systems . 116
6.2.2 Credit Cards . 117
6.2.3 Banks . 117
6.2.4 Shops . 118

6.3 Perdurants . 119
6.3.1 Behaviours . 119
6.3.2 Channels . 119
6.3.3 Behaviour Interactions . 120
6.3.4 Credit Card . 121
6.3.5 Banks . 122
6.3.6 Shops . 124

We present an attempt at a model of a simple credit card system of credit card holders, shops and
banks.22

6.1 Introduction

We present a domain description of an abstracted credit card system. The narrative part of the
description is terse, perhaps a bit too terse.

Credit cards are moving from simple plastic cards to smart phones. Uses of credit cards move
from their mechanical insertion in credit card terminals to being swiped. Authentication (hence
not modelled) moves from keying in security codes to eye iris “prints”, and/or finger prints or
voice prints or combinations thereof.

This document abstracts from all that in order to understand a bare, minimum essence of credit
cards and their uses. Based on a model, such as presented here, the reader should be able to
extend/refine the model into any future technology – for requirements purposes.

22 This model evolved during a PhD course at the University of Uppsala, Sweden.

115

116 6 Simple Credit Card Systems [May 2016]

6.2 Endurants

6.2.1 Credit Card Systems

487. Credit card systems, ccs:CCS, 23consists of three kinds of parts:
488. an assembly, cs:CS, of credit cards25,
489. an assembly, bs:BS, of banks, and
490. an assembly, ss:SS, of shops.

type
487 CCS

488 CS

489 BS
490 SS

value
488 obs CS: CCS→ CS

489 obs BS: CCS→ BS

490 obs SS: CCS→ SS

491. There are credit cards, c:C, banks b:B, and shops s:S.
492. The credit card part, cs:CS, abstracts a set, soc:Cs, of card.
493. The bank part, bs:BS, abstracts a set, sob:Bs, of banks.
494. The shop part, ss:SS, abstracts a set, sos:Ss, of shops.

type
491 C, B, S

492 Cs = C-set
493 Bs = B-set
494 Ss = S-set
value
492 obs CS: CS→ Cs, obs Cs: CS→ Cs
493 obs BS: BS→ Bs, obs Bs: BS→ Bs

494 obs SS: SS→ Ss, obs Ss: SS→ Ss

495. Assembliers of credit cards, banks and shops have unique identifiers, csi:CSI, bsi:BSI, and ssi:SSI.
496. Credit cards, banks and shops have unique identifiers, ci:CI, bi:BI, and si:SI.
497. One can define functions which extract all the
498. unique credit card,
499. bank and
500. shop identifiers from a credit card system.

495 CSI, BSI, SSI

496 CI, BI, SI
value
495 uid CS: CS→CSI, uid BS: BS→BSI, uid SS: SS→SSI,

23 The composite part CS can be thought of as a credit card company, say VISA24. The composite part BS can
be thought of as a bank society, say BBA: British Banking Association. The composite part SS can be thought of
as the association of retailers, say bira: British Independent Retailers Association. The model does not prevent
“shops” from being airlines, or car rental agencies, or dentists, or consultancy firms. In this case SS would be some
appropriate association.
25 We “equate” credit cards with their holders.

6.2 Endurants 117

496 uid C: C→CI, uid B: B→BI, uid S: S→SI,

498 xtr CIs: CCS→ CI-set
498 xtr CIs(ccs) ≡ {uid C(c)|c:C•c ∈ obs Cs(obs CS(ccs))}
499 xtr BIs: CCS→ BI-set
499 xtr BIs(ccs) ≡ {uid B(s)|b:B•b ∈ obs Bs(obs BS(ccs))}
500 xtr SIs: CCS→ SI-set
500 xtr SIs(ccs) ≡ {uid S(s)|s:S•s ∈ obs Ss(obs SS(ccs))}

501. For all credit card systems it is the case that
502. all credit card identifiers are distinct from bank identifiers,
503. all credit card identifiers are distinct from shop identifiers,
504. all shop identifiers are distinct from bank identifiers,

axiom
501 ∀ ccs:CCS •

501 let cis=xtr CIs(ccs), bis=xtr BIs(ccs), sis = xtr SIs(ccs) in
502 cis ∩ bis = {}

503 ∧ cis ∩ sis = {}
504 ∧ sis ∩ bis = {} end

6.2.2 Credit Cards

505. A credit card has a mereology which “connects” it to any of the shops of the system and to
exactly one bank of the system,

506. and some attributes — which we shall presently disregard.
507. The wellformedness of a credit card system includes the wellformedness of credit card mere-

ologies with respect to the system of banks and shops:
508. The unique shop identifiers of a credit card mereology must be those of the shops of the credit

card system; and
509. the unique bank identifier of a credit card mereology must be of one of the banks of the credit

card system.

type
505. CM = SI-set × BI

value
505. obs mereo CM: C→ CM

507 wf CM of C: CCS→ Bool
507 wf CM of C(ccs) ≡

505 let bis=xtr BIs(ccs), sis=xtr SIs(ccs) in
505 ∀ c:C•c ∈ obs Cs(obs CS(ccs))⇒
505 let (ccsis,bi)=obs mereo CM(c) in
508 ccsis ⊆ sis

509 ∧ bi ∈ bis
505 end end

6.2.3 Banks

Our model of banks is (also) very limited.

118 6 Simple Credit Card Systems [May 2016]

510. A bank has a mereology which “connects” it to a subset of all credit cards and a subset of all
shops,

511. and, as attributes:
512. a cash register, and
513. a ledger.
514. The ledger records for every card, by unique credit card identifier,
515. the current balance: how much money, credit or debit, i.e., plus or minus, that customer is owed,

respectively has borrowed from the bank,
516. the dates-of-issue and -expiry of the credit card, and
517. the name, address, and other information about the credit card holder.
518. The wellformedness of the credit card system includes the wellformedness of the banks with

respect to the credit cards and shops:
519. the bank mereology’s
520. must list a subset of the credit card identifiers and a subset of the shop identifiers.

type
510 BM = CI-set × SI-set
512 CR = Bal
513 LG = CI →m (Bal×DoI×DoE×...)
515 Bal = Int
value
510 obs mereo B: B→ BM

512 attr CR: B→ CR
513 attr LG: B→ LG

518 wf BM B: CCS→ Bool
518 wf BM B(ccs) ≡
518 let allcis = xtr CIs(ccs), allsis = xtr SIs(ccs) in
518 ∀ b:B • b ∈ obs Bs(obs BS(ccs)) in
519 let (cis,sis) = obs mereo B(b) in
520 cis ⊆ ∀ cis ∧ sis ⊆ allsis end end

6.2.4 Shops

521. The mereology of a shop is a pair: a unique bank identifiers, and a set of unique credit card
identifiers.

522. The mereology of a shop
523. must list a bank of the credit card system,
524. band a subset (or all) of the unique credit identifiers.

We omit treatment of shop attributes.

type
521 SM = CI-set × BI
value
521 obs mereo S: S→ SM

522 wf SM S: CCS→ Bool
522 wf SM S(ccs) ≡

522 let allcis = xtr CIs(ccs), allbis = xtr BIs(ccs) in
522 ∀ s:S • s ∈ obs Ss(obs SS(ccs))⇒

522 let (cis,bi) obs mereo S(s) in

6.3 Perdurants 119

523 bi ∈ allbis

524 ∧ cis ⊆ allcis

522 end end

6.3 Perdurants

6.3.1 Behaviours

525. We ignore the behaviours related to the CCS, CS, BS and SS parts.
526. We therefore only consider the behaviours related to the Cs, Bs and Ss parts.
527. And we therefore compile the credit card system into the parallel composition of the parallel

compositions of all the credit card, crd, all the bank, bnk, and all the shop, shp, behaviours.

value
525 ccs:CCS
525 cs:CS = obs CS(ccs),

525 uics:CSI =uid CS(cs),

525 bs:BS = obs BS(ccs),
525 uibs:BSI =uid BS(bs),

525 ss:SS = obs SS(ccs),
525 uiss:SSI =uid SS(ss),

526 socs:Cs = obs Cs(cs),

526 sobs:Bs = obs Bs(bs),
526 soss:Ss = obs Ss(ss),

value
527 sys: Unit→ Unit,
525 sys() ≡
527 cardsuics(obs mereo CS(cs),...)
527 ‖ ‖ {crduid C(c)(obs mereo C(c))|c:C•c ∈ socs}
527 ‖ banksuibs(obs mereo BS(bs),...)
527 ‖ ‖ {bnkuid B(b)(obs mereo B(b))|b:B•b ∈ sobs}

527 ‖ shopsuiss(obs mereo SS(ss),...)
527 ‖ ‖ {shpuid S(s)(obs mereo S(s))|s:S•s ∈ soss},

525 cardsuics(...) ≡ skip,

525 banksuibs(...) ≡ skip,
525 shopsuiss(...) ≡ skip

axiom skip ‖ behaviour(...) ≡ behaviour(...)

6.3.2 Channels

528. Credit card behaviours interact with bank (each with one) and many shop behaviours.
529. Shop behaviours interact with bank (each with one) and many credit card behaviours.
530. Bank behaviours interact with many credit card and many shop behaviours.

The inter-behaviour interactions concern:

120 6 Simple Credit Card Systems [May 2016]

531. between credit cards and banks: withdrawal requests as to a sufficient, mk Wdr(am), balance on
the credit card account for buying am:AM amounts of goods or services, with the bank response
of either is OK() or is NOK(), or the revoke of a card;

532. between credit cards and shops: the buying, for an amount, am:AM, of goods or services:
mk Buy(am), or the refund of an amount;

533. between shops and banks: the deposit of an amount, am:AM, in the shops’ bank account:
mk Depost(ui,am) or the removal of an amount, am:AM, from the shops’ bank account:
mk Removl(bi,si,am)

channel
528 {ch cb[ci,bi]|ci:CI,bi:BI•ci ∈ cis ∧ bi ∈ bis}:CB Msg

529 {ch cs[ci,si]|ci:CI,si:SI•ci ∈ cis ∧ si ∈ sis}:CS Msg

530 {ch sb[si,bi]|si:SI,bi:BI•si ∈ sis ∧ bi ∈ bis}:SB Msg
531 CB Msg == mk Wdrw(am:aM) | is OK() | is NOK() | ...
532 CS Msg == mk Buy(am:aM) | mk Ref(am:aM) | ...
533 SB Msg == Depost | Removl | ...
533 Depost == mk Dep((ci:CI|si:SI),am:aM) |

533 Removl == mk Rem(bi:BI,si:SI,am:aM)

6.3.3 Behaviour Interactions

534. The credit card initiates

a. buy transactions
i. [1.Buy] by enquiring with its bank as to sufficient purchase funds (am:aM);

ii. [2.Buy] if NOK then there are presently no further actions; if OK
iii. [3.Buy] the credit card requests the purchase from the shop – handing it an appropriate

amount;
iv. [4.Buy] finally the shop requests its bank to deposit the purchase amount into its bank

account.
b. refund transactions

i. [1.Refund] by requesting such refunds, in the amount of am:aM, from a[ny] shop; where-
upon

ii. [2.Refund] the shop requests its bank to move the amount am:aM from the shop’s bank
account

iii. [3.Refund] to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as sketched in Fig. 6.1 on the facing
page.

6.3 Perdurants 121

1.Buy

2.Buy

3.Buy

4.
B

uy

1.Refund

NOK OK

Credit Card

Bank

Shop

2.Refund
3.Refund

Fig. 6.1 Credit Card, Bank and Shop Behaviours

[1.Buy] Item 540, Pg.121 card ch cb[ci,bi]!mk Wdrw(am) (shown as ... three lines down) and
Item 549, Pg.123 bank mk Wdrw(ci,am)=⌈⌉⌊⌋{ch cb[bi,bi]?|ci:CI•ci ∈ cis}.

[2.Buy] Items 542-543, Pg.122 bank ch cb[ci,bi]!is [N]OK() and
Item 540, Pg.121 shop (...;ch cb[ci,bi]?).

[3.Buy] Item 542, Pg.122 card ch cs[ci,si]!mk Buy(am) and
Item 564, Pg.124 shop mk Buy(am)=⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci∈ cis}.

[4.Buy] Item 565, Pg.124 shop ch sb[si,bi]!mk Dep(si,am) and
Item 554, Pg.123 bank mk Dep(si,am)=⌈⌉⌊⌋{ch cs[ci,si]?|si:SI•si∈sis}.

[1.Refund] Item 546, Pg.122 card ch cs[ci,si]!mk Ref((ci,si),am) and
Item 565, Pg.124 shop (si,mk Ref(ci,am))=⌈⌉⌊⌋{si

′
,ch sb[si,bi]?|si,si

′
:SI•{si,si

′
}⊆sis∧si=si

′
}.

[2.Refund] Item 569, Pg.124 shop ch sb[si,cbi]!mk Ref(cbi,(ci,si),am and
Item 558, Pg.123 bank (si,mk Ref(cbi,(ci,am)))=⌈⌉⌊⌋{(si

′
,ch sb[si,bi]?)|si,si

′
:SI•{si,si

′
}⊆sis∧si=si

′
}.

[3.Refund] Item 570, Pg.124 shop ch sb[si,sbi]!mk Wdr(si,am)) end and
Item 559, Pg.123 bank (si,mk Wdr(ci,am))=⌈⌉⌊⌋{(si

′
,ch sb[si,bi]?)|si,si

′
:SI•{si,si

′
}⊆sis∧si=si

′
}

6.3.4 Credit Card

535. The credit card behaviour, crd, takes the credit card unique identifier, the credit card mereology,
and attribute arguments (omitted). The credit card behaviour, crd, accepts inputs from and
offers outputs to the bank, bi, and any of the shops, si∈sis.

536. The credit card behaviour, crd, non-deterministically, internally “cycles” between buying and
getting refunds.

value
535 crdci:CI: (bi,sis):CM→ in,out ch cb[ci,bi],{ch cs[ci,si]|si:SI•si ∈ sis} Unit
535 crdci(bi,sis) ≡ (buy(ci,(bi,sis)) ⌈⌉ ref(ci,(bi,sis))) ; crdci(ci,(bi,sis))

537. By am:AM we mean an amount of money, and by si:SI we refer to a shop in which we have
selected a number or goods or services (not detailed) costing am:AM.

538. The buyer action is simple.
539. The amount for which to buy and the shop from which to buy are selected (arbitrarily).
540. The credit card (holder) withdraws am:AM from the bank, if sufficient funds are available26.

26 First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes
place, otherwise not – and the credit card holder is informed accordingly.

122 6 Simple Credit Card Systems [May 2016]

541. The response from the bank
542. is either OK and the credit card [holder] completes the purchase by buying the goods or services

offered by the selected shop,
543. or the response is “not OK”, and the transaction is skipped.

type
537 AM = Int
value
538 buy: ci:CI × (bi,sis):CM→

538 in,out ch cb[ci,bi] out {ch cs[ci,si]|si:SI•si ∈ sis} Unit
538 buy(ci,(bi,sis)) ≡

539 let am:aM • am>0, si:SI • si ∈ sis in
540 let msg = (ch cb[ci,bi]!mk Wdrw(am);ch cb[ci,bi]?) in
541 case msg of
542 is OK()→ ch cs[ci,si]!mk Buy(am),
543 is NOK()→ skip
538 end end end

544. The refund action is simple.
545. The credit card [handler] requests a refund am:AM
546. from shop si:SI.

This request is handled by the shop behaviour’s sub-action re f , see lines 562.–571. page 124.

value
544 rfu: ci:CI × (bi,sis):CM→ out {ch cs[ci,si]|si:SI•si ∈ sis} Unit
544 rfu(ci,(bi,sis)) ≡

545 let am:AM • am>0, si:SI • si ∈ sis in
546 ch cs[ci,si]!mk Ref(bi,(ci,si),am)
544 end

6.3.5 Banks

547. The bank behaviour, bnk, takes the bank’s unique identifier, the bank mereology, and the
programmable attribute arguments: the ledger and the cash register. The bank behaviour, bnk,
accepts inputs from and offers outputs to the any of the credit cards, ci∈cis, and any of the
shops, si∈sis.

548. The bank behaviour non-deterministically externally chooses to accept either ‘withdraw’al
requests from credit cards or ‘deposit’ requests from shops or ‘refund’ requests from credit
cards.

value
547 bnkbi:BI: (cis,sis):BM→ (LG×CR)→

547 in,out {ch cb[ci,bi]|ci:CI•ci ∈ cis} {ch sb[si,bi]|si:SI•si ∈ sis} Unit
547 bnkbi((cis,sis))(lg:(bal,doi,doe,...),cr) ≡
548 wdrw(bi,(cis,sis))(lg,cr)

548 ⌈⌉⌊⌋ depo(bi,(cis,sis))(lg,cr)

548 ⌈⌉⌊⌋ refu(bi,(cis,sis))(lg,cr)

6.3 Perdurants 123

549. The ‘withdraw’ request, wdrw, (an action) non-deterministically, externally offers to accept
input from a credit card behaviour and marks the only possible form of input from credit cards,
mk Wdrw(ci,am), with the identity of the credit card.

550. If the requested amount (to be withdrawn) is not within balance on the account
551. then we, at present, refrain from defining an outcome (chaos), whereupon the bank behaviour

is resumed with no changes to the ledger and cash register;
552. otherwise the bank behaviour informs the credit card behaviour that the amount can be with-

drawn; whereupon the bank behaviour is resumed notifying a lower balance and ‘withdraws’
the monies from the cash register.

value
548 wdrw: bi:BI × (cis,sis):BM→ (LG×CR)→ in,out {ch cb[bi,ci]|ci:CI•ci ∈ cis} Unit
548 wdrw(bi,(cis,sis))(lg,cr) ≡
549 let mk Wdrw(ci,am) = ⌈⌉⌊⌋ {ch cb[ci,bi]?|ci:CI•ci ∈ cis} in
548 let (bal,doi,doe) = lg(ci) in
550 if am>bal

551 then (ch cb[ci,bi]!is NOK(); bnkbi(cis,sis)(lg,cr))

552 else (ch cb[ci,bi]!is OK(); bnkbi(cis,sis)(lg†[ci7→(bal−am,doi,doe)],cr−am)) end
547 end end

The ledger and cash register attributes, lg,cr, are programmable attributes. Hence they are modeled
as separate function arguments.

553. The deposit action is invoked, either by a shop behaviour, when a credit card [holder] buy’s for
a certain amount, am:AM, or requests a refund of that amount. The deposit is made by shop
behaviours, either on behalf of themselves, hence am:AM, is to be inserted into the shops’ bank
account, si:SI, or on behalf of a credit card [i.e., a customer], hence am:AM, is to be inserted into
the credit card holder’s bank account, si:SI.

554. The message, ch cs[ci,si]?, received from a credit card behaviour is either concerning a buy [in
which case i is a ci:CI, hence sale, or a refund order [in which case i is a si:SI].

555. In either case, the respective bank account is “upped” by am:AM – and the bank behaviour is
resumed.

value
553 deposit: bi:BI × (cis,sis):BM→ (LG×CR)→

554 in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit
553 deposit(bi,(cis,sis))(lg,cr) ≡
554 let mk Dep(si,am) = ⌈⌉⌊⌋ {ch cs[ci,si]?|si:SI•si ∈ sis} in
553 let (bal,doi,doe) = lg(si) in
555 bnkbi(cis,sis)(lg†[si7→(bal+am,doi,doe)],cr+am)

553 end end

556. The refund action
557. non-deterministically externally offers to either
558. non-deterministically externally accept a mk Ref(ci,am) request from a shop behaviour, si, or
559. non-deterministically externally accept a mk Wdr(ci,am) request from a shop behaviour, si.

The bank behaviour is then resumed with the
560. credit card’s bank balance and cash register incremented by am and the
561. shop’ bank balance and cash register decremented by that same amount.

value
556 rfu: bi:BI × (cis,sis):BM→ (LG×CR)→ in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit
556 rfu(bi,(cis,sis))(lg,cr) ≡

124 6 Simple Credit Card Systems [May 2016]

558 (let (si,mk Ref(cbi,(ci,am))) = ⌈⌉⌊⌋ {(si
′
,ch sb[si,bi]?)|si,si

′
:SI•{si,si

′
}⊆sis∧si=si

′
} in

556 let (balc,doic,doec) = lg(ci) in
560 bnkbi(cis,sis)(lg†[ci7→(balc+am,doic,doec)],cr+am)
556 end end)

557 ⌈⌉⌊⌋

559 (let (si,mk Wdr(ci,am)) = ⌈⌉⌊⌋ {(si
′
,ch sb[si,bi]?)|si,si

′
:SI•{si,si

′
}⊆sis∧si=si

′
} in

556 let (bals,dois,does) = lg(si) in
561 bnkbi(cis,sis)(lg†[si7→(bals−am,dois,does)],cr−am)
556 end end)

6.3.6 Shops

562. The shop behaviour, shp, takes the shop’s unique identifier, the shop mereology, etcetera.
563. The shop behaviour non-deterministically, externally

either
564. offers to accept a Buy request from a credit card behaviour,
565. and instructs the shop’s bank to deposit the purchase amount.
566. whereupon the shop behaviour resumes being a shop behaviour;
567. or
568. offers to accept a refund request in this amount, am, from a credit card [holder].
569. It then proceeds to inform the shop’s bank to withdraw the refund from its ledger and cash

register,
570. and the credit card’s bank to deposit the refund into its ledger and cash register.
571. Whereupon the shop behaviour resumes being a shop behaviour.

value
562 shpsi:SI: (CI-set×BI)×...→in,out: {ch cs[ci,si]|ci:CI•ci ∈ cis},{ch sb[si,bi

′
]|bi
′
:BI•bi

′
isin bis} Unit

562 shpsi((cis,bi),...) ≡
564 (sal(si,(bi,cis),...)
567 ⌈⌉⌊⌋

568 ref(si,(cis,bi),...)):

562 sal: SI×(CI-set×BI)×...→in,out: {cs[ci,si]|ci:CI•ci ∈ cis},sb[si,bi] Unit
562 sal(si,(cis,bi),...) ≡
564 let mk Buy(am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in
565 ch sb[si,bi]!mk Dep(si,am) end ;

566 shpsi((cis,bi),...)

562 ref: SI×(CI-set×BI)×...→in,out: {ch cs[ci,si]|ci:CI•ci ∈ cis},{ch sb[si,bi
′
]|bi
′
:BI•bi

′
isin bis} Unit

568 ref(si,(cis,sbi),...) ≡
568 let mk Ref((ci,cbi,si),am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in
569 (ch sb[si,cbi]!mk Ref(cbi,(ci,si),am)

570 ‖ ch sb[si,sbi]!mk Wdr(si,am)) end ;
571 shpsi((cis,sbi),...)

Chapter 7

Weather Systems [November 2016]

Contents
7.1 On Weather Information Systems . 126

7.1.1 On a Base Terminology . 126
7.1.2 Some Illustrations . 127

7.1.2.1 Weather Stations . 127
7.1.2.2 Weather Forecasts . 127
7.1.2.3 Forecast Consumers . 127

7.2 Major Parts of a Weather Information System . 127
7.3 Endurants . 128

7.3.1 Parts and Materials . 128
7.3.2 Unique Identifiers . 129
7.3.3 Mereologies . 130
7.3.4 Attributes . 130

7.3.4.1 Clock, Time and Time-intervals . 130
7.3.4.2 Locations . 131
7.3.4.3 Weather . 131
7.3.4.4 Weather Stations . 132
7.3.4.5 Weather Data Interpreter . 132
7.3.4.6 Weather Forecasts . 133
7.3.4.7 Weather Forecast Consumer . 133

7.4 Perdurants . 133
7.4.1 A WIS Context . 133
7.4.2 Channels . 134
7.4.3 WIS Behaviours . 134
7.4.4 Clock . 135
7.4.5 Weather Station . 135
7.4.6 Weather Data Interpreter . 136

7.4.6.1 collect wd . 136
7.4.6.2 calculate wf . 137
7.4.6.3 disseminate wf . 137

7.4.7 Weather Forecast Consumer . 138
7.5 Conclusion . 139

7.5.1 Reference to Similar Work . 139
7.5.2 What Have We Achieved ? . 139
7.5.3 What Needs to be Done Next ? . 139
7.5.4 Acknowledgements . 139

This document reports a class exercise from a PhD course at the University of Bergen, Nor-
way, November 2016.27 We show an example domain description. It is developed and presented

27 I thank my host, Prof. Magne Haveraaen for the invitation. The occasion was that of a visit by Mme. Dooren
Tuheirwe from Makerere University, Uganda, and her work with the universty and the Norwegian Meteorological
Institute rm on a joint project on a Weather Information System for Uganda.

125

126 7 Weather Systems [November 2016]

as outlined in [48]. The domain being described is that of a generic weather information sys-
tem. Four main endurants (i.e., aspects) of a generic weather information system are those of
the weather, weather stations (collecting weather data), weather data interpretation (i.e., metere-
ological institute[s]), and weather forecast consumers. There are, correspondingly, two kinds of
weather information: the weather data, and the weather forecasts. These forms of weather infor-
mation are acted upon: the weather data interpreter (i.e., a metereological institute) is gathering
weather data; based on such interpretations the metereological institute is “calculating” weather
forecasts; and and weather forecast consumers are requesting and further “interpreting” (i.e., ren-
dering) such forecasts. Thus weather data is communicated from weather stations to the weather
data interpreter; and weather forecasts are communicated from the weather data interpreter to
the weather forecast consumers. It is the dual purpose of this technical report to present a do-
main description of the essence of generic weather information systems, and to add to the “pile”
[38, 37, 42, 41, 43, 46, 45, 47] of technical reports that illustrate the use[fulness] of the principles,
techniques and tools of [48].

7.1 On Weather Information Systems

7.1.1 On a Base Terminology

From Wikipedia:

572. Weather is the state of the atmosphere, to the degree that it is hot or cold, wet or dry, calm or
stormy, clear or cloudy, atmospheric (barometric) pressure: high or low.

573. So weather is characterized by temperature, humidity (incl. rain, wind (direction, velocity,
center, incl. its possible mobility), atmospheric pressure, etcetera.

574. By weather information we mean

• either weather data that characterizes the weather as defined above (Item 572),
• or weather forecast, i.e., a prediction of the state of the atmosphere for a given location and

time or time interval.

575. Weather data are collected by weather stations. We shall here not be concerned with technical
means of weather data collection.

576. Weather forecasts are used by forecast consumers, anyone: you and me.
577. Weather data interpretation (i.e., forecasting) is the science and technology of creating weather

forecasts based on time- or time interval-stamped weather data and locations. Weather data
interpretation is amongst the charges of meteorological institutes.

578. Meteorology is the interdisciplinary scientific study of the atmosphere.
579. An atmosphere (from Greek ατµoζ (atmos), meaning “vapour”, and σφαιρα (sphaira), mean-

ing “sphere”) is a layer of gases surrounding a planet or other material body, that is held in
place by the gravity of that body.

580. Meteorological institutes work together with the World Meteorological Organization (WMO).
Besides weather forecasting, meteorological institutes (and hence WMO) are concerned also
with aviation, agricultural, nuclear, maritime, military and environmental meteorology, hy-
drometeorology and renewable energy.

581. Agricultural meteorologists, soil scientists, agricultural hydrologists, and agronomists are per-
sons concerned with studying the effects of weather and climate on plant distribution, crop
yield, water-use efficiency, phenology of plant and animal development, and the energy balance
of managed and natural ecosystems. Conversely, they are interested in the rôle of vegetation
on climate and weather.

7.2 Major Parts of a Weather Information System 127

7.1.2 Some Illustrations

7.1.2.1 Weather Stations

7.1.2.2 Weather Forecasts

7.1.2.3 Forecast Consumers

7.2 Major Parts of a Weather Information System

We think of the following parts as being of concern in the kind of weather information systems that
we shall analyse and describe: Figure 7.1 on the next page shows one weather (dashed rounded
corner all embracing rectangle), one central weather data interpreter (cum meteorological institute)
seven weather stations (rounded corner squares), nineteen weather forecast consumers, and one
global clock. All are distributed, as hinted at, in some geographical space. Figure 7.2 shows “an
orderly diagram” of “the same” weather information system as Figure 7.1. The lines between pairs
of the various parts shall indicate means communication between the pairs of (thus) connected
parts. Dashed lines “crossing” bundles of these communication lines are labeled ch xy. These

128 7 Weather Systems [November 2016]

Weather Station

Weather Data Interpreter,
i.e., Meteorological Institute

clock

Weather Forecast Consumer

Weather

Fig. 7.1 A Weather Information System

labels, ch xy, designated CSP-like channels. An input, by a weather station (wsi), of weather data
from the weather (wi), is designated by the CSP expression ch ws[wi,wsi] ?. An output, say from
the weather data interpreter (wdi) to a weather forecast consumer (fci), of a forecast f, is designated
by ch ic[wdii,fci] ! f

7.3 Endurants

7.3.1 Parts and Materials

582. The WIS domain contains a number of sub-domains:

a. the weather, W, which we consider a material,
b. the weather stations sub-domain, WSS (a composite part),
c. the weather data interpretation sub-domain, WDIS (an atomic part),
d. the weather forecast consumers sub-domain, WFCS (a composite part), and
e. the (“global”) clock (an atomic part).

type
582 WIS
582a W

582b WSS

582c WDIS
582d WFCS

582e CLK
value

7.3 Endurants 129

Weather Data Interpreter,

Weather Stations

Weather

Weather Forecast Consumers

ch_ws

i.e., Meteorological Institute

ch_si

ch_ic

ch_cp

Clock

Fig. 7.2 A Weather Information System Diagram

582a obs material W: WIS→ W

582b obs part WSS: WIS→ WSS

582c obs part WDIS: WIS→WDIS
582d obs part WFCS: WIS→ WFCS

582e obs part CLK: WIS→ CLK

583. The weather station sub-domain, WSS, consists of a set, WSs,
584. of atomic weather stations, WS.
585. The weather forecast consumers sub-domain, WFCS, consists of a set, WFCs,
586. of atomic weather forecast consumers, WFC.

type
583 WSs =WS-set
584 WS

585 WFCs =WFC-set
586 WFC

value
583 obs part WSs: WSS→ WSs
585 obs part WFCs: WFCS→WFCs

7.3.2 Unique Identifiers

We shall consider only atomic parts.

130 7 Weather Systems [November 2016]

587. Every single weather station has a unique identifier.
588. The weather data interpretation (i.e., the weather forecast “creator”) has a unique identifier.
589. Every single weather forecast consumer has a unique identifier.
590. The global clock has a unique identifier.

type
587 WSI
588 WDII

589 WFCI

590 CLKI
value
587 uid WSI: WS→WSI

588 uid WDII: WDIS→WDII
589 uid WFCI: WFC→WFCI

589 uid CLKI: CLK→ CLKI

7.3.3 Mereologies

We shall restrict ourselves to consider the mereologies only of the atomic parts.

591. The mereology of weather stations is the pair of the unique clock identifier and the unique
identifier of the weather data interpreter.

592. The mereology of weather data interpreter is the triple of the unique clock identifier, set of
unique identifiers of all the weather stations and the set of unique identifiers of all the weather
forecast consumers.

593. The mereology of weather forecast consumer is the the pair of the unique clock identifier and
the unique identifier of the weather data interpreter.

594. The mereology of the global clock is the triple of the set of all the unique identifiers of weather
stations, the unique identifier of the weather data interpreter, and the set of all the unique
identifiers of weather forecast consumers.

type
591 WSM = CLKI ×WDII

592 WDIM = CLKI ×WSI-set ×WFCI-set
593 WFCM = CLKI ×WDII

594 CLKM = CLKI ×WDGI-set ×WDII ×WFCI-set
value
591 mereo WSM: WS →WSM

592 mereo WDI: WDI→WDIM
593 mereo WFC: WFC→WFCM

594 mereo CLK: CLK→ CLKM

7.3.4 Attributes

7.3.4.1 Clock, Time and Time-intervals

595. The global clock has an autonomous time attribute.

7.3 Endurants 131

596. Time values are further undefined, but times are considered absolute in the sense as representing
some intervals since “the birth of time”, an example, concrete time could be November 15, 2021:

16:12 .
597. Time intervals are further undefined, but time intervals can be considered relative in the sense of

representing a quantity elapsed between two times, examples are: 1 day 2 hours and 3 minutes,
etc. When a time interval, ti, is specified it is always to be understood to designate the times
from now, or from a specified time, t, until the time t+ ti.

598. We postulate ⊕, ⊖, and can postulate further “arithmetic” operators, and
599. we can postulate relational operators.

type
595 TIME

596 TI
value
595 attr TIME: CLK→ TIME
598 ⊕: TIME×TI→TIME, TI×TI→TI

598 ⊖: TIME×TI→TIME, TIME×TIME→TI

599 =, ,, <, ≤, ≥, >: TIME×TIME→Bool, TI×TI→Bool, ...

We do not here define these operations and relations.

7.3.4.2 Locations

600. Locations are metric, topological spaces and can thus be considered dense spaces of three
dimensional points.

601. We can speak of one location properly contained (⊂) within, or contained or equal (⊆), or equal
(=), or not equal (,) to another location.

type
600. LOC

value
601. ⊂, ⊆, =, ,: LOC × LOC→ Bool

7.3.4.3 Weather

602. The weather material is considered a dense, infinite set of weather point volumes WP. Some
dense, infinite subsets (still proper volumes) of such points may be liquid, i.e., rain, water in
rivers, lakes and oceans. Other dense, infinite subsets (still proper volumes) of such points may
be gaseous, i.e., the air, or atmosphere. These two forms of proper volumes “border” along
infinite subsets (curved planes, surfaces) of weather points.

603. From the material weather one can observe its location.

type
602 W =WP-infset
602 WP

value
603 attr LOC: W→ LOC

604. Some meteorological quantities are:

132 7 Weather Systems [November 2016]

a. Humidity,
b. Temperature,

c. Wind and
d. Barometric pressure.

605. The weather has an indefinite number of attributes at any one time.

a. Humidity distribution, at level (above sea) and by location,
b. Temperature distribution, at level (above sea) and by location,
c. Wind direction, velocity and mobility of wind center, and by location,
d. Barometric pressure, and by location,
e. etc., etc.

type
604a Hu
604b Te

604c Wi

604d Ba
605a HDL = LOC →m Hu

605b TDL = LOC →m Te

605c WDL = LOC →m Wi
605d BPL = LOC →m Ba

605e ...
value
605a attr HDL: W→ HDL

605b attr TDL: W→ TDL
605c attr WDL: W→WDL

605d attr APL: W→ BPL

605e ...

7.3.4.4 Weather Stations

606. Weather stations have static location attributes.
607. Weather stations sample the weather gathering humidity, temperature, wind, barometric pres-

sure, and possibly other data, into time and location stamped weather data.

value
606 attr LOC: WS→ LOC
type
607 WD :: mkWD((TIME×LOC)×(TDL×HDL×WDL×BPL×...))

7.3.4.5 Weather Data Interpreter

608. There is a programmable attribute: weather data repository, wdr:WDR, of weather data, wd:WD,
collected from weather stations.

609. And there is programmable attribute: weather forecast repository, wfr:WFR, of forecasts, wf:WF,
disseminate-able to weather forecast consumers.
These repositories are updated when

610. received from the weather stations, respectively when
611. calculated by the weather data interpreter.

7.4 Perdurants 133

type
608 WDR

609 WFR
value
610 update wdr: TIME ×WD→ WDR→WDR
611 update wfr: TIME ×WF→WFR→ WFR

It is a standard exercise to define these two functions (say algebraically).

7.3.4.6 Weather Forecasts

612. Weather forecasts are weather forecast format-, time- and location-stamped quantities, the latter
referred to as wefo:WeFo.

613. There are a definite number (n≥1) of weather forecast formats.
614. We do not presently define these various weather forecast formats.
615. They are here thought of as being requested, mkWFReq, by weather forecast consumers.

type
612 WF =WFF × (TIME×TI) × LOC ×WeFo

613 WFF =WFF1 |WFF2 | ... |WFFn

614 WFF1, WFF2, ..., WFFn
615 WFReq :: mkWFReq(s wff:WFF,s ti:(TIME×TI),s loc:LOC)

7.3.4.7 Weather Forecast Consumer

616. There is a programmable attribute, d:D, D for display (!).
617. Displays can be rendered (RND): visualized, tabularised, made audible, translated (between

languages and language dialects, ...), etc.
618. A rendered display can be “abstracted back” into its basic form.
619. Any abstracted rendered display is identical to its abstracted form.

type
616 D
617 RND

value
616 attr D: WFC→ D

617 rndr D: RND × D→ D

618 abs D: D→ D
axiom
619 ∀ d:D, r:RND • abs D(rndr(r,d)) = d

7.4 Perdurants

7.4.1 A WIS Context

620. We postulate a given system, wis:WIS.
That system is characterized by

621. a dynamic weather
622. and its unique identifier,
623. a set of weather stations
624. and their unique identifiers,

625. a single weather data interpreter
626. and its unique identifier,
627. a set of weather forecast consumers
628. and their unique identifiers, and
629. a single clock
630. and its unique identifier.

134 7 Weather Systems [November 2016]

631. Given any specific wis:WIS there is [there-
fore] a full set of part identifiers, is, of
weather, clock, all weather stations, the

weather data interpreter and all weather fore-
cast consumers.

We list the above-mentioned values. They will be referenced by the channel declarations and the
behaviour definitions of this section.

value
620 wis:WIS

621 w:W = obs material W(wis)
622 wi:WI = uid WI(w)

623 wss:WSs = obs part WSs(obs part WSS(wis))

624 wsis:WDGI-set = {uid WSI(ws)|ws:WS•ws ∈ wss}
625 wdi:WDI = obs part WDIS(wis)

626 wdii:WDII = uid WDII(wdi)
627 wfcs:WFCs = obs part WFCs(obs part WFCS(wis))

628 wfcis:WFI-set = {uid WFCI(wfc)|wfc:WFC•wfc ∈ wfcs}

629 clk:CLK = obs part CLK(wis)
630 clki:CLKI = uid CLKI(clk)

631 is:(WI|WSI|WDII|WFCI)-set = {wi}∪wsis∪{wdii}∪wfcis

7.4.2 Channels

632. Weather stations share weather data, WD, with the weather data interpreter — so there is a set
of channels, one each, “connecting” weather stations to the weather data interpreter.

633. The weather data interpreter shares weather forecast requests, WFReq, and interpreted weather
data (i.e., forecasts), WF, with each and every forecast consumer — so there is a set of chan-
nels, one each, “connecting” the weather data interpreter to the interpreted weather data (i.e.,
forecast) consumers.

634. The clock offers its current time value to each and every part, except the weather, of the WIS
system.

channel
632 { ch si[wsi,wdii]:WD | wsi:WSI•wsi ∈ wsis }
633 { ch ic[wdii,fci]:(WFReq|WF) | fci:FCI•fci ∈ fcis }

634 { ch cp[clki,i]:TIME | i:(WI|CLKI|WSI|WDII|WFCI)•i ∈ is }

7.4.3 WIS Behaviours

635. WIS behaviour, wis beh, is the
636. parallel composition of all the weather station behaviours, in parallel with the
637. weather data interpreter behaviour, in parallel with the
638. parallel composition of all the weather forecast consumer behaviours, in parallel with the
639. clock behaviour.

value

7.4 Perdurants 135

635 wis beh: Unit→ Unit
635 wis beh() ≡

636 ‖ { ws beh(uid WSI(ws),mereo WS(ws),...) | ws:WS•ws ∈ wss } ‖
637 ‖ wdi beh(uid WDI(wdi),mereo WDI(wdi),...)(wd rep,wf rep) ‖

638 ‖ { wfc beh(uid WFCI(wfc),mereo WDG(wfc),...) | wfc:WFC•wfc ∈ wfcs } ‖
639 clk beh(uid CLKI(clk),mereo CLK(clk),...)(”November 15, 2021: 16:12 ”)

7.4.4 Clock

640. The clock behaviour has a programmable attribute, t.
641. It repeatedly offers its current time to any part of the WIS system.

It nondeterministically internally “cycles” between
642. retaining its current time, or
643. increment that time with a “small” time interval, δ, or
644. offering the current time to a requesting part.

value
640. clk beh: clki:CLKI × clkm:CLKM→ TIME→

641. out {ch cp[clki,i]|i:(WSI|WDII|WFCI)•i ∈wsis∪{wdii}∪wfcis } Unit
640. clk beh(clki,is)(t) ≡

642. clk beh(clki,is)(t)

643. ⌈⌉ clk beh(clki,is)(t⊕δ)
644. ⌈⌉ (⌈⌉⌊⌋{ ch cp[clki,i] ! t | i:(WSI|WDII|WFCI)•i ∈ is } ; clk beh(clki,is)(t))

7.4.5 Weather Station

645. The weather station behaviour communicates with the global clock and the weather data
interpreter.

646. The weather station behaviour simply “cycles” between sampling the weather, reporting its
findings to the weather data interpreter and resume being that overall behaviour.

647. The weather station time-stamp “sample’ the weather (i.e., meteorological information).
648. The meteorological information obtained is analysed with respect to temperature (distribution

etc.),
649. humidity (distribution etc.),
650. wind (distribution etc.),
651. barometric pressure (distribution etc.), etcetera,
652. and this is time-stamp and location aggregated (mkWD) and “sent” to the (central ?) weather

data interpreter,
653. whereupon the weather data generator behaviour resumes.

value
645 ws beh: wsi:WSI × (clki,wi,wdii):WDGM × (LOC × ...)→
645 in ch cp[clki,wsi] out ch gi[wsi,wdii] Unit
646 ws beh(wsi,(clki,wi,wdii),(loc,...)) ≡
648 let tdl = attr TDL(w),

649 hdl = attr HDL(w),
650 wdl = attr WDL(w),

136 7 Weather Systems [November 2016]

651 bpl = attr BPL(w), ... in
652 ch gi[wsi,wdii] ! mkWD((ch cp[clki,wsi] ?,loc),(tdl,hdl,wdl,bpl,...)) end ;

653 wdg beh(wsi,(clki,wi,wdii),(loc,...))

7.4.6 Weather Data Interpreter

654. The weather data interpreter behaviour communicates with the global clock, all the weather
stations and all the weather forecast consumers.

655. The weather data interpreter behaviour non-deterministically internally (⌈⌉) chooses to
656. either collect weather data,
657. or calculate some weather forecast,
658. or disseminate a weather forecast.

value
654 wdi beh: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→

654 in ch cp[clki,wdii], { ch si[wsi,wdii] | wsi:WSI•wsi ∈ wsis },
654 out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
654 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡

656 collect wd(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)
655 ⌈⌉

657 calculate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)

655 ⌈⌉

658 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)

7.4.6.1 collect wd

659. The collect weather data behaviour communicates with the global clock and all the weather
stations – but “passes-on” the capability to communicate with all of the weather forecast
consumers.

660. The collect weather data behaviour
661. non-deterministically externally offers to accept weather data from some weather station,
662. updates the weather data repository with a time-stamped version of that weather data,
663. and resumes being a weather data interpreter behaviour, now with an updated weather data

repository.

value
659 collect wd: wdii:WDII×(clki,wsis,wfcis):WDIM×...
659 → (WD Rep×WF Rep)→

659 in ch cp[clki,wdii], { ch si[wsi,wdii] | wsi:WSI•wsi ∈ wsis },
659 out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
660 collect wd(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
661 let ((ti,loc),(hdl,tdl,wdl,bpl,...)) = ⌈⌉⌊⌋{wsi[wsi,wdii]?|wsi:WSI•wsi∈wsis} in
662 let wd rep′ = update wdr(ch cp[clki,wdii]?,((ti,loc),(hdl,tdl,wdl,bpl,...)))(wd rep) in
663 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep′,wf rep) end end

7.4 Perdurants 137

7.4.6.2 calculate wf

664. The calculate forecast behaviour communicates with the global clock – but “passes-on” the
capability to communicate with all of weather stations and the weather forecast consumers.

665. The calculate forecast behaviour
666. non-deterministically internally chooses a forecast type from among a indefinite set of such,
667. and a current or “future” time-interval,
668. whereupon it calculates the weather forecast and updates the weather forecast repository,
669. and then resumes being a weather data interpreter behaviour now with the weather forecast

repository updated with the calculated forecast.

value
664 calculate wf: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
664 in ch cp[clki,wdii], { ch si[wsi,wdii] | wsi:WSI•wsi ∈ wsis },

664 out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
665 calculate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡

666 let tf:WWF = ft1 ⌈⌉ ft2 ⌈⌉ ... ⌈⌉ ftn,

667 ti:(TIME×TIVAL) • toti≥ch cp[clki,wdii] ? in
668 let wf rep′ = update wfr(calc wf(tf,ti)(wf rep)) in
669 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep′) end end

670. The calculate weather forecast function is, at present, further undefined.

value
670. calc wf: WFF × (TIME×TI)→WFRep→WF
670. calc wf(tf,ti)(wf rep) ≡ ,,,

7.4.6.3 disseminate wf

671. The disseminate weather forecast behaviour communicates with the global clock and all the
weather forecast consumers – but “passes-on” the capability to communicate with all of weather
stations.

672. The disseminate weather forecast behaviour non-deterministically externally offers to received
a weather forecast request from any of the weather forecast consumers, wfci, that request is for
a specific format forecast, tf, and either for a specific time or for a time-interval, toti, as well as
for a specific location, loc.

673. The disseminate weather forecast behaviour retrieves an appropriate forecast and
674. sends it to the requesting consumer –
675. whereupon the disseminate weather forecast behaviour resumes being a weather data inter-

preter behaviour

value
671 disseminate wf: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→

671 in ch cp[clki,wdii] in,out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
671 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
672 let mkReqWF((tf,toti,loc),wfci) = ⌈⌉⌊⌋{ch ic[wdii,wfci] ? | wfci:WFCI•wfci∈wfcis} in
673 let wf = retr WF((tf,toti,loc),wf rep) in
674 ch ic[wdii,wfci] ! wf ;
675 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) end end

138 7 Weather Systems [November 2016]

676. The retr WF((tf,toti,loc),wf rep) function invocation retrieves the weather forecast from the
weather forecast repository most “closely” matching the format, tf, time, toti, and location
of the request received from the weather forecast consumer. We do not define this function.

676. retr WF: (WFF×(TIME×TI)×LOC) ×WFRep→WF
676. retr WF((tf,toti,loc),wf rep) ≡ ...

We could have included, in our model, the time-stamping of receipt (formula Item 672) of re-
quests, and the time-stamping of delivery of requested forecast in which case we would insert
ch cp[clki,wdii]? at respective points in formula Items 672 and 674.

7.4.7 Weather Forecast Consumer

677. The weather forecast consumer communicates with the global clock and the weather data
interpreter.

678. The weather forecast consumer behaviour
679. nondeterministically internally either
680. selects a suitable weather cast format, tf,
681. selects a suitable location, loc′, and
682. selects, toti, a suitable time (past, present or future) or a time interval (that is supposed to start

when forecast request is received by the weather data interpreter.
683. With a suitable formatting of this triple, mkReqWF(tf,loc′,toti), the weather forecast consumer

behaviour “outputs” a request for a forecast to the weather data interpreter (first “half” of
formula Item 682) whereupon it awaits (;) its response (last “half” of formula Item 682) which
is a weather forecast, wf,

684. whereupon the weather forecast consumer behaviour resumes being that behaviour with it
programmable attribute, d, being replaced by the received forecast suitably annotated;

679 or the weather forecast consumer behaviour
685. edits a display
686. and resumes being a weather forecast consumer behaviour with the edited programmable

attribute, d′.

value
677 wfc beh: wfci:WFCI × (clki,wdii):WFCM × (LOC × ...)→ D→

677 in ch cp[clki,wfci],
677 in,out { ch ic[wdii,wfci] | wfci:WFCI•wfci ∈ wfcis } Unit
678 wfc beh(wfci,(clki,wdii),(loc,...))(d) ≡

680 let tf = tf1 ⌈⌉ tf2 ⌈⌉ ... ⌈⌉ tfn,
681 loc′:LOC • loc′=loc∨loc′,loc,

682 (t,ti):(TIME×TI) • ti≥0 in
683 let wf = (ch ic[wdii,wfci] ! mkReqWF(tf,loc′,(t,ti))) ; ch ic[wdii,wfci] ? in
684 wfc beh(wfci,(clki,wdii),(loc,...))((tf,loc′,(t,ti)),wf) end end
679 ⌈⌉

685 let d′:D {\EQ} rndr\ D(d,{\DOTDOTDOT}) in
686 wfc beh(wfci,(clki,wdii),(loc,...))(d′) end

The choice of location may be that of the weather forecast consumer location, or it may be one
different from that. The choice of time and time-interval is likewise a non-deterministic internal
choice.

7.5 Conclusion 139

7.5 Conclusion

7.5.1 Reference to Similar Work

As far as I know there are no published literature nor, to our knowledge, institutional or private
works on the subject of modelling weather data collection, interpretaion and weather forecast
delivery systems.

7.5.2 What Have We Achieved ?

to be written

7.5.3 What Needs to be Done Next ?

to be written

7.5.4 Acknowledgements

This technical cum experimental research report was begun in Bergen, Wednesday, November
9, 2016 – inspired by a presentation by Ms. Doreen Tuheirwe, Makarere University, Kampala,
Uganda. I thank her, and Profs. Magne Haveraaen and Jaakko Järvi of BLDL: the Bergen Language
Design Laboratory, Dept. of Informatics, University of Bergen (Norway), for their early comments,
and Prof. Haveraaen for inviting me to give PhD lectures there in the week of Nov. 6–12, 2016.

Chapter 8

Automobile Assembly Lines [September 2021]

Contents
8.1 Introduction . 143
8.2 A Domain Analysis & Description . 144

8.2.1 An Initial Domain Sketch . 144
8.2.2 Endurants . 146

8.2.2.1 External Qualities . 146
8.2.2.1.1 Parts . 146
8.2.2.1.2 On Main Elements . 149

8.2.2.1.2.1 General: . 149
8.2.2.1.2.2 Assembly Line Element Types: 149

8.2.2.1.3 Automobile Manufacturing: A Wider Context 149
8.2.2.1.4 An Assembly Plant Taxonomy . 150
8.2.2.1.5 Aggregate, Set, Core and Sibling Parts 151

8.2.2.1.5.1 Atomic and Compound Parts: 151
8.2.2.1.5.2 Aggregates and Sets: 151
8.2.2.1.5.3 Cores [Roots] and Siblings: 151

8.2.2.1.6 The Core State . 152
8.2.2.1.6.1 State Narrative: . 152
8.2.2.1.6.2 Endurant State Formalisation: 152

8.2.2.1.7 Invariant: External Qualities . 154
8.2.2.2 Internal Qualities . 155

8.2.2.2.1 Unique Identifiers . 155
8.2.2.2.1.1 Common Unique Identifier Observer: . 155
8.2.2.2.1.2 The Unique Identifier State: 156
8.2.2.2.1.3 An Invariant: . 156
8.2.2.2.1.4 Part Retrieval: . 156
8.2.2.2.1.5 The Unique Identifier Indexed

Endurant State: . 157
8.2.2.2.1.6 Taxonomy Map with Unique

Identifier Labels: . 157
8.2.2.2.1.7 Unique Identifier State Expressions: . . 157

ι 687. AP, Assembly Plants 157
ι 688. ALA, Assembly Line Aggregates . 158
ι 689. MAL, Main Assembly Lines 159
ι 690. SALA, Supply Assembly Line

Aggregates . 159
ι 691. SALs=SAL-set, Supply

Assembly Line Sets . 159
ι 692. SAL, Supply Assembly Lines 160
ι 693. SA, Station Aggregates 160
ι 694. Ss=S-set, Station Set 160
ι 695. S, Stations . 160
ι 696. ME, Main Elements 161
ι 697. RA, Robot Aggregates 161

141

142 8 Automobile Assembly Lines [September 2021]

ι 698. Rs=R-set, Robot Sets 161
ι 699. R, Robots . 161
ι 700. ES, Element Supplies 161
ι 701. Es=E-set, Element Supply Sets . . 161
ι 702. E, Elements . 161

8.2.2.2.2 Mereology . 162
8.2.2.2.2.1 ι 687. AP: Assembly Plant: 162
8.2.2.2.2.2 ι 688. ALA: Assembly Line Aggregate: 162
8.2.2.2.2.3 ι 689. MAL: Main Assembly Line: 163
8.2.2.2.2.4 ι 690. SALA: Supply Assembly Line

Aggregate: . 163
8.2.2.2.2.5 ι 691. SALs=SAL-set: Simple

Assembly Line Set: 164
8.2.2.2.2.6 ι 692. SAL: Simple Assembly Lines: . . . 164
8.2.2.2.2.7 ι 693. SA: Station Aggregate: 165
8.2.2.2.2.8 ι 694. Ss = S-set: Station Sets: 165
8.2.2.2.2.9 ι 695. S: Station: . 165
8.2.2.2.2.10 ι 696. ME: Main Elements: 168
8.2.2.2.2.11 ι 697. RA: Robot Aggregate: 168
8.2.2.2.2.12 ι 698. Rs=R-set: Robot Set: 169
8.2.2.2.2.13 ι 699. R: Robot: . 169
8.2.2.2.2.14 ι 700. ES: Element Supply: 169
8.2.2.2.2.15 ι 701. Es=E-set: Element Supply Set: . . 170
8.2.2.2.2.16 ι 702. E: Elements: . 170

Comments on the Mereology
Presentation . 170

Distances of Stations from Outlet . . . 170
8.2.2.2.3 Attributes . 172

8.2.2.2.3.1 ι 687. AP: Assembly Plant: 172
8.2.2.2.3.2 ι 688. ALA: Assembly Line Aggregate: 172
8.2.2.2.3.3 ι 689. MAL: Main Assembly Line: 173
8.2.2.2.3.4 ι 690. SALA: Supply Assembly Line

Aggregate: . 173
8.2.2.2.3.5 ι 691. SALs: Supply Assembly Line

Set: . 173
8.2.2.2.3.6 ι 692. SAL: Supply Assembly Lines: . . . 173
8.2.2.2.3.7 ι 693. SA: Station Aggregate: 173
8.2.2.2.3.8 ι 694. Ss=S-set: Station Set: 174
8.2.2.2.3.9 ι 695. S: Station: . 174
8.2.2.2.3.10 ι 696. ME: Main Element: 175
8.2.2.2.3.11 ι 697. RA: Robot Aggregate: 175
8.2.2.2.3.12 ι 698. Rs=R-set: Robot Set: 175
8.2.2.2.3.13 ι 699. R: Robot: . 175
8.2.2.2.3.14 ι 700. ES: Element Supply: 176
8.2.2.2.3.15 ι 701. Es=E-set: Element Supply Set: . . 176
8.2.2.2.3.16 ι 702. E: Elements: . 176

8.2.2.3 Comments wrt. [70] . 176
8.2.3 Perdurants . 177

8.2.3.1 From Parts to Behaviours . 177
8.2.3.2 Channels . 178
8.2.3.3 Actors . 178

8.2.3.3.1 Actions and Events . 178
8.2.3.3.2 Behaviours . 178

8.2.3.4 System Initialisation . 178
8.3 Discussion . 178
8.4 Conclusion . 178

8.4.1 Models and Axioms . 178
8.4.2 Learning Forwards, Practicing In Reverse . 178
8.4.3 Diagrammatic Reasoning . 179
8.4.4 The Management of Domain Modeling . 179
8.4.5 ... one more section ... 180
8.4.6 ... a last section (?) ... 180
8.4.7 Acknowledgments . 180

8.1 Introduction 143

We interpret Sect. 2 of [70]. That is, we present the domain description of a generic, assembly line manufac-
turing plant, like, for example, an automobile plant. The description is in the style of, i.e., according to the
dogma of [55]. It is an aim of this report to (i) classify the various notions of [70] in their relationship to domain
analysis & description notions of [55]: endurants and perdurants, external and internal endurant qualities:
unique identifiers, mereologies and attributes, as well as domain versus requirements specifications, i.e.,
descriptions vs. prescriptions.

Caveat

The topic of this report is currently being studied and writing progresses according ly. I have not
checked all item (etc.) references, but will, one day I have a printed copy to work from ! I have
also left many stubs to be resolved. Various sections represent “diverse” modeling attempts. It
will be interesting to see which will “survive” ! Since this report will be updated on the net daily
You may wish to not download-copy it, but to reload it, from day-to-day, if need be.

November 15, 2021: 16:12 : “Progress”

• Mereology “finished”.
• “Finished” first round of Attributes.
• Speculating on robot tasks.
• Unfinished “business” wrt. parts and robot operations.

A Development Document

This report cum paper, may look like a paper. But it is not. It is a report on “work in progress”.
It expresses, in its current form, the way we would, sequentially, develop en experimental

domain model, such as mentioned in Sect. 8.4.4 on page 179, in the item labeled Experiment

on Page 179.

8.1 Introduction

The current author has put forward a theory and a methodology of domain engineering [48, 52, 55].
That methodology is the result of 30 years of experimental development of analyses & descriptions
of numerous domains. See the bibliography entry for [60] to see the variety of domains so studied.
Isolated aspects of the domain of assembly line manufacturing has been a topic of study, also
in computing science, for some years. See, for example, https://en.wikipedia.org/wiki/Cel-
lular manufacturing. These computing science studies have, however, focused, less on overall
assembly lines, and more on their individual manufacturing cells – in this report referred to as
operators (or stations (?)). So when I heard of and read [70] I was ready to myself tackle the domain
analysis & description of an “entire” production line, i.e., a single assembly line complex of a main
and possibly several supply assembly lines.

more to come

144 8 Automobile Assembly Lines [September 2021]

8.2 A Domain Analysis & Description

8.2.1 An Initial Domain Sketch

We refer to Fig. 8.5 on page 146. In this section we shall give an informal sketch of the domain.
The domain is that of the generic assembly line “core” of a manufacturing plant – think of an
automobile factory !28

Fig. 8.1 Aspects of an Automobile Assembly Line, I

Fig. 8.2 Aspects of an Automobile Assembly Line, II

28 For the specific case of automobile factories the assembly line focus thus omits consideration of number of major
components: the motor foundry etc., the paint shop, etc.

8.2 A Domain Analysis & Description 145

Fig. 8.3 Aspects of an Automobile Assembly Line,III

Fig. 8.4 Aspects of an Automobile Assembly Line,IV

We thus focus sôlely on assembly lines29 ,30. Figure 8.5 shows an idealised layout of an assembly
line. It shows one main assembly line and three supply assembly lines. Assembly lines assemble,
as we shall call them, elements.31 Assembly of elements, from other, the constituent, elements are
performed by robots32 at stations. Stations are linearly ordered within an assembly line. Assembly
lines has a flow direction, i.e., the direction in which increasingly “bigger” elements “flow”. Each
station consists of one or more robots. Robots direct their work at a main element, and apply their
grips to elements supplied from an element supply,33 or to a “larger” assembly “fetched” from a
supply assembly line incident at that station !

29 https://en.wikipedia.org/wiki/Assembly line: An assembly line is a manufacturing process (often called a pro-
gressive assembly) in which parts (usually interchangeable parts) are added as the semi-finished assembly moves
from workstation to workstation where the parts are added in sequence until the final assembly is produced. By
mechanically moving the parts to the assembly work and moving the semi-finished assembly from work station to
work station, a finished product can be assembled faster and with less labor than by having workers carry parts to
a stationary piece for assembly.

Assembly lines are common methods of assembling complex items such as automobiles and other transportation
equipment, household appliances and electronic goods.
30 Example supply assembly lines are: (i) engine assembly (where the start of such lines are supplied with already
prepared engine blocks (from a non-assembly line engine foundry and machining shop), (ii-v) four left and right
front and rear door assemblies, (vi-ix) body interior left and right front and rear sofa, and panel assemblies.
31 Other, perhaps more common terms are: products or parts. The term ‘part’ is used in our domain analysis &
description method, [48, 52, 55], for quite other purposes –so that is “out !”
32 Robots are either humans assisted by various machine tools, as in Charlie Chaplin’s movie: ‘Modern Times’
(1936), or are, indeed, robots.
33 That is, a station local storage of elements that are to be joined, at a station, by the help of robots, to the main
element. How the supply elements are introduced to the supply is currently left unspecified.

146 8 Automobile Assembly Lines [September 2021]

An Assembly Plant with three Supply Assembly Lines and a total of 29 Stations

Supply Assembly Line (b)

Assembly Line (a)
Supply

Supply Assembly Line (c)

Main Assembly Line

Flow:
Main Element

Element
Supply

Robot

Robot

Robot

Robot Aggr.

a Station enlarged

Station
S

Fig. 8.5 A simplified Assembly Plant diagram

8.2.2 Endurants

The endurant analysis & description is according to the ontology graph of Fig. 8.6 on the facing
page. The analysis & description is otherwise according to either of [48, 52, 55]. It suffices to have
studied [52].

8.2.2.1 External Qualities

The domain analyser cum describer34, who is assumed fully familiar with the domain analysis &
description method, [55], starts with analysing and describing external qualities of the domain.
In the case of an assembly plant these are the solid endurants, or, as they are called in [55], the
parts. The domain analyser cum describer, from being familiar with the method, therefore is, all
the time, aware that these (described) parts will, in the transition to the analysis & description
of perdurants, be transcendentally deduced, i.e., “morphed” into behaviours. It is this a-priory
knowledge that guides the analyser cum describer’s determination as to whether parts are to
be modeled as atomic or as compounds, and the decomposition of compound parts into atomic,
aggregate and set parts.

8.2.2.1.1 Parts

The domain, that is, the universe of discourse, is that of an assembly plant – say for automobiles,
for machinery or for electronic gadgets.

687. In an assembly plant, AP, we can observe

34 The notion of ‘domain analyser cum describer’ covers one, individually (as the author of this paper) working
person, or a well-managed group of two or more persons, all “equally” familiar with the method of [55].

8.2 A Domain Analysis & Description 147

Behaviours

Indescribables

Channels

Entities = Describables

transcendental injection of endurants into perdurants

External Qualities

Describer "states"

Transcendense

Endurants

Phenomena of Natural and Artefactual Universes of Discourse

Internal QualitiesUnique Identifiers

Mereologies
Attributes

C
o

m
p

o
si

te
 P

ar
t

P
, P

s
=

P
−s

et

P
ar

t
S

et
s

P
1,

P
2,

...
,P

n

Compound Parts

A
to

m
ic

 P
ar

t

Parts

A
n

im
al

s

Living Species

P
la

n
ts

FluidsSolids

Endurants Perdurants

Actions Events Actors

Fig. 8.6 The simple Ontology Graph underlying our Analysis & Description

688. an assembly line aggregate, ALA35.
689. From an assembly line aggregate one can observe a composite of a main assembly line, MAL,
690. and aggregate of supply assembly lines, SALA,
691. with the latter being sets SALs = SAL-set.
692. of supply assembly lines,
693. From main and supply assembly lines one can observe aggregates of stations, SA,
694. which are sets Ss = S-set36

695. of two or more stations S. From a station one can observe
696. a main element, ME, (an assembly37),
697. an aggregate robot, RA, which is
698. a set, Rs = R-set,38 of
699. one or more robots, R, and

35 We omit observations of motor works (foundry, machining, etc.), body shop (pressing, etc.), paint shop, etc.
36 Linear Lines: The mereology of sect. 8.2.2.2.2 will order these in a linear sequence
37 https://www.merriam-webster.com/dictionary/assembly: Assembly: the fitting together of manufactured ele-
ments into a complete machine, structure, or unit of a machine
38 [70]: Our interpretation of ‘operator’: robot perform processes which consists of tasks. These are perdurants, that
is, an operator will, subsequently, in this report be transcendentally “morphed” into s set of one or more concurrent
processes. These processes are then subject, in the domain model, to invariants, and in a subsequent requirements
“model” into constraints.

148 8 Automobile Assembly Lines [September 2021]

700. an aggregate, ES, of [“supply”] elements39,
701. which are sets, ESs = E-set,
702. of manufacturing elements E.

type
687. AP
688. ALA

689. MAL

690. SALA
691. SALs = SAL-set
692. SAL

693. SA
694. Ss = S-set
695. S
696. ME

697. RA

698. Rs = R-set
699. R

700. ES

701. Es = E-set

702. E

value
688. obs ALA: AP→ ALA

689. obs MAL: ALA→ MAL

690. obs SALA: ALA→ SALA
691. obs SALs: SALA→ SALs

693. obs SA: (MAL|SAL)→ SA

694. obs Ss: SA→ Ss
696. obs ME: S→ ME

697. obs RA: S→ RA
698. obs Rs: RA→ Rs

700. obs ES: S→ ES

701. obs Es: ES→ Es
axiom
694. ∀ ss:Ss • card ss > 1

698. ∀ rs:Rs • card rs > 0

Figure 8.7 repeats Fig. 8.5 on page 146, but now marked with the names of composite sorts
introduced in Items 687–701.

Flow:
Main Element

Element
Supply

Robot

Robot

Robot

Robot Aggr.

a Station enlarged

RA

R
ME

ES

S

MAL

SALA

SAL

SAL

SAL

S

AP

An Assembly Plant with
3 Supply Assembly Lines

and 29 Stations

merge

Fig. 8.7 A simplified Assembly Plant diagram marked with composite endurant sort names

39 These are local storage, usually simple, mostly atomic solid or fluid elements such as bolts & nuts, glue, etc.

8.2 A Domain Analysis & Description 149

8.2.2.1.2 On Main Elements

This section is an aside.
In this section we shall discuss what is meant here by a main element, that is, “what is in store”

– what will/might come up later on.

8.2.2.1.2.1 General:

The main element is here modeled as a solid endurant. It is a “place-holder” for “the thing for
which the manufacturing plant” is intended. The plan is to endow main elements with an attribute
[Sect. 8.2.2.2.3.10 on page 175]: That attribute may itself be thought of as being a solid endurant.
We shall then use the term part40 Robots, then, perform operations on the main element. These
operations are functions, which are attributes of robots. As functions they take the main element
[main] part attribute and a set of element supply elements and yield an updated main element
part. So You may think of the main element as a “container” for that main part. There may be
no contents of the container, in which case the main element’s part attribute is "nil". Its content
is “received” from the main element of the previous station, if there is one, else from an element
supply. A content that a station can no longer contribute to is “passed” on to the next station, or
“fused” in, if from a supply assembly line, as a supply element, to a main assembly line elements,
or, to an outside, the “ready product !”

8.2.2.1.2.2 Assembly Line Element Types:

The type of main elements is a pair: the type that is stroven for, that is, the assembly line type, and
the type of the element “currently residing in” the main elements. So each station is particularly
typed by its “current” main element type.

8.2.2.1.3 Automobile Manufacturing: A Wider Context

These are, roughly the principal components of automobile manufacturing41:

• Chassis: The chassis of the car is the baseline component. All other parts are integrated on,
or within the chassis. This is typically a welded frame that’s initially attached to a conveyor
that moves along a production line. As the frame progresses, the car is literally “built from the
frame up” to create a final product. Parts that are sequentially applied to the chassis include
the engine, front and rear suspension, gas tank, rear-end and half-shafts, transmission, drive
shaft, gear box, steering box, wheel drums and the brake system.

• Body: Once the “running gear” is integrated within the frame, the body is constructed as a
secondary process. First, the floor pan is positioned properly, then the left and right quarter
panels are positioned and welded to the floor structure. This step is followed by adding the
front/rear door pillars, the body side panels, rear deck, hood and roof. The entire process is
typically executed by robotic machines.

• Paint: Before painting the vehicle, a quality control team inspects the body as it sits. Skilled
workers look for dents, abrasives or other deformations that could create a finishing problem
when undergoing the painting process. Once this step is completed, the car is automatically
“dipped” with primer, followed by a layer of undercoat and dried in a heated paint bay. Once

40 Not to be confused with the Design Analysis & Description concept of parts, i.e., solid endurants.
41 This account is taken, ad verbatim, from: https://itstillruns.com/car-manufacturing-process-5575669.html.

150 8 Automobile Assembly Lines [September 2021]

the primer/undercoat process is finished, the car is again “dipped” with the base coat and again
dried before moving the assembly to the next stage.

• Interior: After the structure is entirely painted, the body is moved to the interior department in
the plant. There, all of the internal components are integrated with the body. These components
include: instrumentation, wiring systems, dash panels, interior lights, seats, door/trim panels,
headliner, radio, speakers, glass, steering column, all weather-striping, brake and gas pedals,
carpeting and front/rear fascias.

• Chassis/Body Mating: The two central major assemblies are next mated for final setup and
roll-out. Again, this process is executed via computer and control machines to ensure speed,
and perfect the fit between the body assembly and the chassis. Once the car is rolling on its
own, it’s driven to the final quality control point, inspected and placed in a waiting line for
transportation to its final dealer destination.

8.2.2.1.4 An Assembly Plant Taxonomy

Figure 8.8 “graphs” the composition of solid endurants of an assembly plant according to the
endurant composition of Items 687– 701 on page 148.

MAL

S S

. . .

SA

ALA

SAL

S

. . .SAL SAL

ME ES

. . .

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

Repeat

ι6

ι3

ι2

ι9

E | "nil"

ι7

ι5

ι4

AP ι1

ι7

ι8

ι10 ι14

ι15 ι12

ι13

ι11

Fig. 8.8 The Composition of Solid Endurants of an Assembly Plant (AP)
Larger red framed boxes designate set parts.
ι i,πp refer to item i page 148.

8.2 A Domain Analysis & Description 151

Some diagram explications: (i) the top left dashed triangle shall show an endurant composition
as does the main, large, dashed triangle; (ii) the vertical dotted lines “hanging down” from two
SALs “hint” at the “tree” emanating down from the “middle” SAL; and (iii) the horisontal dots,
. . . , in SAL, S, R and E “lines” hint at any number, 0 or more, of these endurants !

8.2.2.1.5 Aggregate, Set, Core and Sibling Parts

We review42, as an aside, the [55, Monograph] concepts of atomic, compound, aggregates, sets,
core or root, and sibling parts.

8.2.2.1.5.1 Atomic and Compound Parts:

Atomic parts are solid endurants whose possibly “internal” composition is ignored. Compound
parts are solid endurants which we further analyse into core (or, equivalently, root) and sibling
parts.

8.2.2.1.5.2 Aggregates and Sets:

Compound parts are either composites of one or more parts of different sorts, i.e., like Cartesians,
but where we avoid modeling a composite as a Cartesian of a definite number of parts – since we
may, “later”, wish to “add” additional parts, or are [finite] sets of zero, one or more parts of the
same sort.
We use the term aggregate to cover both kind of compounds. Usually, however, we use aggregates
for composites, and sets for sets !

8.2.2.1.5.3 Cores [Roots] and Siblings:

With compound parts we distinguish between the core part and the sibling parts.
The core part is understood as follows: It is to be considered a “proper” part although it may

sometime be more of an abstraction than a solid ! Consider the following example: a car, as seen
from the point of view of an automobile plant, is a composite, with a core, the car as a whole, as
“somehow” embodied in the overall software that monitors and co-controls various of the car’s
siblings; these siblings are then further aggregates, each with their cores and siblings. Immediate
car siblings could be the chassis, the motor, the engine train, the body. The chassis, as an aggregate,
has, usually, four wheels, etc. The body, as an aggregate, has, perhaps, four doors, a trunk and a
hood. And each of these, the chassis, motor, engine train, body, etc., has their cores.

We now “formalise” the notion of the core of a compound.

• We do so by introducing an otherwise not further defined [binary or distributive] operator, ⊖.
• It applies to a pair of parts:

⋄⋄ one is an aggregate, cp, and
⋄⋄ the other, sp, is
◦◦ either a single one of its siblings, pi,
◦◦ or a set of these, {pi,p j, ..,pk},

⋄⋄ i.e., cp⊖ps, “somehow removes” ps from p.

We now apply the ⊖ systematically to all components of our domain.

42 The treatment of part cores (in [55] called roots) is here augmented with the ⊖ operation – not mentioned in [55].

152 8 Automobile Assembly Lines [September 2021]

• The ‘core’ of an atomic part is that part.
• The ‘core’ of a composite part is that part “minus” (⊖) its “sibling” parts:

⋄⋄ Let p be a composite part,
⋄⋄ then p1 = obs P1(p), p2 = obs P2(p), ..., pm = obs Pm(p) are its sibling parts
⋄⋄ [where obs P1, obs P2, ..., obs Pm are the observers of parts p (of type P)].
⋄⋄ The ‘core’ of p, i.e., core P(p), is then p⊖{p1,p2, ...,pm} : Pκ.

• The ‘core’ of a set of parts is that part “minus” (⊖) its “sibling” parts:

⋄⋄ Let ps be a set part (of type Ps =Q− set),
⋄⋄ ‘core’ of ps, i.e., core Ps(ps), is then ps⊖{q1,q2, ...,qn} : Psκ.

Subsequently introduced unique identifier, mereology and attribute observers apply to core parts
as they do to non-core parts.

8.2.2.1.6 The Core State

To encircle the notion of domain core states we need characterise:

• the state narratively, Sect. 8.2.2.1.6.1; and
• the state formally, Sect. 8.2.2.1.6.2.

8.2.2.1.6.1 State Narrative:

We shall now narrate the assembly plant domain state. We start by referring to Fig. 8.9 on the
facing page.

703. We shall model the assembly plant state, σ, by a set of κore parts composed as follows:

ι 687π 146 43 (AP) the assembly plant κore apκ:APκ;
ι 688π 147 (ALA) the assembly line aggregate κore alaκ:ALAκ;
ι 689π 147 (MAL) the main assembly line κore, malκ:MALκ;
ι 690π 147 (SALA) the aggregate of supply assembly lines κore, salaκ:SALAκ;
ι 691π 147 (SALs) the consolidated44 set of all sets of assembly line κores, csalsκ:ALsκ;
ι 693π 147 (SA) the consolidated45 set of all station aggregates cssaκ:SAκ-set;
ι 694π 147 (Ss) the consolidated set of all assembly lines’ station set κores, cssκ:Ssκ;
ι 695π 147 (S) the consolidated set of all assembly lines’ station κores, csκ:Sκ;
ι 696π 147 (ME) the consolidated set of all main element κores, csmeκ:MEκ;
ι 697π 147 (RA) the consolidated set of all robot aggregates κores, csraκ:RAκ-set;
ι 698π 147 (Rs) the consolidated set of all robot set κores, csrsκ:Rsκ;
ι 699π 147 (R) the consolidated set of all robot κores, csrκ:Rsκ;
ι 700π 148 (ES) the consolidated set of all element supply κores, csesκ:ESκ-set;
ι 701π 148 (Es) the consolidated set of all κore elements, cseκ:Eκ-set;

704. as a set, σsκ .

8.2.2.1.6.2 Endurant State Formalisation:

705. We consolidate the main and the supply assembly lines into one kind of assembly line, AL,
706. and their corresponding [consolidated] sets.

43 ι itemπpage labels refers to narrative item on page ; the corresponding formalisation is found on page[s] 148–148.
44 – from both the main assembly line and from all the supply assembly lines
45 Henceforth, by consolidated, we mean as in footnote 44.

8.2 A Domain Analysis & Description 153

AP

MAL

S S

ALA

SAL

S

. . . SAL

ES

. . .

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

ME RA

SA

κala

κ

κ

[sa]

κ

κsalamal

apκ

R−set

SA

κ
=
{ mal

sal_n
... ,
sal_1κ

κ

κ
,

,

}

SAL

.

κ κ κ κ κ
E E E R R R

κ

css
sκ

κcses

κ κ

κcsra

csr

κ

− consolidate

cssa

cse

κe e e r r r

csme

csals

csals

κsal_2 sal_nsal_1 κκ

Fig. 8.9 Red/Blue text labels designate contributions to domain state

type
705. AL = MAL | SAL
706. ALs = AL-set
vaue

ι 687π146. ap:AP
ι 687π146. apκ:APκ = core AP(ap)

ι 688π147. ala:ALA = obs ALA(ap)

ι 688π147. alaκ:ALAκ = core ALA(ala)

ι 689π147. mal:MAL = obs MAL(ala)

ι 689π147. malκ:MALκ = core MAL(ala)

ι 690π147. sala:SALA = obs SALA(ala)

ι 690π147. salaκ:SALAκ = core SALA(sala)

ι 691π147. csals:AL-set = {mal} ∪ obs SALs(sala)

ι 691π147. csalsκ:AL-setκ = ∪{core AL(al)|al:AL•al ∈ csal}

154 8 Automobile Assembly Lines [September 2021]

ι 693π147. cssa:SA-set = {obs SA(al)|al:AL•al ∈ csal}
ι 693π147. cssaκ:SA-setκ = ∪{core SA(sa)|sa:SA•sa ∈ cssa}

ι 694π147. css:S-set = ∪{obs Ss(sa)|sa:SA•sa ∈ cssa}
ι 694π147. cssκ:S-setκ = ∪{core Ss(obs Ss(s))|s:S•s ∈ css}

ι 695π147. cs:S-set = ∪ css
ι 695π147. csκ:S-setκ = {core S(s)|s:S•s ∈ cs}

ι 696π147. csme:ME-set = ∪{obs ME(s)|s:S•s ∈ css}
ι 696π147. csmeκ:ME-setκ = core ME(csme)

ι 697π147. csra:RA-set = ∪{obs RA(s)|s:S•s ∈ css}
ι 697π147. csraκ:RA-setκ = core RA(csra)

ι 698π147. csrs:R-set = ∪{obs Rs(ra)|ra:RA•ra ∈ csra}
ι 698π147. csrsκ:κ = core R(csrs)

ι 699π147. crs:R-set = ∪{obs Rs(ra)|ra:RA•ra ∈ csra}
ι 699π147. crsκ:κ = core R(csrs)

ι 700π148. cses:ES = ∪{obs ES(s)|s:S•s ∈ csra}
ι 700π148. csesκ:κ = core ES(cses)

ι 701π148. cse:E-set = ∪{obs Es(es)|es:ES•s ∈ cses}
ι 701π148. cseκ:κ = core E(cse)

704. σs:(AP|ALA|MAL|SALA|SALs|Ss|S|ME|RA|Rs|R|ES|Es|E)-set =
704. {apκ} ∪ {alaκ} ∪ {malκ} ∪ {salaκ} ∪ csalsκ ∪ cssaκ ∪
704. cssκ ∪ csκ ∪ csmeκ ∪ csraκ ∪ csrsκ ∪ csrκ ∪ csesκ ∪ cseκ

8.2.2.1.7 Invariant: External Qualities

707. No two assembly lines, whether main or supply, are equal;
708. no two stations in same or different assembly lines are equal;
709. no two robots in different stations are equal;
710. no two main elements are equal;
711. no two element supplies in different stations are equal;
712. etc.

707. ∀ al i,al j:AL•{al i,al j}⊆csal⇒
707.

707. to come

707.
708. ∀ s i,s j:S•{s i,s j}⊆csal⇒
708.

708. to come

708.

709. ∀ r i,r j:R•{r i,r j}⊆csr⇒
709.

8.2 A Domain Analysis & Description 155

709. to come

709.
710. ∀ me i,me j:ME•{me i,me j}⊆csme⇒
710.

710. to come

710.

711. ∀ es i,es j:ES•{es i,es j}⊆cses⇒
711.

711. to come

711.

712. ...

8.2.2.2 Internal Qualities

External qualities can be said to represent manifestation: that an endurant can be seen and touched.
Internal qualities gives “contents” to the manifests in three ways:

• by the obvious endowment of solid endurants with unique identification [55, Sect. 5.2],
• by stating relations between solid endurants, whether topological or conceptual, e.g., opera-

tional, in the form of mereologies [55, Sect. 5.3], and
• by giving “flesh & blood, body & soul” to these endurants in the form of wide ranging attributes

[55, Sect. 5.4].

8.2.2.2.1 Unique Identifiers

We shall show that many of the concerns of [70] have their “root” in the unique identification of
solid endurants of the domain.

713. All parts, whether compound or atomic, have unique identifiers.

type
713. API, ALAI, MALI, SALAI, SALsI, SALI, SAI, Ss, SI, MEI, RAI, RsI, RI, ESI, EsI, EI

value
713. uid AP: AP→API,

713. uid ALA: AL→ALAI,
713. uid MAL: MAL→MALI,

713. uid SALA: SALA→SALAI,

713. uid SALs: SALs→SALsI,

713. uid SAL: SAL→SALI,

713. uid SA: SA→SAI,

713. uid Ss: Ss→SsI,
713. uid S: S→SI,

713. uid ME: ME→MEI,

713. uid RA: RA→RAI,

713. uid Rs: Rs→RsI,

713. uid R: R→RI,

713. uid ES: ES→EI,
713. uid E: E→EI

8.2.2.2.1.1 Common Unique Identifier Observer:

714. Given that is P(p) holds if p is of type P, and is false otherwise, we can define a common unique
identifier observer function for all assembly plant types.

type
714. P = AP|ALA|MAL|SALA|SALs|SA|Ss|S|ME|RA|Rs|R|ES|Es|E

714. PI = API|ALAI|MALI|SALAI|SALsI|SAI|SsI|SI|MEI|RAI|RsI|RI|ESI|EsI|EI
value
714. uid: P→ PI

156 8 Automobile Assembly Lines [September 2021]

value
714. uid(p) ≡

714. is AP(p)→uid AP(p),
714. is ALA(p)→uid ALA(p),

714. is MAL(p)→uid MAL(p),
714. is SALA(p)→uid SALA(p),

714. is SALs(p)→uid SALs(p),

714. is SA(p)→uid SA(p),
714. is Ss(p)→uid Ss(p),

714. is S(p)→uid S(p),

714. is ME(p)→uid ME(p),

714. is RA(p)→uid RA(p),
714. is Rs(p)→uid Rs(p),

714. is R(p)→uid R(p),
714. is ES(p)→uid ES(p),

714. is Es(p)→uid Es(p),

714. is E(p)→uid E(p),
714. →false

8.2.2.2.1.2 The Unique Identifier State:

As for endurant parts, cf. Sect. 8.2.2.1.6.2 on page 152, we can define a state of all endurant
parts’ unique identifiers. To do so we make use of the uid E observers as also being distribu-
tive, that is, if uid E is applied to a set of solid endurants, say {e1,e2,...,en}, then the result is
{uid E(e1),uid E(e2),...,uid E(en)}.

687uid. uid ap = uid AP(ap)

688uid. uid ala = uid ALA(ala)

689uid. uid mal = uid MAL(mal)
690uid. uid sala = uid SALA(sala)

691uid. uid csal = ∪{uid SAL(sal)|sal:SAL•sal ∈ csal}
692uid. uid csals = ∪{uid SALs(sals)|sals:SALs•sals ∈ csals}
693uid. uid cssa = ∪{uid SA(sa)|sa:SA•sa ∈ cssa}
694uid. uid css = ∪{uid Ss(ss)|ss:Ss•ss ∈ css}
695uid. uid cs = ∪{uid S(s)|s:S•s ∈ css}
696uid. uid csme = ∪{uid ME(me)|me:ME•me ∈ csme}
697uid. uid csra = ∪{uid RA(ra)|ra:RA•ra ∈ csra}
698uid. uid csrs = ∪{uid Rs(rs)|rs:Rs•rs ∈ csrs}
699uid. uid csr = ∪{uid R(R)|r:R•r ∈ csr}
700uid. uid cses = ∪{uid ES(es)|es:ES•es ∈ cses}
701uid. uid cse = ∪{uid Es(es)|es:Es•es ∈ cse}

704uid. uid s σ:(AP|AL|MAL|SALA|SALs|SAL|SA|Ss|S|ME|RA|Rs|R|ES|Es)-set =
704uid. {uid ap} ∪ {uid ala} ∪ {uid mal} ∪ {uid sala} ∪ uid csal ∪ uid cssa ∪
704uid. uid css ∪ uid csme ∪ uid csra ∪ uid csr ∪ uid cses ∪ uid cse

8.2.2.2.1.3 An Invariant:

715. All parts are uniquely identified, cf. Item 704 on page 154 and Item 704uid on page 156.

715. card s σ = card uid s σ

8.2.2.2.1.4 Part Retrieval:

716. From a unique identifier of a domain and the domain endurant state we can obtain the identified
endurant.

8.2 A Domain Analysis & Description 157

value
716. retr End: UI→ P-set→ P

716. retr End(ui)(σ) ≡ let p•p ∈ σ ∧ uid(p) = ui in p end
axiom
716. σ = s σ ∧ ui ∈ uid s σ ∧ p ∈ s σ

8.2.2.2.1.5 The Unique Identifier Indexed Endurant State:

We can define a map from unique identifiers of endurant parts to these.

value
704. σuid =

687σ. [uid ap 7→ ap,

688σ. uid ala 7→ ala,

689σ. uid mal 7→ mal,
690σ. uid sala 7→ sala,

691σ. uid csal 7→ csal,
692σ. uid csals 7→ csals,
693σ. uid cssa 7→ cssa,

694σ. uid css 7→ css,
695σ. uid cs 7→ cs,
696σ. uid csme 7→ csme,
697σ. uid csra 7→ csra,

698σ. uid csrs 7→ csrs,
699σ. uid csr 7→ csr,
700σ. uid cses 7→ cses,
701σ. uid cse 7→ cse]

We leave it to the reader to state the type of the σuid value !

8.2.2.2.1.6 Taxonomy Map with Unique Identifier Labels:

Figure 8.10 on the following page46 repeats Figs. 8.8 on page 150 and 8.9 on page 153. In Fig. 8.10
lines are now labeled with appropriate unique identifiers. This leads up to Fig. 8.11 on page 159.

Figure 8.11 on page 159 is a first, a graphical, two-dimensional expression. We shall comment
on the graphics.

First one may say that Fig. 8.11 shows “horisontally” what Figs. 8.8–8.10 shows “vertically”.
Then we note that compound composites and compound sets are expressed as maps from

unique part identifiers to parts (which include these unique identifiers).
And finally we note that each compound part is expressed as a pair: pκ,map, the pκ labels the

upper left outside of the map – such that the parentheses of the pair, (pκ,map), is shown just before
pκ and ends after map.

8.2.2.2.1.7 Unique Identifier State Expressions:

We now present the proper Unique Identifier State Expression formula sketched in Fig. 8.11. It
will be defined in terms of the generate unique identifier state expression function g uise.

[687 on page 146] AP, Assembly Plants

717. The unique identifier state expression for the assembly plant is the pair of the assembly plant
core, apκ, and the unique identifier state expression for the assembly line aggregate.

value
717. g uise(ap) ≡ (apκ,g uise(ala))

717. where: apκ=core AP(ap) ∧ ala=obs ALA(ap)

46 A difference between Fig. 8.10 and Figs. 8.8–8.9 is that in Fig. 8.10 we have “moved” the left MAL taxonomy
triangle a level down, to “level”with the right SAL triangles.

158 8 Automobile Assembly Lines [September 2021]

S S

. . .

SAL

S

. . .SAL SAL

ME ES

. . .

E | "nil"

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

AP

ala_i

ss_i_j

es_i_j_k ra_i_j_kme_i_j_k

e_i_j_k ess_i_j_k

r_i_j_k_me_i_j_k_l

sala_i

sals_i

sal_i_j

ra_i_j_k

SA

MAL

Repeat

ALA

s_i_j_k

mal_i

sa_i_jsa_0_i

Fig. 8.10 Taxonomy with Unique Identifier Labels

[688 on page 147] ALA, Assembly Line Aggregates

718. The unique identifier state expression for the assembly line aggregate, ala, is the pair of the
assembly line aggregate core, alaκ, and the singleton map from the unique identifier of the
assembly line aggregate to that aggregate – expressed as a core-part annotated map.

value
718. g uise(ala) ≡

718.′ (alaκ,
718.′ [uid ALA(ala) 7→

718.′ [uid MAL(mal) 7→g uise(mal),
718.′ uid SALA(sala) 7→g uise(sala)]])

The one-liner, Item 718′, just above, is too “complex”, better, we think, is the 4 liner just below,
i.e., Items 718′′–718′′′′′.

value
718. g uise(ala) ≡

718.′′ (alaκ,
718.′′′ [uid ALA(ala)

718.′′′′ 7→ [uid MAL(mal) 7→ g uise(mal),

8.2 A Domain Analysis & Description 159

salas_i sal_i_j

...

...
,
(salak,

...

sa_i_j_k

(salsk,

ap = (apk,

(sal_i_jk,

ala_i

A
P

A
LA

S
A

LA
M

A
L

S
A

L

S
A

L−
se

t
S

A
Ls

 =
sala_i

R
...

R

R

...

(sa_i_j_kk,

...

r1 ,

r2 ,

r1_i

r2_i

rm_i rm

)

S
A

(alak,)))))
)

)))
)

...

...

)
...

...

"similar"

(sask,

S
−s

et
S

s
=

(s_jk,
...

"similar"

(malk, (sak,

es_i es
me_i me

))

ME
ES

(rs,

ra_i

(rak,

R
A

rs_i

S

s_j_isas_isa_imal_i

R
−s

et
R

s=

content as for dash lined
the sa_i−>(sak,[...])
"box" above

S
A

Fig. 8.11 Unique Identifier State Expression

718.′′′′′ uid SALA(sala) 7→ g uise(sala)]])
718. where: alaκ=core AP(ala) ∧ mal = obs MAL(ala) ∧ sala = obs SALA(ala)

[689 on page 147] MAL, Main Assembly Lines

719. The unique identifier state expression for the main assembly line, mal, is the pair of the main
assembly line core, malκ, and the map from the unique identifier of its station assembly, sa, and
the unique identifier state expression for the station assembly.

value
719. g uise(mal) ≡
719. (malκ ,
719. [uid MAL(mal) 7→ [uid SA(sa) 7→ g uise(sa)]])
719. where: malκ=core MAL(mal) ∧ sa = obs SA(mal)

[690 on page 147] SALA, Supply Assembly Line Aggregates

720. The unique identifier state expression for the supply assembly line aggregate, sala, is the pair of
the supply assembly line aggregate core, salaκ, and the singleton map from the unique identifier
of the set of assembly lines to that set – expressed as a core-part annotated map.

value
720. g uise(sala) ≡

720. (salaκ,
720. [uid SALA(sala) 7→ [uid SALs(sals) 7→ g uise(sals)]])
720. where: sals = obs SALs(sala) ∧

[691 on page 147] SALs=SAL-set, Supply Assembly Line Sets

160 8 Automobile Assembly Lines [September 2021]

721. The unique identifier state expression for the supply assembly line set, sals, is the pair of the
supply assembly line set core, salsκ, and the map from the unique identifier of each of the
supply assembly lines to that set – expressed as a core-part annotated map.

value
721. g uise(sals) ≡
721. (salsκ,
721. [uid SAL(sal) 7→ g uise(sal) | sal:SAL • sal ∈ sals])
721. where:

[692 on page 147] SAL, Supply Assembly Lines

722. The unique identifier state expression for the supply assembly line, sal, is the pair of the main
assembly line core, salκ, and the singleton map from the unique identifier of its station assembly,
sa, and the unique identifier state expression for that station assembly.

value
722. g uise(sal) ≡
722. (salκ ,
722. [uid SAL(sal) 7→ [uid SA(sa) 7→ g uise(sa)]])
722. where: salκ=core SAL(sal) ∧ sa = obs SA(sal)

[693 on page 147] SA, Station Aggregates

723. The unique identifier state expression for the station aggregate, sa, is the pair of the station
aggregate core, salκ, and the map from the unique identifier of each of the stations to that set –
expressed as a core-part annotated map.

value
723. g uise(sa) ≡
723. (saκ ,

723. [uid SA(sa) 7→ g uise(ss)])

723. where: saκ = core SA(sa) ∧ ss = obs Ss(sa)

[694 on page 147] Ss=S-set, Station Set

724. The unique identifier state expression for a set of stations, ss, is the pair of the station set
core, ssκ, and the singleton map from the unique identifier of each of the stations to that set –
expressed as a core-part annotated map.

value
724. g uise(ss) ≡
724. (ssκ ,

724. [uid Ss(s) 7→ g uise(s) | s:S • s ∈ ss])

724. where:

[695 on page 147] S, Stations

725. The unique identifier state expression for stations, s, is the pair of the station core, sκ, and the
map from

• the unique identifier of that stations’ main element to that main element, considered an
atomic,

8.2 A Domain Analysis & Description 161

• the unique identifier of that stations’ element supply to that element supply, here considered
an “atomic” (!), and

• the unique identifier of that stations’ robot aggregate to the unique identifier state expression
for that robot aggregate.

value
725. g uise(s) ≡
725. (sκ ,

725. [uid ME(me) 7→ me ,

725. uid ES(es) 7→ es ,
725. uid RA(ra) 7→ g uise(ra)])

725. where: sκ = core S(s) ∧ me = obs ME(s) ∧ es = obs ES(s) ∧ ra = obs RA(s)

[696 on page 147] ME, Main Elements

Item 725 above expresses that g uise(me) = me.

[697 on page 147] RA, Robot Aggregates

726. The unique identifier state expression for robot aggregates, ra, is a pair of the robot aggregate
core, raκ, and the singleton map from unique identifier of the robot aggregate to the unique
identifier state expression for the set of robots, rs, of that aggregate.

value
726. g uise(ra) ≡

726. (raκ ,
726. [uid Rs(rs) 7→ g uise(rs)])

726. where: rs = obs Rs(ra)

[698 on page 147] Rs=R-set, Robot Sets

727. The unique identifier state expression for robot sets, rs, is a pair of the robot set core and the
map from the unique identifiers of the robots of the set to these robots.

value
727. g uise(rs) ≡
727. (rsκ ,

727. [uid R(r) 7→ r | r:R • r ∈ rs])

[699 on page 147] R, Robots

Item 727 expresses that g uise(r) = r.

[700 on page 148] ES, Element Supplies

Item 725 on the facing page above expresses that g uise(es) = es.

[701 on page 148] Es=E-set, Element Supply Sets

Item 725 on the facing page hence expresses that g uise(ess) = ess.

[702 on page 148] E, Elements

Item 725 on the facing page hence expresses that g uise(e) = e.

162 8 Automobile Assembly Lines [September 2021]

8.2.2.2.2 Mereology

Observation of endurant parts does not itself leave any trace as to their taxonomy, nor does the
identification of observed parts.

Mereology is what brings forth the taxonomy structures that is rendered, one way or another,
in all the figures shown so far !

We shall show that many of the concerns of [70] have their “root” in mereology-properties of the
domain; and we shall show that the topological aspects of the mereology “supports” Microsoft’s
Automated Graph Layout Tool [125].

We express the mereology properties as relations between the mereology of the endurant being
inquired, some or all elements of the mereology of the “ancestor” endurant, and some or all
elements of the mereology of the “descendant” endurant(s).

Common to all mereo P observers we “retrieve” the “predecessor” part, from the overall
endurant state, and observe its mereology, while also “retrieving” the “descendant” parts, also
from the overall endurant state, given their identifiers from the mereology of the part under
observation, and then correlate them.

We then end up with a a set of mereology types, a set of corresponding mereology observer
signatures [not definitions], and a set of corresponding axioms. For any given domain the mere-
ology expresses some property that holds and that property transpires as the fix-point solution to
the mutually [but not recursively] – sort-of simultaneous[ly] – expressed axioms [in the form of
equations].

The overall property of the mereologies presented here is to secure that no two parts have
identical mereologies.

That should be a provable property of what is presented below.

• The following numbered paragraphs start with the ιtem number of the endurant, whose name

is given next. The item numbers are formally defined on page 148.

8.2.2.2.2.1 ι 687. AP: Assembly Plant:

728. The mereology of an assembly plant is

• the unique identifier of its assembly line aggregate – such that
a. the successor part’s mereology identifies the assembly plant.

type
728. AP Mer = ALAI

value
728. mereo AP: AP→ AP Mer

axiom
728. let alai = mereo AP(ap) in
728a.let (api,) = mereo ALA(retr ALA(alai)) in retr AP(api) = ap end end

8.2.2.2.2.2 ι 688. ALA: Assembly Line Aggregate:

729. The mereology of an assembly line aggregate is a pair

• of the unique identifier of the main assembly line
• and the unique identifier of the supply assembly line aggregate – such that

a. the [assembly plant’s, i.e., the] predecessor’s successor is that assembly line aggregate and
b. the two successors’ ancestor are likewise.

8.2 A Domain Analysis & Description 163

type
729. ALA Mer = API × (MALI×SALAI)

value
729. mereo ALA: ALA→ ALA Mer

axiom
729. let (api,(mali,salai)) = mereo ALA(ala) in
729a. let alai = mereo AP(retr AP(api)),

729b. (alai′,) = mereo MAL(retr MAL(mali)),
729b. (alai′′,) = mereo SALA(retr SALA(salai)) in
729a. alai = uid ALA(ala) ∧

729b. alai = alai′ = alai′′ end end

8.2.2.2.2.3 ι 689. MAL: Main Assembly Line:

730. The mereology of a main assembly line aggregate is

• the pair of the unique identifier of an assembly line aggregate and
• the unique identifier of a station aggregate – such that

a. the main assembly line’s unique identifier is the same as the [assembly line aggregate]
ancestor’s successor and

b. [station aggregate] successor’s ancestor.

type
730. MAL Mer = ALAI × SAI

value
730. mereo MAL: MAL→ MAL Mer
axiom
730. let (alai,sai) = mereo MAL(mal), mali = uid MAL(mal) in
730a. let (,(mali′,)) = mereo ALA(retr ALA(alai′)),

730b. (mali′′,) = mereo SA(retr SA(sai)) in
730a. mali = mali′ ∧
730b. mali = mali′′ end end

8.2.2.2.2.4 ι 690. SALA: Supply Assembly Line Aggregate:

731. The mereology of a supply assembly line aggregate is

• the unique identifier of an assembly line aggregate and
• a pair of the unique identifier of a supply assembly line set – such that

a. the [assembly line aggregate] predecessor’s successor and
b. the [supply line set] successor’s predecessor
supply line aggregate identifiers are the same.

type
731. SALA Mer = ALAI × SALsI

value
731. mereo SALA: SALA→ SALA Mer

axiom
731. let (alai,salsi) = mereo SALA(sala), salai=uid SALA(sala) in
731. let (,(,salai′)) = mereo ALA(retr ALA(alai)),

164 8 Automobile Assembly Lines [September 2021]

731. (salai′′,) = mereo SALs(retr SALs(salsi)) in
731a. salai = salai′ ∧

731b. salai = salai′ end end

8.2.2.2.2.5 ι 691. SALs=SAL-set: Simple Assembly Line Set:

732. The mereology of a set of simple assembly lines is a pair of

• the unique identifier of a supply assembly line aggregate and
• a set of the unique identifiers of station aggregates – such that

a. the [supply line aggregate] predecessor’s successor and
b. each individual simple assembly line’s predecessor
supply line set identifiers are the same.

type
732. SALs Mer = SALAI × SAI-set
value
732. mereo SALs: SALs→ SALAI × SAI-set
axiom
732. let (salai,sais) = mereo SALs(sals), salsi = uid SALs(sals) in
732. let (,salsi′) = mereo SALA(retr SALA(salai)) in
732a. salsi = salsi′ ∧

732b. ∀ sai:SAI•sai ∈ sais⇒ let (sals′′,) = mereo SA(retr SA(sai)) in salsi=sals′′ end
732. end end

8.2.2.2.2.6 ι 692. SAL: Simple Assembly Lines:

733. The mereology of a simple assembly line is a pair of

• the unique identifier of a [predecessor] supply assembly line set and
• the unique identifier of a [successor] station assembly – such that

a. the [supply assembly line set] predecessor’s and
b. the [station assembly] successor’s
simple assembly line identifiers are the same and that of the simple assembly line being
observed.

type
733. SAL Mer= SALsI × SAI
value
733. mereo SAL: SAL→ SAL Mer

axiom
733. let (salsi,sai) = mereo SAL(sal), sali = uid SAL(sal) in
733. let (,sali′) = mereo SALs(retr SALs(salsi)), (sali′i,) = mereo SA(retr SA(sai)) in
733a. sali = sali′ ∧

733b. sali = sali′′

733. end end

8.2 A Domain Analysis & Description 165

8.2.2.2.2.7 ι 693. SA: Station Aggregate:

734. The mereology of a station aggregate is a pair of

• the unique identifier of the [simple assembly line] predecessor and
• the unique identifier of the [station set] successor – such that

a. their station aggregate (successor), respectively (predecessor) station aggregate identifiers
are the same as that of the station aggregate being observed.

type
734. SA Mer = SALI × SsI
value
734. mereo SA: SA→ SA Mer
axiom
734. let (sali,ssi) = mereo SA(sa), sai = uid SA(sa) in
734. let (,sai′) = mereo SAL(retr SAL(sali)), (sai′′,) = mereo Ss(retr Ss(ssi)) in
734a. sai = sai′ = sai′′ end end

8.2.2.2.2.8 ι 694. Ss = S-set: Station Sets:

735. The mereology of a station set is a pair of

• the unique identifier of a [predecessor] station aggregate and
• a set of unique identifiers of [successor] stations – such that

a. that station aggregate’s successor and
b. that each successor station’s predecessor
unique identifiers are the same as that of the observed station set.

type
735. Ss Mer = SAI × SI-set
value
735. mereo Ss: Ss→ Ss Mer

axiom
735. let (sai,sis) = mereo Ss(ss), ssi = uid Ss(ss) in
735a. let (,ssi′) = mereo (retr SA(sai)) in ssi = ssi′ end
735b. ∀ si:SI • si ∈ ssi • let (ssi′′,) = mereo S(retr S(si)) in ssi = ssi′′ end end

8.2.2.2.2.9 ι 695. S: Station:

For all but stations the mereologies of solid endurants have modeled the part-hood relation “part
of” (in the sense of “sub-part of”). All taxonomy figures47 show this “sub-part” relation by means
of the lines connection the •s. Figure 8.5 on page 146 show two additional [topological] part-
hood relations: “adjacent to” and “incident upon”. Two stations of a simple assembly line may be
adjacent to one another. The last station of a supply assembly line is incident upon a station of a
main assembly line. The first station of any assembly line has no predecessor. The last station of a
main assembly line has no successor.

736. Thus the mereology of a station, s identified by si, is a pair of,

47 Figs. 8.6 on page 147, 8.7 on page 148, 8.8 on page 150, 8.9 on page 153 and 8.10 on page 158

166 8 Automobile Assembly Lines [September 2021]

a. first a pair, modeling “part of” :
i. the unique identifier of a station set, ssi, the predecessor of s,

ii. the unique identifiers of a triplet [(mei,esi,rai)] of successors of s:
1. a main element mei,
2. an element supply, esi, and
3. a robot aggregate rai,

and
b. then a pair, (nsi,psi), modeling, nsi “[next] adjacent to”, and, psi “[previous] incident upon”

such that,
i. for the first of the pair, i.e., nsi, is

1. either ”nil” for the “last” station, the outlet, of a main line,
2. or is the next station of a main or supply line,
3. or, for s being the “downstream last” of a supply line station, identifies a mainline

station.
ii. for the second of the pair, psi is [again] a pair: (plsi, lslsi)), where

1. plsi is the station identifier of a station of the line to which s belongs, where
• plsi is ”nil”, if s is the “first, upstream”, station of its line, or
• plsi properly identifies an “upstream” immediately previous station,

and where lslsi is
2. either ”nil”, ie., station s is not one incident upon by a supply assembly line,
3. or is the proper identifier of a supply assembly line’s “downstream, last” station such

that
• no two main line stations have the same supply assembly line incident upon them,

and
• where the number of supply assembly lines exactly equal the number of main line

stations that have supply assembly lined incident upon them.

All of the above must satisfy the following invariants:

c. the unique identifier, si, of s, is in the the set of unique station identifiers of the predecessor,

and such that the unique identifiers of

d. the main element’s,
e. the element supply’s, and
f. the robot aggregate’s

predecessors are all the same as that of the station under observation – and such that

g. the stations, ss, of the ancestor station set do indeed form a linear sequence;
h. si′ and si′′ [in (si′,si′′)] are indeed station identifiers of that sequence – or one is that of the

next-but-last station of a supply assembly line and the other is that of a station of a main
assembly line;

i. si′ [in ("nil",si′)] is indeed a station identifier of that sequence; and
j. si′ [in (si′,"nil")] is indeed a station identifier of that sequence.

We model the notion of linear sequences [here of stations].

k. Let ls:LS=S∗ stand for a linear sequence of two or more stations S.
l. Let ss stand for a set of two or more stations, i.e., ss∈Ss=S-set.

m. Then let linear Ss be the function which “converts” ss to ls.48

48 It is not a matter of whether or not an ss∈Ss=S-set may form a linear sequence. They simply do ! An assembly
plant’s assembly lines simply are linear ! Constellations of stations not forming linear sequences do not contribute
to a proper assembly plant !

8.2 A Domain Analysis & Description 167

type
736. S Mer = (SsI × (MEI × ESI × RAI)) × ((opt SI×opt SI)×opt SI)

736. opt SI = ({|
′′
nil

′′
|} | SI)

value
736. S Mer: S→ S Mer

axiom
736. let ((ssi,(mei,esi,rai)),((si b,si a),si sl)) = S Mer(s), si = uid S(s) in
736. let (,sis) = mereo Ss(retr Ss(ssi)), (si′,) = mereo ME(retr ME(mei)),

736. (si′′,) = mereo ES(retr ES(esi)), (si′′′,) = mereo RA(retr RA(rai)) in
736(b)ii. si ∈ sis ∧
736d. si = si′ ∧

736e. si = si′′ ∧
736f. si = si′′′ end end

736(a)i. ∀ s:S • let (,(b si,a si)) = S Mer(s) in
736(a)i. b si,

′′
nil

′′
∧a si,

′′
nil

′′
∨

736(a)i. b si=
′′
nil

′′
∧a si,

′′
nil

′′
∨

736(a)i. b si,
′′
nil

′′
∧a si=

′′
nil

′′
end

736(a)ii.

736(a)ii1.
736(a)ii2.

736(a)ii3.

736(b)i.
736(b)i1.

736(b)i2.

736(b)i3.
736(b)ii.

736(b)ii1.
736(b)ii2.

type
736k. LS = S∗

axiom
736k. ∀ ls:LS • len ls > 1

736k. is linear: LS→ Bool
736k. is linear(ls) ≡

736k. ∧ let (,(null,)) = mereo S(ls[1]) in null =
′′
nil

′′
end

736k. ∧ ∀ i:Nat • {i,i+1}⊆inds ls⇒

736k. let (,(,si a)) = S Mer(ls[i]),
736k. (,(si b,)) = S Mer(ls[i+1]) in si a = uid S(ls[i]) = si b end
736k. ∧ let (,(,s uid)) = mereo S(ls[len ls]) in
736k. ∧ (s uid =

′′
nil

′′
∨ is MAL S(retr S(s uid))) end

value
736k. is MAL S: S→ Bool
736k. is MAL S(s) ≡

736k. let ((ssi,),) = mereo S(s) in
736k. let (sai,) = mereo Ss(retr Ss(ssi)) in
736k. let ali = mereo SA(retr SA(ssi)) in

168 8 Automobile Assembly Lines [September 2021]

736k. is MALI(ali) end end end

736l. ss:Ss, axiom card ss > 1
736g. linear Ss: S-set→ S∗

736g. linear Ss(ss) ≡
736g. let ls:LS • elems ls = ss ∧

736g. ∀ i:Nat • {i,i+1}⊆inds ls⇒

736g. let (,(,a si)) = mereo S(ls[i])
736g. let (,(b si,)) = mereo S(ls[i+1]) in
736g. a si = b si end
736g. ls end end

8.2.2.2.2.10 ι 696. ME: Main Elements:

737. The mereology of a main element is a singleton

• of the unique identifier of its predecessor station – such that
a. that station identifies that main element.

type
737. ME Mer = SI

value
737. mereo ME: ME→ ME Mer
axiom
737a. let si = mereo ME(me), mei = uid ME(me) in
737a. let (,(mei′, ,)) = mereo S(retr S(si)) in
737a. mei = mei′ end end

8.2.2.2.2.11 ι 697. RA: Robot Aggregate:

738. The mereology of a robot aggregate is

• a pair of the unique identifier of a station (the predecessor) and
• a unique identifier of a robot set (the successors) – such that

a. the station predecessor identifies the robot aggregate, and
b. the identified robot set identifies the same robot aggregate.

type
738. RA Mer = SI × RsI

value
738. mereo RA: RA→ RA Mer
axiom
738. let (si,rsi) = mereo RA(ra), rai = uid RA(ra) in
738. let (,(rai′, ,),) = mereo S(retr S(si)),

738. (rai′′,) = mereo Rs(retr Rs(rsi)) in
738a. rai = rai′ ∧
738b. rai = rai′′ end end

8.2 A Domain Analysis & Description 169

8.2.2.2.2.12 ι 698. Rs=R-set: Robot Set:

739. The mereology of a robot set is a pair of

• the unique identifier of a robot aggregate and
• a set of unique identifiers of robots – such that

a. the identified robot aggregate identifies the robot set, and
b. all the identified robots also identifies that robot set.

type
739. Rs Mer = RAI × RI-set
value
739. mereo Rs: Rs→ Rs Mer

axiom
739. let (rai,ris) = mereo Rs(rs), rsi = uid Rs(rs) in
739a. let (,rsi′) = mereo RA(retr RA(rai)) in rsi = rsi′ end
739a. ∀ ri:RI • ri ∈ ris⇒ let rsi′′ = mereo R(retr R(ri)) in rsi = rsi′′ end end

8.2.2.2.2.13 ι 699. R: Robot:

740. The mereology of a robot is

• a singleton of the unique identifier of a robot set – such that.
a. that robot set identifies the robot.

type
740. R Mer = RsI

value
740. mereo Rs: Rs→ Rs Mer
axiom
740. let rsi = mereo R(r), ri = uid R(r) in
740a. let (,ris) = mereo Rs(retr Rs(rsi)) in ri ∈ ris end end

8.2.2.2.2.14 ι 700. ES: Element Supply:

741. The mereology of an element supply is a pair of

• the unique identifier of a station and
• the unique identifier of an element supply set – such that

a. the identified station identifies the element supply, and
b. the identified element supply set identifies the element supply.

type
741. ES Mer = SI × EsI

value
741. mereo ES: ES→ ES Mer
axiom
741. let (si,esi) = mereo ES(es), esi = uid ES(es) in
741. let ((,(,esi′,)),) = mereo ES(retr ES(esi)), esi′′ = uid ES(es) in
741a. esi = esi′ ∧

741b. esi = esi′′ end end

170 8 Automobile Assembly Lines [September 2021]

8.2.2.2.2.15 ι 701. Es=E-set: Element Supply Set:

742. The mereology of an element supply set is a pair of

• the unique identifier of an element supply aggregate and
• a set of unique identifiers of elements – such that

a. the identified element supply aggregate identifies the element supply set and
b. the all the element identifiers identifies the element supply set.

type
742. Es Mer = ESI × EI-set
value
742. mereo Es: Es→ Es Mer
axiom
742. let (esi,eis) = mereo Es(es), es i = uid Es(es) in
742a. let (,es j) = mereo Es(retr Es(esi)) in es i = es j end ∧
742b. ∀ ei:EI•ei ∈ eis⇒ let es k = mereo E(retr E(ei)) in es i = es k end end

8.2.2.2.2.16 ι 702. E: Elements:

743. The mereology of an element is

• a singleton of the unique identifier of an element supply set – such that
a. this identifier identifies the element’s supply set.

type
743. E Mer = EsI

value
743. mereo E: E→ ES Mer

axiom
743. let esi = mereo E(e), eis = uid E(e) in
743a. let (,eis′) = mereo Es(retr Es(esi)) in eis = eis′ end end

Comments on the Mereology Presentation

It is all very tedious: Mereology after mereology – of each and all of the solid endurants. Their
narratives and formalisations, expression-wise, all follow the same “pattern”, and the “contents”
follow, almost mechanical, from the taxonomy figures49 and, wrt. stations, from Figs. 8.5 on
page 146 and 8.7 on page 148.

I have not followed a strict narrative for the 16 mereology presentations, and even the formulas
differ slightly. Once I get time I will probably device a LATEX macro so as to generate consistent
narratives.

Distances of Stations from Outlet

Paths:

We shall examine an ordering, �, on stations. To this end we introduce the notion of paths. A path
is a sequence of station identifiers such that

744. A path is a non-empty sequence of station identifiers such that
745. the first identifier is that of the first station of a main assembly line,

49 Figs. 8.6 on page 147, 8.7 on page 148, 8.8 on page 150, 8.9 on page 153 and 8.10 on page 158

8.2 A Domain Analysis & Description 171

746. and such that
747. adjacent identifiers of a path are those of neighbouring stations,

a. whether of the same assembly line,
b. or of

i. the first station of a supply assembly line
ii. and of the station of the main assembly line onto which supply assembly line is joined.

type
744. Path = SI∗

axiom [paths of an assembly plant]
744. ∀ p:Path • len p > 0 ∧

745. let 〈si〉̂ p′ = p, ss:Ss = obs Ss(obs SA(mal)) in
745. let s:S • s ∈ ss ∧ let (,(,nil))=mereo S(s) in nil=

′′
nil

′′
∧si=uid S(s) end end

746. ∧

747. ∀ i:Nat • {i,i+1}⊆inds p⇒

747. let (,(pi,)) = mereo S(retr S(i)), (,(,si)) = mereo S(retr S(i+1)) in
747a. (pi=p(i+1) ∧ si=p(i))

746. ∨

747(b)i. (

747(b)i. ∧

747(b)ii. ...)
744. end end

Set of all Paths:

From an assembly plant we can then generate the set of all paths.

748.
749.
750.
751.
752.
753.

748.

749.
750.

751.

752.
753.

Distance:

Given any station of an assembly plant we can then calculate its distance from the main line outlet.

754.
755.
756.
757.
758.
759.

754.
755.

756.

172 8 Automobile Assembly Lines [September 2021]

757.

758.

759.

The � Relation:

760. Given any two stations of an assembly plant we can then express which of the two “precedes”
the other wrt. distance from the main line outlet.

760.

8.2.2.2.3 Attributes

General

The real action of an assembly line is focused in the stations. The robots apply elements to the
contents of the main element. So, in treating now the attributes of assembly lines, we shall in this
early version of this project report, focus on the rôle of elements.

Elements and Parts

The term ‘part’ is a main term of the domain analysis & description method [55] that we use.
It is not to be confused with the same term, i.e., part, used, normally, in connection with machine
parts, part assembly, etc. The term Main Element is used to name the solid endurant of a station,
namely that which, so-to-speak, “holds” the main object of concern: the thing being assembled.
We shall think of main elements to be some form of manifest “carrier”. We shall then ascribe
such main elements an attribute, and here we shall switch to the use of the term part, namely a
main part. So element supplies, which we hitherto explained as containing elements for use in the
assembly of main parts, could, as well be called parts. Whereas solid endurants such as stations
and robot will, later, be “morphed”, i.e., transcendentally deduced, into behaviours, we shall not
morph main parts into behaviours – not as long, at least, as they stay within the assembly lines.
Once a main part has left a main assembly line, “from” its last station, then it may, in some other
domain model, attain “life” in the form of a behaviour.50

Relationship to [70]

We shall show that many of the concerns of [70] have their “root” in attribute-properties of the
domain.

Specifics

8.2.2.2.3.1 ι 687. AP: Assembly Plant:

We omit treatment of assembly plant attributes.

8.2.2.2.3.2 ι 688. ALA: Assembly Line Aggregate:

We presently omit treatment of assembly line aggregate attributes.

50 The main parts leaving the main assembly line of an automobile factory, in an orderly fashion, may then, as an
automobile, be able to leave by its own means !

8.2 A Domain Analysis & Description 173

8.2.2.2.3.3 ι 689. MAL: Main Assembly Line:

With every supply assembly line we associate the attributes

761. that it is a main assembly line, and that
762. the main elements of its stations contain parts of a specific (to be finalised) element type.

type
761. AL Typ =

′′
Main

′′

762. ME Typ = E Typ

value
761. attr AL Typ: MAL→ AL Typ

762. attr ME Typ: MAL→ ME Typ

8.2.2.2.3.4 ι 690. SALA: Supply Assembly Line Aggregate:

We presently omit treatment of supply assembly line aggregate attributes.

8.2.2.2.3.5 ι 691. SALs: Supply Assembly Line Set:

We presently omit treatment of supply assembly line set attributes.

8.2.2.2.3.6 ι 692. SAL: Supply Assembly Lines:

With every supply assembly line we associate the attributes that

763. it is a supply assembly line51,
764. the main elements of its stations contain parts of a specific (to be finalised) element type,
765. it “feeds” into an identified main line station, and that
766. it is either “feeding” into the main line at the ”left” or at the ”right” !

type
763. AL Typ =

′′
Supply

′′

764. ME Typ = E Typ
766. Feed ==

′′
Left

′′
|
′′
Right

′′

value
763. attr AL Typ: SAL→ AL Typ
764. attr ME Typ: SAL→ ME Typ

765. attr MAL S: SAL→ SI

766. attr Feed: SAL→ Feed

8.2.2.2.3.7 ι 693. SA: Station Aggregate:

We presently omit treatment of station aggregate attributes.

51 – where main assembly lines are ”Main” !

174 8 Automobile Assembly Lines [September 2021]

8.2.2.2.3.8 ι 694. Ss=S-set: Station Set:

We presently omit treatment of station set attributes.

8.2.2.2.3.9 ι 695. S: Station:

We first discuss some of the rôles played by the robots, main element part and element supply of
a station.

• Robots of a station are capable, at any one time of performing one of a set of one or more
operations. Robots and their operations have names, RNm respectively OpNm.
So we can attribute a station with

type
767. CAP = RNm →m OpNm-set

We allow two or more robots of any one station to “feature” the same, named operation !
• Operations, OP, are functions from a main element part and

⋄⋄ either a single part provided by a supply line, if the operation is performed at a main line
station, and
◦◦ either
◦◦ or a set of elements provided by that stations element supply

⋄⋄ to an updated main element part.

type
768. OP = ME Part × (ME Part|E-set)→ ME Part

• So a Station can be given the following attribute:

type
768. OPS = OpNm →m OP

Two or more differently named operations may, in fact, designate identical operations !
• Operations have types:

type
OpTyp = ME Part Typ × (ME Part Typ | E Typ∗) × ME Part Typ

So we assume that there are (meta-) functions like:

value
type of: E→ E−Typ, ME Part→ ME Part Typ, is of type: E×E Typ→ Bool, etc.

We now “return” to our attribute “ascription story” proper !

With a station we can associate the following attributes:

767. The named operations that can be performed by it robots;
768. the catalogue of these operations;
769. the area of the assembly floor covered by the station;
770. the identified zones (sub-areas) into which the station is divided;

8.2 A Domain Analysis & Description 175

type
767. RNm, OpNm

767. CAP = RNm →m OpNm-set
768. OPS = OpNm →m OP

768. OP = ME Part × (ME Part|E-set)→ ME Part
769. Sta Area = AREA

770. Zones = ZId →m Zone

770. Zone = Zone Area
770. Zone Area = AREA

value
767. attr CAP: S→ CAP
768. attr OPS: S→ OPS

769. attr StaArea: S→ StaArea
770. attr Zones: S→ Zones

axiom
770. [∪ of zone areas ≡ station area]

8.2.2.2.3.10 ι 696. ME: Main Element:

With main elements we associate the following programmable attribute:

771. the main part, mp:ME Part and
772. the types of the main part before, during and after robot operations, i.e., as it enters the station,

during its stay at the station, and as it leaves the station.

type
771. ME Part

772. ME Part Types = E Typ∗

value
771. attr Part: ME→ ME Part

772. attr ME Part Types ME→ ME Part Types

Caveat: The above type model is a bit simplified ! Shall/must be reviewed !

8.2.2.2.3.11 ι 697. RA: Robot Aggregate:

Caveat: It seems that either stations or robot aggregates must have some form of awareness,
expressed in the form of an attribute, of the tasks to be collectively, co-operatively performed by
the ensemble of robots. I am currently contemplating such a model !

8.2.2.2.3.12 ι 698. Rs=R-set: Robot Set:

We presently omit treatment of robot set attributes.

8.2.2.2.3.13 ι 699. R: Robot:

With a robot we can associate the following attributes:

773. the zone to which it is allocated;

176 8 Automobile Assembly Lines [September 2021]

774. the operations it can perform and their type;
775. where we leave unspecified these element (i.e., part) types.
776. ...

type
773. R Zone = Zone

774. R Ops = OpNm →m OpTyp
774. OpTyp = ME Part Typ × (ME Part Typ|E Typ∗) × ME Part Typ

775. ME Part Typ, E Typ

776. ...
value
773. attr RZone: R→ RZone

774. attr ROps: R→ ROps
775. ...
776. ...

8.2.2.2.3.14 ι 700. ES: Element Supply:

An element supply can be characterised by

777. a catalogue of element “quantities on hand” and their type.

type
777. ES QoH Typ = E Typ × Nat
value
777. attr ES QoH Typ: ES→ ES QoH Typ

8.2.2.2.3.15 ι 701. Es=E-set: Element Supply Set:

We presently omit treatment of element set attributes.

8.2.2.2.3.16 ι 702. E: Elements:

An element (i.e., a part) can be characterised by

778. its type

type
778. E Typ
value
778. attr E Typ: E→ E Typ

8.2.2.3 Comments wrt. [70]

We shall now relate the various segments of our model to [70].

to be written

8.2 A Domain Analysis & Description 177

8.2.3 Perdurants

8.2.3.1 From Parts to Behaviours

We refer the reader to Figs. 8.5 on page 146 and 8.8 on page 150 – summarised in Fig. 8.12.

An Assembly Plant with three Supply Assembly Lines and a total of 29 Stations

Supply Assembly Line (b)

Assembly Line (a)
Supply

Supply Assembly Line (c)

Main Assembly Line

Flow:
Main Element

Element
Supply

Robot

Robot

Robot

Robot Aggr.

a Station enlarged

Station
S

MAL

S S

. . .

SA

ALA

SAL

S

. . .SAL SAL

ME ES

. . .

. . .

RA

R R REEE

SALs =

Ss = S−set

Es = Rs =E−set

SAL−set

SALA

R−set

SA

Repeat

ι6

ι3

ι2

ι9

E | "nil"

ι7

ι5

ι4

AP ι1

ι7

ι8

ι10 ι14

ι15 ι12

ι13

ι11

Fig. 8.12

• By transcendental deduction, see [55, Chapter 5], we “morph” core parts, pκ, i.e., including
atomic parts, into behaviours βp.

• Behaviour βap coordinates behaviour βala with the rest of the manufacturing plant – remember:
the assembly line complex is only one among several factory elements.

• Behaviour βala coordinates the main assembly line behaviours with that of the behaviour of the
supply assembly lines aggregate.

• Behaviour βmal coordinates the main assembly line’s stations.
• Behaviour βsala coordinates the total of all supply lines.
• Behaviours βsal coordinates the specific supply assembly line’s stations.
• Behaviour βsa coordinates the interaction between the stations of an assembly line.
• Behaviour βs coordinates the specific station’s elements (main element, robots and element

supply) as well as that station’s interaction with neighbouring stations.
• Behaviour βme participates in the main elements interaction with its station’s robots.
• Behaviour βes responds to its station’s robots’ requests for supply elements.
• Behaviour βra coordinates the specific station’s robots.

178 8 Automobile Assembly Lines [September 2021]

• Behaviours βr interacts with its station’s main element, its other robots, and its element supply.
• Behaviours βe – is presently left unspecified.

8.2.3.2 Channels

8.2.3.3 Actors

8.2.3.3.1 Actions and Events

8.2.3.3.2 Behaviours

8.2.3.4 System Initialisation

8.3 Discussion

We shall relate the model of Sect. 8.2 to [70]. To us [70] both describes and prescribes: describes
some aspects of the problem domain and prescribes some requirements.

to be written

8.4 Conclusion

We shall discuss whether the kind of work reported in [70] could be supported, made easier, made
more complete, given that their domain is first properly described.

8.4.1 Models and Axioms

to be written

8.4.2 Learning Forwards, Practicing In Reverse

The Danish philosopher Søren Kierkegaard (1813–1855) is quoted as saying

Life can only be understood backwards; but it must be lived forwards.

Now, why do we bringing that quote here ? ! We do so for the following, slightly, if not radically
less “lofty” reason: We learn forward, bit-by-bit, not seeing the overall picture before at the end.
Then, when we shall practice what we have been taught, what we have learnt, we apply that
knowledge, so-to-speak, backwards, knowing where what we shall end up with from the start of
that “doing it”.

When You study [55] You learn the subject forward. But having hopefully understood the
domain modeling discipline, You You practice it “sort-of” in reverse.

My reason for bring the Søren Kierkegaard quote is to make You remember “that” !

8.4 Conclusion 179

8.4.3 Diagrammatic Reasoning

One, of many, observations of this report, are the examples of what I shall refer to as diagrammatic
reasoning52.

One way in which this is manifested, in this compendium is in Figs. 8.5 on page 146, 8.6 on
page 147, 8.7 on page 148, 8.8 on page 150, 8.9 on page 153 and 8.10 on page 158. You may
think that the number of these figures is a bit high. Very well, but they helped this “seasoned
domain engineer” to come to grips with the seeming complexities of the domain being modeled.
The internal relationships between these figures is obvious, “when You look at them !”, and their
“external” relations to the narration & formalisation items should also be “obvious” !

8.4.4 The Management of Domain Modeling

A Domain Modeling Development Plan

We outline a plan for the commercial/professional development of a domain model for a “real”
[say automobile] assembly plant:

• Study:

⋄⋄ A domain is suggested.
⋄⋄ One or two seasoned domain engineers cum scientists , the initiation team, make inquiries

about the domain:
◦◦ Visit one or more such domain sites.
◦◦ Search the Internet for reliable accounts on the domain.
◦◦ Read technical/scientific papers about the domain.

⋄⋄ At some point the initiation team decides to do one or more experimental domain modeling
efforts.

• Experiment:

⋄⋄ They follow the dogma of [55] – “strictly”.
⋄⋄ (This report is an example of such an experimental research and engineering development.)
⋄⋄ They may waver along different paths, maybe abandon/abort certain modeling directions,

eventually reaching some, usually, incomplete domain analysis & description documenta-
tion.

⋄⋄ They may decide to do another, and, perhaps, subsequently yet another experimental
research and engineering development.

⋄⋄ Eventually they either abandon the attempt to go after a fully complete, professional
domain model, or they conclude that a satisfactory, complete modeling project is

professionally and commercial viable.

• Apply:

⋄⋄ The first step in a professional and commercial domain modeling project is that of creating
a staff plan:
◦◦ An outcome of a final domain modeling experiment is that the main taxonomy of the

domain has been settled upon.

52

• Gerard Allwein and Jon Barwise (ed.) (1996).
Logical Reasoning with Diagrams. Oxford University Press.

• https://en.wikipedia.org/wiki/Diagrammatic reasoning.

180 8 Automobile Assembly Lines [September 2021]

◦◦ For each of the main categories of endurants one or two domain engineers [cum scien-
tists] are then to be allocated to the project.

◦◦ A development graph53 is developed.
◦◦ A budget is established.
◦◦ Negotiations with customer finally establish the financial foundation for the project54.

⋄⋄ The commercial development project starts.
⋄⋄ First the endurant aspects are modeled – with
◦◦ external qualities being first modeled [55, Chapter 4], then with
◦◦ internal qualities:
∗ unique identification [55, Sect. 5.2],
∗ mereologies [55, Sect. 5.3], and
∗ attributes [55, Sect. 5.4] – including notably intentional pull – which has not been

illustrated in this report [55, Sect. 5.5].
⋄⋄ Then perdurants:
◦◦ states [55, Sect. 7.2],
◦◦ channels [55, Sect. 7.5],
◦◦ actor, i.e., action, event and behaviour, signatures [55, Sect. 7.6],
◦◦ their definitions [55, Sect. 7.7], and
◦◦ system initialisation [55, Sect. 7.8].

⋄⋄ Etcetera !
⋄⋄ Each project member either “sticks” to the initially assigned endurant (hence perdurant)

area throughout the project, or members have their subject areas “rotated”.

Special circumstances may mandate variations to the above development plan.

For a reasonably “complete”, i.e., covering essential aspects of, say an automobile manufacturing
plant’s assembly lines, it is roughly estimated that a group of well-educated domain engineers
cum scientists would number 8–10, and that it would take 18–24 months to do the “Apply” phase
of a domain modeling development project.

8.4.5 ... one more section ...

8.4.6 ... a last section (?) ...

8.4.7 Acknowledgments

to be written

53 For the notion of Development Graphs see [15, 16, 17].
54 One cannot assume that the customer explicitly funds the Study and Experiment phases of the project.

Chapter 9

Document Systems [Summer 2017]

I had, over the years, since mid 1990s, reflected upon the idea of “what is a document ?”. A most
recent version, as I saw it in 2017, was “documented” in Chapter 7 [58]. But, preparing for my
work, at TongJi University, Shanghai, September 2017, see Chapter 10, I reworked my earlier notes
[58] into what is now this chapter.

Contents
9.1 Introduction . 182
9.2 A System for Managing, Archiving and Handling Documents 182
9.3 Principal Endurants . 183
9.4 Unique Identifiers . 183
9.5 Documents: A First View . 184

9.5.1 Document Identifiers . 184
9.5.2 Document Descriptors . 184
9.5.3 Document Annotations . 185
9.5.4 Document Contents: Text/Graphics . 185
9.5.5 Document Histories . 185
9.5.6 A Summary of Document Attributes . 185

9.6 Behaviours: An Informal, First View . 186
9.7 Channels, A First View . 187
9.8 An Informal Graphical System Rendition . 188
9.9 Behaviour Signatures . 188
9.10 Time . 189

9.10.1 Time and Time Intervals: Types and Functions . 189
9.10.2 A Time Behaviour and a Time Channel . 190
9.10.3 An Informal RSL Construct . 190

9.11 Behaviour “States” . 190
9.12 Inter-Behaviour Messages . 191

9.12.1 Management Messages with Respect to the Archive . 191
9.12.2 Management Messages with Respect to Handlers . 192
9.12.3 Document Access Rights . 192
9.12.4 Archive Messages with Respect to Management . 193
9.12.5 Archive Message with Respect to Documents . 193
9.12.6 Handler Messages with Respect to Documents . 193
9.12.7 Handler Messages with Respect to Management . 194
9.12.8 A Summary of Behaviour Interactions . 194

9.13 A General Discussion of Handler and Document Interactions 194
9.14 Channels: A Final View . 195
9.15 An Informal Summary of Behaviours . 195

9.15.1 The Create Behaviour: Left Fig. 9.3 on page 196 . 195
9.15.2 The Edit Behaviour: Right Fig. 9.3 on page 196 . 195
9.15.3 The Read Behaviour: Left Fig. 9.4 on page 196 . 196
9.15.4 The Copy Behaviour: Right Fig. 9.4 on page 196 . 196
9.15.5 The Grant Behaviour: Left Fig. 9.5 on page 197 . 197
9.15.6 The Shred Behaviour: Right Fig. 9.5 on page 197 . 197

9.16 The Behaviour Actions . 198

181

182 9 Document Systems [Summer 2017]

9.16.1 Management Behaviour . 198
9.16.1.1 Management Create Behaviour: Left Fig. 9.3 on page 196 198
9.16.1.2 Management Copy Behaviour: Right Fig. 9.4 on page 196 199
9.16.1.3 Management Grant Behaviour: Left Fig. 9.5 on page 197 200
9.16.1.4 Management Shared Behaviour: Right Fig. 9.5 on page 197 . . . 201

9.16.2 Archive Behaviour . 201
9.16.2.1 The Archive Create Behaviour: Left Fig. 9.3 on page 196 201
9.16.2.2 The Archive Copy Behaviour: Right Fig. 9.4 on page 196 202
9.16.2.3 The Archive Shred Behaviour: Right Fig. 9.5 on page 197 202

9.16.3 Handler Behaviours . 203
9.16.3.1 The Handler Create Behaviour: Left Fig. 9.3 on page 196 203
9.16.3.2 The Handler Edit Behaviour: Right Fig. 9.3 on page 196 203
9.16.3.3 The Handler Read Behaviour: Left Fig. 9.4 on page 196 204
9.16.3.4 The Handler Copy Behaviour: Right Fig. 9.4 on page 196 204
9.16.3.5 The Handler Grant Behaviour: Left Fig. 9.5 on page 197 205

9.16.4 Document Behaviours . 205
9.16.4.1 The Document Edit Behaviour: Right Fig. 9.3 on page 196 205
9.16.4.2 The Document Read Behaviour: Left Fig. 9.4 on page 196 206
9.16.4.3 The Document Shred Behaviour: Right Fig. 9.5 on page 197 . . 206

9.16.5 Conclusion . 207
9.17 Documents in Public Government . 207
9.18 Documents in Urban Planning . 207

We domain analyse and suggest a description of a domain of documents. We emphasize that
the model is one of several possible. Common to these models is that we model “all” we can say
about documents – irrespective of whether it can also be “implemented” ! The model(s) are not
requirements prescriptions – but we can develop such from our domain description.

You may find that the model is overly detailed with respect to a number of “operations” and
properties of documents. We find that these operations must be part of the very basis of a document
domain in order to cope with documents such as they occur in, for example, public government,
see Appendix sect. 9.17, or in urban planning, see Appendix Sect. 9.18.

9.1 Introduction

We analyse a notion of documents. Documents such as they occur in daily life. What can we say
about documents – regardless of whether we can actually provide compelling evidence for what
we say ! That is: we model documents, not as electronic entities — which they are becoming, more-
and-more, but as if they were manifest entities. When we, for example, say that “this document
was recently edited by such-and-such and the changes of that editing with respect to the text
before is such-and-such”, then we can, of course, always claim so, even if it may be difficult or
even impossible to verify the claim. It is a fact, although maybe not demonstrably so, that there
was a version of any document before an edit of that document. It is a fact that some handler did
the editing. It is a fact that the editing took place at (or in) exactly such-and-such a time (interval),
etc. We model such facts.

This research note unravels its analysis &55 description in stages.

9.2 A System for Managing, Archiving and Handling Documents

The title of this section: A System for Managing, Archiving and Handling Documents immedi-
ately reveals the major concepts: That we are dealing with a system that manages, archives and

55 We use the logo gram & between two terms, A & B, when we mean to express one meaning.

9.4 Unique Identifiers 183

handles documents. So what do we mean by managing, archiving and handling documents, and
by documents ? We give an ultra short survey. The survey relies on your prior knowledge of what
you think documents are ! Management decides56 to direct handlers to work on documents. Man-
agement first directs the document archive to create documents. The document archive creates
documents, as requested by management, and informs management of the unique document
identifiers (by means of which handlers can handle these documents). Management then grants
its designated handler(s) access rights to documents, these access rights enable handlers to edit,
read and copy documents. The handlers’ editing and reading of documents is accomplished by
the handlers “working directly” with the documents (i.e., synchronising and communicating with
document behaviours). The handlers’ copying of documents is accomplished by the handlers
requesting management, in collaboration with the archive behaviour, to do so.

9.3 Principal Endurants

By an endurant we shall understand “an entity that can be observed or conceived and described
as a ”complete thing” at no matter which given snapshot of time.” Were we to ”freeze” time we
would still be able to observe the entire endurant. This characterisation of what we mean by an
‘endurant’ is from [48, Manifest Domains: Analysis & Description]. We begin by identifying the
principal endurants.

779. From document handling systems one can observe aggregates of handlers and documents.
We shall refer to ‘aggregates of handlers’ by M, for management, and to ‘aggregates of docu-
ments’ by A, for archive.

780. From aggregates of handlers (i.e., M) we can observe sets of handlers (i.e., H).
781. From aggregates of documents (i.e., A) we can observe sets of documents (i.e., D).

type
779 S, M, A
value
779 obs M: S→ M

779 obs A: S→ A
type
780 H, Hs = H-set
781 D, Ds = D-set
value
780 obs Hs: M→ Hs
781 obs Ds: A→ Ds

9.4 Unique Identifiers

The notion of unique identifiers is treated, at length, in [48, Manifest Domains: Analysis & De-
scription].

782. We associate unique identifiers with aggregate, handler and document endurants.
783. These can be observed from respective parts57.

56 How these decisions come about is not shown in this research note – as it has nothing to do with the essence of
document handling, but, perhaps, with ‘management’.
57 [48, Manifest Domains: Analysis & Description] explains how ‘parts’ are the discrete endurants with which we
associate the full complement of properties: unique identifiers, mereology and attributes.

184 9 Document Systems [Summer 2017]

type
782 MI58, AI59, HI, DI

value
783 uid MI60: M→ MI

783 uid AI61: A→ AI

783 uid HI: H→ HI

783 uid DI: D→ DI

As reasoned in [48, Manifest Domains: Analysis & Description], the unique identifiers of endurant
parts are indeed unique: No two parts, whether composite, as are the aggregates, or atomic, as are
handlers and documents, can have the same unique identifiers.

9.5 Documents: A First View

A document is a written, drawn, presented, or memorialized representation of thought. The word
originates from the Latin documentum, which denotes a “teaching” or “lesson”.62 We shall, for
this research note, take a document in its written and/or drawn form. In this section we shall
survey the concept a documents.

9.5.1 Document Identifiers

Documents have unique identifiers. If two or more documents have the same document identifier
then they are the same, one (and not two or more) document(s).

9.5.2 Document Descriptors

With documents we associate document descriptors. We do not here stipulate what document
descriptors are other than saying that when a document is created it is provided with a descriptor
and this descriptor “remains” with the document and never changes value. In other words, it is
a static attribute.63 We do, however, include, in document descriptors, that the document they
describe was initially based on a set of zero, one or more documents – identified by their unique
identifiers.

58 We shall not, in this research note, make use of the (one and only) management identifier.
59 We shall not, in this research note, make use of the (one and only) archive identifier.
60 Cf. Footnote 58: hence we shall not be using the uid MI observer.
61 Cf. Footnote 59: hence we shall not be using the uid AI observer.
62 From: https://en.wikipedia.org/wiki/Document
63 You may think of a document descriptor as giving the document a title; perhaps one or more authors; perhaps a
physical address (of, for example, these authors); an initial date; as expressing whether the document is a research,
or a technical report, or other; who is issuing the document (a public institution, a private firm, an individual
citizen, or other); etc.

9.5 Documents: A First View 185

9.5.3 Document Annotations

With documents we also associate document annotations. By a document annotation we mean a
programmable attribute, that is, an attribute which can be ‘augmented’ by document handlers. We
think of document annotations as “incremental”, that is, as “adding” notes “on top of” previous
notes. Thus we shall model document annotations as a repository: notes are added, i.e., annotations
are augmented, previous notes are not edited, and no notes are deleted. We suggest that notes be
time-stamped. The notes (of annotations) may be such which record handlers work on documents.
Examples could be: “November 15, 2021: 16:12 : This is version V.”, “This document was released
on November 15, 2021: 16:12 .”, “November 15, 2021: 16:12 : Section X.Y.Z of version III was
deleted.”, “November 15, 2021: 16:12 : References to documents doci and doc j are inserted on
Pages p and q, respectively.” and “November 15, 2021: 16:12 : Final release.”

9.5.4 Document Contents: Text/Graphics

The main idea of a document, to us, is the written (i.e., text) and/or drawn (i.e., graphics) contents.
We do not characterise any format for this contents. We may wish to insert, in the contents,
references to locations in the contents of other documents. But, for now, we shall not go into such
details. The main operations on documents, to us, are concerned with: their creation, editing,
reading, copying and shredding. The editing and reading operations are mainly concerned with
document annotations and text/graphics.

9.5.5 Document Histories

So documents are created, edited, read, copied and shreded. These operations are initiated by the
management (create), by the archive (create), and by handlers (edit, read, copy), and at specific
times.

9.5.6 A Summary of Document Attributes

784. As separate attributes of documents we have document descriptors, document annotations,
document contents and document histories.

785. Document annotations are lists of document notes.
786. Document histories are lists of time-stamped document operation designators.
787. A document operation designator is either a create, or an edit, or a read, or a copy, or a shred

designator.
788. A create designator identifies

a. a handler and a time (at which the create request first arose), and presents
b. elements for constructing a document descriptor, one which

i. besides some further undefined information
ii. refers to a set of documents (i.e., embeds reference to their unique identifiers),

c. a (first) document note, and
d. an empty document contents.

789. An edit designator identifies a handler, a time, and specifies a pair of edit/undo functions.

186 9 Document Systems [Summer 2017]

790. A read designator identifies a handler.
791. A copy designator identifies a handler, a time, the document to be copied (by its unique

identifier, and a document note to be inserted in both the master and the copy document.
792. A shred designator identifies a handler.
793. An edit function takes a triple of a document annotation, a document note and document

contents and yields a pair of a document annotation and a document contents.
794. An undo function takes a pair of a document note and document contents and yields a triple of

a document annotation, a document note and a document contents.
795. Proper pairs of (edit,undo) functions satisfy some inverse relation.

There is, of course, no need, in any document history, to identify the identifier of that document.

type
784 DD, DA, DC, DH

value
784 attr DD: D→ DD

784 attr DA: D→ DA

784 attr DC: D→ DC
784 attr DH: D→ DH

type
785 DA = DN∗

786 DH = (TIME × DO)∗

787 DO == Crea | Edit | Read | Copy | Shre
788 Crea :: (HI × TIME) × (DI-set × Info) × DN × {|

′′
empty_DC

′′
|}

788(b)i Info = ...
value
788(b)ii embed DIs in DD: DI-set × Info→ DD

axiom
788d

′′
empty_DC

′′
∈ DC

type
789 Edit :: (HI × TIME) × (EDIT × UNDO)
790 Read :: (HI × TIME) × DI

791 Copy :: (HI × TIME) × DI × DN

792 Shre :: (HI × TIME) × DI
793 EDIT = (DA × DN × DC)→ (DA × DC)

794 UNDO = (DA × DC)→ (DA × DN × DC)
axiom
795 ∀ mkEdit(,(e,u)):Edit •

795 ∀ (da,dn,dc):(DA×DN×DC) •

795 u(e(da,dn,dc))=(da,dn,dc)

9.6 Behaviours: An Informal, First View

In [48, Manifest Domains: Analysis & Description] we show that we can associate behaviours with
parts, where parts are such discrete endurants for which we choose to model all its observable
properties: unique identifiers, mereology and attributes, and where behaviours are sequences of
actions, events and behaviours.

• The overall document handler system behaviour can be expressed in terms of the parallel
composition of the behaviours

9.7 Channels, A First View 187

796. of the system core behaviour,
797. of the handler aggregate (the management) behaviour
798. and the document aggregate (the archive) behaviour,

with the (distributed) parallel composition of

799. all the behaviours of handlers and,

the (distributed) parallel composition of

800. at any one time, zero, one or more behaviours of documents.

• To express the latter

801. we need introduce two “global” values: an indefinite set of handler identifiers and an indef-
inite set of document identifiers.

value
801 his:HI-set, dis:DI-set

796 sys(...)
797 ‖ mgtm(...)
798 ‖ arch(...)
799 ‖ ‖{hdlri(...)|i:HI•i∈his}

800 ‖ ‖{docui(dd)(da,dc,dh)|i:DI•i∈dis}

For now we leave undefined the arguments, (...) etc., of these behaviours. The arguments of the doc-
ument behaviour, (dd)(da,dc,dh), are the static, respectively the three programmable (i.e., dynamic)
attributes: document descriptor, document annotation, document contents and document history.
The above expressions, Items 797–800, do not define anything, they can be said to be “snapshots”
of a “behaviour state”. Initially there are no document behaviours, docui(dd)(da,dc,dh), Item 800.
Document behaviours are “started” by the archive behaviour (on behalf of the management and
the handler behaviours). Other than mentioning the system (core) behaviour we shall not model
that behaviour further.

9.7 Channels, A First View

Channels are means for behaviours to synchronise and communicate values (such as unique
identifiers, mereologies and attributes).

802. The management behaviour, mgtm, need to (synchronise and) communicate with the archive
behaviour, arch, in order, for the management behaviour, to request the archive behaviour

• to create (ab initio or due to copying)
• or shred document behaviours, docu j,

and for the archive behaviour

• to inform the management behaviour of the identity of the document(behaviour)s that it
has created.

channel
802 mgtm arch ch:MA

188 9 Document Systems [Summer 2017]

803. The management behaviour, mgtm, need to (synchronise and) communicate with all handler be-
haviours, hdlri and they, in turn, to (synchronised) communicate with the handler management
behaviour, mgtm. The management behaviour need to do so in order

• to inform a handler behaviour that it is granted access rights to a specific document, subse-
quently these access rights may be modified, including revoked.

channel
803 {mgtm hdlr ch[i]:MH|i:HI•i ∈ his}

804. The document archive behaviour, arch, need (synchronise and) communicate with all docu-
ment behaviours, docu j and they, in turn, to (synchronise and) communicate with the archive
behaviour, arch.

channel
804 {arch docu ch[j]:AD|h:DI•j ∈ dis}

805. Handler behaviours, hdlri, need (synchronise and) communicate with all the document be-
haviours, docu j, with which it has operational allowance to so do so64, and document be-
haviours, docu j, need (synchronise and) communicate with potentially all handler behaviours,
hdlri, namely those handler behaviours, hdlri with which they have (“earlier” synchronised
and) communicated.

channel
805 {hdlr docu ch[i,j]:HD|i:HI,j:DI•i ∈ his∧j ∈ dis}

806. At present we leave undefined the type of messages that are communicated.

type
806 MA, MH, AD, HD

9.8 An Informal Graphical System Rendition

Figure 9.1 on the facing page is an informal rendition of the “state” of a number of behaviours:
a single management behaviour, a single archive behaviour, a fixed number, nh, of one or more
handler behaviours, and a variable, initially zero number of document behaviours, with a maxi-
mum of these being nd. The figure also indicates, again rather informally, the channels between
these behaviours: one channel between the management and the archive behaviours; nh channels
(nh is, again, informally indicated) between the management behaviour and the nh handler be-
haviours; nd channels (nd is, again, informally indicated) between the archive behaviour and the
nd document behaviours; and nh×nd channels (nd×nd is, again, informally indicated) between the
nh handler behaviours and the nd document behaviours

9.9 Behaviour Signatures

807. The mgtm behaviour (synchronises and) communicates with the archive behaviour and with
all of the handler behaviours, hdlri.

808. The archive behaviour (synchronises and) communicates with the mgtm behaviour and with
all of the document behaviours, docu j.

64 The notion of operational allowance will be explained below.

9.10 Time 189

mgtm

arch

mgtm_arch_ch

{mgtm_hdlr_ch[i]|i:HI...}

{arch_docu_ch[h]|j:DI...}

{hdlr_docu_ch[i,j]|i:HI,j:DI...}

n_d

n_h

n_h*n_d

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

Fig. 9.1 An Informal Snapshot of System Behaviours

809. The signature of the generic handler behaviours, hdlri expresses that they [occasionally] receive
“orders” from management, and otherwise [regularly] interacts with document behaviours.

810. The signature of the generic document behaviours, docu j expresses that they [occasionally]
receive “orders” from the archive behaviour and that they [regularly] interacts with handler
behaviours.

value
807 mgtm: ... → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
808 arch: ... → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
809 hdlri: ... → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
810 docu j: ... → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

9.10 Time

9.10.1 Time and Time Intervals: Types and Functions

811. We postulate a notion of time, one that covers both a calendar date (from before Christ up till
now and beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD,
HH:MM:SS).

812. And we postulate a notion of (signed) time interval — between two times (say:±YY:MM:DD:HH:MM:SS).
813. Then we postulate some operations on time: Adding a time interval to a time obtaining a time;

subtracting one time from another time obtaining a time interval, multiplying a time interval
with a natural number; etc.

814. And we postulate some relations between times and between time intervals.

type
811 TIME

812 TIME INTERVAL

value
813 add: TIME INTERVAL × TIME→ TIME

813 sub: TIME × TIME→ TIME INTERVAL
813 mpy: TIM INTERVALE × Nat→ TIME INTERVAL

814 <,≤,=,,,≥,>: ((TIME×TIME)|(TIME INTERVAL×TIME INTERVAL))→ Bool

190 9 Document Systems [Summer 2017]

9.10.2 A Time Behaviour and a Time Channel

815. We postulate a[n “ongoing”] time behaviour: it either keeps being a time behaviour with
unchanged time, t, or – internally non-deterministically – chooses being a time behaviour
with a time interval incremented time, t+ti, or – internally non-deterministically – chooses to
[first] offer its time on a [global] channel, time ch, then resumes being a time behaviour with
unchanged time., t

816. The time interval increment, ti, is likewise internally non-deterministically chosen. We would
assume that the increment is “infinitesimally small”, but there is no need to specify so.

817. We also postulate a channel, time ch, on which the time behaviour offers time values to whoever
so requests.

value
815 time: TIME→ time ch TIME Unit
815 time(t) ≡ (time(t) ⌈⌉ time(t+ti) ⌈⌉ time ch!t ; time(t))

816 ti:TIME INTERVAL ...
channel
817 time ch:TIME

9.10.3 An Informal RSL Construct

The formal-looking specifications of this report appear in the style of the RAISE [93] Specification
Language, RSL [92]. We shall be making use of an informal language construct:

• wait ti.

wait is a keyword; ti designates a time interval. A typical use of the wait construct is:

• ... ptA ; wait ti; ptB ; ...

If at specification text point ptA we may assert that time is t, then at specification text point ptB
we can assert that time is t+ti.

9.11 Behaviour “States”

We recall that the endurant parts, Management, Archive, Handlers, and Documents, have prop-
erties in the form of unique identifiers, mereologies and attributes. We shall not, in this research
note, deal with possible mereologies of these endurants. In this section we shall discuss the en-
durant attributes of mgtm (management), arch (archive), hdlrs (handlers), and docus (documents).
Together the values of these properties, notably the attributes, constitute states – and, since we as-
sociate behaviours with these endurants, we can refer to these states also a behaviour states. Some
attributes are static, i.e., their value never changes. Other attributes are dynamic.65 Document
handling systems are rather conceptual, i.e., abstract in nature. The dynamic attributes, therefore,
in this modeling “exercise”, are constrained to just the programmable attributes. Programmable
attributes are those whose value is set by “their” behaviour. For a behaviour β we shall show
the static attributes as one set of parameters and the programmable attributes as another set of
parameters.

65 We refer to Sect. 3.4 of [48], and in particular its subsection 3.4.4.

9.12 Inter-Behaviour Messages 191

value β: Static→ Program→ ... Unit

818. For the management endurant/behaviour we focus on one programmable attribute. The man-
agement behaviour needs keep track of all the handlers it is charged with, and for each of these
which zero, one or more documents they have been granted access to (cf. Sect. 9.12.3 on the
next page). Initially that management directory lists a number of handlers, by their identifiers,
but with no granted documents.

819. For the archive behaviour we similarly focus on one programmable attribute. The archive
behaviour needs keep track of all the documents it has used (i.e., created), those that are
available (and not yet used), and of those it has shredded. Initially all these three archive
directory sets are empty.

820. For the handler behaviour we similarly focus on one programmable attribute. The handler
behaviour needs keep track of all the documents it has been charged with and its access rights
to these.

821. Document attributes we mentioned above, cf. Items 784–787.

type
818 MDIR = HI →m (DI →m ANm-set)
819 ADIR = avail:DI-set × used:DI-set × gone:DI-set
820 HDIR = DI →m ANm-set
821 SDATR = DD, PDATR = DA × DC × DH
axiom
819 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used

We can now “complete” the behaviour signatures. We omit, for now, static attributes.

value
807 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
808 arch: ADIR → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
809 hdlri: HDIR → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
810 docu j: SDATR→ PDATR → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

9.12 Inter-Behaviour Messages

Documents are not “fixed, innate” entities. They embody a “history”, they have a “past”. Somehow
or other they “carry a trace of all the ”things” that have happened/occurred to them. And, to us,
these things are the manipulations that management, via the archive and handlers perform on
documents.

9.12.1 Management Messages with Respect to the Archive

822. Management create documents. It does so by requesting the archive behaviour to allocate a
document identifier and initialize the document “state” and start a document behaviour, with
initial information, cf. Item 788 on page 185:

a. the identity of the initial handler of the document to be created,
b. the time at which the request is being made,

192 9 Document Systems [Summer 2017]

c. a document descriptor which embodies a (finite) set of zero or more (used) document
identifiers (dis),

d. a document annotation note dn, and
e. an initial, i.e., “empty” contents, "empty DC".

type
788. Crea :: (HI × TIME) × (DI-set × Info) × DN × {|

′′
empty_DC

′′
|} [cf. formula Item 788, Page 186]

823. The management behaviour passes on to the archive behaviour, requests that it accepts from
handlers behaviours, for the copying of document:

823 Copy :: DI × HI × TIME × DN [cf. Item 833 on page 194]

824. Management schreds documents by informing the archive behaviour to do so.

type
824 Shred :: TIME × DI

9.12.2 Management Messages with Respect to Handlers

825. Upon receiving, from the archive behaviour, the “feedback” the identifier of the created docu-
ment (behaviour):

type
825. Create Reply :: NewDocID(di:DI)

826. the management behaviour decides to grant access rights, acrs:ACRS66, to a document handler,
hi:HI.

type
826 Gran :: HI × TIME × DI × ACRS

9.12.3 Document Access Rights

Implicit in the above is a notion of document access rights.

827. By document access rights we mean a set of action names.
828. By an action name we mean such tokens that indicate either of the document handler operations

indicate above.

type
827 ACRS = ANm-set
828 ANm = {|

′′
edit

′′
,
′′
read

′′
,
′′
copy

′′
|}

66 For the concept of access rights see Sect. 9.12.3.

9.12 Inter-Behaviour Messages 193

9.12.4 Archive Messages with Respect to Management

To create a document management provides the archive with some initial information. The archive
behaviour selects a document identifier that has not been used before.

829. The archive behaviour informs the management behaviour of the identifier of the created
document.

type
829 NewDocID :: DI

9.12.5 Archive Message with Respect to Documents

830. To shred a document the archive behaviour must access the designated document in order to
stop it. No “message”, other than a symbolic "stop", need be communicated to the document
behaviour.

type
830 Shred :: {|

′′
stop

′′
|}

9.12.6 Handler Messages with Respect to Documents

Handlers, generically referred to by hdlri, may perform the following operations on documents:
edit, read and copy. (Management, via the archive behaviour, creates and shreds documents.)

831. To perform an edit action handler hdlri must provide the following:

• the document identity – in the form of a (i:HI,j:DI) channel hdlr docu ch index value,
• the handler identity, i,
• the time of the edit request,
• and a pair of functions: one which performs the editing and one which un-does it !

type
831 Edit :: DI × HI × TIME × (EDIT × UNDO)

832. To perform a read action handler hdlri must provide the following information:

• the document identity – in the form of a di:DI channel hdlr docu ch index value,
• the handler identity and
• the time of the read request.

type
832 Read :: DI × HI × TIME

194 9 Document Systems [Summer 2017]

9.12.7 Handler Messages with Respect to Management

833. To perform a copy action, a handler, hdlri, must provide the following information to the
management behaviour, mgtm:

• the document identity,
• the handler identity – in the form of an hi:HI channel mgtm hdlr ch index value,
• the time of the copy request, and
• a document note (to be affixed both the master and the copy documents).

833 Copy :: DI × HI × TIME × DN [cf. Item 823 on page 192]

How the handler, the management, the archive and the “named other” handlers then enact the
copying, etc., will be outlined later.

9.12.8 A Summary of Behaviour Interactions

Figure 9.2 summarises the sources, out, resp. !, and the targets, in, resp. ?, of the messages covered
in the previous sections.

mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

mkGrant

mkCopy

mkShred

mkEditComplete
mkReadCompletemkRead

mkEdit
mkShred
mkCopy

mkCreate mkNewDocID

Fig. 9.2 A Summary of Behaviour Interactions

9.13 A General Discussion of Handler and Document Interactions

We think of documents being manifest. Either a document is in paper form, or it is in electronic
form. In paper form we think of a document as being in only one – and exactly one – physical
location. In electronic form a document is also in only one – and exactly one – physical location.
No two handlers can access the same document at the same time or in overlapping time intervals.
If your conventional thinking makes you think that two or more handlers can, for example, read
the same document “at the same time”, then, in fact, they are reading either a master and a copy
of that master, or they are reading two copies of a common master.

9.15 An Informal Summary of Behaviours 195

9.14 Channels: A Final View

We can now summarize the types of the various channel messages first referred to in Items 802,
803, 804 and 805.

type
802 MA = Create (Item 822 on page 191)

802 | Shred (Item 822d on page 192)

802 | NewDocID (Item 829 on page 193)
803 MH = Grant (Item 822c on page 192)

803 | Copy (Item 833 on the preceding page)

804 AD = Shred (Item 830 on page 193)
805 HD = Edit (Item 831 on page 193)

805 | Read (Item 832 on page 193)
805 | Copy (Item 833 on the preceding page)

9.15 An Informal Summary of Behaviours

9.15.1 The Create Behaviour: Left Fig. 9.3 on the following page

834. [1] The management behaviour, at its own volition, initiates a create document behaviour. It
does so by offering a create document message to the archive behaviour.

a. [1.1] That message contains a meaningful document descriptor,
b. [1.2] an initial document annotation,
c. [1.3] an “empty” document contents and
d. [1.4] a single element document history.

(We refer to Sect. 9.12.1 on page 191, Items 822–822e.)
835. [2] The archive behaviour offers to accept that management message. It then selects an available

document identifier (here shown as k), henceforth marking k as used.
836. [3] The archive behaviour then “spawns off” document behaviour docuk – here shown by the

“dash–dotted” rounded edge square.
837. [4] The archive behaviour then offers the document identifier k message to the management

behaviour.
(We refer to Sect. 9.12.4 on page 193, Item 829.)

838. [5] The management behaviour then

a. [5.1] selects a handler, here shown as i, i.e., hdlri,
b. [5.2] records that that handler is granted certain access rights to document k,
c. [5.3] and offers that granting to handler behaviour i.

(We refer to Sect. 9.12.2 on page 192, Item 826 on page 192.)
839. [6] Handler behaviour i records that it now has certain access rights to document i.

9.15.2 The Edit Behaviour: Right Fig. 9.3 on the next page

1 Handler behaviour i, at its own volition, initiates an edit action on document j (where i has edit-
ing rights for document j). Handler i, optionally, provides document j with a(annotation) note.

196 9 Document Systems [Summer 2017]

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1[2]

[5] [6][1]

docu_k

hdlr_i

[3]

[4]

mkGrant

mkNewDocID CREATE

The dotted line means:
Initialising the document.

mkCreate

mgtm

arch

hdlr_1 hdlr_n_h

docu_n_d docu_1

hdlr_i

[2]
docu_j

[3][1]

mkReadCompletemkReadEDIT

Fig. 9.3 Informal Snapshots of Create and Edit Document Behaviours

While editing document j handler i also “selects” an appropriate pair of edit/undo functions
for document j.

2 Document behaviour j accepts the editing request, enacts the editing, optionally appends the
(annotation) note, and, with handler i, completes the editing, after some time interval ti.

3 Handler behaviour i completes its edit action.

9.15.3 The Read Behaviour: Left Fig. 9.4

1 Handler behaviour i, at its own volition, initiates a read action on document j (where i has
reading rights for document j). Handler i, optionally, provides document j with a(annotation)
note.

2 Document behaviour j accepts the reading request, enacts the reading by providing the handler,
i, with the document contents, and optionally appends the (annotation) note, and, with handler
i, completes the reading, after some time interval ti.

3 Handler behaviour i completes its read action.

mgtm

arch

hdlr_1 hdlr_n_h

docu_1

hdlr_i

docu_j

[2]

[1]

docu_k

[3]

READ mkRead mkReadComplete

[3]

arch

docu_j

[6]

docu_k

[7] [4]

[5]

[2]

[8]

hdlr_1
[1]

hdlr_i

mgtm [10][9] [11]

COPY

docu_1

hdlr_n_h

mkCopy

mkGrant

mkGrant

These dot−dashed lines

Initialising the document.
The dotted line mean:

mean: Obtaining the
document "data" !

mkCopy mkNewDocID

Fig. 9.4 Informal Snapshots of Read and Copy Document Behaviours

9.15.4 The Copy Behaviour: Right Fig. 9.4

1 Handler behaviour i, at its own volition, initiates a copy action on document j (where i has
copying rights for document j). Handler i, optionally, provides master document j as well as
the copied document (yet to be identified) with respective (annotation) notes.

9.15 An Informal Summary of Behaviours 197

2 The management behaviour offers to accept the handler message. As for the create action, the
management behaviour offers a combined copy and create document message to the archive
behaviour.

3 The archive behaviour selects an available document identifier (here shown as k), henceforth
marking k as used.

4 The archive behaviour then obtains, from the master document j its document descriptor, dd j,
its document annotations, da j, its document contents, dc j, and its document history, dh j.

5 The archive behaviour informs the management behaviour of the identifier, k, of the (new)
document copy,

6 while assembling the attributes for that (new) document copy: its document descriptor, ddk, its
document annotations, dak, its document contents, dck, and its document history, dhk, from these
“similar” attributes of the master document j,

7 while then “spawning off” document behaviour docuk – here shown by the “dash–dotted”
rounded edge square.

8 The management behaviour accepts the identifier, k, of the (new) document copy, recording the
identities of the handlers and their access rights to k,

9 while informing these handlers (informally indicated by a “dangling” dash-dotted line) of their
grants,

10 while also informing the master copy of the copy identity (et cetera).
11 The handlers granted access to the copy record this fact.

9.15.5 The Grant Behaviour: Left Fig. 9.5

This behaviour has its

1 Item [1] correspond, in essence, to Item [9] of the copy behaviour – see just above – and
2 Item [2] correspond, in essence, to Item [11] of the copy behaviour.

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1

hdlr_i

[2][1]

docu_k

GRANT

mkGrant mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_1docu_k docu_j

[1]

[3]

SHRED

mkShred

mkShred

[2]

Fig. 9.5 Informal Snapshots of Grant and Shred Document Behaviours

9.15.6 The Shred Behaviour: Right Fig. 9.5

1 The management, at its own volition, selects a document, j, to be shredded. It so informs the
archive behaviour.

2 The archive behaviour records that document j is to be no longer in use, but shredded, and
informs document j’s behaviour.

198 9 Document Systems [Summer 2017]

3 The document j behaviour accepts the shred message and stops (indicated by the dotted
rounded edge box).

9.16 The Behaviour Actions

To properly structure the definitions of the four kinds of (management, archive, handler and
document) behaviours we single each of these out “across” the six behaviour traces informally
described in Sects. 9.15.1–9.15.6. The idea is that if behaviour β is involved in τ traces, τ1,τ2, ...,ττ,
then behaviour β shall be defined in terms of τ non-deterministic alternative behaviours named
βτ1 ,βτ2 , ...,βττ .

9.16.1 Management Behaviour

840. The management behaviour is involved in the following action traces:

a. create Fig. 9.3 on page 196 Left
b. copy Fig. 9.4 on page 196 Right
c. grant Fig. 9.5 on the preceding page Left
d. shred Fig. 9.5 on the previous page Right

value
840 mgtm: MDIR→ in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
840 mgtm(mdir) ≡
840a mgtm create(mdir)

840b ⌈⌉ mgtm copy(mdir)
840c ⌈⌉ mgtm grant(mdir)

840d ⌈⌉ mgtm shred(mdir)

9.16.1.1 Management Create Behaviour: Left Fig. 9.3 on page 196

841. The management create behaviour
842. initiates a create document behaviour (i.e., a request to the archive behaviour),
843. and then awaits its response.

value
841 mgtm create: MDIR→ in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
841 mgtm create(mdir) ≡
842 [1] let hi = mgtm create initiation(mdir) ; [Left Fig. 9.3 on page 196]
843 [5] mgtm create awaits response(mdir)(hi) end [Left Fig. 9.3 on page 196]

The management create initiation behaviour

844. selects a handler on behalf of which it requests the document creation,
845. assembles the elements of the create message:

• by embedding a set of zero or more document references, dis, with some information, info,
into a document descriptor, adding

• a document note, dn, and

9.16 The Behaviour Actions 199

• and initial, that is, empty document contents, "empty DC",

846. offers such a create document message to the archive behaviour, and
847. yields the identifier of the chosen handler.

value
842 mgtm create initiation: MDIR→ in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI

842 mgtm create initiation(mdir) ≡

844 let hi:HI • hi ∈ dom mdir,
845 [1.2−.4] (dis,info):(DI-set×Info),dn:DN • is meaningful(embed DIs in DD(dis,info))(mdir) in
846 [1.1] mgtm arch ch ! mkCreate(embed DIs in DD(ds,info),dn,

′′
empty_DC

′′
)

847 hi end

845 is meaningful: DD→ MDIR→ Bool [left further undefined]

The management create awaits response behaviour

848. starts by awaiting a reply from the archive behaviour with the identity, di, of the document
(that that behaviour has created).

849. It then selects suitable access rights,
850. with which it updates its handler/document directory
851. and offers to the chosen handler
852. whereupon it resumes, with the updated management directory, being the management be-

haviour.

value
843 mgtm create awaits response: MDIR→ HI→ in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
843 mgtm create awaits response(mdir) ≡

848 [5] let mkNewDocID(di) = mgtm arch ch ? in
849 [5.1] let acrs:ANm-set in
850 [5.2] let mdir

′
= mdir † [hi 7→ [di 7→ acrs]] in

851 [5.3] mgtm hdlr ch[hi] ! mkGrant(di,acrs)
852 mgtm(mdir

′
) end end end

9.16.1.2 Management Copy Behaviour: Right Fig. 9.4 on page 196

853. The management copy behaviour
854. accepts a copy document request from a handler behaviour (i.e., a request to the archive

behaviour),
855. and then awaits a response from the archive behaviour;
856. after which it grants access rights to handlers to the document copy.

value
853 mgtm copy: MDIR→ in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
853 mgtm copy(mdir) ≡

854 [2] let hi = mgtm accept copy request(mdir) in
855 [8] let di = mgtm awaits copy response(mdir)(hi) in
856 [9] mgtm grant access rights(mdir)(di) end end

857. The management accept copy behaviour non-deterministically externally (⌈⌉⌊⌋) awaits a copy
request from a[ny] handler (i) behaviour –

858. with the request identifying the master document, j, to be copied.

200 9 Document Systems [Summer 2017]

859. The management accept copy behaviour forwards (!) this request to the archive behaviour –
860. while yielding the identity of the requesting handler.

857. mgtm accept copy request: MDIR→

857. in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
857. mgtm accept copy request(mdir) ≡

858. let mkCopy(di,hi,t,dn) = ⌈⌉⌊⌋{mgtm hdlr ch[i]?|i:HI•i ∈ his} in
859. mgtm arch ch ! mkCopy(di,hi,t,dn) ;

859. hi end

The management awaits copy response behaviour

861. awaits a reply from the archive behaviour as to the identity of the newly created copy (di) of
master document j.

862. The management awaits copy response behaviour then informs the ‘copying-requesting’ han-
dler, hi, that the copying has been completed and the identity of the copy (di) –

863. while yielding the identity, di, of the newly created copy.

840b. mgtm awaits copy response: MDIR→ HI→
840b. in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} DI

840b. mgtm awaits copy response(mdir)(hi) ≡

861. [8] let mkNewDocID(di) = mgtm arch ch ? in
862. mgtm hdlr ch[hi] ! mkCopy(di) ;

863. di end

The management grants access rights behaviour

864. selects suitable access rights for a suitable number of selected handlers.
865. It then offers these to the selected handlers.

856. mgtm grant access rights: MDIR→ DI→
856. in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
856. mgtm grant access rights(mdir)(di) ≡

864. let diarm = [hi7→acrs|hi:HI,arcs:ANm-set• hi ∈ dom mdir∧arcs⊆(diarm(hi))(di)] in
865. ‖ {mgtm hdlr ch[hi]!mkGrant(hi,time ch?,di,acrs) |

865. hi:HI,acrs:ANm-set•hi ∈ dom diarm∧acrs⊆(diarm(hi))(di)} end

9.16.1.3 Management Grant Behaviour: Left Fig. 9.5 on page 197

The management grant behaviour

866. is a variant of the mgtm grant access rights function, Items 864–865.
867. The management behaviour selects a suitable subset of known handler identifiers, and
868. for these a suitable subset of document identifiers from which
869. it then constructs a map from handler identifiers to subsets of access rights.
870. With this the management behaviour then issues appropriate grants to the chosen handlers.

type
MDIR = HI →m (DI →m ANm-set)

value
866 mgtm grant: MDIR→ in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
866 mgtm grant(mdir) ≡

867 let his ⊆ dom dir in

9.16 The Behaviour Actions 201

868 let dis ⊆ ∪{dom mdir(hi)|hi:HI•hi ∈ his} in
869 let diarm = [hi7→acrs|hi:HI,di:DI,arcs:ANm-set• hi ∈ his∧di ∈ dis∧acrs⊆(diarm(hi))(di)] in
870 ‖{mgtm hdlr ch[hi]!mkGrant(di,acrs) |
870 hi:HI,di:DI,acrs:ANm-set•hi ∈ dom diarm∧di ∈ dis∧acrs⊆(diarm(hi))(di)}

866 end end end

9.16.1.4 Management Shared Behaviour: Right Fig. 9.5 on page 197

The management shred behaviour

871. initiates a request to the archive behaviour.
872. First the management shred behaviour selects a document identifier (from its directory).
873. Then it communicates a shred document message to the archive behaviour;
874. then it notes the (to be shredded) document in its directory
875. whereupon the management shred behaviour resumes being the management behaviour.

value
871 mgtm shred: MDIR→ out mgtm arch ch Unit
871 mgtm shred(mdir) ≡

872 let di:DI • is suitable(di)(mdir) in
873 [1] mgtm arch ch ! mkShred(time ch?,di) ;
874 let mdir

′
= [hi7→mdir(hi)\{di}|hi:HI•hi ∈ dom mdir] in

875 mgtm(mdir
′
) end end

9.16.2 Archive Behaviour

876. The archive behaviour is involved in the following action traces:

a. create Fig. 9.3 on page 196 Left
b. copy Fig. 9.4 on page 196 Right
c. shred Fig. 9.5 on page 197 Right

type
819 ADIR = avail:DI-set × used:DI-set × gone:DI-set
axiom
819 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used
value
876 arch: ADIR→ in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
876a arch(adir) ≡
876a arch create(adir)

876b ⌈⌉ arch copy(adir)
876c ⌈⌉ arch shred(adir)

9.16.2.1 The Archive Create Behaviour: Left Fig. 9.3 on page 196

The archive create behaviour

877. accepts a request, from the management behaviour to create a document;

202 9 Document Systems [Summer 2017]

878. it then selects an available document identifier;
879. communicates this new document identifier to the management behaviour;
880. while initiating a new document behaviour, docudi, with the document descriptor, dd, the initial

document annotation being the singleton list of the note, an, and the initial document contents,
dc – all received from the management behaviour – and an initial document history of just one
entry: the date of creation, all

881. in parallel with resuming the archive behaviour with updated programmable attributes.

876a. arch create: AATTR→ in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
876a. arch create(avail,used,gone) ≡

877. [2] let mkCreate((hi,t),dd,an,dc) = mgmt arch ch ? in
878. let di:DI•di ∈ avail in
879. [4] mgmt arch ch ! mkNewDocID(di) ;

880. [3] docudi(dd)(〈an〉,dc,<(date of creation)>)
881. ‖ arch(avail\{di},used∪{di},gone)

876a. end end

9.16.2.2 The Archive Copy Behaviour: Right Fig. 9.4 on page 196

The archive copy behaviour

882. accepts a copy document request from the management behaviour with the identity, j, of the
master document;

883. it communicates (the request to obtain all the attribute values of the master document, j) to that
document behaviour;

884. whereupon it awaits their communication (i.e., (dd,da,dc,dh));
885. (meanwhile) it obtains an available document identifier,
886. which it communicates to the management behaviour,
887. while initiating a new document behaviour, docudi, with the master document descriptor, dd, the

master document annotation, and the master document contents, dc, and the master document
history, dh (all received from the master document),

888. in parallel with resuming the archive behaviour with updated programmable attributes.

876b. arch copy: AATTR→ in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
876b. arch copy(avail,used,gone) ≡
882. [3] let mkDocID(j,hi) = mgtm arch ch ? in
883. arch docu ch[j] ! mkReqAttrs() ;

884. let mkAttrs(dd,da,dc,dh) = arch docu ch[j] ? in
885. let di:DI • di ∈ avail in
886. mgtm arch ch ! mkCopyDocID(di) ;
887. [6,7] docudi(augment(dd,

′′
copy

′′
,j,hi),

887. augment(da,
′′
copy

′′
,hi),dc,

887. augment(dh,(
′′
copy

′′
,date and time,j,hi)))

888. ‖ arch(avail\{di},used∪{di},gone)

876b. end end end

where we presently leave the [overloaded] augment functions undefined.

9.16.2.3 The Archive Shred Behaviour: Right Fig. 9.5 on page 197

The archive shred behaviour

9.16 The Behaviour Actions 203

889. accepts a shred request from the management behaviour.
890. It communicates this request to the identified document behaviour.
891. And then resumes being the archive behaviour, noting however, that the shredded document

has been shredded.

876c. arch shred: AATTR→ in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
876c. arch shred(avail,used,gone) ≡

889. [2] let mkShred(j) = mgmt arch ch ? in
890. arch docu ch[j] ! mkShred() ;

891. arch(avail,used,gone∪{j})

876c. end

9.16.3 Handler Behaviours

892. The handler behaviour is involved in the following action traces:

a. create Fig. 9.3 on page 196 Left
b. edit Fig. 9.3 on page 196 Right
c. read Fig. 9.4 on page 196 Left
d. copy Fig. 9.4 on page 196 Right
e. grant Fig. 9.5 on page 197 Left

value
892 hdlrhi: HATTRS→ in,out mgtm hdlr ch[hi],{hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
892 hdlrhi(hattrs) ≡

892a hdlr createhi(hattrs)

892b ⌈⌉ hdlr edithi(hattrs)
892c ⌈⌉ hdlr readhi(hattrs)

892d ⌈⌉ hdlr copyhi(hattrs)

892e ⌈⌉ hdlr granthi(hattrs)

9.16.3.1 The Handler Create Behaviour: Left Fig. 9.3 on page 196

893. The handler create behaviour offers to accept the granting of access rights, acrs, to document
di.

894. It according updates its programmable hattrs attribute;
895. and resumes being a handler behaviour with that update.

892a hdlr createhi: HATTRS × HHIST→ in,out mgtm hdlr ch[hi] Unit
892a hdlr createhi(hattrs,hhist) ≡

893 let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
894 let hattrs

′
= hattrs † [hi 7→ acrs] in

895 hdlr createhi(hattrs
′
,augment(hhist,mkGrant(di,acrs))) end end

9.16.3.2 The Handler Edit Behaviour: Right Fig. 9.3 on page 196

896. The handler behaviour, on its own volition, decides to edit a document, di, for which it has
editing rights.

204 9 Document Systems [Summer 2017]

897. The handler behaviour selects a suitable (...) pair of edit/undo functions and a suitable (annota-
tion) note.

898. It then communicates the desire to edit document di with (e,u) (at time t=time ch?).
899. Editing take some time, ti.
900. We can therefore assert that the time at which editing has completed is t+ti.
901. The handler behaviour accepts the edit completion message from the document handler.
902. The handler behaviour can therefore resume with an updated document history.

892b hdlr edithi: HATTRS × HHIST→ in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
892b hdlr edithi(hattrs,hhist) ≡
896 [1] let di:DI • di ∈ dom hattrs ∧

′′
edit

′′
∈ hattrs(di) in

897 [1] let (e,u):(EDIT×UNDO) • ... , n:AN • ... in
898 [1] hdlr docu ch[hi,di] ! mkEdit(hi,t=time ch?,e,u,n) ;
899 [2] let ti:TIME INTERVAL • ... in
900 [2] wait ti ; assert: time ch? = t+ti
901 [3] let mkEditComplete(ti

′
,...) = hdlr docu ch[hi,di] ? in assert ti

′
� ti

902 hdlrhi(hattrs,augment(hhist,(di,mkEdit(hi,t,ti,e,u))))

892b end end end end

9.16.3.3 The Handler Read Behaviour: Left Fig. 9.4 on page 196

903. The handler behaviour, on its own volition, decides to read a document, di, for which it has
reading rights.

904. It then communicates the desire to read document di with at time t=time ch? – with an anno-
tation note (n).

905. Reading take some time, ti.
906. We can therefore assert that the time at which reading has completed is t+ti.
907. The handler behaviour accepts the read completion message from the document handler.
908. The handler behaviour can therefore resume with an updated document history.

892c hdlr edithi: HATTRS × HHIST→ in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
892c hdlr edithi(hattrs,hhist) ≡

903 [1] let di:DI • di ∈ dom hattrs ∧
′′
read

′′
∈ hattrs(di), n:N • ... in

904 [1] hdlr docu ch[hi,di] ! mkRead(hi,t=time ch?,n) ;

905 [2] let ti:TIME INTERVAL • ... in
906 [2] wait ti ; assert: time ch? = t+ti

907 [3] let mkReadComplete(ti,...) = hdlr docu ch[hi,di] ? in
908 hdlrhi(hattrs,augment(hhist,(di,mkRead(di,t,ti))))
892c end end end

9.16.3.4 The Handler Copy Behaviour: Right Fig. 9.4 on page 196

909. The handler [copy] behaviour, on its own volition, decides to copy a document, di, for which
it has copying rights.

910. It communicates this copy request to the management behaviour.
911. After a while the handler [copy] behaviour receives acknowledgment of a completed copying

from the management behaviour.
912. The handler [copy] behaviour records the request and acknowledgment in its, thus updated

whereupon the handler [copy] behaviour resumes being the handler behaviour.

9.16 The Behaviour Actions 205

892d hdlr copyhi: HATTRS × HHIST→ in,out mgtm hdlr ch[hi] Unit
892d hdlr copyhi(hattrs,hhist) ≡

909 [1] let di:DI • di ∈ dom hattrs ∧
′′
copy

′′
∈ hattrs(di) in

910 [1] mgtm hdlr ch[hi] ! mkCopy(di,hi,t=time ch?) ;

911 [10] let mkCopyComplete(di
′
,di) = mgtm hdlr ch[hi] ? in

912 [10] hdlrhi(hattrs,augment(hhist,time ch?,(mkCopy(di,hi,,t),mkCopyComplete(di
′
))))

892d end end

9.16.3.5 The Handler Grant Behaviour: Left Fig. 9.5 on page 197

913. The handler [grant] behaviour offers to accept grant permissions from the management be-
haviour.

914. In response it updates its handler attribute while resuming being a handler behaviour.

892e hdlr granthi: HATTRS × HHIST→ in,out mgtm hdlr ch[hi] Unit
892e hdlr granthi(hattrs,hhist) ≡
913 [2] let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
914 [2] hdlrhi(hattrs†[di7→acrs],augment(hhist,time ch?,mkGrant(di,acrs)))
892e end

9.16.4 Document Behaviours

915. The document behaviour is involved in the following action traces:

a. edit Fig. 9.3 on page 196 Right
b. read Fig. 9.4 on page 196 Left
c. shred Fig. 9.5 on page 197 Right

value
915 docudi: DD × (DA × DC × DH)→

915 in,out arch docu ch[di], {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
915 docudi(dattrs) ≡

915a docu editdi(dd)(da,dc,dh)

915b ⌈⌉ docu readdi(dd)(da,dc,dh)
915c ⌈⌉ docu shreddi(dd)(da,dc,dh)

9.16.4.1 The Document Edit Behaviour: Right Fig. 9.3 on page 196

916. The document [edit] behaviour offers to accept edit requests from document handlers.

a. The document contents is edited, over a time interval of ti, with respect to the handlers edit
function (e),

b. the document annotations are augmented with respect to the handlers note (n), and
c. the document history is augmented with the fact that an edit took place, at a certain time,

with a pair of edit /undo functions.

917. The edit (etc.) function(s) take some time, ti, to do.
918. The handler behaviour is notified, mkEditComplete(...) of the completion of the edit, and

206 9 Document Systems [Summer 2017]

919. the document behaviour is then resumed with updated programmable attributes.

value
915a docu editdi: DD × (DA × DC × DH)→ in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
915a docu editdi(dd)(da,dc,dh) ≡
916 [2] let mkEdit(hi,t,e,u,n) = ⌈⌉⌊⌋{hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
916a [2] let dc

′
= e(dc),

916b da
′
= augment(da,((hi,t),(

′′
edit

′′
,e,u),n)),

916c dh
′
= augment(dh,((hi,t),(

′′
edit

′′
,e,u))) in

917 let ti = time ch? − t in
918 hdlr docu ch[hi,di] ! mkEditComplete(ti,...) ;

919 docudi(dd)(da
′
,dc
′
,dh
′
)

915a end end end

9.16.4.2 The Document Read Behaviour: Left Fig. 9.4 on page 196

920. The The document [read] behaviour offers to receive a read request from a handler behaviour.
921. The reading takes some time to do.
922. The handler behaviour is advised on completion.
923. And the document behaviour is resumed with appropriate programmable attributes being

updated.

value
915b docu readdi: DD × (DA × DC × DH)→ in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
915b docu readdi(dd)(da,dc,dh) ≡
920 [2] let mkRead(hi,t,n) = {hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
921 [2] let ti:TIME INTERVAL • ... in
921 [2] wait ti ;

922 [2] hdlr docu ch[hi,di] ! mkReadComplete(ti,...) ;

923 [2] docudi(dd)(augment(da,n),dc,augment(dh,(hi,t,ti,
′′
read

′′
)))

915b end end

9.16.4.3 The Document Shred Behaviour: Right Fig. 9.5 on page 197

924. The document [shred] behaviour offers to accept a document shred request from the archive
behaviour –

925. whereupon it stops !

value
915c docu shreddi: DD × (DA × DC × DH)→ in,out arch docu ch[di] Unit
915c docu shreddi(dd)(da,dc,dh) ≡

924 [3] let mkShred(...) = arch docu ch[di] ? in
925 stop
915c [3] end

9.18 Documents in Urban Planning 207

9.16.5 Conclusion

This completes a first draft version of this document. The date time is: November 15, 2021: 16:12 .
Many things need to be done. First a careful checking of all types and functions: that all used names
have been defined. The internal non-deterministic choices in formula Items 840 on page 198, 876
on page 201, 892 on page 203 and 915 on page 205, need be checked. I suspect there should, instead,
be some mix of both internal and external non-deterministic choices. Then a careful motivation
for all the other non-deterministic choices.

9.17 Documents in Public Government

Public government, in the spirit of Charles-Louis de Secondat, Baron de La Brède et de Mon-
tesquieu (or just Montesquieu), has three branches:

• the legislative,
• the executive, and
• the judicial.

Our interpretation of these, with respect to documents, are as follows.

• The legislative branch produces laws, i.e., documents. To do so many preparatory documents
are created, edited, read, copied, etc. Committees, subcommittees, individual lawmakers and
ministry law office staff handles these documents. Parliament staff and legislators are granted
limited or unlimited access rights to these documents. Finally laws are put into effect, are
amended, changed or abolished.
The legislative branch documents refer to legislative, executive and judicial branch documents.

• The executive branch produces guide lines, i.e., documents. Instructions on interpretation and
implementation of laws; directives to ministry services on how to handle the laws; et cetera.
These executive branch documents refer to legislative, executive and judicial branch documents.

• The judicial branch produces documents. Police cite citizens and enterprises for breach of
law. Citizens and enterprise sue other citizens and/or enterprises. Attorneys on behalf of the
governments, or citizens or enterprises prepare statements. Court proceedings are recorded.
Justices pass verdicts.
The judicial branch documents refer to legislative, executive and judicial branch documents.

9.18 Documents in Urban Planning

A separate research note [71, Urban Planning Processes] analyses & describes a domain of urban
planning. There are the geographical documents:

• geodetic,
• geotechnic,
• meteorological,
• and other types of geographical documents.

In order to perform an informed urban planning further documents are needed:

• auxiliary documents which
• requirements documents which

208 9 Document Systems [Summer 2017]

Auxiliary documents presents such information that “fill in” details concerning current ownership
of the land area, current laws affecting this ownership, the use of the land, et cetera. Requirements
documents express expectations about the (base) urban plans that should result from the base
urban planning. As a first result of base urban planning we see the emergence of the following
kinds of documents:

• base urban plans
• and ancillary notes.

The base urban plans deal with

• cadestral,
• cartographic and
• zoning

issues. The ancillary notes deal with such things as insufficiencies in the base plans, things that
ought be improved in a next iteration base urban planning, etc. The base plans and ancillary notes,
besides possible re-iteration of base urban planning, lead on to “derived urban planning” for

• light, medium and heavy industry zones,
• mixed shopping and residential zones,
• apartment building zones,
• villa zones,
• recreational zones,
• et cetera.

After these “first generation” derived urban plans are well underway, a “second generation”
derived urban planning can start:

• transport infrastructure,
• water and waste resource management,
• electricity, natural gas, etc., infrastructure,
• et cetera.

And so forth. Literally “zillions upon zillions” of strongly and crucially interrelated documents
accrue.

Urban planning evolves and revolves around documents.

Documents are the only “tangible” results or urban planning.67

67 Once urban plans have been agreed upon by all relevant authorities and individuals, then urban development
(“build”) and, finally, “operation” of the developed, new urban “landscape”. For development, the urban plans
form one of the “tangible” inputs. Others are of financial and human and other resource nature.

Chapter 10

Urban Planning [Fall 2017]

Contents
10.1 Structures and Parts . 212

10.1.1 The Urban Space, Clock, Analysis & Planning Complex 212
10.1.2 The Analyser Structure and Named Analysers . 212
10.1.3 The Planner Structure . 213
10.1.4 Atomic Parts . 213
10.1.5 Preview of Structures and Parts . 214
10.1.6 Planner Names . 214
10.1.7 Individual and Sets of Atomic Parts . 215

10.2 Unique Identifiers . 215
10.2.1 Urban Space Unique Identifier . 216
10.2.2 Analyser Unique Identifiers . 216
10.2.3 Master Planner Server Unique Identifier . 216
10.2.4 Master Planner Unique Identifier . 216
10.2.5 Derived Planner Server Unique Identifier . 217
10.2.6 Derived Planner Unique Identifier . 217
10.2.7 Derived Plan Index Generator Identifier . 217
10.2.8 Plan Repository . 217
10.2.9 Uniqueness of Identifiers . 218
10.2.10 Indices and Index Sets . 218
10.2.11 Retrieval of Parts from their Identifiers . 219
10.2.12 A Bijection: Derived Planner Names and Derived Planner Identifiers 219

10.3 Mereologies . 220
10.3.1 Clock Mereology . 220
10.3.2 Urban Space Mereology . 221
10.3.3 Analyser Mereology . 221
10.3.4 Analysis Depository Mereology . 221
10.3.5 Master Planner Server Mereology . 222
10.3.6 Master Planner Mereology . 222
10.3.7 Derived Planner Server Mereology . 222
10.3.8 Derived Planner Mereology . 223
10.3.9 Derived Planner Index Generator Mereology . 223
10.3.10 Plan Repository Mereology . 223

10.4 Attributes . 224
10.4.1 Clock Attribute . 224

10.4.1.1 Time and Time Intervals and their Arithmetic 224
10.4.1.2 The Attribute . 224

10.4.2 Urban Space Attributes . 225
10.4.2.1 The Urban Space . 225
10.4.2.2 The Urban Space Attributes . 225

10.4.2.2.1 Main Part and Attributes . 226
10.4.2.2.2 Urban Space Attributes – Narratives and

Formalisation . 226
10.4.2.2.3 General Form of Attribute Models 226

209

210 10 Urban Planning [Fall 2017]

10.4.2.2.4 Geodetic Attribute[s] . 227
10.4.2.2.5 Cadastral Attribute[s] . 227
10.4.2.2.6 Geotechnical Attribute[s] . 227
10.4.2.2.7 Meteorological Attribute[s] . 228
10.4.2.2.8 Socio-Economic Attribute[s] . 228
10.4.2.2.9 Law Attribute[s]: State, Province, Region, City

and District Ordinances . 229
10.4.2.2.10 Industry and Business Economics 229
10.4.2.2.11 Etcetera . 229
10.4.2.2.12 The Urban Space Attributes – A Summary 229
10.4.2.2.13 Discussion . 229

10.4.3 Scripts . 230
10.4.4 Urban Analysis Attributes . 230
10.4.5 Analysis Depository Attributes . 230
10.4.6 Master Planner Server Attributes . 231
10.4.7 Master Planner Attributes . 231
10.4.8 Derived Planner Server Attributes . 232
10.4.9 Derived Planner Attributes . 232
10.4.10 Derived Planner Index Generator Attributes . 232
10.4.11 Plan Repository Attributes . 233
10.4.12 A System Property of Derived Planner Identifiers . 233

10.5 The Structure Compilers . 234
10.5.1 A Universe of Discourse Compiler . 234
10.5.2 The Analyser Structure Compiler . 234
10.5.3 The Planner Structure Compiler . 235

10.5.3.1 The Master Planner Structure Compiler . 235
10.5.3.2 The Derived Planner Structure Compiler . 235
10.5.3.3 The Derived Planner Pair Structure Compiler 235

10.6 Channel Analysis and Channel Declarations . 236
10.6.1 The clk ch Channel . 236
10.6.2 The tus a ch Channel . 237
10.6.3 The tus mps ch Channel . 237
10.6.4 The a ad ch Channel . 237
10.6.5 The ad s ch Channel . 238
10.6.6 The mps mp ch Channel . 238
10.6.7 The p pr ch Channel . 238
10.6.8 The p dpxg ch Channel . 239
10.6.9 The pr s ch Channel . 239
10.6.10 The dps dp ch Channel . 240

10.7 The Atomic Part Translators . 240
10.7.1 The clock Translator . 240

10.7.1.1 The Translate CLK Function . 240
10.7.1.2 The clock Behaviour . 240

10.7.2 The Urban Space Translator . 241
10.7.2.1 The Translate TUS Function . 241
10.7.2.2 The urb spa Behaviour . 241

10.7.3 The Analyseranmi
, i:[1 : n] Translator . 243

10.7.3.1 The Translate Aanm j
Function . 243

10.7.3.2 The analyserui j
Behaviour . 243

10.7.4 The Analysis Depository Translator . 244
10.7.4.1 The Translate AD Function . 244
10.7.4.2 The ana dep Behaviour . 245

10.7.5 The Derived Planner Index Generator Translator . 245
10.7.5.1 The Translate DPXG(dpxg) Function . 245
10.7.5.2 The dpxg Behaviour . 246

10.7.6 The Plan Repository Translator . 246
10.7.6.1 The Translate PR Function . 246
10.7.6.2 The plan rep Behaviour . 247

10.7.7 The Master Server Translator . 247
10.7.7.1 The Translate MPS Function . 247
10.7.7.2 The master server Behaviour . 248

10.7.8 The Master Planner Translator . 248
10.7.8.1 The Translate MP Function . 248

10 Urban Planning [Fall 2017] 211

10.7.8.2 The Master urban planning Function . 249
10.7.8.3 The master planner Behaviour . 250
10.7.8.4 The initiate derived servers and derived planners Behaviour . . . 250

10.7.9 The Derived Servernmi
, i:[1 : p] Translator . 251

10.7.9.1 The Translate DPSnm j
Function . 251

10.7.9.2 The derived server Behaviour . 252
10.7.10 The Derived Plannernmi

, i:[1 : p] Translator . 253
10.7.10.1 The Translate DPdpnm j

Function . 253

10.7.10.2 The derived urban planning Function . 253
10.7.10.3 The derived plannernm j

Behaviour . 254

10.8 Initialisation of The Urban Space Analysis & Planning System 255
10.8.1 Summary of Parts and Part Names . 255
10.8.2 Summary of of Unique Identifiers . 255
10.8.3 Summary of Channels . 256
10.8.4 The Initial System . 256
10.8.5 The Derived Planner System . 257

10.9 Further Work . 257
10.9.1 Reasoning About Deadlock, Starvation, Live-lock and Liveness 257
10.9.2 Document Handling . 257

10.9.2.1 Urban Planning Documents . 257
10.9.2.2 A Document Handling System . 258

10.9.3 Validation and Verification (V&V) . 258
10.9.4 Urban Planning Project Management . 258

10.9.4.1 Urban Planning Projects . 258
10.9.4.2 Strategic, Tactical and Operational Management 259

10.9.4.2.1 Project Resources . 259
10.9.4.2.2 Strategic Management . 259
10.9.4.2.3 Tactical Management . 259
10.9.4.2.4 Operational Management . 259

10.9.4.3 Urban Planning Management . 260

Endurants
By an entity we shall understand a phenomenon, i.e., something that can be observed, i.e., be

seen or touched by humans, or that can be conceive d as an abstraction of an entity. We further
demand that an entity can be objectively described

By an endurant we shall understand an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we
would still be able to observe the entire endurant.

By a discrete endurant we shall understand an endurant which is separate, individual or
distinct in form or concept.

By a part we shall understand a discrete endurant which the domain engineer chooses to endow
with internal qualities68 such as unique identification, mereology, and one or more attributes. We
shall define these three categories in Sects. 10.2, 10.3, respectively Sect. 10.4. We refer in general to
[48].

In this, a major section of this report, we shall cover

• Sect. 10.1: Parts,
• Sect. 10.2: Unique Identifiers,
• Sect. 10.3: Mereology, and
• Sect. 10.4: Attributes.

68 – where by external qualities of an endurant we mean whether it is discrete of continuous, whether it is a parts,
or a component – such as these are defined in [48].

212 10 Urban Planning [Fall 2017]

10.1 Structures and Parts

From an epistemological69 point of view a study of the parts of a universe of discourse is often
the way to understand “who the players” of that domain are. From the point of view of [48]
knowledge about parts lead to knowledge about behaviours. This is the reason, then, for our
interest in parts.

10.1.1 The Urban Space, Clock, Analysis & Planning Complex

The domain-of-interest, i.e., the universe of discourse for this report is that of the urban space
analysis & planning complex – where the ampersand, ‘&’, shall designate that we consider this
complex as ‘one’ !

926. The universe of discourse, UoD, is here seen as a structure of four elements:

a. a clock, CLK,
b. the urban space, TUS,
c. an analyser aggregate, AA,
d. the planner aggregate, PA,

type
926 UoD, CLK, TUS, AAG, PA

value
926a obs CLK: UoD→ CLK

926b obs TUS: UoD→ TUS
926c obs AAG: UoD→ AAG

926d obs PA: UoD→ PA

The clock and the urban space are here considered atomic, the analyser aggregate, AA, and the the
planner aggregate, PA, are here seen as structures.

10.1.2 The Analyser Structure and Named Analysers

927. The analyser structure consists of

a. a structure, AC, which consists of two elements:
i. a structure of an indexed set, hence named analysers,

ii. Aanm1 , Aanm2 , . . . , Aanmn ,

and
928. an atomic analysis depository, AD.

There is therefore defined a set, ANms, of

929. analyser names: {anm1,anm2, . . . ,anmn}, where n ≥ 0.

type
927 AA, AC, A, AD

927(a)i A = Aanm1 | Aanm2 | ... | Aanmn

69 Epistemology is the branch of philosophy concerned with the theory of knowledge.

10.1 Structures and Parts 213

929 ANms = {|anm1,anm2, ...,anmn|}

value
927a obs AC: AA→ AC
927(a)ii obs ACanmi

: AC→ Aanmi
, i:[1..n]

928 obs AD: AA→ AD

Analysers and the analysis depository are here seen as atomic parts.

10.1.3 The Planner Structure

930. The composite planner structure part, consists of

a. a master planner structure, MPA, which consists of
i. an atomic master planner server, MPS, and

ii. an atomic master planner, MP, and
b. a derived planner structure, DPA, which consists of

i. a structure in the form of an indexed set of (hence named) derived planner structures,
DPCnm j

, j : [1..p], which each consists of
1. a atomic derived planner servers, DPSnm j

, j : [1..p], and
2. a atomic derived planners, DPnm j

, j : [1..p];
c. an atomic plan repository, PR, and
d. an atomic derived planner index generator, DPXG.

type
930 PA, MPA, MPS, MP, DPA, DPCnm j

, DPSnm j
, DPnm j

, i:[1..p]

value
930a obs MPA: PA→ MPA

930(a)i obs MPS: MPA→ MPS

930(a)ii obs MP: MPA→ MP
930b obs DPA: PA→ DPA

930(b)i obs DPCnm j
: DPA→ DPCnm j

, i:[1..p]

930(b)i1 obs DPSnm j
: DPCnm j

→ DPSnm j
, i:[1..p]

930(b)i2 obs DPnm j
: DPCnm j

→ DPnm j
, i:[1..p]

930c obs PR: PA→ PR

930d obs DPXG: → DPXG

We have chosen to model as structures what could have been modeled as composite parts. If we
were to domain analyse & describe management & organisation facets of the urban space analysis
& planning domain then we might have chosen to model some of these structures instead as
composite parts.

10.1.4 Atomic Parts

The following are seen as atomic parts:

214 10 Urban Planning [Fall 2017]

• clock,
• urban space,
• analysis deposit,
• each analyser in the indexed set of

analyseranmi
s,

• master planner server,
• master planner,

• each server in the indexed set of derived
planner servernm j

s,

• each planner in the indexed set of derived
plannernm j

s,

• derived planner index generator.

• plan repository and

We shall return to the these atomic part sorts when we explore their properties: unique identifiers,
mereologies and attributes.

10.1.5 Preview of Structures and Parts

Let us take a preview of the parts, see Fig. 10.1.

TUS CLK

AD

DPS_1

A_nm_1 A_nm_2 A_nm_n

DPS_nm_p

PR

DPXG

DP_nm_1 DP_nm_2 DP_nm_p

DPC_1 DPC_nm_2

DPS_nm_2

DPC_nm_pMPC

MPS

MP

PA

DPA

AC

AG

Fig. 10.1 The Urban Analysis and Planning System: Structures and Atomic Parts

10.1.6 Planner Names

931. There is therefore defined identical sets of derived planner aggregate names, derived planner
server names, and derived planner names: {dnm1,dnm2, . . . ,dnmp}, where g ≥ 0.

type
931 DNms = {|dnm1,dnm2, ...,dnmp|}

10.2 Unique Identifiers 215

10.1.7 Individual and Sets of Atomic Parts

In this closing section of Sect. 10.1.7 we shall identify individual and sets of atomic parts.

932. We postulate an arbitrary universe of discourse, uod:UoD and let that be a constant value from
which we the calculate a number of individual and sets of atomic parts.

933. There is the clock , clk:CLK,
934. the urban space, tus:TUS,
935. the set of analysers, aanmi

:Aanmi
, i:[1..n],

936. the analysis depository , ad,
937. the master planner server , mps:MPS,
938. the master planner , mp:MP,
939. the set of derived plannner servers, {dpsnmi

:DPSnmi
| i:[1..p]},

940. the set of derived planners, {dpnmi
:DPnmi

| i:[1..p]},
941. the derived plan index generator , dpxg,
942. the plan repository , pr, and
943. the set of pairs of derived server and derived planners, sps.

value
932 uod : UoD
933 clk : CLK = obs CLK(uod)

934 tus : TUS = obs TUS(uod)

935 ans : Aanmi
-set, i:[1..n] =

935 { obs Aanmi
(aa) | aa∈(obs AA(uod)), i:[1..n]}

936 ad : AD = obs AD(obs AA(uod))

937 mps : MPS = obs MPS(obs MPA(uod))
938 mp : MP = obs MP(obs MPA(uod))

939 dpss : DPSnmi
-set, i:[1..p] =

939 { obs DPSnmi
(dpcnmi

) |

939 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
940 dps : DPnmi

-set, i:[1..p] =
940 { obs DPnmi

(dpcnmi
) |

940 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
941 dpxg : DPXG = obs DPXG(uod)
942 pr : PR = obs PR(uod)

943 spsps : (DPSnmi
×DPnmi

)-set, i:[1..p] =
943 { (obs DPSnmi

(dpcnmi
),obs DPnmi

(dpcnmi
)) |

943 dpcnmi
:DPCnmi

•dpcnmi
∈ obs DPCSnmi

(obs DPA(uod)), i:[1..p] }

10.2 Unique Identifiers

We introduce a notion of unique identification of parts. We assume (i) that all parts, p, of any
domain P, have unique identifiers, (ii) that unique identifiers (of parts p:P) are abstract values (of
the unique identifier, π, sort Π UI of parts p:P), (iii) such that distinct part sorts, Pi and P j, have
distinctly named unique identifier sorts, say Π UIi and Π UI j, (iv) that all π:Π UIi and π j:Π UI j

are distinct, and (v) that the observer function uid P applied to p yields the unique identifier, say
π:Π UI, of p.

The analysis & description of unique identification is a prerequisite for talking about mere-
ologies of universes of discourse, and the analysis & description of mereologies are a means for
understanding how parts relate to one another.

216 10 Urban Planning [Fall 2017]

Since we model as structures what elsewhere might have been modeled as composite parts we
shall only deal with unique identifiers of atomic parts.

10.2.1 Urban Space Unique Identifier

944. The urban space has a unique identifier.

type
944 TUS UI
value
944 uid TSU: TSU→ TUS UI

10.2.2 Analyser Unique Identifiers

945. Each analyser has a unique identifier.
946. The analysis depository has a unique identifier.

type
945 A UI = A UIanm1 | A UIanm2 | ... | A UIanmn

946 AD UI

value
945 uid A: Anmi

→ A UInmi
, i : [1..n]

946 uid AD: AD→ AD UI

axiom
945 ∀ anmi

:Anmi
•

945 let a uinmi
= uid A(anmi

) in a uinmi
≃ nmi end

The mathematical symbol ≃ (in this report) denotes isomorphy.

10.2.3 Master Planner Server Unique Identifier

947. The unique identifier of the master planner server.

type
947 MPS UI
value
947 uid MPS: MPS→ MPS UI

10.2.4 Master Planner Unique Identifier

948. The unique identifier of the master planner.

type
948 MP UI

10.2 Unique Identifiers 217

value
948 uid MP: MP→ MP UI

10.2.5 Derived Planner Server Unique Identifier

949. The unique identifiers of derived planner servers.

type
949 DPS UI = DPS UInm1 | DPS UInm2 | ... | DPS UInmp

value
949 uid DPS: DPSnmi

→ DPS UInmi
, i : [1..p]

axiom
949 ∀ dpsnmi

:DPSnmi
•

949 let dps uinmi
= uid DPS(dpsnmi

) in dps uinmi
≃ nmi end

10.2.6 Derived Planner Unique Identifier

950. The unique identifiers of derived planners.

type
950 DP UI = DP UInm1 | DP UInm2 | ... | DP UInmp

value
950 uid DP: DPnmi

→ DP UInmi
, i : [1..p]

axiom
950 ∀ dpnmi

:DPnmi
•

950 let dp uinmi
= uid DP(dpnmi

) in dp uinmi
≃ nmi end

10.2.7 Derived Plan Index Generator Identifier

951. The unique identifier of derived plan index generator:

type
951 DPXG UI

value
951 uid DPXG: DPXG→ DPXG UI

10.2.8 Plan Repository

952. The unique identifier of plan repository:

type
952 PR UI

218 10 Urban Planning [Fall 2017]

value
952 uid PR: PR→ PR UI

10.2.9 Uniqueness of Identifiers

953. The identifiers of all analysers are distinct.
954. The identifiers of all derived planner servers are distinct.
955. The identifiers of all derived planners are distinct.
956. The identifiers of all other atomic parts are distinct.
957. And the identifiers of all atomic parts are distinct.

953 card ans = card auis
954 card dpss = card dpsuis
955 card dps = card dpuis
956 card{ clkui, tusui,adui,mpsui,mpui,dpxgui,plasui} = 7

957 ∩(ans,dpss,dps, {clkui, tusui,adui,mpsui,mpui,dpxgui,plasui})={}

10.2.10 Indices and Index Sets

It will turn out to be convenient, in the following, to introduce a number of index sets.

958. There is the clock identifier, clkui:CLK UI.
959. There is the urban space identifier, tusui:TUS UI.
960. There is the set, auis:A UI-set, of the identifiers of all analysers.
961. The analysis depository identifier, adui.
962. There is the master planner server identifier, mpsui:MPS UI.
963. There is the master planner identifier, mpui:MP UI.
964. There is the set, dpsuis:DPS UI-set, of the identifiers of all derived planner servers.
965. There is the set, dpuis:DP UI-set, of the identifiers of all derived planners.
966. There is the derived plan index generator identifier, dpxgui:DPXG UI.
967. And there is the plan repository identifier, prui:PR UI.

value
958 clkui : CLK UI = uid CLK(uod)

959 tusui : TUS UI = uid TUS(uod)

960 auis : A UI-set = {uid A(a)|a:A•a ∈ ans}
961 adui : AD UI = uid AD(ad)

962 mpsui : MPS UI = uid MPS(mps)
963 mpui : MP UI = uid MP(mp)

964 dpsuis : DPS UI-set = {uid DPS(dps)|dps:DPS•dps ∈ dpss}
965 dpuis : DP UI-set = {uid DP(dp)|dp:DP•dp ∈ dps}
966 dpxgui : DPXG UI = uid DPXG(dpxg)

967 prui : PR UI = uid PR(pr)

968. There is also the set of identifiers for all servers: psuis:(MPS UI|DPS UI)-set,
969. there is then the set of identifiers for all planners: psuis:(MP UI|DP UI)-set,
970. there is finally the set of pairs of paired derived planner server and derived planner identifiers.

10.2 Unique Identifiers 219

971. there is a map from the unique derived server identifiers to their “paired” unique derived
planner identifiers, and

972. there is finally the reverse map from planner to server identifiers.

value
968 suis : (MPS UI|DPS UI)-set = {mpsui} ∪ dpsuis
969 puis : (MP UI|DP UI)-set = {mpui} ∪ dpuis
970 sips : (DPS UI×DP UI)-set = {(uid DPS(dps),uid DP(dp))|(dps,dp):(DPS×DP)•(dps,dp)∈sps}
971 si pi m : DPS UI→m DP UI = [uid DPS(dps) 7→uid DP(dp)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]
972 pi si m : DP UI→m DPS UI = [uid DP(dp) 7→uid DPS(dps)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]

10.2.11 Retrieval of Parts from their Identifiers

973. Given the global set dpss, cf. 939 on page 215, i.e., the set of all derived servers, and given a
unique planner server identifier, we can calculate the derived server with that identifier.

974. Given the global set dps, cf. 940 on page 215, the set of all derived planners, and given a unique
derived planner identifier, we can calculate the derived planner with that identifier.

value
973 c s: dpss→ DPS UI→ DPS

973 c s(dpss)(dps ui) ≡ let dps:DPS•dps ∈dpss∧uid DPS(dps)=dps ui in dps end
974 c p: dps→ DP UI→ DP

974 c p(dps)(dp ui) ≡ let dp:DP•dp ∈dps∧uid DPS(dp)=dp ui in dp end

10.2.12 A Bijection: Derived Planner Names and Derived Planner Identifiers

We can postulate a unique relation between the names, dn:DNm-set, i.e., the names dn∈DNms,
and the unique identifiers of the named planners:

975. We can claim that there is a function, extr DNm, from the unique identifiers of derived planner
servers to the names of these unique identifiers.

976. Similarly can claim that there is a function, extr DNm, from the unique identifiers of derived
planners to the names of these unique identifiers.

value
975 extr Nm: DPS UI→ DNm

975 extr Nm(dps ui) ≡ ...
976 extr Nm: DP UI→ DNm
976 extr Nm(dp ui) ≡ ...
axiom
975 ∀ dps ui1,dps ui2:DPS ui • dps ui1,dps ui2⇒ extr Nm(dps ui1) , extr Nm(dps ui1)

976 ∀ dp ui1,dp ui2:DP ui • dp ui1,dp ui2⇒ extr Nm(dp ui1) , extr Nm(dp ui1)

977. Let dps ui dnm:DPS UI DNm, dp ui dnm:DP UI DNm stand for maps from derived planner
server, respectively derived planner unique identifiers to derived planner names.

978. Let nm dp ui:Nm DP UI, nm dp ui:Nm DP UI stand for the reverse maps.
979. These maps are bijections.

220 10 Urban Planning [Fall 2017]

type
977 DPS UI DNm: DPS UI →m DP Nm

977 DP UI DNm: DP UI →m DP Nm
978 DNm DPS UI: DP Nm →m DP UI

978 DNm DP UI: DP Nm →m DP UI
axiom

979 ∀ dps ui dnm:DPS UI DNm • dps ui dnm−1·dps ui dnnm = λx.x

979 ∀ dp ui dnm:DP UI DNm • dp ui dnm−1·dp ui dnnm = λx.x

979 ∀ dnm dps ui:DNm DPS UI • dnm dps ui−1·dnm dps ui = λx.x

979 ∀ dnm dp ui:DNm DP UI • dp ui dnm−1·dnm dps ui = λx.x

that is:

979 ∀ dps ui dnm:DPS UI DNm, dp ui dnm:DP UI DNm, dps ui:DPS UI •

979 dps ui ∈ dom dps ui dnm⇒ dp ui dnm(dps ui dnm(dps ui)) = dps ui

et cetera !

980. The function mk DNm DUI takes the set of all derived planner servers, respectively derived
planners and produces bijective maps, dnm dps ui, respectively dnm dp ui.

981. Let dnm dps ui:DNm DPS UI and
982. dnm dp ui:DNm DP UI

stand for such [global] maps.

value
980 mk Nm DPS UI: DPSnmi

-set→ DNm DPS UI

980 mk Nm DPS UI(dpss) ≡ [uid DPS(dps) 7→extr Nm(uid DPS(dps))|dps:DPS•dps ∈ dpss]
980 mk Nm DP UI: DPnmi

-set→ DNm DP UI

980 mk Nm DP UI(dps) ≡ [uid DP(dp) 7→extr Nm(uid DP(dp))|dp:DP•dps ∈ dps]

981 nm dps ui:Nm DPS UI = mk Nm DPS UI(dps)
982 nm dp ui:Nm DP UI = mk Nm DP UI(dps)

10.3 Mereologies

Mereology (from the Greek µǫρoς ‘part’) is the theory of part-hood relations: of the relations of
part to whole and the relations of part to part within a whole70.

Part mereologies inform of how parts relate to other parts. As we shall see in the section on
perdurants, mereologies are the basis for analysing & describing communicating between part
behaviours.

Again: since we model as structures what is elsewhere modeled as composite parts we shall
only consider mereologies of atomic parts.

10.3.1 Clock Mereology

983. The clock is related to all those parts that create information, i.e., documents of interest to other
parts. Time is then used to time-stamp those documents. These other parts are: the urban space,
the analysers, the planner servers and the planners.

70 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [75].

10.3 Mereologies 221

type
983 CLK Mer = TSU UI×A UI-set×MPS UI×MP UI×DPS UI-set×DP UI-set
value
983 mereo CLK: CLK→ Clk Mer

axiom
983 mereo CLK(uod) = (tusui,auis,mpsui,mpui,dpsuis,dpuis)

10.3.2 Urban Space Mereology

The urban space stands in relation to those parts which consume urban space information: the
clock (in order to time stamp urban space information), the analysers and the master planner
server.

984. The mereology of the urban space is a triple of the clock identifier, the identifier of the master
planner server and the set of all analyser identifiers. all of which are provided with urban space
information.

985. The constraint here is expressed in the ‘the’: for the universe of discourse it must be the master
planner aggregate unique identifier and the set of exactly all the analyser unique identifiers for
that universe.

type
984 TUS Mer = CLK UI × A UI-set × MPS UI
value
984 mereo TUS: TUS→ TUS Mer
axiom
985 mereo TUS(tus) = (clkui,auis,mpsui)

10.3.3 Analyser Mereology

986. The mereology of a[ny] analyser is that of a triple: the clock identifier, the urban space identifier,
and the analysis depository identifier.

type
986 A Mer = CLK UI × TUS UI × AD UI
value
986 mereo A: A→ A Mer

10.3.4 Analysis Depository Mereology

987. The mereology of the analysis depository is a triple: the clock identifier, the master planner
server identifier, and the set of derived planner server identifiers.

type
987 AD Mer = CLK UI × MPS UI × DPS UI-set
value
987 mereo AD: AD→ AD Mer

222 10 Urban Planning [Fall 2017]

10.3.5 Master Planner Server Mereology

988. The master planner server mereology is a quadruplet of the clock identifier (time is used to
time stamp input arguments, prepared by the server, to the planner), the urban space identifier,
the analysis depository and the master planner identifier.

989. And for all universes of discourse these must be exactly those of that universe.

type
988 MPS Mer = CLK UI × TUS UI × AD UI × MP UI

value
988 mereo MPS: MPS→ MPS Mer
axiom
989 mereo MPS(mps) = (clkui, tusui,adui,mpui)

10.3.6 Master Planner Mereology

990. The mereology of the master planner is a triple of: the clock identifier71, master server identi-
fier72, derived planner index generator identifier73, and the plan repository identifier74.

type
990 MP Mer = CLK UI × MPS UI × DPXG UI × PR UI

value
990 mereo MP: MP→ MP Mer

axiom
990 mereo MP(mp) = (clkui,mpsui,dpxgui,prui)

10.3.7 Derived Planner Server Mereology

991. The derived planner server mereology is a quadruplet of:

the clock identifier75, the set of all analyser
identifiers76, the plan repository identifier,77

and the derived planner identifier78.

type
991 DPS Mer = CLK UI × AD UI × PLAS UI × DP UI
value

71 From the clock the planners obtain the time with which they stamp all information assembled by the plannner.
72 from which the master planner obtains essential input arguments
73 in collaboration with which the master planner obtains a possibly empty set of derived planning indices
74 with which it posits and from which it obtains summaries of all urban planning plans produced so far.
75 From the clock the servers obtain the time with which they stamp all information assembled by the servers.
76 From the analysers the servers obtain analyses.
77 In collaboration with the plan repository the planners deposit plans etc. and obtains summaries of all urban
planning plans produced so far
78 The server provides its associated planner with appropriate input arguments.

10.3 Mereologies 223

991 mereo DPS: DPS→ DPS Mer

axiom
991 ∀ (dps,dp):(DPS×DP) • (dps,dp)∈sps⇒
991 mereo DPS(dps) = (clkui,adui,plasui,uid DP(dp))

10.3.8 Derived Planner Mereology

992. The derived planner mereology is a quadruplet of:

the clock identifier, the derived plan server
identifier, the derived plan index generator
identifier, and the plan repository identifier.

type
992 DP Mer = CLK UI × DPS UI × DPXG UI × PR UI

value
992 mereo DP: DP→ DP Mer
axiom
992 ∀ (dps,dp):(DPS×DP) • (dps,dp)∈sps⇒
992 mereo DP(dp) = (clkui,uid DPS(dps),dpxgui,prui)

10.3.9 Derived Planner Index Generator Mereology

993. The mereology of the derived planner index generator is the set of all planner identifiers: master
and derived.

type
993 DPXG Mer = (MP UI|DP UI)-set
value
993 mereo DPXG: DPXG→ DPXG Mer
axiom
993 mereo DPXG(dpxg) = psuis

10.3.10 Plan Repository Mereology

994. The plan repository mereology is the set of all planner identifiers: master and derived.

994 PR Mer = (MP UI|DP UI)-set
value
994 mereo PR: PR→ PR Mer

axiom
994 mereo PR(pr) = psuis

224 10 Urban Planning [Fall 2017]

10.4 Attributes

Parts are typically recognised because of their spatial form and are otherwise characterised by
their intangible, but measurable attributes. That is, whereas endurants, whether discrete (as are
parts and components) or continuous (as are materials), are physical, tangible, in the sense of
being spatial (or being abstractions, i.e., concepts, of spatial endurants), attributes are intangible:
cannot normally be touched, or seen, but can be objectively measured. Thus, in our quest for
describing domains where humans play an active rôle, we rule out subjective “attributes”: feelings,
sentiments, moods. Thus we shall abstain, in our domain science also from matters of aesthetics.
A formal concept, that is, a type, consists of all the entities which all have the same qualities. Thus
removing a quality from an entity makes no sense: the entity of that type either becomes an entity
of another type or ceases to exist (i.e., becomes a non-entity)

10.4.1 Clock Attribute

10.4.1.1 Time and Time Intervals and their Arithmetic

995. Time is modeled as a continuous entity.
996. One can subtract two times and obtain a time interval.
997. There is an “infinitesimally” smallest time interval, δt:T.
998. Time intervals are likewise modeled as continuous entities.
999. One can add or subtract a time interval to, resp. from a time and obtain a time.

1000. One can compare two times, or two time intervals.
1001. One can add and subtract time intervals.
1002. One can multiply time intervals with real numbers.

type
995 T

996 TI

value
996 sub: T × T→ TI

997 δt:TI

999 add,sub: TI × T→ T
1000 <,≤,=,≥,>: ((T×T)|(TI×TI))→ Bool
1001 add,sub: TI × TI→ TI
1002 mpy: TI × Real→ TI

10.4.1.2 The Attribute

1003. The only attribute of a clock is time. It is a programmable attribute.

type
1003 T

value
1003 attr T: CLK→ T
axiom
1003 ∀ clk:CLK •

1003 let (t,t′) = (attr CLK(clk);attr CLK(clk)) in
1003 t≤t′ end

10.4 Attributes 225

The ‘;’ in an expression (a;b) shall mean that first expression a is evaluated, then expression b.

10.4.2 Urban Space Attributes

10.4.2.1 The Urban Space

1004. We shall assume a notion of the urban space, tus:TUS, from which we can observe the attribute:
1005. an infinite, compact Euclidean set of points.
1006. By a point we shall understand a further undefined atomic notion.
1007. By an area we shall understand a concept, related to the urban space, that allows us to speak

of “a point being in an area” and “an area being equal to or properly within another area”.
1008. To an[y] urban space we can associate an area; we may think of an area being an attribute of

the urban space.

type
1004 TUS
1005 PtS = Pt-infset
value
1004 attr PtS: TUS→ Pt-infset
type
1006 Pt
1007 Area

value
1008 attr Area: TUS→ Area
1007 is Pt in Area: Pt × (TUS|Area)→ Bool
1007 is Area within Area: Area × (TUS|Area)→ Bool

10.4.2.2 The Urban Space Attributes

By urban space attributes we shall here mean the facts by means of which we can characterize
that which is subject to urban planning: the land, what is in and on it: its geodetics, its cadastra79,
its meteorology, its socio-economics, its rule of law, etc. As such we shall consider ‘the urban
space’ to be a part in the sense of [48]. And we shall consider the geodetic, cadastral, geotechnical,
meteorological, “the law” (i.e., state, province, city and district ordinances) and socio-economic
properties as attributes.

79 Cadastra: A Cadastra is normally a parcel based, and up-to-date land information system containing a record of
interests in land (e.g. rights, restrictions and responsibilities). It usually includes a geometric description of land
parcels linked to other records describing the nature of the interests, the ownership or control of those interests,
and often the value of the parcel and its improvements. See http://www.fig.net/

226 10 Urban Planning [Fall 2017]

Left: geodetic map, right: cadastral map.

10.4.2.2.1 Main Part and Attributes

One way of observing the urban space is presented: to the left, in the framed box, we narrate the
story; to the right, in the framed box, we formalise it.

1009. The Urban Space (TUS) has the following

a. PointSpace attributes,
b. Geodetic attributes,
c. Cadastre attributes,
d. Geotechnical attributes,
e. Meteorological attributes,
f. Law attributes,
g. Socio-Economic attributes, etcetera.

type
1009 TUS, PtS, GeoD, Cada, GeoT, Met, Law, SocEco, ...

value
1009a attr Pts: TUS→ PtS
1009b attr GeoD: TUS→ GeoD
1009c attr Cada: TUS→ Cada
1009d attr GeoT: TUS→ GeoT
1009e attr Met: TUS→ Met
1009f attr Law: TUS→ Law
1009g attr SocEco: TUS→ SocEco

The attr A: P → A is the signature of a postulated attribute (observer) function. From parts of
type P it observes attributes of type A. attr A are postulated functions. They express that we can
always observe attributes of type A of parts of type P.

10.4.2.2.2 Urban Space Attributes – Narratives and Formalisation

We describe attributes of the domain of urban spaces. As they are, in real life. Not as we may record
them or represent them (on paper or within the computer). We can “freely” model that reality as
we think it is. If we can talk about and describe it, then it is so ! For meteorological attributes it
means that we describe precipitation, evaporation, humidity and atmospheric pressure as these
physical phenomena “really” are: continuous over time ! Similar for all other attributes. Etcetera.

10.4.2.2.3 General Form of Attribute Models

1010. We choose to model the General Form of Attributes, such as geodetical, cadastral, geotechnical,
meteorological, socio-economic, legal, etcetera, as [continuous] functions from time to maps
from points or areas to the specific properties of the attributes.

1011. The points or areas of the properties maps must be in, respectively within, the area of the urban
space whose attributes are being specified.

type
1010 GFA = T→ ((Pt|Area) →m Properties)

value
1011 wf GFA: GFA × TUS→ Bool

10.4 Attributes 227

1011 wf GFA(gfa,tus) ≡

1011 let area = attr Area(tus) in
1011 ∀ t:T • t ∈ D gfa⇒
1011 ∀ pt:Pt • pt ∈ dom gfa(t)⇒ is Pt in Area(pt,area)

1011 ∧ ∀ ar:Area • ar ∈ dom gfa(t)⇒ is within Area(ar,area)
1011 end

D is a hypothesized function which applies to continuous functions and yield their domain !

10.4.2.2.4 Geodetic Attribute[s]

1012. Geodetic attributes map points to

a. land elevation and what kind of land it is; and (or) to
b. normal and current water depths and what kind of water it is.

1013. Geodetic attributes also includes road nets and what kind of roads;
1014. etcetera,

type
1012 GeoD = T→ (Pt →m ((Land|Water) × RoadNet × ...))
1012a Land = Elevation × (Farmland|Urban|Forest|Wilderness|Meadow|Swamp|...)
1012b Water = (NormDepth × CurrDepth) × (Spring|Creek|River|Lake|Dam|Sea|Ocean|...)
1013 RoadNet = ...
1014 ...

10.4.2.2.5 Cadastral Attribute[s]

A cadastre is a public register showing details of ownership of the real property in a district,
including boundaries and tax assessments.

1015. Cadastral maps shows the boundaries and ownership of land parcels. Some cadastral maps
show additional details, such as survey district names, unique identifying numbers for parcels,
certificate of title numbers, positions of existing structures, section or lot numbers and their
respective areas, adjoining and adjacent street names, selected boundary dimensions and ref-
erences to prior maps.

1016. Etcetera.

type
1015 Cada = T→ (Area →m (Owner × Value × ...))
1016 ...

10.4.2.2.6 Geotechnical Attribute[s]

1017. Geotechnical attributes map points to

a. top and lower layer soil etc. composition, by depth levels,
b. ground water occurrence, by depth levels,
c. gas, oil occurrence, by depth levels,
d. etcetera.

228 10 Urban Planning [Fall 2017]

type
1017 GeoT = (Pt →m Composition)

1017a Composition = VerticalScaleUnit × Composite∗

1017b Composite = (Soil|GroundWater|Sand|Gravel|Rock|...|Oil|Gas|...)
1017c Soil,Sand,Gravel,Rock,...,Oil,Gas,... = [chemical analysis]
1017d ...

10.4.2.2.7 Meteorological Attribute[s]

1018. Meteorological information records, for points (of an area) precipitation, evaporation, humidity,
etc.;

a. precipitation: the amount of rain, snow, hail, etc.; that has fallen at a given place and at the
time-stamped moment80, expressed, for example, in milimeters of water;

b. evaporation: the amount of water evaporated (to the air);
c. atmospheric pressure;
d. air humidity;
e. etcetera.

1018 Met = T→ (Pt →m (Precip × Evap × AtmPress × Humid × ...))
1018a Precip = MMs [milimeters]
1018b Evap = MMs [milimeters]
1018c AtmPress = MB [milibar]
1018d Humid = Percent

1018e ...

10.4.2.2.8 Socio-Economic Attribute[s]

1019. Socio-economic attributes include time-stamped area sub-attributes:

a. income distribution;
b. housing situation, by housing category: apt., etc.;
c. migration (into, resp. out of the area);
d. social welfare support, by citizen category;
e. health status, by citizen category;
f. etcetera.

type
1019 SocEco = T→ (Area →m (Inc×Hou×Mig×SoWe×Heal×...))
1019a Inc = ...
1019b Hou = ...
1019c Mig = {|”in”,”out”|} →m ({|”male”,”female”|} →m (Agegroup × Skills × HealthSumm × ...))
1019d SoWe = ...
1019e CommHeal = ...
1019f ...

80 – that is within a given time-unit

10.4 Attributes 229

10.4.2.2.9 Law Attribute[s]: State, Province, Region, City and District Ordinances

1020. By the law we mean any state, province, region, city, district or other ‘area’ ordinance81.
1021. ...

type
1020 Law
value
1020 attr Law: TUS→ Law

type
1020 Law = Area →m Ordinances

1021 ...

10.4.2.2.10 Industry and Business Economics

to be written

10.4.2.2.11 Etcetera

to be written

10.4.2.2.12 The Urban Space Attributes – A Summary

Summarising we can model the aggregate of urban space attributes as follows.

1022. Each of these attributes can be given a name.
1023. And the aggregate can be modelled as a map (i.e., a function) from names to appropriately

typed attribute values.

type
1022 TUS Attr Nm = {|”pts”,”ged”,”cad”,”get”,”law”,”eco”,...|}
1023 TUSm = TUS Attr Nm →m TUS Attr

axiom
1023 ∀ tusm:TUSm • ∀ nm:TUS Attr Nm • nm ∈ dom tusm⇒
1023 case (nm,mtusm(nm)) of
1023 ((”pts”,v)→ is PtS(v), ”ged”,v)→ is GeoD(v), (”cad”,v)→ is CaDa(v),

1023 (”get”,v)→ is GeoT(v), (”law”,v)→ is Law(v), (”eco”,v)→ is Eco(v), ...
1023 end

10.4.2.2.13 Discussion

to be written

81 Ordinance: a law set forth by a governmental authority; specifically a municipal regulation: for ex.: A city
ordinance forbids construction work to start before 8 a.m.

230 10 Urban Planning [Fall 2017]

10.4.3 Scripts

The concept of scripts is relevant in the context of analysers and planners.
By a script we shall understand the structured, almost, if not outright, formally expressed,

wording of a procedure on how to proceed, one that may have legally binding power, that is,
which may be contested in a court of law.

Those who contract urban analyses and urban plannings may wish to establish that some
procedural steps are taken. Examples are: the vetting of urban space information, the formulation
of requirements to what the analysis must contain, the vetting of that and its “quality”, the order
of procedural steps, etc. We refer to [50, 57].

A[ny] script, as implied above, is “like a program”, albeit to be “computed” by humans.
Scripts may typically be expressed in some notation that may include: graphical renditions that,

for example, illustrate that two or more independent groups of people, are expected to perform
a number of named and more-or-less loosely described actions, expressed in, for example, the
technical (i.e., domain) language of urban analysis, respectively urban planning.

The design of urban analysis and of urban planning scripts is an experimental research project
with fascinating prospects for further understanding what urban analysis and urban planning is.

10.4.4 Urban Analysis Attributes

1024. Each analyser is characterised by a script, and
1025. the set of master and/or derived planner server identifiers – meaning that their “attached”

planners might be interested in its analysis results.

type
1024 A Script = A Scriptanm1 | A Scriptanm2 | ... | A Scriptanmn

1025 A Mer = (MPS UI|DPS UI)-set
value
1024 attr A Script: A→ A Scripts

1025 attr A Mer: A→ A Mer
axiom
1025 ∀ a:A•a ∈ ans⇒ attr A Mer(a) ⊆ psuis

10.4.5 Analysis Depository Attributes

The purpose of the analysis depository is to accept, store and distribute collections of analyses;
it accepts these analysis from the analysers. it stores these analyses “locally”; and it distributes
aggregates of these analyses to plan servers.

1026. The analysis depository has just one attribute, AHist. It is modeled as a map from analyser
names to analysis histories.

1027. An analysis history is a time-ordered sequence, of time stamped analyses, most recent analyses
first.

type
1026 AHist = ANm →m (s T:T × s Anal:Analanmi

)∗

value
1026 attr AHist: AD→ AHist

10.4 Attributes 231

axiom
1027 ∀ ah:AHist, anm:ANm • anm ∈ dom ah⇒

1027 ∀ i:Nat • {i,i+1}⊆inds ah(anm)⇒
1027 s T((ah(nm))[i]) > s T((ah(nm))[i+1])

10.4.6 Master Planner Server Attributes

The planner servers, whether for master planners or derived planners, assemble arguments for
their associated (i.e., ‘paired’) planners. These arguments include information auxiliary to other
arguments, such as urban space information for the master planner, and analysis information
for all planners; in addition the server also provides requirements that are resulting planner
plans are expected to satisfy. For every iteration of the planner behaviour the pair of auxiliary
and requirements information is to be renewed and the renewed pairs must somehow “fit” the
previously issued pairs.

1028. The programmable attributes of the master planner server are those of aux:AUXiliaries and
req:REQuirements.

1029. We postulate a predicate function, fit mAux mReq, which takes a pair of pairs auxiliary and
requirements arguments, and yields a truth value.

type
1028 mAUX, mREQ

value
1028 attr mAUX: MPS→ mAUX
1028 attr mREQ: MPS→ mREQ

1029 fit mAUX mReq: (mAUX×mREQ)×(mAUX×mREQ)→ Bool
1029 fit mAUX mReq(arg prev,arg new) ≡ ...

10.4.7 Master Planner Attributes

The master planner has the following attributes:

1030. a master planner script which is a static attribute ;
1031. an aggregate of script “counters”, a programmable attribute ; the aggregate designates pointers

in the master script where resumption of master planning is to take place in a resumed planning;
1032. a set of names of the analysers whose analyses the master planner is, or may be interested in,

a static attribute ; and
1033. a set of identifiers of the derived planners which the master planner may initiate static attribute.

type
1030 MP Script

1031 MP Script Pt

1031 MP Script Pts = MP Script pt-set
1032 ANms = ANm-set
1033 DPUIs = DP UI-set
value

1030 attr MP Script: MP→ MP Script
1031 attr Script Pts: MP→ MP Script Pts

1032 attr ANms: MP→ ANms

1033 attr DPUIs: MP→ DPUIs
axiom
1032 attr ANms(mp) ⊆ ANms
1033 attr DPNms(mp) ⊆ DNms

232 10 Urban Planning [Fall 2017]

10.4.8 Derived Planner Server Attributes

1034. The programmable attributes, of the derived planner servers are those of aux:AUXiliaries and
req:REQuirements, one each of an indexed set.

1035. We postulate an indexed predicate function, fit mAux mReq, which takes a pair of pairs auxiliary
and requirements arguments, and yields a truth value.

type
1028 dAUX = dAUXdnm1

| dAUXdnm2
| ... | dAUXdnmp

1028 dREQ = dREQdnm1
| dREQdnm2

| ... | dREQdnmp

value
1034 attr dAUXdnmi

: MPSdnmi
→ dAUXdnmi

1034 attr dREQdnmi
: MPSdnmi

→ dREQdnmi

1035 fit dAUX dReqdnmi
dReqdnmi

: (dAUXdnmi
×dREQdnmi

)×(dAUXdnmi
×dREQdnmi)→ Bool

1035 fit dAUX dReqi(arg prevdnmi
,arg newdnmi

) ≡ ...

10.4.9 Derived Planner Attributes

1036. a derived planner script which is a static attribute ;
1037. an aggregate of script “counters”, a programmable attribute; the aggregate designates points in

the derived planner script where resumption of derived planning is to take place in a resumed
planning;

1038. a set of identifiers of the analysers whose analyses the master planner is, or may be interested
in, a static attribute ; and

1039. a set of identifiers of the derived planners which any specific derived planner may initiate, a
static attribute.

type
1036 DP Script
1037 DP Script pt

1037 DP Script Pts = DP Script pt∗

1038 ANms
1039 DNms

value

1036 attr MP Script: MP→ MP Script

1037 attr Script Pts: MP→ Script Pts
1038 attr ANms: MP→ ANms

1039 attr DNms: MP→ DNms

axiom
1038 attr AUIs(mp) ⊆ ANms

1039 attr DPUIs(mp) ⊆ DNms

10.4.10 Derived Planner Index Generator Attributes

The derived planner index generator has two attributes:

1040. the set of all derived planner identifiers (a static attribute), and
1041. a set of already used planner identifiers (a programmable attribute).

type
1040 All DPUIs = DP UI-set
1041 Used DPUIs = DP UI-set
value
1040 attr All DPUIs: DPXG→

All DPUIs

10.4 Attributes 233

1041 attr Used DPUIs: DPXG→

Used DPUIs

axiom
1040 attr All DPUIs(dpxg) = dpuis
1041 attr Used DPUIs(dpxg) ⊆ dpuis

10.4.11 Plan Repository Attributes

The rôle of the plan repository is to keep a record of all master and derived plans. There are two
plan repository attributes.

1042. A bijective map between derived planner identifiers and names, and
1043. a pair of a list of time-stamped master plans and a map from derived planner names to lists of

time-stamped plans, where the lists are sorted in time order, most recent time first.

type
1042 NmUIm = DNm →m DP UI
1043 PLANS = ((MP UI|DP UI)→m (s t:T×s pla:PLA)∗)

value
1042 attr NmUIm: PR→ NmUIm

axiom

1042 ∀ bm:NmUIm • bm−1(bm) ≡ λx.x

value
1042 attr PLANS: PR→ PLANS

axiom
1043 let plans = attr PLANS(pr) in
1043 dom plans ⊆ {mpui}∪dpuis
1043 ∀ pui:(MP UI|DP UI)•pui ∈ {mpui}∪dpuis⇒ time ordered(plans(pui))

1043 end
value
1043 time ordered: (s t:T×s pla:PLA)∗ → Bool
1043 time ordered(tsl) ≡ ∀ i:Nat•{i,i+1}⊆inds tsl⇒ s t(sl(i)) > s t(tsl(i+1))

10.4.12 A System Property of Derived Planner Identifiers

Let there be given the set of derived planners dps.

1044. The function reachable identifiers is the one that calculates all derived planner identifiers
reachable from a given such identifier, dp ui:DP UI, in dps.

a. We calculate the derived planner, dp:DP, from dp ui.
b. We postulate a set of unique identifiers, uis, initialised with those that can are in the

attr DPUIs(dp) attribute.
c. Then we recursively calculate the derived planner identifiers that can be reached from any

identifier, ui, in uis.
d. The recursion reaches a fix-point when there are no more identifiers “added” to uis in an

iteration of the recursion.

1045. A derived planner must not “circularly” refer to itself.

234 10 Urban Planning [Fall 2017]

value
1044 reachable identifiers: DP-set × DP UI→ DP UI-set
1044 (dps)(dp ui) ≡
1044a let dp = c p(dps)(dp ui) in
1044b let uis = attr DPUIs(dp) ∪
1044c {ui|ui:DP UI•ui ∈ uis ∧ ui ∈ reachable identifiers(dps)(ui)}

1044d in uis end end

1045 ∀ ui:DP UI • ui ∈ dpuis⇒ ui < names(dps)(ui)

The seeming “endless recursion” ends when an iteration of the dns construction and its next does
not produce new names for dns — a least fix-point has been reached.

10.5 The Structure Compilers

10.5.1 A Universe of Discourse Compiler

In this section, i.e., all of Sect. 10.5.1, we omit complete typing of behaviours.

1046. The universe of discourse, uod, Behaviour Signatures and Translates into the of its four elements:

a. the translation of the atomic clock, see Item 10.7.1 on page 240,
b. the translation of the atomic urban space, see Item 10.7.2 on page 241,
c. the compilation of the analyser structure, see Item 10.5.2,
d. the compilation of planner structure. see Item 10.5.3 on the facing page,

value
1046 Behaviour Signature UoD(uod) ≡

1046a Translate CLK(clk),

1046b Translate TUS(tus),
1046c Behaviour Signature AA(obs AA(uod)),

1046d Behaviour Signature PA(obs PA(uod))

The Compiler apply to, as here, structures, or composite parts. The Translator apply to atomic
parts. In this section, i.e., Sect. 10.5.1, we will explain the obvious meaning of these functions: we
will not formalise their type, and we will make some obvious short-cuts.

10.5.2 The Analyser Structure Compiler

1047. Compiling the analyser structure results in an RSL-Text which expresses the separate

a. translation of each of its n analysers, see Item 10.7.3 on page 243, and
b. the translation of the analysis depository, see Item 10.7.4 on page 244.

1047 Behaviour Signature AA(aa) ≡
1047a { Translate Aanmi

(obs Aanmi
(aa)) | i:[1..n] },

1047b Translate AD(obs AD(aa))

10.5 The Structure Compilers 235

10.5.3 The Planner Structure Compiler

1048. The planner structure, pa:PA, compiles into four elements:

a. the compilation of the master planner structure, see Item 10.5.3.1,
b. the translation of the derived server index generator, see Item 10.7.5 on page 245,
c. the translation of the plan repository, see Item 10.7.6 on page 246, and
d. the compilation of the derived server structure, see Item 10.5.3.2.

1048 Behaviour Signature PA(pa) ≡

1048a Behaviour Signature MPA(obs MPA(pa)),
1048b Translate DPXG(obs DPXG(pa)),

1048c Translate PR(obs PR(pa)),

1048d Behaviour Signature DPA(obs DPA(pa))

10.5.3.1 The Master Planner Structure Compiler

1049. Compiling the master planner structure results in an RSL-Text which expresses the separate
translations of the

a. the atomic master planner server, see Item 10.7.7 on page 247 and
b. the atomic master planner, see Item 10.7.8 on page 248.

1049 Behaviour Signature MPA(mpa) ≡
1049a Translate MPS(obs MPS(mpa)),

1049b Translate MP(obs MP(mpa))

10.5.3.2 The Derived Planner Structure Compiler

1050. The compilation of the derived planner structure results in some RSL-Text which expresses the
set of separate compilations of each of the derived planner pair structures, see Item 10.5.3.3.

1050 Behaviour Signature DPA(dpa) ≡ { Behaviour Signature(obs DPCnm j
(pa)) | j:[1..p] }

10.5.3.3 The Derived Planner Pair Structure Compiler

1051. The compilation of the derived planner pair structure results in some RSL-Text which expresses

a. the results of translating the derived planner server, see Item 10.7.9 on page 251 and
b. the results of translating the derived planner, see Item 10.7.10 on page 253.

1051 Behaviour Signature DPCnm j
(dpcnm j

), i:[1..p] ≡

1051a Translate DPSnm j
(obs DPSnm j

(dpcnm j
)),

1051b Translate DPnm j
(obs DPnm j

(dpcnm j
))

236 10 Urban Planning [Fall 2017]

10.6 Channel Analysis and Channel Declarations

The transcendental interpretation of parts as behaviours implies existence of means of communi-
cation & synchronisation of between and of these behaviours. We refer to Fig. 10.2 for a summary
of the channels of the urban space analysis and urban planning system.

more to come

��������

mps:MPS

dpxg

DPXG

pr:PR

dps_nm_1 dps_nm_2 dps_nm_p

a_anm_na_anm_2

clk_ch

a_anm_1
clk:CLK

{tus_a_ch[j]|j:a_ui_s}

clk_ch

clk_ch

ad

clk_ch
tus:TUS

{a_ad_ch[j]|j:a_ui_s}

mp:MP

dp_nm_p
dp_nm_2dp_nm_1

{p_pr_ch[i]|i:p_ui_s}

{p_dpxg_ch[i]|i:p_ui_s}

s_p_ch[dps_ui1] s_p_ch[dps_ui2] ps_p_ch[dp_ui_p]

{ad_s_ch[i]|i:{mps_ui} U a_ui_s}

mps_mp_ch

{pr_s_ch[i]|i:s_ui_s}

tus_mps_ch

Fig. 10.2 The Urban Space and Analysis Channels and Behaviours

10.6.1 The clk ch Channel

The purpose of the clk ch channel is, for the clock, to propagate Time to such entities who
inquire. We refer to Sects. 10.3.1 on page 220, 10.3.2 on page 221, 10.3.3 on page 221, 10.3.5 on
page 222, 10.3.6 on page 222, 10.3.7 on page 222 and 10.3.8 on page 223 for the mereologies that
help determine the indices for the clk ch channel.

1052. There is declared a (single) channel clk ch
1053. whose messages are of type CLK MSG (for Time).

The clk ch is single. There is no need for enquirers to provide their identification. The clock “freely”
dispenses of “its” time.

type
1052 CLK MSG = T

10.6 Channel Analysis and Channel Declarations 237

channel
1053 clk ch:CLK MSGch-clk-010

10.6.2 The tus a ch Channel

The purpose of the tus a ch channel is, for the the urban space, to propagate urban space attributes

to analysers. We refer to Sects. 10.3.2 and 10.3.3 for the mereologies that help determine the indices
for the tus a -ch channel.

1054. There is declared an array channel tus a ch whose messages are of
1055. type TUS MSG (for a time stamped aggregate of urban space attributes, TUSm, cf. Item 1023

on page 229).

type
1055 TUS MSG = T × TUSm

channel
1054 {tus a ch[a ui]:TUS MSG|a ui:A UI•a ui ∈ auis} ch-tus-a-000

The tus a ch channel is to offer urban space information to all analysers. Hence it is an array
channel over indices ANms, cf. Item 929 on page 212.

10.6.3 The tus mps ch Channel

The purpose of the tus mps ch channel is, for the the urban space, to propagate urban space
attributes to the master planner server. We refer to Sects. 10.3.2 and 10.3.5 for the mereologies that
help determine the indices for the tus mps ch channel.

1056. There is declared a channel tus mps ch whose messages are of
1055 type TUS MSG (for a time stamped aggregate of urban space attributes, TUSm, cf. Item 1023

on page 229).

type
1055 TUS MSG = T × TUSm
channel
1056 tus mps ch:TUS MSGch-tus-mps-000

The tus s ch channel is to offer urban space information to just the master server. Hence it is a
single channel.

10.6.4 The a ad ch Channel

The purpose of the a ad ch channel is, for analysers to propagate analysis results to the analysis

depository. We refer to Sects. 10.3.3 and 10.3.4 for the mereologies that help determine the indices
for the a ad ch channel.

1057. There is declared a channel a ad ch whose time stamped messages are of
1058. type A MSG (for analysis message).

238 10 Urban Planning [Fall 2017]

type
1058 A MSGanmi

= (s T:T × s A:Analysisanmi
), i:[1:n]

1058 A MSG = A MSGanm1 |A MSGanm2 |...|A MSGanmn

channel
1057 {a ad ch[a ui]:A MSG|a ui:A UI•a ui ∈ auis}ch-a-ad-000

10.6.5 The ad s ch Channel

The purpose of the ad s ch channel is, for the analysis depository to propagate histories of analysis

results to the server. We refer to Sects. 10.3.4, 10.3.5 and 10.3.7 for the mereologies that help
determine the indices for the ad s ch channel.

1059. There is declared a channel ad s ch whose messages are of
1060. type AD MSG (defined as A Hist for a histories of analyses), see Item 1026 on page 230.

type
1060 AD MSG = A Hist

channel
1059 {ad s ch[s ui]|s ui:(MPS UI|DPS UI)•s ui ∈{mpsui}∪dpsuis}:AD MSGch-ad-dps-000

The ad s ch channel is to offer urban space information to the master and derived servers. Hence
it is an array channel.

10.6.6 The mps mp ch Channel

The purpose of the mps mp ch channel is for the master server to propagate comprehensive
master planner input to the master planner. We refer to Sects. 10.3.5 and 10.3.6 for the mereologies
that help determine the indices for the mps mp ch channel.

1061. There is declared a channel mps mp ch whose messages are of
1062. type MPS MSG which are quadruplets of time stamped urban space information, TUS MSG,

see Item 1055 on the preceding page, analysis histories, A Hist, see Item 1060, master planner
auxiliary information, mAUX, and master plan requirements, mREQ.

type
1062 MPS MSG = TUS MSG×AD MSG×mAUX×mREQ

channel
1061 mps mp ch:MPS MSGch-mps-mp-000

The mps mp ch channel is to offer MPS MSG information to just the master server. Hence it is a
single channel.

10.6.7 The p pr ch Channel

The purpose of the p pr ch channel is, for master and derived planners to deposit and retrieve
master and derived plans to the plan repository. We refer to Sects. 10.3.6 and 10.3.10 for the
mereologies that help determine the indices for the p pr ch channel.

10.6 Channel Analysis and Channel Declarations 239

1063. There is declared a channel p pr ch whose messages are of
1064. type PLAN MSG – for time stamped master plans.

type
1064 PLAN MSG = T × PLANS
channel
1063 {p pr ch[p ui]:PLAN MSG|p ui:(MP UI|DP UI)•p ui ∈ puis} ch-mp-pr-000

The p pr ch channel is to offer comprehensive records of all current plans to all the the planners.
Hence it is an array channel.

10.6.8 The p dpxg ch Channel

The purpose of the p dpxg ch channel is, for planners to request and obtain derived planner index

names of, respectively from the derived planner index generator. We refer to Sects. 10.3.6 and
10.3.9 for the mereologies that help determine the indices for the mp dpxg ch channel.

1065. There is declared a channel p dpxg ch whose messages are of
1066. type DPXG MSG. DPXG MSG messages are

a. either request from the planner to the index generator to provide zero, one or more of an
indicated set of derived planner names,

b. or to accept such a (response) set from the index generator.

type
1066 DPXG MSG = DPXG Req | DPXG Rsp

1066a DPXG Req :: DNm-set
1066b DPXG Rsp :: DNm-set
channel
1065 {p dpxg ch[ui]:DPXG MSG|ui:(MP UI|DP UI)•ui ∈ puis} ch-mp-ix-000

10.6.9 The pr s ch Channel

The purpose of the pr s ch channel is, for the plan repository to provide master and derived plans

to the derived planner servers. We refer to Sects. 10.3.10 and 10.3.7 for the mereologies that help
determine the indices for the pr dps ch channel.

1067. There is declared a channel pr dps ch whose messages are of
1068. type PR MSGd, defined as PLAp, cf. Item 1043 on page 233.

type
1068 PR MSG = PLANS

channel
1067 {pr s ch[ui]:PR MSGd|ui:(MPS UI|DPS UI)•ui ∈ suis}ch-pr-dps-000

240 10 Urban Planning [Fall 2017]

10.6.10 The dps dp ch Channel

The purpose of the dps dp ch channel is, for derived planner servers to provide input to the derived
planners. We refer to Sects. 10.3.7 and 10.3.8 for the mereologies that help determine the indices
for the dps dp ch channel.

1069. There is declared a channel dps dp ch[ui nm j], one for each derived planner pair.
1070. The channel messages are of type DPS MSGnm j

. These DPS MSGnmi
messages are quadruplets

of analysis aggregates, AD MSG, urban plan aggregates, PLANS, derived planner auxiliary
information, dAUXnm j

, and derived plan requirements, dAUXnm j
.

type
1070 DPS MSGnm j

= AD MSG×PLANS×dAUXnm j
×dREQnm j

, j:[1..p]

channel
1069 {dps dp ch[ui]:DPS MSGnm j

|ui:DPS UI•ui ∈ dpsuis}ch-dps-dp-000

10.7 The Atomic Part Translators

10.7.1 The clock Translator

We refer to Sect. 10.4.1.2 for the attributes that play a rôle in determining the clock signature.

10.7.1.1 The Translate CLK Function

1071. The Translate CLK(clk) results in three text elements:

a. the value keyword,
b. the signature of the clock definition,
c. and the body of that definition.

The clock signature contains the unique identifier of the clock; the mereology of the clock,
cf. Item 10.3.1 on page 220; and the attributes of the clock, in some form or another: the pro-
grammable time attribute and the channel over which the clock offers the time.

value
1071 Translate CLK(clk) ≡

1071a ” value
1071b clock: T→ out clk ch Unit
1071c clock(uid CLK(clk),mereo CLK(clk))(attr T(clk)) ≡ ... ”

10.7.1.2 The clock Behaviour

The purpose of the clock is to show the time. The “players” that need to know the time are: the
urban space when informing requestors of aggregates of urban space attributes, the analysers
when submitting analyses to the analysis depository, the planners when submitting plans to the
plan repository.

1072. We see the clock as a behaviour.

10.7 The Atomic Part Translators 241

1073. It takes a programmable input, the current time, t.
1074. It repeatedly emits the some next time on channel clk ch.
1075. Each iteration of the clock it non-deterministically, internally increments the current time by

either nothing or an infinitisimally small time interval δ ti, cf. Item 997 on page 224.
1076. In each iteration of the clock it either offers this next time, or skips doing so;
1077. whereupon the clock resumes being the clock albeit with the new, i.e., next time.

value
1074 δti:TI = ... cf. Item 997 on page 224

1072 clock: T→ out clk ch Unit
1073 clock(uid clk,mereo clk)(t) ≡
1075 let t′ = (t+δti) ⌈⌉ t in
1076 skip ⌈⌉ clk ch!t′ ;

1077 clock(uid clk,mereo clk)(t′) end
1077 pre: uid clk = clkui ∧

1077 mereo clk = (tusui,auis,mpsui,mpui,dpsuis,dpuis)

10.7.2 The Urban Space Translator

We refer to Sect. 10.4.2.2 for the attributes that play a rôle in determining the urban space signature.

10.7.2.1 The Translate TUS Function

1078. The Translate TUS(tus) results in three text elements:

a. the value keyword
b. the signature of the urb spa definition,
c. and the body of that definition.

The urban space signature contains the unique identifier of the urban space, the mereology of
the urban space, cf. Item 10.3.2 on page 221, the static point space attribute.

value
1078 Translate TUS(tus) ≡
1078a ” value
1078b urb spa: TUS UI × TUS Mer→ Pts→

1078b out ... Unit
1078c urb spa(uid TUS(tus),mereo TUS(tus))(attr Pts(tus)) ≡ ... ”

We shall detail the urb spa signature and the urb spa body next.

10.7.2.2 The urb spa Behaviour

The urban space can be seen as a behaviour. It is “visualized” as the rounded edge box to the left
in Fig. 10.3 on the next page. It is a “prefix” of Fig. 10.3 on the following page. In this section we
shall refer to many other elements of our evolving specification. To grasp the seeming complexity
of the urban space, its analyses and its urban planning functions, we refer to Fig. 10.3 on the next
page.

1079. To every observable part, like tus:TUS, there corresponds a behaviour, in this case, the urb spa.

242 10 Urban Planning [Fall 2017]

a_anm_na_anm_2a_anm_1
clk:CLK

ad

tus:TUS
clk_ch

Fig. 10.3 The Urban Space and Analysis Behaviours

1080. The urb spa behaviour has, for this report, just one static attribute, the point space, Pts.
1081. The urb spa behaviour has the following biddable and programmable attributes, the Cadastral,

the Law and the SocioEconomic attributes. The biddable and programmable attributes “trans-
late” into behaviour parameters.

1082. The urb spa behaviour has the following dynamic, non-biddable, non-programmable at-
tributes, the GeoDetic, GeoTechnic and the Meterological attributes The non-biddable, non-
programmable dynamic attributes “translate”, in the conversion from parts to behaviours, to
input channels etc.

the urb spa behaviour offers its attributes, upon demand,

1083. to a urban space analysis behaviours, tus ana i and one master urban server.
1084. The urb spa otherwise behaves as follows:

a. it repeatedly “assembles” a tuple, tus, of all attributes;
b. then it external non-deterministically either offers the tus tuple
c. to either any of the urban space analysis behaviours,
d. or to the master urban planning behaviour;
e. in these cases it resumes being the urb spa behaviour;
f. or internal-non-deterministically chooses to
g. update the law, the cadastral, and the socio-economic attributes;
h. whereupon it resumes being the urb spa behaviour.

channel
1082 attr Pts ch:Pts, attr GeoD ch:GeoD, attr GeoT ch:GeoT, attr Met ch:Met

1083 tus mps ch:TUSm
1083 {tus a ch[ai]|ai ∈ auis}:TUSm

value
1079 urb spa: TUS UI × TUS Mer→
1080 Pts→

1081 (Cada×Law×Soc Eco×...)→
1082 in attr Pts ch, attr GeoD ch, attr GeoT ch, attr Met ch→
1083 out tus mps ch, {tus ana ch[ai]|ai ∈ [a 1...a a]} → Unit
1084 urb spa(pts)(pro) ≡
1084a let geo = [”pts” 7→attr Pts ch?”ged” 7→attr GeoD ch?,”cad” 7→cada,”get” 7→attr geoT ch?,

1084a ”met” 7→attr Met ch?,”law” 7→law,”eco” 7→eco,...] in
1084c ((⌈⌉⌊⌋ {tus a ch[ai]!geo|ai ∈ auis}
1084b ⌈⌉⌊⌋

10.7 The Atomic Part Translators 243

1084d tus mps ch!geo) ;

1084e urb spa(pts)(pro)) end
1084f ⌈⌉

1084g let pro′:(Cada×Law×Soc Eco×...)•fit pro(pro,pro′) in
1084h urb spa(pts)(pro′) end

1084g fit pro: (Cada×Law×Soc Eco×...) × (Cada×Law×Soc Eco×...)→ Bool

We leave the fitness predicate fit pro further undefined. It is intended to ensure that the biddable
and programmable attributes evolve in a commensurate manner.

10.7.3 The Analyseranmi
, i:[1 : n] Translator

We refer to Sect. 10.4.4 for the attributes that play a rôle in determining the analyser signature.

10.7.3.1 The Translate Aanm j
Function

1085. The Translate Aanm j
(aanm j

) results in three text elements:

a. the value keyword,
b. the signature of the analyseraanm j

definition,
c. and the body of that definition.

The analyseranm j
signature contains the unique identifier of the analyser, the mereology of the

analyser, cf. Item 10.3.3 on page 221, and the attributes, here just the programmable attribute of
the most recent analysisaanm j

performed by the analyseranm j
.

type
1085 Analysis = Analysisnm1 |Analysisnm2 |...|Analysisnmn

value
1085 Translate Anmi

(anmi
):

1085 ” value
1085 analysernmi

: (uid A×mereo A)→

1085 Analysisnmi
→

1085 in tus a ch[uid A(anmi
)]

1085 out a ad ch[uid A(anmi
)]

1085 analyserui j
(uid A(anmi

),mereo A(anmi
))(ananmi

) ≡ ... ”

10.7.3.2 The analyserui j
Behaviour

Analyses, or various kinds, of the urban space, is an important prerequisite for urban planning.
We therefore introduce a number, n, of urban space analysis behaviours, analysisanmi

(for anmi in
the set {anm1, ...,anma}. The indexing designates that each analysisanmi

caters for a distinct kind
of urban space analysis, each analysis with respect to, i.e., across existing urban areas: ..., (ai)
traffic statistics, (a j) income distribution, ..., (ak) health statistics, (aℓ) power consumption, ..., (aa)
... . We shall model, by an indexed set of behaviours, anai, the urban [space] analyses that are an
indispensable prerequisite for urban planning.

244 10 Urban Planning [Fall 2017]

1086. Urban [space] analyser, tus anai, for ai ∈ [a1...aa], performs analysis of an urban space whose
attributes, except for its point set, it obtains from that urban space – via channel tus ana ch and

1087. offers analysis results to the mp beh and the n derived behaviours.
1088. Urban analyser, anaai

, otherwise behaves as follows:

a. The analyser obtains, from the urban space, its most recent set of attributes.
b. The analyser then proceeds to perform the specific analysis as “determined” by its index ai.
c. The result, tus anaai

, is communicated whichever urban, the master or the derived, planning
behaviour inquires.

d. Whereupon the analyser resumes being the analyser, improving and/or extending its analy-
sis.

type
1085 Analysis = Analysisanm1 |Analysisanm2 |...|Analysisanmn

value
1088 analysernmi(a ui,a mer)(analysisnmi) ≡
1088a let tusm = tus a ch[a ui] ? in
1088b let analysis′

nmi
= perform analysisnmi(tusm)(analysis) in

1088c ⌈⌉⌊⌋ a ad ch[a ui] ! (clk ck?,analysis′
nmi

) ;

1088d analyseri(a ui,a mer)(analysis′
nmi

) end end

1088b perform analysisanmi
: TUSm→ Analysisanmi

→ Analysisanmi

1088b perform analysisanmi
(tusm)(analysisanmi

) ≡ ...

10.7.4 The Analysis Depository Translator

We refer to Sect. 10.4.5 for the attributes that play a rôle in determining the analysis depository

signature.

10.7.4.1 The Translate AD Function

1089. The Translate AD(ad) results in three text elements:

a. the value keyword
b. the signature of the ana dep definition,
c. and the body of that definition.

The ana dep signature essentially contains the unique identifier of the analyser, the mereology
of the analyser, cf. Item 10.3.4 on page 221, and the attributes, in one form or another: the
programmable attribute, a hist, see Item 1026 on page 230, the channels over which ana dep

either accepts time stamped analyses, Analysisaui
, from analyseranmi

, or offers a hists to either the
master planner server or the derived planner servers.

value
1089 Translate AD(ad) ≡
1089a ” value
1089b ana dep: (A UI × A Mer)→ AHist→
1089b in {a ad ch[i]‖i:A UI•i ∈ auis}
1089b out {ad s ch[i]|i:A UI•i ∈ suis} Unit
1089c ana dep(ui A(ad),mereo A(ad))(attr AHist(ad)) ≡ ... ”

10.7 The Atomic Part Translators 245

10.7.4.2 The ana dep Behaviour

The definition of the analysis depository is as follows.

1090. The behaviour of ana dep is as follows: non-deterministically, externally (⌈⌉⌊⌋), ana dep

1091. either (⌈⌉⌊⌋, line 1093) offers to accept a time stamped analysis from some analyser (⌈⌉⌊⌋{ ... | ... }),

a. receiving such an analyses it “updates” its history,
b. and resumes being the ana dep behaviour with that updated history;

1092. or offers the analysis history to the master planner server
and resumes being the ana dep behaviour;

1093. or offers the analysis history

a. to whichever (⌈⌉⌊⌋{ ... | ... }) planner server offers to accept a history
b. and resumes being the ana dep behaviour with that updated history.

value
1090 ana dep(a ui,a mer)(ahist) ≡

1091 ⌈⌉⌊⌋ { (let ana = a ad ch[i] ? in
1091a let ahist′ = ahist†[i7→〈ana〉̂ (ahist(i))] in
1091b ana dep(a ui,a mer)(ahist′) end end)

1091b | i:A UI•i∈ auis }
1092 ⌈⌉⌊⌋ (ad mps ch!ahist ; ana dep(a ui,a mer)(ahist))

1093 ⌈⌉⌊⌋

1093a ({ ad s ch[j]!ahist

1093a | j:(MPS UI|DPS UI)•j∈suis};
1093b ana dep(a ui,a mer)(ahist))

10.7.5 The Derived Planner Index Generator Translator

We refer to Sect. 10.4.10 for the attributes that play a rôle in determining the derived planner index
generator signature.

10.7.5.1 The Translate DPXG(dpxg) Function

1094. The Translate DPXG(dpxg) results in three text elements:

a. the value keyword
b. the signature of the dpxg behaviour definition,
c. and the body of that definition.

The signature of the dpxg behaviour definition has many elements: the unique identifier of the dpxg

behaviour, the mereology of the dpxg behaviour, cf. Item 10.3.9 on page 223, and the attributes
in some form or another:the unique identifier , the mereology , and the attributes, in some form
or another: the programmable attribute All DPUIs, cf. Item 1040 on page 232, the programmable
attribute Used DPUIs, cf. Item 1041 on page 232, the mp dpxg ch input/output channel, and the
dp dpxg ch input/output array channel.

value
1094 Translate DPXG(dpxg) ≡

1094a ” value

246 10 Urban Planning [Fall 2017]

1094b dpxg beh: (DPXG UI×DPXG Mer)→

1094b (All DPUIs×UsedDPUIS)→

1094b in,out {p dpxg ch[i]|i:(MP UI|DP UI)•i∈puis} Unit
1094c dpxg beh(uid DPXG(dpxg),mereo DPXG(dpxg))(all dpuis,used dpuis) ≡ ... ”

10.7.5.2 The dpxg Behaviour

1095. The index generator otherwise behaves as follows:

a. It non-deterministically, externally, offers to accept requests from any planner, whether mas-
ter or server. The request suggests the names, req, of some derived planners.

b. The index generator then selects a suitable subset, sel dpuis, of these suggested derived
planners from those that are yet to be started.

c. It then offers these to the requesting planner.
d. Finally the index generator resumes being an index generator, now with an updated

used dpuis programmable attribute.

value
1095 dpxg: (DPXG UI×DPXG Mer)→ (All DPUIs×Used DPUIs)→

1095 in,out mp dpxg ch,
1095 {p dpxg ch[j]|j:(MP UI|DP UI)•j∈{puis}} Unit
1095 dpxg(dpxg ui,dpxg mer)(all dpuis,used dpuis) ≡

1095a ⌈⌉⌊⌋ { let req = p dpxg c[j] ? in
1095b let sel dpuis = all dpuis \ used dpuis • sel dpuis ⊆ req dpuis in
1095c dp dpxg ch[j] ! sel dpuis ;
1095d dpxg(dpxg ui,dpxg mer)(all dpuis,used dpuis∪sel dpuis) end end
1095 | j:(MP UI|DP UI)•j∈puis }

10.7.6 The Plan Repository Translator

We refer to Sect. 10.4.11 for the attributes that play a rôle in determining the plan repository
signature.

10.7.6.1 The Translate PR Function

1096. The Translate PR(pr) results in three text elements:

a. the value keyword,
b. the signature of the plan repository definition,
c. and the body of that definition.

The plan repository signature contains the unique identifier of the plan repository, the mereology
of the plan repository, cf. Item 10.3.10 on page 223, and the attributes: the programmable plans,
cf. 1043 on page 233, and the input/out channel p pr ch.

value
1096 Translate PR(pr) ≡
1096a ” value
1096b plan rep: PLANS→

10.7 The Atomic Part Translators 247

1096b in {p pr ch[i]|i:(MP UI|DP UI)•i∈puis}
1096b out {s pr ch[i]|i:(MP UI|DP UI)•i∈suis} Unit
1096c plan rep(plans)(attr AllDPUIs(pr),attr UsedDPUIs(pr)) ≡ ... ”

10.7.6.2 The plan rep Behaviour

1097. The plan repository behaviour is otherwise as follows:

a. The plan repository non-deterministically, externally chooses between
i. offering to accept time-stamped plans from a planner, pui, either the master planner or

anyone of the derived planners,
ii. from whichever planner so offers,

iii. inserting these plans appropriately, i.e., at pui, as the new head of the list of “there”,
iv. and then resuming being the plan repository behaviour appropriately updating its pro-

grammable attribute;
b. or

i. offering to provide a full copy of its plan repository map
ii. to whichever server requests so,

iii. and then resuming being the plan repository behaviour.

value
1097a plan rep(pr ui,ps uis)(plans) ≡

1097(a)i ⌈⌉⌊⌋ { let (t,plan) = p pr ch[i] ? in assert: i ∈ dom plans

1097(a)iii let plans′ = plans † [i7→〈(t,plan)〉̂ plans(i)] in
1097(a)iv plan rep(pr ui,ps uis)(plans′) end end
1097(a)ii | i:(MP UI|DP UI)•i∈puis }
1097b ⌈⌉⌊⌋

1097(b)i ⌈⌉⌊⌋ { s pr ch[i] ! plans ; assert: i ∈ dom plans

1097(b)iii plan rep(pr ui,ps uis)(plans)
1097(b)ii | i:(MP UI|DP UI)•i∈puis }

10.7.7 The Master Server Translator

We refer to Sect. 10.4.6 for the attributes that play a rôle in determining the master server signature.

10.7.7.1 The Translate MPS Function

1098. The Translate MPS(mps) results in three text elements:

a. the value keyword,
b. the signature of the master server definition,
c. and the body of that definition.

The master server signature contains the unique identifier of the master server, the mereology
of the master server, cf. Item 10.3.5 on page 222, and the dynamic attributes of the master
server: the most recently, previously produced auxiliary information, the most recently, previously
produced plan requirements information, the clock channel, the urban space channel, the analysis

depository channel, and the master planner channel.

248 10 Urban Planning [Fall 2017]

value
1098 Translate MPS(mps) ≡
1098a ” value
1098b master server: (mAUX×mREQ) →

1098b in clk ch, tus m ch, ad s ch[uid MPS(mps)]
1098b out mps mp ch Unit
1098c master server(uid MPS(mps),mereo MPS(mps))(attr mAUX(mps),attr mREQ(mps)) ≡ ... ”

10.7.7.2 The master server Behaviour

1099. The master server obtains time from the clock, see Item 1100c, information from the urban
space, and the most recent analysis history, assembles these together with “locally produced”

a. auxiliary planner information and
b. plan requirements

as input, MP ARG, to the master planner.
1100. The master server otherwise behaves as follows:

a. it obtains latest urban space information and latest analysis history, and
b. then produces auxiliary planning and plan requirements commensurate, i.e., fit, with the

most recently, i.e., previously produced such information;
c. it then offers a time stamped compound of these kinds of information to the master planner,
d. whereupon the master server resumes being the master server, albeit with updated pro-

grammable attributes.

type
1099a mAUX
1099b mREQ

1099 mARG = (T × ((mAUX × mREQ) × (TUSm × AHist)))

value
1100 master server(uid,mereo)(aux,req) ≡

1100a let tusm = tus m ch ? , ahist = ad s ch[mps ui] ? ,

1100b maux:mAUX, mreq:mREQ • fit AuxReq((aux,req),(maux,mreq)) in
1100c s p ch[uid] ! (clk ch?,((maux,mreq),(tusm,ahist))) ;

1100d master server(uid,mereo)(maux,mreq)

1100 end

1100b fitAuxReq: (mAUX×mREQ)×(mAUX×mREQ)→ Bool
1100b fitAuxReq((aux,req),(maux,mreq)) ≡ ...

10.7.8 The Master Planner Translator

We refer to Sect. 10.4.7 for the attributes that play a rôle in determining the master planner signa-
ture.

10.7.8.1 The Translate MP Function

1101. The Translate MP(mp) results in three text elements:

10.7 The Atomic Part Translators 249

a. the value keyword,
b. the signature of the master planner definition,
c. and the body of that definition.

The master planner signature contains the unique identifier of the master planner, the mereology
of the master planner, cf. Item 10.3.6 on page 222, and the attributes of the master planner: the
script, cf. Sect. 10.4.3 on page 230 and Item 1024 on page 230, a set of script pointers, cf. Item 1031
on page 231, a set of analyser names, cf. Item 1032 on page 231, a set of planner identifiers,
cf. Item 1033 on page 231, and the channels as implied by the master planner mereology.

value
1101 Translate MP(mp) ≡

1101a ” value
1101b master planner: Mmpui:P UI×MP Mer×(Script×ANms×DPUIs)→

1101b Script Pts→

1101b in clk ch, mps mp ch, ad ps ch[mpui]
1101b out p pr ch[mpui]
1101b in,out p dpxg ch[mpui] Unit
1101c master planner(uid MP(mp),mereo MP(mp),
1101c (attr Script(mp),attr ANms(mp),attr DPUIs(mp)))(attr Script Ptrs(mp)) ≡ ... ”

10.7.8.2 The Master urban planning Function

1102. The core of the master planner behaviour is the master urban planning function.
1103. It takes as arguments: the script, a set of analyser names, a set of derived planner identifiers,

a set of script pointers, and the time-stamped master planner argument, cf. Item 1099 on the
preceding page;

1104. and delivers, i.e., yields, a set of “remaining” derived planner identifiers, an updated set of
script pointers, and a master result:M RES, i.e., a master plan, mp:M PLAN together with the
time stamped master argument from which the plan was constructed.

1105. The master urban planning function is not defined by other than a predicate:

a. the “remaining” derived planner identifiers is a subset of the arguments derived planner
identifiers;

b. the “resulting” master argument is the same as the input master argument, i.e., it is “carried
forward”;

c. the arguments: the script, the analyser names, the derived planner identifiers, the set of
script pointers, the time-stamped master planner argument, and the result plan otherwise
satisfies a predicate P(script,anms,dpuis,ptrs,marg)(mplan) expressing that the result mplan

is an appropriate plan in view of the other arguments.

type
1104 M PLAN
1104 M RES = M PLAN × DPUI-set × M ARG

value
1103 master urban planning:

1103 Script × ANm-set × DP UI-set × Script Ptr-set × M ARG

1104 → (DP UI-set × Script Ptr-set) × M RES
1102 master urban planning(script,anms,dpuis,ptrs,marg)

1105a as ((dpuis′,ptrs′),(mplan,marg′))

1105a dpuis′ ⊆ dpuis
1105b ∧ marg′ = marg

250 10 Urban Planning [Fall 2017]

1105c ∧ P(script,anms,dpuis,ptrs,marg)(mplan)

1102 P: ((Script×ANM-set×DP UI-set×Script Ptr-set×M ARG×MPLAN×Script Ptr-set)
1102 × (DP UI-set×Script Ptr-set×M ARG×MPLAN))→ Bool
1102 P((script,anms,dpuis,ptrs,marg,mplan,ptrs),(dpuis′,ptrs′,marg,mplan)) ≡ ...

10.7.8.3 The master planner Behaviour

1106. The master planner behaviours is otherwise as follows:

a. The master planner obtains, from the master server, its time stamped master argument,
cf. Item 1099 on page 248;

b. it then invokes the master urban planning function;
c. the time-stamped result is offered to the plan repository;
d. if the result is OK as a final result,
e. then the behaviour is stopped;
f. otherwise

i. the master planner inquires the derived planner index generator as for such derived
planner identifiers which are not used;

ii. the master planner behaviour is the resumed with the appropriately updated pro-
grammable script pointer attribute, in parallel with

iii. the distributed parallel composition of the parallel behaviours of the derived servers
iv. and the derived planners
v. designated by the derived planner identifiers transcribed into (nm dps ui) derived server,

respectively into (nm dp ui) derived planner names. For these transcription maps we refer
to Sect. 10.2.12 on page 219, Item 981 on page 220.

value
1106 master planner(uid,mereo,(script,anms,puis))(ptrs) ≡
1106a let (t,((maux,mreq),(tusm,ahist))) = mps mp ch ? in
1106b let ((dpuis′,ptrs′),mres) = master urban planning(script,anms,dpuis,ptrs) in
1106c p pr ch[uid] ! mres ;

1106d if completed(mres) assert: ptrs′ = {}

1106e then init der serv planrs(uid,dpuis′)
1106f else
1106(f)i init der serv plans(ui,dpuis)

1106(f)ii ‖ master planner(uid,mereo,(script,anms,puis))(ptrs′)
1106 end end end

10.7.8.4 The initiate derived servers and derived planners Behaviour

The init der serv planrs behaviour plays a central rôle. The outcome of the urban planning func-
tions, whether for master or derived planners, result in a possibly empty set of derived planner
identifiers, dpuis. If empty then that shall mean that the planner, in the iteration, of the planner
behaviour is suggesting that no derived server/derived planner pairs are initiated. If dpuis is not
empty, say consists of the set {dpuii ,dpui j

, ...,dpuik} then the planner behaviour is suggesting that

derived server/derived planner pairs whose planner element has one of these unique identifiers,
be appropriately initiated.

1107. The init der serv planrs behaviour takes the unique identifier, uid, of the “initiate issuing”
planner and a suggested set of derived planner identifiers, dpuis.

10.7 The Atomic Part Translators 251

1108. It then obtains, from the derived planner index generator, dpxg, a subset, dpuis′, that may be
equal to dpuis.

It then proceeds with the parallel initiation of

1109. derived servers (whose names are extracted, extr Nm, from their identifiers, cf. Item 975 on
page 219),

1110. and planners (whose names are extracted, extr Nm, from their identifiers, cf. Item 976 on
page 219)

1111. for every dp ui in the set dpuis′.

However, we must first express the selection of appropriate arguments for these server and planner
behaviours.

1112. The selection of the server and planner parts, making use of the identifier to part mapping
nms dp ui and nm dp ui, cf. Items 981– 982 on page 220;

1113. the selection of respective identifiers,
1114. mereologies, and
1115. auxiliary and
1116. requirements attributes.

value
1107 init der serv planrs: uid:(DP UI|MP UI) × DP UI-set→ in,out pr dpxg[uid] Unit
1107 init der serv planrs(uid,dpuis) ≡

1108 let dpuis′ = (pr dpxg ch[uid] ! dpuis ; pr dpxg ch[uid] ?) in
1112 ‖ { let p = c p(dp ui), s = c s(nms dp ui(dp ui)) in
1113 let ui p = uid DP(p), ui s = uid DPS(s),

1114 me p = mereo DP(p), me s = mereo DPS(s),
1115 aux p = attr sAUX(p), aux s = attr sAUX(s),

1116 req p = attr sREQ(p), req s = attr sREQ(s) in
1109 derived serverextr Nm(dp ui)(ui s,me s,(aux s,req s)) ‖

1110 derived plannerextr Nm(dp ui)(ui p,me p,(aux p,req p))

1111 | dp ui:DP UI•dpui ∈ dpuis′ end end }
1107 end

10.7.9 The Derived Servernmi
, i:[1 : p] Translator

We refer to Sect. 10.4.8 for the attributes that play a rôle in determining the derived server signature.

10.7.9.1 The Translate DPSnm j
Function

1117. The Translate DPS(dpsnm j
) results in three text elements:

a. the value keyword,
b. the signature of the derived server definition,
c. and the body of that definition.

The derived servernm j
signature of the derived server contains the unique identifier ; the mereology ,

cf. Item 10.3.7 on page 222 – used in determining channels: the dynamic clock identifier, the
analysis depository identifier, the derived planner identifier; and the attributes which are: the
auxiliary, dAUXnm j

and the plan requirements, dREQnm j
.

252 10 Urban Planning [Fall 2017]

value
1117 Translate DPS(dpsnm j

) ≡

1117a ” value
1117b derived servernm j

:

1117b DPS UInm j
×DPS Mernm j

→ (DAUXnm j
×dREQnm j

)→

1117b in clk ch, ad s ch[uid DPS(dpsnm j
)]

1117b out s p ch[uid DPS(dpsnm j
)] Unit

1117c derived servernm j

1117c (uid DPS(dpsnm j
),mereo DPS(dpsnm j

)),(attr dAUX(dpsnm j
),attr dREQ(dpsnm j

)) ≡ ... ”

10.7.9.2 The derived server Behaviour

The derived server is almost identical to the master server, cf. Sect. 10.7.7.2, except that plans
replace urban space information.

1118. The derived server obtains time from the clock, see Item 1119c, , and the most recent analysis
history, assembles these together with “locally produced”

a. auxiliary planner information and
b. plan requirements

as input, MP ARG, to the master planner.
1119. The master server otherwise behaves as follows:

a. it obtains latest plans and latest analysis history, and
b. then produces auxiliary planning and plan requirements commensurate, i.e., fit, with the

most recently, i.e., previously produced such information;
c. it then offers a time stamped compound of these kinds of information to the derived planner,
d. whereupon the derived server resumes being the derived server, albeit with updated pro-

grammable attributes.

type
1118a dAUXnm j

1118b dREQnm j

1118 dARGnm j
= (T × ((dAUXnm j

× dREQnm j
) × (PLANS × AHist)))

value
1119 derived servernm j

(uid,mereo)(aux,req) ≡

1119a let plans = ps pr ch[uid] ?, ahist = ad s ch[uid] ?,

1119b daux:dAUX, dreq:dREQ • fit AuxReqnm j
((aux,req),(daux,dreq)) in

1119c s p ch[uid] ! (clk ch?,((maux,mreq),(plans,ahist))) ;

1119d derived servernm j
(uid,mereo)(daux,dreq)

1119 end

1119b fitAuxReqnm j
: (dAUXnm j

×dREQnm j
)×(dAUXnm j

×dREQnm j
)→ Bool

1119b fitAuxReqnm j
((aux,req),(daux,dreq)) ≡ ...

You may wish to compare formula Items 1118–1119d above with those of formula Items 1099–
1100d of Sect. 10.7.7.2 on page 248.

10.7 The Atomic Part Translators 253

10.7.10 The Derived Plannernmi
, i:[1 : p] Translator

We refer to Sect. 10.4.9 for the attributes that play a rôle in determining the derived planner
signature.

10.7.10.1 The Translate DPdpnm j
Function

This function is an “almost carbon copy” of the Translate MPdpnm j
function. Thus Items 1120–

1120c are “almost the same” as Items 1101– 1101c on page 249.

1120. The Translate DP(nm j
) results in three text elements:

a. the value keyword,
b. the signature of the derived plannernm j

definition,
c. and the body of that definition.

The derived plannernm j
signature of the derived planner contains the unique identifier, the mere-

ology, cf. Item 10.3.8 on page 223 and the attributes: the script, cf. Sect. 10.4.3 on page 230 and
Item 1024 on page 230, a set of script pointers, cf. Item 1037 on page 232, a set of analyser names,
cf. Item 1038 on page 232, a set of planner identifiers, cf. Item 1039 on page 232, and the channels
as implied by the master planner mereology.

value
1120 Translate DP(dp) ≡

1120a ” value
1120b derived planner: dpui:DP UI×DP Mer×(Script×ANms×DPUIs)→ Script Pts→

1120b in s p ch[dpui], clk ch, ad ps ch[dpui]
1120b out p pr ch[dpui]
1120b in,out p dpxg ch[dpui] Unit
1120c derived planner(uid DP(dp),mereo DP(dp),
1120c (attr Script(dp),attr ANms(dp),attr DPUIs(dp)))(attr Script Ptrs(dp)) ≡ ... ”

10.7.10.2 The derived urban planning Function

This function is an “almost carbon copy” of the master urban planning function. Thus Items 1121–
1124c on the following page are “almost the same” as Items 1102– 1105c on page 249.

1121. The core of the derived planner behaviour is the derived urban planning function.
1122. It takes as arguments: the script, a set of analyser names, a set of derived planner identifiers,

a set of script pointers, and the time-stamped derived planner argument, cf. Item 1099 on
page 248;

1123. and delivers, i.e., yields, a set of “remaining” derived planner identifiers, an updated set of
script pointers, and a master result, M RES, i.e., a master plan, mp:M PLAN together with the
time stamped master argument from which the plan was constructed.

1124. The master urban planning function is not defined by other that a predicate:

a. the “remaining” derived planner identifiers is a subset of the arguments derived planner
identifiers;

b. the “resulting” master argument is the same as the input master argument, i.e., it is “carried
forward”;

254 10 Urban Planning [Fall 2017]

c. the arguments: the script, the analyser names, the derived planner identifiers, the set of script
pointers, the time-stamped master planner argument, and the result plan otherwise satisfies
a predicate Pdnmi

(scriptdnmi
,anms,dpuis,ptrs,margdnmi

)(dplandnmi
) expressing that the result

mplan is an appropriate plan in view of the other arguments.

type
1123 D PLANdnmi

1123 D RESdnmi
= D PLANdnmi

× DP UI-set × D ARGdnmi

value
1122 derived urban planningdnmi

:
1122 Scriptdnmi

× ANm-set × DP UI-set × Script Ptr-set × D ARGdnmi

1123 → (DP UI-set × Script Ptr-set) × D RESdnmi

1121 derived urban planningdnmi
(script,anms,dpuis,ptrs,darg)

1124a as ((dpuis′,ptrs′),(dplan,ptrs′darg′))

1124a dpuis′ ⊆ dpuis
1124b ∧ darg′ = darg

1124c ∧ Pdnmi
(script,anms,dpuis,ptrs,darg),((dpuis′,ptrs′),(dplan,ptrs′darg′))

1121 Pdnmi
: ((Scriptdnmi

×ANM-set×DP UI-set×Script Ptr-set×D ARGdnmi
)

1121 ×(DP UI-set×Scriptdnmi
Ptr-set×D RESdnmi

))→ Bool
1121 Pdnmi

((scriptdnmi
,anms,dpuis,ptrs,dargdnmi

),(dp uis′,ptrs′,dres)) ≡ ...

10.7.10.3 The derived plannernm j
Behaviour

This behaviour is an “almost carbon copy” of the derived plannernm j
behaviour. Thus Items 1125–

1125k are “almost the same” as Items 1106– 1106(f)v on page 250.

1125. The derived planner behaviour is otherwise as follows:

a. The derived planner obtains, from the derived server, its time stamped master argument,
cf. Item 1099 on page 248;

b. it then invokes the derived urban planning function;
c. the time-stamped result is offered to the plan repository;
d. if the result is OK as a final result,
e. then the behaviour is stopped;
f. otherwise
g. the derived planner inquires the derived planner index generator as for such derived planner

identifiers which are not used;
h. the derived planner behaviour is the resumed with the appropriately updated programmable

script pointer attribute, in parallel with
i. the distributed parallel composition of the parallel behaviours of the derived servers
j. and the derived planners

k. designated by the derived planner identifiers transcribed into (nm dps ui) derived server,
respectively into (nm dp ui) derived planner names. For these transcription maps we refer
to Sect. 10.2.12 on page 219, Item 981 on page 220.

value
1106 derived plannerdnmi

(uid,mereo,(scriptdnmi
,anms,puis))(ptrs) ≡

1106a let (t,((dauxdnmi
,dreqdnmi

),(plans,ahist))) = s p ch[uid] ? in
1106b let ((dpuis′,ptrs′),dresdnmi

) = derived urban planningdnmi
(scriptdnmi

,anms,dpuis,ptrs) in
1106c p pr ch[uid] ! dresdnmi

;

1106d if completed(dresdnmi
)

10.8 Initialisation of The Urban Space Analysis & Planning System 255

1106e then init der serv planrs(uid,dpuis′) assert: ptrs′ = {}

1106f else
1106(f)i init der serv plans(uid,dpuis′)
1106(f)ii ‖ derived planner(uid,mereo,(scriptdnmi

,anms,puis))(ptrs′)

1106 end end end

10.8 Initialisation of The Urban Space Analysis & Planning System

Section 10.5 presents a compiler from structures and parts to behaviours. This section presents
an initialisation of some of the behaviours. First we postulate a global universe of discourse, uod.
Then we summarise the global values of parts and part names. This is followed by a summaries
of part qualities – in four subsections: a summary of the global values of unique identifiers; a
summary of channel declarations; the system as it is initialised; and the system of derived servers
and planners as they evolve.

10.8.1 Summary of Parts and Part Names

value
932 on page 215 uod : UoD

933 on page 215 clk : CLK = obs CLK(uod)
934 on page 215 tus : TUS = obs TUS(uod)

935 on page 215 ans : Aanmi
-set, i:[1..n] = { obs Aanmi

(aa) | aa∈(obs AA(uod)), i:[1..n]}
936 on page 215 ad : AD = obs AD(obs AA(uod))
937 on page 215 mps : MPS = obs MPS(obs MPA(uod))

938 on page 215 mp : MP = obs MP(obs MPA(uod))
939 on page 215 dpss : DPSnmi

-set, i:[1..p] =
939 on page 215 { obs DPSnmi

(dpcnmi
) |

939 on page 215 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
940 on page 215 dps : DPnmi

-set, i:[1..p] =
940 on page 215 { obs DPnmi

(dpcnmi
) |

940 on page 215 dpcnmi
:DPCnmi

•dpcnmi
∈obs DPCSnmi

(obs DPA(uod)), i:[1..p] }
941 on page 215 dpxg : DPXG = obs DPXG(uod)

942 on page 215 pr : PR = obs PR(uod)
943 on page 215 spsps : (DPSnmi

×DPnmi
)-set, i:[1..p] =

943 on page 215 { (obs DPSnmi
(dpcnmi

),obs DPnmi
(dpcnmi

)) |

943 on page 215 dpcnmi
:DPCnmi

•dpcnmi
∈ obs DPCSnmi

(obs DPA(uod)), i:[1..p] }

10.8.2 Summary of of Unique Identifiers

value
958 on page 218 clkui : CLK UI = uid CLK(uod)

959 on page 218 tusui : TUS UI = uid TUS(uod)
960 on page 218 auis : A UI-set = {uid A(a)|a:A•a ∈ ans}
961 on page 218 adui : AD UI = uid AD(ad)

256 10 Urban Planning [Fall 2017]

962 on page 218 mpsui : MPS UI = uid MPS(mps)
963 on page 218 mpui : MP UI = uid MP(mp)

964 on page 218 dpsuis : DPS UI-set = {uid DPS(dps)|dps:DPS•dps ∈ dpss}
965 on page 218 dpuis : DP UI-set = {uid DP(dp)|dp:DP•dp ∈ dps}
966 on page 218 dpxgui : DPXG UI = uid DPXG(dpxg)
967 on page 218 prui : PR UI = uid PR(pr)

967 on page 218 suis : (MPS UI|DPS UI)-set = {mpsui} ∪ dpsuis
969 on page 218 puis : (MP UI|DP UI)-set = {mpui} ∪ dpuis
970 on page 218 sips : (DPS UI×DP UI)-set = {(uid DPS(dps),uid DP(dp))|(dps,dp):(DPS×DP)•(dps,dp)∈sps}
971 on page 219 si pi m : DPS UI→m DP UI = [uid DPS(dps) 7→uid DP(dp)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]
972 on page 219 pi si m : DP UI→m DPS UI = [uid DP(dp) 7→uid DPS(dps)|(dps,dp):(DPS×DP)•(dps,dp)∈sps]

10.8.3 Summary of Channels

channel
1053 on page 236 clk ch:CLK MSGch-clk-010
1054 on page 237 {tus a ch[a ui]:TUS MSG|a ui:A UI•a ui ∈ auis} ch-tus-a-000

1056 on page 237 tus mps ch:TUS MSGch-tus-mps-000
1057 on page 237 {a ad ch[a ui]:A MSG|a ui:A UI•a ui ∈ auis}ch-a-ad-000

1059 on page 238 {ad s ch[s ui]|s ui:(MPS UI|DPS UI)•s ui ∈{mpsui}∪dpsuis}:AD MSGch-ad-dps-000

1061 on page 238 mps mp ch:MPS MSGch-mps-mp-000
1063 on page 239 {p pr ch[p ui]:PLAN MSG|p ui:(MP UI|DP UI)•p ui ∈ puis} ch-mp-pr-000

1065 on page 239 {p dpxg ch[ui]:DPXG MSG|ui:(MP UI|DP UI)•ui ∈ puis} ch-mp-ix-000

1067 on page 239 {pr s ch[ui]:PR MSGd|ui:(MPS UI|DPS UI)•ui ∈ suis}ch-pr-dps-000
1069 on page 240 {dps dp ch[ui]:DPS MSGnm j

|ui:DPS UI•ui ∈ dpsuis}ch-dps-dp-000

10.8.4 The Initial System

1078c on page 241 urb spa(uid TUS(tus),mereo TUS(tus))(attr Pts(tus))
‖

1071c on page 240 clock(uid CLK(clk),mereo CLK(clk))(attr T(clk))

‖

1085 on page 243 ‖ {analyseruii(uid A(auii),mereo A(auii))(anaanmi
) | uii:A UID • uii ∈ auis}

‖

1071c on page 240 ana dep(ui A(ad),mereo A(ad))(attr AHist(ad))
‖

1096c on page 246 plan rep(plans)(attr AllDPUIs(pr),attr UsedDPUIs(pr))
‖

1094c on page 245 dpxg beh(uid DPXG(dpxg),mereo DPXG(dpxg))(all dpuis,used dpuis)

‖

1098c on page 247 master server(uid MPS(mps),mereo MPS(mps))(attr mAUX(mps),attr mREQ(mps))
‖

1101c on page 249 master planner(uid MP(mp),mereo MP(mp),
1101c on page 249 (attr Script(mp),attr ANms(mp),attr DPUIs(mp)))(attr Script Ptrs(mp))

10.9 Further Work 257

10.8.5 The Derived Planner System

1117c on page 251 { derived serverdpsnmj

1117c on page 251 (uid DPS(dpsnmj
),mereo DPS(dpsnmj

))(attr dAUX(dpsnmj
),attr dREQ(dpsnmj

))

‖

1120c on page 253 derived planner(uid DP(dpnm j
),mereo DP(dpnm j

),

1120c on page 253 (attr Script(dpnmj
),attr ANms(dpnmj

),attr DPUIs(dpnmj
)))

1120c on page 253 | j:[1..p] }

10.9 Further Work

10.9.1 Reasoning About Deadlock, Starvation, Live-lock and Liveness

The current author is quite unhappy about the way in which he has defined the urban planning, or-
acle and repository behaviours. Such issues as which invariants are maintained across behaviours
are not addressed. In fact, it seems to be good practice, following Dijkstra, Lamport and others, to
formulate appropriate such invariants and only then “derive” behaviour definitions accordingly.
In a rewrite of this research note, if ever, into a proper paper, the current author hopes to follow
proper practices. He hopes to find younger talent to co-author this effort.

10.9.2 Document Handling

I may appear odd to the reader that I now turn to document handling. One central aspect of
urban planning, strange, perhaps, to the reader, is that of handling the “zillions upon zillions”
of documents that enter into and accrue from urban planning. If handling of these documents is
not done properly a true nightmare will occur. So we shall briefly examine the urban planning
document situation ! From that we conclude that we must first try understand:

• What do we mean by a document?̇

10.9.2.1 Urban Planning Documents

The urban planning functions and the urban planning behaviours, including both the base and
the n derived variants, rely on documents. These documents are created, edited, read, copied,
and, eventually, shredded by urban-planners. Editing documents result in new versions of “the
same” document. While a document is being edited or read we think of it as not being accessible
to other urban-planners. If urban-planners need to read a latest version of a document while that
version is subject to editing by another urban planner, copies must first be made, before editing,
one for each “needy” reader. Once, editing has and readings have finished, the “reader” copies
need, or can, be shredded.

258 10 Urban Planning [Fall 2017]

10.9.2.2 A Document Handling System

In Chapter 9 we sketch[ed] a document handling system domain.82 That is, not a document
handling software system, not even requirements for a document handling software system, but
just a description which, in essence, models documents and urban planners’ actions on documents.
(The urban planners are referred to as document handlers.) The description further models two
‘aggregate’ notions: one of ‘handler management’, and one of ‘document archive’. Both seem
necessary in order to “sort out” the granting of document access rights (that is, permissions to
perform operations on documents), and the creation and shredding of documents, and in order
to avoid dead-locks in access to and handling of documents.

10.9.3 Validation and Verification (V&V)

By validation of a document we shall mean: the primarily informal and social process of checking
that the document description meets customer expectations.

Validation serves to get the right product.
By verification of a document we shall mean: the primarily formal, i.e., mathematical process

of checking, testing and formal proof that the model, which the document description entails,
satisfies a number of properties.

Verification serves to get the product right.
By validation of the urban planning model of this document we shall understand the social

process of explaining the model to urban planning stakeholders, to obtain their reaction, and to
possibly change the model according to stakeholder objections.

By verification of the urban planning model of this document we shall understand the formal
process, based on formalisations of the argument and result types of the description, of testing,
model checking and formally proving properties of the model.

more to come

10.9.4 Urban Planning Project Management

In this research note we have focused on the urban planning project behaviours, their interactions,
and their information “passing”. Usually publications about urban planning: research papers,
technical papers, survey papers, etcetera, focus on specific “functions”. In this research note we
do not. We focus instead on what we can say about the domain of urban planning: the fact, or
the possibility, that an initial, a core, here referred to as a base, urban planning effort (i.e., project,
hence behaviour) can “spew off”, generate, a number of (derived, i.e., in some sense subsidiary),
more specialised, urban planning projects.

10.9.4.1 Urban Planning Projects

We think of a comprehensive urban planning project as carried out by urban planners. As is evident
from the model the project consists of one base urban planning project and up to n derived urban
planning projects. The urban planners involved in these projects are professionals in the areas of
planning:

82 I had, over the years, since mid 1990s, reflected upon the idea of “what is a document ?”. A most recent version,
as I saw it in 2017, was “documented” in Chapter 7 [58]. But, preparing for my work, at TongJi University, Shanghai,
September 2017, I reworked my earlier notes [58] into what is now Chapter 9.

10.9 Further Work 259

• master urban planning issues:

⋄⋄ geodesy,

⋄⋄ geotechniques,

⋄⋄ meteorology,

• master urban plans:

⋄⋄ cartography,

⋄⋄ cadestral matters,

⋄⋄ zoning;

• derived urban planning issues:

⋄⋄ industries,
⋄⋄ residential and shopping,
⋄⋄ apartment buildings,
⋄⋄ villas,
⋄⋄ recreational,
⋄⋄ etcetera;

• technological infrastructures:

⋄⋄ transport,
⋄⋄ electricity,
⋄⋄ telecommunications,
⋄⋄ gas,

⋄⋄ water,
⋄⋄ waste,
⋄⋄ etcetera;

• societal infrastructures:

⋄⋄ health care,
⋄⋄ schools,
⋄⋄ police,
⋄⋄ fire brigades,
⋄⋄ etcetera;

• etcetera, etcetera, etcetera !

To anyone with any experience in getting such diverse groups and individuals of highly skilled
professionals to work together it is obvious that some form of management is required. The
term ‘comprehensive’ was mentioned above. It is meant to express that the comprehensive urban
planning project is the only one “dealing” with a given geographic area, and that no other urban
planning projects “infringe” upon it, that is, “deal” with sub-areas of that given geographic area.

10.9.4.2 Strategic, Tactical and Operational Management

We can distinguish between

• strategic,
• tactical and
• operational

management.

10.9.4.2.1 Project Resources

But first we need take a look at the resources that management is charged with:

• the urban planners, i.e., humans,
• time,
• finances,

• office space,
• support technologies: computing etc.,
• etcetera.

10.9.4.2.2 Strategic Management

By strategic management we shall understand the analysis and decisions of, and concerning,
scarce resources: people (skills), time, monies: their deployment and trade-offs.

10.9.4.2.3 Tactical Management

By tactical management we shall understand the analysis and decisions with respect to budget and
time plans, and the monitoring and control of serially reusable resources: office space, computing.

10.9.4.2.4 Operational Management

By operational management we shall understand the monitoring and control of the enactment,
progress and completion of individual deliverables, i.e., documents, the quality (adherence to

260 10 Urban Planning [Fall 2017]

“standards”, fulfillment of expectations, etc.) of these documents, and the day-to-day human
relations.

10.9.4.3 Urban Planning Management

The above (strategic, tactical & operational management) translates, in the context of urban
planning, into:

to be written

Chapter 11

Swarms of Drones [November–December 2017]

Contents
11.1 An Informal Introduction . 263

11.1.1 Describable Entities . 263
11.1.1.1 The Endurants: Parts . 263
11.1.1.2 The Perdurants . 264

11.1.2 The Contribution of [48] . 264
11.1.3 The Contribution of This Report . 264

11.2 Entities, Endurants . 264
11.2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types 265

11.2.1.1 Universe of Discourse . 265
11.2.1.2 The Enterprise . 266
11.2.1.3 From Abstract Sorts to Concrete Types . 266

11.2.1.3.1 The Auxiliary Function xtr Ds: . 266
11.2.1.3.2 Command Center . 267
11.2.1.3.3 Command Center Decomposition 267

11.2.2 Unique Identifiers . 267
11.2.2.1 The Enterprise, the Aggregates of Drones and the Geography . 267
11.2.2.2 Unique Command Center Identifiers . 268
11.2.2.3 Unique Drone Identifiers . 268

11.2.2.3.1 Auxiliary Function: xtr dis: . 268
11.2.2.3.2 Auxiliary Function: xtr D: . 269

11.2.3 Mereologies . 269
11.2.3.1 Definition . 269
11.2.3.2 Origin of the Concept of Mereology as Treated Here 269
11.2.3.3 Basic Mereology Principle . 269
11.2.3.4 Engineering versus Methodical Mereology . 270
11.2.3.5 Planner Mereology . 270
11.2.3.6 Monitor Mereology . 271
11.2.3.7 Actuator Mereology . 271
11.2.3.8 Enterprise Drone Mereology . 272
11.2.3.9 ‘Other’ Drone Mereology . 272
11.2.3.10 Geography Mereology . 273

11.2.4 Attributes . 273
11.2.4.1 The Time Sort . 273
11.2.4.2 Positions . 274

11.2.4.2.1 A Neighbourhood Concept . 274
11.2.4.3 Flight Plans . 274
11.2.4.4 Enterprise Drone Attributes . 275

11.2.4.4.1 Constituent Types . 275
11.2.4.4.2 Attributes . 276
11.2.4.4.3 Enterprise Drone Attribute Categories: 276

11.2.4.5 ‘Other’ Drones Attributes . 276
11.2.4.5.1 Constituent Types . 276
11.2.4.5.2 Attributes . 276

11.2.4.6 Drone Dynamics . 277

261

262 11 Swarms of Drones [November–December 2017]

11.2.4.7 Drone Positions . 277
11.2.4.8 Monitor Attributes . 277
11.2.4.9 Planner Attributes . 278

11.2.4.9.1 Swarms and Businesses: . 278
11.2.4.9.2 Planner Directories: . 278

11.2.4.10 Actuator Attributes . 279
11.2.4.11 Geography Attributes . 280

11.2.4.11.1 Constituent Types: . 280
11.2.4.11.2 Attributes . 280

11.3 Operations on Universe of Discourse States . 280
11.3.1 The Notion of a State . 281
11.3.2 Constants . 281
11.3.3 Operations . 281

11.3.3.1 A Drone Transfer . 281
11.3.3.2 An Enterprise Drone Changing Course . 282
11.3.3.3 A Swarm Splitting into Two Swarms . 282
11.3.3.4 Two Swarms Joining to form One Swarm . 282
11.3.3.5 Etcetera . 282

11.4 Perdurants . 283
11.4.1 System Compilation . 283

11.4.1.1 The Compile Functions . 283
11.4.1.2 Some CSP Expression Simplifications . 285
11.4.1.3 The Simplified Compilation . 285

11.4.2 An Early Narrative on Behaviours . 286
11.4.2.1 Either Endurants or Perdurants, Not Both ! . 286
11.4.2.2 Focus on Some Behaviours, Not All ! . 286
11.4.2.3 The Behaviours – a First Narrative . 287

11.4.3 Channels . 287
11.4.3.1 The Part Channels . 288

11.4.3.1.1 General Remarks: . 288
11.4.3.1.2 Part Channel Specifics . 288

11.4.3.2 Attribute Channels, General Principles . 290
11.4.3.3 The Case Study Attribute Channels . 290

11.4.3.3.1 ‘Other’ Drones: . 290
11.4.3.3.2 Enterprise Drones: . 290
11.4.3.3.3 Geography: . 291

11.4.4 The Atomic Behaviours . 291
11.4.4.1 Monitor Behaviour . 291
11.4.4.2 Planner Behaviour . 292

11.4.4.2.1 The Auxiliary transfer Function . 292
11.4.4.2.2 The Auxiliary flight planning Function 293

11.4.4.3 Actuator Behaviour . 294
11.4.4.4 ‘Other’ Drone Behaviour . 295
11.4.4.5 Enterprise Drone Behaviour . 296
11.4.4.6 Geography Behaviour . 299

11.5 Conclusion . 300

We speculate83 on a domain of swarms and drones monitored and controlled by a command
center in some geography. Awareness of swarms is registered only in an enterprise command
center. We think of these swarms of drones as an enterprise of either package deliverers, crop-
dusters, insect sprayers, search & rescuers, traffic monitors, or wildfire fighters – or several of
these, united in a notion of an enterprise possibly consisting of of “disjoint” businesses. We
analyse & describe the properties of these phenomena as endurants and as perdurants: parts one
can observe and behaviours that one can study. We do not yet examine the problem of drone air
traffic management84. The analysis & description of this postulated domain follows the principles,
techniques and tools laid down in [48].

83 A young researcher colleague, Dr. Yang ShaoFa, of the Software Institute of the Chinese Academy of Sciences in
Beijing, at our meeting in Beijing, early November 2017, told me that he was then about to get involved in algorithms
for drone maneuvering. So, true to me thinking, that, in order to reflect on such algorithms, one ought try understand
the domain. So I sketched the model of this chapter in the week, attending the ICFEM’2017 conference in Xi’An,
and presented the model to Dr. Yang upon my return to Beijing.
84 www.nasa.gov/feature/ames/first-steps-toward-drone-traffic-management, www.sciencedirect.com/science/ar-
ticle/pii/S2046043016300260

11.1 An Informal Introduction 263

11.1 An Informal Introduction

11.1.1 Describable Entities

11.1.1.1 The Endurants: Parts

In the universe of discourse we observe endurants, here in the form of parts, and perdurants, here
in the form of behaviours.

The parts are discrete endurants, that is, can be seen or touched by humans, or that can be

conceived as an abstraction of a discrete part.

We refer to Fig. 11.1.

CC: Command Center

CA: Actuator CP: Planner CM: Monitor

...

E: Enterprise

ed:ED.. ed:ED.. ed:ED.. od:OD od:OD

UoD: Universe of Discourse

Geography: G

od:OD
...

ODs: Set of ’other’ dronesEDs: Set of Enterprise Drones

AED: Aggregate of Enterprise Drones AOD: Aggregate of ’Other’ Drones

Fig. 11.1 Universe of Discourse

There is a universe of discourse, uod:UoD. The universe of discourse embodies: an enterprise,
e:E. The enterprise consists of an aggregate of enterprise drones, aed:AED (which consists of
a set, eds:EDs, of enterprise drones). and a command center, cc:CC; The universe of discourse
also embodies a geography, g:G. The universe of discourse finally embodies an aggregate of
‘other’ drones, aod:AOD (which consists of a set, ods:ODs, of these ‘other’ drones). A drone is an
unmanned aerial vehicle.85 We distinguish between enterprise drones, ed:ED, and ‘other’ drones,
od:OD. The pragmatics of the enterprise swarms is that of providing enterprise drones for one
or more of the following kinds of businesses:86 delivering parcels (mail, packages, etc.)87, crop

dusting88, aerial spraying89, wildfire fighting90, traffic control91, search and rescue92, etcetera. A
notion of swarm is introduced. A swarm is a concept. As a concept a swarm is a set of drones. We

85 Drones are also referred to as UAVs.
86 http://www.latimes.com/business/la-fi-drone-traffic-20170501-htmlstory.html
87 https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011 and https://www.digitaltrends.com/cool-
tech/amazon-prime-air-delivery-drones-history-progress/
88 http://www.uavcropdustersprayers.com/, http://sprayingdrone.com/
89 https://abjdrones.com/commercial-drone-services/industry-specific-solutions/agriculture/
90 https://www.smithsonianmag.com/videos/category/innovation/drones-are-now-being-used-to-battle-wildfires/
91 https://business.esa.int/sites/default/files/Presentation%20on%20UAV%20Road%20Surface%20Monitoring
%20and%20Traffic%20Information 0.pdf
92 http://sardrones.org/

264 11 Swarms of Drones [November–December 2017]

associate swarms with businesses. A business has access to one or more swarms. The enterprise
command center, cc:CC, can be seen as embodying three kinds of functions: a monitoring service,
cm:CM, whose function it is to know the locations and dynamics of all drones, whether enterprise
drones or ‘other’ drones; a planning service, cp:CP, whose function it is to plan the next moves
of all that enterprise’s drones; and an actuator service, ca:CA, whose functions it is to guide that
enterprise’s drones as to their next moves. The swarm concept “resides” in the command planner.

11.1.1.2 The Perdurants

The perdurants are entities for which only a fragment exists if we look at or touch them at any
given snapshot in time, that is, were we to freeze time we would only see or touch a fragment of

the perdurant.
The major ***

more to come

11.1.2 The Contribution of [48]

The major contributions of [48] are these: a methodology93 for analysing & describing manifest
domains94, where the methodology builds on an ontological principle of viewing the domains as
consisting of endurants and perdurants. Endurants possess properties such as unique identifiers,
mereologies, and attributes. Perdurants are then analysed & described as either actions, events,
or behaviours. The techniques to go with the ***

more to comeThe tools are ***

more to come

11.1.3 The Contribution of This Report

to be written

We relate our work to that of [124].

•••

The main part of this report is contained in the next three sections: endurants; states, constants,
and operations on states; and perdurants.

11.2 Entities, Endurants

By an entity we shall understand a phenomenon, i.e., something that can be observe d, i.e., be
seen or touched by humans, or that can be conceived as an abstraction of an entity. We further
demand that an entity can be objectively described.

93 By a methodology we shall understand a set of principles for selecting and applying a number of techniques,
using tools, to – in this case – analyse & describe a domain.
94 A manifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”, and
perdurant, that is temporally “fleeting” entities. Endurant entities are either parts or components or materials.
Perdurant entities are either actions or events or behaviours.

11.2 Entities, Endurants 265

By an endurant we shall understand an entity that can be observed or conceived and described
as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we
would still be able to observe the entire endurant.

11.2.1 Parts, Atomic and Composite, Sorts, Abstract and Concrete Types

By a discrete endurant we shall understand an endurant which is separate, individual or distinct
in form or concept.

By a part we shall understand a discrete endurant which the domain engineer chooses to endow
with internal qualities such as unique identification, mereology, and one or more attributes. We
shall define the concepts of unique identifier, mereology and attribute later in this report.

Atomic parts are those which, in a given context, are deemed to not consist of meaningful,
separately observable proper sub-parts.

Sub-parts are parts.
Composite parts are those which, in a given context, are deemed to indeed consist of meaningful,

separately observable proper sub-parts.
By a sort we shall understand an abstract type.
By a type we shall here understand a set of values “of the same kind” – where we do not further

define what we mean by the same kind”.
By an abstract type we shall understand a type about whose values we make no assumption

[as to their atomicity or composition.
By a concrete type we shall understand a type about whose values we are making certain

assumptions as to their atomicity or composition, and, if composed then how and from which
other types they are composed.

11.2.1.1 Universe of Discourse

By a universe of discoursee shall understand that which we can talk about, refer to and whose en-
tities we can name. Included in that universe is the geography. By geography we shall understand
a section of the globe, an area of land, its geodesy, its meteorology, etc.

1126. In the Universe of Discourse we can observe the following parts:

a. an atomic Geography,
b. a composite Enterprise,
c. and an aggregate of ‘Other’95 Drones.

type
1126 UoD, G, E, AOD

value
1126a obs G: UoD→ G

1126b obs E: UoD→ E

1126c obs AOD: UoD→ AOD

95 We apologize for our using the term ‘other’ drones. These ‘other’ drones are not necessarily adversary or enemy
drones. They are just there – coexisting with the enterprise drones.

266 11 Swarms of Drones [November–December 2017]

11.2.1.2 The Enterprise

1127. From an enterprise one can observe:

a. a(n enterprise) command center. and
b. an aggregate of enterprise drones.

type
1127a CC

1127a AED

value
1127a obs CC: E→ CC

1127b obs AED: E→ AED

11.2.1.3 From Abstract Sorts to Concrete Types

1128. From an aggregate of enterprise drones, AED, we can observe a possibly empty set of drones,
EDs

1129. From an aggregate of ‘other’ drones, AOD, we can observe a possibly empty set, ODs, of ‘other’
drones.

type
1128 ED

1128 EDs = ED-set
1129 OD
1129 ODs = OD-set
value
1128 obs EDs: AED→ EDs
1129 obs ODs: AOD→ ODs

Drones, whether ‘other’ or ‘enterprise’, are considered atomic.

11.2.1.3.1 The Auxiliary Function xtr Ds:

We define an auxiliary function, xtr Ds.

1130. From the universe of discourse we can extract all its drones;
1131. similarly from its enterprise;
1132. similarly from the aggregate of enterprise drones; and
1133. from an aggregate of ‘other’ drones.

1130 xtr Ds: UoD→ (ED|OD)-set
1130 xtr Ds(uod) ≡

1130 ∪{xtr Ds(obs AED(obs E(uod)))} ∪ xtr Ds(obs AOD(uod))
1131 xtr Ds: E→ ED-set
1131 xtr Ds(e) ≡ xtr Ds(obs AED(e))

1132 xtr Ds: AED→ ED-set
1132 xtr Ds(aed) ≡ obs EDs(obs EDs(aed))

1133 xtr Ds: AOD→ OD-set
1133 xtr Ds(aod) ≡ obs ODs(aod)

11.2 Entities, Endurants 267

1134. In the universe of discourse a drone cannot be both among the enterprise drones and among
the ‘other’ drones.

axiom
1134 ∀ uod:UoD,e:E,aed:ES,aod:AOD •

1134 e=obs E(uod)∧aed=obs AED(e)∧aod:obs AOD(uod)
1134 ⇒ xtr Ds(aed) ∩ xtr Ds(aod) ={}

The functions are partial as the supplied swarm identifier may not be one of the universe of
discourse, etc.

11.2.1.3.2 Command Center

A Simple Narrative Figure 11.1 on page 263 shows a graphic rendition of a space of interest. The
command center, CC, a composite part, is shown to include three atomic parts: An atomic part,
the monitor, CM. It monitors the location and dynamics of all drones. An atomic part, the planner,
CP. It plans the next, “friendly”, drone movements. The command center also has yet an atomic
part, the actuator, CA. It informs “friendly” drones of their next movements. The planner is where
“resides” the notion of a enterprise consisting of one or more businesses, where each business has
access to zero, one or more swarms, where a swarm is a set of enterprise drone identifiers.
The purpose of the control center is to monitor the whereabouts and dynamics of all drones (done
by CM); to plan possible next actions by enterprise drones (done by CP); and to instruct enterprise
drones of possible next actions (done by CA).

11.2.1.3.3 Command Center Decomposition

From the composite command center we can observe

1135. the center monitor, CM;
1136. the center planner, CP; and
1137. the center actuator, CA .

type
1135 CM
1136 CP

1137 CA

value
1135 obs CM: CC→ CM
1136 obs CP: CC→ CP

1137 obs CA: CC→ CA

11.2.2 Unique Identifiers

Parts are distinguishable through their unique identifiers. A unique identifier is a further unde-
fined quantity which we associate with parts such that no two parts of a universe of discourse are
identical.

11.2.2.1 The Enterprise, the Aggregates of Drones and the Geography

1138. Although we may not need it for subsequent descriptions we do, for completeness of descrip-
tion, introduce unique identifiers for parts and sub-parts of the universe of discourse:

a. Geographies, g:G, have unique identification.

268 11 Swarms of Drones [November–December 2017]

b. Enterprises, e:E, have unique identification.
c. Aggregates of enterprise drones, aed:AED, have unique identification.
d. Aggregates of ‘other’ drones, aod:AOD, have unique identification.
e. Command centers, cc:CC, have unique identification.

type
1138 GI, EI, AEDI, AODI, CCI
value
1138a uid G: G→ GI

1138b uid E: E→ EI
1138c uid AED: AED→ AEDI

1138d uid OD: AOD→ AODI

1138e uid CC: CC→ CCI

11.2.2.2 Unique Command Center Identifiers

1139. The monitor has a unique identifier.
1140. The planner has a unique identifier.
1141. The actuator has a unique identifier.

type
1139 CMI

1140 CPI
1141 CAI

value
1139 uid CM: CM→ CMI

1140 uid CP: CP→ CPI
1141 uid CA: CA→ CAI

11.2.2.3 Unique Drone Identifiers

1142. Drones have unique identifiers.

a. whether enterprise or
b. ‘other’ drones

type
1142 DI = EDI | ODI

value
1142a uid ED: ED→ EDI

1142b uid OD: OD→ ODI

11.2.2.3.1 Auxiliary Function: xtr dis:

1143. From the aggregate of enterprise drones;
1144. From the aggregate of ‘other’ drones;
1145. and from the two parts of a universe of discourse: the enterprise and the ‘other’ drones.

value
1143 xtr dis: AED→ DI-set
1143 xtr dis(aed) ≡ {uid ED(ed)|ed:ED•ed ∈ obs EDs(aed)}
1144 xtr dis: AOD→ DI-set
1144 xtr dis(aod) ≡ {uid D(od)|od:OD•od ∈ obs ODs(aod)}

11.2 Entities, Endurants 269

1145 xtr dis: UoD→ DI-set
1145 xtr dis(uod) ≡ xtr dis(obs AED(uod)) ∪ xtr dis(obs AOD(uod))

11.2.2.3.2 Auxiliary Function: xtr D:

1146. From the universe of discourse, given a drone identifier of that space, we can extract the
identified drone;

1147. similarly from the enterprise;
1148. its aggregate of enterprise drones; and
1149. and from its aggregate of ‘other’ drones;

1146 xtr D: UoD→ DI
∼
→ D

1146 xtr D(uod)(di) ≡ let d:D • d ∈ xtr Ds(uod)∧uid D(d)=di in d end
1146 pre: di ∈ xtr dis(soi)

1147 xtr D: E→ DI
∼
→ D

1147 xtr D(e)(di) ≡ let d:D • d ∈ xtr Ds(obs ES(e))∧uid D(d)=di in d end
1147 pre: di ∈ xtr dis(e)

1148 xtr D: AED→ DI
∼
→ D

1148 xtr D(aed)(di) ≡ ≡ let d:D • d ∈ xtr Ds(aed)∧uid D(d)=di in d end
1148 pre: di ∈ xtr dis(es)

1149 xtr D: AOD→ DI
∼
→ D

1149 xtr D(aod)(di) ≡ let d:D • d ∈ xtr Ds(aod)∧uid D(d)=di in d end
1149 pre: di ∈ xtr dis(ds)

11.2.3 Mereologies

11.2.3.1 Definition

Mereology is the study and knowledge of parts and their relations (to other parts and to the
“whole”) [75].

11.2.3.2 Origin of the Concept of Mereology as Treated Here

We shall [thus] deploy the concept of mereology as advanced by the Polish mathematician, logician
and philosopher Stanisław Léschniewski. Douglas T. (“Doug”) Ross96 also contributed along the
lines of our approach [142] – hence [51] is dedicated to Doug.

11.2.3.3 Basic Mereology Principle

The basic principle in modelling the mereology of a any universe of discourse is as follows:
Let p′ be a part with unique identifier p′

id
. Let p be a sub-part of p′ with unique identifier pid. Let

the immediate sub-parts of p be p1,p2, . . . ,pn with unique identifiers p1id
,p2id
, . . . ,pnid

. That p has

96 Doug Ross is the originator of the term CAD for computer aided design, of APT for Automatically Programmed
Tools, a language to drive numerically controlled manufacturing, and also SADT for Structure Analysis and Design
Techniques

270 11 Swarms of Drones [November–December 2017]

mereology (p′
id
, {p1id

,p2id
, . . . ,pnid

}). The parts p j, for 1 ≤ j ≤ n for n≥2, if atomic, have mereologies

(pid, {p1id
,p2id
, . . . ,p j−1id

,p j+1id
, . . . ,pnid

}) – where we refer to the second term in that pair by m; and if

composite, have mereologies (pid, (m,m
′)), where the m′ term is the set of unique identifiers of the

sub-parts of p j.

11.2.3.4 Engineering versus Methodical Mereology

We shall restrict ourselves to an engineering treatment of the mereology of our universe of dis-
course. That is in contrast to a strict, methodical treatment. In a methodical description of the
mereologies of the various parts of the universe of discourse one assigns a mereology to every
part: to the enterprise, the aggregate of ‘other’ drones and the geography; to the command center

of the enterprise and its aggregate of drones; to the monitor, the planner and the actuator of the
command center; to the drones of the aggregate of enterprise drones, and to the drones of the

aggregate of ‘other’ drones. We shall “shortcut” most of these mereologies. The reason is this:
The pragmatics of our attempt to model drones, is rooted in our interest in the interactions be-
tween the command center’s monitor and actuator and the enterprise and ‘other’ drones. For
“completeness” we also include interactions between the geography’s meteorology and the above
command center and drones. The mereologies of the enterprise, E, the enterprise aggregate of
drones AED, and the set of (enterprise) drones, EDs, do not involve drone identifiers. The only
“thing” that the monitor and actuator are interested in are the drone identifiers. So we shall thus
model the mereologies of our universe of discourse by omitting mereologies for the enterprise,

the aggregates of drones, the sets of these aggregates, and the geography, and only describe the
mereologies of the monitor, planner and actuator, the enterprise drones and the ‘other’ drones.

11.2.3.5 Planner Mereology

1150. The planner mereology reflects the center planners awareness97 of the monitor, the actuator,,
and the geography of the universe of discourse.

1151. The plannner mereology further reflects that a eureka98 is provided by, or from, an outside
source reflected in the autonomous attribute CmdI. The value of this attribute changes at its
own volition and ranges over commands that directs the planner to perform either of a number
of operations.

Eureka examples are: calculate and effect a new flight plan for one or more designated swarms
of a designated business; effect the transfer of an enterprise drone from a designated swarm of a
business to another, distinctly designated swarm of the same business; etcetera.

type
1150 CPM = (CAI × CMI × GI) × Eureka

1151 Eureka == mkNewFP(BI×SI-set×Plan)

1151 | mkChgDB(fsi:SI×tsi:SI×di×DI)
1151 | ...
value
1150 mereo CP: CP→ CPM

1151 Plan = ...

97 That “awareness” includes, amongst others, the planner obtaining information from the monitor of the where-
abouts of all drones and providing the actuator with directives for the enterprise drones — all in the context of the
land and “its” meteorology.
98 ”Eureka” comes from the Ancient Greek word ǫµρηκα heúrēka, meaning “I have found (it)”, which is the first
person singular perfect indicative active of the verb ǫuρηκω heuriskō ”I find”.[1] It is closely related to heuristic,
which refers to experience-based techniques for problem solving, learning, and discovery.

11.2 Entities, Endurants 271

We omit expressing a suitable axiom concerning center planner mereologies. Our behavioural
analysis & description of monitoring & control of operations on the space of drones will show that
command center mereologies may change.

11.2.3.6 Monitor Mereology

The monitor’s mereology reflects its awareness of the drones whose position and dynamics it is
expected to monitor.

1152. The mereology of the center monitor is a pair: the set of unique identifiers of the drones of the
universe of discourse, and the unique identifier of the center planner.

type
1152 CMM = DI-set × CPI

value
1152 mereo CM: CM→ CMM

1153. For the universe of discourse it is the case that

a. the drone identifiers of the mereology of a monitor must be exactly those of the drones of
the universe of discourse, and

b. the planner identifier of the mereology of a monitor must be exactly that of the planner of
the universe of discourse.

axiom
1153 ∀ uod:UoD,e:E,cc:CC,cp:CP,cm:CM,g:G •

1153 e=obs E(uod)∧cc=obs CC(e)∧cp=obs CP(cc)∧cm=obs CM(cc)⇒

1153 let (dis,cpi) = mereo CM(cm) in
1153a dis = xtr dis(uod)

1153b ∧ cpi = uid CP(cp) end

11.2.3.7 Actuator Mereology

The center actuator’s mereology reflects its awareness of the enterprise drones whose position
and dynamics it is expected to control.

1154. The mereology of the center actuator is a pair: the set of unique identifiers of the business
drones of the universe of discourse, and the unique identifier of the center planner.

type
1154 CAM = EDI-set × CPI

value
1154 mereo CA: CA→ CAM

1155. For all universes of discourse

a. the drone identifiers of the mereology of a center actuator must be exactly those of the
enterprise drones of the space of interest (of the monitor), and

b. the center planner identifier of the mereology of a center actuator must be exactly that of the
center planner of the command center of the space of interest (of the monitor)

272 11 Swarms of Drones [November–December 2017]

axiom
1155 ∀ uod:UoD,e:E,cc:CC,cp:CP,ca:CA •

1155 e=obs E(uod)∧cc=obs CC(e)∧cp=obs CP(cc)∧ca=obs CA(cc)⇒
1155 let (dis,cpi) = mereo CA(ca) in
1155a dis = tr dis(e)
1155b ∧ cpi = uid CP(cp) end

11.2.3.8 Enterprise Drone Mereology

1156. The mereology of an enterprise drone is the triple of the command center monitor, the command
center actuator99, and the geography.

type
1156 EDM = CMI × CAI × GI

value
1156 mereo ED: ED→ EDM

1157. For all universes of discourse the enterprise drone mereology satisfies:

a. the unique identifier of the first element of the drone mereology is that of the enterprise’s
command monitor,

b. the unique identifier of the second element of the drone mereology is that of the enterprise’s

command actuator, and
c. the unique identifier of the third element of the drone mereology is that of the universe of

discourse’s geography.

axiom
1157 ∀ uod:UoD,e:E,cm:CM,ca:CA,ed:ED,g:G •

1157 e=obs E(uod)∧cm=obs CM(obs CC(e))∧ca=obs CA(obs CC(e))

1157 ∧ ed ∈ xtr Ds(e)∧g=obs G(uod)⇒
1157 let (cmi,cai,gi) = mereo D(ed) in
1157a cmi = uid CMM(ccm)

1157b ∧ cai = uid CAI(cai)
1157c ∧ gi = uid G(g) end

11.2.3.9 ‘Other’ Drone Mereology

1158. The mereology of an ‘other’ drone is a pair: the unique identifier of the monitor and the unique
identifier of the geography.

type
1158 ODM = CMI × GI
value
1158 mereo OD: OD→ ODM

We leave it to the reader to formulate a suitable axiom, cf. axiom 1157.

99 The command center monitor and the command center actuator and their unique identifiers will be defined in
Items 1135, 1137 on page 267, 1139 and 1141 on page 268.

11.2 Entities, Endurants 273

11.2.3.10 Geography Mereology

1159. The geography mereology is a pair100 of the unique of the unique identifiers of the planner and
the set of all drones.

type
1159 GM = CPI × CMI × DI-set
value
1159 mereo G: G→ GM

We leave it to the reader to formulate a suitable axiom, cf. axiom 1157 on the facing page.

11.2.4 Attributes

We analyse & describe attributes for the following parts: enterprise drones and ‘other’ drones,
monitor, planner and actuator, and the geography. The attributes, that we shall arrive at, are
usually concrete in the sense that they comprise values of, as we shall call them, constituent types.
We shall therefore first analyse & describe these constituent types. Then we introduce the part
attributes as expressed in terms of the constituent types. But first we introduce three notions core
notions: time, Sect. 11.2.4.1, positions, Sect. 11.2.4.2, and flight plans, Sect. 11.2.4.3.

11.2.4.1 The Time Sort

1160. Let the special sort identifier T denote times
1161. and the special sort identifier TI denote time intervals.
1162. Let identifier time designate a “magic” function whose invocations yield times.

type
1160 T

1160 TI

value
1160 time: Unit→ T

1163. Two times can not be added, multiplied or divided, but subtracting one time from another
yields a time interval.

1164. Two times can be compared: smaller than, smaller than or equal, equal, not equal, etc.
1165. Two time intervals can be compared: smaller than, smaller than or equal, equal, not equal, etc.
1166. A time interval can be multiplied by a real number.

Etcetera.

value
1163 ⊖: T × T→ TI

1164 <,≤,=,,,≥,>: T × T→ Bool
1165 <,≤,=,,,≥,>: TI × TI→ Bool
1166 ⊗: TI × Real→ TI

100 30.11.2017: I think !

274 11 Swarms of Drones [November–December 2017]

11.2.4.2 Positions

Positions (of drones) play a pivotal rôle.

1167. Each position being designated by
1168. longitude, latitude and altitude.

type
1168 LO, LA, AL
1167 P = LO × LA × AL

11.2.4.2.1 A Neighbourhood Concept

1169. Two positions are said to be neighbours if the distance between them is small enough for a
drone to fly from one to the other in one to three minutes’ time – for drones flying at a speed
below Mach 1.

value
1169 neighbours: P × P→ Bool

We leave the neighbourhood proposition further undefined.

11.2.4.3 Flight Plans

A crucial notion of our universe of discourse is that of flight plans.

1170. A flight plan element is a pair of a time and a position.
1171. A flight plan is a sequence of flight plan elements.

type
1170 FPE = T × P

1171 FP = FLE∗

1172. such that adjacent entries in flight plans

a. record increasing times and
b. neighbouring positions.

axiom
1172 ∀ fp:FP,i:Nat • {i,i+1}⊆indsfp⇒
1172 let (t,p)=fp[i], (t′,p′)=fp[i+1] in
1172a t ≤ t′

1172b ∧ neighbours(p,p′)

1172 end

11.2 Entities, Endurants 275

11.2.4.4 Enterprise Drone Attributes

11.2.4.4.1 Constituent Types

1173. Enterprise drones have positions expressed, for example, in terms of longitude, latitude and
altitude. 101

1174. Enterprise drones have velocity which is a vector of speed and three-dimensional, i.e., spatial,
direction.

1175. Enterprise drones have acceleration which is a vector of increase/decrease of speed per time
unit and direction.

1176. Enterprise drones have orientation which is expressed in terms of three quantities: yaw, pitch
and roll.102

We leave speed, direction and increase/decrease per time unit unspecified.

type
1173 POS = P

1174 VEL = SPEED × DIRECTION

1175 ACC = IncrDecrSPEEDperTimeUnit × DIRECTION
1176 ORI = YAW × PITCH × ROLL

1174 SPEED = ...
1174 DIRECTION = ...
1175 IncrDecrSPEEDperTimeUnit = ...

Fig. 11.2 Aircraft Orientation

101 Longitude is a geographic coordinate that specifies the east-west position of a point on the Earth’s surface. It is
an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda. Meridians (lines
running from the North Pole to the South Pole) connect points with the same longitude. Latitude is a geographic
coordinate that specifies the northsouth position of a point on the Earth’s surface. Latitude is an angle (defined
below) which ranges from 0o at the Equator to 90o (North or South) at the poles. Lines of constant latitude, or
parallels, run eastwest as circles parallel to the equator. Altitude or height (sometimes known as depth) is defined
based on the context in which it is used (aviation, geometry, geographical survey, sport, and many more). As a
general definition, altitude is a distance measurement, usually in the vertical or ”up” direction, between a reference
datum and a point or object. The reference datum also often varies according to the context.
102 Yaw, pitch and roll are seen as symmetry axes of a drone: normal axis, lateral (or transverse) axis and longitudinal
(or roll) axis. See Fig. 11.2.

276 11 Swarms of Drones [November–December 2017]

11.2.4.4.2 Attributes

1177. One of the enterprise properties is that of its dynamics which is seen as a quadruple of velocity,
acceleration, orientation and position. It is recorded as a reactive attribute.

1178. Enterprise drones follow a flight course, as prescribed in and recorded as a programmable
attribute, referred to a the future flight plan, FFP.

1179. Enterprise drones have followed a course recorded, also a programmable attribute, as a past
flight plan list, PFPL.

1180. Finally enterprise drones “remember”, in the form of a programmable attribute, the geography
(i.e., the area, the land and the weather) it is flying over and in !

type
1180 ImG = A×L×W
1177 DYN = s vel:VEL × s acc:ACC × s ori:ORI × s pos:POS

1178 FPL = FP
1179 PFPL = FP∗

value
1177 attr DYN: ED→ DYN
1178 attr FPL: ED→ FPL

1179 attr PFPL: ED→ PFPL

1180 attr ImG: ED→ ImG

Enterprise, as well as ‘other’ drone, positions must fall within the Euclidian Point Space of the
geography of the universe of discourse. We leave that as an axiom to be defined – or we could
decide that if a drone leaves that space then it is lost, and if drones suddenly “appear, out of the
blue”, then they are either “brand new”, or “reappear”.

11.2.4.4.3 Enterprise Drone Attribute Categories:

The position, velocity, acceleration, position and past position list attributes belong to the reactive
category. The future position list attribute belong to the programmable category. Drones have a
“zillion” more attributes – which may be introduced in due course.

11.2.4.5 ‘Other’ Drones Attributes

11.2.4.5.1 Constituent Types

The constituent types of ‘other’ drones are similar to those of some of the enterprise drones.

11.2.4.5.2 Attributes

1181. ‘Other’ drones have dynamics, dyn:DYN.
1182. ‘Other’ drones “remember”, in the form of a programmable attribute, the immediate geography,

ImG (i.e., the area, the land and the weather) it is flying over and in !

type
1182 A, L, W

1182 ImG = A×L×W
value
1181 attr DYN: OD→ DYN

11.2 Entities, Endurants 277

1182 attr ImG: OD→ ImG

11.2.4.6 Drone Dynamics

1183. By a timed drone dynamics, TiDYN, we understand a quadruplet of time, position, dynamics
and immediate geography.

1184. By a current drone dynamics we shall understand a drone identifier-indexed set of timed drone
dynamics.

1185. By a record of [traces of] timed drone dynamics we shall understand a drone identifier-indexed
set of sequences of timed drone dynamics.

type
1183 TiDYN = T × POS × DYN × ImG

1184 CuDD = (EDI →m TiDYN) ∪ (ODI →m TiDYN)

1185 RoDD = (EDI →m TiDYN∗) ∪ (ODI →m TiDYN∗)

We shall use the notion of current drone dynamics as the means whereby the monitor ascertains
(obtains, by interacting with drones) the dynamics of drones, and the notion of a record of [traces
of] drone dynamics in the monitor.

11.2.4.7 Drone Positions

1186. For all drones whether enterprise or ‘other’, their positions must lie within the geography of
their universe of discourse.

axiom
1186 ∀ uod:UoD,e:E,g:G,d:(ED|OD) •

1186 e = obs E(uod) ∧ g = obs G(uod) ∧ d ∈ xtr Ds(uod)⇒

1186 let eps = attr EPS(g), (, ,p) = attr DYN(d) in p ∈ eps end

11.2.4.8 Monitor Attributes

The monitor “sits between” the drones whose dynamics it monitors and the planner which it
provides with records of drone dynamics. Therefore we introduce the following.

1187. The monitor has just one, a programmable attribute: a trace of the most recent and all past time-
stamped recordings of the dynamics of all drones, that is, an element rodd:RoDD, cf. Item 1185.

type
1187 MRoDD = RoDD

value
1187 attr MRoDD: CM→ MRoDD

The monitor “obtains” current drone dynamics, cudd:CuDD (cf. Item 1184) from the drones and
offers records of [traces of] drone dynamics,(cf. Item 1185) rodd:RoDD, to the planner.

278 11 Swarms of Drones [November–December 2017]

11.2.4.9 Planner Attributes

11.2.4.9.1 Swarms and Businesses:

The planner is where all decisions are made with respect to where enterprise drones should
be flying; which enterprise drones fly together, which no longer – (with this notion of “flying
together” leading us to the concept of swarms); which swarms of enterprise drones do which
kinds of work – (with this notion of work specialisation leading us to the concept of businesses.)

1188. The is a notion of a business identifier, BI.

type
1188 BI

11.2.4.9.2 Planner Directories:

Planners have three directories. These are attributes, BDIR (businesses), SDIR (swarms) and DDIR

(drones).

1189. BDIR records which swarms are resources of which businesses;
1190. SDIR records which drones “belong” to which swarms.
1191. DDIR “keeps track” of past and present enterprise drone positions, as per enterprise drone

identifier.
1192. We shall refer to this triplet of directories by TDIR

type
1189 BDIR = BI →m SI-set
1190 SDIR = SI →m DI-set
1191 DDIR = DI →m RoDD

1192 TDIR = BDIR × SDIR × DDIR

value
1189 attr BDIR: CP→ BDIR

1190 attr SDIR: CP→ SDIR

1191 attr DDIR: CP→ DPL

All three directories are programmable attributes.
The business swarm concept can be visualized by grouping together drones of the same swarm

in the visualization of the aggregate set of enterprise drones. Figure 11.3 on the next page attempts
this visualization.

1193. For the planners of all universes of discourse the following must be the case.

a. The swarm directory must
i. have entries for exactly the swarms of the business directory,
ii. define disjoint sets of enterprise drone identifiers, and

iii. these sets must together cover all enterprise drones.
b. The drone directory must record the present position, the past positions, a list, dpl:DPL, and,

besides satisfying axioms 1186, satisfy some further constraints:
i. they must list exactly the drone identifiers of the aggregate of enterprise drones, and the

sum total of its enterprise drone identifiers must be exactly those of the enterprise drones

aggregate of enterprise swarms, and

ii. the head of a drone’s present and past position list must similarly be within reasonable
distance of that drone’s current position.

11.2 Entities, Endurants 279

CC: Command Center

CA: Actuator CP: Planner CM: Monitor

...

E: Enterprise

od:OD od:OD

UoD: Universe of Discourse

Geography: G

od:OD
...

ODs: Set of ’other’ dronesEDs: Set of Enterprise Drones

si1 si2 sim

AOD: Aggregate of ’Other’ DronesAED: Aggregate of Enterprise Drones

−− and set of Business Swarms

Fig. 11.3 Conceptual Swarms of the Universe of Discourse

axiom
1193 ∀ uod:UpD,e:E,cp:CP,g:G •

1193 e=obs E(uod)∧cp=obs CP(obs CC(e))⇒
1193a let (bdir,sdir,ddir) = (attr BDIR,attr SDIR,attr DDIR)(cp) in
1193(a)i ∪ rng bdir = dom sdir

1193(a)ii ∧ ∀ si,si′SI•{si,si′}⊆dom sdir∧si,si′ ⇒
1193(a)ii sdir(s) ∩ sdir(s′) = {}

1193(a)iii ∧ ∪ rng sdir = xtr dis(e)

1193(b)i ∧ dom ddir = xtr dis(e)
1193(b)ii ∧ ∀ di:DI•di ∈ dom ddir

1193(b)ii let (d,dpl) = (attr DDIR(cp))(di) in
1193(b)ii dpl , 〈〉

1193(b)ii ⇒ neighbours(f,hd(dpl))

1193(b)ii ∧ neighbours(hd(dpl),
1193(b)ii attr EDPOS(xtr D(obs Ss(e))(di)))

1193 end end

11.2.4.10 Actuator Attributes

The actuator receives, from the planner, flight directives as to which enterprise drones should
be redirected. The actuator maintains a record of most recent and all past such flight directives.
Finally, the actuator, effects the directives by informing designated enterprise drones as to their
next flight plans.

1194. Actuators have one programmable attribute: a flight directive directory. It lists, for each enter-
prise drone, by identifier, a pair: its current flight plan and a list of past flight plans.

type
1194 FDDIR = EDI →m (FP × FP∗)
value
1194 attr FDDIR: CA→ FDDIR

280 11 Swarms of Drones [November–December 2017]

11.2.4.11 Geography Attributes

11.2.4.11.1 Constituent Types:

The constituent types of longitude, latitude and altitude and positions, of a geography, were
introduced in Items 1128.

1195. A further concept of geography is that of area.
1196. An area, a:A, is a subset of positions within the geography.

type
1195 A = P-infset
axiom
1196 ∀ uod:UoD,g:G,a:A• g=obs G(uod)⇒ a ⊆ attr EPS(g)

11.2.4.11.2 Attributes

1197. Geographies have, as one of their attributes, a Euclidian Point Space, in this case, a compact103

infinite set of three-dimensional positions.

type
1197 EPS = P-infset
value
1197 attr EPS: G→ EPS

Further geography attributes reflect the “lay of the land and the weather right now !”.

1198. The “lay of the land”, L is a “conglomerate” further undefined geodetics and cadestra104

1199. The “weather”W is another “conglomerate” of temperature, humidity, precipitation, air pres-
sure, etc.

type
1198 L
1199 W

value
1198 attr L: G→ L

1199 attr W: G→W

11.3 Operations on Universe of Discourse States

Before we analyse & describe perdurants let us take a careful look at the actions that drone
and swarm behaviours may take. We refer to this preparatory analysis & description as one of
analysing & describing the state operations. From this analysis & description we move on to the
analysis & description of behaviours, events and actions. The idea is to be able to prove some
relations between the two analyses & descriptions: the state operation and the behaviour analyses
& descriptions. We refer to [49, Sects. 2.3 and 2.5].

103 In mathematics, and more specifically in general topology, compactness is a property that generalizes the notion
of a subset of Euclidean space being closed (that is, containing all its limit points) and bounded (that is, having all
its points lie within some fixed distance of each other). Examples include a closed interval, a rectangle, or a finite
set of points.
104 land surface altitude, streets, buildings (tall or not so tall), power lines, etc.

11.3 Operations on Universe of Discourse States 281

11.3.1 The Notion of a State

A state is any subset of parts each of which contains one or more dynamic attributes. Following
are examples of states of the present case study: a space of interest, an aggregate of ‘business’
swarms, an aggregate of ‘other’ swarms, a pair of the aggregates just mentioned, a swarm, or a
drone.

11.3.2 Constants

Some quantities of a given universe of discourse are constants. Examples are the unique identifiers
of the:

1200. enterprise, ei;

1201. aggregate of ‘other’ drones, oi;
1202. geography, gi;
1203. command center, cci;

1204. monitor, cmi;

1205. planner, cpi;

1206. actuator, cai;

1207. set of ‘other’ drones, odis;
1208. set of enterprise drones, edis;

1209. and the set of all drones, adis.

value
1200 aedi:EI = uid AED(obs AED(uod))
1201 aodi:OI = uid AOD(obs AOD(uod))

1202 gi:GI = uid G(obs G(uod))

1203 cci:CCI = uid CC(obs CC(obs AED(uod)))
1204 cmi:CMI = uid CM(obs CM(obs CC(obs AED(uod))))

1205 cpi:CPI = uid CP(obs CP(obs CC(obs AED(uod))))
1206 cai:CAI = uid CA(obs CA(obs CC(obs AED(uod))))

1207 odis:ODIs = xtr dis(obs AOD(uod))

1208 edis:EDIs = xtr dis(obs AED(uod))
1209 adis:DI-set = odis ∪ edis

11.3.3 Operations

An operation is a function from states to states. Following are examples of operations of the
present case study: a drone transfer: leaving a swarm to join another swarm, a drone changing
course: an enterprise drone changing course, a swarm split: a swarm splitting into two swarms,
and swarm join: two swarms joining to form one swarm.

11.3.3.1 A Drone Transfer

1210. The transfer operator specifies two distinct and unique identifiers, si, si′, of two enterprise
swarms, and the unique identifier, di, of an enterprise drone – all of the same universe of
discourse. The transfer operation further takes a universe of discourse and yields a universe of
discourse as follows:

1211. The input argument ‘from’ and ‘to’ swarm identifiers are different.
1212. The initial and the final state aggregates of enterprise drones, ‘other’ drones and geographies

are unchanged.

282 11 Swarms of Drones [November–December 2017]

1213. The initial and final state monitors and actuators are unchanged.
1214. The business and the drone directors of the initial and final planner are unchanged.
1215. The ’from’ and ‘to’ input argument swarm identifiers are in the swarm directory and the input

argument drone identifiers is in the initial swarm directory entry for the ‘from’ swarm identifier.
1216. The input argument drone identifier is in final the swarm directory entry for the ‘to’ swarm

identifier.
1217. And the final swarm directory is updated ...

value

1210 transfer: DI × SI × SI→ UoD
∼
→ UoD

1210 transfer(di,fsi,tsi)(uod) as uod′

1211 fsi , tsi ∧
1210 let aed = obs AED(uod), aed′ = obs AED(uod′), g = obs G(uod), g′ = obs G(uod′) in
1210 let cc = obs CC(aed), cc′ = obs CC(aed′), aod = obs AOD(uod), aod′ = obs AOD(uod′) in
1210 let cm = obs CM(cc), cm′ = obs CM(cc′), cp = obs CP(cc), cp′ = obs CP(cc′) in
1210 let ca = obs CA(cc), ca′ = obs CA(cc′) in
1210 let bdir = attr BDIR(cc), bdir′ = attr BDIR(cc′),

1210 sdir = attr SDIR(cc), sdir′ = attr SDIR(cc′),
1210 ddir = attr DDIR(cc), ddir′ = attr DDIR(cc′) in
1212 post: aed = aed′ ∧ aod = aod′ ∧ g = g′ ∧
1213 cm = cm′ ∧ ca = ca′ ∧

1214 bdir = bdir′ ∧ ddir = ddir′

1215 pre {fsi,tsi} ⊆ dom sdir ∧ di ∈ sdir(fsi)
1216 post di < sdir(fsi′) ∧ di ∈ sdir(tsi′) ∧

1217 sdir′ = sdir † [fsi7→sdir(fsi)∪ di] † [tsi7→sdir(tsi)\di]
1210 end end end end end

11.3.3.2 An Enterprise Drone Changing Course

to be written

11.3.3.3 A Swarm Splitting into Two Swarms

to be written

11.3.3.4 Two Swarms Joining to form One Swarm

to be written

11.3.3.5 Etcetera

to be written

11.4 Perdurants 283

11.4 Perdurants

We observe that the term train can have the following “meanings”: the train, as an endurant,
parked at the railway station platform, i.e., as a composite part; the train, as a perdurant, as it
“speeds” down the railway track, i.e., as a behaviour; the train, as an attribute. This observation
motivates that we “magically”, as it were, introduce a Behaviour Signaturer function, cf. [48, Sect. 4]

11.4.1 System Compilation

The Behaviour Signaturer function “worms” its way, so-to-speak, “down” the “hierarchy” of parts,
from the universe of discourse, via its immediate sup-parts, and from these to their sub-parts, and
so on, until the Behaviour Signaturer reaches atomic parts. We shall henceforth do likewise.

11.4.1.1 The Compile Functions

1218. Compilation of a universe of discourse results in

a. the RSL-Text of the core of the universe of discourse behaviour (which we set to skip –
allowing us to ignore core arguments),

b. followed by the RSL-Text of the parallel composition of the compilation of the enterprise,
c. followed by the RSL-Text of the parallel composition of the compilation of the geography,
d. followed by the RSL-Text of the parallel composition of the compilation of the aggregate of

‘other’ drones.

1218 TranslateUoD(uod) ≡
1218a Muid UoD(uod)(mereo UoD(uod),sta(uod))(pro(uod))

1218b ‖ TranslateAED(obs AED(uod))

1218c ‖ TranslateG(obs G(uod))

1218d ‖ TranslateAOD(obs AOD(uod))

1219. Compilation of an enterprise results in

a. the RSL-Text of the core of the enterprise behaviour (which we set to skip – allowing us to
ignore core arguments),

b. followed by the RSL-Text of the parallel composition of the compilation of the enterprise
aggregate of enterprise drones,

c. followed by the RSL-Text of the parallel composition of the compilation of the enterprise
command center.

1219 TranslateAED(e) ≡
1219a Muid AED(e)(mereo E(e),sta(e))(pro(e))

1219b ‖ TranslateEDs(obs EDs(e))
1219c ‖ TranslateCC(obs CC(e))

1220. Compilation of an enterprise aggregate of enterprise drones results in

a. the RSL-Text of the core of the aggregate behaviour (which we set to skip – allowing us to
ignore core arguments),

b. followed by the RSL-Text of the parallel composition of the distributed compilation of the
enterprise aggregate’s set of enterprise drones.

284 11 Swarms of Drones [November–December 2017]

1220 TranslateEDs(es) ≡

1220a Muid EDs(es)(mereo EDS(es),sta(es))(pro(es))

1220b ‖ {TranslateED(ed)|ed:ED•ed ∈ obs EDs(s)}

1221. Compilation of an enterprise drone results in

a. the RSL-Text of the core of the enterprise drone behaviour – which is what we really wish
to express – and since enterprise drones are here considered atomic, that is where the
compilation of enterprise ends.

1221 TranslateED(ed) ≡

1221a Muid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

1222. Compilation of an aggregate of ‘other’ drones results in

a. the RSL-Text of the core of the aggregate ‘other’ drones behaviour (which we set to skip –
allowing us to ignore core arguments) –

b. followed by the RSL-Text of the parallel composition of the distributed compilation of the
‘other’ drones in the ‘other’ drones’ aggregate set of ‘other’ drones.

1222 TranslateAOD(aod) ≡

1222a Muid OD(od)(mereo S(ods),sta(ods))(pro(ods))

1222b ‖ {TranslateOD(od)|od:OD•od ∈ obs ODs(ods)}

1223. Compilation of a(n) ‘other’ drone results in

a. the RSL-Text of the core of the ‘other’ drone behaviour – which is what we really wish to
express – and since ‘other’ drones are here considered atomic, that is where the compilation
of the ‘other’ drones aggregate

1223a Translate {OD}(ed) ≡

1223a Muid OD(od)(mereo OD(od),sta(od))(pro(od))

1224. Compilation of an atomic geography results in

a. the RSL-Text of the core of the geography behaviour.

1224 TranslateG(g) ≡

1224a Muid G(g)(mereo G(g),sta(g))(pro(g))

1225. Compilation of a composite command center results in

a. the RSL-Text of the core of the command center behaviour (which we set to skip – allowing
us to ignore core arguments)

b. followed by the RSL-Text of the parallel composition of the compilation of the command
monitor,

c. followed by the RSL-Text of the parallel composition of the compilation of the command
planner,

d. followed by the RSL-Text of the parallel composition of the compilation of the command
actuator.

11.4 Perdurants 285

1225 TranslateM(cc) ≡

1225a Muid CC(cc)(mereo CC(cc),sta(cc))(pro(cc))

1225b ‖ TranslateCC(obs CM(cc))

1225c ‖ TranslateCP(obs CP(cc))
1225d ‖ TranslateCA(obs CA(cc))

1226. Compilation of an atomic command monitor results in

a. the RSL-Text of the core of the monitor behaviour.

1226 TranslateCM(cm) ≡

1226a Muid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

1227. Compilation of an atomic command planner results in

a. the RSL-Text of the core of the planner behaviour.

1227 TranslateCP(cp) ≡

1227a Muid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

1228. Compilation of an atomic command actuator results in

a. the RSL-Text of the core of the actuator behaviour.

1228 TranslateCA(ca) ≡
1228a Muid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

11.4.1.2 Some CSP Expression Simplifications

We can justify the following CSP simplifications [98, 102, 141, 144]:

1229. skip in parallel with any CSP expression csp is csp.
1230. The distributed parallel composition of the distributed parallel composition of CSP expressions,

csp(i,j), i indexed over I, i.e., i:I, and j:J respectively, is the distributed parallel composition
over CSP expressions, csp(i,j), i.e., indexed over (i, j):I×J – where the index sets iset and jset are
assumed.

axiom
1230 skip ‖ csp ≡ csp

1230 ‖{‖{csp(i,j)|i:I•i∈iset}|j:J•j∈jset} ≡ ‖{csp(i.j)|i:I,j:J•i∈I-set∧j∈J-set}

11.4.1.3 The Simplified Compilation

1231. The simplified compilation results in:

1231 Translate(uod) ≡

1221a { Muid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

1221a | ed:ED • ed ∈ xtr Ds(obs AED(uod)) }

1223a ‖ { Muid OD(od)(mereo OD(od),sta(od))(pro(od))

286 11 Swarms of Drones [November–December 2017]

1223a | od:OD • od ∈ xtr ODs(obs AOD(uod)) }

1224a ‖ Muid G(g)(mereo G(g),sta(g))(pro(g))

1224a where g ≡ obs G(uod)

1226a ‖ Muid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

1226a where cm ≡ obs CM(obs CC(obs E(uod)))

1227a ‖ Muid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

1227a where cp ≡ obs CP(obs CC(obs E(uod)))

1228a ‖ Muid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

1228a where ca ≡ obs CA(obs CC(obs E(uod)))

1232. In Item 1231’s Items 1221a, 1223a, 1224a, 1226a, 1227a, and 1228a we replace the “anonymous”
behaviour namesM by more meaningful names.

1232 Translate(uod) ≡
1221a { enterprise droneuid ED(ed)(mereo ED(ed),sta(ed))(pro(ed))

1221a | ed:ED • ed ∈ xtr Ds(obs AED(uod)) }
1223a ‖ { other droneuid OD(od)(mereo OD(od),sta(od))(pro(od))

1223a | od:OD • od ∈ xtr ODs(obs AOD(uod)) }
1224a ‖ geographyuid G(g)(mereo G(g),sta(g))(pro(g))

1224a where g ≡ obs G(uod)
1226a ‖ monitoruid CM(cm)(mereo CM(cm),sta(cm))(pro(cm))

1226a where cm ≡ obs CM(obs CC(obs E(uod)))
1227a ‖ planneruid CP(cp)(mereo CP(cp),sta(cp))(pro(cp))

1227a where cp ≡ obs CP(obs CC(obs E(uod)))

1228a ‖ actuatoruid CA(ca)(mereo CA(ca),sta(ca))(pro(ca))

1228a where ca ≡ obs CA(obs CC(obs E(uod)))

11.4.2 An Early Narrative on Behaviours

11.4.2.1 Either Endurants or Perdurants, Not Both !

First the reader should observe that the manifest parts, in some sense, do no longer “exist” !
They have all been replaced by their corresponding behaviours. These behaviours embody all the
qualities of their “origin”: the unique identifiers, the mereology, and all the attributes – the latter
in one form or another: the static attributes as constants (referred to in the bodies of the
behaviour definitions); the programmable attributes as arguments (‘‘carried over’’ from
one invocation to the next); and the remaining dynamic attributes as “inputs” (whose varying
values are ‘‘accessed’’ through [dynamic attribute] channels).

11.4.2.2 Focus on Some Behaviours, Not All !

Secondly we focus, in this case study, only on the behaviour of the planner. The other behaviours,
the ‘other’ drones, enterprise drones, monitor, actuator, and the geography, are, in this case
study of less interest to us. That is, other case studies could focus on the behaviours of drones, or
geographies, or monitor, or actuator.

11.4 Perdurants 287

11.4.2.3 The Behaviours – a First Narrative

Drones “continuously” offer their identified dynamics (location, velocity, and possibly more) to
the monitor. Enterprise drones “continuously”, and in addition, offers to accept flight guidance
from the actuator. The monitor “continuously sweeps” the air space and collects the identities of
all recognizable drones and their dynamics, and offers this to the planner. The planner does all
the interesting work ! It effects the allocation/reallocation of drones to/from business swarms; it
calculates enterprise drone flights and instructs the actuator to offer such flight plans to relevant
drones; etcetera ! Finally the actuator, as instructed by the planner, offers flight guidance, as per
instructions from the planner, to all or some enterprise drones.

11.4.3 Channels

Channels is a concept of CSP [98, 100, 102].
CSP channels are a means for synchronising behaviours and for communicating values between

synchronised behaviours, as well as, as a technicality, conveying values of most kinds of dynamic
attributes of parts (i.e., endurants) to “their” behavioural counterparts.

There are thus two starting point for the analysis & description of channels: the mereologies
and the dynamic attributes of parts. Here we shall single out the following parts and behaviours:
the command monitor, planner and actuator, the enterprise drones and the ‘other’ drones, and
the geography. We refer to Fig. 11.4, a slight “refinement” of Fig. 11.1 on page 263.

...

CA CP

CC

UoD

edi:ED...

G

E

ed1:ED... od1:OD od2:OD odn:OD...edm:ED

CM

ODs

ch[{i,j}]...

...
EDs

AED AOD

Fig. 11.4 Universe of Discourse with General Channel: ch[{i,j}] ...

288 11 Swarms of Drones [November–December 2017]

11.4.3.1 The Part Channels

11.4.3.1.1 General Remarks:

Let there be given a universe of discourse. Let us analyse the unique identifiers and the mereologies
of the planner cp: (cpi,cpm), monitor cm: (cmi,cmm) and geography g: (mi,mm), where cpm =

(cai,cmi,gi), cmm = ({di1,di2, . . . ,din},cpi) and gm = (cpi,{di1,di2, . . . ,din}).
We now interpret these facts. When the planner mereology specifies the unique identifiers

of the actuator, the monitor, and the geography, then that shall mean there there is a way of
communicating messages between the actuator, and the geography, and one side, and the plannner
on the other side.

1233. We shall therefore, in a first step of specification development, think of a “grand” array channel
over which all communication between behaviours take place. See Fig. 11.4 on the preceding
page.

1234. Example indexes into this array channel are shown in the formulas just below.

type
1233 MSG

channel
1233 {ch[fui,tui]|fui,tui:PI • ...}:MSG

value
1234 ch[cpi,cai]!msg output from planner to actuator.
1234 ch[cpi,cai]? input from planner to actuator.

1234 etc.

We presently leave the type of messages, MSG, that can be communicated over this “grand”
channel further unspecified. We also leave unspecified the pair of distinct unique identifiers that
index the channel array. We emphasize that the uniqueness of all part identifiers allow us to use
pairs of such as indices. Expression ch[fui,tui]!,sg thus expresses output from behaviour indexed
by fuit to behaviour indexed by tui, whereas expression ch[tui,fui]? thus expresses input from
behaviour indexed by tui to behaviour indexed by fui. Not all combinations of unique identifiers
are needed. The channel array is “sparse” ! That property allows us to refine the “grand” channel
into the channels illustrated on Fig. 11.5 on the next page. Some channels are array channels:
The channels to the drones whether all drones, or just the enterprise drones. Other channels are
“single” channels: these are the channels which are anchored in parts with a priori known, i.e.,
constant unique identifiers.

11.4.3.1.2 Part Channel Specifics

1235. There is an array channel, d cm ch[di,cmi]:D CM MSG, from any drone ([di]) behaviour to the
monitor behaviour (whose unique identifier is cmi). The channel, as an array, forwards the
current drone dynamics D CM MSG = CuDD.

type
1235 D CM MSG = CuDD

channel
1235 {d cm ch[di,cmi]|di:(EDI|ODI)•di ∈ dis}:D CM MSG

1236. There is a channel, cm cp ch[cmi,cpi, from the monitor behaviour (cmi) to the planner behaviour
(cpi). It forwards the monitor’s records of drone dynamics CM CP MSG = MRoDD.

11.4 Perdurants 289

...

E: Enterprise

ed:ED.. ed:ED.. ed:ED.. od:ODod:OD od:OD od:OD

...
od:OD

CP

CC

CMCA

UoD

G

AED

EDs ODs

AOD
g_d_ch[gi,di]d_g_ch[di,gi] d_cm_ch[di,cmi]

ca_ed_ch[cai,edi]

g_cp_ch[gi,cpi]

cp_g_ch[cpi,gi]

cm_cp_ch[cmi,cpi]cp_ca_ch[cpi,cai]

Fig. 11.5 Universe of Discourse with Specific Channels

type
1236 CM CP MSG = MRoDD

1236 channel m cp ch[cmi,cpi]:CM CP MSG

1237. There is a channel, cp ca ch[cpi,cai]:CP CA MSG, from the plannner behaviour (cpi) to the
actuator behaviour (cai). It forwards flight plans CP CA MSG = FP.

type
1237 CP CA MSG = EID →m FP

channel
1237 cp ca ch[cpi,cai]:CM CP MSG

1238. There is an array channel, ca ed ch[cai,edi], from the actuator behaviour (cai) to the enter-
prise drone behaviours (edi for suitable edis). It forwards flight plans, CA ED MSG = FP, to
enterprise drones in a designated set.

type
1238 CA ED MSG = EID × FP
channel
1238 {ca ed ch[cai,edi]|edi:EDI•edi ∈ edis}:CA ED MSG

1239. There is an array channel, g d ch[di,gi]:D G MSG, from all the drone behaviours (di) to the
geography behaviour The channels convey, requests for an immediate geography for and
around a point : D G MSG = P.

type
1239 D G MSG = P

channel
1239 {d g ch[di,gi]|di:(EDI|ODI)•di ∈ dis}:D H MSG

290 11 Swarms of Drones [November–December 2017]

1240. There is an array channel, g d ch[gi,di]:G D MSG, from the geography behaviour to all the
drone behaviours. The channels convey, for a requested point, the immediate geography for
that area: G D MSG = ImG.

type
1240 G D MSG = ImG

channel
1240 {g d ch[gi,di]|di:(EDI|ODI)•di ∈ dis}:G D MSG

11.4.3.2 Attribute Channels, General Principles

Some of the drone attributes are reactive. Being reactive means that their values change surrepti-
tiously. In the physical world of parts that means that these vales must be measured, or somehow
ascertained, whenever needed, i.e., “on the fly”. Now “our world” is that of a domain description.
When dealing with endurants, the value of an attribute, a:A, of part p:P, is expressed as attr A(p).
When dealing with perdurants, that same value is to be expressed as attr A ch[uid P(p)] ?.

1241. This means that we must declare a channel for each part with one or more dynamic, however
not including programmable, attributes A1, A2, ..., An.

channel
1241 attr A1 ch[pi]:A1, attr A2 ch[pi]:A2, ..., attr An ch[pi]:An

1242. If there are several parts, p1,p2,. . . ,pm:P then an array channel over indices p1i,p2i,. . . ,pmi is
declared for each applicable attribute.

channel
1242 {attr A1 ch[pji]|pji:PI•pji∈{p1i,p2i,...,pmi}}:A1,
1242 {attr A2 ch[pji]|pji:PI•pji∈{p1i,p2i,...,pmi}}:A2,

1242 ...
1242 {attr An ch[pji]|pji:PI•pji∈{p1i,p2i,...,pmi}}:An

11.4.3.3 The Case Study Attribute Channels

11.4.3.3.1 ‘Other’ Drones:

‘Other’ drones have the following not biddable or programmable dynamic channels:

1243. dynamics, including velocity, acceleration, orientation and position,
{attr DYN ch[odi]:DYN|odi:ODI•odi∈odis}.

channel
1243 {attr DYN ch[odi]:DYN|odi:ODI•odi ∈ odis}

11.4.3.3.2 Enterprise Drones:

Enterprise drones have the following not biddable or programmable dynamic channels:

1244. dynamics, including velocity, acceleration, orientation and position,
{attr DYN ch[edi]:DYN|edi:EDI•edi∈odis}.

11.4 Perdurants 291

channel
1244 {attr DYN ch[odi]:DYN|odi:ODI•odi ∈ odis}

11.4.3.3.3 Geography:

The geography has the following not biddable or programmable dynamic channels:

1245. land, attr L ch[gi]:L, and
1246. weather, attr W ch[gi]:W.

channel
1245 attr L ch[gi]:L
1246 attr W ch[gi]:W

We do not show any graphics for the attribute channels.

11.4.4 The Atomic Behaviours

to be written

11.4.4.1 Monitor Behaviour

1247. The signature of the monitor behaviour

a. lists the monitor’s unique identifier, carries the monitor’s mereology, has no static arguments
(... maybe ...), has the programmable time-stamped recordings, dtp, of all drone positions
(present and past) and

b. further designates the input channel d cm ch[*.*] from all drones and the channel output
cm cp ch[cmi,cpi] to the planner.

1248. The monitor [otherwise] behaves as follows:

a. All drones provide as input, d cm ch[di,cmi]?, their time-stamped positions, rec.
b. The programmable mrodd attribute is updated, mrodd′, to reflect the latest time stamped

dynamics per drone identifier.
c. The updated attribute is is provided to the planner.
d. Then the monitor resumes being the monitor, forwarding, as the progammable attribute, the

time-stamped drone position recording.

value
1247a monitor: cmi:CMI×cmm:(dis:DI-set×cpi:CPI)→ MRoDD→
1247b in {d cm ch[di,cmi]|di:DI•di∈dis} out cm cp ch Unit
1248 monitor(mi,(dis,cpi))(mrodd) ≡
1248a let rec = {[di 7→ d cm ch[di,cmi]?|di:DI•di∈dis]} in
1248b let mrodd′ = mrodd † [di7→〈rec(di)〉̂ mrodd(di)|di:DI•di∈dis] in
1248c cm cp ch[cmi,cpi] ! mrodd′;
1248d monitor(cmi,(dis,cpi))(mrodd′)

1248 end end
1248 axiom cmi=cmi∧cpi=cpi

292 11 Swarms of Drones [November–December 2017]

We have decided to let the monitor maintain the present and past time-stamped drone positions.
It is the monitor which records these positions. Not the planner. But the monitor provides these
traces, again-and-again, to the planner.

11.4.4.2 Planner Behaviour

1249. The signature of the planner behaviour

a. lists the planner’s unique identifier, carries the planner’s mereology, has, perhaps ..., some
static arguments, has the programmable planner directories, and

b. further designates the single input channel cm cp ch and the single output channel cp ca ch.

1250. The planner [otherwise] behaves as follows:

a. the planner [internal] non-deterministically (“coin-flipping”) decides whether to transfer a
drone between business swarms, or to calculate flight plans, or . . . other.

b. Depending on the [outcome of the “coin-flipping”] the planner
c. either effects a transfer,

i. by delegating to an auxiliary function, transfer, the necessary modifications of the swarm
directory –

ii. whereupon the planner behaviour resumes;
d. or effects a [re-]calculation on drone flights,

i. by, again, delegating to an auxiliary function, flight planning, the necessary calculations –
ii. which are communicated to the actuator,

iii. whereupon the planner behaviour resumes;
e. or . . . other !

value
1250 planner: cpi:CPI × (cai>CAI×cmi:CMI×gi:GI) × TDIR→
1250 in cm cp ch[cmi,cpi], g cp ch[gi,cpi] out cp ca ch[cpi,cai] Unit
1249 planner(cpi,(cai,cmi,gi),...)(bdir,sdir,ddir) ≡

1250a let cmd =
′′
transfer

′′
⌈⌉
′′
flight_plan

′′
⌈⌉ ... in

1250b cases cmd of
1250c

′′
transfer

′′
→

1250(c)i let sdir′ = transfer(tdir) in
1250(c)ii planner(cpi,(cai,cmi,gi),...)(bdir,sdir′,ddir) end
1250d

′′
flight_plan

′′
→

1250(d)i let ddir′ = flight planning(tdir) in
1250(d)ii planner(cpi,(cai,cmi,gi),...)(bdir,sdir,ddir′) end
1250e ...
1249 end
1249 axiom cpi=cpi∧cai=cai∧cmi=cmi∧gi=gi

11.4.4.2.1 The Auxiliary transfer Function

1251. The transfer function has a simpler signature than the planner behaviour in that it need not
communicate with other behaviours.

a. The transfer function internal non-deterministically chooses a business designator, bi;
b. from among that business’ swarm designators it internal non-deterministically chooses two

distinct swarm designators, fsi,tsi;

11.4 Perdurants 293

c. and from the fsi entry in sdir (which is set of enterprise drone identifiers), it internal non-
deterministically chooses an enterprise drone identifier, di.

d. Given the swarm and drone identifiers the resulting swarm directory can now be made to
reflect the transfer: reference to di is removed from the fsi entry in sdir and that reference
instead inserted into the tsi entry.

value
1251 transfer: TDIR→ SDIR
1251 transfer(bdir,sdir,ddir) ≡

1251a let bi:BI•bi ∈ dom bdir in
1251b let fsi,tsi:SI•{fsi,tsi}⊆bdir(bi)∧fsi,tsi in
1251c let di:DI•di ∈ sdir(fsi) in
1251d sdir † [fsi7→sdir(fsi)\{di}] † [tsi7→sdir(tsi)∪{di}]
1251 end end end

11.4.4.2.2 The Auxiliary flight planning Function

1252. The signature of the flight planning behaviour needs two elements: the triplet of business, swarm
and drone directories, and the planner-to-actuator channel.

a. The flight planning behaviour offers to accept the time-stamped recordings of the most recent
drone positions and dynamics as well as all the past such recordings.

b. The flight planning behaviour selects, internal, non-deterministically a business, designated
by bi,

c. one of whose swarms, designated by si, it has thus decided to perform a flight [re-]calculation
for.

d. An objective for the new flight plan is chosen.
e. The flight plan is calculated.
f. That flight plan is communicated to the actuator.
g. And the flight plan, appended to the drone directory’s (past) flight plans.

value
1252 flight planning: TDIR→ in cm cp ch[cmi,cpi], out cp ca ch[cpi,cai] DTP
1252 flight planning(bdir,sdir,ddir) ≡

1252a let dtp = cm cp ch[cpi,cai] ? ,

1252b bi:BI • bi ∈ dom bdir
1252c let si:SI • si ∈ bdir(bi) in
1252d let fp obj:fp objective(bi,si) in
1252e let flight plan = calculate flight plan(dtp,sdir(si),fp obj,tdir) in
1252f cp ca ch[cpi,cai] ! flight plan ;

1252g 〈flight pla〉̂ ddir
1252 end end end end
type
1252d FP OBJ
value
1252d fp objective: BI × SI→ FP OBJ
1252d fp objective(bi,si) ≡ ...

1253. The calculate flight plan function is the absolute focal point of the planner.

1253 calculate flight plan: DTP × DI-set × FP−OBJ × TDIR→ FP

1253 calculate flight plan(dtp,sdir(si),fp obj,tdir) ≡ ...

294 11 Swarms of Drones [November–December 2017]

There are many ways of calculating flight plans.
[124, Mehmood et al., Stony Brook, 2018: Declarative vs Rule-based Control for Flocking Dy-

namics] is one such:

to be written

In [138, 139, 140, Craig Reynolds: OpenSteer, Steering Behaviours for Autonomous Characters]

to be written

In [126, Reza Olfati-Saber: Flocking for Multi-agent Dynamic Systems: Algorithms and Theory,
2006]

to be written

The calculate flight plan function, Item 1253 on the preceding page, is deliberately provided
with all such information that can be gathered and hence can be the only ‘external’105 data that
can be provided to such calculation functions,106 and is therefore left further unspecified; future
work107 will show whether this assumption holds. If it does, then, OK, and we can proceed. If it
does not, we shall revise the present model.

11.4.4.3 Actuator Behaviour

1254. The actuator accepts a current flight plan, cfp:CFP, i.e., a number of enterprise drone identifier-
indexed flight plans, from the planner.

1255. The signature of the actuator behaviour lists the actuator’s unique identifier, carries the ac-
tuator’s mereology, has, perhaps ..., some static arguments, has the programmable flight di-
rectory, and further designates the input channel cp ca ch[cpi,cai] and the output channel
ca ed ch[cai,*].

1256. The actuator further behaves as follows:

a. It offers to accept a current flight plan from the planner.
b. It then proceeds to offer those enterprise drones which are designated in the flight plan their

flight plan.
c. Whereupon the actuator resumes being the actuator, now with its programmable flight plan

directory updated with the latest such !

type
1254 CFP = EDI →m FP

value
1255 actuator: cai:CAI × (cpi:CPI×edis:EDI-set)→ FDDIR→
1255 in cp ca ch[cpi,cai] out {ca ed ch[cai,edi]|edi:EDI•edi ∈ edis} Unit
1256 actuator(cai,(cpi,edis),...)(pfp,pfpl) ≡

1256a let cfp = ca cp ch[cai,cpi] ? in comment: fp:EDI→m FP
1256b ‖ {ca ed ch[cai,edi]!cfp(edi)|edi:EDI•edi ∈ dom cfp} ;

1256c actuator(cai,(cpi,edis),...)(cfp,〈pfp〉̂ pfpl)
1254 end

1255 axiom cai=cai∧cpi=cpi

105 Flight plan objectives are here referred to as ‘internal’.
106 Well – better check this!

107 – for you ShaoFa !

11.4 Perdurants 295

11.4.4.4 ‘Other’ Drone Behaviour

1257. The signature of the ‘other’ drone behaviour

a. lists the ‘other’ drone’s unique identifier, the ‘other’ drone’s mereology, has, perhaps ..., some
static arguments; then the programmable attribute of the geography (i.e., the area, the land
and the weather) it is moving over and in;

b. then, as input channels, the inert, active, autonomous and biddable attributes: velocity,
acceleration, orientation and position, and, finally

c. further designates the array input channel g d ch[*] from the geography and the array output
channel d cm ch[*] to the monitor.

1258. The ‘other’ drone otherwise behaves as follows:
1259. internal, non-deterministically the ‘other’ drone chooses to either ..., or "pro"viding to the

monitors request for drone "dyn"amics, or
1260. If the choice is ... ,
1261. If the choice is "provide dynamics" the behaviour drone monitor is invoked, with arguments

similar to that of other drone, but “marked” with an additional, “frontal” argument: "other",
and with “tail”, programmable arguments (〈〉,〈〉).

1262. If the choice is

value
1257 other drone: odi:ODI × (cmi:CMI×gi:GI) × ...→ (DYN×ImG)→

1257b in attr DYN ch[odi],g d ch[gi,odi] out d cm ch[odi,cmi] Unit
1258 other drone(odi,(cmi,gi),...)(dyn:(v,a,o,p),img) ≡

1259 let mode =
′′
...

′′
⌈⌉
′′
pro_dyn

′′
⌈⌉
′′
...

′′
in

1259 case mode of
1260

′′
...

′′
→ ... ,

1261
′′
pro_dyn

′′
→ drone moni(odi,(cmi,gi),...)(dyn:(v,a,o,p),img)

1262
′′
...

′′
→ ...

1259 end
1257 end

1263. If the choice is "provide dynamics"

a. then the drone-monitor behaviour ascertains its dynamics (velocity, acceleration, orientation
and position),

b. informs the monitor ‘thereof’, and
c. resumes being the ‘other’ drone with that updated, programmable dynamics.

value
1263 drone moni: odi:ODI × (cmi:CMI×gi:GI) × ...→ (DYN×ImG)→

1263 in attr DYN ch[odi],g d ch[gi,odi] out d cm ch[odi,cmi] Unit
1262 drone moni(odi,(cmi,gi),...)(dyn:(v,a,o,p),img) ≡

1263a let (ti,dyn′,img′) =
1263a (time(),

1263a (let (v′,a′,o′,p′) = attr DYN[odi]? in
1263a (v′,a′,o′,p′),
1263a d g ch[odi,gi]!p′ ; g d ch[gi,odi]? end)) in
1263b d cm ch[odi,cmi] ! (ti,dyn′) ;

1263c other drone(cai,(cpi,edis),...)(dyn′,img′)
1263a end

296 11 Swarms of Drones [November–December 2017]

11.4.4.5 Enterprise Drone Behaviour

1264. The enterprise donor lists its enterprise drone’s unique identifier, carries it’s mereology, has,
perhaps ..., some static arguments, the programmable enterprise drone attributes: a pair of the
present flight plan, and the past flight plans, and a pair of the most recently observed dynamics
and immediate geography, and further designates the single input channel and the output
channel array .

Enterprise drones otherwise behave as follows:

1265. internal, non-deterministically an enterprise drone chooses to either"rec"ording the"geo"graphy,
i.e., the area, land and weather it is situated in, or "pro"viding to the monitors request for drone
"dyn"amics, or "acc"epting the actuators offer of a new "f"light "p"lan, or "move" "on" (i.e.,
continue to fly), either "follow"ing the "flight plan"most recently received from the actua-
tor, or, "ignor"ing this directive, “just plondering on” !

1266. If the choice is "rec geo" then the enterprise geo behaviour is invoked,
1267. If the choice is "pro dyn" (provide dynamics to the monitor) then the enterprise moni behaviour

is invoked,
1268. If the choice is "acc fp" then the enterprise accept flight plan behaviour is invoked,
1269. If the choice is "move on" then the enterprise drone decides either to "ignore" the flight plan,

or to "follow" it.

a. If it "ignore"s the flight plan then the enterprise ignore behaviour is invoked,
b. If the choice is "follow" then the enterprise follow behaviour is invoked.

1264 enterprise drone: edi:EDI×(cmi:CMI×cai:CAI×gi:GI)→

1264 ((FPL×PFPL)×(DDYN×ImG))→
1264 in attr DYN ch[edi],g d ch[gi,edi],ca ed ch[cai,edi]
1264 out d cm ch[edi,cmi],d g ch[edi,gi] Unit
1264 enterprise drone(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img)) ≡

1265 let mode =
′′
rec_geo

′′
⌈⌉
′′
pro_dyn

′′
⌈⌉
′′
acc_fp

′′
⌈⌉
′′
move_on

′′
in

1265 case mode of
1266

′′
rec_geo

′′
→ enterprise geo(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))

1267
′′
pro_dyn

′′
→ enterprise moni(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))

1268
′′
acc_fp

′′
→ enterprise acc fl pl(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))

1269
′′
move_on

′′
→

1269 let m o mode =
′′
ignore

′′
⌈⌉
′′
follow

′′
in

1269 case m o mode of
1269a

′′
ignore

′′
→ enterprise ignore(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))

1269b
′′
follow

′′
→ enterprise follow(edi,(cmi,cai,gi),...)(fpl,pfpl,(ddyn,img))

1275 end
1275 end
1265 end
1265 end
1264 axiom cmi=cmi∧cai=cai∧gi=gi

1270. If the choice is "rec geo"

a. then dynamics is ascertained so as to obtain a positions;
b. that position is used in order to obtain a “fresh” immediate geography;
c. with which to resume the enterprise drone behaviour.

1264 enterprise geography: edi:EDI×(cmi:CMI×cai:CAI×gi:GI)→
1264 ((FPL×PFPL)×(DDYN×ImG))→

11.4 Perdurants 297

1264 in attr DYN ch[edi],g d ch[gi,edi],ca ed ch[cai,edi]
1264 out d cm ch[edi,cmi],d g ch[edi,gi] Unit
1264 enterprise geography(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
1270a let (v,a,o,p) = attr DYN ch[edi]? in
1270b let img′ = d g ch[edi,gi]!p;g d ch[gi,edi]? in
1270c enterprise drone(edi,(cmi,cai,gi),...)((fpl,pfpl),((v,a,o,p),img′))

1270a end end

1271. If the choice is "pro dyn" (provide dynamics to the monitor)

a. then a triplet is obtained as follows:
b. the current time,
c. the dynamics (v,a,o,p), and
d. the immediate geography of position p,
e. such that the monitor can be given the current dynamics,
f. and the enterprise drone behaviour is resumed with updated dynamics and immediate

geography.

1264 enterprise monitor: edi:EDI×(cmi:CMI×cai:CAI×gi:GI)→

1264 ((FPL×PFPL)×(DDYN×ImG))→

1264 in attr DYN ch[edi],g d ch[gi,edi],
1264 out d cm ch[edi,cmi],d g ch[edi,gi] Unit
1264 enterprise monitor(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
1271a let (ti,ddyn′,img′) =

1271b (time(),

1271c (let (v,a,o,p) = attr DYN[edi]? in
1271c (v,a,o,p),

1271d d g ch[edi,gi]!p;g d ch[gi,edi]? end)) in
1271e d cm ch[edi,cmi] ! (ti,ddyn′) ;
1271f enterprise drone(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn′,img′))

1271a end

1272. If the choice is "acc fp"

a. the enterprise drone offers to accept a new flight plan from the actuator
b. and the enterprise drone behaviour is resumed with that flight plan now becoming the next

current flight plan and whatever is left of the hitherto current flight plan appended to the
past flight plan list.

1264 enterprise acc fl pl: edi:EDI×(cmi:CMI×cai:CAI×gi:GI)→

1264 ((FPL×PFPL)×(DDYN×ImG))→ in ca ed ch[cai,edi] Unit
1264 enterprise axx fl pl(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
1272a let fpl′ = ca ed ch[cmi,edi] ? in
1272b enterprise drone(edi,(cmi,cai,gi),...)(fp′,〈fpl〉̂ pfpl,(ddyn,img))
1272a end

1273. If the choice is "move on" and the enterprise drone decides to "ignore" the flight plan,

a. then it ascertains where it might be moving with the current dynamics
b. and then it just keeps moving on till it reaches that dynamics
c. from about where it resumes the enterprise drone behaviour.

298 11 Swarms of Drones [November–December 2017]

1264 enterprise ignore: edi:EDI×(cmi:CMI×cai:CAI×gi:GI)→

1264 ((FPL×PFPL)×(DDYN×ImG))→

1264 in attr DYN ch[edi] out d cm ch[edi,cmi],d g ch[edi,gi] Unit
1264 enterprise ignore(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡

1273a let (v′,a′,o′,p′) = increment(dyn,img) in
1273b while let (v′′,a′′,o′′,p′′) = attr DYN ch[odi]? in
1273b ∼close(p′,p′′) end do manoeuvre(dyn,img) ; wait δ t end ;

1273c enterprise drone(cai,(cpi,edis),...)(fpl,pfpl,(attr DYN ch[odi]?,img))
1273a end

1274. The manoeuvre behaviour is further unspecified. For a fixed wing aircraft it controls the yaw,
the roll and the pitch of the aircraft, hence its flight path, by operating the elevator, aileron,
ruddr and the thrust of the aircraft based on its current dynamics, weight (including aircraft
fuel), meteorological conditions (winds etc.).

value
1274 manoeuvre: DYN × ImG→ Unit
1274 manoeuvre(dyn,img) ≡ ...

The wait δ t is some drone constant.

1275. If the choice is "move on" and the enterprise drone decides to "follow" the flight plan,

a. then, if the current flight plan has been exhausted, i.e., “used-up” it aborts (chaos108)
b. otherwise it ascertains where it might be moving, i.e., a next dynamics from with the current

dynamics.
c. So it then “moves along” until it has reached that dynamics –
d. from about where it resumes the enterprise drone behaviour.

value
1264 enterprise follow: edi:EDI×(cmi:CMI×cai:CAI×gi:GI)→
1264 ((FPL×PFPL)×(DDYN×ImG))→

1264 in attr DYN ch[edi] out d cm ch[edi,cmi],d g ch[edi,gi] Unit
1264 enterprise follow(edi,(cmi,cai,gi),...)((fpl,pfpl),(ddyn,img)) ≡
1275a if fpl = 〈〉 then chaos else
1275b let (v′,a′,o′,p′) = increment(dyn,img,hd fpl) in
1275c while let (v′′,a′′,o′′,p′′) = attr DYN ch[odi]? in
1275c ∼close(p′,p′′) end do manoeuvre(hd fpl,dyn,img) ; wait δ t end ;

1275d enterprise drone(edi,(cmi,cai,gi),...)((tlfpl,pfpl),(attr DYN ch[odi]?,img))

1275a end end

1276. The (overloaded) manoeuvre behaviour is further unspecified. For a fixed wing aircraft it
controls the yaw, the roll and the pitch of the aircraft, hence its flight path, by operating the
elevator, aileron, ruddr and the thrust of the aircraft based on its current dynamics, weight
(including aircraft fuel), meteorological conditions (winds etc.).

value
1276 manoeuvre: FPE × DYN × ImG→ Unit
1276 manoeuvre(fpe,dyn,img) ≡ ...

The wait δ t is some drone constant.

108 chaos means that we simply decide not to describe what then happens !

11.4 Perdurants 299

11.4.4.6 Geography Behaviour

1277. The geography behaviour definition

a. lists the geography behaviour’s unique identifier, carries the its mereology, has the static
argument of its Euclidean point space, and

b. further designates the single input channels cp g ch[cpi,gi] from the planner and d g ch[*,gi]

from the drones and the output channels g cp ch[gi,cpi] to the planner and g d ch[gi,*] to
the drones.

1278. The geography otherwise behaves as follows:

a. Internal, non-deterministically the geography chooses to either "resp"ond to a request from
the ”plan”ner.

b. If the choice is
c. "resp plan"

i. then the geography offers to accept a request from the planner for the immediate geogra-
phy of an area “around” a point and

ii. then the geography offers that information to the planner,
iii. whereupon the geography resumes being that;
else if the choice is

d. "resp dron"
i. then then the geography offers to accept a request from the planner for the immediate

geography of an area “around” a point and
ii. then the geography offers that information to the planner,

iii. whereupon the geography resumes being that.

1279. The area function takes a pair of a point and a pair of land and weather and yields an immediate
geography.

value
1277 geography: gi:GI × gm:(cpi:CPI×cmi:CMI×dis:DI-set) × EPS→

1277a in cp g ch[cpi,gi], d g ch[∗,gi]
1277b out g cp ch[gi,cpi], g d ch[gi,∗] Unit
1277 geography(gi,(cpi,cmi,dis),eps) ≡

1278a let mode =
′′
resp_plan

′′
⌈⌉
′′
resp_dron

′′
⌈⌉ ... in

1278b case mode of
1278c

′′
resp_plan

′′
→

1278(c)i let p = cp g ch[cpi,gi] ? in
1278(c)ii g cp ch[gi,cpi] ! area(p,(attr L ch[gi]?,attr W ch[gi]?)) end
1278(c)iii geography(gi,(cpi,cmi,dis),eps)
1278d

′′
resp_dron

′′
→

1278(d)i let (p,di) = ⌈⌉⌊⌋{(d g ch[di,gi]?,di)|di:DI•di ∈ dis} in
1278(d)ii g cp ch[di,cpi] ! area(p,(attr L ch[gi]?,attr W ch[gi]?)) end
1278(d)iii geography(gi,(cpi,cmi,dis),eps)

1277 end end
axiom
1277 gi=gi∧cpi=cpi∧smi=cmidis=dis
value
1279 area: P × (L ×W)→ ImG
1279 area(p,(l,w)) ≡ ...

300 11 Swarms of Drones [November–December 2017]

11.5 Conclusion

to be written

Chapter 12

Container Terminals [November 2017]

Contents
12.1 Introduction . 304

12.1.1 Reference Literature on Container-related Matters . 304
12.2 Some Pictures . 304

12.2.1 Terminal Port Container Stowage Area . 304
12.2.2 Container Stowage Area and Quay Cranes . 305
12.2.3 Container Vessel Routes . 305
12.2.4 Containers . 306

12.2.4.1 40 and 20 Feet Containers . 306
12.2.4.2 Container Markings . 306

12.2.5 Container Vessels . 306
12.2.6 Container Stowage Area: Bays Rows, Stacks and Tier 307
12.2.7 Stowage Software . 308
12.2.8 Quay Cranes . 308
12.2.9 Container Stowage Area and Stack Cranes . 308
12.2.10 Container Stowage Area . 309
12.2.11 Quay Trucks . 309
12.2.12 Map of Shanghai and YangShan . 309

12.3 SECT . 310
12.4 Main Behaviours . 311

12.4.1 A Diagram . 312
12.4.2 Terminology - a Caveat . 312
12.4.3 Assumptions . 313

12.5 Endurants . 313
12.5.1 Parts . 314

12.5.1.1 Terminal Ports . 314
12.5.1.2 Quays . 315
12.5.1.3 Container Stowage Areas: Bays, Rows and Stacks 315
12.5.1.4 Vessels . 316
12.5.1.5 Functions Concerning Container Stowage Areas 316
12.5.1.6 Axioms Concerning Container Stowage Areas 316
12.5.1.7 Stacks . 317

12.5.2 Terminal Port Command Centers . 317
12.5.2.1 Discussion . 317
12.5.2.2 Justification . 318

12.5.3 Unique Identifications . 318
12.5.3.1 Unique Identifiers: Distinctness of Parts . 319
12.5.3.2 Unique Identifiers: Two Useful Abbreviations 319
12.5.3.3 Unique Identifiers: Some Useful Index Set Selection Functions 319
12.5.3.4 Unique Identifiers: Ordering of Bays, Rows and Stacks 319

12.5.4 States, Global Values and Constraints . 320
12.5.4.1 States . 320
12.5.4.2 Unique Identifiers . 320
12.5.4.3 Some Axioms on Uniqueness . 321

12.5.5 Mereology . 321

301

302 12 Container Terminals [November 2017]

12.5.5.1 Physical versus Conceptual Mereology . 321
12.5.5.2 Vessels . 322

12.5.5.2.1 Physical Mereology: . 322
12.5.5.2.2 Conceptual Mereology: . 322

12.5.5.3 Quay Cranes . 322
12.5.5.3.1 Physical Mereology: . 322
12.5.5.3.2 Conceptual Mereology: . 323

12.5.5.4 Quay Trucks . 323
12.5.5.4.1 Physical Mereology: . 323
12.5.5.4.2 Conceptual Mereology: . 323

12.5.5.5 Stack Cranes . 324
12.5.5.5.1 Physical Mereology: . 324
12.5.5.5.2 Conceptual Mereology: . 324

12.5.5.6 Container Stowage Areas . 324
12.5.5.6.1 Bays, Rows and Stacks: . 324

12.5.5.7 Bay Mereology . 325
12.5.5.7.1 Physical Vessel Bay Mereology: . 325
12.5.5.7.2 Conceptual Vessel Bay Mereology: 325
12.5.5.7.3 Physical Terminal Port Bay (cum Stack) Mereology: 325
12.5.5.7.4 Conceptual Terminal Port Bay (cum Stack)

Mereology: . 325
12.5.5.8 Land Trucks . 326

12.5.5.8.1 Physical Mereology: . 326
12.5.5.8.2 Conceptual Mereology: . 326

12.5.5.9 Command Center . 326
12.5.5.10 Conceptual Mereology of Containers . 327

12.5.6 Attributes . 327
12.5.6.1 States . 327
12.5.6.2 Actions . 327
12.5.6.3 Attributes: Quays . 327
12.5.6.4 Attributes: Vessels . 328
12.5.6.5 Attributes: Quay Cranes . 328
12.5.6.6 Attributes: Quay Trucks . 329
12.5.6.7 Attributes: Terminal Stack Cranes . 329
12.5.6.8 Attributes: Container Stowage Areas . 329
12.5.6.9 Attributes: Land Trucks . 330
12.5.6.10 Attributes: Command Center . 330
12.5.6.11 Attributes: Containers . 331

12.6 Perdurants . 332
12.6.1 A Modelling Decision . 332
12.6.2 Virtual Container Storage Areas . 332
12.6.3 Changes to The Parts Model . 333
12.6.4 Basic Model Parts . 334
12.6.5 Actions, Events, Channels and Behaviours . 334
12.6.6 Actions . 334

12.6.6.1 Command Center Actions . 335
12.6.6.1.1 Motivating the Command Center Concept: 335
12.6.6.1.2 Calculate Next Transaction: . 335
12.6.6.1.3 Command Center Action [A]:

update mcc from vessel: . 336
12.6.6.1.4 Command Center Action [B]: calc ves pos: 337
12.6.6.1.5 Command Center Action [C-D-E]: calc ves qc 337
12.6.6.1.6 Command Center Action [F-G-H]: calc qc qt 337
12.6.6.1.7 Command Center Action [I-J-K]: calc qt sc 337
12.6.6.1.8 Command Center Action [L-M-N]: calc sc stack 338
12.6.6.1.9 Command Center Action [N-M-L]: calc stack sc 338
12.6.6.1.10 Command Center Action [O-P-Q]: calc sc lt 338
12.6.6.1.11 Command Center Action [Q-P-O]: calc lt sc 339
12.6.6.1.12 Command Center: Further Observations 339

12.6.6.2 Container Storage Area Actions . 339
12.6.6.2.1 The Load Pre-/Post-Condtions . 339
12.6.6.2.2 The Unload Pre-/Post-Conditions 340

12.6.6.3 Vessel Actions . 341

12 Container Terminals [November 2017] 303

12.6.6.3.1 Action [A]: calc next port: . 341
12.6.6.3.2 Vessel Action [B]: calc ves msg: . 341

12.6.6.4 Land Truck Actions . 342
12.6.6.4.1 Land Truck Action [R]: calc truck delivery: 342
12.6.6.4.2 Land Truck Action [S]: calc truck avail: 342

12.6.7 Events . 342
12.6.7.1 Active Part Initiation Events . 342
12.6.7.2 Active Part Completion Events: . 344

12.6.8 Channels . 344
12.6.8.1 Channel Declarations . 344
12.6.8.2 Channel Messages . 344

12.6.8.2.1 A,B,X,Y,C′: Vessel Messages . 345
12.6.8.2.2 C,D,E,E′: Vessel/Container/Quay Crane Messages . . 345
12.6.8.2.3 F,G,H,H′: Quay Crane/Container/Quay Truck

Messages . 346
12.6.8.2.4 I,J,K,K′: Quay Truck/Container/Stack Crane

Messages . 346
12.6.8.2.5 L,M,N,N′: Stack Crane/Container/Stack Messages . . 346
12.6.8.2.6 O,P,Q,Q′: Land Truck/Container/Stack Crane

Messages . 347
12.6.8.2.7 R,S,T,U,Q,V: Land Truck Messages 347

12.6.9 Behaviours . 348
12.6.9.1 Terminal Command Center . 348

12.6.9.1.1 The Command Center Behaviour: 348
12.6.9.1.2 The Command Center Monitor Behaviours: 349
12.6.9.1.3 The Command Center Control Behaviours: 349

12.6.9.2 Vessels . 351
12.6.9.2.1 Port Approach . 351
12.6.9.2.2 Port Arrival . 351
12.6.9.2.3 Unloading of Containers . 352
12.6.9.2.4 Loading of Containers . 352
12.6.9.2.5 Port Departure . 353

12.6.9.3 Quay Cranes . 353
12.6.9.4 Quay Trucks . 353
12.6.9.5 Stack Crane . 354
12.6.9.6 Stacks . 354
12.6.9.7 Land Trucks . 355
12.6.9.8 Containers . 356

12.6.10 Initial System . 356
12.6.10.1 The Distributed System . 356
12.6.10.2 Initial Vessels . 356
12.6.10.3 Initial Land Trucks . 357
12.6.10.4 Initial Containers . 357
12.6.10.5 Initial Terminal Ports . 357
12.6.10.6 Initial Quay Cranes . 357
12.6.10.7 Initial Quay Trucks . 358
12.6.10.8 Initial Stack Cranes . 358
12.6.10.9 Initial Stacks . 358

12.7 Conclusion . 358
12.7.1 An Interpreation of the Behavioural Description . 358
12.7.2 What Has Been Done . 358
12.7.3 What To Do Next . 359
12.7.4 Acknowledgements . 359

We present a recording of stages and steps of a development of a domain analysis & description
of an answer to he question: what, mathematically, is a container terminal ?
This is a report on an experiment. At any stage of development, and the present draft stage is
judged 2/3 “completed” it reflects how I view an answer to the question what is a container
terminal port ? mathematically speaking.

304 12 Container Terminals [November 2017]

12.1 Introduction

to be written

12.1.1 Reference Literature on Container-related Matters

We refer to: [28, A Container Line Industry Domain, 2007], [82, A-Z Dictionary of Export, Trade
and Shipping Terms], [128, Portworker Development Programme: PDP Units], [132, An inter-
active simulation model for the logistics planning of container operations in seaports,1996], [5,
Stowage planning for container ships to reduce the number of shifts, 1998], [153, Container stowage
planning: a methodology for generating computerised solutions, 2000], [4, Container ship stowage
problem: complexity and connection to the coloring of circle graphs, 2000], [154, Container stowage
pre-planning: using search to generate solutions, a case study, 2001], [79, A genetic algorithm with
a compact solution encoding for the container ship stowage problem, 2002], [104, Multi-objective
... stowage and load planning for a container ship with container rehandle ..., 2004], [150, Con-
tainer terminal operation and operations research - a classification and literature review, 2004],
[74, Online rules for container stacking, 2010],

12.2 Some Pictures

12.2.1 Terminal Port Container Stowage Area

12.2 Some Pictures 305

Analysis of the above picture:

• The picture shows a terminal.
• At bottom we are hinted (through shadows) at quay cranes serving (unshown) vessels.
• Most of the picture shows a container stowage area, here organized as a series of columns, from

one side of the picture to the other side, e.g., left-to-right, sequences (top-to-bottom) of [blue]
bays with rows of stacks of containers.

• Almost all columns show just one bay.
• Three “rightmost” columns show many [non-blue] bays.
• Most of the column “tops” and “bottoms” show stack cranes.
• The four leftmost columns show stack cranes at bays “somewhere in the middle” of a column.

12.2.2 Container Stowage Area and Quay Cranes

12.2.3 Container Vessel Routes

306 12 Container Terminals [November 2017]

12.2.4 Containers

12.2.4.1 40 and 20 Feet Containers

12.2.4.2 Container Markings

12.2.5 Container Vessels

12.2 Some Pictures 307

Quay cranes and vessel showing row of aft (rear) bay.

12.2.6 Container Stowage Area: Bays Rows, Stacks and Tier

Bay, Row, Tier Numbers. Row Numbers

Cross section of a Bay. Tier Numbers.

Bay Numbering

308 12 Container Terminals [November 2017]

12.2.7 Stowage Software

12.2.8 Quay Cranes

12.2.9 Container Stowage Area and Stack Cranes

12.2 Some Pictures 309

12.2.10 Container Stowage Area

12.2.11 Quay Trucks

12.2.12 Map of Shanghai and YangShan

310 12 Container Terminals [November 2017]

12.3 SECT

• Shanghai East Container Terminal

⋄⋄ is the joint venture terminal of
⋄⋄ APM Terminals and
⋄⋄ Shanghai International Port Group
⋄⋄ in Wai Gao Qiao port area of Shanghai.

• No.1 Gangjian Road, Pudong New District, Shanghai, China

12.4 Main Behaviours 311

12.4 Main Behaviours

• From consumer/origin to consumer/final destination:

⋄⋄ container loads onto land truck;
⋄⋄ land truck travels to terminal stack;
⋄⋄ container unloads by means of terminal stack crane

from land truck onto terminal stack.
⋄⋄ Container moves from stack to vessel:
◦◦ terminal stack crane moves container

from terminal stack to quay truck,
◦◦ quay truck moves container

from terminal stack to quay,
◦◦ quay crane moves container

to top of a vessel stack;

312 12 Container Terminals [November 2017]

⋄⋄ Container moves on vessel from terminal to terminal:
◦◦ Either container is unloaded at a next terminal port to a stack and from there to a container

truck
◦◦ or: container is unloaded at a next terminal port to a stack and from there to a next

container vessel.

12.4.1 A Diagram

Bays, Rows, Stacks, Tiers

Containers

Ocean ...

Water

Bays
Rows
Stacks Bays

Rows
Stacks

Land and Quay Trucks

Quay Truck (QT)
move Containers (C)

and Quay Cranes (QC)

Land Truck (LT)
move Containers (C)
between Shipper (S)
and Terminal (TP)

Vessels (V) move
Containers (C)

Terminals (TP)

Quay

... Terminal... Land

Ground

between Stack Cranes (SC)

"Stacks"

Terminal (TP) ...

...

Stack and Quay Cranes

Container Vessels

between

Fig. 1: Container Terminal Ports, I

A “from the side” snapshot of terminal port activities

12.4.2 Terminology - a Caveat

Bay 109: contains indexed set of rows (of stacks of containers).
Container : smallest unit of central (i.e., huge) concern !
Container Stowage Area : An area of a vessel or a terminal where containers are stored, during

voyage, respectively awaiting to be either brought out to shippers or onto vessels.
Crane :

Stack Crane : moves containers between land or terminal trucks and terminal stacks.
Quay Crane : moves containers between [land or] terminal trucks and vessels.

Land : ... as you know it ...
Ocean : ... as you know it ...
Shipper : arranges shipment of containers with container lines
Quay : area of terminal next to vessels (hence water).
Row : contains indexed set of stacks (of containers).
Stack : contains indexed set of containers.

We shall also, perhaps confusingly, use the term stack referring to the land-based bays of a
terminal.

Terminal : area of land and water between land and ocean equipped with container stowage
area, and stack and quay cranes, etc.

109 The terms introduced in this section are mine. They are most likely not the correct technical terms of the container
shipping and stowage trade. I expect to revise this section, etc.

12.5 Endurants 313

Truck :

Land Truck : privately operated truck transport containers between shippers and stack
cranes.

Quay Truck : terminal operated special truck transport containers between stack cranes and
quay cranes.

Tier : index of container in stack.
Vessel : contains a container stowage area.

12.4.3 Assumptions

Without loss of generality we can assume that there is exactly one stack crane per land-
basederminal stack; quay cranes each serve exactly one bay on a vessel; there are enough quay
cranes to serve all bays of any berthed vessel; quay trucks may serve any (quay and stack) crane;
land trucks may serve more than one terminal; et cetera.

12.5 Endurants

Stack Crane

Quay Crane
Vessel

Stowage
Area

Land Truck
Container

Container

Vessel

Land
Harbour

Basin

Quay Truck

Bay

Terminal Port
Terminal Container Stowage Area

Other Bays

Quay Area

Fig. 2: Container Terminal Ports, II

A “from above” snapshot of terminal port activities

We refer to [53, Sects. 3., 4., and 5.].
Our model focuses initially on parts, that is, manifest, observable phenomena. Our choice of

these is expected to be subject to serious revision once we ... More to come ...

314 12 Container Terminals [November 2017]

12.5.1 Parts

We refer to [53, Sect. 3.3].
Our model has, perhaps arbitrarily, focused on just some of the manifest, i.e., observable parts

of a domain of container terminal ports. We shall invariable refer to container terminal ports
as either container terminals, or terminal ports, tp:TP, or just terminals. We expect revisions
to the decomposition as shown as we learn more from professional stakeholders, e.g., APM
Terminals/SECT, Shanghai.

1. In the container line industry, CLI, we can observe
2. a structure, TPS, of all terminal ports, and from each such structure, an indexed set, TPs, of

two or more container terminal ports, TP;
3. a structure, VS, of all container vessels, and from each such structure, an indexed set, Vs, of

one or more container vessels, V; and
4. a structure, LTS, of all land trucks, and from each such structure, a non-empty, indexed set, LTs

of land trucks, LT;

type
1 CLI

2 STPs, TPs = TP-set, TP

3 SVs, Vs = V-set, V
4 SLTs, LTs = LT-set, LT

value
2 obs STPs: CLI→ STPs, obs TPs: STPs→ TPs

3 obs SVs: CLI→ SVs, obs Vs: SVs→ Vs

4 obs SLTs: CLI→ SLTs, obs LTs: SLTs→ LTs
axiom
2 ∀ cli:CLI•card obs TPs(obs STPs(cli))≥2

3 ∧ card obs Vs(obs SVs(cli))≥1
4 ∧ card obs LTs(obs SLTs(cli))≥1

12.5.1.1 Terminal Ports

In a terminal port, tp:TP, one can observe

5. a [composite] container stowage area, csa:CSA;
6. a structure, sqc:SQC, of quay cranes, and from that, a non-empty, indexed set, qcs:QCs, of one

or more quay cranes, qc:QC;
7. structure, sqt:SQT, of quay trucks, and from that a non-empty, indexed set, qts:QTs, of quay

trucks, qt:QT;
8. a structure, Scs:SCS, of stack cranes, and from that a non-empty, indexed set, scs:SCs, of one

or more stack cranes, sc:SC;
9. a[n atomic] quay110, q:Q111; and

10. a[n atomic] terminal port monitoring and control center, mcc:MCC.

110 We can, without loss of generality, describe a terminal as having exactly one quay (!) – just as we, again without
any loss of generality, describe it as having exactly one container stowage area.
111 Quay: a long structure, usually built of stone, where boats can be tied up to take on and off their goods.

Pronunciation: key.
Thesaurus: berth, jetty, key, landing, levy, slip, wharf

12.5 Endurants 315

type
5 CSA

6 SQC, QCs = QC-set, QC
7 SQT, QTs = QT-set, QT

8 SCS, SCs = SC-set, SC
9 Q

10 MCC

value
5 obs CSA: TP→ CSA

6 obs SQC: TP→ SQC, obs QCs: SQC→ QCs

7 obs SQT: TP→ SQT, obs QTs: SQT→ QTs
8 obs SCS: TP→ SCS, obs SCs: SCS→ SCs

9 obs Q: TP→ Q
10 obs MCC: TP→ MCC

axiom
6 ∀ sqc:SQC•card obs QCs(sqc)≥1
7 ∀ sqt:SQT•card obs QTs(sqt)≥1

8 ∀ scs:SCS•card obs SCs(scs)≥1

12.5.1.2 Quays

Although container terminal port quays can be modelled as composite parts we have chosen to
describe them as atomic. We shall subsequently endow the single terminal port quay with such
attributes as quay segments, quay positions and berthing112.

12.5.1.3 Container Stowage Areas: Bays, Rows and Stacks

11. From a container stowage area one can observe a non-empty indexed set of bays,
12. From a bay we can observe a non-empty indexed set of rows.
13. From a row we can observe a non-empty indexed set of stacks.
14. From a stack we can observe a possibly empty indexed set of containers.

type
11 BAYS, BAYs = BAY-set, BAY

12 ROWS, ROWs = ROW-set, ROW
13 STKS, STKs = STK-set, STK

14 CONS, CONs = CON-set, CON

value
11 obs BAYS: CSA→ BAYS, obs BAYs: BAYS→ BAYs

12 obs ROWS: BAY→ ROWS, obs ROWs: ROWS→ ROWs
13 obs STKS: ROW→ STKS, obs STKs: STKS→ STKs

14 obs CONS: STK→ CONS, obs CONs: CONS→ CONs

axiom
11 ∀ bays:BAYs • card bays > 0

12 ∀ rows:ROWs • card rows > 0

13 ∀ stks:STKs • card stks > 0

112 Berth: Sufficient space for a vessel to maneuver; a space for a vessel to dock or anchor; (whether occupied by
vessels or not). Berthing: To bring (a vessel) to a berth; to provide with a berth.

316 12 Container Terminals [November 2017]

12.5.1.4 Vessels

From (or in) a vessel one can observe

15. [5] a container stowage area
16. and some other parts.

type
5 CSA

16 ...
value
5 obs CSA: V→ CSA

16 ...

12.5.1.5 Functions Concerning Container Stowage Areas

17. One can calculate
18. the set of all container storage areas:
19. of all terminal ports together with those
20. of all container lines.

value
17 cont stow areas: CLI→ CSA-set
18 cont stow areas(cli) ≡

19 {obs CSA(tp)|tp:TP•tp ∈ obs TPs(obs TPS(cli))}
20 ∪ {obs CSA(cl)|cl:CL•cl ∈ obs CLs(obs CLS(cli))}

One can calculate the containers of

21. a stack,
22. a row,
23. a bay, and
24. a container stowage area.

value
21 extr cons stack: STK→ CONs

21 extr cons stack(stk)≡obs CONs(obs CONS(stk))
22 extr cons row: ROW→ CONs

22 extr cons row(row) ≡

22 {obs CONs(obs CONS(stk))|stk:STK•stk∈obs STKs(obs STKS(stk))}
23 extr cons bay: BAY→ CONs

23 extr cons bay(bay) ≡
23 {obs CONs(obs CONS(row))|row:ROW•row∈obs ROWs(obs ROWS(bay))}

24 extr cons csa: CSA→ CONs

24 extr cons csa(csa) ≡
24 {obs CONs(obs CONS(bay))|bay:BAY•bay∈obs BAYs(obs BAYS(csa))}

12.5.1.6 Axioms Concerning Container Stowage Areas

25. All rows contain different, i.e. distinct containers.

12.5 Endurants 317

26. All bays contain different, i.e. distinct containers.
27. All container stowage areas contain different, i.e. distinct containers.

value
25 ∀ cli:CLI •

25 ∀ csa,csa
′
:CSA•{csa,csa

′
}⊆cont stow areas(cli) •

25 ∀ row,row
′
:ROW •

25 {row,row
′
}⊆obs ROWs(obs ROWS(csa))∪obs ROWs(obs ROWS(csa

′
))⇒

25 extr cons row(row) ∩ extr cons row(row
′
) = {} ∧

26 ∀ bay,bay
′
:BAY •

26 {bay,bay
′
}⊆obs ROWs(obs ROWS(csa))∪obs ROWs(obs ROWS(csa

′
))⇒

26 extr cons bay(bay) ∩ extr cons bay(bay
′
) = {} ∧

27 extr cons csa(csa) ∩ extr cons csa(csa
′
) = {}

12.5.1.7 Stacks

An aside: We shall use the term ‘stack’ in two senses: (i) as a component of container storage area
bays; and (ii) to refer to the collection of stacks in a bay of a terminal container storage area.

28. Stacks are created empty, and hence stacks can be empty.
29. One can push a container onto a stack and obtain a non-empty stack.
30. One can pop a container from a non-epmpty stack and obtain a pair of a container and a

possibly empty stack.

value
28 empty: ()→ STK, is empty: STK→ Bool
29 push: CON × STK→ STK

30 pop: STK
∼
→ (CON × STK)

axiom
28 is empty(empty()), ∼is empty(push(c,stk))

29 pop(push(c,stk)) = (c,stk)

30 pre pop(stk),pop(push(c.stk)): ∼is empty(stk)
30 pop(empty()) = chaos

12.5.2 Terminal Port Command Centers

12.5.2.1 Discussion

We consider terminal port monitoring & control command centers to be atomic parts. The purpose
of a terminal port command center is to monitor and control the allocation and servicing (berthing)

of any visiting vessel to quay positions and by quay cranes, the allocation and servicing of ves-
sels by quay cranes, the allocation and servicing of quay cranes by quay trucks, the allocation

and servicing of quay trucks to quay cranes, containers and terminal stacks, the allocation and
servicing of land trucks to containers and terminal stacks, This implies that there are means for
communication between a terminal command center and vessels, quay cranes, stack cranes, quay
trucks, land trucks, terminal stacks and containers.

318 12 Container Terminals [November 2017]

12.5.2.2 Justification

We shall justify the concept of terminal monitoring & control, i.e., command centers. First, using
the domain analysis & description approach of [53], we know that we are going, through a
transcendental deduction, to model certain parts as behaviours. These parts, we decide, after
some analysis that we forego, to be vessels, quay cranes, quay trucks, stack cranes stacks, land

trucks, and containers. Behaviours are usually like actors:they can instigate actions. But we decide,
in our analysis, that some of these behaviours, quay cranes, quay trucks, stack cranes and stacks,
are “passive” actors: are behaviourally not endowed with being able to initiate “own” actions.
Instead, therefore, of all these behaviours, being able to communicate directly, pairwise, as loosely
indicated by the figures of Pages 312 and 313, we model them to communicate via their terminal
command centers.

This is how we justify the introduction of the concept of terminal command centers. They are an
abstraction. In “ye olde days” you could observe, not one, but, perhaps, a hierarchy of terminal port
offices, staffed by people, [each office, each group of staff] with its set of duties: communicating
(by radio-phone) with approaching [and departing] vessels; scheduling quay positions, quay
cranes and quay trucks; managing the operation of cranes and trucks; and, on a large scale,
calculating stowage: on vessels and in terminals. Today, “an age of ubiquitous computing”, most
of these offices and their staff are replaced by electronics: sensors, actuators, communication and
computing, and with massive stowage data processing: where should containers be stowed on
board vessels and in terminals so as to near-optimise all operations.

12.5.3 Unique Identifications

We refer to [53, Sect. 5.1].

31. Vessels have unique identifiers.

32. Quay cranes have unique identifiers.

33. Quay trucks have unique identifiers.

34. Stack cranes have unique identifiers.

35. Bays (“Stacks”) of terminal container
stowage areas have unique identifiers,
cf. Item 39.

36. Land trucks have unique identifiers.

37. Terminal port command centers have unique
identifiers.

38. Containers have unique identifiers.
39. Bays of container stowage areas have unique

identifiers.
40. Rows of a bay have unique identifiers.
41. Stacks of a row have unique identifiers.
42. The part unique identifier types are mutually

disjoint.

type
31 VI
32 QCI

33 QTI
34 SCI

35 TBI

36 LTI
37 MCCI

38 CI

39 BI
40 RI

41 SI
axiom
42 VI, QCI, QTI, SCI, TBI, LTI, MCCI, CI, RI and SI mutually disjoint

42 TBI ⊂ BI

value
31 uid V: V→ VI
32 uid QC: QC→ QCI

33 uid QT: QT→ QTI
34 uid SC: SC→ SCI

34 uid TBI: BAY→ TBI

35 uid LT: LT→ LTI
37 uid MCC: MCC→ MCCI

37 uid CON: CON→ CI

34 uid BAY: BAY→ BI
35 uid ROW: ROW→ RI

36 uid STK: STK→ SI

12.5 Endurants 319

12.5.3.1 Unique Identifiers: Distinctness of Parts

43. If two containers are different then their unique identifiers must be different.

axiom
43 ∀ con,con

′
:CON • con , con

′
⇒ uid CON(con) , uid CON(con

′
)

The same distinctness criterion applies to stacks, rows, bays, container storage areas, terminal
ports, cranes, vessels, etc.

12.5.3.2 Unique Identifiers: Two Useful Abbreviations

Container positions within a container stowage area can be represented in two ways:

44. by a triple of a bay identifier, a row identifier and a stack identifier, and
45. by these three elements and a tier position (i.e., position within a stack).

44 BRS = BI × RI × SI
45 BRSP = BI × RI × SI × Nat
axiom
45 ∀ (bu,ri,si,n):BRSP • n>0

12.5.3.3 Unique Identifiers: Some Useful Index Set Selection Functions

46. From a container stowage area once can observe all bay identifiers.
47. From a bay once can observe all row identifiers.
48. From a row once can observe all stack identifiers.
49. From a virtual container storage area, i.e., an icsa:iCSA, one can extract all the unique container

identifiers.

value
46 xtr BIs: CSA→ BI-set
46 xtr BIs(csa) ≡ {uid BAY(bay)|bay:BAY•bay ∈ xtr BAYs(csa)}

46 xtr RIs: BAY→ RI-set
47 xtr RIs(bay) ≡ {uid ROW(bay)|row:ROW•row ∈ obs ROWs(bay)}

46 xtr SIs: ROW→ SI-set
48 xtr SIs(row) ≡ {uid STK(row)|stk:STK•stk ∈ obs STKs(row)}

49 xtr CIs: iCSA→ CI-set
49 xtr CIs(icsa) ≡

49 ... [to come] ...

12.5.3.4 Unique Identifiers: Ordering of Bays, Rows and Stacks

The bays of a container stowage area are usually ordered. So are the rows of bays, and stacks of
rows. Ordering is here treated as attributes of container stowage areas, bays and stacks. We shall
treat attributes further on.

320 12 Container Terminals [November 2017]

12.5.4 States, Global Values and Constraints

12.5.4.1 States

50. We postulate a container line industry cli:CLI.
From that we observe, successively, all parts:

51. the set, cs:C-set, of all containers;
52. the set, tps:TPs, of all terminal ports;
53. the set, vs:Vs, of all vessels; and
54. the set, lts:LTs, of all land trucks.

value
50 cli:CLI
51 cs:C-set = obs Cs(obs CS(cli))
52 tps:TP-set = obs TPs(obs TPS(cli))
53 vs:V-set = obs Vs(obs VS(cli))
54 lts:LTs = obs LTs(obs LTS(cli))

We can observe

55. csas:CSA-set, the set of all terminal port container stowage areas of all terminal ports;
56. bays:BAY-set, the terminal port bays of all terminals;
57. the set, qcs:QC-set, of all quay cranes of all terminals;
58. the set, qts:QT-set, of all quay trucks of all terminal ports; and
59. the set, scs:SC-set, of all terminal (i.e., stack) cranes of all terminal ports.

value
55 csas:CSA-set = {obs CSA(tp)|tp:TP•tp ∈ tps}
55 bays:BAY-set = {obs BAY(csa)|csa:CSA•csa ∈ csas}
57 qcs:QC-set = {obs QCs(obs QCS(tp))|tp:TP•tp ∈ tps}
58 qts:QT-set = {obs QTs(obs QTS(tp))|tp:TP•tp ∈ tps}
59 scs:SC-set = {obs SCs(obs SCS(tp))|tp:TP•tp ∈ tps}

12.5.4.2 Unique Identifiers

Given the generic parts outlined in Sect. 12.5.4.1 we can similarly define generic sets of unique
identifiers.

60. There is the set, c uis, of all container identifiers;
61. the set, tp uis, of all terminal port identifiers;
62. the set, mcc uis, of all terminal port command center identifiers;
63. the set, v uis, of all vessel identifiers;
64. the set, qc uis, of quay crane identifiers of all terminal ports;
65. the set, qt uis, of quay truck identifiers of all terminal ports;
66. the set, sc uis, of stack crane identifiers of all terminal ports;
67. the set, stk uis, of stack identifiers of all terminal ports;
68. the set, lt uis, of all land truck identifiers; and
69. the set, uis, of all vessel, crane and truck identifiers.

value
60 c uis:CI-set = {uid C(c)|c:C•c∈cs}
61 tp uis:TPI-set = {uid TP(tp)|tp:TP•tp∈tps}

12.5 Endurants 321

62 mcc uis:TPI-set = {uid MCC(obs MCC(tp))|tp:TP•tp∈tps}
63 v uis:VI-set = {uid V(v)|v:V•v∈vs}
64 qc uis:QCI-set = {uid QC(qc)|qc:QC•qc∈qcs}
65 qt uis:QTI-set = {uid QT(qt)|qt:QT•qt∈qts}
66 sc uis:SCI-set = {uid SC(sc)|sc:SC•sc∈scs}
67 stk uis:BI-set = {uid BAY(stk)|stk:BAY•stk∈stks}
68 lt uis:LTI-set = {uid LL(lt)|lt:LT•lt∈lts}
69 uis:(VI|QCI|QTI|SCI|BI|LTI)-set = v uis∪qc uis∪qt uis∪sc uis∪stk uis∪ lt uis

70. the map, tpmcc idm, from terminal port identifiers into the identifiers of respective command
centers;

71. the map, mccqc idsm, from command center identifiers into the set of quay crane identifiers of
respective ports;

72. the map, mccqt idsm, from command center identifiers into the identifiers of quay trucks of
respective ports;

73. the map, mccsc idsm, from command center identifiers into the identifiers of quay trucks of
respective ports; and

74. the map, mccbays idsm, from command center identifiers into the set of bay identifiers (i.e.,
“stacks”) of respective ports;

value
70 tpmcc idm:(TI→m MCCI) = [uid TP(tp) 7→uid MCC(obs MCC(tp))|tp:TP•tp ∈ tps]
71 mccqc idsm:(MCCI→m QCI-set)
71 = [tpmcc uim(uid TP(tp)) 7→ { uid QC(qc)

71 | qc:QC • qc ∈ obs QCs(obs QCS(tp)) } | tp:TP•tp ∈ tps]
72 mccqt idsm:(MCCI→m QTI-set) =
72 = [tpmcc uim(uid TP(tp)) 7→ { uid QT(qt)

72 | qt:QT • qt ∈ obs QTs(obs QTS(tp)) } | tp:TP•tp ∈ tps]
73 mccsc idsm:(MCCI→m SCI-set)
73 = [tpmcc uim(uid TP(tp)) 7→ { uid SC(sc)

73 | sc:SC • sc ∈ obs SCs(obs SCS(tp)) } | tp:TP•tp ∈ tps]
74 mccbays idsm:(MCCI→m BI-set)
74 = [tpmcc uim(uid TP(tp)) 7→ { uid B(b)

74 | b:BAY•b ∈ obs BAYs(obs BAYS(obs CSA(tp)))} | tp:TP•tp ∈ tps]

12.5.4.3 Some Axioms on Uniqueness

to be written

12.5.5 Mereology

We refer to [53, Sect. 5.2].

12.5.5.1 Physical versus Conceptual Mereology

We briefly discuss a distinction that was not made in [53]: whether to base a mereology on physical
connections or on functional or, as we shall call it, conceptual relations. We shall, for this domain

322 12 Container Terminals [November 2017]

model, choose the conceptual view. The physical mereology view can be motivated, i.e. justified,
from the figures on pages 312 and 313. The conceptual view is chosen on the basis of the justification
of the terminal command centers, cf. Sect. 12.5.2 on page 317. We shall model physical mereology
as attributes.113

12.5.5.2 Vessels

12.5.5.2.1 Physical Mereology:

75. Vessels are physically “connectable” to quay cranes of any terminal port.

type
75 Phys V Mer = QCI-set
value
75 attr Phys V Mer: V→ Phys V mer

12.5.5.2.2 Conceptual Mereology:

76. Container vessels can potentially visit any container terminal port, hence have as [part of] their
mereology, a set of terminal port command center identifiers.

type
76 V Mer = MCCI-set
value
76 mereo V: V→ V Mer

axiom
76 ∀ v:V • v ∈ vs⇒ mereo V(v) ⊆ mcc uis

12.5.5.3 Quay Cranes

12.5.5.3.1 Physical Mereology:

In modelling the physical mereology, though as an attribute, of quay cranes, we need the notion
of quay positions.

77. Quay cranes are, at any time, positioned at one or more adjacent quay positions of an identified
segment of such.

type
77 Phys QC Mereo = QPSId × QP∗

value
77 attr Phys QC: QC→ Phys QC Mereo

78. The quay positions, qcmereo = (qpsid,qpl):QCMereo, must be proper quay positions of the
terminal,

79. that is, the segment identifier, qpsid, must be one of the terminal,

113 Editorial note: Names of physical and of conceptual mereologies have to be “streamlined”. As now, they are a
“mess” !

12.5 Endurants 323

80. and the list, qpl, must be contiguously contained within the so identifier segment.

axiom ∀ tp:TP,

78 let q = obs Q(tp), qcs = obs QCs(obs QCS(tp)) in
79 ∀ q:Q • q ∈ qcs⇒
79 let (qpsid,qpl) = obs Mereo(q), qps = attr QPSs(q) in
79 qpsid ∈ dom qps
80 ∧ ∃ i,j:Nat • {i,j} ∈ inds qpl ∧ 〈(qps(qpsi))[k]|i≤k≤j〉 = qpl

78 end end

12.5.5.3.2 Conceptual Mereology:

The conceptual mereology is simpler.

81. Quay cranes are conceptually related to the command center of the terminal in which they are
located.

type
81 QC Mer = MCCI

value
81 mereo QC: QC→ QC Mer

12.5.5.4 Quay Trucks

12.5.5.4.1 Physical Mereology:

82. Quay trucks are physically “connectable” to quay and stack cranes.

type
82 Phys QT Mer = QCI-set × QCI-set
value
82 attr Phys QT Mer: QT→ Phys QT Mer

12.5.5.4.2 Conceptual Mereology:

83. Quay trucks are conceptually connected to the command center of the terminal port of which
they are a part.

type
83 QT Mer = MCCI

value
83 mereo QT: QT→ QT Mer

324 12 Container Terminals [November 2017]

12.5.5.5 Stack Cranes

12.5.5.5.1 Physical Mereology:

84. Terminal stack cranes are positioned to serve one or more terminal area bays, one or more quay
trucks and one or more land trucks.

85. The terminal stack crane positions are indeed positions of their terminal
86. and no two of them share bays.

type
84 Phys SCmereo = s bis:BI-set × s qtis:QTI-set × s ltis:LTI-set
axiom
84 ∀ (bis,qtis,ltis):Phys SCmereo•bis,{} ∧ qtis,{} ∧ ltis,{}
value
84 Phys SCmereo: SC→ Phys SCmereo
axiom
84 ∀ tp:TP •

84 let csa=obs CSA(tp), bays=obs BAYs(obs BAYS(csa)), scs=obs SCs(obs SCS(tp)) in
85 ∀ sc:SC•sc ∈ scs⇒ Phys SCmereo(sc) ⊆ xtr BIs(csa)

86 ∧ ∀ tp
′
,tp
′′
:TP•{tc

′
,tc
′′
}⊆tcs ∧ tc

′
,tc

′′

86 ⇒ s bis(Phys SCmereo(tc
′
)) ∩ s bis(Phys SCmereo(tc

′′
))={} end

12.5.5.5.2 Conceptual Mereology:

The conceptual stack crane mereology is simple:

87. Each stack is conceptually related to the command center of the terminal at which it is located.

type
87 SC Mer = MCCI

value
87 mereo SC: SC→ SC Mer

12.5.5.6 Container Stowage Areas

12.5.5.6.1 Bays, Rows and Stacks:

The following are some comments related to, but not defining a mereology for container stowage
areas.

88. A bay of a container stowage area

a. has either a predecessor
b. or a successor,
c. or both (and then distinct).
d. No row cannot have neither a predecessor nor a successor.

89. A row of a bay has a predecessor and a successor, the first stack has no predecessor and the last
stack has no successor.

90. A stack of a row has a predecessor and a successor, the first stack has no predecessor, and the
last stack has no successor.

12.5 Endurants 325

value
88 BAY Mer: BAY→ ({|’nil’|}|BI) × (BI|{|’nil’|})

89 ROW Mer: ROW→ ({|’nil’|}|RI) × (RI|{|’nil’|})
90 STK Mer: STK→ ({|’nil’|}|SI) × (SI|{|’nil’|})

axiom
88 ∀ csa:CSA • let bs = obs BAYs(obs BAYS(csa)) in
88 ∀ b:BAY • b ∈ bs⇒

88 let (nb,nb
′
) = mereo BAY(b) in

88 case (nb,nb
′
) of

88a (’nil’,bi) → bi ∈ xtr BIs(csa),

88b (bi,’nil’)→ bi ∈ xtr BIs(csa),
88d (’nil’,’nil’) → chaos,

88c (bi,bi
′
)→ {bi,bi

′
} ⊆ xtr BIs(csa) ∧ bi,bi

′

88 end end end
89 as for rows

90 as for stacks

12.5.5.7 Bay Mereology

12.5.5.7.1 Physical Vessel Bay Mereology:

91. A vessel bay is topologically related to the vessel on board of which it is placed and to the set
of all quay cranes of all terminal ports.

type
91 Phys VES BAY Mer = VI × QCI-set

12.5.5.7.2 Conceptual Vessel Bay Mereology:

92. A vessel bay is conceptually related to the set of all command centers of all terminal ports.

type
92 V BAY Mer = MCCI-set

12.5.5.7.3 Physical Terminal Port Bay (cum Stack) Mereology:

93. A terminal bay (cum stack) is topologically related to the stack cranes of a given terminal port
and all land trucks.

type
93 Phys STK Mer = SCI-set × LTI-set

12.5.5.7.4 Conceptual Terminal Port Bay (cum Stack) Mereology:

94. A terminal port bay is conceptually related to the command center of its port.

326 12 Container Terminals [November 2017]

type
94 T BAY Mer = MCCI

12.5.5.8 Land Trucks

12.5.5.8.1 Physical Mereology:

95. Land trucks are physically “connectable” to stack cranes – of any port.

type
95 Phys LT Mer = SCI-set
value
95 attr Phys LT Mer: LT→ Phys LT Mer

12.5.5.8.2 Conceptual Mereology:

96. Land trucks are conceptually connected to the command centers of any terminal port.

type
96 LT Mer = MCCI-set
value
96 mereo LT: LT→ LT Mer

12.5.5.9 Command Center

Command centers are basically conceptual quantities. Hence we can expect the physical mereology
to be the conceptual mereology.

97. Command centers are physically and conceptually connected toall vessels, all cranes of the
terminal port of the command center, all quay trucks of the terminal port of the command
center, all stacks (i.e., bays) of the terminal port of the command center, and all land trucks, and
all containers.

type
97 MCC Mer = VI-set×QCI-set×QTI-set×SCI-set×BI-set×LTI-set×CI-set
value
97 mereo MCC: MCC→ MCC Mer

axiom
97 ∀ tp:TP • tp ∈ tps •

97 let qcs:QC-set • qcs = obs QCs(obs QCS(tp)),

97 qts:QT-set • qts = obs QTs(obs QTS(tp)),

97 scs:SC-set • scs = obs SCs(obs SCS(tp)),
97 bs:iBAY-set • bs = obs Bs(obs BS(obs CSA(tp))) in
97 let vis:VI set • vis = {uid VI(v)|v:V•v ∈ vs},
97 qcis:QCI set • qcis = {uid QCI(qc)|qc:QC•qc ∈ qcs},

97 qtis:QTI set • qcis = {uid QTI(qc)|qt:QT•qt ∈ qts},

97 scis:SCI-set • scis = {uid SCI(sc)|sc:SC•sc ∈ scs},
97 bis:iBAY-set • bis = {uid BI(b)|b:iBAY•b ∈ bs},

12.5 Endurants 327

97 ltis:LTI-set • ltis = {uid LTI(lt)|lt:LT•lt ∈ lts},
97 cis:SCI-set • cis = {uid CI(c)|c:C•c ∈ cs} in
97 mereo MCC(obs MCC(tp)) = (vis,qcis,scis,sis,bis,ltis,cis) end end

12.5.5.10 Conceptual Mereology of Containers

The physical mereology of any container is modelled as a container attribute.

98. The conceptual mereology is modelled by containers being connected to all terminal command
centers.

type
98 C Mer = MCCI-set
value
98 mereo C: C→ C Mer

axiom
98 ∀ c:C • mereo C(c) = mcc uis

12.5.6 Attributes

We refer to [53, Sect. 5.3].

12.5.6.1 States

By a state we shall mean one or more parts such that these parts have dynamic attributes, in our
case typically programmable attributes.

12.5.6.2 Actions

Actions apply to states and yield possibly updated states and, usually, some result values.
We shall in this section, Sect. 12.5.6, on attributes, outline a number of simple (usually called

primitive) actions of states. These actions are invoked by some behaviours either at their own
volition, or in response to events occurring in other behaviours. The action outcomes are simple
enough, but calculations resulting in these outcomes are not. Together the totality of the actions
performed by the terminal’s monitoring & control of vessels, cranes, trucks and the container
stowage area, reflect the complexity of stowage handling.

12.5.6.3 Attributes: Quays

99. Quays are segmented into one or more quay segments, qs:QS, each with a sequence of one or
more crane positions, cp:CP.

100. Quay segments and
101. crane positions are further unspecified.

type
99 QPOS = QS × CP∗ axiom ∀ (,cpl):QPOS•cpl,〈〉

328 12 Container Terminals [November 2017]

100 QS

101 CP

12.5.6.4 Attributes: Vessels

102. A vessel is

a. either at sea, at some programmable geographical location (longitude and latitude),
b. or in some programmable terminal port – designated by the identifier of its command center

and its quay position.

103. We consider the “remainder” of the vessel state as a programmable attribute – which we
do not further define. The remainder includes all information about all containers, their
bay/row/stack/tier positions, their bill-of-ladings, etc.

104. There may be other vessel attributes.

type
102 V Pos == AtSea | InPort
102a Longitude, Latitude

102a AtSea :: Longitude × Latitude

102b InPort :: MCCI × QPOS
103 VΣ
104 ...
value
102 attr V Pos: V→ V Pos

104 attr VΣ: V→ VΣ
104 attr ...: V→ ...
axiom
102b ∀ mkInPort(ti):InPort • ti ∈ tp uis

12.5.6.5 Attributes: Quay Cranes

105. At any one time a quay crane may programmably hold a container or may not. We model the
container held by a crane by the container identifier.

106. At any one time a quay crane is programmably positioned in a quay position within a quay
segment.

107. Quay cranes may have other attributes.

type
105 QCHold == mkNil(′nil′) | mkCon(ci:CI)

106 QCPos = QSId × QP
107 ...
value
105 attr QCHold: QC→ QCHold

106 attr QCPos: QC→ QCPos

107 ...

12.5 Endurants 329

12.5.6.6 Attributes: Quay Trucks

108. At any one time a land truck may programmably hold a container or may not. We model the
container held by a quay truck by the container identifier.

109. Quay trucks may have other attributes.

Note that we do not here model the position of quay trucks.

type
108 QTHold == mkNil(′nil′) | mkCon(ci:CI)

109 ...
value
108 attr QTHold: QT→ QTHold

109 ...

12.5.6.7 Attributes: Terminal Stack Cranes

110. At any one time a stack crane may programmably hold a container or may not. We model the
container held by a crane by the container identifier.

111. Stack cranes are programmably positioned at a terminal bay.
112. Stack cranes may have other attributes.

type
110 SCHold == mkNil(′nil′) | mkCon(ci:CI)
111 SCPos = BI

111 ...
value
110 attr SCHold: SC→ SCHold

111 attr SCPos: SC→ SCPos
112 ...

12.5.6.8 Attributes: Container Stowage Areas

113. Bays of container storage areas statically have total order.
114. Rows of bays statically have total order.
115. Stacks of rows statically have total order.

We abstract orderings in two ways.

type
113 BOm = BI →m Nat, BOl = BI∗

114 ROm = RI →m Nat, ROl = RI∗

115 SOm = SI →m Nat, SOl = SI∗

axiom
113 ∀ bom:BOm•rng bom={1:card dom bom}, ∀ bol:BOl•inds bol={1:len bol}

114 ∀ rom:ROm•rng rom={1:card dom rom}, ∀ rol:ROl•inds rol={1:len rol}

115 ∀ som:SOm•rng som={1:card dom som}, ∀ sol:SOl•inds sol={1:len sol}
value
113 attr BOm: CSA→ BOm, attr BOl: CSA→ BOl
114 attr ROm: BAY→ ROm, attr ROl: BAY→ ROl

115 attr SOm: ROW→ SOm, attr SOl: ROW→ SOl

330 12 Container Terminals [November 2017]

CSAs, BAYs, ROWs and STKs have (presently further) static descriptions114 and terminal and
vessel container stowage areas have definite numbers

116. of bays,
117. and any one such bay a definite number of rows,
118. and any one such row a definite number of stacks,
119. and any one such stack a maximum loading of containers.

type
116 CASd

117 BAYd
118 ROWd

119 STKd
value
116 attr CSAD: CSA→ BI →m CSAd

117 attr BAYD: BAY→ RI →m BAYd
118 attr ROWD: ROW→ SI →m ROWd

119 attr STKD: STK→ (Nat × STKd)

12.5.6.9 Attributes: Land Trucks

120. At any one time a land truck may programmably hold a container or may not. We model the
container held by a land truck by the container identifier.

121. Land trucks also possess a further undefined programmable land truck state.
122. Land trucks may have other attributes.

Note that we do not here model the position of land trucks.

type
120 LTHold == mkNil(′nil′) | mkCon(ci:CI)
121 LTΣ
122 ...
value
120 attr LTHold: LT→ LTHold

121 attr LTΣ: LT→ LTΣ
122 ...

12.5.6.10 Attributes: Command Center

123. The syntactic description115 of the spatial positions of quays, cranes and the container
storage area of a terminal, TopLogDescr, is a static attribute.

124. The syntactic description116 of the terminal state, i.e., the actual positions and deployment
of vessels at quays, quay and stack cranes, quay and land trucks, and the actual container
“contents” of these, TermΣDescr, is a programmable attribute.

114 Such descriptions include descriptions of for what kind of containers a container stowage area, a bay, a row and
a stack is suitable: flammable, explosives, etc.
115 A syntactic description describes something, i.e., has some semantics, from which it is, of course, different.
116 The syntactic description of the terminal state is, of course, not that state, but only its description. The
terminal state is the combined states of all cranes, trucks and the container storage area.

12.5 Endurants 331

type
123 TopLogDescr

124 MCCΣDescr
value
123 attr TopLogDescr: MCC→ TopLogDescr
124 attr TermΣDescr: MCC→ TermΣDescr

12.5.6.11 Attributes: Containers

125. A Bill-of-Lading117 is a static container attribute. 118

type
125 BoL

value
125 attr BoL: C→ BoL

126. At any one time a container is positioned either

a. in a stack on a vessel: at sea or in a terminal, or
b. on a quay crane in a terminal port, being either unloaded from or loaded onto a vessel, or
c. on a quay truck to or from a quay crane, i.e., from or to a stack crane, in a terminal port, or
d. on a stack crane in a terminal port, being either unloaded from a quay truck onto a terminal

stack or loaded from a terminal stack onto a quay truck, or
e. on a stack in a terminal port, or
f. on a land truck, or
g. idle.

A container position is a programmable attribute.
127. There are other container attributes. For convenience we introduce an aggregate attribute:

CAttrs for all attributes.

type
126 CPos == onV | onQC | onQT | onSC | onStk | onLT | Idle
126a onV :: VI × BRSP × VPos

126a VPos == AtSea | InTer

126a AtSea :: Geo
126a InTer :: QPSid × QP+

126b onQC :: MCCI × QCI

126c onQT :: MCCI × QTI
126d onSC :: MCCI × SCI

126e onStk :: MCCI × BRSP

117 https://en.wikipedia.org/wiki/Bill of lading: A bill of lading (sometimes abbreviated as B/L or BoL) is a document issued by a carrier
(or their agent) to acknowledge receipt of cargo for shipment. In British English, the term relates to ship transport only, and in American
English, to any type of transportation of goods. A bill of Lading must be transferable, and serves three main functions: it is a conclusive
receipt, i.e. an acknowledgment that the goods have been loaded; and it contains or evidences the terms of the contract of carriage; and it
serves as a document of title to the goods, subject to the nemo dat rule. Bills of lading are one of three crucial documents used in international
trade to ensure that exporters receive payment and importers receive the merchandise. The other two documents are a policy of insurance
and an invoice. Whereas a bill of lading is negotiable, both a policy and an invoice are assignable. In international trade outside of the
USA, Bills of lading are distinct from waybills in that they are not negotiable and do not confer title. The nemo dat rule: that states that the
purchase of a possession from someone who has no ownership right to it also denies the purchaser any ownership title.
118 For waybills see https://en.wikipedia.org/wiki/Waybill: A waybill (UIC) is a document issued by a carrier giving details and instructions
relating to the shipment of a consignment of goods. Typically it will show the names of the consignor and consignee, the point of origin of
the consignment, its destination, and route. Most freight forwarders and trucking companies use an in-house waybill called a house bill.
These typically contain ”conditions of contract of carriage” terms on the back of the form. These terms cover limits to liability and other
terms and conditions

332 12 Container Terminals [November 2017]

126f onLT :: MCCI × LTI

126g Idle :: {|”idle”|}

127 CAttrs
value
126 attr CPos: C→ CPos
127 attr CAttrs: C→ CAttrs

12.6 Perdurants

We refer to [53, Sect. 7].

12.6.1 A Modelling Decision

In the transcendental interpretation of parts into behaviours we make the following modelling
decisions: All atomic and all composite parts become separate behaviours. But there is a twist.
Vessels and terminal stacks are now treated as “atomic” behaviours. Containers that up till now
were parts of container stowage areas on vessels and in terminal stacks are not behaviours
embedded in the behaviours of vessels and terminal stacks, but are “factored” out as separate,
atomic behaviours.

This modelling decision entails that container stowage areas, CSAs, of vessels and terminal
stacks are modelled by replacing the [physical] containers of these CSAs with virtual container
stowage areas, vir CSAs. Where there “before” were containers there are now, instead, descriptions
of these: their unique identifiers, their mereology, and their attributes.

12.6.2 Virtual Container Storage Areas

In our transition from endurants to perdurants we shall thus need a notion of container stowage
areas which, for want of a better word, we shall call virtual CSAs. Instead of stacks embodying
containers, they embody

128. container information: their unique identifier, mereology and attributes.

We must secure that no container is referenced more than once across the revised-model;

129. that is, that all ci:CIs are distinct.

type
5′ vir CSA
11′ vir BAY s = vir BAY-set, vir BAY

12′ vir ROW s = vir ROW-set, vir ROW = vir STK-set
13′ vir STK = vir STK-set, vir STK

14′ vir STK = CInfo∗

128 CInfo = CI × CMereo × CAttrs
value
5′ attr vir CSA: TP→ vir CSA

11′ attr vir BAY s: vir CSA→ vir BAY s, vir BAY s = vir BAY-set, vir BAY
11′ uid vir BAY: vir BAY→ BI

12.6 Perdurants 333

12′ attr vir ROW s: vir BAY→ vir ROW s

axiom
129 [all CIs of all vir CSAs are distinct]

12.6.3 Changes to The Parts Model

We revise the parts model of earlier:

type
2 STPs, TPs = TP-set, TP

3 SVs, Vs = V-set, V
value
2 obs STPs: CLI→ STPs, obs TPs: STPs→ TPs

3 obs SVs: CLI→ SVs, obs Vs: SVs→ Vs

We treat the former CSAs of terminal ports as a composite, concrete part, vir BAY m consisting
of a set of atomic virtual bays, vir BAY.

type
11′ vir BAY s = vir BAY-set, vir BAY
value
5 obs BAY s: TP→ vir BAY s

5 uid BAY: vir BAY→ BI

And we treat the former CSAs of vessels as a programmable attribute of vessels:

attr vir CSA: V→ vir CSA

334 12 Container Terminals [November 2017]

12.6.4 Basic Model Parts

Command Monitoring & Control Center1

Containerscn

A

C D EB F G H I J K

ch_mcc_con[..] ..

α,ω
α,ω

X

C’ E’ H’F’ I’ K’ O’

L’

Q’
scn

Cranes
N’

vn

Legend: from root to arrow;

qcn
Quay
Cranes

qtn
Quay
Trucks tcn

Stacks

ltn Land
Trucks

first from unprimed (white head), then from primed (black head)

StackVessels

...

..ch_mcc[..]

L M N

V S

Y

O,o P,p Q,q

R

Fig. 3: The Container Terminal Behaviours119

There are cn container behaviours, where cn is the number of all containers of the system we are
modelling. For each terminal port there is 1 controller behaviour, vn vessel behaviours, where vn

is the number of vessels visiting that terminal port, qcn quay crane behaviours, where qcn is the
number of quay cranes of that terminal port, qtn quay truck behaviours, where qtn is the number of
quay trucks of that terminal port, ltn land truck behaviours, where ltn is the number of land trucks
(of that terminal port), and tbn terminal stack behaviours, where tsn is the number of terminal bays
of that terminal port.

The vessel, the land truck and the terminal monitoring & control [command] center behaviours
are pro-active: At their own initiative (volition), they may decide to communicate with other
behaviours. The crane, quay truck, stack and container behaviours are passive: They respond to
interactions with other behaviours.

12.6.5 Actions, Events, Channels and Behaviours

We refer to [53, Sect. 7.1].
In building up to the behavioral analysis & description of the terminal container domain we

first analyse the actions and events of that domain. These actions and events are the building
blocks of behaviours.

Actions, to remind the reader, are explicitly performed by an actor, i.e., a behaviour, calculates
some values and, usually, effect a state change.

Events “occur to” actors (behaviours), that is, are not initiated by these, but usually effect state
changes.

12.6.6 Actions

We refer to [53, Sects. 7.1.5, 7.3.1].

119 The labeling A, B, C, D, ..., X, Y may seem arbitrary, but isn’t !

12.6 Perdurants 335

The unloading of containers from and the loading of container onto container stowage areas
are modelled by corresponding actions on virtual container stowage areas. Vessels, land trucks
and terminal monitoring & control centers, i.e., command centers, are here modelled as the only
entities that can initiate actions.

12.6.6.1 Command Center Actions

12.6.6.1.1 Motivating the Command Center Concept:

We refer to the [A,B,...,U] labeled arrows of the figure on Page 334.
Imagine a terminal port. It has several vessels berthed along quays. It also has quay space, i.e.,

positions, for more vessels to berth. Berthed vessels are being serviced by several, perhaps many
quay cranes. The totality of quay cranes are being serviced by [many more] quay trucks. The many
quay trucks service several terminal bays, i.e., stacks. Land trucks are arriving, attending stacks
and leaving. Quite a “busy scene”. So is the case for all container terminal ports.

The concept of a monitoring & control, i.e., a command center, is an abstract one; the figure
on Page 334 does not show a part with a ... center label. The actions of vessels and trucks, and
the events of cranes, terminal stacks and trucks are either hap-hazard, no-one interferes, they
somehow “just happen”, or they are somehow co-ordinated.

Whether “free-wheeling” or “more-or-less coordinated” we can think of a command center as
somehow monitoring and controlling actions and events.

Terminal monitoring & control centers, also interchangeably referred to as command centers,
are thus where the logistics of container handling takes place.

You may think of this command center as receiving notices from vessels and land trucks as to
their arrival and with information about their containers; thus building up awareness, i.e., a state,
of the containers of all incoming and arrived vessels and land trucks, the layout of the terminal
and the state of its container stowage area, the current whereabouts of vessels, cranes and trucks.
Quite a formidable “state”.

We shall therefore model the “comings” and “goings” of vessels, trucks, cranes and stacks as if
they were monitored and controlled by a command center, In our modelling we are not assuming
any form of efficiency; there is, as yet no notion of optimality, nor of freedom from mistakes and
errors. Our modelling – along these lines – is “hidden” in action pre- and post-conditions and thus
allows for any degree of internal non-determinism.

12.6.6.1.2 Calculate Next Transaction:

The core action of the command center is calc nxt transaction. We shall define calc nxt -
transactiononly by its signature and a pair of pre/post conditions. In this way we do not have to
consider efficiency, security, safety, etc., issues. These, i.e., the efficiency, security, safety, etc., issues
can “always” be included in an requirements engineering implementation of calc nxt trans-
action. Basically the calc nxt transactionhas to consider which of a non-trivially large number
of possible actions have to be invoked. They are listed in Items 131 to 137 below. The calc nxt -
transaction occurs in time, and occur repeatedly, endlessly, i.e., “ad-infinitum”, At any time that
calc nxt transaction is invoked the monitoring and control command center (mcc) is in some
state. That state changes as the result of both monitoring actions and control actions. The calc -
nxt transaction therefore non-deterministically-internally chooses one among several possible
alternatives. If there is no alternative, then a skip action is performed.

The command center, mcc, models the following actions and events: [A] the update of the mcc

state, mccσ, in response to the vessel action that inform the mcc of the vessel arrival.

336 12 Container Terminals [November 2017]

130. The result of a calc nxt transaction is an transaction designator, MCCTrans and a state
change. There are several alternative designators. We mention some:

131. [B]: the calculation of vessel positions for [their] arrivals;
132. [CDE]: the calculation of vessel to quay crane container transfers;
133. [FGH]: the calculation of quay crane to quay truck container transfers;
134. [IJK]: the calculation of quay truck to stack crane container transfers;
135. [LMN]: the calculation of stack crane to stack container transfers;
136. [OPQ]: the calculation of land truck to stack crane container transfers;
137. [X]: the calculation that stowage, for a given vessel, has completed; and
138. the calculation that there is no next transaction that can be commenced.
139. The signature of the calc nxt transaction involves the unique identifier, mereology, static and

programmable attributes, i.e., the state of the command center, and indicates that a command
center transaction results and a next state “entered”.

140. For this, the perhaps most significant action of the entire container terminal port operation, we
“skirt” the definition and leave to a pair pf pre/post conditions that of characterising the result
and next state.

type
130 MCCTrans == QayPos | VSQC Xfer | QCQT Xfer | QTSC Xfer

130 | SCSTK Xfer | SCLT Xfer | LT Dept | VS Dept | Skip

131 [B]: QuayPos :: VI × QPos
132 [CDE]: VSQC Xfer :: VI × BRS × CI × QCI

133 [FGH]: QCQT Xfer :: QCI × CI × QTI
134 [IJK]: QTSC Xfer :: QTI × CI × SCI

135 [LMN]: SCSTK Xfer :: SCI × CI × BRS

136 [OPQ]: SCLT Xfer :: SCI × CI × LTI
137 [X]: VS Dept :: VI

138 Skip :: nil

value
139 calc nxt transaction: MCCI×mereoMCC×statMCC→MCCΣ→MCCTrans×MCCΣ
139 calc nxt transaction(mcci,mccmereo,mmstat)(mccσ) as (mcctrans,mccσ′)
140 pre: Pcalc nxt trans((mcci,mccmereo,mccstat)(mccσ))
140 post: Qcalc nxt trans((mcci,mccmereo,mccstat)(mccσ))(mcctrans,mccσ′)

The above mentioned actions are invoked by the command center in its endeavour to see containers
moved from vessels to customers. A similar set of actions affording movement of containers
customers to vessels, i.e., in the reverse direction: from land trucks to stack cranes, from stacks to
quay trucks, from quay trucks to quay cranes, and from quay cranes to vessels, round off the full
picture of all command center actions.

12.6.6.1.3 Command Center Action [A]: update mcc from vessel:

141. Command centers
142. upon receiving arrival information, v info, from arriving vessels, v i, can update their state

“accordingly”.
143. We leave undefined the pre- and post-conditions.

value
141 update mcc from vessel: VSMCC MSG × MCC Σ→ MCC Σ
142 update mcc from vessel((vs i,vir csa,vs info),mcc σ) as mcc σ′

143 pre: Pupd mcc f v((vs i,vir csa,vs info),mcc σ)
143 post: Qupd mcc f v((vs i,vir csa,vs info),mcc σ)(mcc σ′)

12.6 Perdurants 337

12.6.6.1.4 Command Center Action [B]: calc ves pos:

144. Command centers
145. can calculate, q pos, the quay segment and quay positions for an arriving vessel, v i.
146. We leave undefined the pre- and post-conditions.

value
144 calc ves pos: MCCI×MCC mereo×TopLog×MCCΣ×VI→ (QSId×QP∗)×MCCΣ
145 calc ves pos(mcc i,mcc mereo,toplog,mcc σ,v i) as (q pos,mcc σ′)
146 pre: Pcalc ves pos(mcc i,mcc mereo,toplog,mcc σ,v i)

146 post: Qcalc ves pos(mcc i,mcc mereo,toplog,mcc σ,v i)(q pos,mcc σ′)

12.6.6.1.5 Command Center Action [C-D-E]: calc ves qc

147. The command center non-deterministically internally calculates
148. a pair of a triplet: the bay-row-stack coordinates, brs, from which a top container, supposedly ci,

is to be removed by quay crane qci, and a next command center state reflecting that calculation
(and that the identified quay crane is being so alerted).

149. We leave undefined the relevant pre- and post-conditions

value
147 calc ves qc: MCCΣ→ (BRS×CI×QCI) × MCCΣ
148 calc ves qc(mccσ) as ((brs,ci,qci),mccσ’)
149 pre: Pcalc ves qc(mccσ)
149 post: Qcalc ves qc(mccσ)((brs,ci,qci),mccσ’)

12.6.6.1.6 Command Center Action [F-G-H]: calc qc qt

150. The command center non-deterministically internally
151. calculates a pair of a triplet: the identities of the quay crane from which and the quay truck to

which the quay crane is to transfer a container, and an update command center state reflecting
that calculation (and that the identified quay crane, container and truck are being so alerted).

152. We leave undefined the relevant pre- and post-conditions

value
150 calc qc qt: MCCΣ→ (QCI×CI×QTI) × MCCΣ
151 calc qc qt(mccσ) as ((qci,ci,qti),mccσ’)
152 pre: Pcalc qc qt(mccσ)
152 post: Qcalc qc qt(mccσ)((qci,ci,qti),mccσ’)

12.6.6.1.7 Command Center Action [I-J-K]: calc qt sc

153. The command center non-deterministically internally
154. calculates a pair of a triplet: the identities of a quay truck, a container, and a stack crane, and

an update command center state reflecting that calculation (and that the identified quay truck,
container and stack crane are being so alerted).

155. We leave undefined the relevant pre- and post-conditions

338 12 Container Terminals [November 2017]

value
153 calc qt sc: MCCΣ→ (QTI×CI>SCI) × MCCΣ
154 calc qt sc(mccσ) as ((qti,ci,sci),mccσ’)
155 pre: Pcalc qt sc(mccσ)
155 post: Qcalc qt sc(mccσ)((qti,ci,sci),mccσ’)

12.6.6.1.8 Command Center Action [L-M-N]: calc sc stack

156. The command center non-deterministically internally calculates a pair:
157. a triplet of the identities of a stack crane, a container and a terminal bay/row/stack triplet and

a new state that reflects this action.
158. We leave undefined the relevant pre- and post-conditions

value
156 calc sc stack: MCCΣ→ (SCI×CI×BRS)×MCCΣ
157 calc sc stack(mccσ) as ((sci,ci,brs),mccσ′)
158 pre: Pcalc sc stack(mccσ)
158 post: Qcalc sc stack(mccσ)((sci,ci,brs),mccσ′)

12.6.6.1.9 Command Center Action [N-M-L]: calc stack sc

159. The command center non-deterministically internally calculates a pair:
160. a triplet of a terminal bay/row/stack triplet and the identities of a container and a stack crane,

and a new state that reflects this action.
161. We leave undefined the relevant pre- and post-conditions

value
159 calc stack sc: MCCΣ→ (BRS×CI×SCI)×MCCΣ
160 calc stack sc(mccσ) as ((brs,ci,sci),mccσ′)
161 pre: Pcalc stack sc(mccσ)
161 post: Qcalc stack sc(mccσ)((brs,ci,sci),mccσ′)

12.6.6.1.10 Command Center Action [O-P-Q]: calc sc lt

162. The command center non-deterministically internally calculates a pair:
163. a triplet of the identities of a stack crane, a container and a land truck, and a new state that

reflects this action.
164. We leave undefined the relevant pre- and post-conditions.

value
162 calc sc lt: MCCΣ→ (BRS×CI×SCI)×MCCΣ
163 calc sc lt(mccσ) as ((sci,ci,lti),mccσ′)
164 pre: Pcalc sc lt(mccσ)
164 post: Qcalc sc lt(mccσ)((sci,ci,lti),mccσ′)

12.6 Perdurants 339

12.6.6.1.11 Command Center Action [Q-P-O]: calc lt sc

165. The command center non-deterministically internally calculates a pair:
166. a triplet of the identities of a land truck, a container and a stack crane, and a new state that

reflects this action.
167. We leave undefined the relevant pre- and post-conditions.

value
165 calc lt sc: MCCΣ→ (BRS×CI×SCI)×MCCΣ
166 calc lt sc(mccσ) as ((lti,ci,sci),mccσ′)
167 pre: Pcalc lt sc(mccσ)
167 post: Qcalc lt sc(mccσ)((lti,ci,sci),mccσ′)

12.6.6.1.12 Command Center: Further Observations

Please observe the following: any terminal command center repeatedly and non-deterministically
alternates between any and all of these actions. Observe further that: The intention of the pre- and
post-conditions [Items 143, 146, 149, 152, 155, 158, 161, 167, and 164], express requirements to the
command center states, mccσ:mccΣ, w.r.t. the information it must handle. Quite a complex state.

12.6.6.2 Container Storage Area Actions

We define two operations on virtual CSAs:

168. one of stacking (loading) a container, referred to by its unique identifier in a virtual CSA,
169. and one of unstacking (unloading) a container;
170. both operations involving bay/row/stack references.

type
170 BRS = BI × RI × SI

value
168 load CI: vir CSA × BRS × CI→ vir CSA
168 load CI(vir csa,(bi,ri,si),ci) as vir csa′

168 pre: Pload(vir csa,(bi,ri,si),ci)
168 post: Qload(vir csa,(bi,ri,si),ci)(vir csa′)

169 unload CI: vir CSA × BRS
∼
→ CI × vir CSA

169 unload CI(vir csa,(bi,ri,si)) as (ci,vir csa′)
169 pre: Punload(vir csa,(bi,ri,si))

169 post: Qunload(vir csa,(bi,ri,si))(ci,vir csa′)

12.6.6.2.1 The Load Pre-/Post-Condtions

171. The virtual vir CSA, i.e., vir csa, must be well-formed;
172. the ci must not be embodied in that vir csa; and
173. the bay/row/stack reference, (bi,ri,si) must be one of the [virtual] container stowage area.

value
168 Pload(vir csa,(bi,ri,si),ci) ≡

171 well formed(vir csa) cf. 25– 27 on page 317

340 12 Container Terminals [November 2017]

172 ∧ ci < xtr CIs(vir csa) cf. 49 on page 319

174 ∧ valid BRS(bi,ri,si)(vir csa)

174 valid BRS: BRS→ iCSA→ Bool
174 valid BRS(bi,ri,si)(vir csa) ≡
174 bi∈ domvir csa∧ri∈ domvir csa(bi)∧si∈ dom(vir csa(bi))(ri)

174. The resulting vir CSA, i.e., vir csa′, must have the same bay, row and stack identifications, and
175. except for the designated bay, row and stack, must be unchanged.
176. The designated “before”, i.e., the stack before loading, must equal the tail of the “after”, i.e.,

the loaded stack, and
177. the top of the “after” stack must equal the “input” argument container identifier.,

value
169 Qload(vir csa,(bi,ri,si),ci)(vir csa′) ≡
174 dom vir csa = dom vir csa′

174 ∧ ∀ bi′:BI•bi′∈ dom vir csa(bi′)

174 ⇒ dom vir csa(bi′)=dom vir csa′(bi′)
174 ∧ ∀ ri′:RI•bi′∈ dom (vir csa(bi′))()

174 ⇒ dom (vir csa(bi′))(ri′)=(dom vir csa′(bi′))(ri′)
174 ∧ ∀ si′:BI•bi′∈ dom vir csa(bi′)

174 ⇒ dom ((vir csa(bi′))(ri′))(si′)=dom((vir csa′(bi′))(ri′))(si′)

175 ∧ ∀ bi′:BI•bi′ ∈ dom vir csa \ {bi}
175 ⇒ vir csa \ {bi}=vir csa′ \ {bi}

175 ∧ ∀ ri′:RI•ri′ ∈ dom vir csa(bi) \ {ri}

175 ⇒ (vir csa(bi))(ri′)=(vir csa′(bi))(ri′)
175 ∧ ∀ si′:SI•si′ ∈ dom (vir csa)(ri′) \ {si}

175 ⇒ ((vir csa)(bi′))(si′)=((vir csa′)(bi′))(si′)
176 ∧ tl((vir csa′)(bi′))(si′)=((vir csa′)(bi′))(si′)

177 ∧ hd((vir csa′)(bi′))(si′)=ci

12.6.6.2.2 The Unload Pre-/Post-Conditions

178. The virtual vir csa, i.e., vir csa,
179. must be wellformed; and
180. the bay/row/stack reference, (bi,ri,si) must be one of the [virtual] container stowage area.

value
178 Punload(vir csa,(bi,ri,si)) ≡

179 well formed(vir csa)
180 ∧ valid BRS(bi,ri,si)(vir csa)

181.
182.
183.
184.
185.

value
169 Qunload(vir csa,(bi,ri,si))(ci,vir csa′) ≡

12.6 Perdurants 341

181 dom vir csa = dom vir csa′

182 ∧ ∀ bi′:BI • bi′ ∈ dom vir csa \ {bi}

182 ⇒ vir csa \ {bi} = vir csa′ \ {bi}
183 ∧ ∀ ri′:RI • ri′ ∈ dom vir csa(bi) \ {ri}

183 ⇒ (vir csa(bi))(ri′) = (vir csa′(bi))(ri′)
184 ∧ ∀ si′:SI • si′ ∈ dom (vir csa)(ri′) \ {si}

184 ⇒ ((vir csa)(bi′))(si′) = ((vir csa′)(bi′))(si′)

185 ∧ ((vir csa′)(bi′))(si′)=tl((vir csa′)(bi′))(si′)
185 ∧ hd((vir csa)(bi′))(si′)=ci

12.6.6.3 Vessel Actions

Vessels (and land trucks) are in a sense, the primary movers in understanding the terminal
container domain. Containers are, of course, at the very heart of this domain. But without container
vessels (and land trucks) arriving at ports nothing would happen ! So the actions of vessels are
those of actively announcing their arrivals at and departures from ports, and participating, more
passively, in the unloading and loading of containers.

12.6.6.3.1 Action [A]: calc next port:

186. Vessels can calculate, calc next port, the unique identifier, mcc i, of that ports’ monitoring &
control center.

187. We do not further define the pre- and post-conditions of the calc next port action.

value
186 calc next port: VI×VS Mereo×VS Stat→ vir CSA×VSΣ→ MCCI×VSΣ
186 calc next port(vs i,vs mereo,vs stat)(vir csa,vσ) ia (mcc i,vsσ′)
187 pre: Pcalc−next−port(vsσ,vs mereo,vs stat)

187 post: Qcalc−next−port(vsσ,vs mereo,vs stat)(mcc i,vsσ′)

12.6.6.3.2 Vessel Action [B]: calc ves msg:

188. Vessels can calculate, calc ves info, the vessel information, vs info:VS Info, to be handed to
the next ports’ command center.

189. This information is combined with the vessel identifier and its virtual CSA,
190. We leave undefined the pre- and post-conditions over vessel states and vessel information.

type
188 VS Info

189 VS MCC MSG :: VI×vir CSA×VS Info

value
188 calc ves msg: VI×VMereo×VStat→ VS Pos×vir CSA×VSΣ→ VS MCC MSG×VSΣ
188 calc ves msg(vs i,vs mereo,vs stat)(vpos,vir csa,vsσ) as (vs mcc msg,vsσ′)
190 pre: Pcalc ves mcc msg(vs i,vs mereo,vs stat)(vpos,vir csa,vsσ)
190 post: Qcalc ves mcc msg(vs i,vs mereo,vs stat)(vpos,vir csa,vσ)(vs mcc msg,vsσ′)

342 12 Container Terminals [November 2017]

12.6.6.4 Land Truck Actions

Land trucks can initiate the following actions vis-a-vis a targeted terminal port command center:
announce, to a terminal command center, its arrival with a container; announce, to a terminal
command center, its readiness to haul a container. Land trucks furthermore interacts with stack
cranes – as so directed by terminal command centers.

12.6.6.4.1 Land Truck Action [R]: calc truck delivery:

191. Land trucks, upon approaching, from an outside, terminal ports, calculate
192. the identifier of the next port’s command center and a next land truck state.

We do not define the
193. pre- and
194. post conditions of this calculation.

value
191 calc truck delivery: CI × TRUCKΣ→ MCCI × LTΣ
192 calc truck delivery(ci,ltσ) as (mcci,ltσ′)
193 pre: Pcalc truck deliv(ci,ltσ)
194 post: Qcalc truck deliv(ci,ltσ)(mcci,ltσ′)

12.6.6.4.2 Land Truck Action [S]: calc truck avail:

195. Land trucks, when free, i.e., available for a next haul, calculate
196. the identifier of a suitable port’s command center and a next land truck state.

We do not define the
197. pre- and
198. post conditions of this calculation.

value
195 calc truck avail: LTI × LTΣ→ MCCI × LTΣ
196 calc truck avail(lti,ltσ) as (mcci,ltσ′)
197 pre: Pcalc truck avail(lti,ltσ)
198 post: Qcalc truck avail(lti,ltσ)(mcci,ltσ′)

12.6.7 Events

We refer to [53, Sect. 7.1.6 and 7.3.2]. Events occur to all entities. For reasons purely of presentation
we separate events into active part initiation events and active part completion events. Active part
initiation events are those events that signal the initiation of actions. (Let [Θ] designate an action,
then [Θ′] designates the completion of that action.) Active part completion events are those events
that signal the completion of actions. We do not show the lower case [d, f, g, h, i, j, k, l, m, n, o]
in Fig. 3.

12.6.7.1 Active Part Initiation Events

Vessels:

12.6 Perdurants 343

199. [αvessel] approaching terminal port;
200. [A] informing the command center, mcc, of a

terminal port, of arrival;
201. [B] receiving from an mcc directions as to

quay berth positions;
202. [C] receiving from an mcc, for each container

to be unloaded or loaded, directions as to

these unloads and ladings – and these actual
unloads/ladings;

203. [X] receiving from an mcc directions of com-
pletion of stowage (no more unloads/loads);

204. [Y] informing the mcc of its departure from
terminal port; or

205. [ωvessel] leaving a terminal port.

Land Trucks:

206. [αland truck] approaching a terminal port;
207. [W] informing its mcc of its arrival;
208. [V] being directed, by an mcc, as to the stack

(crane) of destination;
209. [S] the unloading, to a stack crane, of a con-

tainer;

210. [T] the loading of a container from a stack
crane;

211. [R] informing its mcc of its departure; or
212. [ωland truck] leaving a terminal port.

Containers: the transfers from

213. [D] vessel to quay crane;
214. [d] quay crane to vessel;
215. [G] quay crane to quay truck;
216. [g] quay truck to quay crane;
217. [J] quay truck to stack crane;

218. [j] stack crane to quay truck;
219. [M] stack crane to stack;
220. [m] stack to stack crane;
221. [P] stack crane to land truck; or from
222. [p] land truck to stack crane.

Quay Cranes: being informed, by the command center, mcc, of a container to be

223. [E] picked-up from a vessel;
224. [e] set-down on a vessel;

225. [F] set-down on a quay truck; or
226. [f] picked-up from a quay truck.

Quay Trucks: being informed, by the command center, mcc, of a container to be

227. [H] loaded from a quay crane;
228. [h] picked-up by a quay crane;

229. [I] picked-up by a stack crane; or
230. [i] loaded from a stack crane.

[Terminal] Stack Cranes: being informed, by the command center, mcc, of a container to be

231. [K] picked-up from a quay truck;
232. [k] loaded on to a quay truck;
233. [L] picked-up from a stack;

234. [l] loaded on to a stack;
235. [O] picked-up from a land truck; or
236. [o] loaded on to a land truck.

[Terminal Bay] Stacks: being informed, by the command center, mcc, of a container to be

237. [N] set-down, of a container, from a stack
crane; or

238. [n] picked-up, of a container, by a stack crane.

These events, in most cases, prompt interaction with the terminal command center.

344 12 Container Terminals [November 2017]

12.6.7.2 Active Part Completion Events:

We do not show, in Fig. 3, the c’, e’, h’, o’, q’, t’ events.

239. [C’]

240. [E’]
241. [H’]

242. [O’]

243. [Q’]
244. [T’]

12.6.8 Channels

We refer to [53, Sect. 7.2], and we refer to Sect. 12.5.2 and to Fig. 2 on Page 334.

12.6.8.1 Channel Declarations

There are channels between terminal port monitoring & control command center (mcci) and that
command centers and that terminal port’s

245. all the containers (ci), that might visit the terminal port; ch mcc con[mcci,ci]120;
246. vessels (vi) that might visit that port, ch mcc[mcci,vi]121;
247. quay cranes (qci) of that port, ch mcc[mcci,qci]122;
248. quay trucks (qti) of that port , ch mcc[mcci,qti]123;
249. stack cranes (sci) of that port, ch mcc[mcci,sci]124;
250. stacks [bays] (stki) of that port, ch mcc[mcci,stki]125; and
251. land trucks (lti) of, in principle, any port, ch mcc[mcci,lti]126.
252. We shall define the concrete types of messages communicated by these channels subsequently

(Sect. 12.6.8.2).

channel
245 {ch mcc con[mcci,ci]|mcci:MCCI,ci:CI•mcci∈mcc uis∧ci∈c uis}:MCC Con Cmd
246-251 {ch mcc[mcci,ui]|mcci:MCCI,ui:(VI|QCI|QTI|SCI|STKI|LTI) • mcci∈mcc uis∧ui∈uis}:MCC Msg
type
252 MCC Con Msg, MCC Msg

12.6.8.2 Channel Messages

We present a careful analysis description, for the channels declared above, of the rather rich variety
of messages communicated over channels. All messages “goes to” (a few) or “comes from” (the
rest) the command center. Messages from quay cranes, quay trucks, stack cranes, and land trucks

120 cf. Item 98 on page 327
121 cf. Item 76 on page 322
122 cf. Item 81 on page 323
123 cf. Item 83 on page 323
124 cf. Item 87 on page 324
125 cf. Item 94 on page 325
126 cf. Item 96 on page 326

12.6 Perdurants 345

– directed at the command center – are all in response to the events of their being loaded or
unloaded.

12.6.8.2.1 A,B,X,Y,C′: Vessel Messages

253. There are a number command center – vessel and vice-versa messages:

a. A: Vessels announce their (forthcoming) arrival to the next destination terminal by sending
such information, VSArrv, to its monitoring & control (also referred to as command) cen-
ter, that enables it to handle those vessels’ berthing, unloading and loading (of container
stowage).127

b. B: The terminal command center informs such arriving vessels of their quay segment posi-
tions, VSQPos.

c. X: The terminal command center informs vessels of completion of stowage handling, VS-

Comp.
d. Y: Vessels inform the terminal of their departure, VesDept.

type
253 MCC Cmd == VSArrv|VSQPos|VSComp|VSDept|...
253a A: VSArrv :: VI × vir CSA
253b B: VSQPos :: VI × (QSId × QP+)

253c X: VSComp :: MCCI × VI

253d Y: VSDept :: MCCI × VI

12.6.8.2.2 C,D,E,E′: Vessel/Container/Quay Crane Messages

254. The terminal command center, at a time it so decides, “triggers” the simultaneous transitions,
C,D,E, of

a. C: unloading (loading) from (to) a vessel stack position of a container (surrogate), VSQC Xfer,

QCVS Xfer),
b. D: notifying the physical, i.e., the actual container that it is being unloaded (loaded),

C VStoQC (C QCtoVS), and
c. E: loading (unloading) the container (surrogate) onto (from) a quay crane, VStoQC (QCtoVS).

255. C′,E′: The vessel and the quay crane, in response to their being unloaded, respectively loaded
with a container “moves” that load, from its top vessel bay/row/stack position to the quay crane
and notifies the terminal command center of the completion of that move, VSQC Compl.

type
253 MCC Cmd == ... | VSQC Xfer | QCVS Xfer | C VtoQC | C QCtoV | VQC Compl
254a VSQC Xfer, QCVS Xfer :: VI × (BRS × CI) × QCI

254b C VStoQC, C QCtoVS :: VI × CI × QCI

254c VStoQC, QCtoVS :: VI × CI × QCI
255 VSQC Compl == VS UnLoad | VS Load

255 VS UnLoad, VS Load :: VI × CI × QCI

127 What exactly that information is, i.e., any more concrete type model of Ves Info cannot be given at this early
stage in our development of what a terminal is.

346 12 Container Terminals [November 2017]

12.6.8.2.3 F,G,H,H′: Quay Crane/Container/Quay Truck Messages

256. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
F,G,H: QCtoQT, of

a. F: the removal of the container from the quay crane,
b. G: the notification of the physical container that it is now being transferred to a quay truck,

and
c. H: the loading of that container to a quay truck.
d. H′: The quay truck, in response to it being loaded notifies the terminal command center of

the completion of that move.

type
253 MCC Cmd == ... | QCtoQT | ...
256 QCtoQT == UnloadCQC | NowConQT | LoadCQT | QCtoQTCompl

256a UnloadCQC :: CI × QCI

256b NowConQT :: CI × QTI
256c LoadCQT :: CI × QTI

256d QCtoQTCompl :: ...

12.6.8.2.4 I,J,K,K′: Quay Truck/Container/Stack Crane Messages

257. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
I,J,K: QTtoSC, of

a. I: the removal of a container from a quay truck,
b. J: the notification of the physical container that it is now being transferred to a stack crane,

and
c. K: the loading of that container to a stack crane.

258. K′: The stack crane, in response to it being loaded notifies the terminal command center of the
completion of that move.

type
257 MCC Cmd = ... | QTtoSC | ...
257 QTtoSC == UnLoadCQT | NowConSC | | QCQTCompl
257a UnLoadCQT :: CI × QRI

257b NowConSC :: CI × SCI

257c LoadCSC :: CI × SCI
258 QCSCCompl :: ...

12.6.8.2.5 L,M,N,N′: Stack Crane/Container/Stack Messages

259. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
L,M,N: SCtoStack, of

a. L: the unloading of the container from a stack crane;
b. M: the notification of the physical container that it is now being transferred to a stack, and
c. N: the loading of that container to a stack.

260. N′: The stack, in response to it being loaded, notifies the terminal command center of the
completion of that move.

12.6 Perdurants 347

type
259 MCC Cmd = ... | SCtoStack | ...
259 SCtoStack == UnLoadCSC | NowConSTK | LoadConSTK | SCStkCompl
259a UnLoadCSC :: CI × SCI

259b NowConSTK :: CI × BRS
259c LoadConSTK :: CI × BRS

260 SCStkCompl :: ...

12.6.8.2.6 O,P,Q,Q′: Land Truck/Container/Stack Crane Messages

261. The terminal command center, at a time it so decides “triggers” the simultaneous transitions,
O,P,Q: LTtoSC, of

a. Q: the unloading of the container from a land truck to a stack crane;
b. P: the notification of the physical container that it is now being transferred to a stack crane,

and
c. O: the loading of that container to a stack crane.
d. O′: The stack crane, in response to it being loaded, notifies the terminal command center of

the completion of that move.128

type
261 MCC Cmd = ... | LTtoSC | ...
261 LTtoSC == UnLoadCLT | NowConSC | LoadConSC | LTtoSCCompl
261a UnLoadCLT :: CI × LTI

261b NowConSC :: CI × SCI

261c LoadConSC :: CI × SCI
261d LTtoSCCompl :: ...

12.6.8.2.7 R,S,T,U,Q,V: Land Truck Messages

262. These are the messages that are communicated either from land trucks to command centers or
vice versa:

a. R: Land trucks, when approaching a terminal port, informs that port of its offer to deliver
an identified container to stowage.

b. S: Land trucks, when approaching a terminal port, informs that port of its offer to accept
(load) an identified container from stowage.

c. T: Land trucks, at a terminal, are informed by the terminal of the stack crane at which to
deliver (unload) an identified container.

d. U: Land trucks, at a terminal, are informed by the terminal of the stack crane from which to
accept an identified container.

e. Q: Land trucks, at a termial, are informed by the terminal of the stack crane at which to
unload (deliver) an identified container.

f. q: Land trucks, at a terminal, are informed by the terminal of the stack crane at which to load
(accept) an identified container.

g. V: Land trucks, at a terminal, inform the terminal of their departure.

type

128 The O′ event is “the same” as the K′ event.

348 12 Container Terminals [November 2017]

262 MCC Cmd = ... | LTCmd | ...
262 LTCmd == LTDlvr | LTFtch | LTtoSC | LTfrSC | LTDept

262a LTDlvr :: LTI × CI
262b LTFtch :: LTI × CI

262c LTtoSC :: LTI × CI
262d LTfrSC :: LTI × CI

262g LTDept :: LTI

12.6.9 Behaviours

We refer to [53, Sects. 7.1.7, 7.3.3-4-5, and 7.4].
To every part of the domain we associate a behaviour. Parts are in space: there are the manifest

parts, and there are the notion of their corresponding behaviours. Behaviours are in space and
time. We model behaviours as processes defined in RSL+. We cannot see these processes. We can,
however, define their effects.

Parts may move in space: vessels, cranes, trucks and containers certainly do move in space;
processes have no notion of spatial location. So we must “fake” the movements of movable parts.
We do so as follows: We associate with containers the programmable attribute of location, as
outlined in Items 126– 126g on page 331. We omit, for this model, the more explicit modelling of
vessels, cranes and trucks but refer to their physical mereologies.

In the model of endurants, cf. Page 315, we modelled vessel and terminal container stowage
areas as physically embodying containers, and we could move containers: push and pop them
onto, respectively from bay stacks. This model must now, with containers being processes, be
changed. The stacks, STACK, of container stowage areas, CAS, now embody unique container
identifiers ! We rename these stacks into cistack:CiSTACK

12.6.9.1 Terminal Command Center

The terminal command center is at the core of activities of a terminal port. We refer to the figure on
Page 334. “Reading” that figure left-to-right illustrates the movements of containers from [C-D-E]

vessels to quay cranes, [F-G-H] quay cranes to quay trucks, [I-J-K] quay trucks to stack cranes,
[L-M-N] stack cranes to stacks, and from [O-P-Q] land truck to stack cranes. A similar “reading”
of that figure from right-to-left would illustrate the movements of containers from [q-p-o] stack
cranes to land trucks; [n-m-l] stacks to stack cranes; [k-j-i] stack cranes to quay trucks; [h-g-f]

quay trucks to quay cranes; and from [e-d-c] quay cranes to vessels. We have not show the
[c-d-e-f-g-h-i-j-k-l-m-n-o-p-q] labels, but their points should be obvious (!).

12.6.9.1.1 The Command Center Behaviour:

We distinguish between the command center behaviour offering to monitor primarily vessels and
land trucks, secondarily cranes, quay cranes and stacks, and offering to control vessels, cranes,
trucks and containers.

263. The signature of the command center behaviour is a triple of the command center identifier,
the conceptual command center mereology and the static command center attributes (i.e., the
topological description of the terminal); the programmable command center attributes (i.e., the
command center state); and the input/output channels for the command center.
The command center behaviour non-deterministically (externallY) chooses between

12.6 Perdurants 349

264. either monitoring inputs from
265. or controlling (i.e., outputs to)

vessels, cranes, trucks, stacks and containers.

value
263 command center:

263 mcci:MCCI×(vis,qcis,qtis,scis,bis,ltis,cis):MCC Mer×MCC Stat
263 → MCCΣ→
263 in,out { ch mcc[mcci,ui]n
263 | mcci:MCCI,ui:(VI|QCI|QTI|SCI|BI|LTI)
263 • ui∈vis∪qcis∪qtis∪scis∪bis∪ltis }

263 out { ch mcc con[mcci,ci] | ci:CI•ci ∈ cis } Unit
263 command center(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ) ≡
264 monitoring(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ)
263 ⌈⌉⌊⌋

265 control(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ)

12.6.9.1.2 The Command Center Monitor Behaviours:

The command center monitors the behaviours of vessels, cranes and trucks: [A,Y′ ,C′,E′,F′,H′,I′,K′,L′,N′,O′,Q′].
The input message thus received is typed:

type
VCT Info = ...

That information is used by the command center to update its state:

value
update MCCΣ: VCT Infor→ MCCΣ→ MCCΣ

The definition of monitoring is simple.

266. The signature of the monitoring behaviour is the same as the command center behaviour.
267. The monitor non-deterministically externally (⌈⌉⌊⌋) offers to accept any input, vct info, message

from any vessel, any land truck and from local terminal port quay trucks and cranes.
268. That input, vct info, enters the update of the command center state, from mccσ to mccσ′.
269. Whereupon the monitoring behaviour resumes being the command center behaviour with an

updated state.

value
266 monitoring: mcci:MCCI × mis:MCC Mereo × MCC Stat

266 → MCCΣ
266 → in,out {chan mcc[mcci,i] | i ∈ mis} Unit
266 monitoring(mcci,mis,mcc stat)(mccσ) ≡
267 let vct info = ⌈⌉⌊⌋ { chan mcc[mcci,i] ? | i ∈ mis } in
268 let mccσ′ = update MCCΣ((vct info,ui))(mccσ) in
269 command center(mcci,mis,mcc stat)(mccσ′) end end

12.6.9.1.3 The Command Center Control Behaviours:

270. The command center control behaviour has the same signature as the command center be-
haviour (formula Items 263).

350 12 Container Terminals [November 2017]

271. In each iteration of the command center behaviour in which it chooses the control alternative
it calculates129 a next [output] transaction. This calculation is at the very core of the overall
terminal port. We shall have more to say about this in Sect. 12.7.1 on page 358.
Items, 272a–272j represent 10 alternative transactions.

272. They are “selected” by the case clause (Item 272).
So for each of these 10 alternatives there the command center offers a communication. For the
[CDE, FGH, IJK, LMN, OPQ, opq] cases there is the same triple of concurrently synchronised
events. For the [B,T,X] clauses there are only a single synchronisation effort. The command
center events communicates:

a. [B] the quay positions to arriving vessels,
the transfer of containers

b. [CDE] from vessel stacks to quay cranes,
c. [FGH] quay cranes to quay trucks,
d. [IJK] quay trucks to stack cranes,
e. [LMN] stack cranes to stacks,
f. [OPQ] stack cranes to land trucks, and
g. [opq] land trucks to stack cranes.

We also illustrate
h. [T] the bays to which a land truck is to deliver, or fetch a container, and
i. [X] the “signing off” of a vessel by the command center.
j. For the case that the next transaction cannot be determined [at any given point in time] there

is nothing to act upon.

273. After any of these alternatives the command center control behaviour resumes being the com-
mand center behaviour with the state updated from the next transaction calculation.

value
270 control: mcci:MCCI×(vis,qcis,qtis,scis,bis,ltis,cis):MCC Mer×MCC Stat→ MCCΣ→
263 in,out {ch mcc[mcci,ui]|mcci:MCCI,ui:(VI|QCI|QTI|SCI|BI|LTI)•ui∈vis∪qcis∪qtis∪scis∪bis∪ltis}
263 out { ch mcc con[mcci,ci] | ci:CI•ci ∈ cis } Unit
270 control(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ) ≡
271 let (mcc trans,mccσ′) = calc nxt transaction(mcci,mcc mereo,mcc stat)(mccσ) in
272 case mcc trans of
272a [B] mkVSQPos(vi,qp) → ch mcc[mcci,vi] ! mkVSQPos(vi,qp),
272b [CDE] mkVSQC Xfer(vi,(brs,ci),qci) →
272b [C] ch mcc[mcci,vi] ! mkVes UnLoad(ci,brs)
272b [D] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,qci)
272b [E] ‖ ch mcc[mcci,qci] ! mkQC Load(ci),
272c [FGH] mkQCQT Xfer(qci,ci,qti)→
272c [F] ch mcc[mcci,qci] ! mkQC UnLoad(ci)
272c [G] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,qti)
272c [H] ‖ ch mcc[mcci,qti] ! mkQT Load(ci),
272d [IJK] mkQTSC Xfer(qti,ci,sci)→
272d [I] ch mcc[mcci,qci] ! mkQT UnLoad(ci)
272d [J] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,sci)
272d [K] ‖ ch mcc[mcci,qti] ! mkSC Load(ci),
272e [LMN] mkSCSTK Xfer(brs,ci,sci,sti)→
272e [L] ch mcc[mcci,sci] ! mkSC UnLoad(ci)
272e [M] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,brs)
272e [N] ‖ ch mcc[mcci,stki] ! mkSTK Load(ci,brs),
272f [OPQ] mkSCLT Xfer(sci,ci,lti)→
272f [O] ch mcc[mcci,sci] ! mkSC UnLoad(ci)
272f [P] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,lti)
272f [Q] ‖ ch mcc[mcci,lti] ! mkLT Load(ci),
272g [opq] mkLTSC Xfer(sci,ci,lti)→
272g [o] ch mcc[mcci,sci] ! mkSC Load(ci)

129 For calc nxt transaction see Items 130 – 140 on page 336

12.6 Perdurants 351

272g [p] ‖ ch mcc con[mcci,ci] ! mkNewPos(mcci,cti)
272g [q] ‖ ch mcc[mcci,lti] ! mkLT UnLoad(ci),
272h [T] mkLT Dept(lti)→ ch mcc[mcci,lti] ! LTDept(mcci,lti),
272i [Y] mkVSComp(mcci,vi)→ ch mcc[mcci,vi] ! VSComp(mcci,vi),
272i [X] mkVSDept(mcci,vi)→ ch mcc[mcci,vi] ! VSDept(mcci,vi),
272j → skip
272 end ; command center(mcci,(vis,qcis,scis,bis,ltis,cis),mcc stat)(mccσ′) end

12.6.9.2 Vessels

274. The signature of the vessel behaviour is a triple of the vessel identifier, the conceptual vessel mereology, the
static vessel attributes, and the programmable vessel attributes. [We presently leave static attributes unspecified:
...]
Nondeterministically externally, ⌈⌉⌊⌋, the vessel decides between

275. [A] either approaching a port,
276. [] or [subsequently] arriving at that port,

or [subsequently] participating in the
277. [] unloading and
278. [] loading of containers of containers,
279. [] or [finally] departing from that port.

value
274 vessel: vi:VI×mccis:V Mereo×V Sta Attrs→ (V Pos×vir CSA×VΣ)
274 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
274 vessel(vi,mccis,...)(vpos,vir csa,vσ) ≡
275 port approach(vi,mccis,...)(vpos,vir csa,vσ)
276 ⌈⌉⌊⌋ port arrival(vi,mccis,...)(vpos,vir csa,vσ)
277 ⌈⌉⌊⌋ unload container(vi,mccis,...)(vpos,vir csa,vσ)
278 ⌈⌉⌊⌋ load container(vi,mccis,...)(vpos,vir csa,vσ)
279 ⌈⌉⌊⌋ port departure(vi,mccis,...)(vpos,vir csa,vσ)

12.6.9.2.1 Port Approach

280. The signature of port approach behaviour is identical to that of vessel behaviour.
281. On approaching any port the vessel calculates the identity of that port’s command center.
282. Then, with an updated state, it calculates the information to be handed over to the designated terminal –
283. [A] which is then communicated from the vessel to the command center;
284. whereupon the vessel resumes being a vessel albeit with a doubly updated state.

value
280 port approach: vi:VI×vs mer:VS Mereo×VS Stat→(VS Pos×vir CSA×VΣ)
280 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
280 port approach(vi,vs mer,vs stat)(vpos,vir csa,vσ) ≡
281 let (mcci,vσ′) = calc next port(vi,vs mer,vs stat)(vpos,vir csa,vσ) in
282 let (mkVInfo(vi,vir csa,vs info),vσ′′) = calc ves msg(vpos,vir csa,vσ′) in
283 ch mcc[mcci,vi] ! mkVS Info(vi,vir csa,vs info) ;
284 vessel(vi,vs mer,vs stat)(vpos,vir csa,vσ′′) end end

12.6.9.2.2 Port Arrival

285. The signature of port arrival behaviour is identical to that of vessel behaviour.
286. [B] Non-deterministically externally the vessel offers to accept a terminal port quay position from any terminal

port’s command center.
287. The vessel state is updated accordingly.

352 12 Container Terminals [November 2017]

288. Whereupon the vessel resumes being a vessel albeit with a state updated with awareness of its quay position.
289. The vessel is ready to receive such quay position from any terminal port.

value
285 port arrival: vi:VI×mccis:V Mereo×V Sta Attrs→ (V Pos×vir CSA×VΣ)
285 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
285 port arrival(vi,mccis,...)(vpos,vir csa,vσ) ≡
286 { let mkVSQPos(vi,(qs,cpl)) = ch mcc[mcci,vi] ? in
287 let vσ′ = upd ves state(mcci,(qs,cpl))(vσ) in
288 vessel(vi,mccis,...)(mkInPort(mcci,mkVSQPos(qs,cpl)),vir csa,vσ′) end end
289 | mcci:MCCI•mcci∈mccis }

12.6.9.2.3 Unloading of Containers

290. The signature of port arrival behaviour is identical to that of vessel behaviour.
291. [C] The vessel offers to accept, ch mcc v[mcci,vi] ?, a directive from the command center of the terminal port

at which it is berthed, to unload, mkUnload((bi,ri,si),ci). a container, identified by ci, at some container stowage
area location ((bi,ri,si)).

292. The vessel unloads the container – identified by ci′.
293. If the unloaded container identifier is different from the expected chaos erupts !
294. The vessel state, vσ′, is updated accordingly.
295. [C’] “Some time has elapsed since the unload directive, modelling” the completion, from the point of view of

the vessel, of the unload operation –
296. whereupon the command center is informed of this completion ([’]).
297. The vessel resumes being the vessel in a state reflecting the unload.

value
290 unload container: vi:VI × mccis:V Mereo × V Sta Attrs→ (V Pos × iCSA × VΣ)→
290 in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
290 unload container(vi,mccis,...)(vpos,vir csa,vσ) ≡
291 let mkVes UnLoad(ci,(bi,ri,si)) = ch mcc[mcci,vi] ? in
292 let (ci′,vir csa′) = unload CI((bi,ri,si),vir csa) in
293 if ci′ , ci then chaos end;
294 let vσ′′ = unload update VΣ((bi,ri,si),ci)(vir csa′) in
295 wait sometime ;
296 ch mcc[mcci,vi] ! mkCompl(mkV UnLoad((bi,ri,si),ci)) ;
297 vessel(vi,mccis,...)(vpos,vir csa′,vσ′′) end end end

12.6.9.2.4 Loading of Containers

298. The signature of load container behaviour is identical to that of vessel behaviour.
299. [c] The vessel offers to accept, ch mcc v[mcci,vi] ?, a directive from the command center of the terminal port

at which it is berthed, to load, mkLoad((bi,ri,si),ci). a container, identified by ci, at some container stowage area
location ((bi,ri,si)).

300. The vessel (in co-operation with a quay crane, see later) then unloads the container – identified by ci.
301. The vessel state, vσ′, is updated accordingly.
302. [c’] “Some time has elapsed since the unload directive, modelling” the completion, from the point of view of

the vessel, of the unload operation – whereupon the command center is informed of this completion ([’]).
303. and the vessels resumes being the vessel in a state reflecting the load.

value
298 load container: vi:VI×mccis:V Mereo×V Sta Attrs→ (V Pos×vir CSA×VΣ)
298 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
298 load container(vi,mccis,...)(vpos,vir csa,vσ) ≡
299 let mkV Load((bi,ri,si),ci) = ch mcc[mcci,vi] ? in
300 let vir csa′ = load CI(vir csa,(bi,ri,si),ci) in
301 let vσ′ = load update VΣ((bi,ri,si),ci) in
302 ch mcc[mcci,vi] ! mkCompl(mkV Load((bi,ri,si),ci)) ;
303 vessel(vi,mccis,...)(vpos,vir csa′,vσ′) end end end

12.6 Perdurants 353

12.6.9.2.5 Port Departure

304. The signature of port departure behaviour is identical to that of vessel behaviour.
305. [Y] At some time some command center informs a vessel that stowage, i.e., the unloading and loading of

containers has ended.
306. Vessels update their states accordingly.
307. [Y’] Vessels respond by informing the command center of their departure.
308. Whereupon vessels resume being vessels.

value
304 port departure: vi:VI×mccis:V Mereo×V Sta Attrs→ (V Pos×vir CSA×VΣ)
304 → in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
304 port departure(vi,mccis,v sta)(vpos,vir csa,vσ) ≡
305 let mkStow Compl(mcci,vi) ⌈⌉⌊⌋ { ch mcc[mcci,vi] ? | mcci:MCCI•mcci∈mccis } in
306 let vσ′ = update vessel state(mkVes Dept(mcci,vi))(vσ) in
307 ch mcc[mcci,vi] ! mkVes Dept(mcci,vi) ;
308 vessel(vi,mccis,v sta)(vpos,vir csa,vσ′) end end

•••

The next three behaviours: quay crane, quay truck and stack crane, are very similar. One substitutes, line-by-line,
command center/quay crane, quay crane/quay truck, quay truck/stack crane et cetera !

12.6.9.3 Quay Cranes

309. The signature of the quay crane behaviour is a triple of the quay crane identifier, the conceptual quay crane
mereology, the static quay crane attributes, the programmable quay crane attributes – and the ’command
center’/’quay crane’ channel.

310. The quay crane offers, non-deterministically externally, to
311. either, [E], accept a directive of a ‘container transfer from vessel to quay crane’.

a. The quay crane then resumes being a quay crane now holding (a surrogate of) the transferred container.

312. or, [F] accept a directive of a transfer ‘container from quay crane to quay truck’.

a. The quay crane then resumes being a quay crane now holding (a surrogate of) the transferred container.

value
309 quay crane: qci:QCI × mcci:QC Mer × QC Sta→ (QCHold×QCPos)
309 → ch mcc[mcci,qci] Unit
309 quay crane(qci,mcci,qc sta)(qchold,qcpos) ≡
311 let mkVSQC(ci) = ch mcc[mcci,qci] ? in
311a quay crane(qci,mcci,qc sta)(mkCon(ci),qcpos) end
310 ⌈⌉⌊⌋

312 let mkQCVS(ci) = ch mcc[mcci,qci] ? in
312a quay crane(qci,mcci,qc sta)(mkCon(ci),qcpos) end

12.6.9.4 Quay Trucks

313. The signature of the quay truck behaviour is a triple of the quay truck identifier, the conceptual quay truck
mereology, the static quay truck attributes, the programmable quay truck attributes – and the ’command
center’/’quay truck’ channel.

314. The quay truck offers, non-deterministically externally, to
315. either, [H], accept a directive of a ‘container transfer from quay crane to quay truck’.

a. The quay truck then resumes being a quay truck now holding (a surrogate of) the transferred container.

316. or, [I], accept a directive of a ‘container transfer from quay truck to quay crane’.

a. The quay truck then resumes being a quay truck now holding (a surrogate of) the transferred container.

354 12 Container Terminals [November 2017]

value
313 quay truck: qti:QTI × mcci:QC Mer × QT Sta→ (QTHold×QTPos)
313 → ch mcc[mcci,qci] Unit
313 quay truck(qti,mcci,qt sta)(qthold,qtpos) ≡
315 let mkQCQT(ci) = ch mcc[mcci,qti] ? in
315a quay crane(qti,mcci,qc sta)(mkCon(ci),qcpos) end
314 ⌈⌉⌊⌋

316 let mkQTQC(ci) = ch mcc[mcci,qti] ? in
316a quay crane(qti,mcci,qc sta)(mkCon(ci),qcpos) end

12.6.9.5 Stack Crane

317. The signature of the stack crane behaviour is a triple of the stack crane stack crane identifier, the conceptual
mereology, the static stack crane attributes, the programmable stack crane attributes – and the ’command
center’/’stack crane’ channel.

318. The stack crane offers, non-deterministically externally, to
319. either, [K], accept a directive of a ‘container transfer from quay truck to stack crane’.

a. The stack crane then resumes being a stack crane now holding (a surrogate of) the transferred container.

320. or, [L], accept a directive of a ‘container transfer from stack crane to quay truck’.

a. The stack crane then resumes being a stack crane now holding (a surrogate of) the transferred container.

value
317 stack crane: sci:SCI × mcci:SC Mer × SC Sta→ (SCHold×SCPos)
317 → ch mcc[mcci,sci] Unit
317 stack crane(sci,mcci,sc sta)(schold,scpos) ≡
319 let mkQTSC(ci) = ch mcc[mcci,sci] ? in
319a stack crane(sci,mcci,sc sta)(mkCon(ci),scpos) end
318 ⌈⌉⌊⌋

320 let mkSCQT(ci) = ch mcc[mcci,sci] ? in
320a stack crane(sci,mcci,sc sta)(mkCon(ci),scpos) end

12.6.9.6 Stacks

The stack behaviour is very much like the unload container container behaviour of the vessel, cf. Items 290 – 294
on page 352.

321. The signature of the stack behaviour is a triple of the stack, i.e. terminal port bay identifier, the conceptual bay
mereology, the static bay attributes, the programmable bay attributes and the ’command center’/’stack’ channel.

322. The stack offers, [N], to accept directive of a ‘container transfer from stack crane to stack’.

a. The stack behaviour loads the container, identified by ci′, to the bay/row/stack top, identified by (bi,ri,si).
b. If the unloaded container identifier is different from the expected chaos erupts !
c. The stack state, bay′, is updated accordingly.
d. [N’] “Some time has elapsed since the load directive, modelling” the completion, from the point of view of

the vessel, of the unload operation –
e. whereupon the command center is informed of this completion ([’]).
f. The stack then resumes being a stack now holding (a surrogate of) the transferred container.

value
321 stack: tbi:TBI×mcci:STK Mer×Stk Sta Attrs→ (iCSA × Stk Dir)→
321 in,out {ch mcc[mcci,vi]|mcci:MCCI•mcci∈mccis} Unit
321 stack(tbi,mcci,stk sta)(bay,dir) ≡
322 let mkUnload((bi,ri,si),ci) = ch mcc[mcci,tbi] ? in
322a let (ci′,bay′) = unload CI((bi,ri,si),bay) in
322b if ci′ , ci then chaos end ;
322c let bay′′ = unload update BAY((bi,ri,si),ci)(bay′) in
322d wait sometime ;
322e ch mcc[mcci,tbi] ! mkCompl(mkUnload((bi,ri,si),ci)) ;
322f stack(tbi,mcci,stk sta)(bay′′ ,dir) end end end

12.6 Perdurants 355

12.6.9.7 Land Trucks

323. The signature of the land truck behaviour is a triple of the land truck identifier, the conceptual land truck
mereology and the static land truck attributes, and the programmable land truck attributes.

324. R

a. The land truck calculates the identifier of the next port’s command center
b. and communicates with this center as to its intent to deliver a container identified by ci,
c. whereupon the land truck resumes being that.

325. T

a. The command center informs the land truck of the bay (’stack’), brs, at which to deliver the container,
b. whereupon the land truck resumes being that.

326. Q

a. The command center informs the land truck of the delivery of a container from a stack crane,
b. ...,
c. whereupon the land truck resumes being that.

327. V

a. The land truck informs the command center of its intent to depart from the terminal port,
b. whereupon the land truck resumes by leaving the terminal port.

value
323 land truck:
323
323 land truck(lti,lt mer,lt sta)(lt pos,lt hold) ≡
324 next port(lti,lt mer,lt sta)(lt pos,lt hold)
325 ⌈⌉⌊⌋ stack location(lti,lt mer,lt sta)(lt pos,lt hold)
326 ⌈⌉⌊⌋ stack crane to land truck(lti,lt mer,lt sta)(lt pos,lt hold)
327 ⌈⌉⌊⌋ land truck departure(lti,lt mer,lt sta)(lt pos,lt hold)

value
324 next port(lti,lt mer,lt sta)(...,mkHold(ci,cσ)) ≡
324a let mcci = calc truck delivery(ci,cσ) in
324b ch mcc[mcci,lti] ! mkDlvr(ci,cσ) ;
324c land truck(lti,lt mer,lt sta)(...,...) end ???

value
325 stack location(lti,lt mer,lt sta)(...,mkHold(ci,cσ)) ≡
325a let mkLT Pos(mcci,brs) = { ch mcc[mcci,lti] ? | mcci:MCCI • mcci ∈ mcc uis }
325b land truck(lti,lt mer,lt sta)(...,lt hold) end ???

value
326 stack crane to land truck(lti,lt mer,lt sta)(lt pos,lt hold) ≡
326a
326b

value
327 land truck departure(lti,lt mer,lt sta)(...,...) ???
327a ch mcc[mcci,lti] ! mkDept(lti) ;
327b land truck(lti,lt mer,lt sta)(...,...) ???

356 12 Container Terminals [November 2017]

12.6.9.8 Containers

In RSL, as with all formal specification languages one cannot “move” values. So we model containers of vessels and
of terminal port stacks as separate behaviours and replace their “values”, C in vessel and terminal port stacks by
their unique identifications, CI.

328. The signature of the container behaviour is simple: the container identifier, its mereology, its static values, its
position and state130, and its input channels.

329. [D,G,J,M,P] The container is here simplified to just, at any moment, accepting a new position from any terminal
ports command center;

330. whereupon the container resumes being that with that new position.

value
328 container: ci:CI×mcci uis:C Mer×C Stat→ (CPos×CΣ)
328 → in { ch mcc con[mcci,ci]
328 | mcci:MCCI • mcci∈mcci uis } Unit
328 container(ci,mcci uis,...)(pos,sσ) ≡
329 let mkNewPos(p) = { ch mcc con[mcci,ci] ?
329 | mcci:MCCI•mcci∈mcci uis } in
330 container(ci,mcci uis,...)(mkNewPos(p),sσ) end

12.6.10 Initial System

12.6.10.1 The Distributed System

We remind ourselves that the container line industry includes a set of vessels, a set of land trucks, a set of containers
and a set of terminal ports. We rely on the states expounded in Sect. 12.5.4.1’s Items 50 on page 320 – 54 on
page 320.

331. The signature of τ initial system is that of a function from an endurant container line industry to its perdurant
behaviour, i.e., Unit.

This behaviour is expressed as

332. the distributed composition of all vessel behaviours in parallel with
333. the distributed composition of all land truck behaviours in parallel with
334. the distributed composition of all container behaviours in parallel with
335. the distributed composition of all terminal port behaviours.

value
332 τ initial system: CLI→ Unit
332 τ initial system(cli) ≡
332 ‖{ τ vessel(v) | v:V • v ∈ vs }
333 ‖ ‖{ τ land truck(lt) | lt:LT • lt ∈ lts }
334 ‖ ‖{ τ container(c) | c:CON • c ∈ cs }
335 ‖ ‖{ τ terminal port(tp) | tp:TP • tp ∈ tps }

12.6.10.2 Initial Vessels

336. The signature of the i vessel transalation function is simple: a τranslator from endurant vessel parts v to
perdurant vessel behaviours, i.e., Unit.

337. The transcendental deduction then consists of obtaining the proper arguments for the vessel behaviour –
338. and invoking that behaviour.

130 As for state: I need to update the container attribute section, Sect. 12.5.6.11 on page 331 to reflect a state (for
example: the component contents of a container)

12.6 Perdurants 357

value
336 τ vessel: V→ Unit
336 τ vessel(v) ≡
337 let v ui = uid V(v), v mer = mereo V(v),
337 v sta = attr V Sta(v), v pos = attr V Pos(v),
337 v csa = attr iCSA(v), vσ = attr VΣ(v) in
338 vessel(v ui,v mer,v sta)(v pos,v csa,vσ) end

12.6.10.3 Initial Land Trucks

Similarly:

τ land truck: LT→ Unit
τ land truck(lt) ≡

let lt ui = uid LT(lt), lt mer = mereo LT(lt),
lt sta = attr LT Sta(lt), lt pos = attr LT Pos(lt),
lt hold = attr LT Hold(v), ltσ = attr LTΣ(lt) in

vessel(lt ui,lt mer,lt sta)(lt pos,lt hold,ltσ) end

12.6.10.4 Initial Containers

Similarly:

τ container: CON→ Unit
τ container(con) ≡

let c ui = uid CON(con), c mer = mereo CON(con),
c sta = attr C Sta(con), c pos = attr C Pos(con),
cσ = attr CONΣ(lt) in

container(c ui,c mer,c sta)(c pos,cσ) end

12.6.10.5 Initial Terminal Ports

Terminal ports consists of a set of quay cranes, a set of quay trucks a set of stack cranes, and a set of stacks. They
translate accordingly:

τ terminal port: TP→ Unit
τ terminal port(tp) ≡

let qcs = obs QCs(obs QCS(tp)),
qts = obs QTs(obs QTS(tp)),
scs = obs SCs(obs SCS(tp)),
stks = obs STKs(obs STKS(tp)) in

‖ { τ quay crane(qc) | qc:QC • qc ∈ qcs } ‖
‖ { τ quay truck(qt) | qt:QT • qt ∈ qts } ‖
‖ { τ stack crane(sc) | sc:SC • sc ∈ scs } ‖
‖ { τ stack(stk) | stk:STK • stk ∈ stks } end

12.6.10.6 Initial Quay Cranes

τ quay crane: QC→ Unit
τ (qc) ≡

let qc ui = uid QC(qc), qc mer = mereo QC(qc),
qc sta = attr QC Sta(qc), qc pos = attr QC Pos(qc),

358 12 Container Terminals [November 2017]

qcσ = attr QCΣ(qc) in
quay crane(qc ui,qc mer,qc sta)(qc pos,qcσ) end

12.6.10.7 Initial Quay Trucks

τ quay truck: QT→ Unit
τ quay truck(qt) ≡

let qt ui = uid QT(qt), qt mer = mereo QT(qt),
qt sta = attr QT Sta(qt), qt pos = attr QT Pos(qt),
qtσ = attr QTΣ(qt) in

quay truck(qt ui,qt mer,qt sta)(qt pos,qtσ) end

12.6.10.8 Initial Stack Cranes

τ stack crane: SC→ Unit
τ stack crane(sc) ≡

let sc ui = uid SC(sc), sc mer = mereo SC(sc),
sc sta = attr SC Sta(sc), sc pos = attr SC Pos(sc),
scσ = attr SCΣ(sc) in

container(sc ui,sc mer,sc sta)(sc pos,scσ) end

12.6.10.9 Initial Stacks

τ stack: STK→ Unit
τ stack(stk) ≡

let stk ui = uid STK(stk), stk mer = mereo STK(stk),
stk sta = attr STK Sta(stk),
stkσ = attr STKΣ(stk) in

stack(stk ui,stk mer,stk sta)(stkσ) end

12.7 Conclusion

to be written

12.7.1 An Interpreation of the Behavioural Description

to be written

12.7.2 What Has Been Done

to be written

12.7 Conclusion 359

12.7.3 What To Do Next

to be written

12.7.4 Acknowledgements

This report was begun when I was first invited to lecture, for three weeks in November 2018, at ECNU131, Shanghai,
China. For this and for my actual stay at ECNU, I gratefully acknowledge Profs. He JiFeng, Zhu HuiBiao, Wang
XiaoLing and Min Zhang. I chose at the time of the invitation to lead the course students through a major, non-
trivial example. Since Shanghai is also one of the major container shipping ports of the world, and since the Danish
company Maersk, through its subsidiary, APMTerminals, operates a major container terminal port, I decided on
the subject fo this experimental report. I gratefully acknowledge the support the ECNU course received from
APMTerminals, through its staff, Messrs Henry Bai and Niels Roed.

131 ECNU: East China Normal University

Chapter 13

Simple Retailer System [January 2021]

Contents
13.1 Two Approaches to Modeling . 364

13.1.1 Domain Science & Engineering: DS&E . 364
13.1.2 HERAKLIT: http://heraklit.dfki.de/ . 364

13.2 The retailer market Case Study . 364
13.2.1 Three Rough Sketches . 364

13.2.1.1 Identification of “Main Players” . 365
13.2.1.2 Main Transaction Sequences . 365
13.2.1.3 Detailed Sketch . 366
13.2.1.4 Transitions . 367

13.3 Endurants: External Qualities . 368
13.3.1 Main Decompositions . 368

13.3.1.0.1 Narrative . 368
13.3.1.0.2 Formalisation . 368

13.3.2 Aggregates as Sets . 369
13.3.2.0.1 Narrative . 369
13.3.2.0.2 Formalisation . 369

13.3.3 The Retailer . 370
13.3.3.1 TheHERAKLIT View . 370

13.3.3.1.1 Narrative . 370
13.3.3.1.2 Formalisation . 370

13.3.3.2 The DS&E View . 371
13.3.4 The Market System State . 371

13.3.4.0.1 Narrative . 371
13.3.4.0.2 Formalisation . 371

13.4 Endurants: Internal Qualities . 372
13.4.1 Unique Identifiers . 372

13.4.1.0.1 Narrative . 372
13.4.1.0.2 Formalisation . 372

13.4.2 Mereology . 373
13.4.2.1 Customer Mereology . 373

13.4.2.1.1 Narrative . 373
13.4.2.1.2 Formalisation . 373

13.4.2.2 Order Management Mereology . 374
13.4.2.2.1 Narrative . 374
13.4.2.2.2 Formalisation . 374

13.4.2.3 Inventory Mereology . 374
13.4.2.3.1 Narrative . 374
13.4.2.3.2 Formalisation . 374

13.4.2.4 Warehouse Mereology . 375
13.4.2.4.1 Formalisation . 375

13.4.2.5 Supplier Mereology . 375
13.4.2.5.1 Narrative . 375
13.4.2.5.2 Formalisation . 375

13.4.2.6 Courier Service Mereology . 375

361

362 13 Simple Retailer System [January 2021]

13.4.2.6.1 Narrative . 375
13.4.2.6.2 Formalisation . 376

13.4.3 Attributes . 376
13.4.3.1 Transactions . 376

13.4.3.1.1 Narrative . 376
13.4.3.1.2 Formalisation . 377
13.4.3.1.3 Narrative . 377
13.4.3.1.4 Formalisation . 377

13.4.3.2 Customer Attributes . 377
13.4.3.2.1 Narrative . 378
13.4.3.2.2 Formalisation . 378
13.4.3.2.3 Narrative . 378
13.4.3.2.4 Formalisation . 378

13.4.3.3 Order Management Attributes . 379
13.4.3.3.1 Narrative . 379
13.4.3.3.2 Formalisation . 379
13.4.3.3.3 Narrative . 379
13.4.3.3.4 Formalisation . 379

13.4.3.4 Inventory Attributes . 380
13.4.3.4.1 Narrative . 380
13.4.3.4.2 Formalisation . 380
13.4.3.4.3 Narrative . 380
13.4.3.4.4 Formalisation . 380

13.4.3.5 Warehouse Attributes . 380
13.4.3.5.1 Narrative . 380
13.4.3.5.2 Formalisation . 381
13.4.3.5.3 Narrative . 381
13.4.3.5.4 Formalisation . 381

13.4.3.6 Supplier Attributes . 381
13.4.3.6.1 Narrative . 381
13.4.3.6.2 Formalisation . 381
13.4.3.6.3 Narrative . 382
13.4.3.6.4 Formalisation . 382

13.4.3.7 Courier Attributes . 382
13.4.3.7.1 Narrative . 382
13.4.3.7.2 Formalisation . 382
13.4.3.7.3 Narrative . 382
13.4.3.7.4 Formalisation . 382

13.5 Merchandise . 383
13.5.1 “Unique Identity” . 383
13.5.2 “Mereology” . 383
13.5.3 “Attributes” . 383
13.5.4 Representation . 384

13.6 Perdurants . 384
13.6.1 Channels . 384
13.6.2 Behaviours . 384

13.6.2.1 Customer Behaviour . 385
13.6.2.1.1 Narrative . 385
13.6.2.1.2 Formalisation . 385

13.6.2.2 Order Management Behaviour . 386
13.6.2.2.1 Narrative . 386
13.6.2.2.2 Formalisation . 386
13.6.2.2.3 Narrative . 386
13.6.2.2.4 Formalisation . 386
13.6.2.2.5 Narrative . 387
13.6.2.2.6 Formalisation . 387
13.6.2.2.7 Narrative . 387
13.6.2.2.8 Formalisation . 387
13.6.2.2.9 Narrative . 388
13.6.2.2.10 Formalisation . 388
13.6.2.2.11 Narrative . 388
13.6.2.2.12 Formalisation . 389

13.6.2.3 Inventory Behaviour . 389

13 Simple Retailer System [January 2021] 363

13.6.2.3.1 Narrative . 389
13.6.2.3.2 Formalisation . 389
13.6.2.3.3 Narrative . 389
13.6.2.3.4 Formalisation . 389
13.6.2.3.5 Narrative . 390
13.6.2.3.6 Formalisation . 390
13.6.2.3.7 Narrative . 390
13.6.2.3.8 Formalisation . 391
13.6.2.3.9 Narrative . 391
13.6.2.3.10 Formalisation . 391
13.6.2.3.11 Narrative . 392
13.6.2.3.12 Formalisation . 392

13.6.2.4 Warehouse Behaviour . 392
13.6.2.4.1 Narrative . 392
13.6.2.4.2 Formalisation . 392
13.6.2.4.3 Narrative . 393
13.6.2.4.4 Formalisation . 393
13.6.2.4.5 Narrative . 393
13.6.2.4.6 Formalisation . 393
13.6.2.4.7 Narrative . 394
13.6.2.4.8 Formalisation . 394
13.6.2.4.9 Narrative . 395
13.6.2.4.10 Formalisation . 395
13.6.2.4.11 Narrative . 395
13.6.2.4.12 Formalisation . 395

13.6.2.5 Supplier Behaviour . 396
13.6.2.5.1 Narrative . 396
13.6.2.5.2 Formalisation . 396
13.6.2.5.3 Narrative . 396
13.6.2.5.4 Formalisation . 396
13.6.2.5.5 Narrative . 397
13.6.2.5.6 Formalisation . 397

13.6.2.6 Courier Service Behaviour . 397
13.6.2.6.1 Narrative . 397
13.6.2.6.2 Formalisation . 397
13.6.2.6.3 Narrative . 398
13.6.2.6.4 Formalisation . 398
13.6.2.6.5 Formalisation . 398

13.6.3 System Initialisation . 398
13.7 Conclusion . 399

13.7.1 Critique of the DA&D Model . 399
13.7.2 Proofs about Models . 400
13.7.3 Comparison of Models . 400

13.7.3.1 “Minor” Discrepancies . 400
13.7.3.2 Use of Diagrams . 400
13.7.3.3 Interleave versus “True” Concurrency . 401

13.7.4 Development Management . 401
13.7.5 What Next ? . 402

We report an exercise in modeling a retail system such as outlined in both [20, Bjørner, 2002] and [88, Fettke &
Reisig, Dec. 21, 2020]. In the present exercise we try follow [88, Fettke & Reisig] – but we do so slavishly following
the domain analysis & description (DA&D) method of [55, Domain Science & Engineering, Chapters 3–6, Bjørner
2021]132 (DS&E).133

132 [55] is scheduled to be published by Springer in their EATCS Monographs in Theoretical Com-
puter Science series, Winter/Spring of 2021. Till such a time you may fund an electronic copy at
www.imm.dtu.dk/˜dibj/2020/mono/mono.pdf. That electronic copy may, from time to time, be updated as I “im-
prove” on its text.
133 Work on this document started December 28, 2020.

364 13 Simple Retailer System [January 2021]

13.1 Two Approaches to Modeling

In this report we present a model of a customer/retailer/supplier/... market. We do it in the more-or-less classical
style which emanated from the denotational-like formal specification of programming languages and lead to VDM
[63, 65] – and from there to RAISE [93]. There are other approaches to modeling discrete systems. One is by means
of symbolic Petri nets [133, 134, 135, 136, 137].

13.1.1 Domain Science & Engineering:DS&E

At the center ofDS&E standsDA&D: a domain analysis & description method.DA&D is first outlined in [36, 39,
Bjørner, 2010].DA&D found a more final form in [48, 53, Bjørner, 2016-2019]. [53] form the core chapters, Chapters
3–6, of [55]. That forthcoming Springer monograph, [55], covers theDS&E concept: domain science & engineering.

In this report we shall slavishly follow the doctrines of the DA&D method. First we consider endurants134

and “within” our analysis & description of endurants we first focus on their so-called external qualities (“form,
but not content”), then on internal qualities: unique identifiers, mereology and attributes. Then, by transcendental
deduction, we “morph” some endurants into perdurants135, that is, behaviours. Here we first consider the channels
and the messages sent over channels between behaviours, before we consider these latter. We do so in the style of
[RSL’s [92]] CSP [99, 100, 141, 144, 101].

It may seem a long beginning before we get to “process-oriented” modeling.
But a worthwhile thing is worth doing right, hence carefully !
It seems to this author that the HERAKLIT approach, in keeping with its name, from the first beginning,

considers “all as flowing”, that is, as [Petri net-like] processes.

13.1.2 HERAKLIT: http://heraklit.dfki.de/

Based on Petri net ideas [133, 134, 135, 136, 137] Wolfgang Reisig has conceived and researchedHERAKLIT.
In a number of reports and papers, [83, 86, 89, 88, 87, 85, 84], Peter Fettke and Wolfgang Reisig has developed the
HERAKLIT theory & practice of modeling, what they call service systems.

The present report “mimics” [88,HERAKLIT case study: retailer] in providing a DomainAnalysis& Descrip-
tion (DA&D)-oriented model of “the same” domain !

TheHERAKLIT retailer case study [88] straddles three concerns: presenting theHERAKLIT methodology,
its mathematical foundation and the retailer case study. TheDA&D case study presented in this report makes use
of RSL, the RAISE Specification Language [92] – and can thus concentrate on the case study. The semantics of the
RSL-expressed case study is that derived from the semantics of RSL, notably its CSP [99, 100, 141, 144, 101] “subset”.

13.2 The retailer market Case Study

The following case study is based on [88]. It does not, in the present version, follow the domain of [88] strictly. But
I am quite sure that any discrepancies can be easily incorporated into the present model.

13.2.1 Three Rough Sketches

It is good domain modeling development practice to start a domain modeling project with one or more alternative
rough sketch informal descriptions. But they are to be just such rough sketches. No formal meaning is to be attached
to these rough sketches. They are meant to get the domain modeling project team “aligned”.

We present three, obviously “overlapping”, rough sketches.

134 Endurants, colloquially speaking, “end up” as data in the computer.
135 Perdurants, colloquially speaking, “end up” as processes in the computer.

13.2 The retailer market Case Study 365

13.2.1.1 Identification of “Main Players”

We rough sketch narrate a description of the domain.
The domain is that of a set of customers, a set of retailers, a set of suppliers, a set of courier services.

Retailers each embody three sub-components: an order management, an inventory; and a warehouse.
See Fig. 13.1

Retailer

Order Mgt.

Warehouse

Courier Service

Inventory

SupplierCustomer

order order order

delivery

delivery

delivery

acknow. dispatch

acknow. acknow.

Fig. 13.1 A Market System
136

Customers order merchandise from retailers’ order management. They in tern order that merchandise from
their inventory [management]. If inventory [management] judges that they have the needed quantity in their
warehouse, they acknowledge the order management. If inventory [management] judges that they do not have
the needed quantity in their warehouse, they proceed to order a sufficient quantity of the desired merchandise from
a supplier. The supplier eventually deliver a quantity to the warehouse of the ordering retailer. That warehouse
acknowledges receipt to its inventory which eventually acknowledges that receipt to its order management.
The order management acknowledges the customer order and notifies its warehouse of a proper dispatch. The
warehouse delivers the desired merchandise quantity to a courier service which subsequently delivers that desired
merchandise quantity to the customer.

It is thus we see that there are essentially three four kinds of transactions between market “players”: orders,
acknowledgments, dispatches and deliveries.

In the formalisations to follow we shall refer to customers as c:C, order managements as om:OM, inventories as
iv:IV, suppliers as s:S and courier services as cs:CS.137

13.2.1.2 Main Transaction Sequences

Customers issue purchase orders for merchandise from retailers’ order management; receive order acknowl-
edgments from retailers’ order management; and receive customer delivered merchandise (via retailers’ ware-
houses) from courier services.

136 None of the figures in this report, Figs. 13.1, 13.2 on the following page, 13.3 on page 368, 13.4 on page 369
and 13.5 on page 370, are formal. That is, they do not add to or detract from the meaning of the formulas otherwise
shown in this report. They merely “support”, by graphics, the narrative text.
137 We shall, corresponding, prefix the transaction names: C OM Order, OM I Order, IV S Order, IV WH Delivery,
WH CS Delivery, CS C Delivery, WH IV Ack, IV OM Ack, OM C Ack, OM WH Dispatch, or some suitable variants
thereof.

366 13 Simple Retailer System [January 2021]

Retailers’ order management inquire with its inventory as to the availability of ordered merchandise; await
acknowledgment of availability (of merchandise) from its inventory; informs customer of availability (order
acknowledgment); and and dispatch order to warehouse when available.

Retailers’ inventory issues acknowledgment of merchandise to order management; issues wholesale or-
ders for supply of merchandise, “when out-of-stock”, from suppliers; and receive acknowledgment of supplies
from suppliers.

Retailers’ warehouse receive merchandise deliveries from suppliers; informs inventory management of
merchandise availability; accepts dispatch orders from order management; and forward merchandise for
such customer merchandise dispatches to courier services.

Etcetera.

13.2.1.3 Detailed Sketch

We refer to Fig. 13.2.

Retailer

GHI

M N
O

P Q R

S
T

δ

U
Y

B

Z

V

W

No

αis_available ?

Y
es

C
D

γ
L K

εε

ε

ε

ε

ε

ε

A F

X

ε

order orderorder

delivery

delivery

delivery

dispatch

E

J

acknow.

acknow. acknow.

Yes Yes

β

IV: InventoryOM: Order Mgt.

C: Customer

WH: Warehouse

S: Supplier

CS: Courier Serv.

Fig. 13.2 Transaction Sequences

• A It all starts with a customer issuing a purchase order. It is date-time stamped with the customers unique
identifier.
Since no customer can issue more than one such order at a time, such date-time-customer identification is unique
and can serve as the unique customer order identification across the market.

Once the customer has issued the order request it either O awaits replies from some retailer’s order manage-

ment or T some courier service’s delivery (of otherwise ordered products) or U resumes other business !

• B The customer order is received by some retailer’s order management. That order management makes a note
of the incoming order and posits that note in a ‘work-to-do’ dossier.

• ǫB At some time the order management selects an arbitrary “what-to-do-next” note from its dossier. If it is

that if an customer order – arising from B – then it

• C issues an inquiry to its inventory as to the availability of the quantity of the named product of the customer
order.

• D The inventory receives an inventory inquiry. The inventory makes a note of the incoming order and deposits
that note in its ‘work-to-do’ dossier.

13.2 The retailer market Case Study 367

• ǫD At some time the inventory selects an arbitrary “what-to-do-next” note from its dossier. If it is that if an

inventory inquiry – arising from D – then it

• α examines whether the quantity of the named product of the customer order is “on-hand” (in the retailer’s
warehouse, as recorded in the inventory).

• E If not the inventory issues a wholesale order to a supplier.

• F The supplier receives a wholesale order. The supplier makes a note of the wholesale order and deposits that
note in its ‘work-to-do’ dossier.

• β It may take same time to respond to the wholesale request. For example, if the supplier first has to manufacture

or otherwise get hold of the requested supply.

• G Eventually the supplier transfers the requested quantity of named merchandise to the requesting retailer’s
warehouse.

• H The warehouse receives this delivery and – eventually - stores it –

• I while notifying its inventory (management) of availability of the [previously] requested merchandise.

• J The inventory receives this notification. It make a note thereof and deposits it in its ‘work-to-do’ dossier.

• γ Either inquiry α lead to a positive result, or, as now (M) such an inquiry would be positive.

• K Eventually the inventory can inform order management of order availability.

• L Order management receives positive acknowledgment and deposits notes in its ‘work-to-do’ dossier as to
acknowledging the customer of its order and informing the warehouse of its delivery.

• M Eventually order management gets around to service this note:

⋄⋄ (D,α,Yes) and (D,α,No,E,F,G,J,I,J) order management informs the customer of upcoming order delivery

⋄⋄ N while also, “at the same time”, issuing an order dispatch to its warehouse.

• O The customer receives this information.

• P The warehouse receives this dispatch and makes a note thereof in its ‘work-to-do’ dossier.

• Q The warehouse eventually issues a delivery order, with ordered merchandise, to a courier service.

• R The courier service receives this delivery and makes a note thereof in its ‘work-to-do’ dossier.

• S The courier service eventually dispatches the delivery to the customer.

• T The customer, finally, receives the ordered quantity of merchandise.

13.2.1.4 Transitions

In the technical terms of Petri nets, the ten (10) horisontal arrows of Fig. 13.2 on the preceding page represent
transitions as in Place-Transition nets. They are labeled by pairs of upper case alphabetic characters: A–B, C–D,
E–F, G–H, I–J, K–L, M–N, O–P, Q–R, and S–T. In the technical terms of CS, these ten transitions correspond to
pairs of CSP input [ch[...] ?] and output [ch[...] ! msg] clauses. You will find these clauses highlighted in blue in
Sect. 13.6.2:

• A–B: Items 436 Page 385 and 451 Page 387
• C–D: Items 457 Page 387 and 479 Page 390
• E–F: Items 500 Page 391 and 546 Page 396
• G–H: Items 515 Page 393 and 554 Page 397
• I–J: Items 534 Page 395 and 482 Page 390

• K–L: Items 506 Page 392 and 460 Page 388
• M–O: Items 467 Page 388 and 438 Page 385
• N–P: Items 468 Page 388 and 518 Page 394
• Q–R: Items 540 Page 396 and 560 Page 398 and
• S–T: Items 565 Page 398 and 440 Page 385.

The pairs of formulas listed in each • above represents the transition. The formula text from the
behaviour definition parameter line up up to the “transition” line defines the place. Thus the
RSL/CSP definition that we shall present, in a sense, corresponds to place-transition nets where
each transition has exactly two inputs and two outputs. The other way around: Place-transition
nets where transitions have different numbers of inputs, respectively outputs, can be likewise
“mimicked” by appropriate RSL/CSP definitions.

368 13 Simple Retailer System [January 2021]

13.3 Endurants: External Qualities

We now begin the proper, methodical description of the retailer, i.e., the market system. That
description is presented in Sects. 13.3–13.6.

We refer to [55, Chapter 3].

13.3.1 Main Decompositions

13.3.1.0.1 Narrative

339. Our market system comprises
340. a customer aggregate,
341. a retailer aggregate,

342. a supplier aggregate and

343. a courier service aggregate.

We consider all these aggregates to be structures in the sense of [55, Sect. 4.10].

13.3.1.0.2 Formalisation

type
339. MKT

340. CSTa

341. RETa
342. SUPa

343. CSa
value
340. obs CSTa: MKT→ CSTa

341. obs RETa: MKT→ RETa
342. obs SUPa: MKT→ SUPa

343. obs CSa: MKT→ CSa

Customer Retailer Supplier

Courier Service

Fig. 13.3 A Simplified Market System

13.3 Endurants: External Qualities 369

13.3.2 Aggregates as Sets

13.3.2.0.1 Narrative

344. The customer aggregate form a set of one or more customers.
345. The retailer aggregate form a set of one or more retailers.
346. The supplier aggregate form a set of one or more suppliers.
347. The courier service aggregate form a set of one or more courier services.

We consider all these sets to be structures and the customers, suppliers and courier services to be
atoms in the sense of [55, Sects. 4.10 and 4.13].

13.3.2.0.2 Formalisation

type
344. CSTs = C-set, axiom ∀ csts:CSTs • csts,{}

345. RETs = R-set, axiom ∀ rets:CSTs • rets,{}

346. SUPs = S-set, axiom ∀ sups:CSTs • sups,{}
347. CSs = CS-set, axiom ∀ cts:CSs • trss,{}

value
344. obs CSTs: CSTa→ CSTs

345. obs RETs: RETa→ RETs

346. obs SUPs: SUPa→ SUPs
347. obs CSs: CSa→ CSs

Courier Services

SuppliersRetailersCustomers

Fig. 13.4 Aggregates as Sets

370 13 Simple Retailer System [January 2021]

13.3.3 The Retailer

13.3.3.1 TheHERAKLIT View

We focus on retailers. We treat retailers as structures138,139 of three separately observable parts:

13.3.3.1.1 Narrative

348. an order management,
349. an inventory140 and
350. a warehouse.

We consider order managements, inventory managements and warehouses to be atoms in the
sense of [55, Sects. 4.13].

13.3.3.1.2 Formalisation

type
348. OM
349. IV

350. WH

value
348. obs OM: R→ OM

349. obs IV: R→ IV

350. obs WH: R→WH

Customer Retailer Supplier

Order Mgt. Inv.Mgt.

Warehouse

Courier Service

Fig. 13.5 The Retailer

138 We refer to [88, Sect. 3.10].
139 We dash the retailer boxes to indicate their “structure”-ness.
140 We might have modeled a retailer inventory as an attribute of the composite part retailer.

13.3 Endurants: External Qualities 371

13.3.3.2 The DS&E View

Following the DS&E “approach”, i.e., “dogma”, retailers might normally have been decomposed
into just two components: The order management and the warehouse. Inventory would then
become a programmable attribute of order management.

13.3.4 The Market System State

We refer to [55, Sect. 3.18]. We postulate some market system mkt. It consists of

13.3.4.0.1 Narrative

351. the market, mkt;
352. all customers cs;
353. all retailer order managements oms;
354. all retailer inventories ivs; and
355. all retailer warehouses whs;
356. all suppliers ss; and
357. all courier services css.

To obtain these we define respective extraction functions.

13.3.4.0.2 Formalisation

value
351. mkt:MKT

352. xtr Cs: MKT→ C-set
352. xtr Cs(mkt) ≡ obs CSTs(obs CSTa(mkt))

352. cs:C-set := xtr Cs(mkt)

353. xtr OMs: MKT→ OM-sett
353. xtr OMs(mkt) ≡ {om|r:RET,om:OM•r ∈ obs RETs(obs RETa(mkt))∧om=obs OM(r)}
353. oms:OM-set := xtr OMs(mkt)

354. xtr IVS: MKT→ IV-set
354. xtr IVS(mkt) ≡ {iv|r:RET,iv:IV•r ∈ obs RETs(obs RETa(mkt))∧iv=obs IV(r)}

354. ivs:IV-set := xtr IVS(mkt)

355. xtr WHs: MKT→WH-set
355. xtr WHs(mkt) ≡ {wh|r:RET,wh:WH•r ∈ obs RETs(obs RETa(mkt))∧wh=obs WH(r)}
355. whs:WH-set := xtr WHs(mkt)

356. xtr Ss: MKT→ S-set
356. xtr Ss(mkt) ≡ obs SUPs(obs SUPa(mkt))

356. ss:S-set := xtr Ss(mkt)

357. xtr CSs: MKT→ CS-set

372 13 Simple Retailer System [January 2021]

357. xtr CSs(mkt) ≡ obs CSs(obs CSa(mkt))

357. css:CS-set := xtr CSs(mkt)

13.4 Endurants: Internal Qualities

13.4.1 Unique Identifiers

We refer to [55, Sect. 5.2].
The concept of parts having unique identifiability, that is, that two parts, if they are the same,

have the same unique identifier, and if they are not the same, then they have distinct identifiers, that
concept is fundamental to our being able to analyse and describe internal qualities of endurants.
So we are left with the issue of “sameness” !

13.4.1.0.1 Narrative

358. Customers, retailer order managements, retailer inventories, retailer warehouses, suppliers and
courier services all have distinct unique identifiers.

359. By UI we designate the sort of all unique identifiers.
360. We define auxiliary functions which observe the unique identifiers of all customers, retailers,

suppliers and courier services of a market system.
361. uis name the set of all unique identifiers.

13.4.1.0.2 Formalisation

type
358. C UI, OM UI, IV UI, WH UI, S UI, CS UI

359. UI = C UI | OM UI | IV UI |WH UI | S UI | CS UI
value
358. uid C: C→ C UI
358. uid OM: OM→ OM UI

358. uid IV: IN→ IV UI

358. uid WH: WH→WH UI
358. uid S: S→ S UI

358. uid CS: CS→ CS UI

axiom
358. ∀ c,c

′
:C•{c,c

′
}⊆cs ∧ c,c

′
⇒ uid C(c),uid C(c

′
),

358. ∀ om,om
′
:OM•{om,om

′
}⊆oms ∧ om,om

′
⇒ uid OM(om),uid OM(om

′
),

358. ∀ iv,iv
′
:IV•{iv,iv

′
}⊆ivs ∧ iv,iv

′
⇒ uid IV(iv),uid IV(iv

′
),

358. ∀ wh,wh
′
:WH•{wh,wh

′
}⊆whs ∧ wh,wh

′
⇒ uid WH(wh),uid WH(wh

′
),

358. ∀ s,s
′
:S•{s,s

′
}⊆ss ∧ s,s

′
⇒ uid S(s),uid S(s

′
),

358. ∀ cs,cs
′
:CS•{cs,cs

′
}⊆css ∧ cs,cs

′
⇒ uid CS(cs),uid CS(cs

′
).

value
360. xtr C UIs: MKT→ CI-set
360. xtr C UIs(mkt) ≡ {uid C(c)|c:C•c ∈ cs}
360. xtr OM UIs: MKT→ OMI-set
360. xtr OM UIs(mkt) ≡ {uid OM(om)|om:OM•om ∈ oms}
360. xtr IV UIs: MKT→ IVI-set

13.4 Endurants: Internal Qualities 373

360. xtr IV UIs(mkt) ≡ {uid IV(iv)|iv:IV•iv ∈ ivs}
360. xtr WH UIs: MKT→WHI-set
360. xtr WH UIs(mkt) ≡ {uid WH(wh)|wh:WH•wh ∈ whs}
360. xtr S UIs: MKT→ SI-set
360. xtr S UIs(mkt) ≡ {uid S(s)|s:S•s ∈ ss}
360. xtr CS UIs: MKT→ CSI-set
360. xtr CS UIs(mkt) ≡ {uid CS(cs)|cs:CS•cs ∈ css}

360. cuis:CUI-set = xtr C UIs(mkt)

360. omuis:OMUI-set = xtr OM UIs(mkt)

360. ivuis:IVUI-set = xtr IV UIs(mkt)
360. whuis:WHUI-set = xtr WH UIs(mkt)

360. suis:SUI-set = xtr S UIs(mkt)
360. csuis:CSUI-set = xtr CS UIs(mkt)

361. uis:UI-set = cuis ∪ omuis ∪ ivuis ∪ whuis ∪ suis ∪ csuis
axiom
360. card cuis + card omuis + card ivuis + card whuis + card suis + card csuis = card uis

13.4.2 Mereology

We refer to [55, Sect. 5.3].
Mereology, as a logical/philosophical discipline, can perhaps best be attributed to the Polish

mathematician/logician Stanisław Leśniewski [75, 44].
Which are the relations that can be relevant for “endurant-hood” ? There are basically two

relations: (i) physical ones, and (ii) conceptual ones.
(i) Physically two or more endurants may be topologically either adjacent to one another, like

rails of a line, or within an endurant, like links and hubs of a road net, or an atomic part is conjoined
to one or more materials, or a material is conjoined to one or more parts. The latter two could also
be considered conceptual “adjacencies”.

(ii) Conceptually some parts, like automobiles, “belong” to an embedding endurant, like to an
automobile club, or are registered in the local department of vehicles, or are ‘intended’ to drive
on roads

13.4.2.1 Customer Mereology

13.4.2.1.1 Narrative

362. The mereology of a customer is a pair:

• the set of all retail order management identifiers and
• the set of all courier service identifiers.

13.4.2.1.2 Formalisation

type
362. C Mer = OM UI-set × CSU I-set
value
362. mereo C: C→ C Mer

374 13 Simple Retailer System [January 2021]

362. mereo C(c) ≡ (omuis,csuis)

13.4.2.2 Order Management Mereology

13.4.2.2.1 Narrative

363. The mereology of an order management is the triplet of

• the set of all customer identifiers,
• the unique identifier of the retailer’s inventory and
• the unique identifier of the retailer’s warehouse.

13.4.2.2.2 Formalisation

type
363. OM Mer = C UI-set × IV UI ×WH UI

value
363. mereo OM: OM→ OM Mer

363. mereo OM(om) ≡

363. let r:R • r ∈ obs RETs(obs RETa(mkt))∧om=obs OM(r) in
363. (cis,uid IV(obs IV(r)),uid WH(obs WH(r))) end
363. pre: ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧om=obs OM(r)

13.4.2.3 Inventory Mereology

13.4.2.3.1 Narrative

364. The mereology of an inventory is a triplet of

• the unique identifier of that inventory’s order management,
• the unique identifier of that inventory’s warehouse and
• the set of all supplier identifiers.

13.4.2.3.2 Formalisation

type
364. IV Mer = OM UI ×WH UI × S UI-set
value
364. mereo IV: IV→ IV Mer

364. mereo IV(iv) ≡
364. let r:R • r ∈ obs RETs(obs RETa(mkt))∧iv=obs IV(r) in
364. (uid OM(obs OM(r)),uid WH(obs WH(r)),suis) end
364. pre: ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧iv=obs IV(r)

13.4 Endurants: Internal Qualities 375

13.4.2.4 Warehouse Mereology

narrative

365. The mereology of a warehouse is a quadruplet of

• the warehouse retailer’s order management identifier,
• the warehouse retailer’s inventory identifier,
• the set of all supplier identifiers, and
• the set of all courier service identifiers,

13.4.2.4.1 Formalisation

type
365. WH Mer = OM UI × IV UI × SUI-set × CS UI-set
value
365. mereo WH: WH→WH Mer

365. mereo WH(wh) ≡

365. let r:R • r ∈ obs RETs(obs RETa(mkt))∧iv=obs WH(wh) in
365. (uid OM(obs OM(r)),uid IV(obs IV(r)),suis,csuis) end
365. pre: ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh=obs WH(r)

13.4.2.5 Supplier Mereology

13.4.2.5.1 Narrative

366. The mereology of a supplier is a pair:

• the set of all inventory identifiers and
• the set of all warehouse identifiers.

13.4.2.5.2 Formalisation

type
366. S Mer = IV UI-set ×WH UI-set
value
366. mereo S: S→ S Mer

366. mereo S(s) ≡ ({uid IV(iv)|iv:IV • iv ∈ ivuis},{uid WI(wh)|wh:WH • wh ∈ whs})

13.4.2.6 Courier Service Mereology

13.4.2.6.1 Narrative

367. The mereology of a courier service is a pair

• the set of all warehouse identifiers and
• the set of all customer identifiers.

376 13 Simple Retailer System [January 2021]

13.4.2.6.2 Formalisation

type
367. CS Mer =WH UI-set × CS UI-set
value
367. mereo CS: CS→ CSMer

367. mereo CS(t) ≡ ({uid WI(wh)|wh:WH • wh ∈ whs},cuis)

13.4.3 Attributes

We refer to [55, Sects. 5.4–5.5].
To recall: there are three sets of internal qualities: unique identifiers, part mereology and at-

tributes. Unique identifiers and mereology are rather definite kinds of internal endurant qualities;
attributes form more “free-wheeling” sets of internal qualities.

Since one can talk about transaction events between the six “players”, i.e., the customers, order
managements, inventories, warehouses, suppliers and courier services of the ‘market’ we must,
really, consider their transaction histories as [programmable] attributes.

In order to deal with the attributes of these six “players” we really need first consider what they
are all focused on: namely the merchandise, i.e., products, they order, store, supply and deliver.
For this we refer to Sect. 13.5 on page 383.

13.4.3.1 Transactions

The ‘market’ is a typical transaction-oriented system. By a transaction we shall mean an event
involving two or more “exchanges” of messages between two behaviours. Behaviours will be
defined as the result of transcendental deductions of part endurants. With part endurants we
associate attributes.

Since we can “talk” about events that “occur to parts”, that is, as behaviour properties, we
shall attribute some of these events to parts. So parts are attributed the transactions in which their
behaviours engage (with other behaviours).

Since we can “talk” about “such-and-such” a transaction having been initiated by a behaviour
at such-and-such a time ,we shall provide, with each transaction, a prefix of one or more time-
stamped unique identifiers of the part/behaviour issuing the transaction.

13.4.3.1.1 Narrative

368. DaTi refers to TIME. We refer to [55, Sect. 2.5]. The expression record TIME yields a TIME.
You should think of TIMEs, for example, as of the form November 15, 2021: 16:12 and 32

seconds (day, month, year, hour, minute, second).
369. A transaction prefix is either a pair of a customer identifier and a date-time, or is a pair of a

pair of order management, inventory, warehouse, supplier or courier service identifier and a
date-time, and a transaction prefix.
The specific details of the pairings of unique identifiers and data-times is given in Items 370–379.

13.4 Endurants: Internal Qualities 377

13.4.3.1.2 Formalisation

type
368. DaTi = TIME

369. UI Pref = ...
axiom
369. [...]

13.4.3.1.3 Narrative

369. More specifically the prefixes are the:
370. purchase order,
371. order inquiry,
372. wholesale order,
373. merchandise delivery,
374. merchandise availability,

375. acknowledge availability,

376. order acknowledgment,

377. dispatch order,

378. forward merchandise and the

379. customer delivery prefixes.

13.4.3.1.4 Formalisation

type
369. UI Pref = C OM Pref | OM IV Pref | IV S Pref | S WH Pref |WH IV Pref | IV OM Pref

369. | OM C Pref | OM WH Pref |WH CS Pref | CS C Pref
370. C OM Pref = (CUI×DaTi)

371. OM IV Pref = (OMUI×DaTi)×C OM Pref

372. IV S Pref = (IVUI×DaTi)×OM IV Pref
373. S WH Pref = (SUI×DaTi)×IV S Pref

374. WH IV Pref = (WHUI×DaTi)×S WH Pref
375. IV OM Pref = (IVUI×DaTi)×(OM IV Pref|WH IV Pref)

376. OM C Pref = (OMUI×DaTi)×IV OM Pref

377. OM WH Pref = (OMUI×DaTi)×OM C Pref
378. WH CS Pref = (WHUI×DaTi)×OM WH Pref

379. CS C Pref = (CSUI×DaTi)×WH CS Pref

Two customer to order management to inventory etc. transaction prefixes might then schematically
be:

13.4.3.2 Customer Attributes

In order to go about their business of being customers, customers maintain, somehow or other, in
their mind, on paper, or otherwise, a number of notes – which we shall refer to as attributes.

To express some of these attributes we need first introduce some auxiliary types.

378 13 Simple Retailer System [January 2021]

13.4.3.2.1 Narrative

380. Customers, besides unique identity, have further information: customer names, addresses,
telephone nos., e-mail addresses, etc.

381. Customers have bank/credit card, i.e., payment refs.
382. An order comprises a product name, a quantity, the total price, and a payment reference.

For simplicity we shall carry this ‘order’ information forward in all market transactions.
383. Customers transact with retailer order managements and courier Services:
384. send purchase order to retailers;
385. receive positive acknowledgment on these orders; and
419. accept customer deliveries: a set of merchandise.

Transactions sent by customers are time-stamped with customers identity. Transactions received
by customers are time-stamped [with a time-ordered, latest transaction first] grouping of handler
identifications (ui:UI) – where order managements, inventories, suppliers, warehouses and courier
services are the handlers.

13.4.3.2.2 Formalisation

type
380. CustName, CustAddr, CustPhon, CustEmail, ...
380. CustInfo = CustName × CustAddr × CustPhon × CustEmail × ...
381. PayRef

382. Order = (ProdNm × Quant × Price × PayRef)

383. C−Trans = C OM Order | OM C Ack | CS C Del
384. C OM Order :: C OM Pref × Order

385. OM C Ack :: OM C Pref × Order

419. CS C Del :: CS C Pref × Order× (M-set|MI-set)

Now the attributes.

13.4.3.2.3 Narrative

386. Customers keep a catalog of merchandise: from whom to order, price, etc. [Simplifying we
consider this a static attribute.]

387. Customers keep all the merchandise they have acquired. [A programmable attribute.]
388. Customers can recall [a programmable attribute] the time-stamped transactions it has taken

part in wrt. retailer order managements and courier services.

13.4.3.2.4 Formalisation

type
386. C−Catalog = ...
387. C−Merchandise = M-set
388. C TransHist = C Trans∗

axiom
388. ∀ cth:C TransHist • [list is time-ordered]
value
386. attr C Catalog: C→ C Catalog

13.4 Endurants: Internal Qualities 379

387. attr C Merchandise: C→ C Merchandise

388. attr C TransHist: C→ CustTransHist

13.4.3.3 Order Management Attributes

13.4.3.3.1 Narrative

389. Order management partakes in several transactions:
384. accepting customer purchase orders;

390. passing on that order to its inventory;
399. accepting product availability acknowledgment from the inventory;
385. informing customer of product availability; and,

391. when available, directing a dispatch order to its warehouse.

392. Order management makes note of accepted, i.e., incoming messages, (B and L) by keeping
a [programmable attribute] ‘Work-to-do’ “notice board” [a “basket”, a “dossier”].

13.4.3.3.2 Formalisation

389. OM Trans = C OM Order | OM IV Order | IV OM Ack | OM C Ack | OM WH Dispatch

384. C OM Order :: C OM Pref × Order
390. OM IV Order :: OM IV Pref × Order

399. IV OM Ack :: IV OM Pref × Order

385. OM C Ack :: OM C Pref × Order
391. OM WH Dispatch :: OM WH Pref × Order

Now the attributes.

13.4.3.3.3 Narrative

393. An order management ‘work-to-do’ dossier keeps a set of zero or more notes: customer orders
and inventory acknowledgments.

394. Order management records [a static attribute] which suppliers supply which products.
395. Order management also records the programmable order management transaction history

OMTransHist attribute records a time-stamped list of all order management transactions, be
they vis-a-vis customers, and its retailer’s inventory.

13.4.3.3.4 Formalisation

type
393. OM WorkToDo = (C OM Order|IV OM Ack)-set
394. OM ProdSupp = ProdNm →m SUI-set
395. OM TransHist = OM Trans∗

value
393. attr OM WorkToDo: OM→ OrdrMgtWorkToDo
394. attr OM ProdSupp: OM→ ProdSupp

395. attr OM TransHist: OM→ OM TransHist

380 13 Simple Retailer System [January 2021]

13.4.3.4 Inventory Attributes

13.4.3.4.1 Narrative

396. Inventories partakes in several transactions:
390. accepting merchandise orders from their order management,

397. issuing wholesale order requests to a designated supplier,
398. accepting order acknowledgments from their warehouse, and
399. issuing merchandise availability messages to their order management.

13.4.3.4.2 Formalisation

396. IV Trans = OM IV Order | IV OM Ack | IV S Order |WH IV Ack

397. IV S Order :: IV S Pref × Order × S UI

398. WH IV Ack :: WH IV Pref × Order ×WH UI
399. IV OM Ack :: IV OM Pref × Order

13.4.3.4.3 Narrative

400. An inventory ‘work-to-do’ dossier (a programmable attribute) keeps a set of zero or more notes:
inventory (merchandise availability) inquiry and merchandise availability.

401. The inventory (a programmable attribute) records, for every product name, its information (as
listed in Items 425–430 Page 384), the name of the supplier, and the stock-in-hand.

402. The inventory also records the programmable inventory transaction history IVTransHist at-
tribute records a time-stamped list of all inventory transactions, be they vis-a-vis order man-
agement, its retailer’s warehouse or a supplier.

13.4.3.4.4 Formalisation

type
400. IV WorkToDo = (IV S Order|IV OM Ack)-set
401. IV Inventory = ProdNm →m (WhoSalPrice×SugRetPrice×SalPrice×MInfo×SupNm×IV Stock)
400. IV Stock = Nat
402. IV TransHist = IVTrans∗

value
400. attr IV WorkToDo: IV→ IV WorkToDo

401. attr IV Inventory: IV→ Inventory
402. attr IV TransHist: IV→ IV TransHist

13.4.3.5 Warehouse Attributes

13.4.3.5.1 Narrative

403. Warehouses partake in four kinds of transactions:
404. being delivered sets of a product named merchandise from suppliers,
405. informing its inventory of (wholesale) supplier delivery,

13.4 Endurants: Internal Qualities 381

406. being ordered by its order management, to dispatch merchandise to customers and
407. delivering merchandise to couriers (for them to deliver to customers).

13.4.3.5.2 Formalisation

403. WH Trans = S WH Del |WH IV Ack | OM WH Del |WH CS Del

404. S WH Del = S WH Pref × Order × M-set
405. WH IV Ack =WH IV Pref × Order

406. OM WH Dispatch = OM WH Pref × Order

407. WH CS Del =WH CS Pref × Order × M-set

13.4.3.5.3 Narrative

408.
409. The programmable warehouse Store attribute reflects, for every product name the zero, one or

more merchandise of that name.
410. The programmable warehouse WHTransHist attribute records a time-stamped list of all ware-

house transactions, be they vis-a-vis suppliers, its retailer’s inventory, its retailer’s order man-
agement, and customers.

13.4.3.5.4 Formalisation

type
408. WH WorkToDo = (S WH Del|OM WH Dispatch)-set
409. WH Store = ProdName →m M-set
410. WH TransHist =WH Trans∗

value
408. attr WH WorkToDo: WH→WH WH WorkToDo

409. attr WH Store: WH→WH Store
410. attr WH TransHist: WH→WH TransHist

13.4.3.6 Supplier Attributes

13.4.3.6.1 Narrative

411. Suppliers, in this model, partake in two transactions:
412. accepting wholesale orders for merchandise from retailers’ inventories, and
413. delivering such merchandise orders to retailers’ warehouses.

13.4.3.6.2 Formalisation

411. S Trans = IV S Order | S WH Del

412. IV S Order = IV S Pref × Order
413. S WH Del = S WH Pref × Order × M-set

382 13 Simple Retailer System [January 2021]

13.4.3.6.3 Narrative

414. The programmable supplier attribute S WorkToDo temporarily contains ‘replicas’ of “incom-
ing” IV S Orders.

415. The programmable supplier attribute S Products reflects, for every product name a sufficient141

number of merchandise of that name.
416. The programmable supplier attribute S TransHist records a time-stamped list of all supplier

transactions, be they vis-a-vis retailers’ inventory, and retailers’ warehouses.

13.4.3.6.4 Formalisation

type
414. S WorkToDo = IV S Order-set
415. S Products = ProdNm →m M-set
416. S TransHist = S Trans∗

value
414. attr S WorkToDo: S→ S WorkToDo

415. attr S Products: S→ S Products
416. attr S TransHist: S→ S TransHist

13.4.3.7 Courier Attributes

13.4.3.7.1 Narrative

417. Courier services, in this model, partake in two transactions:
418. accepting merchandise delivery orders to customers from retailers’ order management, and
419. delivering merchandise to customers

13.4.3.7.2 Formalisation

type
417. CS Trans =WH CS Del | CS C Del

418. WH CS Del =WH CS Pref × Order × M-set
419. CS C Del = CS C Pref × Order× M-set

13.4.3.7.3 Narrative

420. The programmable courier service attribute CS WorkToDo reflects current, “live” deliveries,
and

421. the programmable attribute CS TransHist the time stamped history of transactions.

13.4.3.7.4 Formalisation

type

141

13.5 Merchandise 383

420. CS WorkToDo = CS C Del-set
421. CS TransHist = CS Trans∗

value
420. attr CS WorkToDo: CS→ CS WtD

421. attr CS TransHist: CS→ CS TransHist

13.5 Merchandise

Merchandise (in [88]: Goods) are, using DS&E, modeled as parts. In [88] they are not considered
beyond being somehow identified. It is not clear.

422. We shall model merchandise as atomic parts.

type
422. M

13.5.1 “Unique Identity”

423. As parts merchandise have unique identity.
424. Although we shall treat merchandise as behaviours we shall assume that merchandise identities

are distinct from any other unique identities of the market.

type
423. MI
value
423. uid M: M→ MI

axiom
424. ∀ m:M • uid M(m) < cuis ∪ omuis ∪ ivuis ∪ whuis ∪ suis ∪ tuis

13.5.2 “Mereology”

Although merchandise, throughout its lifetime, can be related to suppliers, warehouses, courier
services and customers we shall omit modeling the mereology of merchandise.

13.5.3 “Attributes”

We suggest the following merchandise attributes:

425. product name;
426. wholesale price;
427. suggested retail price;
428. sales price;
429. actual price;

384 13 Simple Retailer System [January 2021]

430. further product information: goods category, weight, packaging measures, volume, manufac-
turer (with place-of-origin), manufacturing date, sale-by-date, an “how-to-use” guide, guaran-
tee, etc., etc.

type
425. ProdNm
426. WhoSalPrice

427. SugRetPrice

428. SalPrice
429. ActPrice

430. ProdInfo

13.5.4 Representation

We shall not be concerned with the representation of attributes.

13.6 Perdurants

We refer to [55, Chapters 6–7].
By transcendental deduction we now “morph” endurants into perdurants. Parts “morph” into

behaviours, here modeled in the style of CSP. Their mereology determine the channels between
part processes.

13.6.1 Channels

We refer to [55, Sect. 7.5].
In this report we shall postulate a channel array indexed by pairs (expressed as two-element

sets) of unique identifiers. These identifiers are prescribed in the mereology of the relevant parts.

431. So there is a channel whose index sets allow the expression of communication between cus-
tomers, order management, inventories, warehouses, suppliers and courier services.

432. The type of the messages communicated is the union type of the customer, order management,
inventory [management], warehouse, supplier and courier service transactions.

channel
431. {ch[{ui,ui′}]|ui,ui′:UI•ui,ui′∧{ui,ui′}⊆uis}:Channel Trans

type
432. Channel Trans = C Trans|OM Trans|IV Trans|WH Trans|S Trans|CS Trans

13.6.2 Behaviours

We refer to [55, Sects. 7.6–7.8].
There now follows a sequence of informal narrative and formal specification texts. The formal

texts, in a sense, are a culmination of all the previous formal definitions. The formulas involve

13.6 Perdurants 385

rather may identifiers. Some are defined locally, some as behaviour function definition parameters,
others in previous formal definitions.

13.6.2.1 Customer Behaviour

13.6.2.1.1 Narrative

433. Customers alternate between retailer shopping and otherwise going about their daily life.
Shopping manifests itself in three related events:

• A the customer issuing a purchase order;

• O the receiving of acknowledgment of upcoming delivery;

• T the final acceptance of delivery.

Daily life is “modeled” by T . Customers alternate, internal don-deterministically, ⌈⌉, between
these four events.

434. A When internal non-deterministically choosing to order merchandise, the customer must
decide on which retailer, product, how many and at what cost.

435. The customer then assembles a purchase order
436. which it sends to some retailer’s order management.

We refer to [55, Sect. 2.5.3] for understanding the rôle of record TIME.
We presently omit defining date.

437. Whereupon the customer resumes being a customer, however with updated transaction history.

438. O At some time the customer receives an acknowledgment from a retailer’s order management
as to the [positive] acceptance of an order which was purchased some while ago (omui,dati).

439. The customer records this in its transaction history while resuming being a customer

440. T At some time the customer receives the delivery of previously ordered merchandise.
441. The customer records the identities (as well as the merchandise) and
442. resumes being a customer.

443. U Et cetera.142

13.6.2.1.2 Formalisation

value
434. C: c ui:CUI×c mer:(omuis,csuis):C Mer×C Catalog→ (C Merchandise×C TransHist)
434. in out { ch[{c ui,om ui}] | om ui:OMUI • om ui ∈ omuis }
434. in { ch[{c ui,cs ui}] | cs ui:CSUI • cs ui ∈ csuis } Unit
434. C Beh(c ui,c mer:(omuis,csuis),c ctlg)(c merch,c hist) ≡

434. A let (om ui,order) = decide on purchase((custinfo,mertbl),c hist) in

436. A–B ch[{c ui,om ui}] ! ordr:C OM Order(((c ui,record TIME())),order) ;

437. C(c ui,c mer,c ctlg)(c merch,〈ordr〉̂ c hist) end

438. ⌈⌉ O let M–O ack:OM C Ack(prefix,order) = ch[{om ui,c ui}] ? in
439. C(cui,cmer,c ctlg)(merch,〈ack〉̂ c hist) end

440. ⌈⌉ T let S–T del:CS C Del(prefix,order,ms) = ch[{cs ui,c ui}] ? in
441. let ms uis = {uid MI(m)|m:M•m ∈ ms} in
442. C(c ui,c mer,c ctlg)(merch ∪ ms,〈CS C Del(prefix,order,ms uis)〉̂ c hist) end end

142 We leave it to the reader to be more specific. The “etcetera” could, for example, describe possible updates to the
catalog and merchandise repository.

386 13 Simple Retailer System [January 2021]

443. ⌈⌉ U ... C(cui,cmer,ctlg′)(merch′,c hist)

13.6.2.2 Order Management Behaviour

13.6.2.2.1 Narrative

444. Being order management, OM, manifests itself in six events:

445. B accepting customer order,

446. C offering inventory order,

447. L accepting inventory acknowledgment,

448. M offering OM acknowledgment acknowledgment to customer, and

N offering dispatch order to warehouse, and

449. V doing other OM business.
450. The OM behaviour internal non-deterministically (445., 446., 447., 448. and 449.) alternates

between B, C, L, M, N and V:

13.6.2.2.2 Formalisation

444. OM: om ui:OM UI × (ommer:(cuis,ivui,whui)):OM Mer × OM ProdSupp→
444. (OM WorkToDo × OM TransHist)

444. in out { ch[{c ui,om ui}] | c ui:CUI•c ui ∈ cuis }
444. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
444. OM(om ui,om mer:(cuis,iv ui,wh ui),om prodsupp)(om wtd,om hist) ≡

445. B OM.C OM Order(om ui,om mer,om prodsupp)(om wtd,om hist)

446. ⌈⌉ C OM.OM IV Order(om ui,om mer, om prodsupp)(om wtd,om hist)

447. ⌈⌉ L OM.IV OM Ack(om ui,om mer,om prodsupp)(om wtd,om hist)

448. ⌈⌉ M,N OM.Handle Input(om ui,om mer,om prodsupp)(om wtd,om hist)

449. ⌈⌉ V ... OM(om ui,om mer,om prodsupp)(om wtd,om hist)

13.6.2.2.3 Narrative

451. B OM.C OM Order external non-deterministically offers to accept purchase orders from cus-
tomers.

452. In response, OM.C OM Order makes a note of this request in its work-to-do dossier, that is, of
eventually issuing an inventory order.

453. Thereupon OM.C OM Order resumes being ‘order management’ with an appropriately up-
dated work-to-do state.

13.6.2.2.4 Formalisation

value
445. COM. OM Order: om ui:OM UI × (om mer:(cuis,iv ui,wh ui)):OM Mer × OM ProdSupp→
445. (OM WorkToDo × OM TransHist)

13.6 Perdurants 387

445. in out { ch[{c ui,om ui}] | c ui:CUI•c ui ∈ cuis }
445. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
445. COM. OM Order(omui,om mer:(cuis,ivui,whui),om prodsupp)(om wtd,om hist) ≡

451. B ⌈⌉⌊⌋ { let A–B ordr:C OM Ordr(((c ui,dati)),order)=ch[{c ui,om ui}] ? in
452. let om wtd′ = om wtd ∪ {OM IV Ordr(((c ui,dati)),order,)} in
453. OM(om ui,om mer,om prodsupp)(om wtd′,〈ordr〉̂ omhist)

445. | c ui:C UI • c ui ∈ cuis end end }

13.6.2.2.5 Narrative

454. C OM.OM IV Order inquires as to whether order management has a ‘work-to-do’ note on
ordering a quantity of a named product.

455. If so, it selects that note.
456. It then selects a suitable product supplier and a sufficient quantity of the named product.
457. Finally it offers an inquiry to the inventory.
458. Whereupon it resumes being OM.
459. If OM.OM IV Order finds no such note it resumes being OM.

13.6.2.2.6 Formalisation

value
446. OM.OM IV Order: om ui:OMUI × (om mer:(cuis,ivui,whui)):OM Mer × OM ProdSupp→

446. (OM WorkToDo × OM TransHist)
446. in out { ch[{c ui,om ui}] | c ui:C UI•c ui ∈ cuis }
446. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
446. OM.OM IV Order(om ui,om mer:(cuis,iv ui,wh ui),om prodsupp)(om wtd,om hist) ≡

454. C if OM IV Ordr(((c ui,dati)),order,) ∈ wtd

455. then let ordr:OM IV Ordr(((c ui,dati)),order,) • ordr ∈ wtd in
456. let s ui:S UI • find supplier(order)(om prodsupp), dati′ = record TIME() in

457. C–D ch[{om ui,iv ui}] ! ordr′:OM IV Ordr(((om ui,dati′),(c ui,dati)),order) ;

458. OM(om ui,om mer,om prodsupp)(om wtd \ {ordr},〈ordr〉̂ om hist) end end
459. else OM(om ui,om mer,om prodsupp)(om wtd,om hist) end

456. find supplier: Order × OM ProdSupp→ S UI, find supplier(order)(om prodsupp) ≡ ...

13.6.2.2.7 Narrative

460. L OM.IV OM Ack offers to accept an order acknowledgment from the retailer inventory.
461. It places this acknowledgment in the OM’s ‘work-to-do’ “basket” as a “matching” pair of

customer acknowledgment and warehouse order dispatch notes.
462. And resumes being OM.

13.6.2.2.8 Formalisation

value
447. OM.IV OM Ack: OM UI × OM Mer × OM ProdSupp→

388 13 Simple Retailer System [January 2021]

447. (OM WorkToDo × OM TransHist)

447. in out { ch[{c ui,om ui}] | c ui:C UI•c ui ∈ cuis }
447. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
447. OM.IV OM Ack(om ui,om mer:(cuis,iv ui,wh ui),m prodsupp)(om wtd,om hist) ≡

460. L let K–L iv om ack:IV OM Ack(pref,ordr) = ch[{om ui,iv ui}] ? in
461. let om wtd′ = om wtd ∪ {OM C Ack(((om ui,),pref),ordr),

461. OM WH Dispatch(((om ui,),pref),ordr)} in
462. OM(om ui,om mer,om prodsupp)(om wtd′,〈iv om ack〉̂ om hist) end end

13.6.2.2.9 Narrative

463. M,N If a suitable, i.e., “matching”, pair of customer acknowledgment and warehouse order

dispatch notes, can be found in the ‘work-to-do’ dossier,
464. then time is recorded,
465. the pair of to-do notes identified and
466. that pair removed from the work-to-do basket, whereupon
467. the customer is notified of the acknowledgment, and
468. the warehouse is notified of the order dispatch;
469. an updated order management transaction history is prepared, and
470. the OM.OM C Ack OM WH Desp resumes being OM Beh;
471. else OM.OM C Ack OM WH Desp resumes being OM.

13.6.2.2.10 Formalisation

value
448. OM.Handle Input: OM UI×OM Mer×OM ProdSupp→(OM WorkToDo×OM TransHist) Unit
448. (OM WorkToDo × OM TransHist)

448. in out { ch[{c ui,om ui}] | c ui:CUI•c ui ∈ cuis }
448. in out ch[{om ui,iv ui}] out ch[{om ui,wh ui}] Unit
448. OM.Handle Input(om ui,om mer:(cuis,iv ui,wh ui),om prodsupp)(om wtd,om hist) ≡

463. M if ∃ two:{IV OM Ack(((om ui,),pref),ordr),OM WH Dispatch(((om ui,),pref),ordr)} • two ⊆ om wtd
464. then let dati′ = record TIME(),

465. iv om ack = OM C Ack(((om ui,),pref),ordr) • iv om ack ∈ om wtd,

465. om wh dis = OM WH Dispatch(((om ui,),pref),ordr) • om wh dis ∈ wtd,
466. om wtd′ = om wtd \ {iv om ack,om wh dis} in

467. { M–O ch[{om ui,c ui}] ! om c ack′:OM C Ack(((om ui,dati′),pref),ordr) ‖

468. N–P ch[{om ui,wh ui}] ! om wh dis′:OM WH Dispatch(((om ui,dati′),pref),ordr) } ;

469. let om hist′ = 〈om c ack′,om wh dis′〉̂ om hist in
470. OM(om ui,om mer,om prodsupp)(om wtd′,om hist′) end end
471. else OM(om ui,om mer,om prodsupp)(om wtd,om hist) end

13.6.2.2.11 Narrative

472. V We leave this behaviour further undefined.

13.6 Perdurants 389

13.6.2.2.12 Formalisation

472. V ...

13.6.2.3 Inventory Behaviour

13.6.2.3.1 Narrative

473. The IV (inventory) behaviour communicates with the order management and the warehouse
of the retailer to which it belongs, and with a variety of suppliers.
The IV behaviour alters between External non-deterministically offering to accept

474. D order input communications from its order management;
475. J order acknowledgment input communications from its warehouse; and
476. αwhile internal non-deterministically handling incoming orders;
477. E internal non-deterministically offering order output communications to a designated sup-

plier; or
478. K internal non-deterministically offering acknowledgment communications to its order man-

agement.

13.6.2.3.2 Formalisation

value
473. IV: IV UI × (om ui,wh ui,suis):IV Mer→ (IV WtD×IV Inventory×IV TransHist) Unit
473. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
473. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit
473. IV(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡

474. D IV.OM IV Order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

475. J ⌈⌉ IV.WH IV Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

476. α ⌈⌉ IV.Handle Input(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

477. E ⌈⌉ IV.IV S Order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

478. K ⌈⌉ IV.IV OM Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist)

473. pre: iv ui ∈ ivuis ∧ om ui ∈ omuis ∧ wh ui ∈ whuis
473. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧iv ui=uid IV(r)∧om ui=uid OM(r)∧wh ui=uid WH(r)

13.6.2.3.3 Narrative

479. D The IV.OM IV Order behaviour offers to accept an order [input] communication from its
order management, which, when received, that order is put in the inventory ‘work-to-do’ basket
–

480. to eventually be handled.
481. Whereupon the IV.OM IV Order resumes being the IV behaviours.

13.6.2.3.4 Formalisation

type

390 13 Simple Retailer System [January 2021]

480. Handle OM IV Order :: Prefix × Order

value

479. D IV.OM IV order: IV UI × IV Mer→ (IV WorkToDo×IV Inventory×IV TransHist) Unit
479. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
479. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit

479. D IV.OM IV order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡

479. let C–D OM IV Order(prefix,order) = ch[{om ui,iv ui}] ? in
480. let iv wtd′ = {Handle OM IV Order(prefix,order)} ∪ iv wtd in
481. IV(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd′,iv inv,iv hist) end end

13.6.2.3.5 Narrative

482. J The IV.WH IV Ack behaviour offers to accept a supply availability acknowledgment [input]
communication from its warehouse.

483. When received that acknowledgment is put in the inventory ‘work-to-do’ basket.
484. Whereupon the IV.OM IV Order resumes being the IV behaviours.

13.6.2.3.6 Formalisation

value

475. J IV.WH IV Ack: IV UI × IV Mer→ (IV Inventory × IV TransHist) Unit
475. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
475. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit

475. J IV.WH IV Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv inv,iv hist) ≡

482. let I–J WH IV ack(prefix,order) = ch[{wh ui,iv ui}] ? in
483. let iv wtd′ = {} ∪ iv wtd in
484. IV(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd′,iv inv,iv hist) end end

13.6.2.3.7 Narrative

485. α If there exists, in the ‘work-to-do’ basket, a handle OM IV order, cf. Item 480 on the previous
page.,

486. then observe that order’s product name, pn, quantity, q, price, p and payment reference, ref,
and

487. observe that product’s entry (its wholesale price, wp, suggested retail price, srp, sales price,
sp, a recommended supplier, s ui, and the quantity at hand in the warehouse stock) in the
inventory [catalog].

488. If the order quantity is lower than the warehouse stock for that product,
489. then choose a suitable re-order quantity, q′,
490. concoct an inventory-to-supplier order,
491. add that to, and remove the handle order from the ‘work-to-do’ basket, and
492. adjust the stock quantity in the inventory catalog,
493. before resuming being the inventory behaviour;
494. else update the ‘work-to-do’ basket with an inventory-to-order management acknowledgment

to, and remove the handle order from the ‘work-to-do’ basket
495. and resume being the inventory behaviour.

13.6 Perdurants 391

496. If there does not exists, in the ‘work-to-do’ basket, a handle OM IV order, then resume being
the inventory behaviour.

13.6.2.3.8 Formalisation

type
480. Handle OM IV Order :: Prefix × Order
value
476. α IV.Handle Input: IV UI × IV Mer→ (IV WorkToDo × IV Inventory × IV TransHist)

476. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
476. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit
476. α IV.Handle Input(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡

485. if ∃ ho:Handle OM IV Order(prefix,order) • ho ∈ iv wtd

485. then let ho:Handle OM IV Order(prefix,order) • ho ∈ iv wtd
486. let (pn,q,p,ref) = ho in axiom pn ∈ dom iv inv

487. let (wp,srp,sp,mi,s ui,stock) = iv inv(pn) in axiom [p ∈ {srp,sp}]
488. if q < stock
489. then let q′:Nat • q′>q ∧ ... in
490. let iv s order = IV S Order(prefix,(pn,q′,wp,iv ref)) in
491. let iv wtd′ = {iv s order} ∪ iv wtd \ {ho},
492. iv inv′ = iv inv † [pn 7→(wp,srp,sp,mi,s ui,stock − q)] in
493. IV(iv ui,iv mer)(iv wtd′,iv inv′,iv hist) end end end
494. else let iv wtd′ = {IV OM Ack(prefix,order)} ∪ iv wtd \ {ho} in
495. IV(iv ui,iv mer)(iv wtd′,iv inv,iv hist) end end
496. else IV(iv ui,iv mer)(iv wtd,iv inv,iv hist) end end end end

13.6.2.3.9 Narrative

497. E If there exists, in the ‘work-to-do’ basket, a handle OM IV order,
498. then retrieve that order
499. and remove it from the ‘work-to-do’ basket while
500. communicating the order, updated with a date-timed prefix, to a designated supplier,
501. and resuming being the inventory behaviour.
502. If no handle OM IV order is in the basket, then resume being “an unchanged” inventory be-

haviour.

13.6.2.3.10 Formalisation

477. E IV.IV S Order: IV UI × IV Mer→ (IV WorkToDo × IV Inventory × IV TransHist)
473. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
473. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit

477. E IV.IV S Order(iv ui,iv mer:(om ui,wh ui,suis))(iv wtd,iv inv,iv hist) ≡

497. if ∃ o:IV S Order(prefix,order,s ui) • o ∈ iv wtd axiom s ui ∈ suis
498. then let o:IV S Order(prefix,order,s ui) • o ∈ iv wtd in
499. let iv wtd′ = iv wtd \ {o}, dati = record TIME() in
500. E–F ch[{iv ui,s ui}] ! msg:IV S Order(((iv ui,dati),prefix),order,wh ui) ;
501. IV(iv ui,iv mer)(iv wtd′,iv inv,〈msg〉̂ iv hist)

477. end end

392 13 Simple Retailer System [January 2021]

501. else IV(iv ui,iv mer)(iv wtd,iv inv,iv hist) end

13.6.2.3.11 Narrative

503. K If there exists, in the ‘work-to-do’ basket, an IV OM Ack(prefix,order),
504. then retrieve that order
505. and remove it from the ‘work-to-do’ basket while
506. communicating the order, updated with a date-timed prefix, to a designated supplier,
507. and resuming being the inventory behaviour.
508. If no handle OM IV order is in the basket, then resume being “an unchanged” inventory be-

haviour

13.6.2.3.12 Formalisation

value
478. IV.IV OM Ack: IV UI × IV Mer→ (IV Inventory × IV TransHist)

478. in out ch[{om ui,iv ui}] in ch[{wh ui,iv ui}]
478. out { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis } Unit
478. IV.IV OM Ack(iv ui,iv mer:(om ui,wh ui,suis))(iv inv,iv hist)
503. if ∃ a:IV OM Ack(prefix,order) • a ∈ iv wtd

504. then let a:IV OM Ack(prefix,order) • a ∈ iv wtd in
505. let iv wtd′ = iv wtd \ {a}, dati = record TIME() in

506. K–L ch[{iv ui,om ui}] ! msg:IV OM Ack(((iv ui,dati),prefix),order) ;
507. IV(iv ui,iv mer)(iv wtd′,iv inv,〈msg〉̂ iv hist)

477. end end
508. else IV(iv ui,iv mer)(iv wtd,iv inv,iv hist) end

13.6.2.4 Warehouse Behaviour

13.6.2.4.1 Narrative

509. The WH (warehouse) behaviour accepts supplies from any supplier, provides supply acknowl-
edgments to its inventory, accepts dispatch order from its order management and provides
merchandise to any courier service.
Internal non-deterministically the WH behaviour alternates between

510. H external non-deterministically accepting deliveries from suppliers,

511. P accepting order dispatches from its order management,

512. H,P handling deferred [but accepted] inputs,

513. I offering acknowledgments of supplies to its inventory, and

514. Q delivering merchandise (orders) to any one of a number of designated courier services.

13.6.2.4.2 Formalisation

value
509. WH: wh ui:WH UI × (om ui,iv ui,suis,csuis):WH Mer→

13.6 Perdurants 393

509. (WH WorkToDo×WH Store×WH TransHist)

509. in { ch[{s ui,iv ui}] | s ui:S UI•s ui ∈ suis }
509. out ch[{wh ui,iv ui}] in ch[{wh ui,om ui}]
509. out { ch[{wh ui,c ui}] | c ui:C UI•c ui ∈ cuis } Unit
509. WH(wh ui,wh mer:(wh ui,om ui,iv ui,suis,csuis))(wh wtd,wh store,wh hist) ≡

510. H WH.S WH Del(wh ui,wh mer)(wh wtd,wh store,wh hist)

511. P ⌈⌉ WH.OM WH Disp(wh ui,wh mer)(wh wtd,wh store,wh hist)

512. H,P ⌈⌉ WH.Handle Input(wh ui,wh mer)(wh wtd,wh store,wh hist)

513. I ⌈⌉ WH.WH IV Ack(wh ui,wh mer)(wh wtd,wh store,wh hist)

514. Q ⌈⌉WH.WH CS Deliv(whui,whmer)(wh wtd,wh store,wh hist)

509. pre: wh ui ∈ whuis ∧ om ui ∈ omuis ∧ iv ui ∈ ivuis
509. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧om ui=uid OM(r)∧iv ui=uid IV(r)

13.6.2.4.3 Narrative

515. H The WH.S WH Del behaviour external non-deterministically offers to accept a supplier to
warehouse delivery message.

516. When received the WH.S WH Del behaviour deposits this message in its ‘work-to-do’ basket.
517. It then resumes being the WH behaviour.

13.6.2.4.4 Formalisation

value

510. H WH.S WH Del: wh ui:WH UI × (, ,suis,):WH Mer→
510. (WH WorkToDo×WH Store×WH TransHist)

510. in { ch[{s ui,wh ui}] | s ui:S UI•s ui ∈ suis } Unit

510. H WH.S WH Del(wh ui,wh mer:(, ,suis,))(wh wtd,wh store,wh hist) ≡

515. { let G–H delivery:S WH Del(prefix,order,ms) = ch[{s ui,wh ui}] ? in
516. let wh wtd′ = wh wtd ∪ {delivery} in
517. WH(wh ui,wh mer)(wh wtd′,wh store,wh hist)

515. end end | s ui:S UI•s ui ∈ suis }
510. pre: wh ui ∈ whuis ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)

13.6.2.4.5 Narrative

518. P The WH.OM WH Disp behaviour offers to accept an order management to warehouse
[order] dispatch message.

519. When received the WH.OM WH Disp behaviour deposits this message in its ‘work-to-do’ bas-
ket.

520. It then resumes being the WH behaviour.

13.6.2.4.6 Formalisation

value

511. P WH.OM WH Disp: wh ui:WH UI×(om ui, , ,):WH Mer→

394 13 Simple Retailer System [January 2021]

511. (WH WorkToDo×WH Store×WH TransHist)

511. in ch[{om ui,wh ui}] Unit

511. P WH.OM WH Disp(wh ui,wh mer:(om ui, , ,))(wh wtd,wh store,wh hist) ≡

518. let N–P dispatch:OM WH Dis(prefix,order) = ch[{om ui,wh ui}] ? in
519. let wh wtd′ = wh wtd ∪ {dispatch} in
520. WH(wh ui,wh mer)(wh wtd′,wh store,wh hist)

518. end end
509. pre: wh ui ∈ whuis ∧ om ui ∈ omuis ∧ iv ui ∈ ivuis
509. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧om ui=uid OM(r)∧iv ui=uid IV(r)

13.6.2.4.7 Narrative

521. H,P The rôle of the WH.Handle Input behaviour is to service either of the two kinds of inputs

received by the warehouse, from suppliers, S, and from its order management, OM.
522. There are two possible kinds of “deferred” messages.
523. If there is a supplier-to-warehouse, S WH Del(prefix,order,ms), delivery message,
524. then that message is “converted” into a warehouse-to-inventory delivery acknowledgment

message in, the ‘work-to-do’ basket,
525. and the WH.Handle Input behaviour reverts to being the WH behaviour;
526. else if there is an order management-to-warehouse, OM WH Dis(prefix,order), message,
527. then that message is “converted” into a warehouse-to-courier service delivery message,

WH CS Del(prefix,order), in the ‘work-to-do’ basket,
528. and the WH.Handle Input behaviour reverts to being the WH behaviour;
529. if there are no messages in the basket then the WH.Handle Input behaviour reverts to being

the WH behaviour.
530.

13.6.2.4.8 Formalisation

value

521. H,P WH.Handle Input: wh ui:WH UI × (,iv ui, ,):WH Mer→

521. (WH WorkToDo×WH Store×WH TransHist)

521. out ch[{wh ui,iv ui}] Unit

521. H,P WH.Handle Input(wh ui,wh mer:(,iv ui, ,))(wh wtd,wh store,wh hist) ≡

522. case wh wtd of
523. {S WH Del(prefix,order,ms)} ∪ wh wtd′ →

524. let wh wtd′′ = wh wtd′ ∪ {WH IV Ack(prefix,order,ms)} in
525. WH(wh ui,wh mer)(wh wtd′′,wh store,wh hist) end
526. {OM WH Dis(prefix,order)} ∪ wh wtd′ →

527. let wh wtd′′ = wh wtd′ ∪ {WH CS Del(prefix,order)} in
528. WH(wh ui,wh mer)(wh wtd′′,wh store,wh hist) end
529. →WH(wh ui,wh mer)(wh wtd,wh store,wh hist)

522. end
522. pre: wh ui ∈ whuis ∧ iv ui ∈ ivuis
522. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧iv ui=uid IV(r)

522. axiom: [there can only at most be the two kinds of messages as ‘cased’ in the wtd basket.]

13.6 Perdurants 395

13.6.2.4.9 Narrative

531. I If there exists a warehouse-to-inventory [supplier] delivery acknowledgment message in the
‘work-to-do’ basket,

532. then select and remove that message from the basket,
533. record the current time, and
534. communicate the acknowledgment message to the inventory,
535. and resume being the appropriately updated WH behaviour;
536. else resume being the otherwise unchanged WH behaviour.

13.6.2.4.10 Formalisation

value

513. I WH.WH IV Ack: wh ui:WH UI × (,iv ui, ,):WH Mer→
513. (WH WorkToDo×WH Store×WH TransHist)

513. out ch[{wh ui,iv ui}] Unit

513. I WH.WH IV Ack(wh ui,wh mer)(wh wtd,wh store,wh hist) ≡
531. if ∃ a:WH IV Ack(prefix,order,ms) • d ∈ om wtd

532. then let a:WH IV Ack(prefix,order,ms) • a ∈ om wtd in
532. let wh wtd′ = wh wtr \ {a},
533. dati = record TIME() in

534. I–J ch[{wh ui,iv ui}] ! ack:WH IV Ack(((wh ui,dati),prefix),order) ;

535. WH(wh ui,wh mer)(wh wtd′,wh store,〈ack〉̂ wh hist) end end
536. else WH(wh ui,wh mer)(wh wtd,wh store,wh hist) end
509. pre: wh ui ∈ whuis ∧ iv ui ∈ ivuis
509. ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)∧iv ui=uid IV(r)

13.6.2.4.11 Narrative

537. Q If there exists a order management to warehouse [supplier] delivery message in the ‘work-
to-do’ basket,

538. then select and remove that message from the basket,
539. record the current time, and
540. communicate the acknowledgment message to the inventory,
541. and resume being the appropriately updated WH behaviour;
542. else resume being the otherwise unchanged WH behaviour.

13.6.2.4.12 Formalisation

value

514. Q WH.WH CS Deliv: wh ui:WH UI × (, , ,csuis):WH Mer→

514. (WH WorkToDo×WH CS Dire×WH Store×WH TransHist)

514. out { ch[{wh ui,c ui}] | c ui:C UI•c ui ∈ cuis } Unit

514. Q WH.WH CS Deliv(wh ui,wh mer:(, , ,csuis))(wh wtd,wh store,wh hist) ≡

537. if ∃ a:OM WH Disp(prefix,order,cs ui) • a ∈ om wtd

538. then let d:OM WH Disp(prefix,order,cs ui) • a ∈ om wtd in
538. let wh wtd′ = wh wtr \ {d},

396 13 Simple Retailer System [January 2021]

539. dati = record TIME(),

539. os:M-set • os⊆wh store ∧ card os = q in

540. Q–R ch[{wh ui,cs ui}] ! ack:WH CS Disp(((wh ui,dati),prefix),order,os) ;

541. WH(wh ui,wh mer)(wh wtd′,wh store \ {os},〈ack〉̂ wh hist) end end
542. else WH(wh ui,wh mer)(wh wtd,wh store,wh hist) end
509. pre: wh ui ∈ whuis ∧ ∃ r:R • r ∈ obs RETs(obs RETa(mkt))∧wh ui=uid WH(r)

13.6.2.5 Supplier Behaviour

13.6.2.5.1 Narrative

543. The Supplier behaviour internal non-deterministically “alternates” between

544. F accepting orders from any retailers’ inventory, and

545. G delivering such orders to retailers’ warehouses.

13.6.2.5.2 Formalisation

value
543. S: S UI × (ivuis,whuis):S Mer→ (S WorkToDo×S Products×S TransHist)

543. in { ch[{iv ui,s ui}] | iv ui:IV UI•iv ui ∈ ivuis }
543. out { ch[{s ui,wh ui}] | wh ui:WH UI•wh ui ∈ whuis } Unit
543. S(s ui,s mer:(ivuis,whuis))(s wtd,s products,s hist) ≡

544. F S.IV S Order(s ui,s mer:(ivuis,whuis))(s wtd,s products,s hist)

545. G ⌈⌉ S.S WH Deliv(s ui,s mer:(ivuis,whuis))(s wtd,s products,s hist)

543. pre: s ui ∈ suis ∧ ∃ s:S • r ∈ obs Ss(obs Sa(mkt))∧sui=uid UI(r)

Please note that we have omitted the “intermediary” behaviour of the Supplier handling inputs.
We suggest that such handling is taken care of directly by the S.S WH Delivery behaviour. Also
note that we do not describe payment aspects.

13.6.2.5.3 Narrative

546. The S.IV S Order behaviour external non-deterministically offers to accept merchandise orders
from any retailer’s inventory behaviour.

547. Having received such an order it proceeds to record it in its ‘work-to-do’ basket –
548. whereupon it resumes being the S behaviour (with the updated basket).

13.6.2.5.4 Formalisation

value

544. F S.IV S Order(s ui,s mer:(ivuis,))(s wtd,s products,s hist) ≡

546. ⌈⌉⌊⌋ { let E–F IV S Order(prefix,order) = ch[{iv ui,s ui}] ? in
547. let s wtd′ = s wtd ∪ {IV S Order(prefix,order)} in
548. S(s ui,s mer)(s wtd′,s products,s hist)

546. | iv ui:IV UI•iv ui ∈ ivuis end end }

13.6 Perdurants 397

13.6.2.5.5 Narrative

549. If there exists a IV S Order(prefix,order) message in the ‘work-to-do’ basket,
550. then select such a message,
551. examine the order,
552. select the quantified number of merchandise of the ordered product,
553. ascertain the current time,
554. and deliver the message to the warehouse of the requesting retailer;
555. then resume being the Supplier behaviour with appropriately updated programmable at-

tributes.
556. If there does not exists a IV S Order(prefix,order) message in the ‘work-to-do’ basket, then

revert to being the Supplier behaviour.

13.6.2.5.6 Formalisation

value

545. G S.S WH Deliv(s ui,s mer:(ivuis,whuis))(s wtd,s products,s hist) ≡

549. if ∃ h:IV S Order(prefix,order,wh ui) • h ∈ s wtd

550. then let h:IV S Order(prefix,order,wh ui) • h ∈ s wtd in
551. let (pn,q,cost,payref) = order in
552. let ms:M-set • ms ⊆ s products(pn)∧card ms = q,
553. dati = record TIME() in

554. G–H ch[{s ui,wh ui}] ! d:S WH Deliv(((s ui,dati),pref),order,ms) ;

555. S(s ui,s mer)(s wtd \ {h},s products†[pn7→s products(pn) \ ms],〈d〉̂ s hist)

550. end end end
556. else S(s ui,s mer)(s wtd,s products,s hist) end

13.6.2.6 Courier Service Behaviour

13.6.2.6.1 Narrative

557. The CS, courier service, behaviour internal non-deterministically alternates between

558. R offering to accept a warehouse to [customer directed] courier service delivery of merchan-
dise and

559. S offering a courier service to customer delivery.

13.6.2.6.2 Formalisation

value
557. CS: CS UI × CS Mer→ (CS WorkToDo × CS TransHist) Unit
557. CS(cs ui,csmer:(whis,cuis))(cs wtd,cs hist) ≡

558. R CS.WH CS Deliv(cs ui,csmer:(whis,cuis))(cs wtd,cs hist)

559. S ⌈⌉ CS.CS C Deliv(cs ui,csmer:(whis,cuis))(cs wtd,cs hist)

557. pre: csui ∈ csuis

398 13 Simple Retailer System [January 2021]

13.6.2.6.3 Narrative

560. R The CS.WH CS Deliv behaviour external non-deterministically offers to accept a customer
directed delivery request from any retailer’s warehouse.

561. Receiving such a request it updates its ‘work-to-do’ basket accordingly,
562. and reverts to being the courier service CS.

13.6.2.6.4 Formalisation

value

558. R CS.WH CS Deliv: CS UI × CS Mer→ (CS WorkToDo × CS TransHist) Unit

558. R CS.WH CS Deliv(cs ui,csmer:(whis,))(cs wtd,cs hist) ≡

560. ⌈⌉⌊⌋ { let Q–R r:WH CS Deliv(((wh ui,dati),prefix),order,os) = ch[{wh ui,s ui}] ? in

561. let cs wtd′ = cs wtd ∪ {r} in
562. CS(cs ui,cs mer)(cs wtd′,cs hist)
560. | wh ui:WH UI•wh ui ∈ whuis end end }
558. pre: cs ui ∈ csuis

563. S If there exists a WH CS Del(prefix,order,ms,c ui) dispatch in the ‘work-to-do’ basket of a
courier service

564. then retrieve this dispatch
565. pass it on to the designated customer
566. and revert to being the courier service, CS, behaviour with appropriately updated arguments.
567. Otherwise continue being the CS behaviour.

13.6.2.6.5 Formalisation

value

559. S CS.CS C Deliv: CS UI × CS Mer→ (CS WorkToDo × CS TransHist) Unit

559. S CS.CS C Deliv(cs ui,cs mer)(cs wtd,cs hist) ≡

563. if ∃ whd:WH CS Del(prefix,order,ms,c ui) • whd ∈ cs wtd

564. then let d:WH CS Deliv(prefix,order,ms,c ui) • whd ∈ cs wtd in

565. S–T ch[{cs ui,c ui}] ! cd:CS C Del(((cs ui,record TIME),prefix),order,ms) ;

566. CS(cs ui,csmer)(cs wtd \ {d},〈cd〉̂ cs hist) end
567. else CS(cs ui,csmer)(cs wtd,cs hist) end
564. pre: cs ui ∈ csuis

13.6.3 System Initialisation

We refer to [55, Sect. 7.8].

568. Given a market, cf., mkt Item 351 on page 371, we can “synthesize” an RSL clause that stands
for the total behaviour of this market.
We refer to the system state as “generated” in Sect. 13.3.4 on page 371.

569. The market behaviour is the parallel composition of

13.7 Conclusion 399

570. the distributed parallel compositions of all customers,
571. the distributed parallel compositions of all order managements,
572. the distributed parallel compositions of all inventories,
573. the distributed parallel compositions of all warehouses,
574. the distributed parallel compositions of all suppliers and
575. the distributed parallel compositions of all courier services.

value
568. mkt, cs,oms, ivs,whs,ss and css.
570. ‖ {C(uid C(c),mereo C(c),attr C Catalog(c))(attr C Merhandise(c),〈〉)|c:C•c∈cs}
569. ‖

571. ‖ {OM(uid OM(om),mereo OM(c),attr OM ProdSupp(om))(attr OM WorkToDo(om),〈〉)|om:OM•om∈coms}
569. ‖
572. ‖ {IV(uid IV(iv),mereo IV(iv))(attr IV WorkToDo(iv),attr IV Inventory(iv),〈〉)|iv:IV•iv∈ivs}
569. ‖
573. ‖ {WH(uid WH(wh),mereo WH(wh))(attr WH WorkToDo(wh),attr WH Store(wh),〈〉)|wh:WH•wh∈whs}
569. ‖

574. ‖ {S(uid S(s),mereo S(s))(attr S WorkToDo(s),attr S Products(s),〈〉)|s:S•s∈ss}
569. ‖

575. ‖ {CS(uid CS(cs),mereo CS(cs))(attr CS WorkToDo(cs),〈〉)|cs:CS•cs∈css}

13.7 Conclusion

13.7.1 Critique of the DA&D Model

I am, today, November 15, 2021: 16:12 , not quite happy with my description.

• It was developed too quickly. I started on this model on Dec. 28, 2020. I was the only one to
develop this model, cf. Sect. 13.7.4 on page 401.

• Along the “road” I did not take time to carefully consider the naming of types, values, functions
and behaviours.

• Also: the individual definitions of order management, inventory, warehouse, supplier and
courier service behaviours (OM, II, WH, S, CS) into their , as of Jan. 21, 2021, is/was uneven.

⋄⋄ In the C (customer) behaviour description (Items 434 on page 385.– 443 on page 385.)
“all” is expressed in that one behaviour description, whereas in the OM, IV, WH, S and
CS behaviour descriptions the descriptions are decomposed into separate internal non-
deterministic behaviours, but not quite consistently.

⋄⋄ I have yet to check that the mereologies and attributes of parts are consistently used in
respective behaviour definitions.

⋄⋄ And I have yet to check that the indexing of all defined types, sorts, unique identifiers,
mereologies, attributes, channel and behaviours is consistent.

• But, on the whole, the model gives a reasonably adequate picture of how a model in the
DS&E/DA&D style would express theHERAKLIT retailer “challenge”.

• All I can say, not in any defense, is: “I am too143 old for this game these days !”

143 I was born Oct. 4, 1937

400 13 Simple Retailer System [January 2021]

13.7.2 Proofs about Models

Models are developed, carefully, and honed, “perpetually, for several reasons. One is to be able
to prove properties of the domain being modeled but where these properties are not explicitly
stated. We speculate on a few – with more to come !

• “The sum total of merchandise, in the market as modeled, is constant: no merchandise “arise
out of the blue” (for example at suppliers), no merchandise “disappears mysteriously” (for
example in warehouses, courier services or at customers).”

• “Product quantity on hands in a retailer’s inventory (catalog) is always less than or equal to
that retailer’s corresponding quantities at hand in its warehouse.”

• With the ideal assumption that suppliers can always deliver requested numbers of any product:
“Customers are eventually delivered their ordered merchandise.”

• Etcetera !

We do not show any such proofs in this technical report.

13.7.3 Comparison of Models

We compare our model to that of [88].

13.7.3.1 “Minor” Discrepancies

• It seems, but this has to be checked, that orders, in the DA&D model, are for any number of
one particular merchandise product, whereas the HERAKLIT model allows the mixing of
several products and of different quantities of these.

• It also seems that ...

more to come

13.7.3.2 Use of Diagrams

• Somewhere, in Footnote 136 on page 365, it is said that none of the figures in this report play
any rôle in the formal aspects of the ‘retailer market’ description.

⋄⋄ That is intended to be so.
⋄⋄ But is it really true ?
◦◦ When I first worked as an M.Sc. graduated engineer in designing data communications

“gear” and computers for IBM (1962–1965, 1969) we all drew diagrams !
◦◦ When I then studied computer science (1965-1968) diagrams of software systems (except

for “trivial” program flowcharts) were frowned upon.
◦◦ Petri nets (around 1962–1963) are based almost exclusively on two-dimensional dia-

grams. They are easy to grasp,
◦◦ The diagrams ofHERAKLIT are likewise appealing.

⋄⋄ Figure 13.2 on page 366 of this report is rather crucial, I found, in keeping track, while I was
developing the description, of all the various segments of that description – in particular in
making sure that the interfaces between behaviours “fitted”.

⋄⋄ I can imagine that some readers will find, especially Fig. 13.2 on page 366 useful when
reading the description.

13.7 Conclusion 401

• So, perhaps, diagrams, of the kind that Fig. 13.2 on page 366 represents, ought be “woven”
into theDA&D analysis & description, into its principles, techniques and tools.

13.7.3.3 Interleave versus “True” Concurrency

The reader is assumed to be quite familiar with these two kinds of semantic terms and their
meaning.

• As such, the HERAKLIT-based model, appears to be at an advantage – in that it expresses
“true concurrency”.

• But, before you get all too excited, theDS&E/DA&Dmodel, as its behaviours are defined, “do
not lack far behind”, if-at-all !

⋄⋄ On one hand you can read the basically CSP clauses as if actions in separate behaviours do
indeed occur “truly concurrent”.

⋄⋄ On the other hand, by “splitting” up, as in the behaviour definitions of C, OM, IV, WH, S

and CS, these into separate actions, such as input, handling, etc., an as full “measure” of
local “true concurrency” seems to be achieved.

13.7.4 Development Management

How to organise the development of domain descriptions such as presented in this report ? Here
is some advice.

• First conduct a “full trial run”, such as the work behind this report represents.
• Then do “the same thing again”, but now, “in earnest”.

⋄⋄ The “full trial run” shall cover, basically, the full domain.
⋄⋄ But it is allowed to “waver”, as do the report you are holding in your hand, between different

styles of analysis & description.
⋄⋄ The aim of the “full trial run” is for the development team to settle on “exactly” the style to

be followed.
⋄⋄ At the same time management can better ascertain the manpower and time to be used for

the various segments of the work – such as itemized next.

The below items now hint at the, “in earnest” work to be done after a “full trial run”.

• Assemble a group of, in this case, as also ‘judged’ from the “full trial run”, six (more) software
engineers cum computing scientists, professionally educated, that is, knowledgeable of such
texts as [25, 26, 27, 55].
The group reads the “full trial run” report.
For the present project I estimate 2 six-seven person-weeks.144,145,146

• Together the whole group, including the project manager, analyses and describes the external
qualities – cf. Sects. 13.2 and 13.3.
For the present project I estimate 2 six-seven person-weeks.

144 This means: 2 weeks of calendar time for 6–7 persons.
145 In this initial, “for earnest” project step the group settles on computerised tools, e.g. LaTEX, RAISE/RSL, etc.
146 The Dansk Datamatik Center Ada project, January 1981 – September 1984 did just that: based on a “full trial
run” of six M.Sc. students’ 6 months’ master thesis work (February – August 1980), [67]. These M.Sc. students
background was essentially that of [25, 26], that is, knowledgeable about applicative, imperative, logic and parallel
programming, operational (in those days called ‘mechanical’), first-order and denotational semantics, etc.

402 13 Simple Retailer System [January 2021]

• Based on the decomposition of the domain endurants, one project member is assigned to
distinct parts, as here the customer, order management, inventory, warehouse, supplier and
courier service parts.
For the present project I estimate 1 six-seven person-weeks.

• Each of these staffmembers now take care, in synchrony with all others, of the unique identifier
section, then the mereology section, and the attributes section, one-by-one.
For the present project I estimate (1+2+3) six-seven person-weeks.

• Each member, on a rotating basis, receives the work of a colleague, every morning, reviews
it, and all meets, say at 11am, every work day, to discuss and debate each others’ models,
whereupon they spend the afternoon on continuing their section of work.

• When work on internal qualities has ended, they all meet for as longs as it takes, half a day –
three days (!) – to settle on channels.
For the present project I estimate 1 six-seven person-weeks.

• Thereupon they work on defining behaviour signatures and, when all such signatures are
thought finalised, then the behaviour definitions.
For the present project I estimate 2 six-seven person-weeks.

• And so forth.147

• Do not forget the daily late morning meetings !

13.7.5 What Next ?

• It is my sincere hope that Messrs Fettke and Reisig will comment on the present report.
• I need to know where I have misunderstood the [intentions of the]HERAKLITmodel [88].
• I need to know where my model fails in modeling what [88] achieves.
• etcetera !

147 That is: I estimate a total calendar time of 4+14 weeks for the (one person) “full trial run” plus the (six to seven
person) “in earnest” projects.

Chapter 14

Shipping [Spring/Summer 2007, February–March 2021]

Contents
14.1 Informal Sketches of the Shipping Domain . 404

14.1.1 The Purpose of A Domain Model for Shipping . 404
14.1.2 A First Sketch . 405
14.1.3 A Second Sketch . 405

14.1.3.1 Strands of Interacting Sets of Behaviours . 406
14.1.3.2 Freight . 406

14.1.3.2.1 Freight as Endurants . 406
14.1.3.2.2 Freight as Behaviours . 406

14.1.3.3 Freight Forwarder Behaviour . 407
14.1.3.4 Shipping Line Behaviour . 407

14.1.4 Some Comments . 408
14.1.4.1 Caveat Concerning Sketches . 408
14.1.4.2 The Insufficiency of Narrative Descriptions . 409
14.1.4.3 What Do Formal Descriptions Contribute ? . 409
14.1.4.4 Limitations of Domain Models . 409
14.1.4.5 Families of Domain Models . 409
14.1.4.6 There is No “Standard Model” . 409

14.2 Endurants: External Qualities . 410
14.2.1 Freight . 410
14.2.2 Endurant Sorts & Observers . 410
14.2.3 Endurant Values . 411

14.3 Endurants: Internal Qualities . 412
14.3.1 Unique Identifiers . 412

14.3.1.1 Unique Identifier Types and Observers . 412
14.3.1.2 Domain Unique Identifiers . 413
14.3.1.3 An Axiom . 414
14.3.1.4 Retrieve Endurant Values . 414

14.3.2 Mereologies . 414
14.3.2.1 A Shift in Modeling . 414
14.3.2.2 Mereology Types and Observers . 414

14.3.2.2.1 Harbour Mereology . 415
14.3.2.2.2 Vessel Mereology . 415
14.3.2.2.3 Shipping Line Mereology . 416
14.3.2.2.4 Freight Forwarder Mereology . 416
14.3.2.2.5 Freight Mereology . 417
14.3.2.2.6 Passenger Mereology . 417
14.3.2.2.7 Waterways Mereology . 418
14.3.2.2.8 Landmass Mereology . 418

14.3.3 Attributes . 419
14.3.3.1 Attribute Types and Observers . 419

14.3.3.1.1 Freight Forwarder Attributes . 419
14.3.3.1.2 Shipping Line Attributes . 419
14.3.3.1.3 Vessel Attributes . 420
14.3.3.1.4 Harbour Attributes . 420

403

404 14 Shipping [Spring/Summer 2007, February–March 2021]

14.3.3.1.5 Freight Attributes . 420
14.3.3.2 Attribute Wellformedness . 421

14.4 Perdurants . 421
14.4.1 Freight as Endurants and as Behaviours . 421
14.4.2 Actions, Events and Behaviours . 421
14.4.3 Global Freight Variable . 421
14.4.4 Channels . 422
14.4.5 Behaviours . 422

14.4.5.1 Behaviour Signatures . 422
14.4.5.1.1 Freight Forwarder Signature . 422
14.4.5.1.2 Shipping Line Signature . 422
14.4.5.1.3 Vessel Signature . 423
14.4.5.1.4 Harbour Signature . 423
14.4.5.1.5 Freight Signature . 423

14.4.5.2 Behaviour Definitions . 423
14.4.5.2.1 Freight Forwarder Definition . 423
14.4.5.2.2 Shipping Line Behaviour Definition 427
14.4.5.2.3 Vessel Behaviour Definition . 428
14.4.5.2.4 Harbour Behaviour Definition . 428
14.4.5.2.5 Freight Behaviour Definition . 428

This document reports on an experiment: that of modeling a domain of shipping lines148

The purposes of the experiment are (i) to further test the methodology of domain analysis &
description as outlined in [55], and (ii) to add yet an, as we think it, interesting domain model to
a growing series of such [56].

The report is currently in the process of being written, that is, the domain is still being studied,
analysed and tentatively described. Please expect that later versions of this document may have
sections that are removed, renumbered and/or rewritten wrt. the present November 15, 2021: 16:12
version.

The author regrets not having had contact to real professionals of the shipping line industry.
This is most obvious in our treatment of freight forwarder and shipping line behaviours. Here
we used simple reasoning to come up with plausible behaviours. The behaviours that we define
should convince the reader that whichever similarly reasonable, but now actual, real behaviours
can be likewise defined.

The author hopes, even at his advanced age, today he is 83 years old, to be able, somehow, to
learn from such contacts.

14.1 Informal Sketches of the Shipping Domain

We shall, as a necessary element in the analysis of a domain to be rigorously analysed & described,
first, and informally, delineate that domain.

This initial step of a full development is typically iterative. One outlines a first sketch. If one
is not quite happy with that one either improves on that sketch or, throws it away and, produces
another sketch – until “satisfied”.

14.1.1 The Purpose of A Domain Model for Shipping

Any undertaking of modeling a specific domain has a purpose. The purpose of the shipping
domain model of this report is to understand some of the properties of shipping, say such as those
expected by people who have freight transported. What these properties are will evolve as the
domain model evolves.

148 with the Greenland Royal Arctic Line, https://www.royalarcticline.com, as a leading inspiration.

14.1 Informal Sketches of the Shipping Domain 405

14.1.2 A First Sketch

We structure the sketch in itemized points.

• The name of the domain is Shipping.
• The overall context of the domain is that

⋄⋄ there is a continuous “stretch” of navigable waterways, an ocean;
◦◦ on which vessels can sail;

⋄⋄ there is a concept of landmasses with coasts onto the waterways;
◦◦ with harbours at which
◦◦ the vessels can dock
◦◦ to unload and load freight and/or passengers.

⋄⋄ There are shipping lines which operate these vessels;
◦◦ with these shipping lines accepting requests for and actual freight and/or passengers to

be transported;
⋄⋄ and there are freight forwarders which
◦◦ either act as go-between those who wishes freight or passenger transport,
◦◦ or are those freight “owners”, respectively passengers,
◦◦ and requests and services accepted requests, i.e., order, for transport.

• The closer details of the domain [of shipping further] involve that

⋄⋄ harbours have management and staff (including stevedores) – which is ignored in the
present domain model;

⋄⋄ vessels have staff (captains, mates, engineers and seamen) – which is (are) ignored in
the present domain model;

⋄⋄ freight forwarders and shipping lines have management and staff – whose education,
training, hiring, rostering149, laying-off and pensioning which is (are) ignored in the present
domain model;

⋄⋄ harbours, freight forwarders and shipping lines need financial capital in order to establish,
maintain, renew and operate – which is ignored in the present domain model; and that

⋄⋄ all of these have to operate in the context of local, state and international rules & regulations
(i.e., laws) – which is ignored in the present domain model

We justify the omissions as they are common to many [other] domains and thus do not specifically
characterise the chosen domain.

14.1.3 A Second Sketch

We assume a notion of state. The programmable attributes, typically, of endurants are bases for
states. States [thus] have values.

• Actions are intended phenomena that potentially changes state values instantaneously.
• Events are un-intended phenomena which [thus surreptitiously] may instantaneously change

a state.
• Behaviours are sets of sequences of actions, events and behaviours. Behaviours change states,

one change after another and several changes potentially “at the same time”, i.e., concurrently,
in parallel.

149 – assignment, per day, to time-slots and places of work

406 14 Shipping [Spring/Summer 2007, February–March 2021]

14.1.3.1 Strands of Interacting Sets of Behaviours

We shall focus primarily on the behaviours of two “main players”: those of freight forwarders
and those of shipping lines. We shall consider the behaviours of freight, vessels and harbours

to be subsidiary, i.e., subservient, to the main behaviours.
The two sets of behaviours each “operate, i.e., behave, on their own”, concurrently, but inter-

acting.

Freight forwarders, in an interleaved fashion, on behalf of many customers, using many
shipping lines, place orders, accept offers (or refusals), deliver freight and passengers to
vessel sides (‘alongside’), fetch freight and passengers from vessel sides (‘alongside’) and and
handle all related “paper-work” (‘bill-of-ladings’) and finances.

Shipping lines, also in an interleaved fashion, serving many freight forwarders, co-sailing,
possibly, with other shipping lines, accept or reject orders, issue offers, sees to it that vessels
fetch freight (and passengers) from vessel sides (‘alongside’), sees to it that vessels deliver

freight and passengers to vessel sides (‘alongside’), and handle all related “paper-work” (‘bill-
of-ladings’) and finances.

14.1.3.2 Freight

From Middle English freight, from Middle Dutch vracht, Middle Low German vrecht

(“cost of transport”), ultimately from Proto-Germanic *fra- (intensive prefix) + Proto-Germanic *ai-

htiz (“possession”), from Proto-Indo-European *h2eyḱ (“to possess”), equivalent to for- + aught. Cog-

nate with Old High German frēht (“earnings”), Old English æht (“owndom”), and a doublet of fraught

[https://en.wiktionary.org/wiki/freight].

14.1.3.2.1 Freight as Endurants

Freight is both a singular and a plural term. So, by freight we shall understand one or more items
of discrete endurants or any amount of and liquid endurant. That is, for example, one or more 20
or 40 feet containers may be considered one freight item, and any amount of bunker oil may be
considered one freight item.

14.1.3.2.2 Freight as Behaviours

Freight are also considered behaviours: created as both endurants and as behaviours by the
freight forwarder at the instant of a freight forwarder’s first booking inquiry, and dismantled by
the freight forwarder at the completion of that freight’s transport.150

•••

We shall further sketch two behaviours. The servicing of freight transports, seen from a freight
forwarder and the servicing of freight transports, seen from a shipping line. Each of these be-
haviours if expressible as the composition of several actions. Were we here to also sketch a vessel’s
freight transport, then we would have to introduce such events as the vessel being delayed due
to unforeseen weather conditions, the vessel being ship-wrecked ()

150 We shall, without loss of generality, only model that freight undergo one vessel transport.

14.1 Informal Sketches of the Shipping Domain 407

14.1.3.3 Freight Forwarder Behaviour

The freight forwarder behaviour basically consists of the following freight forwarder actions.
(i) [FC] Freight Creation: The freight is “created” ! We do not [have to] define the circumstances

of creation.151

(ii) [FB] Freight Being Booked: There is the action of booking space and time for freight

between two harbours. It is directed at a shipping company by a freight forwarder. How that
freight forwarder came to book at that shipping company is left undefined. The shipping line
either says no thanks, another time, perhaps !”, or propose a sailing (i.e., a vessel and times of
departure and arrival), costs, etc., i.e., a bill-of-lading. The freight forwarder accepts “refusals”,
and either accepts the proposed bill-of-lading, or does not accept proposals.

(iii) [FD] Freight Delivery: In due time, if proposed bill-of-lading is accepted, the freight for-
warder receives notification from the shipping line that the vessel has arrived at designated
harbour of departure and the freight forwarder therefore delivers the freight at that harbour.

(iv) [FT] Freight Transport: The freight forwarder can now trace the freight transport.
(v) [FR] Freight Return: In due time, the freight forwarder receives notification from the ship-

ping line that the vessel has arrived at designated harbour of arrival and the freight forwarder
therefore fetches the freight at that harbour.

(vi) [FE] Freight Dismantlement: At some [short] time after the freight has been collected it
ceases to exist as freight !

(vii) [FM] Freight Management: And all the time the freight forwarder manages “paperwork”
and finances.

End of that story !

•••

The above sequence of characteristic freight forwarder actions can therefore be interpreted as
actions for one particular item of freight with these actions being interleaved with those for other
freight items also being handled by a freight forwarder. To distinguish between different freight
handlings freight forwarders naturally uses the unique freight identifier obtained in action [FC].

14.1.3.4 Shipping Line Behaviour

The shipping line behaviour basically consists of the following shipping line actions.
(i) [SQ] Booking Inquiry: The shipping line, at any time, accepts inquiries, from freight for-

warders, as to freight transport. The inquiries states freight essentials, whether inflammable/explosive,
whether a container or otherwise packaged (dimensions, weight, etc.), from and to harbours,
desirable shipping dates, etc. The shipping line decides, upon acceptance, whether to respond
immediately, or after some processing time, say minutes or hours, to the inquiry.

(ii) [SQH] Query Handling: The shipping line responds to inquiries either instantly or after
some [other] processing time. Either the line can satisfy, i.e., accepts, the request and sends the
inquiring freight forwarder a transport proposal, tentatively reserves space and time (i.e., vessel)
for the subject freight, and then awaits its acceptance or refusal, or the line cannot satisfy, i.e., must
refuse, the request and sends the inquiring freight forwarder a polite negative response – and
“closes” that inquiry.

(iii) [SR] Booking Reaffirmation: The shipping line, at any time, accepts acceptance of accepted
orders. It does so, for example, by reaffirming, to the freight forwarder, the now mutually accepted
order, while initiating a physical order handling “process”, i.e., changes the order from tentative
to definite.

151 Technically the freight forwarder behaviour “spawns” off a henceforth concurrently operating freight behaviour.

408 14 Shipping [Spring/Summer 2007, February–March 2021]

(iv) [SV1] Vessel Co-ordination, 1: The shipping line, at some time thereafter, informs the vessel
of its cargo for specific sailings, while assuring itself of that vessel’s availability.

(v) [SH1] Harbour Co-ordination, 1: The shipping line, at some time thereafter, informs desig-
nated harbours of its plans for the vessel in question to indeed arrive at, unload and load freight,
and depart from that harbour, while ensuring that the harbour in question is indeed prepared for
that. [We omit treatment of no or negative response from harbours.]

(vi) [SFA] Freight Acceptance: At the appointed date and time the shipping line observes, by
communication from the vessel that the freight forwarder delivers the designated freight alongside
the vessel.

(vii) [SV2] Vessel Co-ordination, 2: Eventually the shipping line is informed that the vessel
departs freight origin harbour.

(viii) [SV3] Vessel Co-ordination, 3: Eventually the shipping line is informed that the vessel
arrives at freight destination harbour.

(ix) [SH2] Harbour Co-ordination, 2: The shipping line informs that harbour of the imminent
arrival of one of its vessels.

(x) [SF] Freight Forwarder Notification: The shipping line informs the freight forwarder of the
arrival of “its” freight.

(xi) [SFD] Freight Delivery: And the freight forwarder informs the shipping line of its receipt
of freight.

(xii) [SFM] Freight Management: All the while the shipping line keeps track of all the “paper-
work” and financial matters, and other freight related matters.

End of that story !

•••

Shipping lines handle much freight. The above sequence of twelve characteristic shipping line
actions can therefore be interpreted as actions for one particular item of freight, sometimes,
like [SV1-2-3,SH1-2,SFM], merged with those for “similarly” transported freight. with these
actions being interleaved with those for other freight items To distinguish between different
freight handlings shipping lines naturally uses the unique freight identifier obtained in action
[SQ].

•••

As the reader will have observed: The “workhorse” of the described domain is the shipping line
– as one should indeed expect it to be !

•••

The stories narrated above are as yet not in their final form. Language, clarification and other
improvements will eventually find their way into the above text.

14.1.4 Some Comments

14.1.4.1 Caveat Concerning Sketches

In the informal language sketching of a domain there is, however, a serious problem. One way of
illustrating the problem is as follows: Replace all domain specific nouns and verbs with α,β,γ, ...,
respectively x, y,z, Now you see the problem: What does the sketch now “describe” ? By using
nouns and verbs of a domain that may be known to the reader, and for which the reader may have
some understanding, but for which any two readers may usually have different understandings,
the readers are being “lured” into a possible trap ! Only a proper narrative description that is

14.1 Informal Sketches of the Shipping Domain 409

strongly linked to a formal specification – one where the αs, βs,γs, ..., respectively xs, ys,zs, ... are
given mathematical meanings – may be satisfactory – provided, of course, that the mathematics
is consistent and relatively complete152.

14.1.4.2 The Insufficiency of Narrative Descriptions

Why is it not sufficient with just narrative, i.e., informal, descriptions ? The answer is simple. For
the shipping domain, just sketched, it might seem sufficient. But assume that you, the reader of
this sketch, come from somewhere where there is no “nearby” notion of waterways, hence of
vessels, etc. The fact that our sketches uses many terms from the shipping domain does not make
them understandable, in-and-by-themselves. Take another example: You are from some Pacific
island. There are no railways there. And you sketch a railway domain. The Pacific islander, really,
have no clue as to the meaning of such terms as a railway track, a railway switch, etc. So the
meaning of terms – such as presented in the above sketches – are far from clear. The danger in this
is that these terms many be understood to possess properties that were not sketched.

14.1.4.3 What Do Formal Descriptions Contribute ?

Conjoining a narrative, informal text with formal, mathematical text is meant to “fill-the-gap”: to
allow the user of domain model to asset properties beyond what has been explicitly described
and, based on such formalisations, reason that a postulated domain property holds, or does not
hold.

14.1.4.4 Limitations of Domain Models

But we cannot possibly, neither informally narrate nor formally specify a “complete domain”, that
is, “all” domain properties. Our domain descriptions must necessarily focus on some properties
while ignoring other properties. That is, every domain model has a purpose.

14.1.4.5 Families of Domain Models

So, for the domain of shipping, we can thus expect a set of domain models. One like the one
presented in this report. Another which focus of vessels: their loading and unloading. Yet another
which focus on vessel navigation: on the ocean and into and out from harbours. Etetera.

14.1.4.6 There is No “Standard Model”

Just like for physics, there is not standard model. But, as for physics, there is now, with [55], a “stan-
dard” way of developing and presenting domain models. With Newton’s Classical Mechanics153

described in terms of differential equations etc. there is a “standard” approach to analysing & de-
scribing mechanics (etc.). For every heretofore not described classical mechanics domain problem
the physicists and engineers now know how to tack the analysis & description of that domain.
Similarly for every human-assisted discrete dynamics and primarily artifact “populated” domain

152 – where ‘consistent and relative complete’ are well-defined notion of mathematical logic
153 Other contributors to the formal description of Classical Mechanics were Gottfried Wilhelm Leibniz, Joseph-
Louis Lagrange, Leonard Euler, etc.

410 14 Shipping [Spring/Summer 2007, February–March 2021]

the computer scientists and software engineers now know how to tack the analysis & description
of that domain.

14.2 Endurants: External Qualities

14.2.1 Freight

Although the notion of ‘freight’ is, indeed, a core concept of this report, it will not “play center
stage’.

14.2.2 Endurant Sorts & Observers

576. We shall consider an aggregate of shipping in the context of

a. an aggregate of navigable waterways, i.e., an ocean, rivers and canals154 with identification
of harbours;

b. an aggregate of land masses, i.e., continents and islands, small and large;
c. an aggregate of thus identified harbours;
d. an aggregate of vessels that can carry freight and/or passengers;
e. an aggregate of shipping lines – which commands (owns or operate) these vessels;
f. an aggregate of freight forwarders155;
g. an aggregate of freight; and
h. an aggregate of passengers.

577. The aggregate of harbours is here seen as a set of harbours –
578. with harbours to be further defined.
579. The aggregate of vessels is here seen as a set of vessels –
580. with vessels to be further defined.
581. The aggregate of shipping lines is here seen as a set of shipping lines –
582. with shipping lines to be further defined.
583. The aggregate of freight forwarders is here seen as a set of freight forwarders –
584. with freight forwarders to be further defined.
585. The aggregate of freight is here Sean’s as a set of freight –
586. with freight to be further defined.
587. The aggregate of passengers is here seen as a set of passengers –
588. with passenger to be further defined.

The waterways and land masses are here further undefined. Harbours, vessels, shipping lines,
freight forwarders, freight and passengers will be further defined below.

154 There are but two oceans. [We do not exclude the Caspian Sea. Our model covers both that and “the other”
ocean, as the only two !] The “other”, the larger ocean is, for pragmatic reasons “divided” up into separately named
“oceans”: the Atlantics, North and South, the Pacific, the Indian, the Arabian Sea, the Barents Sea, the Arctic Sea, the
Anarctic Sea (Southern Ocean, Austral Ocean), etc. Basically two canals provide short-cuts between two otherwise
disperse areas of that one ocean: the Suez and the Panama.
155 The borderline between freight forwarders and shipping lines is fuzzy. Some shipping lines offer freight for-
warding: the logistics of moving freight between end-customer and vessel, etc.

14.2 Endurants: External Qualities 411

type
576. S

576a. WV
576b. LM

576c. AH
576d. AV

576e. ASL

576f. AFF
576g. AF

576h. AP

577. Hs = H-set
578. H

579. Vs = V-set
580. V

581. SLs = SC-set
582. SL
583. FFs = FF-set
584. FF

585. Fs = F-set

586. F

587. Ps = P-set
588. P
value
576a. obs WV: S→WV
576b. obs LM: S→ LM

576c. obs AH: S→ AH

576d. obs AV: S→ AV
576e. obs ASL: S→ ASC

576f. obs AFF: S→ AFF

576g. obs AF: S→ AF
576h. obs AP: SS→ AP

577. obs Hs: AH→ Hs
579. obs Vs: AV→ Vs

581. obs SLs: ASL→ SL-set
583. obs FFs: AFF→ FF-set
585. obs Fs: AF→ F-set
587. obs Ps: AP→ P-set

The waterways with its harbours define an in[de]finite set of [circular] routes that can be sailed
by the vessels. There are vessels other than those owned or commanded by the company. The
company is also characterised by a definite set of routes sailed/serviced by its vessels. All this will
be clear as we proceed.

14.2.3 Endurant Values

From an aggregate of shipping one can extract all its subsidiary endurants – starting with that
aggregate:

589. the aggregate of shipping,

a. its aggregate of waterways,
b. its aggregate of land masses,
c. its aggregate of harbours,
d. its aggregate of vessels,
e. its aggregate of shipping lines,
f. its aggregate of freight forwarders,
g. its aggregate of freight and
h. its aggregate of passengers;

and their
590. set of harbours,

591. set of vessels,

592. set of shipping lines,

593. set of freight forwarders,

594. set of freight,

595. set of passengers,

596. harbours,

597. vessels,

598. shipping lines,

599. freight forwarders,

600. freight and

601. passengers.

value
589. se:SL [ι 576,π410]

589a. wve:WV = obs WV(se) [ι 576a,π 410]

589b. lme:LM = obs LM(se) [ι576b, π410]

589c. ahe:AH = obs AH(se) [ι 576c,π 410]

589d. ave:AV = obs AV(se) [ι 576d,π 410]

589e. asle:ASL = obs ASL(se) [ι 576e,π 410]

412 14 Shipping [Spring/Summer 2007, February–March 2021]

589f. a f fe:AFF = obs AFF(se) [ι 576f,π410]

589g. a fe:AF = obs AF(se) [ι 576g,π 410]

589h. ape:AP = obs AP(se) [ι 576h,π 410]

590. hse:Hs = obs Hs(ahe) [ι 577,π410]

591. vse:Vs = obs Vs(ave) [ι 579,π410]

592. slse:SLs = obs SLs(asle) [ι 581,π410]

593. f f se:FFs = obs FFs(a f ce) [ι 583,π410]

594. f se:Fs = obs Fs(a fe) [ι 585,π410]

595. pse:Ps = obs Ps(ape) [ι 587,π410]

596. hes:H UI-set = {h|h:H•h ∈ obs Hs(ahe)} [ι 578,π 410]

597. ves:V UI-set = {v|v:V•v ∈ obs Vs(ave)} [ι580,π 410]

598. sles:SC UI-set = {sl|sl:SL•sl ∈ obs SLs(slse)} [ι 582,π 410]

599. f fes:FF UI-set = {ff|ff:FF•ff ∈ obs FF(f cse)} [ι 584,π 410]

600. fes:F UI-set = {f|f:F•f ∈ obs Fs(f se)} [ι 586,π410]

601. pes:P UI-set = {p|p:P•p ∈ obs Ps(pse)} [ι 589,π411]

602. We can define the set of all endurants.

value
602. all ends = {se}∪{wve}∪{lme}∪{ahe}∪{ave}∪{asle}∪{a f fe}∪{ape}

602. ∪hse∪vse∪slse∪ f f se∪ f fe∪pse∪hes∪ves∪sles∪ f fes∪ fes∪pes

14.3 Endurants: Internal Qualities

14.3.1 Unique Identifiers

14.3.1.1 Unique Identifier Types and Observers

We can associate unique identifiers with:

603. The aggregate of shipping;
604. the aggregate of waterways;
605. the aggregate of land masses;
606. the aggregate of harbours;
607. the aggregate of vessels;
608. the aggregate of shipping lines

609. the aggregate of freight forwarders
610. the aggregate of freight

611. the aggregate of passengers
612. the set of harbours;
613. each individual harbour;

614. the set of vessels;

615. each individual vessel;

616. the set of shipping lines;

617. each individual shipping line;

618. the set of freight forwarders;

619. each individual freight forwarder;

620. the set of freight;

621. each individual freight;

622. the set of passengers;

623. each individual passenger;

type
603. S UI [ι 576,π410]

604. WV UI [ι 576a,π 410]

605. LM UI [ι 576b,π 410]

606. AH UI [ι 576c,π410]

607. AV UI [ι 576d,π410]

608. ASC UI [ι576e, π410]

609. AFF UI [ι 576f,π410]

610. AF UI [ι 576g,π 410]

611. AP UI [ι 576h,π410]

612. Hs UI [ι 577,π 410]

613. H UI [ι 578,π410]

14.3 Endurants: Internal Qualities 413

614. Vs UI [ι 579,π 410]

615. V UI [ι 580,π410]

616. SCs UI [ι581,π 410]

617. SC UI [ι 582,π410]

618. FFs UI [ι 583,π 410]

619. FF UI [ι 584,π 410]

620. Fs UI [ι 585,π410]

621. F UI [ι 586,π 410]

622. Ps UI [ι 587,π 410]

623. P UI [ι 589,π411]

value
603. uid S: S→ S UI

604. uid WV: WV→WV UI
605. uid LM: LM→ LM UI

606. uid AH: AH→ AH UI

607. uid AV: AV→ AV UI

608. uid ASL: ASC→ ASC UI

609. uid AFF: AFF→ AFF UI

610. uid AF: AF→ AF UI
611. uid AP: AP:→ AP UI

612. uid Hs: Hs→ Hs UI
613. uid H: H→ H UI

614. uid Vs: Vs→ Vs UI

615. uid V: V→ V UI
616. uid SLs: SLs→ SLs UI

617. uid SL: SL→ SL UI

618. uid FFs: FFs→ FFs UI
619. uid FF: FF→ FC UI

620. uid Fs: Fs→ Fs UI
621. uid F: F→ F UI

622. uid Ps: Ps→ Ps UI

623. uid P: P→ P UI

14.3.1.2 Domain Unique Identifiers

From an aggregate of shipping lines one can extract all the unique identifiers of its subsidiary
endurants – staring with that aggregate:

624. the aggregate of shipping,

a. its aggregate of waterways,
b. its aggregate of land masses,
c. its aggregate of harbours,
d. its aggregate of vessels,
e. its aggregate of shipping lines,
f. its aggregate of freight forwarders,
g. its aggregate of freight and
h. its aggregate of passengers;

and their
625. set of harbours,

626. set of vessels,

627. set of shipping lines,

628. set of freight forwarders,

629. set of freight,

630. set of passengers,

631. harbours,

632. vessels,

633. shipping lines,

634. freight forwarders,

635. freight and

636. passengers.

value
624. sui:S UI = uid S(se) [ι 576,π 410]

624a. wvui:WV UI = uid WV(obs WV(se)) [ι 576a,π 410]

624b. lmui:LM UI = uid LM(obs LM(se)) [ι 576b,π 410]

624c. ahui:AH UI = uid AH(obs AH(se)) [ι 576c,π 410]

624d. avui:AV UI = uid AV(obs AV(se)) [ι 576d,π410]

624e. aslui:ASL UI = uid ASC(obs ASL(se)) [ι 576e,π 410]

624f. a f fui:AFF UI = uid AFF(obs AFF(se)) [ι 576f,π 410]

624g. a fui:AF UI = uid AF(obs AF(se)) [ι 576g,π 410]

624h. apui:AP UI = uid AP(obs AP(se)) [ι 576h,π 410]

625. hsui:Hs UI = uid Hs(obs Hs(ahe)) [ι 577,π 410]

626. vsui:Vs UI = uid Vs(obs Vs(ave)) [ι 579,π410]

627. slsui:SLs UI = uid SLs(obs SLs(asle)) [ι 581,π 410]

628. f f sui:FFs UI = uid FFs(obs FFs(a f ce)) [ι 583,π 410]

629. f sui:Fs UI = uid Fs(obs Fs(a fe)) [ι 585,π 410]

630. psui:Ps UI = uid Ps(obs Ps(ape)) [ι 587,π410]

414 14 Shipping [Spring/Summer 2007, February–March 2021]

631. huis:H UI-set = {uid H(h)|h:H•h ∈ obs Hs(ahe)} [ι 578,π 410]

632. vuis:V UI-set = {uid V(v)|v:V•v ∈ obs Vs(ave)} [ι 580,π 410]

633. scuis:SL UI-set = {uid SL(sl)|sl:SL•sl ∈ obs SLs(slse)} [ι 582,π410]

634. f fuis:FF UI-set = {uid FF(ff)|ff:FF•ff ∈ obs FF(f f se)} [ι 584,π410]

635. fuis:F UI-set = {uid F(f)|f:F•f ∈ obs Fs(f se)} [ι 586,π410]

636. puis:P UI-set = {uid P(p)|p:P•p ∈ obs Ps(pse)} [ι589,π 411]

637. We can define the set of all endurant identifiers.

value
637. all uids = {sui}∪{wvui}∪{lmui}∪{ahui}∪{avui}∪{ascui}∪{a f fui}∪{apui}

637. ∪hsui∪vsui∪scsui∪ f f sui∪ f sui∪psui∪hss∪vuis∪scuis∪ f fuis∪ fuis∪puis

14.3.1.3 An Axiom

638. Endurants are uniquely identified.

axiom
638. � card all ends = card all uids

The always operator, �, expresses that card all ends=card all uids holds at any time.

14.3.1.4 Retrieve Endurant Values

639. Given a unique identifier, ui, in all uids and given the set of all endurants all ends we can
retrieve the endurant, e of identifier ui.

value
639. get E: UI→ E
639. get E(ui) ≡ let e:E • e ∈ all ends⇒ uid E(e)=ui in e end

14.3.2 Mereologies

14.3.2.1 A Shift in Modeling

Till now we have modeled the shipping line domain considering all its endurants to be non-
structures (cf. [55, Sects. 4.8 and 4.10]). From now on we shall consider all aggregates and sets of
endurants as structures. This means that we can dismiss our modeling of the unique identifiers
for all aggregates and set of endurants void and nil. Thus we shall only model the mereology of
what we basically treat as atomic endurants: freight forwarders, shipping lines, vessels, harbours,
freight and passengers.

14.3.2.2 Mereology Types and Observers

The mereology that we shall promote emphasises both topological and conceptual properties
of shipping line systems. They express topological properties when mandating unique identifiers

14.3 Endurants: Internal Qualities 415

of spatially close/related endurants, And they express conceptual properties when mandating
unique identifiers of endurants with which shipping lines “do business” ! Further topological and
conceptual properties of shipping line systems will be expressed in Sect. 14.3.3 where we treat
attributes of shipping line systems.

14.3.2.2.1 Harbour Mereology

640. Harbour mereologies are

• the non-empty set of unique identifiers of vessels that may use the harbour,
• the pair of two possibly empty sets of unique identifiers of freight: one identifying freight to

be loaded (todo), the other having been unloaded (done),
• the unique identifier of the waterways and the
• the unique identifier of the landmass.

type
640. H Mer = V UI-set × (todo:F UI-set×done:F UI-set) ×WV UI × LM UI

value
640. mereo H: H→ H Mer

641. The well-formedness of a harbour mereology entails

• that its set of vessel identifiers is non-empty and included in the set of all vessel identifiers,
• the “to do” and the “done” freight does not “overlap” and are a subset of all freight.
• that its waterways identifier is that of the known waterway[s], and
• that its landmass identifier is that of the known landmass.

value
641. wf H Mer: H Mer→ Book

641. wf H Mer(vuis,(todo,done),wvui,lmui) ≡
641. {}, vuis ⊆ vuis [ι 632,π 413]

641. ∧ todo ∩ done = {} ∧ todo∪done⊆ fuis [ι 635,π413]

641. ∧ wvui = wvui [ι 624a,π 413]

641. ∧ lmui = lmui [ι 624b,π 413]

14.3.2.2.2 Vessel Mereology

642. Vessel mereologies are

• the non-empty set of unique identifiers of harbours that it may use,
• the non-empty set of unique identifiers of shipping lines for which it sails, i.e., which share

an agreement to operate that vessel, and
• the unique identifier of the waterways.

type
642. V Mer = H UI-set × SL UI-set ×WV UI
value
642. mereo V: V→ V Mer

643. The well-formedness of a vessel mereology entails

416 14 Shipping [Spring/Summer 2007, February–March 2021]

• that its set of harbour identifiers is non-empty and included in the set of all harbour identi-
fiers,

• that its set of shipping line identifiers is non-empty and included in the set of all shipping
line identifiers,

• and that its waterways identifier is that of the known waterways.

643. wf V Mer: V Mer→ Bool
643. wf V Mer(huis,scuis,wvui) ≡

643. {},huis⊆huis [ι 631,π 413]

643. ∧ {}, scuis=scuis [ι 633,π 413]

643. ∧ wvui=wvui [ι 624a,π413]

14.3.2.2.3 Shipping Line Mereology

644. Shipping line mereologies are

• the non-empty set of unique identifiers of vessels that it operates,
• the non-empty set of unique identifiers of freight forwarders which it services and
• the non-empty set of identifiers of harbours that it uses,

type
644. SL Mer = V UI-set × FF UI-set × H UI-set
value
644. mereo SL: SL→ SL Mer

645. The well-formedness of a shipping line mereology entails

• that its set of vessel identifiers is non-empty and included in the set of all vessel identifiers,
• that its set of freight forwarder identifiers is non-empty and included in the set of all freight

forwarder identifiers, and that its set of harbour identifiers is non-empty and included in the
set of all harbour identifiers.

value
645. wf SC Mer: SC Mer→ Bool
645. wf SC Mer(vuis,fcuis,huis) ≡
645. {},vuis⊆vuis
645. ∧ {},ffuis⊆ f fuis
645. ∧ {},huis⊆huis [ι 632,π 413, ι 634,π 413]

Two or more shipping lines may co-sail one or more vessels156.

14.3.2.2.4 Freight Forwarder Mereology

646. Freight forwarder mereologies are

• the non-empty set of unique identifiers of shipping lines that it uses,
• the non-empty set of unique identifiers of harbours to which it delivers and from which it

fetches freight, and the possibly empty set of unique identifiers of freight with which it is
involved.

156 We shall not model the specifics, i.e., details of co-sailing.

14.3 Endurants: Internal Qualities 417

type
646. FF Mer = SL UI-set × H UI-set × F UI-set
value
646. mereo FF: FF→ FF Mer

647. The well-formedness of a freight forwarder mereology entails

• the non-empty set of unique identifiers of known shipping lines that it uses and
• the non-empty set of unique identifiers of known harbours

value
647. wf FF Mer: FF Mer→ Bool
647. wf FF Mer(sluis,huis,) ≡
647. {},sluis⊆sluis [ι 627,π 413]

647. ∧ {},huis⊆huis [ι 631,π413]

14.3.2.2.5 Freight Mereology

648. Freight mereologies are

• the unique identifier of the freight forwarder,
• the unique identifier of the shipping line which is intended to ship, or which ships that

freight, and
• the pair of unique identifiers of the two harbour involved in the freight transport.

type
648. F Mer = FF UI × SC UI × (H UI×H UI)

value
648. mereo F: F→ F Mer

649. The well-formedness of a freight mereology entails

• that the freight forwarder identifier is known,
• that the shipping line identifier is known and
• that the two known harbours are different.

649. is wf F Mer: F Mer→ Book

649. is wf F Mer(ffui,scui,(fhui,thui)) ≡
649. ffui∈ f fuis
649. ∧ scui∈scuis
649. ∧ fhui,thui ∧ {fhui,thui}⊆huis

14.3.2.2.6 Passenger Mereology

650. Passenger mereologies are

• the identifier of the vessels with which they have traveled, are traveling or intend to travel,
and

• the unique identifier of the shipping lines with whom they have travel-led, are traveling or
intend to travel.

418 14 Shipping [Spring/Summer 2007, February–March 2021]

type
650. P Mer = V UI-set × SC UI-set
value
650. mereo P: P→ P Mer

651. The well-formedness of a passenger mereology entails

• that the set of vessel identifiers is known,
• that the set of shipping line identifiers is known, and
• that the shipping lines are indeed operating the identified vessels.

value
651. wf P Mer: P Mer→ Bool
651. wf P Mer(vuis,scuis) ≡

651. vuis⊆vuis ∧ scuis⊆scuis ∧ [ι 632,π 413, ι 633,π413]

651. ∀ v ui:V UI • v ui ∈ vuis, ∃ sc ui:SC UI • sc ui ∈ scuis⇒

651. let sc = get part(sc ui) in let (vuis′,) = mereo SC(sc) in v ui ∈ vuis′ end end

14.3.2.2.7 Waterways Mereology

652.
653.
654.
655.

type
652.
653.

654.

655.
value
652.

653.
654.

655.

14.3.2.2.8 Landmass Mereology

656.
657.
658.
659.

type
656.
657.

658.
659.

value

14.3 Endurants: Internal Qualities 419

656.

657.

658.
659.

14.3.3 Attributes

14.3.3.1 Attribute Types and Observers

We shall illustrate but a very few attributes. Those we choose to illustrate appear to be the ones
most relevant for the specific examples of freight forwarder, shipping line, vessel, harbour and
freight behaviours.

14.3.3.1.1 Freight Forwarder Attributes

660. For any one specific freight, the freight forwarder, undergoes a sequence of states. These are
sketched in Sect. 14.1.3.3 on page 407. FFHΣmodels the set of state names for these.

661. Freight forwarder history is a freight identifier indexed, reverse-ordered chronological sequence
of freight state labeled freight information.

662. We leave FFInfo further undefined,

type
660. FFHΣ =

′′
FC
′′
|
′′
FBB

′′
|
′′
FB
′′
|
′′
FD
′′
|
′′
FT
′′
|
′′
FR
′′
|
′′
FE
′′
|
′′
FM
′′

661. FFHist = F UI →m (TIME × FFHΣ × FFInfo)∗

661. FFInfo = ...
value
661. attr FFHist: FF→ FFHist

14.3.3.1.2 Shipping Line Attributes

663.
664.
665.
666.

type
663.

664.
665.

666.
value
663.

664.
665.

666.

420 14 Shipping [Spring/Summer 2007, February–March 2021]

14.3.3.1.3 Vessel Attributes

667.
668.
669.
670.

type
667.

668.
669.

670.

value
667.

668.
669.

670.

14.3.3.1.4 Harbour Attributes

671.
672.
673.
674.

type
671.
672.

673.

674.
value
671.

672.
673.

674.

14.3.3.1.5 Freight Attributes

675.
676.
677.
678.

type
675.
676.

677.
678.

value

14.4 Perdurants 421

675.

676.

677.
678.

14.3.3.2 Attribute Wellformedness

14.4 Perdurants

By the transcendental deductions introduced in [55, Chapter 6] we now interpret some endurant
parts as behaviours. A behaviour is a set of sequences of actions, events and behaviours. Behaviours
interact, here expressed in the style of CSP [99, 100, 101, C.A.R. Hoare] as embedded in RSL [92].

14.4.1 Freight as Endurants and as Behaviours

The central entity of the shipping line domain is that of freight. Freight have, so far, been considered
as atomic endurants. We shall now transcendentally deduce freight into behaviours. There is a
dynamically varying number of uniquely identified freight. We suggest to model freight as follows:
Freight is created by the freight forwarder. At the moment of such creation the freight “receives”
its, i.e., a unique identifier, one that has not been used before, and one that will never be used, in
the creation of other freight, again. Once a freight has completed a full transport as directed by
the freight forwarder and carried out by a shipping line and one of its vessels, that freight ceases
to be a freight, that is, as an endurants and as a behaviour. Its unique identifier will never be the
identifier of other freight.

14.4.2 Actions, Events and Behaviours

14.4.3 Global Freight Variable

Freight occurs, appears, and freight disappears. In this model we assume a fixed number of
freight forwarders, shipping lines, vessels and harbours157. But we must model a varying number
of freight. We shall, for simplicity, and without loss of generality, assume that freight becomes so
when in the care of freight forwarders, and that freight ceases to be freight, i.e., to exist, one it has
been transported.

Although we shall model freight as behaviours we shall introduce, as a technicality,

679. a global variable freight uids which is initialised to an empty set of unique freight identifiers.

At any time it contains the set of all unique identifiers of freight which have been created as freight,
When freight ceases to exist that freight’s unique identifier is not deleted from freight uids.

variable
679. freight uids:F UI-set := {}

value
680. get F UI: Unit→ F UI

157 We also assume fixed waterways and land masses.

422 14 Shipping [Spring/Summer 2007, February–March 2021]

680. get F UI() ≡

680. let f ui:F UI • f UI < freight uids in
680. freight uids := freight uids ∪ {f ui};
680. f ui end

680. get F UI is a value-returning action.

• It applies to the global state and returns a “new, hitherto unused” unique freight identifier
• while updating the global state variable freight uids with that identifier.

14.4.4 Channels

In order for CSP-modeled behaviours to interact, they must communicate, and they do so over
the medium of, as here, channels.

We shall name the full ensemble of channels over which any of the shipping company, freight
forwarder, harbour and harbour behaviours communicate

• channel ch[{uii,ui j}]: MSG

where indices uii and ui j are unique identifiers of these behaviours – cum endurant parts, and
where MSG is the type of the communicated value.

14.4.5 Behaviours

14.4.5.1 Behaviour Signatures

14.4.5.1.1 Freight Forwarder Signature

681. We introduce the notion of “the making of a freight behaviour skeleton” NewF:

• either there is not such skeleton, "nil",
• or there are the elements that make up a freight endurant: a unique freight identifier, a freight

mereology and the static attributes of a freight. What they are is really of no consequence.
The programmable attribute only becomes relevant as soon as the freight endurant, and
hence the freight behaviour is created.

682.

type
681. NewF =

′′
nil

′′
| F UI × F Mer × F Stat

value
682. ff: ffui:FF UI × (sluis,vuis,fuis):FF Mer × ffstat:FF Stat→ ffprgr:FF Prgr

682. → { ch[{ffui,ui}] | ui:SL UI|F UI•slui∈sluis∪vuis∪ f uis } Unit

14.4.5.1.2 Shipping Line Signature

683.

14.4 Perdurants 423

value
683. sl: slui:SL UI × (vuis,ffuis,huis):SL Mer × slstat:SL Stat→ slprgr:SL Prgr

683. → { ch[{slui,ui}] | ui:FF UI|V UI|H UI•ui∈ f f uis∪huis } Unit

14.4.5.1.3 Vessel Signature

14.4.5.1.4 Harbour Signature

14.4.5.1.5 Freight Signature

14.4.5.2 Behaviour Definitions

14.4.5.2.1 Freight Forwarder Definition

681. We have introduced, cf. Item 681 on the facing page, the notion of “the making of a freight
behaviour skeleton” NewF. To repeat:

• either there is not such skeleton, "nil",
• or there are the elements that make up a freight endurant: a unique freight identifier, a freight

mereology and the static attributes of a freight, What they are is really of no consequence.
The programmable attribute only becomes relevant as soon as the freight endurant, and
hence the freight behaviour is created.

684. The freight forwarder behaviour may
685. [FC] non-deterministically internally, ⌈⌉, choose to [somehow] accept an item of freight, ...,

as expressed in the ffc behaviour, and, likewise non-deterministically internally, decide to
“convert” the skeleton into a behaviour.

685a.–685d. Non-deterministically internally the freight forwarder behaviour chooses among the former
alternative behaviour, ffc, or the following specific freight related alternatives.

a. [FB] The freight forwarder communicates a booking order to a shipping line. The shipping
line either accepts this booking with a proposed bill-of-lading, or declines it. The freight
forwarder must accept declined bookings and must either accept or decline a proposed
bill-of-lading.
We assume that the time elapsed between the freight forwarder communicating its booking
and the shipping line responding to this booking is such that the booking and its response
can be modeled as a single behaviour composed from two CSP output/input actions.
[ffb stands for ‘ f reight f orwarder booking’.]

b. [FD] The freight forwarder is informed by the shipping line that the designated vessel is
ready to accept the freight for transport.
We assume that the time elapsed between the freight forwarder receiving this alert and the
freight forwarder being able to respond is such that the alert and its response can realistically
be modeled as a single behaviour composed from two CSP output/input actions. See next.
[ffd stands for ‘ f reight f orwarder delivery alert (from shipping line)’.]

c. [FR] The freight forwarder is informed by the shipping line that the designated vessel is
ready to return the freight it has transported.
We assume that the time elapsed between the freight forwarder receiving this alert and the
freight forwarder being able to respond is such that the alert and its response must most
realistically be modeled as two behaviours. See next.
[ffr stands for ‘ f reight f orwarder freight return (message, from shipping line)’.]

d. [FE] The freight forwarder collects the freight and its saga as ‘freight’ is over.
[ffe stands for ‘ f reight f orwarder freight ending’.]

424 14 Shipping [Spring/Summer 2007, February–March 2021]

686. [FM] In-between, before and after these specific freight related actions, the freight forwarder
“performs” management actions “of its own” !
[ff stands for ‘ f reight f orwarder management’.]

[stands for]

type
681. NewF =

′′
nil

′′
| F UI × F Mer × F Stat

value
682. ff: fui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ ffhist:FF Hist

682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
684. ff(ffui,(sluis,fuis),ffstat)(ffhist) ≡
685. [FC] ffc(ffui,(sluis,fuis),ffstat)(ffhist)

685a. [FB] ⌈⌉ (⌈⌉⌊⌋ ffb(ffui,(sluis,fuis),ffstat)(ffhist)

685b. [FD] ⌈⌉⌊⌋ ffd(ffui,(sluis,fuis),ffstat)(ffhist)
685c. [FR] ⌈⌉⌊⌋ ffr(ffui,(sluis,fuis),ffstat)(ffhist)

685d. [FE] ⌈⌉⌊⌋ ffe(ffui,(sluis,fuis),ffstat)(ffhist))

686. [FM] ⌈⌉ ffm(ffui,(sluis,fuis),ffstat)(ffhist)

Freight Creation:

687. Freight forwarders
688. non-deterministically internally, somehow, accept freight. Technically this is modeled by the

freight forwarder obtaining a hitherto unused unique identifier,
689. and, from own attribute values and from the freight “customer”, ”...”, creating a freight en-

durant, mkF(fui,fmer,fstat) –
690. which it transcendentally deduces into a freight behaviour
691. which behaves concurrently, ‖,
692. with a resumed freight forwarder behaviour with an augmented history that reflects the creation

of a freight (endurant and behaviour).

type
681. mkF :: F UI × F Mer × F Stat

value
682. ffc: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ ffprgr:FF Prgr

682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
687. ffc(ffui,(sluis,fuis),ffstat)(ffhist) ≡

688. let f ui = get F UI() in
689. let mkF(fui,fmer,fstat) = heureka Freight(f ui,ffstat,...) in [axiom fui = f ui]
690. f(mkF(fui,fmer,fstat))(〈(record TIME())〉) end
691. ‖

692. ff(ffui,(sluis,fuis),ffstat)([fui7→〈(record TIME(),mkF(fui,fmer,fstat))〉]∪ffhist) end

689. heureka Freight: F UI × F Stat × ...→ mkF

Freight Booking:

693. For the case that the freight forwarder history, for some freight, fui, records a singleton, h, which
designates the creation of that freight, the freight forwarder offers the following transactions

a. with a selected shipping line, slui, and for transport between specific harbours:
b. I offers, to that shipping line, a booking request containing the description, mkF(...), of the

freight, and the from- and to harbours of requested transport.
c. While awaiting a reply from the shipping line,

14.4 Perdurants 425

d. the freight forwarder records the time, τ′, and an element, h′, of the freight forwarder history.
e. Before resuming being the freight forwarder behaviour, ff, the freight forwarder
f. records the time, τ′, and an element, h′, of the freight forwarder history.

694. For the case that the freight forwarder history, for some freight, fui, does not, for any freight
(fui), record a singleton, h:〈(τ,mkF(fui,fmer,fstat))〉]∪fhist, which designates the creation of some
freight, the freight forwarder does not engage in this alternative of the freight forwarder, ff,
behaviour.

type
693b. mkBooking :: SL UI × mkF(F UI,F Mer,F Stat) × (H UI×fd:TIME) × (H UI×td:TIME)
693b. axiom ∀ mkb:mkBooking • fd(mkb)<td(mkb)

693c. Reply == mk Decline Booking Request(SL UI,t:TIME,F UI)
693c. | mk Accept Booking Request(SL UI,t:TIME,bol:BoL,(H UI×TIME),(H UI×TIME))

value
682. ffb: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ ffhist:FF Hist
682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
693. ffb(ffui,(sluis,fuis),ffstat)(ffhist:[fui7→h:〈(τ,mkF(fui,fmer,fstat))〉]∪ffhist′) ≡

693a. freight booking(ffui,(sluis,fuis),ffstat)(mkF(fui,fmer,fstat))(ffhist)

693a. freight booking: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ mkf:MkF→ ffhist:FF Hist
682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
693a. freight booking(ffui,(sluis,fuis),ffstat)(mkf)(ffhist) ≡

693a. let (slui,(fh,fd),(th,td)) = select shipping line and time(ffstat,mkf,ffhist) in
693b. ch[{ffui,slui}] ! mkBooking(slui,mkF(fui,fmer,fstat),(fh,fd),(th,td)) ;

693d. let τ′ = record TIME(), h′′ = 〈(τ′,mkBooking(slui,mkF(fui,fmer,fstat),(fh,fd),(th,td)))〉 in
693c. let reply = ch[{ffui,slui}] ? in
693f. let τ′′ = record TIME(), h′′′ = 〈(τ′′,reply)〉 in
693e. ff(ffui,(sluis,fuis),ffstat)([fui7→h′′′ ĥ′′ ĥ]∪fhist)
693. end end end end

693a. select shipping line and time: mkF(F UI,F Mer,F Stat) × MkF × FF Hist
693a. → SL UI × (H UI×fd:TIME) × (H UI×td:TIME)

Freight Acceptance and Delivery

695. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates the booking acceptance, [fui7→〈(τ,mk Accept Booking Re-
quest(slui,t,bol,(fh,fd),(th,td)))〉̂ h]∪fhist, for a freight, the freight forwarder offers the following
transactions:

a. initially it offers to accept a designated, previously booked freight delivery to harbour of
disembarkment;

b. before delivering this freight
c. the freight forwarder records the time, τ′′, and an element, h′′, of the freight forwarder

history;
d. before resuming being the freight forwarder behaviour, ff,
e. and, concurrently informing the freight of its freight forwarder to harbour transfer,
f. the freight forwarder records the time, τ′′′, and an element, h′′′, of the freight forwarder

history.

type
695. BoL [Bill-of-Lading]
695. mk Accept Booking Request :: TIME × BoL × (H UI×fd:TIME) × (H UI×td:TIME)

426 14 Shipping [Spring/Summer 2007, February–March 2021]

695a. mkPlsDelive :: F UI × H UI × TIME

695a. mkDelivery :: F UI × H UI × V UI × TIME

value
682. ffd: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ FF Hist

682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
695. ffd(ffui,(sluis,fuis),ffstat)

695. ([fui7→h:〈(τ,mk Accept Booking Request(slui,t,bol,(fh,fd),(th,td)))〉̂ h′]∪fhist) ≡

695a. let mkPlsDeliver(slui,fui,hui,vui,τ′) = ch[{ffui,slui}] ? in
695c. let τ′′ = record TIME(), h′′ = 〈(τ′′,mkPlsDeliver(slui,fui,hui,τ′′))〉 in
695b. ch[{ffui,hui}] ! mkDelivery(ffui,fui,hui,vui) ;

695f. let τ′′′ = record TIME(), h′′′ = 〈(τ′′′,mkDelivery(slui,fui,hui,τ′′))〉 in
695d. ff(ffui,(sluis,fuis),ffstat)([fui7→h′′′ ĥ′′ ĥ]∪fhist)

695e. ‖ ch[{ffui,fui}] ! mkXferFFtoH(τ′′′,ffui,hui)
695. end end end

Freight Declination and Re-booking:

696. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates a booking rejection mk Decline Booking Request(slui,t,fui), the
freight forwarder offers the transactions that are similar to those of Items 693a–693e Page 425.

value
696. ffd(ffui,(sluis,fuis),ffstat)

696. (ffhist:[fui7→h:〈(τ,mk Decline Booking Request(slui,t,fui,mkF(fui,fmer,fstat)))〉̂ h′]∪ffhist′) ≡
696. freight booking(ffui,(sluis,fuis),ffstat)(mkF(fui,fmer,fstat))(ffhist)

Freight Recovery:

697. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates the delivery of freight, in its care: mkDelivery(slui,fui,hui,τ),
the freight forwarder offers the following transaction:

a. it offers to accept an alert from the shipping line as to the impending vessel arrival at
destination port whereupon it

b. informs the freight of its harbour to freight forwarder transfer,
c. resumes being the freight forwarder behaviour now suitably updated with that knowledge !

value
682. ffr: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ ffhist:FF Prgr
682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
697. ffr(ffui,(sluis,fuis),ffstat)([fui7→hist:〈(τ,mkDelivery(slui,fui,hui,τ′))〉̂ hist′]∪ffhist) ≡

697a. let mkReturn(slui,fui,hui,vui,dat) = ch[{slui,ffui}] ?
697a. τ′′ = record TIME() in
697b. ch[{ffui,fui}] ! mkXferHtoFF(τ′′,ffui,hui)

697c. ‖ ff(ffui,(sluis,fuis),ffstat)([fui7→〈(τ′′,mkReturn(slui,fui,hui,vui,dat))〉̂ hist]∪fhist)
697. end

Freight Termination:

698. For the case that the freight forwarder history, for some freight, fui, records a first, i.e., a most
recent element which designates the return of freight, in its care: mkReturn(slui,fui,hui,vui,dat),
the freight forwarder offers the following transaction:

a. the freight forwarder inquires with a designated return harbour, hui, as to the designated,
returned freight, fui

14.4 Perdurants 427

b. and resumes being the freight forwarder behaviour now suitably updated with that knowl-
edge !

c. while, at the same time as resumption also informing the freight that it no longer has freight
status !

value
682. ffe: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ hist:FF Hist

682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
685d. ffe(ffui,(sluis,fuis),ffstat)([fui7→hist:〈(τ′′′,hist:mkReturn(slui,fui,hui,vui,dat))〉̂ hist′]∪ffhist) ≡

698a. let mkReturnedFreight(fui,...) = ch[{hui,ffui}] ? in
698b. ff(ffui,(sluis,fuis),ffstat)([fui7→〈mkReturnedFreight(fui,...)〉̂ hist]∪fhist)
698c. ‖ ch[{ffui,fui}] ! mkTerminateFreight(ffui,...)
685d. end

Freight Forwarder Management:

699.
700.
701.

value
682. ffm: ffui:FF UI × (sluis,fuis):FF Mer × ffstat:FF Stat→ ffprgr:FF Prgr

682. → { ch[{slui,fui}] | slui:SL UI•slui∈sluis } Unit
686. ffm(ffui,(sluis,fuis),ffstat)([fui7→〈(τ,[FC])〉]∪fhist) ≡
699.

700.

701.

14.4.5.2.2 Shipping Line Behaviour Definition

702.
703.
704.
705.
706.
707.
708.
709.
710.
711.

value
683. sl: slui:SL UI × (vuis,ffuis,huis):SL Mer × slstat:SL Stat→ slprgr:SL Prgr→ newf:NewF

683. → { ch[{slui,ui}] | ui:FF UI|V UI|H UI•ui∈ f f uis∪huis } Unit
703. sl(slui,(vuis,ffuis,huis),slstat)(slprgr)(newf) ≡
703.

704.

705.
706.

707.
708.

709.

428 14 Shipping [Spring/Summer 2007, February–March 2021]

710.

711.

14.4.5.2.3 Vessel Behaviour Definition

14.4.5.2.4 Harbour Behaviour Definition

712.
713.
714.
715.
716.
717.
718.
719.
720.
721.

value
712. harbour:
712. harbour(hui,(ffuis,sluis),hstat)(hhist) ≡

713.

714.
715.

716.
717.

718.

719.
720.

721.

14.4.5.2.5 Freight Behaviour Definition

722.
723.
724.
725.
726.
727.
728.
729.
730.
731.

value
722. freight: fui:F UI × (ffui,(fhui,thui),vui,slui):F Met × F Stat→ F Hist→
722. in { ch[{fhui,ui}] | ui:(FH UI|V UI|SL UI)•ui ∈ {ffui,fhui,thui,vui,slui} } Unit
722. freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(fhist) ≡
723. let i:mkFFtoH(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end
724. ⌈⌉⌊⌋ let i:mk(...) = ch[{vui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end

14.4 Perdurants 429

725. ⌈⌉⌊⌋ let i:mk(...) = ch[{vui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end
726. ⌈⌉⌊⌋ let i:mk(...) = ch[{thui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end
727. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end
729. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end
730. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in freight(fui,(ffui,(fhui,thui),vui,slui),hstat)(〈i〉̂ fhist) end
731. ⌈⌉⌊⌋ let i:mk(...) = ch[{ffui,fui}] ? in skip end

Chapter 15

Rivers [March–April 2021]

Contents
15.1 Introduction . 431

15.1.1 Waterways . 431
15.1.2 Visualisation of Rivers . 432

15.1.2.1 Rivers . 432
15.1.2.2 Deltas . 432

15.1.3 Structure of This Report . 432
15.2 External Qualities – The Endurants . 433
15.3 Internal Qualities . 435

15.3.1 Unique Identifiers . 435
15.3.2 Mereologies . 435
15.3.3 Routes . 436
15.3.4 Attributes . 437

15.4 Conclusion . 438

Presently this document represents a technical-scientific note. It is technical in that much of the
material can be found in other technical notes of mine. It is – perhaps – scientific in that I am
searching for a nice, well, beautiful, way of modeling rivers.

15.1 Introduction

15.1.1 Waterways

By waterways we mean rivers, canals, lakes and oceans – such as are navigable by vessels: barges,
boats and ships.

Rivers are naturally flowing watercourses, and typically flow until discharging their water into
a lake, sea, ocean, or another river, while canals are constructed to connect existing rivers, seas,
or lakes. However, occasionally some rivers do not discharge their water into lakes, seas, oceans,
or other rivers. Rivers that do not empty into another body of water might flow into the ground
or simply dry up before reaching another body of water. Additionally, small rivers can also be
referred to as streams, rivulets, creeks, rills, or brooks.

The natural water system of the earth includes 71% ocean with land continents being traversed
by brooks, rivers, lakes and river deltas.

Headwaters are streams and rivers (tributaries) that are the source of a stream or river.
A tributary is a river or stream that flows into another stream, river, or lake.
A delta is a large, silty area at the mouth of a river at which the river splits into many different

slow-flowing channels that have muddy banks. New land is created at deltas. Deltas are often
triangular-shaped, hence the name (the Greek letter ’delta’ is shaped like a triangle).

431

432 15 Rivers [March–April 2021]

The trunk is the main course of river.
Confluence: In geography, a confluence (also: conflux) occurs where two or more flowing

bodies of water join together to form a single flow. A confluence can occur in several configurations:
at the point where a tributary joins a larger river (main stem); or where two streams meet to become
the source of a river of a new name; or where two separated channels of a river (forming a river
island) rejoin at the downstream end.

Towns and Harbours: In this report we model towns. That is, we therefore also model that
towns have harbours – allowing river (and canal) vessels to berth (a place for mooring in a harbour)
for cargo loading, unloading and resting.

15.1.2 Visualisation of Rivers

15.1.2.1 Rivers

Figures 15.1 and 15.2 on the facing page illustrate a number of rivers.

Fig. 15.1 The Congo and the US Rivers

15.1.2.2 Deltas

We illustrate four deltas, Fig. 15.3 on the next page:

15.1.3 Structure of This Report

Rivers are narrated and formalised in Sects.:

• 15.2 [Endurants],

• 15.3.1 [Unique Identifiers],

• 15.3.2 [Mereology], and

• 15.3.4 [Attributes].

We omit from this compendium references to a
number of ‘River Terminologies’.

15.2 External Qualities – The Endurants 433

Fig. 15.2 The Amazon and The Danube Rivers

Fig. 15.3 The Ganges, Mississippi, Pearl and the Nile Deltas

15.2 External Qualities – The Endurants

732. A river net is modeled as a graph, more specifically as a tree. The root of that river net tree is the
mouth (or delta) of the river net. The leaves of that river net tree are the sources of respective
trees. Paths from leaves to the root define flows of water.

733. We can thus, from a river net observe vertices
734. and edges.
735. River vertices model either a source: so:SO, a mouth: mo:MO, or possibly some confluence:

ko:KO.
A river may thus be “punctuated” by zero or more confluences, k:KO.
A confluence defines the joining a ‘main’ river with zero158 or more rivers into that ‘main’ river.
We can talk about the “upstream” and the “downstream” of rivers from their confluence.

736. River edges model stretches: st:ST.
A stretch is a linear sequences of simple, se:SE, or composite ce:CE, river elements.

737. River elements are either simple: (ch) river channels, which we shall call river channels: CH, or
(la) lakes: LA, or (lo) locks: LO, or (wa) waterfalls (or rapids): WA, or (da) dams: DA, or (to) towns

158 Normally, though, one would expect, not zero, but one

434 15 Rivers [March–April 2021]

(cities, villages): to:TO159; or composite, ce:CE: a dam with a lock, (da:DA,la:LA), a town with
a lake, (to:TO,la:LA), etcetera; even a town with a lake and a confluence, to:TO,la:LA,ko:KO.
Etcetera.

type
732. RiN

733. V
734. E

735. SO, MO, KO

736. ST = (SE|CE)∗

737. CH, LA, LO, WA, KO, DA, TO

737. SE = CH | LA | LO |WA | DA | TO

737. DaLo, WaLo, ToLa, ToLaKo, ...
737. CE = DaLo |WaLo | ToLa | ToLaKo | ...
value
735. obs Vs: RiN→ V-set
735. axiom
735. ∀ g:G,vs:V-set•vs ∈ obs Vs(g)⇒ vs,{}
735. ∧ ∀ v:V•v ∈ vs⇒ is SO(v) ∨ is KO(v) ∨ is MO(v)

736. obs Es: RiN→ E-set
736. axiom
736. ∀ g:G,es:E-set•es ∈ obs Es(g)⇒ es,{}

736. ∧ ∀ e:E•e ∈ es⇒ is ST(e)
736. obs ST: E→ ST

732. xtr In Degree 0 Vertices: RiN→ SO-set
732. xtr Out Degree 0 Vertex: RiN→ MO

SO

CH

LO

CH

LA

CH

WA

CH

KO
CH CH

CH

CH

SO

CH

SO

CH

SO

MO

CH

CH

DA
CH

SO

ToKo:(TO,KO)

WaLo:(WA,LO)

DaLo:(DA,LO)
ToLaKo:(TO,LA,KO)

Source

Simple or composite river element

Confluence

Mouth

Fig. 15.4 The “Composition” of a River Net: Right Tree is an abstraction of the Left Tree

159 Towns is here really a synonym for river harbours, places along the river (or a canal) where river vessels can
stop (moor) for the loading and unloading of cargo and for resting.

15.3 Internal Qualities 435

15.3 Internal Qualities

We refer to [55, Chapter 5]

15.3.1 Unique Identifiers

We shall associate unique identifiers both with vertices, edges and verteax and edge elements.

738. River net vertices and edges have unique identifiers.
739. River net sources, confluences and mouths have unique identifiers.
740. River net stretches have unique identifiers.
741. River net channels, lakes, locks, waterfalls, dams and towns as well as combinations of these,

that is, simple and composite river entities have unique identifiers.

type
738. V UI, E UI
739. SO UI, KO UI, MO UI

740. ST UI

741. CH UI, LA UI, LO UI, WA UI, DA UI, TO UI, DaLo UI, WaLo UI, ToLa UI, ToLaKo UI, ...
value
738. uid V: V→V UI, uid E: E→ E U
739. uid SO: SO→SO UI, uid KO: KO→KO UI, uid MO: MO→MO UI,

740. uid ST: ST→ST UI

741. uid CH: CH→CH UI, uid LA: LA→LA UI, uid LO: LO→LO UI, uid WA: WA→WA UI,
741. uid DA: DA→DA UI, uid TO: TO→TO UI,

741. uid DaLo: DaLo→DaLo UI, uid WaLo: WaLo→WaLo UI, uid ToLa: ToLa→ToLa UI,

741. uid ToLaKo: ToLaKo→ToLaKo UI, ...

742. All these identifiers are distinct.

The ⋓ operator takes the pairwise intersection of the types in its argument list and examines them
for disjointness.

axiom
742. ⋓(V UI,E UI,SO UI,KO UI,MO UI,ST UI,CH UI,
742. LA UI,LO UI,WA UI,DA UI,TO UI,DaLo UI,WaLo UI,ToLa UI,ToLaKo UI)

743. There are [many] other constraints, please state them !

743. [left as exercise to the reader !]

15.3.2 Mereologies

744. The mereology of a river vertex is a pair: a set of unique identifiers, E UI, of river edges, i.e.,
stretches, linear sequences of simple and composite river elements, incident upon the vertex,
and a set of unique identifiers, E UI, of river edges emanating from the vertex. If the vertex is
a source then the first element of this pair is empty. If the vertex is a mount then the second
element of this pair is empty. For a confluence vertex both elements of the pair are non-empty.

436 15 Rivers [March–April 2021]

745. The mereology of a river edge, that is, the linear sequence of simple and composite river
elements between two adjacent vertices, is a pair: the first element is a unique identifier of a
river vertex and so is the second element of the pair.

We present the river net mereology in two forms. The first was with respect to its graph rendition.
The second is with respect to its river element rendition.

746. The mereology of a source is just the single unique identifier of the first simple or composite
river element of the stretch emanating from the source.

747. The mereology of a confluence is a triplet: the single unique identifier of the last simple or
composite river element of the stretch of the main river incident upon the source, a set of
unique identifier of the last simple or composite river element of the stretches of the tributary
rivers incident upon the source, and the single unique identifier of the first simple or composite
river element of the main river stretch emanating from the confluence.

748. The mereology of a mouth is just the single unique identifier of the last simple or composite
river element of the stretch incident upon the mouth

749. The mereologies of simple and composite river elements are pairs: of the unique identifier of
the river elements, including sources and confluences, upstream adjacent to the river element
being “mereologised”, and of the unique identifier of the river elements, including confluences
and mouths, downstream adjacent to the river element being “mereologised”.

744. Mer V = E UI-set × E UI-set
745. Mer E = V UI × V UI

746. Mer SO = SE UI | CE UI
747. Mer KO = (SE UI|CE UI) × (SE UI|CE UI)-set × (SE UI|CE UI)

748. Mer MO = SE UI | CE UI

749. Mer RE = (SO UI|CO UI|SE UI|CE UI) × (SE UI|CE UI|CO UI|MO UI)

750. The unique vertex and edge identifiers must be identifiers of the vertices and edges of a graph.
751. Similarly, the unique source, confluence and mouth identifiers must be identifiers of respective

sources, confluences and mouths of a graph.
752. And likewise for simple and composite element identifiers.
753. No two sources, confluences, mouths, simple and composite elements have identical uinque

identifiers.
754. There are other constraints, please state them !

axiom
750. [left as exercise to the reader !]
751. [left as exercise to the reader !]
752. [left as exercise to the reader !]
753. [left as exercise to the reader !]
754. [left as exercise to the reader !]

15.3.3 Routes

755. A vertex-edge-vertex path is a sequence of zero or more edges. We define the edge paths
function – recursively.

756. That is, the empty sequence, 〈〉, is a vertex-edge-vertex path, [the first basis clause].
757. If e is an edge of g, and if (vi,vj) is in the mereology of e, then the 〈(vi,ej,vk)〉, where ej is the

unique identifier of e is a vertex-edge-vertex path.

15.3 Internal Qualities 437

758. If p and p′ are paths of g such that the last vertex identifier of the last element of p is the same as
the first vertex identifier of the first element of p′, then the sequence p followed by the sequence
p′ is a vertex-edge-vertex path of g [the inductive clause].

759. Only such paths which can be constructed by the above rules are edge paths [the extremal
clause].

type
755. EP = Eω

755. edge paths: G→ EP-set
755. edge paths(g) ≡
756. let ps = {〈〉}

757. ∪ {〈(vi,uid E(e),vk)〉|e:E•e ∈ xtr Es(g)∧(vi,vk)∈mereo E(e)}

758. ∪ {p̂ p′|p,p′:EP•{p,p′}⊆ps∧lVIlEP(9)=fVIfEP(p′)} in
755. ps end

15.3.4 Attributes

This author is not “an expert” on neither geograhical matters relating to rivers, lakes, etc., nor
on the management of rivers: flood control, river taffic, etc. So, please, do not expect a very
illuminating set of river attribute examples. All the attribute specifications are “tuned” to the
purpose of the ensuing domain desription: whether for one or another form of river system study
or eventual software system realisation.

760. River entities have geodetical positions –
761. all three dimensions: longitude, latitude and

altitude160.
762. River entities cover geodetical areas161.
763. River entities have normal, low, high and

overflow water levels162.
764. River channels have “extent” in the form,

for example of a precise description163 of its
course.164

765. Lakes have a precise [three dimensional] de-
scription of their form, ...

766. Locks have ... et cetera

767. Waterfalls ...

768. Dams ...

769. Towns ...

770. Sources ...

771. Confluences ...

772. Mouths ...

773. Compositions of these have respective
unions of these attributes.

type
760. GeoPos = Long × Lat × Alt

761. Long, Lat, Alt
763. Area

763. LoWL = ..., NoWL = ..., HiWL = ..., OfWL = ...
764. Course = ...

160 These are facts: How we represent them is a matter for geographers. Also: What is really mean by the ‘position’
of a source, or a river channel, etc. ? Also that is left for others to care about !
161 See Footnote 160.
162 See Footnote 160.
163 See Footnote 160. In any domain description, yes, a precise description – whether “computable” [i.e., realizable]
or not !
164 – in a subsequent requirements prescription the domain description’s “precise” form is replaced
by, for example, a reasonably detailed [and computable] three dimensional Bézier curve specification
[en.wikipedia.org/wiki/B%C3%A9zier curve].

438 15 Rivers [March–April 2021]

765. LakeForm = ...
767. ...; 768. ...; 769. ...;770. ...; 771. ...; 772. ...; 773. ...
value
760. attr GeoPos: (SO|KO|MO|SE|CE)→ GeoPos

761. attr Long: GeoPos→ ..., attr lat: GeoPos→ ...,attr Alt: GeoPos→ ...
763. attr Area: (SO|KO|MO|SE|CE)→ Area

763. attr (LoWL|NoWL|HiWL|OfWL): (SO|KO|MO|SE|CE)→ LoWL|NoWL|HiWL|OfWL

764. attr CH: CH→ Course
765. attr LakeForm: LA→ LakeForm

766. attr ...: LO→ ...; 767. attr ...: WF→ ...; 768. attr ...: DA→ ...; 769. attr ...: TO→ ...;
770. attr ...: SO→ ...; 771. attr ...: KO→ ...; 772. attr ...: MO→ ...; 773. attr ...: ...→ ...

We illustrate the issue of river attributes primarily to show you the sheer size and complexity of
the task !

774. River entities have positions “within” their areas165.
775. No two distinct river entities have conflicting (?) areas166.
776. Two mereologically immediately adjacent river entities have bordering areas167.
777.
778.

Axiom 775 is rather “sweeping”. It implies, of course, that river channels do not cross one another;
that two or more non-channel river entities similarly do not “interfere” with one another, i.e., are
truly “separate”.

15.4 Conclusion

to be written

165 See Footnote 160.
166 For example: their areas do not overlap. See Footnote 160.
167 See Footnote 160.

Chapter 16

Canals [March–April 2021]

Contents
16.1 Introduction . 440
16.2 Visualisation of Canals . 440

16.2.1 Canals and Water Systems . 440
16.2.2 Locks . 441

16.3 The Endurants . 442
16.3.1 Some Introductory Remarks . 443

16.3.1.1 The Dutch Polder System . 443
16.3.1.2 Natural versus Artefactual Domains . 443
16.3.1.3 Editorial Remarks . 444
16.3.1.4 A Broad Sketch Narrative of Canal System Entities 445
16.3.1.5 A Plan for The Canal System Description . 446
16.3.1.6 No Structures . 446
16.3.1.7 Sequences of Presentation . 447
16.3.1.8 Naming Conventions . 447

16.3.2 External Qualities . 448
16.3.2.1 Endurant Sorts . 448
16.3.2.2 Some Calculations . 451

16.3.3 Internal Qualities . 453
16.3.3.1 Unique Identifiers . 453

16.3.3.1.1 Unique Identifier Sorts . 453
16.3.3.1.2 Some Calculations . 454
16.3.3.1.3 An Axiom . 456
16.3.3.1.4 Another Representation of UI Values 456
16.3.3.1.5 An Extract Function . 456

16.3.3.2 Mereologies . 457
16.3.3.2.1 Mereology Types . 457
16.3.3.2.2 The Mereology Axiom . 461
16.3.3.2.3 Well-formed Mereologies . 461

16.3.3.3 Routes . 467
16.3.3.3.1 Preliminaries . 467
16.3.3.3.2 All Routes . 468
16.3.3.3.3 Connected Canal Systems . 468
16.3.3.3.4 A Canal System Axiom . 468

16.3.3.4 Attributes . 469
16.3.3.4.1 Spatial and Temporal Attributes . 469
16.3.3.4.2 Canal System, Net and Polder Attributes 471
16.3.3.4.3 Canal Hub and Link Attributes . 471

16.3.3.5 Well-formedness of Attributes . 472
16.3.4 Speculations . 472

16.4 Conclusion . 473

439

440 16 Canals [March–April 2021]

Presently this document represents a technical-scientific note. It is technical in that much of the
material can be found in other technical notes of mine. It is – perhaps – scientific in that I am
searching for a nice, well, beautiful, way of modeling canals, such as for example those of the
Dutch Rijkswaterstaat168. I am fascinated with Holland’s tackling of their land/water/river/ocean
levels.

16.1 Introduction

Canals are artificial or human-made channels or waterways that are used for navigation, trans-
porting water, crop irrigation, or drainage purposes. Therefore, a canal can be considered an
artificial version of a river. Canals are artificial or human-made channels or waterways that are
used for navigation, transporting water, crop irrigation, or drainage purposes. Therefore, a canal
can be considered an artificial version of a river.

16.2 Visualisation of Canals

16.2.1 Canals and Water Systems

We illustrate just four ship/barge/boat and water level control canal systems, Figs. 16.1, 16.2, 16.3
on the facing page and 16.4 on page 442.

Fig. 16.1 UK Canals and The Panama Canal

The rightmost figure of Fig. 16.4 is from the Dutch Rijkswaaterstaat: www.rijkswaterstaat.nl/english/.

168 https://www.rijkswaterstaat.nl/ The Dutch canal system is first and foremost, it appears, for the control of
water levels, secondly for ship/barge/boat navigation.

16.2 Visualisation of Canals 441

Fig. 16.2 The Swedish Göta Kanal

Fig. 16.3 French Rivers and Canals

16.2.2 Locks

A lock is a device used for raising and lowering boats, ships and other watercraft between stretches
of water of different levels on river and canal waterways. The distinguishing feature of a lock is a
fixed chamber in which the water level can be varied. Locks are used to make a river more easily
navigable, or to allow a canal to cross land that is not level. Later canals used more and larger
locks to allow a more direct route to be taken.169

We illustrate a number of locks: Figs. 16.5 on the following page and 16.6 on page 443.

169 https://en.wikipedia.org/wiki/Lock (water navigation)

442 16 Canals [March–April 2021]

Fig. 16.4 Dutch Rivers and Canals

Fig. 16.5 Inland Canal Locks

16.3 The Endurants

As an example we wish our model to include the Dutch system of polders, pumps, canals, locks,
dikes, flood barriers, lakes, storm barriers and the ocean.170

170 www.fao.org/fileadmin/templates/giahs/PDF/Dutch-Polder-System 2010.pdf

16.3 The Endurants 443

Fig. 16.6 Harbour Canal Locks

16.3.1 Some Introductory Remarks

16.3.1.1 The Dutch Polder System

We refer to Figs. 16.8 to 16.11 on pages 444–445.

Fig. 16.7 The Dutch Polder System

16.3.1.2 Natural versus Artefactual Domains

In contrast to river nets modeled earlier in this compendium, a system of mostly natural endurants,
canal systems of polders, pumps, canals, locks, dikes, flood barriers, lakes, storm barriers and the
ocean are, in a sense, dominated by man-made, i.e., artefactual endurants.

444 16 Canals [March–April 2021]

Fig. 16.8 A Polder Schematic and The De Cruquius Pump

Fig. 16.9 A Polder. Another Polder Schematic

Fig. 16.10 A Barrier. A Final Polder Schematic

16.3.1.3 Editorial Remarks

In order to develop an appropriate domain analysis & description of a reasonably comprehensive
and representative canal domain I need answers to the following questions – and may more that
can be derived from answer to these questions:

16.3 The Endurants 445

Fig. 16.11 The Land-Water Levels of The Netherlands

• Canal Flow: Are canals generally stagnant, or do canal water flow, that is, do canal flow have
a preferred direction ?

• Canal Graphs: Do a canal form a[n undirected] graph, i.e., can canals be confluent with other
canals ?

• Canals and Rivers: It is assumed that canals can be confluent with rivers. When canals join
a river is it always with a lock of the canal onto the river – and the river flow is basically not
interfered with by that canal, or otherwise ?

• Canal Levels: Can a canal pass a river overhead ? Or otherwise ? Same for canals and roads.
Do canals run through mountains or over valleys ?

• Canal Locks: It is assumed that an otherwise “unhindered” stretch of canal can have one or
more locks. Yes or no ?

• Canal Pumps: It is assumed that there are two kinds of canal pumps: those in connection with
locks, and those not in connection wit any locks. Yes or no ? I need information about the latter.

• Polders and Pumps: Are polders predominantly characterisable in terms of their land area
and the pumps that keep these dry ?

• Pumps and Canals: Do polder pumps always operate in the context of canals ?

16.3.1.4 A Broad Sketch Narrative of Canal System Entities

• We take our departure point in the polders: So a polder-etc.-canal system contains polders and
polder pumps take the water out of the polders and “puts” it in higher level canals.

446 16 Canals [March–April 2021]

• Canals are modeled as an undirected [general] graph whose vertices are canal entities and
whose edges are given by the mereology of these entities – as to how they are topologically
connected.

• The following are canal entities:

⋄⋄ canal channels: like river channels, only artefactual;
⋄⋄ canal locks: the locks as illustrated earlier;
⋄⋄ canal pumps: pumps water into locks – rather than using water from higher level canals;
⋄⋄ canal gates: protects the interior from ocean storm surges.

16.3.1.5 A Plan for The Canal System Description

Our plan is to analyse & describe

• external qualities of canal system endurants, Sect. 16.3.2.
• internal qualities of canal system, Sect. 16.3.3.1
• internal qualities of canal system, Sect. 16.3.3.2
• internal qualities of canal system, Sect. 16.3.3.4

For each of these categories we analyse & describe

• sorts and types of these entities: endurants, unique identifiers, mereologies and attributes;
• observer functions, i.e., obs · · · , uid · · · and attr · · · for the observance of endurants, their

unique identifiers, their mereologies and their attributes;
• auxiliary functions and
• well-formedness predicates is wf · · · .

The external and internal quality definitions should be so conceived by the domain analyser &
describer as to capture an essence, if not “the essence”, of endurants. But they can never capture the
essence “completely”. As for the relation between context free grammars and context sensitive
grammars, we must therefore introduce the notion of well-formedness axioms. The axioms
constrain the relations between external and the various categories of internal qualities. More
specifically:

779. The well-formedness of a canal system, is wf CS [779] is the conjunction of the well-
formedness of canal system identifiers, is wf CS Identities [841 on page 454], mereologies,
is wf CS Mereology [883a on page 461], and attributes, is wf CS Attributes [945 on page 472].

type
779. CS

value
779. is wf CS: CS→ Bool
779. is wf CS(cs) ≡ is wf CS Identifiers(cs)∧is wf CS Mereologies(cs)∧ is wf CS Attributes(cs)

16.3.1.6 No Structures

In this (long and detailed) example domain analysis & description I shall not use the prag-
matic “device” of structures [cf, [55, Sect.4.10]]. Everything will be painstakingly analysed and
described.

Some clarifying comments are in order:

• Compound endurants are either

16.3 The Endurants 447

⋄⋄ Cartesian171 or
⋄⋄ sets.

• In analysing Cartesians, say c, into composite endurants, we analyse c into a number of com-
ponents, ci,c j, ...,ck, of respective sorts, Ci,C j, ...,Ck, by means of observers obs Ci, obs Cj, ...,

obs Ck.

⋄⋄ The Cartesians, C, in this report, all have:
◦◦ unique identifiers,
◦◦ mereologies and
◦◦ attributes.

⋄⋄ So do each of the Ci,C j, ...,Ck.

• In analysing an endurant, E, into sets, say s or sort S, we first analyses E into a separately
observable endurant Ss, i.e., obs Ss, which we then, at the same time define as Ss = S-set.

• An Ss endurant thus has all the internal qualities:

⋄⋄ a unique identifier,
⋄⋄ a mereology
⋄⋄ and attributes.

16.3.1.7 Sequences of Presentation

The sequence in which endurant sorts are introduced is “repeated” in the sequences in which
unique identifier sorts and mereology types are introduced. Thus the sequences of narrative and
formal

• endurant items,

⋄⋄ sort items, Items 780–794 on pages 449–450,
⋄⋄ value items, Items 801–820 on pages 451–453 and
⋄⋄ “alternative” value items, Items ν801–ν820 on page 453,

are “repeated” in

• unique identifier

⋄⋄ sort items, Items 821–839 on pages 453–454,
⋄⋄ value items, Items 841–856 on pages 454–455 and
⋄⋄ “alternative” value items, Items ν794–ν808 on page 456,

and in

• mereology

⋄⋄ type items, Items 865 to 881 on pages 457–460 and
⋄⋄ well-formedness items, Items 883 to 900 on pages 461–466.

16.3.1.8 Naming Conventions

Some care has been taken in order to name endurants, including sets of and predicates and
functions over these; their unique identifiers and typed sets and values of and predicates and
functions over these; their mereologies and typed sets and values of and predicates and functions

171 Cartesian is spelled with a large ‘C’, after René Descartes, the French mathematician (1596–1650)
https://da.wikipedia.org/wiki/René Descartes.

448 16 Canals [March–April 2021]

over these; and their attributes and typed sets and values of and predicates and functions over
these.

16.3.2 External Qualities

16.3.2.1 Endurant Sorts

The narrative(s) that follow serves two purposes:

• a formal purpose: the identification of endurants, and
• an informal purpose: in “casually familiarising” the reader as the the rôle of these endurants.

The former purpose is the only one to formalise. The latter purpose informally “herald” things
to come – motivating, in a sense, theses “things”, the internal qualities and, if we had included a
treatment of canal perdurants, the behaviours of these canal elements seen as behaviours.

All the elements mentioned below consist of both discrete endurants and fluids, i.e., water. In
contrast to the treatment of such conjoins in [55, Sect. 4.13.3] we shall, in an informal digression
from the principles, techniques and tool of the analysis & description calculi of [55, Chapters 4–5],
omit “half the story” ! It will be partly “restored” in out treatment of canal attributes, Sect. 16.3.3.4.

In this section we shall narrate all the different endurant sorts, Items 780–800 (Pages 448–449),
before we formalise them (Pages 449–450). We beg the readers forebearance in possibly having to
thumb between narrative (page)s and formalisations (page)s.

780. Canal systems, CS, are given.
781. From a canal system one can observe a canal net, CN.
782. From a canal system one can observe a polder aggregate, PA.

Observing two endurants of a composite endurant is as if the composite is a Cartesian product of
two. Hence the “(...,...)” of Fig. 16.12 on page 450.

783. From canal nets one can observe canal hub aggregates, CA HA, and
784. canal link aggregates, CA LA.
785. From a polder aggregate one can observe a polder set, Ps, of polders, P. One observes the set,

not its elements.
786. From a canal hub aggregate one can observe a hub set, CA Hs, of hubs, CA H. One observes

the set, not its elements.
787. From a canal link aggregate one can observe a canal link set, CA Ls, of canal links, CA L. One

observes the set, not its elements.
788. Polders are considered atomic. A polder is a low-lying tract of land that forms an artificial

hydrological entity, enclosed by embankments known as dikes. The three types of polder172

are:

172 The ground level in drained marshes subsides over time. All polders will eventually be below the surrounding
water level some or all of the time. Water enters the low-lying polder through infiltration and water pressure of
groundwater, or rainfall, or transport of water by rivers and canals. This usually means that the polder has an
excess of water, which is pumped out or drained by opening sluices at low tide. Care must be taken not to set the
internal water level too low. Polder land made up of peat (former marshland) will sink in relation to its previous
level, because of peat decomposing when exposed to oxygen from the air.

Polders are at risk from flooding at all times, and care must be taken to protect the surrounding dikes. Dikes
are typically built with locally available materials, and each material has its own risks: sand is prone to collapse
owing to saturation by water; dry peat is lighter than water and potentially unable to retain water in very dry
seasons. Some animals dig tunnels in the barrier, allowing water to infiltrate the structure; the muskrat is known
for this activity and hunted in certain European countries because of it. Polders are most commonly, though not
exclusively, found in river deltas, former fenlands, and coastal areas.

16.3 The Endurants 449

• Land reclaimed from a body of water, such as a lake or the seabed.
• Flood plains separated from the sea or river by a dike.
• Marshes separated from the surrounding water by a dike and subsequently drained; these

are also known as koogs.

789. Canal hubs are considered atomic and are:
790. either canal begin/ends (that is, where there is no continuation of a canal: where it ends “blind’,

or where begins “suddenly’173), CA BE,
791. or canal confluences (of three or more canals174), CA CO,
792. or canal outlets, CA OU (where canals join a river, or a lake, or an ocean). These sorts are all

considered atomic.
793. Canal links are aggregates.
794. From canal links we choose to observe a set of canal link elements, CA LE175. (Canal links

are such, through their mereology, see Sect. 16.3.3.2, that they form two reversible sequences
between connecting edges.)

795. Canal link elements are considered atomic and are
796. either canal channels, CA CH176,
797. or canal locks, CA LO177,
798. or canal lock pumps, CA LO PU178,
799. or canal polder pumps, CA PO PU179.
800. We do not further describe canal outlets, rivers, lakes and oceans.

type
780. CS

781. CN

782. PA
783. CA HA

784. CA LA

785. Ps = P-set, P
786. CA Hs = CA H-set
787. CA Ls = CA L-set
788. P

789. CA H == CA BE|CA CO|CA OU

790. CA BE :: ...
791. CA CO :: ..
792. CA OU :: ..
793. CA L
794. CA LEs = CA LE-set
795. CA LE == CA CH|CA LO|CA LO PU|CA PO PU
796. CA CH :: ...

173 A canal “end” is a canal channel which is “connected” only at one end to a canal channel.
174 Without loss of generality we model only confluences of three canals.
175 We could have chosen other abstractions, for example, to observe a sequence of elements. More on this later.
176 A canal channel offers a “straight”, un-interrupted “stretch” of water – like does a river channel.
177 A canal lock) is always connected to two distinct canal link elements. Canal locks still act like a waterway, as
does a canal channel.
178 Canal lock pumps are like canal locks, but with pumps. A canal lock pump is connected to a canal lock and the
two canal link elements connected by the lock. It takes takes water either from the lower lying canal link element
and pumps it up into the lock chamber, or from the lock chamber and pumps it up to the higher level canal link
element. Canal locks are without pumps. The canal link elements mentioned here are usually canal channels.
179 A canal polder pump is a pump that takes water from a polder and deposits it in a canal which is at a higher
level than the polder.

450 16 Canals [March–April 2021]

797. CA LO :: ...
799. CA PO PU :: ...
value
781. obs CN: CS→ CN

782. obs PA: CS→ PA
783. obs CA HA: CS→ CA HA

784. obs CA LA: CN→ CA LA

785. obs Ps: PA→ Ps
786. obs CA Hs: CA HA→ CA Hs

787. obs CA Ls: CA LA→ CA Ls

794. obs CA LEs: CA L→ CA LEs

Figure 16.12 shows the ontology of a wide class of canal systems.

CS

CA_H :: CA_BE

PA

Ps

CA_LE CA_LE CA_LE

CA_LE

CA_LEs

CA_H

CA_H :: CA_CO

CA_H :: CA_OU

CA_LE :: CA_CH

CA_LE :: CA_LO

CA_H CA_L CA_L CA_L CA_L

P PP P

CA_LsCA_Hs

CA_H

{ } { ,

{ , }

{

},
CA_H

, ... ,

, ... , , ... ,

, ... , , ... , , ... ,

,..., ,...,

,

,()

CA_HA(CA_LA

CN

)

, }

CA_LE :: CA_PO_PU

Fig. 16.12 Canal System Ontology

Figure 16.13 on the facing page shows the schematisation of a specific canal system.
Figure 16.14 on the next page shows the individual endurants of a canal system for that shown

in Fig. 16.13 on the facing page. Given what we have formalised so far, i.e., formula 780–787, this
is really all we can “diagram”. The “part” list of Fig. 16.14 on the next page cannot show other
than that there are these parts, but not how they are connected – that is first revealed when we
ascribe mereologies – and that there are canal channels, not, for example, their length – that is first
revealed when we ascribe attributes, such as length.

16.3 The Endurants 451

River

River Source

Canal Net

Polders

River

Lake

CA_BE

CA_CH

CA_PO_PU

C
A

_P
O

_P
U

PO

CA_CH

PO

C
A

_P
O

_P
U

CA_CH

CA_CO

CA_BE

CA_CH

CA_CH

CA_OU

CA_CH

CA_CH

CA_CH

Ocean

CA_CO

CA_CO

CA_CH

C
A

_L
O

Fig. 16.13 A Schematised Specific Canal System: Canal Net + Polders

CA_BE

CA_BE

CA_CO

CA_OU

CA_CO

CA_CO

CA_CO

P

P

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH

CA_CH
CA_CH

CA_PO_PU

CA_PO_PU

CA_PO_PU CA_LO

Fig. 16.14 Component Endurants of the Canal System of Fig. 16.13

16.3.2.2 Some Calculations

We refer to Fig. 16.15 on the following page. We shall list the endurant parts – and later on their
unique identifierss in the left-to-right order of a breadth-first traversal of the canal ontology.

801. Let cs be a “global” canal system.180

802. Canal nets and polders can be seen as consisting of the following endurants, modeled as a map,
map ends:

803. the canal system, csend, [ι 780,π 448]

180 Introducing cs allows us to refer to it and its “derivatives”, “all over”, and thus “universally prefix quantify”
many axioms.

452 16 Canals [March–April 2021]

CS

PACN

CA_HA

CA_H

...
CA_L

CA_Ls

CA_H :: CA_BE

CA_Hs

PPPP

......

CA_LA Ps

CA_H CA_LCA_H

CA_LE :: CA_LO

CA_LE :: CA_CH

CA_LE :: CA_LO_PU

CA_LE :: CA_PO_PU

CA_LE

CA_LEs

CA_LECA_LE

CA_LE

CA_H :: CA_CO

CA_H :: CA_OU

CA_L CA_LCA_H

.. ..

Fig. 16.15 A Breadth-first Left-to-Right [Top-down] Canal Ontology Traversal

804. the canal net, cnend, [ι 781,π 448]

805. the polder aggregate, paend, [ι 782,π 448]

806. the canal net hub aggregate, ca haend, [ι 783,π 448],
807. the canal net link aggregate, ca laend, [ι 784,π 448]

808. the set of polders, psend, [ι 785,π 448]

809. the set of hubs, ca hsend, [ι 786,π 448]

810. the set of canal links, ca lsend, [ι 787,π 448]

811. the set of polders, posend, [ι 788,π 448]

812. the set of hubs, ca hsend, [ι 786,π 448] have the following kinds of hubs: [ι 789,π 449]

813. canal begin/ends, ca besend, [ι 790,π 449],
814. canal confluences, ca cosend, [ι 791,π 449] and
815. canal outlets, ca ousend, [ι 792,π 449],
816. the set of canal link elements, ca lesend [ι 794,π 449],
817. the canal link elements [ι 795,π 449] are of the following kinds:
818. canal channels, ca chsend, [ι 796,π 449]

819. canal locks, ca losend, [ι 797,π 449]

820. canal polder pumps, ca po pusend [ι 799,π 449].

value
801. cs:CS

802. map ends: MAP END181

802. map ends = [

16.3 The Endurants 453

803. csend 7→ {cs}, [ι 780,π448]

804. cnend 7→ {obs CN(map ends(csend))}, [ι 781,π 448]

805. paend 7→ {obs PA(map ends(cs))}, [ι782,π 448]

806. ca haend 7→ {obs CA HA(map ends(cs))}, [ι783,π 448]

807. ca laend 7→ {obs CA LA(map ends(cnend))}, [ι 784,π 448]

808. psend 7→ obs Ps(map ends(paend), [ι 785,π 448]

809. ca hsend 7→ obs CA Hs(map ends(ca paend)), [ι 786,π 448]

810. ca lsend 7→ obs CA Ls(map ends(ca psend)), [ι 787,π448]

811. posend 7→ map ends(ca psend)), [ι 788,π 448]

813. ca besend 7→ map ends(ca hsend) \ CA BE, [ι 790,π449]

814. ca cosend 7→ map ends(ca hsend) \ CA CO, [ι 791,π 449]

815. ca ousend 7→ map ends(ca hsend) \ CA OU, [ι 792,π 449]

816. ca lesend 7→ obs CA Ls(map ends(ca psend)), [ι 787,π 448]

818. ca chsend 7→ ∪map ends(ca lesend) \ CA CH, [ι 796,π 449]

819. ca losend 7→ ∪map ends(ca lesend) \ CA LO, [ι 797,π 449]

820. ca po pusend 7→ ∪map ends(ca les psend) \ CA PO PU][ι799,π 449]

We, in a name-overloading fashion, define – note the ν prefix of the formula item numbers:

value
ν803. csend = cs, [ι 780,π 448]

ν804. cnend = obs CN(map ends(csend)), [ι 781,π 448]

ν805. paend = obs PA(map ends(cs)), [ι 782,π448]

ν806. ca haend = obs CA HA(map ends(cs)), [ι 783,π448]

ν807. ca laend = obs CA LA(map ends(cnend)), [ι784,π 448]

ν808. psend = obs Ps(map ends(paend)), [ι 785,π 448]

ν809. ca hsend = obs CA Hs(map ends(ca paend)), [ι 786,π 448]

ν810. ca lsend = obs CA Ls(map ends(ca laend)), [ι 787,π 448]

ν811. posend = map ends(ca psend), [ι 788,π 448]

ν813. ca besend = map ends(ca hsend) \ CA BE, [ι 790,π 449]

ν814. ca cosend = map ends(ca hsend) \ CA CO, [ι 791,π449]

ν815. ca ousend = map ends(ca hsend) \ CA OU, [ι 792,π 449]

ν816. ca clesend = obs CA LEs(map ends(ca lsend)), [ι 794,π 449]

ν818. ca chsend = ∪map ends(ca lesend) \ CA CH, [ι 796,π 449]

ν819. ca losend = ∪map ends(ca lesend) \ CA LO, [ι 797,π 449]

ν820. ca po pusend = ∪map ends(ca les psend) \ CA PO PU, [ι 799,π449]

16.3.3 Internal Qualities

16.3.3.1 Unique Identifiers

16.3.3.1.1 Unique Identifier Sorts

821. Canal systems have unique identifiers [ι 803,π 451].

822. Canal nets have unique identifiers [ι 804,π 452].

823. Polder aggregates have unique identifiers [ι 805,π 452].

824. Canal hub aggregates have unique identifiers
[ι 806,π 452].

825. Canal link aggregates have unique identifiers
[ι 807,π 452].

826. Polder sets (of polders) have unique identifiers
[ι 808,π 452].

827. Canal hub sets have unique identifiers [ι 809,π 452].

181 We invite the reader to formulate the MAP END type. As you can see from Items 791–802, it is a map from some
sort of names to sets of endurants.

454 16 Canals [March–April 2021]

828. Canal link sets have unique identifiers [ι 810,π 452].
829. Polders have unique identifiers.
830. Canal hubs have unique identifiers:
831. canal begin/ends [ι 813,π 452],
832. canal confluences [ι 814,π 452] and
833. canal outlets [ι 815,π 452].
834. Canal links have unique identifiers [ι 793,π 449].

835. Canal link element sets have unique identifiers
[ι 816,π 452].

836. Canal link elements have unique identifiers:

837. canal channels [ι 818,π 452],

838. canal locks [ι 819,π 452] and

839. canal polder pumps [ι 820,π 452].

type
821. CS UI [ι 780,π 448]

822. CN UI [ι 781,π 448]

823. PA UI [ι 782,π 448]

824. CA HA UI [ι 783,π 448]

825. CA LA UI [ι784,π 448]

826. Ps UI [ι 785,π 448]

827. CA Hs UI [ι 786,π 448]

828. CA Ls UI [ι 787,π 448]

829. P UI [ι 788,π448]

830. CA H UI = [ι 789,π449]

830. CA BE UI|CA CO UI|CA OU
831. CA BE UI [ι 790,π 449]

832. CA CO UI [ι 791,π449]

833. CA OU UI [ι 792,π449]

834. CA L UI [ι 793,π 449]

835. CA LEs UI [ι 794,π 449]

836. CA LE UI = CA CH UI [ι 795,π 449]

836. |CA LO UI|CA LO PU UI|CA PO PU UI
837. CA CH UI [ι 796,π449]

838. CA LO UI [ι 797,π 449]

839. CA PO PU UI [ι 799,π 449]

value
821. uid CS: CS→ CS UI
822. uid CN: CN − > CN UI
823. uid PA: PA→ PA UI
824. uid CA HA: CA HA→ CA HA UI
825. uid CA LA: CA LA→ CA LA UI
826. uid Ps: Ps→ Ps UI
827. uid CA Hs: CA Hs→ CA Hs UI
828. uid CA Ls: CA Ls→ CA Ls UI
829. uid P: P→ P UI
831. uid CA BE: CA BE→ CA BE UI
832. uid CA CO: CA CO→ CA CO UI
833. uid CA OU: CA OU→ CA OU UI
834. uid CA L: CA L→ CA L UI
835. uid CA LEs: CA LEs→ CA LEs UI
837. uid CA CH: CA CA CH→ CA CH UI
838. uid CA LO: CA CA LO→ CA CA LO UI
839. uid CA PO PU: CA LE→ CA PO PU UI

ui_2

ui_3 ui_4

ui_6

ui_8

ui_7 ui
_9

ui_10

ui_11

ui
_1

2

ui_13

ui_14

ui_15

ui_16

ui_17

ui_18

ui_19 ui
_2

0

ui_21

ui_5

ui_1
ui_22

ui_1
ui_6

ui_4

ui_11

ui_2
ui_5
ui_7
ui_8

ui_10
ui_13
ui_15
ui_17
ui_19
ui_21

ui_14
u_16

ui_18
ui_22

ui_3
ui_9

ui_12
ui_20

Fig. 16.16 Unique Identifiers of the Canal System of Figs. 16.13 and 16.14

16.3.3.1.2 Some Calculations

840. We can calculate the following sets of unique identifiers, seen as a map from some kind of RSL
names to sets of unique identifiers:

841. the canal system singleton set of its unique identifier, [ι 803,π 451],

16.3 The Endurants 455

842. the canal net singleton set of its unique identifier, [ι 804,π 452],
843. the polder aggregate singleton set of its unique identifier, [ι 805,π 452],
844. the canal hub aggregate singleton set of its unique identifier, [ι 806,π 452],
845. the canal link aggregate singleton set of its unique identifier, [ι 807,π 452],
846. the polder set singleton set of its unique identifier, [ι 808,π 452],
847. the hub set singleton set of its unique identifier, [ι 809,π 452],
848. the link set singleton set of its unique identifier, [ι 810,π 452],
849. the set of polder unique identifiers, [ι 808,π 452],
850. the set of canal begin/end unique identifiers, [ι 791,π 449],
851. the set of canal confluence unique identifiers, [ι 791,π 449],
852. the set of canal outlet unique identifiers, [ι 791,π 449],
853. the set of canal link set unique identifiers, [ι 792,π 449],
854. the set of canal link unique identifiers, [ι 793,π 449],
855. the set of canal channel unique identifiers, [ι 796,π 449],
856. the set of canal lock unique identifiers, [ι 797,π 449],
857. the set of canal lock pump unique identifiers, [ι 798,π 449] and
858. the set of canal polder pump unique identifiers, [ι 799,π 449].

To define the next map we make use of the following generic function:

859. It applies to a set of endurants of sort X and yields the set of unique identifiers of the members
of that set.

type
859. uid X: X-set→ X UI-set
value
859. uid X(xs) ≡ {uid X(x)|x:X•x ∈ xs}

value

840. map uids: MAP UI182

840. map uids = [[ι 780,π448]

841. csuid 7→ uid CS(map end(csend)), [ι 803,π 451]

842. cnuid 7→ uid CN(map ends(cnend)), [ι 804,π 452]

843. pauid 7→ uid PA(map ends(paend)), [ι 805,π452]

844. ca hauid 7→ uid CA HA(map ends(ca haend)) , [ι 806,π452]

845. ca lauid 7→ uid CA LA(map ends(ca laend)) , [ι 807,π 452]

846. psuid 7→ uid P(map ends(psend)), [ι 799,π 449]

847. ca hsuid 7→ uid CA Hs(map ends(ca hsend)) , [ι 809,π452]

848. ca lsuid 7→ uid CA Ls(map ends(ca lsend)) , [ι 810,π 452]

849. posuid 7→ uid P(map ends(psend)) , [ι 810,π 452]

850. ca besuid 7→ uid BE(map ends(ca besend)), [ι 813,π452]

851. ca cosuid 7→ uid CO(map ends(ca cosend)), [ι814,π 452]

852. ca ousuid 7→ uid OU(map ends(ca ousend)), [ι 815,π 452]

853. ca lesuid 7→ uid CA LEs(map ends(ca lsend)), [ι 816,π452]

855. ca chsuid 7→ uid CA CH(map ends(ca chsend)), [ι 818,π 452]

856. ca losuid 7→ uid CA LO(map ends(ca losend)), [ι819,π 452]

858. ca po pusuid 7→ uid PO PU(map ends(ca po pusend))] [ι 820,π 452]

182 We invite the reader to formulate the MAP UI type. As you can see from Items 791–802, it is a map from some
sort of names to sets of unique identifiers.

456 16 Canals [March–April 2021]

16.3.3.1.3 An Axiom

860. Let endparts stand for the set of all composite and atomic canal system endurants,
861. and enduids the set of all their unique identifiers.
862. The number of endurants parts equals the number of endurant part unique idenifiers,

is wf CS Identities(cs).

value
860. endparts = ∪ rng proper map ends

861. enduids = ∪ rng map uids
axiom
862. is wf CS Identities: CS→ Bool
862. is wf CS Identities(cs) ≡ card endparts = card enduids

16.3.3.1.4 Another Representation of UI Values

We, in a somewhat name-overloading fashion, similarly define:

value
ν841. csuid = uid CS(csend), [ι 803,π 451]

ν842. cnuid = uid CN(cnend), [ι 804,π 452]

ν843. pauid = uid PA(paend), [ι 805,π 452]

ν844. ca hauid = uid CA HA(ca haend) , [ι 806,π 452]

ν845. ca lauid = uid CA LA(ca laend) , [ι 807,π452]

ν846. psuid = uid Ps(psend), [ι 808,π 452]

ν847. ca hsuid = uid Hs(ca paend), [ι 809,π452]

ν848. ca lsuid = uid Ls(ca psend), [ι 810,π 452]

ν849. posuid = uid P(psend), [ι 811,π 452]

ν850. ca besuid = uid BE(ca besend), [ι 813,π452]

ν851. ca cosuid = uid CO(ca cosend), [ι 814,π 452]

ν852. ca ousuid = uid OU(ca ousend), [ι 815,π 452]

ν853. ca clesuid = uid CA LEs(ca lesend), [ι 816,π 452]

ν854. ca chsuid = uid CA CH(ca chsend), [ι 818,π 452]

ν855. ca losuid = uid CA LO(ca losend), [ι 819,π 452]

ν857. ca po pusuid = uid PO PU(ca po pusend)[ι820,π 452]

16.3.3.1.5 An Extract Function

863. Given 860. endparts and 861. enduids, we can, from any known unique identifier obtain its
corresponding part:

value
863. get part: UI→ END

863. get part(ui) ≡ let p:P • p ∈ endparts • uid P(p)=ui in p end; pre: ui ∈ rng enduids

16.3 The Endurants 457

16.3.3.2 Mereologies

16.3.3.2.1 Mereology Types

We shall focus only on the topological mereologies of canal system endurants. These can be
“read off” the ontology tree of Fig. 16.12 on page 450. Had we included the modeling of vessels
that ply the waters of canals, then the mereologies of most canal endurants wouldalso include sets
of vessel identifiers.

As for the definitions of endurants, cf. Items 780 on page 448 to 799 on page 449, and the
unique identifiers, cf. Items 821 on page 453 to 839 on page 454, we define the mereologies
for each category of endurants. These mereologies are defined using the unique identifiers of
the endurants immediately “above” and “below” them in the ontology “tree” of Fig. 16.12 on
page 450.

Common Hub and Link Types: From the unique identifier section we take over types defined in
Items 823 and 824 on page 453

864. while introducing a set of their identifiers:

type
823. CA HE UI = CA BE UI|CA CO UI|CA OU UI

824. CA LE UI = CA CH UI|CA LO UI|LO PU UI|PO PU UI

864. CA LE UI H = (CL HE UI|CP LE UI)-set

Canal Systems:

865. The mereology of a canal system is a pair of the unique identifiers of the canal net and of the
polder aggregate.

type
865. CS Mer = CN UI × PA UI
value
865. mereo CS: CS→ mereo CS

Canal Nets:

866. The mereology of a canal net aggregate is a pair of the unique identifier of the canal system, of
which it is a part, and a pair of the set of the unique identifiers of the canal hub agregate and
the canal link aggregate of the net.

type
value
866. CN Mer = CS UI × (CA HA × CA LA)
value
866. mereo CN: CN→ CN Mer

Polder Aggregates:

867. The mereology of a polder aggregate is a pair of the unique identifier of the canal system, of
which it is a part, and the unique identifier of the polder set it “spawns”.

type
867. PA Mer = CS UI × Ps UI
value
867. mereo PA: PA→ = PA Mer

458 16 Canals [March–April 2021]

Canal Hub Aggregates:

868. The mereology of a hub aggregate is a pair of the unique identifier of the canal net it belongs
to and the hub set it “spawns”.

type
868. CA HA Mer = CN UI × CA Hs
value
868. mereo CA HA: HA→ CA HA Mer

Canal Link Aggregates:

869. The mereology of a link aggregate is a pair of the unique identifier of the canal net it belongs
to and a set of the unique identifiers of the links that it “spawns”.

type
869. CA LA Mer = CN UI × CA Ls

value
869. mereo CA LA: LA→ CA LA Mer

Sets of Polders:

870. The mereology of a polder set is a pair of the unique identifier of the polder aggregate it belongs
to and a set of the unique identifiers of the polders that it “spawns”.

type
870. Ps Mer = PA UI × P UI-set
value
870. mereo Ps: Ps→ Pa Mer

Sets of Hubs:

871. The mereology of a hub set is a pair of the unique identifier of the hub aggregate it belongs to
and a set of the unique identifiers of the hubs that it “spawns”.

type
871. CA Hs Mer = CA HA UI × CA H UI-set
value
871. mereo CA Hs: CA Hs→ CA Hs Mer

Sets of Links:

872. The mereology of a link set is a pair of the unique identifier of the link aggregate it belongs to
and a set of the unique identifiers of the links that it “spawns”.

type
872. CA Ls Mer = CS LA UI × CA L UI-set
value
872. mereo CA Ls: Ls→ CA Ls Mer

Polders:

873. The mereology of apolder is a pair of the unique identifier of the polder aggregate and a set of
unique identifiers of canal polder pumps.

16.3 The Endurants 459

type
873. P Mer = Ps UI

value
873. mereo P: P→ P Mer

Hubs:

• Hubs are not individually “recognisable” as such. They are either begin/ends, confluences or
outlets; cf. Item 789 on page 449.

• The mereologies of hubs thus “translates” into the mereology of either begin/ends, confluences
or outlets.

⋄⋄ Begin/End

874. The mereology of a canal begin/end is a pair: the unique identifier of the canal hub set it
belongs to and the singleton set of the unique identifier of the first canal link element for
which it is the begin/end.

type
874. CA BE Mer = CA Hs UI × s:CA LE UI-set axiom ∀ (,s):CA BE Mer • card s=1
value
874. mereo CA BE: CA BE→ CA BE Mer

⋄⋄ Confluence

875. The mereology of a canal confluence is a pair: the unique identifier of the canal hub set
it belongs and set of two or more canal element unique identfiers, one for each canal link
incident upon the canal confluence.

type
875. CA CO Mer = CA Hs UI × s:CL E UI-set axiom ∀ (,s):CA CO Mer • card s≥2

value
875. mereo CA CO: CA CO→ mereo CA CO

⋄⋄ Outlet

876. The mereology of an outlet is a pair: the unique identifier of the canal hub set it belongs
and the singleton set of the unique identifier of the last canal link element for which it is
the outlet.

type
876. CA OU Mer = CA Hs UI × s:CL E UI-set axiom ∀ (,s):CA OU Mer • card s=1
value
876. mereo CA OU: CA OU→ CA OU Mer

Canal Links:

877. The mereology of a canal link are triples: the unique identifier of the canal link set to which it
belongs, a two element set of the canal hubs that the link is linking, and a list (i.e., an ordered
sequence) of the unique identifiers of the one or more canal link elements of the link.

460 16 Canals [March–April 2021]

type
877. CA L Mer = CA Ls UI × CA H UI-set × s:CA LE UI∗

877. axiom ∀ (,s,l):CA L Mer • card s=2 ∧ len l ≥ 1
value
877. mereo CA L: CA L→ CA L Mer

Sets of Canal Link Elements:

878. The mereology of any canal link element includes a pair: the unique identifier of the canal link
to which it belongs and a two element set, one element is the unique identifier of either a canal
hub or a[another] canal link element, the second element is the unique identifier of either a
[next] canal link element or a canal hub – these we call CLE UI P.

type
878. CA LE Mer Common = CL UI × seuis:(CA H UI|CA LE UI)-set
878. axiom ∀ (clui,chluis):CA LE Mer • card chluis = 2

Canal Link Elements:

• Canal link elements are not individually “recognisable” as such. They are either canal channels,
canal locks, canal locks with pumps or are canal polder pumps; cf. Item 795 on page 449.

⋄⋄ Canal Channels
879. The mereology of any canal channel is as the mereology included in any canal element

mereology, cf. Item 878.

type
879. CA CH Mer = se:CA LE Mer Common

value
879. mereo CA CH: CA CH→ CA CH Mer

⋄⋄ Canal Locks

880. The mereology of any canal lock is as the mereology included in any canal element
mereology, cf. Item 878.

type
880. CA LO Mer = se:CA LE Mer Common

value
880. mereo CA LO: CA LO→ CA LO Mer

⋄⋄ Canal Polder Pumps

881. The mereology of any canal polder pump, is a pair: in addition to the mereology of any
canal link element – which is now first element of the pair, has the second element being
the unique identifier of a polder.

type
881. CA PO PU Mer = se:CA LE Mer Common × P UI
value
881. mereo CA PO PU: CA PO PU→ CA PO PU Mer

16.3 The Endurants 461

16.3.3.2.2 The Mereology Axiom

It is You, the domain analysers & describers, who decide on the mereologies of a domain ! You may
wish to emphasize topological aspects of a domain; or you may wish to emphasize “co-ordination”
relations between topologically “unrelatable” parts; or you may choose a mix of these; it all, also,
depends on which aspects You wish to emphasize when transcendentally deducing [certain]
parts into behaviours. Therefore the mereology axiom to be expressed reflects Your choice. Here
we have chosen to emphasize the topological aspects of the canal domain. We use the term
well-formedness of the mereology of an endurant. But do not be mislead ! It is not a property
that we impose on the domain endurant. It is a fact. We cannot escape from that fact. Later, in
the requirements engineering of a possible software product for a domain, You may decide to
implement data structures to reflect mereologies, in which case you shall undoubtedly need to
prove that your choice of data structures, their initialisation and update does indeed satisfy the
axioms of the domain model.

882. For a canal system to be mereologically, cum topologically well-formed means that the canal
system mereology is well-formed.

axiom
882. is wf CS Mereology(csend)

16.3.3.2.3 Well-formed Mereologies

Canal Systems:

883. Canal system well-formednes, is wf CS Mereology,

a. besides the appropriateness of its own mereology,
b. is secured by the well-formedness of the canal net aggregate and polder aggregate, is wf -

CN Mereology and is wf PA Mereology.

value
883. is wf CS Mereology: CS→ Bool
883. is wf CS Mereology(csend) ≡
883a. let (cn ui,pa ui) = mereo CS(csend) in [ι 865,π 457]

883a. cn ui = cnuid ∧ pa ui = pauid end ∧ [ι 842π 455, ι 843π455]

883b. is wf CN Mereology(cnend)∧is wf PA Mereology(paend)

Canal Nets:

884. Well-formedness of canal nets, is wf CN Mereology,

a. besides the appropriateness of its own mereology, is wf CS Mereology,
b. is secured by the well-formedness of link and the hub aggregates, is wf CA LA Mereology,

and all links, is wf CA HA Mereology.

value
884. is wf CN Mereology: CN→ Bool
axiom
884. is wf CN Mereology(cnend) ≡

884a. let (cn ui,ca ha ui,ca la ui) = mereo CN(cnend) in [ι 866,π 457]

884a. cn ui = cnuid ∧ ca ha ui = ca hauid ∧ ca la ui = ca lauid end ∧[ι 842π455, ι 844π 455, ι 845π 455]

884b. is wf CA HA Mereology(ca haend)∧is wf CA LA Mereology(ca laend)

462 16 Canals [March–April 2021]

Polder Aggregates:

885. Well-formedness of polder aggregates, is wf PA Mereology,

a. besides the appropriateness of its own mereology,
b. is secured by the well–formedness of the polder set is wf Ps Mereology.

type
value
885. is wf PA Mereology: PA→ Bool
885. is wf PA Mereology(paend) ≡
885a. let (cs ui,ps ui) = mereo PA(paend) in [ι 867,π457]

885a. cs ui = csuid ∧ ps ui = psuid end ∧[ι 841π455, ι 846π 455]

885b. is wf Ps Mereology(psend)

Canal Hub Aggregates:

886. Well-formedness of canal hub aggregates, is wf CA HA Mereology,

a. besides the appropriateness of its own mereology,
b. is secured by the well-formedness of its set of hubs.

value
886. is wf CA HA Mereology: CA HA→ Bool
886. is wf CA HA Mereology(hub) ≡

886a. let (cnui,cahsui) = mereo CA HA(hub) in [ι 868,π 458]

886a. cnui = cnuid ∧ cahsui = ca hsuid end ∧[ι 842π455, ι847π 455]

886b. is wf CA Hs(ca hsend)

Canal Link Aggregates:

887. Well-formedness of canal hub aggregates, is wf CA HA Mereology,

a. besides the appropriateness of its own mereology,
b. is secured by the well-formedness of its set of links.

value
887. is wf CA LA Mereology: CA HA→ Bool
887. is wf CA LA Mereology(la) ≡
887a. let (cnui,clsui) = mereo CA LA(la) in [ι 869,π458]

887a. cnui = cnuid ∧ clsui = clsuid end ∧ [ι 842π455, ι848π 455]

887b. is wf CA Ls(clsend)

Sets of Polders:

888. Well-formedness of sets of polders, is wf Ps Mereology,

a. besides the appropriateness of its own mereology,
b. is secured by the well-formedness of its individual polders.

value
888. is wf Ps Mereology: Ps→ Bool
888. is wf Ps Mereology(ps) ≡
888a. let (paui,puis) = mereo Ps(psend) in [ι 870,π458]

888a. paui = ca pauid ∧ puis = ca posuid end ∧ [ι 842π 455, ι 843π455]

888b. ∀ po:PO • po ∈ posend ⇒ is wf P(po)

16.3 The Endurants 463

Sets of Hubs:

889. Well-formedness of a hub set is wf CA Hs Mereology,

a. besides the appropriateness of its own mereology,
b. is secured by the well-formedness of its individual hubs.

value
889. is wf CA Hs Mereology: CA Hs→ Bool
889. is wf CA Hs Mereology(ca hsend) ≡

889. let (cahaui,cahuis) = mereo CA Hs(ca besend∪ca cosend∪ca ousend) in [ι 871,π 458]

889. cahaui = ca hauid ∧ cahuis = ca hsuid end ∧ [ι 844π455, ι847π 455]

889a. ∀ hub:CA H • hub ∈ ca hsend ⇒ is wf CA H(hub)

Sets of Links:

890. Well-formedness of sets of links

a. besides the appropriateness of its own mereology,
b. is secured by the well-formedness of all of its individual links.

value
890. is wf CA Ls Mereology: mereo CA Ls→ Bool
890. is wf CA Ls Mereology(ca lsend) ≡
890a. let (cs la ui,ca ls ui) = mereo CA Ls(ca lsend) in [ι 872,π458]

890a. cs la ui = ∧ ca ls ui = ca lsuid end ∧ [ι 845π455, ι848π 455]

890b. ∀ link:CA L • link ∈ ca lsend ⇒ is wf CA L(link)

Polders:

891. Well-formedness of polders, is wf P Mereology, depends jst on the appropriateness of its own
mereology.

value
891. is wf Mereology Polder: mereo P→ Bool
891. is wf Mereology Polder(p) ≡

891. let ps ui = mereo P(p) in [ι 873,π 458]

891. ps ui = psuid end ≡ [ι 846,π 455]

Hubs:

789 Hubs are not individually “recognisable” as such. They are either begin/ends, confluences or
outlets; cf. Item 789 on page 449.

892. The well-formedness of hubs thus “translates” into the well-formedness of either begin/ends,
confluences or outlets.

type
789. CA H == CA BE|CA CO|CA OU

value
892. is wf Mereology H: H→ Bool
892. is wf Mereology H(h) ≡

892. is CA BE(h)→ is wf Mereology CA BE(h),
892. is CA CO(h)→ is wf Mereology CA CO(h),

892. → is wf Mereology CA OU(h)

464 16 Canals [March–April 2021]

• Begin/End

893. Well-formedness of the mereology of begin/end hubs, is wf Mereology CA BE, depends just
on the appropriateness of their own mereology.

value
893. is wf Mereology CA BE: CA BE→ Bool
893. is wf Mereology CA BE(be) ≡ ≡

893. let (cahsui,cleuis) = mereo CA BE(be) in [ι 874,π459]

893. cahsui ∈ ca hsuid ∧ cleuis ∈ ca lesuid end [ι 847π 455, ι 853π 455]

• Confluence

894. Well-formedness of the mereology of confluence hubs, is wf Mereology CA CO, depends
just on the appropriateness of their own mereology.

value
894. is wf Mereology CA CO: CA CO→ Bool
894. is wf Mereology CA CO(co) ≡
894. let (cahsui,cleuis) = mereo CA CO(co) in [ι 875,π 459]

894. cahsui ∈ ca hsuid ∧ cleuis ∈ ca lesuid end [ι 847π 455, ι 853π 455]

• Outlet

895. Well-formedness of the mereology of outlet hubs, is wf Mereology CA OU, depends just on
the appropriateness of their own mereology.

895. is wf Mereology CA OU: CA CO→ Bool
895. is wf Mereology CA OU(ou) ≡

895. let (cahsui,cleuis) = mereo CA OU(ou) in [ι 876,π459]

895. cahsui ∈ ca hsuid ∧ cleuis ∈ ca lesuid end [ι 847π 455, ι 853π 455]

Canal Links:

896. The well-formedness of canal links depends on

a. the appropriateness of its own mereology, that is, that its unique identifier references are
indeed to canal system identifiers,

b. the well-formedness of the set of link elements that can be observed from a canal link, that
is, that they form a sequence of canal link elements – connecting two canal hubs, and

c. the (“remaining”) well-formedness of the canal link elements.

896. is wf Mereology CA L: CA L→ Bool
896. is wf Mereology CA L(link) ≡
896a. let (calsui,cahuis,caleuil) = mereo CAL L(link) in [ι 876,π 459]

896a. calsui = ∧ cahuis = ∧ caleuil = ∧ [ι 847π 455, ι 853π455, ι 853π 455]

896b. wf Link Es(obs CA LEs(link))(cahuis)(caleuil) ∧

896c. ∀ le:CA LE•le ∈ obs CA LEs(link)⇒ is wf Mereology CA LE(le) end

Well-formed Sets of Canal Link Elements:
The introduction of the wf Link Es predicate represents a slight deviation from the introduction

of the usual is wf Mereology predicates.

897. The wf Link Es predicate applies to a set of link elements, link, and a unique identifier list, uil, of
unique link element identifiers. The predicate holds if the set, link: CA LE-set, of link elements
not only can be ordered in the sequence indicated by uil.

16.3 The Endurants 465

a. The length of the unique identifier list, uil, must match the cadinality of the set link.
b. Let linkl be the list of link elements prescribed by uil.

i. The elements of a list “alternate” as follows:
1. canal locks have either canal hubs or canal channels as immediate neighbours183;
2. Canal locks and polder pumps cannot be adjacent.
3. It is allowed for two or more canal channels to be adjacent.
4. Thus canal links may have either canal channels of canal locks as first/last elements.

ii. Now there are the following cases of “neighbour” mereologies to observe:
iii. For a singleton list, linkl, its only element must connect the two distinct hubs identified in

cahuis.
iv. for a two-element unique identifier list, 〈luil,ruil〉 one of their common mereology iden-

tifiers are shared, i.e., their elements are connected, and the other common mereology
identifiers are those of canal hubs, i.e. end-points.

v. For lists of length three or more elements
1. the first and last elements must have end-points,
2. and for all elements in-between it must be the case that the neighbour identifiers
3. of the previous and the following link elements
4. must share identifiers with the quantified element
5. and share identifier with

value
897. wf Link Es: CA LE-set→ CA H UI-set × CA LE UI∗ → Bool
897. wf Link Es(link)(euis:{l ca h ui,r ca h ui})(uil) ≡ [axiom card euis = 2]
897a. card link = len uil ∧

897b. let linkl = 〈 le | i:Nat, ce:C LE•

897b. 1≤i≤len uil∧le∈link∧uid CA LE(le)=uil[i]〉 in
897(b)i. is wf neighbours(linkl) ∧

897(b)ii. case linkl of
897(b)iii. 〈ui〉 →
897(b)iii. cahauis = seuis(mereo LE(get part(ui))),

897(b)iii. axiom: let {lui,rui}=seuis(mereo LE(get part(ui))) in
897(b)iii. wf end points(lui,rui)(euis) end
897(b)iv. 〈lui,rui〉 →

897(b)iv. wf end points(lui,rui)(euis),
897(b)v. 〈lui〉̂ link̂ 〈rui〉 → [axiom: len linkl ≥ 3, i.e., link,〈〉]
897(b)v1. wf end points(lui,rui)(euis) ∧

897(b)v2. ∀ i:Nat • 1<i<len linkl⇒
897(b)v3. let {uim1,uim1}=seuis(mereo CA LE(get part(linkl[i−1]))),
897(b)v3. {uip1,uip1}=seuis(mereo CA LE(get part(linkl[i+1]))) in
897(b)v4. axiom: lui∈{uim1,uim1} ∧ rui∈{uip1,uip1}

897(b)v5. let uism1={uim1,uim1}\{lui}, uisp1={uip1,uip1}\{rui} in
897(b)v5. link[i] = uism1 = uisp1 end
897. end end end

897(b)i. is wf neighbours: CA LE∗ → Bool
897(b)i. is wf neighbours(linkl) ≡

897(b)i. ∀ i:Nat • {i,i+1} ⊆ inds linkl⇒

897(b)i1. is CA LO UI(linkl[i])⇒ ∼(is CA LO UI(linkl[i+1])∨is PO PU UI(linkl[i+1]))

897(b)iv. is shared: UI × UI-set × UI-set→ Book

183 That is, a sequence of locks, such as illustrated in Fig. 16.5 on page 442, is here considered a single lock whose
attributes “reveals” its “multiplicity”.

466 16 Canals [March–April 2021]

897(b)iv. is shared(ui,luis,ruis) ≡ ui ∈ luis ∩ ruis

897(b)iv.

897(b)iv. shared: UI-set × UI-set→ UI
897(b)iv. shared(luis,ruis) ≡ luis ∩ ruis

897(b)iv. pre: ∃ ui:UI • is shared(ui,luis,ruis)
897(b)iv.

897(b)iv. wf end points: (UI×UI)→ CA H UI-set→ Bool
897(b)iv. wf end points(lui,rui)(euis) ≡ [axiom: card euis = 2]
897(b)iv. let {llui,lrui} = seuis(mereo LE(get part(lui))),

897(b)iv. {rlui,rrui} = seuis(mereo LE(get part(rui))) in
897(b)iv. if ∃ ui:CA LE UI • is shared(ui,{llui,lrui},{rlui,rrui})
897(b)iv. then let ui = shared({llui,lrui},{rlui,rrui}) in
897(b)iv. {llui,lrui,rlui,rrui}\{ui}=euis ∧
897(b)iv. euis⊆ca besuid∪ca cusuid∪ca ousuid end
897(b)iv. else false end end,

Canal Link Elements:
...

more to come

• Canal Channels

898. is wf CA CH Mereology,
a.
b.
c.

898.

898.

898a.
898b.

898c.

• Canal Locks

899. is wf CA LO Mereology,
a.
b.
c.

899.

899.

899a.
899b.

899c.

• Canal Polder Pumps

900. a.
b.
c.

16.3 The Endurants 467

900.

900.

900a.
900b.

900c.

16.3.3.3 Routes

16.3.3.3.1 Preliminaries

901. By an end-identifier we mean the unique identifier of a begin/end or an outlet.
902. By a middle-identifier we mean the unique identifier of a confluence, channel, lock, lock with

pump or a polder pump.
903. By a unit identifier we mean either an end-identifier or a middle-identifier.
904. By a canal route we mean a sequence of one or more unique identifiers of atomic canal entities,

two if one of the identifiers is that of a begin/end or an outlet unit.

Notice that adjacent canal route identifiers be distinct. But a triplet of adjacent canal route identi-
fiers may have the same first and last elements. It is allowed that a route, so-to-speak, goes forward
and backward. There is, in a sense, no preferred directions in canal systems.

type
901. E UI = CA BE UI|CA OU UI
902. M UI = CA CO UI|CA CH UI|CA LO UI|CA LO PU UI|CA PO PU UI

903. UI = E UI|M UI

904. CR = UI∗

axiom
904. ∀ cr:CR,i:Nat • {i,i+1}⊆inds cr⇒ cr[i],cr[i+1]

905. Let uid MU be a “common” unique identifier observer of middle units.
906. Let mereo MU be a “common” mereology observer of middle units other than polder pumps.
907. From middle units, i.e., confluences, channels, locks, lock with pumps and polder pumps we

can extract simple, one-, two- or three element canal routes.

type
905. uid MU = uid CA CO|uid CA CH|uid CA LO|uid CA LO PU|uid CA PO PU

906. mereo MU = mereo CA CO|mereo CA CH|mereo CA LO|uid CA LO PU

907. MU = CA CO|CA CH|CA LO|CA LO PU|CA PO PU
value
907. xtr M UI CRs: MU→ CR-set
907. xtr M UI CRs(mu) ≡
907. let mu ui = uid MU(mu),

907. {ui1,ui2} =
907. is CA PO PU(mu)→

907. let (,cuis,) = mereo CA PO PU(mu) in cuis end
907. → let (,cuis) = mereo MU(mu) in cuis end
907. {〈mu ui〉,〈ui1,mu ui〉,〈ui2,mu ui〉,〈mu ui,ui1〉,〈mu ui,ui2〉,〈ui1,mu ui,ui2〉,〈ui2,mu ui,ui1〉}

907. end

468 16 Canals [March–April 2021]

16.3.3.3.2 All Routes

908. By means of xtr M UI CRs we can extract, xtr CRs(mus), the infinite set of canal routes from
any set, mus, of middle canal elements.

909. First we calculate initial, i.e., simple routes.
910. Then for every two routes, a “left” and a “right” route, in the set of routes beng recursively

defined, such that the last element of the left route is identical to the first element of the right
route, the route formed by concatenating the left and right routes “around” the shared element
is a route.

911. The set of routes of a canal system is the least fix-point soluion the the equation of Item 910.
912. No two adjacent identifiers are the same.

type
907. MU = CA CO|CA CH|CA LO|CA LO PU|CA PO PU

value
908. xtr CRs: MU-set→ CR-infset
908. xtr CRs(mus) ≡

909. let icrs = ∪{xtr M UI CRs(mu)|mu:MU•mu ∈ mus} in
910. let crs = icrs ∪ {lr̂ 〈ui〉̂ rl|lr,〈ui〉,rr:CR•{lr̂ 〈ui〉,〈ui〉̂ rr}∈crs} in
911. crs

912. axiom: ∀ cr:CR, i:Nat • cr isn crs ∧ {i,i+1}⊆inds cr⇒ cr[i],cr[i+1]
908. end end

16.3.3.3.3 Connected Canal Systems

913. Canal systems, such as we shall understand them, are connected.
914. That is, there is a route from any canal element to any other other canal element.
915. Let mus be the set of all middle elements of a canal system.
916. Let rs be the infinite set of all routes of mus.
917. Now, for any two unique identifiers of middle elements there must be a route in rs.

value
913. is connected CS: CS→ Bool
914. is connected CS(cs) ≡ in
915. let mus = ca cosend∪ca chsend∪ca losend∪ca lo pusend∪ca po pusend in
916. let rs = xtr CRs(mus) in
917. ∀ ui:M UI • {fui,tui}⊆uid MU(mus)⇒ ∃ r:R • r ∈ rs and r[1]=r[len r]
914. end end

16.3.3.3.4 A Canal System Axiom

918. Canal systems are connected.

axiom
918. ∀ cs:CS • is connected CS(cs)

16.3 The Endurants 469

16.3.3.4 Attributes

We shall treat the issue of canal part attributes, not, as is usual, one-by-one, sort-by-sort, but
more-or-less “collectively”, across canal hubs and links. And we do so category-by-category of
attribute kinds: spatial, temporal and other.

16.3.3.4.1 Spatial and Temporal Attributes

Spatial Attributes:

Natural and artefactual, that is, mane-made endurants reside in space. We have dealt with
space, i.e., SPACE, in [55, Sects. 2.2 and 3.4]. Subsidiary spatial concepts are those ofVOLUME,
AREA, CURVE (or LINE), and POINT. All canal system endurants possess, whether we
choose to model them or not, such spatial attributes. We shall not here be bothered by any
representation, let alone computational representations, of spatial attributes. They are facts. Any
properties that two AREAs, ai and a j may have in common – like bordering, overlapping

disjoint or properly contained – are facts and should, as such be expressed in terms of axioms.
They are not properties that can, hence must, be proven. Once a domain description, involving
spatial concepts is the base for a requirements prescription, then, if these spatial concepts are not
projected out of the evolving requirements, they must, eventually, be prescribed – or assumed to
have – computable representations. In that case axioms concerning spatial quantities are turned
into proof obligations that must, eventually, be discharged.

Let us establish the following spatial attributes, common to all canal parts:

919. Location: A single POINT in SPACE characterised by its longitude, latitude and altitude, the
latter height above or depth below sea level, including 0. How these are measured is of no
concern in this model.

920. Extent: An AREA, i.e., a plane in SPACE, i.e., a dense set of POINTs according to some
topology.

921. Volume: A proper subset SPACE, i.e., a three dimensional dense set of POINTs SPACE,
according to some topology.

922. The Location of a canal part is always embedded in its Extent.

923. The Extent of a canal part is always embedded in its Volume

type
919. Location

920. Extent

921. Volume
value
919. attr Location: CS|CN|PA|CA HA|CA LA|CA LE→ Location

920. attr Extent: CS|CN|PA|CA HA|CA LA|CA LE→ Extent
921. attr Volume: CS|CN|PA|CA HA|CA LA|CA LE→ Volume

921. is embedded: Location × Extent→ Bool, is embedded: Extent × Volume→ Bool
axiom
922. ∀ e:(CS|CN|PA|CA HA|CA LA|CA LE)•is embedded(attr Location(e),attr Extent(e))

923. ∀ e:(CS|CN|PA|CA HA|CA LA|CA LE)•is embedded(attr Extent(e),attr Volume(e))

Let us establish the following ***s, common to some canal parts:

924. Let us addume the sort notions of Latitude, Longitude and Altitude,
925. And let us assume “sea level” Altitude value ”0”.
926. A projected extent is an extent all of whose altiude elements are zero (0), i.e., “at sea level”.
927. We assume functions, latitude, logitude, altitude, that extract respective elements of a point.

470 16 Canals [March–April 2021]

928. No two distinct hubs and link elements can share neither location, area nor volume – so they
are disjoint.

Canal channels may share projected extents.

type
924. Latitude, Longitude, Altitude

value
925.

′′
0
′′
: Altitude

926. projected Extent: Extent→ Extent

927. latitude: POINT→ Latitude, longitude: POINT→ Longitude, altitude: POINT→ Altitude
axiom
928. ∀ e,e′:(CS|CN|PA|CA HA|CA LA|CA LE): e,e′ ⇒ disjoint(attr Volume(e),attr Volume(e′))
924. ∀ e,e′:CA CH •

925.

926.

Temporal Attributes:
Natural and artefactual, that is, mane-made endurants reside in time. We have dealt with

space, i.e., TIME, in [55, Sects. 2.2 and 3.5]. Subsidiary spatial concepts are those of TIME and
TIME INTERVALs. All canal system endurants possess, whether we choose to model them
or not, such temporal attributes. We shall not here be bothered by any representation, let alone
computational representations, of temporal attributes. They are facts. Any properties that two
TIME INTERVALs, tii and ti j may have in common, like bordering or overlapping, are facts

and should, as such be expressed in terms of axioms184. They are not properties that can, hence
must, be proven. Once a domain description, involving temporal concepts is the base for a re-
quirements prescription, then, if these temporal concepts are not projected out of the evolving
requirements, they must, eventually, be prescribed – or assumed to have – computable represen-
tations. In that case axioms concerning temporal quantities are turned into proof obligations that
must, eventually, be discharged.

Event Attributes

Some events can, for example, be talked about, by humans. They, so-to-speak, belong to an
event-category: “von hörensagen”. Examples are: “a canal lock opened at time τ ” ; “a polder
pump stopped pumping at time τ′ ” ; and “a canal vessel passed a certain canal channel point
at time τ′′ ”. Let refer to the event as e:E. If, for an endurant, p of sort P, they are relevant to
an analysis & description of a domain, then they must be noted, for example in the form of an
attribute named, say, history E:

type history E = TIME →m E

Continuous Time Attributes

Mostly one models discrete time phenomena. But often phenomena are continuous time vary-
ing. Examples are: “the canal water level”, “the canal water temperature”, and “the position of a
vessel along a canal”. If, for an endurant, p of sort P, such a phenomenon, e:E, is relevant to an
analysis & description of a domain, then it must be noted, for example in the form of an attribute
named, say, history E:

type history E = TIME→ E

184 We refer here to the TIME and TIME INTERVAL operators of [55, Sects. 2.2 and 3.5]

16.3 The Endurants 471

16.3.3.4.2 Canal System, Net and Polder Attributes

929. Canal systems have location and extent.
930. So do canal nets and
931. polder aggregates.
932. Canal nets and polder aggregates are bordering185.
933. Canal nets and polder aggregates are properly embedded186 in canal systems.
934. Etc.

value
929. attr Location: CS→ Location; attr Extent: CS→ Extent

930. attr Location: CN→ Location; attr Extent: CN→ Extent

931. attr Location: PA→ Location; attr Extent: PA→ Extent
axiom
932. ∀ cs:CS • are bordering(attr Extent(obs CN(cs)),attr Extent(obs PA(cs)))
933. ∀ cs:CS • is embedded(attr Extent(obs CN(cs)),cs)∧is embedded(cs,attr Extent(obs PA(cs)))

934. ...

16.3.3.4.3 Canal Hub and Link Attributes

Two kinds of attributes shared across hubs and links, therefore their elements, stand out: water
levels and ambient and water temperatures.

Water Temperatures:

935. Let there be given a notion of water temperature.

Generally, over time, one can associate with any canal hub and link element,

936. high,
937. normal and
938. low water

water temperatures, and specifically, at any time,

939. current water temperatures.

type
935. Wa Temp

936. Hi Temp = TIME→Wa Temp
937. No Temp = TIME→Wa Temp

938. Lo Temp = TIME→Wa Temp

939. Cu Temp =Wa Temp
value
936. attr Hi Temp: H→ Hi Temp, attr LE Temp: LE→ Hi Temp
937. attr No Temp: H→ No Temp, attr LE Temp: LE→ No Temp

938. attr Lo Temp: H→ Lo Temp, attr LE Temp: LE→ Lo Temp

939. attr Cu Temp: H→ Cu Temp, attr LE Temp: LE→ Cu Temp

185 We leave it to a chosen Topology to define the are bordering predicate
186 We leave it to a chosen Topology to define the is embedded predicate

472 16 Canals [March–April 2021]

The Hi Temp, No Temp and Lo Temp attributes are normally continuous functions over time.
They are facts. One does not have to “go out” and measure them ! We do not have to think of
representations for the Hi Temp, No Temp and Lo Temp attributes.

Water Levels:

940. Let there be given a notion of water level.

Generally, over time, one can associate with any canal hub and link element,

941. high,
942. normal and
943. low

water levels, and specifically, at any time,

944. current water level.

type
940. Wa Lev
941. Hi WL = TIME→ Wa Lev

942. No WL = TIME→Wa Lev

943. Lo WL = TIME→ Wa Lev
944. Cu WL =Wa Lev

value
941. attr Hi WL: H→ Hi WL, attr LE WL: LE→ Hi WL

942. attr No WL: H→ No WL, attr LE WL: LE→ Hi WL

943. attr Lo WL: H→ Lo WL, attr LE WL: LE→ Hi WL
944. attr Cu WL: H→ Cu WL, attr LE WL: LE→ Hi WL

The Hi WL, No WL and Lo WL attributes are normally continuous functions187 over time. Remarks
on Hi WL, No WL and Lo WL attributes similar to those of the Hi Temp, No Temp and Lo Temp
attributes as to continuity and representations apply.

more to come

16.3.3.5 Well-formedness of Attributes

945. There is a predicate, is wf CS Attributes.
946.
947.
948.
949.

more to come

16.3.4 Speculations

to be written

187 – barring cyclones, tornados and the like !

16.4 Conclusion 473

16.4 Conclusion

to be written

Part III

Two Postlude “Domain” Examples

Chapter 17

A Stock Exchange [January 2010]

Contents
17.1 Introduction . 477
17.2 The Problem . 477
17.3 A Domain Description . 478

17.3.1 Market and Limit Offers and Bids . 478
17.3.2 Order Books . 479
17.3.3 Aggregate Offers . 479
17.3.4 The TSE Itayose “Algorithm” . 481
17.3.5 Match Executions . 482
17.3.6 Order Handling . 482

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper . 483

I thank Prof. Tetsuo Tamai, Tokyo University, for commenting on an early version of this chapter:
clarifying issues and identifying mistakes and typos.

This chapter was begun on January 24. It is being released, first time, January 28.

17.1 Introduction

This chapter shall try describe: narrate and formalise some facets of the (now “old”188) stock
trading system of the TSE: Tokyo Stock Exchange (especially the ‘matching’ aspects).

17.2 The Problem

The reason that I try tackle a description (albeit of the “old” system) is that Prof. Tetsuo Tamai
published a delightful paper [152, IEEE Computer Journal, June 2009 (vol. 42 no. 6) pp. 58-65)],
Social Impact of Information Systems, in which a rather sad story is unfolded: a human error key

188 We write “old” since, as of January 4, 2010, that ‘old’ stock trading system has been replaced by the so-called
arrowhead system. We refer to the following documents:

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet.html

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet-e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet1e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet2e.html

477

478 17 A Stock Exchange [January 2010]

input: an offer for selling stocks, although “ridiculous” in its input data (“sell 610 thousand stocks,
each at one (1) Japanese Yen”, whereas one stock at 610,000 JPY was meant), and although several
immediate — within seconds — attempts to cancel this “order”, could not be canceled ! This lead
to a loss for the selling broker at around 42 Billion Yen, at today’s exchange rate, 26 Jan. 2010, 469
million US $s !189 Prof. Tetsuo Tamai’s paper gives a, to me, chilling account of what I judge as
an extremely sloppy and irresponsible design process by TSE and Fujitsu. It also leaves, I think,
a strong impression of arrogance on the part of TSE. This arrogance, I claim, is still there in the
documents listed in Footnote 188 on the preceding page.

So the problem is a threefold one of

• Proper Requirements: How does one (in this case a stock exchange) prescribe (to the software
developer) what is required by an appropriate hardware/software system for, as in this case,
stock handling: acceptance of buy bids and sell offers, the possible withdrawal (or cancellation)
of such submitted offers, and their matching (i.e., the actual trade whereby buy bids are marched
in an appropriate, clear and transparent manner).

• Correctness of Implementation: How does one make sure that the software/hardware system
meets customers’ expectations.

• Proper Explanation to Lay Users: How does one explain, to the individual and institutional
customers of the stock exchange, those offering stocks for sale of bids for buying stocks – how
does one explain – in a clear and transparent manner the applicable rules governing stock
handling.190

I shall only try contribute, in this document, to a solution to the first of these sub-problems.

17.3 A Domain Description

17.3.1 Market and Limit Offers and Bids

1. A market sell offer or buy bid specifies

a. the unique identification of the stock,
b. the number of stocks to be sold or bought, and
c. the unique name of the seller.

2. A limit sell offer or buy bid specifies the same information as a market sell offer or buy bid (i.e.,
Items 1a–1c), and

d. the price at which the identified stock is to be sold or bought.

3. A trade order is either a (mkMkt marked) market order or (mkLim marked) a limit order.
4. A trading command is either a sell order or a buy bid.
5. The sell orders are made unique by the mkSell “make” function.
6. The buy orders are made unique by the mkBuy “make” function.

type
1 Market = Stock id × Noumber of Stocks × Name of Customer
1a Stock id

189 So far three years of law court case hearing etc., has, on Dec. 4, 2009, resulted in complainant being awarded
10.7 billion Yen in damages. See http://www.ft.com/cms/s/0/e9d89050-e0d7-11de-9f58-00144feab49a.html.
190 The rules as explained in the Footnote 188 on the previous page listed documents are far from clear and
transparent: they are full of references to fast computers, overlapping processing, etc., etc.: matters with which
these buying and selling customers should not be concerned — so, at least, thinks this author !

17.3 A Domain Description 479

1b Number of Stocks = {|n•n:Nat∧n>1|}

1c Name of Customer

2 Limit = Market × Price
2d Price = {|n•n:Nat∧n>1|}

3 Trade == mkMkt(m:Market) | mkLim(l:Limit)
4 Trading Command = Sell Order | Buy Bid

5 Sell Order == mkSell(t:Trade)

6 Buy Bid == mkBuy(t:Trade)

17.3.2 Order Books

7. We introduce a concept of linear, discrete time.
8. For each stock the stock exchange keeps an order book.
9. An order book for stock sid : SI keeps track of limit buy bids and limit sell offers (for the identified

stock, sid), as well as the market buy bids and sell offers; that is, for each price

d. the number stocks, by unique order number, offered for sale at that price, that is, limit sell
orders, and

e. the number of stocks, by unique order number, bid for buying at that price, that is, limitbuy
bid orders;

f. if an offer is a market sell offer, then the number of stocks to be sold is recorded, and if an
offer is a market buy bid (also an offer), then the number of stocks to be bought is recorded,

10. Over time the stock exchange displays a series of full order books.
11. A trade unit is a pair of a unique order number and an amount (a number larger than 0) of

stocks.
12. An amount designates a number of one or more stocks.

type
7 T

8 All Stocks Order Book = Stock Id →m Stock Order Book
9 Stock Order Book = (Price →m Orders) × Market Offers

9 Orders:: so:Sell Orders × bo:Buy Bids
9d Sell Orders = On →m Amount

9e Buy Bids = On →m Amount

9f Market Offers :: mkSell(n:Nat) × mkBuy(n:Nat)
10 TSE = T →m All Stocks Order Book

11 TU = On × Amount

12 Amount = {|n•Nat∧n≥1|}

17.3.3 Aggregate Offers

13. We introduce the concepts of aggregate sell and buy orders for a given stock at a given price
(and at a given time).

14. The aggregate sell orders for a given stock at a given price is

g. the stocks being market sell offered and
h. the number of stocks being limit offered for sale at that price or lower

480 17 A Stock Exchange [January 2010]

15. The aggregate bur bids for a given stock at a given price is

i. including the stocks being market bid offered and
j. the number of stocks being limit bid for buying at that price or higher

value
14 aggr sell: All Stocks Order Book × Stock Id × Price→ Nat
14 aggr sell(asob,sid,p) ≡
14 let ((sos,),(mkSell(ns),)) = asob(sid) in
14g ns +

14h all sell summation(sos,p) end
15 aggr buy: All Stocks Order Book × Stock Id × Price→ Nat
15 aggr buy(asob,sid,p) ≡
15 let ((,bbs),(,mkBuy(nb))) = asob(sid) in
15i nb +

15j nb + all buy summation(bbs,p) end

all sell summation: Sell Orders × Price→ Nat
all sell summation(sos,p) ≡

let ps = {p
′
|p
′
:Prices • p

′
∈ dom sos ∧ p

′
≥ p} in accumulate(sos,ps)(0) end

all buy summation: Buy Bids × Price→ Nat
all buy summation(bbs,p) ≡

let ps = {p
′
|p
′
:Prices • p

′
∈ dom bos ∧ p

′
≤ p} in accumulate(bbs,ps)(0) end

The auxiliary accumulate function is shared between the all sell summation and the all buy -

summation functions. It sums the amounts of limit stocks in the price range of the accumulate

function argument ps. The auxiliary sum function sums the amounts of limit stocks — “pealing
off” the their unique order numbers.

value
accumulate: (Price →m Orders) × Price-set→ Nat→ Nat
accumulate(pos,ps)(n) ≡

case ps of {} → n, {p}∪ ps
′
→ accumulate(pos,ps

′
)(n+sum(pos(p)){dom pos(p)}) end

sum: (Sell Orders|Buy Bids)→ On-set→ Nat
sum(ords)(ns) ≡

case ns of {} → 0, {n}∪ ns
′
→ ords(n)+sum(ords)(ns

′
) end

To handle the sub limit sells and sub limit buys indicated by Item 17c on the facing page of
the Itayose “algorithm” we need the corresponding sub sell summation and sub buy summation

functions:

value
sub sell summation: Stock Order Book × Price→ Nat
sub sell summation(((sos,),(ns,)),p) ≡ ns +

let ps = {p
′
|p
′
:Prices • p

′
∈ dom sos ∧ p

′
> p} in accumulate(sos,ps)(0) end

sub buy summation: Stock Order Book × Price→ Nat
sub buy summation(((,bbs),(,nb)),p) ≡ nb +

let ps = {p
′
|p
′
:Prices • p

′
∈ dom bos ∧ p

′
< p} in accumulate(bbs,ps)(0) end

17.3 A Domain Description 481

17.3.4 The TSE Itayose “Algorithm”

16. The TSE practices the so-called Itayose “algorithm” to decide on opening and closing prices191.
That is, the Itayose “algorithm” determines a single so-called ‘execution’ price, one that matches
sell and buy orders192:

17. The “matching sell and buy orders” rules:

a. All market orders must be ‘executed’193.
b. All limit orders to sell/buy at prices lower/higher than the ‘execution price’194 must be

executed.
c. The following amount of limit orders to sell or buy at the execution prices must be executed:

the entire amount of either all sell or all buy orders, and at least one ‘trading unit’195 from
‘the opposite side of the order book’196.

value
17 match: All Stocks Order Book × Stock Id→ Price-set
17 match(asob,sid) as ps

17 pre: sid ∈ dom asob

17 post: ∀ p
′
:Price • p

′
∈ ps⇒

17′ ∃ os:On-set •

17a′ market buys(asob(sid))
17b′ + sub limit buys(asob(sid))(p

′
)

17c′ + all priced buys(asob(sid))(p
′
)

17a′ = market sells(asob(sid))
17b′ + sub limit sells(asob(sid))(p

′
)

17c′ + some priced buys(asob(sid))(p
′
)(os) ∨

17′′ ∃ os:On-set •

17a′′ market buys(asob(sid))

17b′′ + sub limit buys(asob(sid))(p
′
)

17c′′ + some priced buys(asob(sid))(p
′
)(os)

17a′′ = market sells(asob(sid))

17b′′ + sub limit sells(asob(sid))(p
′
)

17c′′ + all priced buys(asob(sid))(p
′
) ∨

The match function calculates a set of prices for each of which a match can be made. The set may
be empty: there is no price which satisfies the match rules (cf. Items 17a–17c below). The set may
be a singleton set: there is a unique price which satisfies match rules Items 17a–17c. The set may
contain more than one price: there is not a unique price which satisfies match rules Items 17a–17c.
The single (′) and the double (′′) quoted (17a–17c) group of lines, in the match formulas above,
correspond to the Itayose “algorithm”s Item 17c ‘opposite sides of the order book’ description.
The existential quantification of a set of order numbers of lines 17′ and 17′′ correspond to that
“algorithms” (still Item 17c) point of at least one ‘trading unit’. It may be that the post condition
predicate is only fulfilled for all trading units – so be it.

value
market buys: Stock Order Book→ Amount

191 [152, pp 59, col. 1, lines 4-3 from bottom, cf. Page 485]
192 [152, pp 59, col. 2, lines 1–3 and Items 1.–3. after yellow, four line ‘insert’, cf. Page 485] These items 1.–3. are
reproduced as “our” Items 17a–17c.
193 To execute an order:
194 Execution price:
195 Trading unit:
196 The opposite side of the order book:

482 17 A Stock Exchange [January 2010]

market buys((,(,mkBuys(nb))),p) ≡ nb

market sells: Stock Order Book→ Amount
market sells((,(mkSells(ns),)),p) ≡ ns

sub limit buys: Stock Order Book→ Price→ Amount

sub limit buys(((,bbs),))(p) ≡ sub buy summation(bbs,p)

sub limit sells: Stock Order Book→ Price→ Amount

sub limit sells((sos,))(p) ≡ sub sell summation(sos,p)

all priced buys: Stock Order Book→ Price→ Amount

all priced buys((,bbs),)(p) ≡ sum(bbs(p))

all priced sells: Stock Order Book→ Price→ Amount

all priced sells((sos,),)(p) ≡ sum(sos(p))

some priced buys: Stock Order Book→ Price→ On-set→ Amount

some priced buys((,bbs),)(p)(os) ≡
let tbs = bbs(p) in if {},os∧os⊆dom tbs then sum(tbs)(os) else 0 end end

some priced sells: Stock Order Book→ Price→ On-set→ Amount

some priced sells((sos,),)(p)(os) ≡

let tss = sos(p) in if {},os∧os⊆dom tss then sum(tss)(os) else 0 end end

The formalisation of the Itayose “algorithm”, as well as that “algorithm” [itself], does not guarantee
a match where a match “ought” be possible. The “stumbling block” seems to be the Itayose

“algorithm”s Item 17c. There it says: ‘at least one trading unit’. We suggest that a match could
be made in which some of the stocks of a candidate trading unit be matched with the remaining
stocks also being traded, but now with the stock exchange being the buyer and with the stock
exchange immediately “turning around” and posting those remaining stocks as a TSE marked
trading unit for sale.

Much more to come: essentially I have only modeled column 2, rightmost column, Page 59 of
[152, Tetsuo Tamai, “TSE”]. Next to be modeled is column 1, leftmost column, Page 60 of [152].
See these same page numbers of the present document !

17.3.5 Match Executions

to be written

17.3.6 Order Handling

to be written

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper 483

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper

For private, limited circulation only, I take the liberty of enclosing Tetsuo Tamai’s IEEE Computer
Journal paper.

484 17 A Stock Exchange [January 2010]

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper 485

486 17 A Stock Exchange [January 2010]

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper 487

488 17 A Stock Exchange [January 2010]

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper 489

490 17 A Stock Exchange [January 2010]

17.4 Tetsuo Tamai’s IEEE Computer Journal Paper 491

Chapter 18

An “Extensible” Virtual Shared Memory [May–July 2010]

Contents
18.1 Introduction . 494

18.1.1 On Targets of Formal Specification . 494
18.1.2 Why Specify Software Concepts Formally . 495
18.1.3 An XVSM Type System . 495

18.1.3.1 Type Systems . 496
18.1.3.2 Static and Dynamic Type Systems . 496
18.1.3.3 Why Type Systems . 496

18.1.4 Words of Caution . 496
18.2 XVSM Trees . 497

18.2.1 XTree Rules . 497
18.2.2 XTree Types . 497
18.2.3 XTree Type Designator Wellformedness . 497
18.2.4 XTree Type Functions . 498
18.2.5 XTreeWellformedness . 498
18.2.6 XTree Subtypes . 499

18.3 XTree Operations . 500
18.3.1 XTree Multiset Union . 500
18.3.2 Commensurate Multiset Arguments . 500
18.3.3 Type “Prediction” . 501
18.3.4 A Theorem: Correctness of Type “Prediction” . 501
18.3.5 XTree Multiset Equality . 501
18.3.6 XTree Multiset Subset . 502
18.3.7 Property Multiset Membership . 502
18.3.8 XTree Multiset Membership . 502
18.3.9 XTree Multiset Cardinality . 502
18.3.10 Arbitrary Selection of XTrees or Properties from Multisets 503
18.3.11 XTree Multiset Difference . 503
18.3.12 XTree List Concatenation . 503
18.3.13 XTree List Equality . 504
18.3.14 XTree List Property Membership . 504
18.3.15 XTree List XTree Membership . 504
18.3.16 XTree List Length . 504
18.3.17 XTree List Head . 505
18.3.18 XTree List Tail . 505
18.3.19 XTree List Nth Element . 505

18.4 Indexing . 505
18.4.1 Paths and Indexes . 505
18.4.2 Proper Index . 506
18.4.3 Index Selecting . 506
18.4.4 Path Indexing . 506

18.5 Queries . 507
18.5.1 Generally on Semantics . 507
18.5.2 Syntax: Simple XVSM Queries . 508

18.5.2.1 Syntax: Predefined Selector Queries . 508

493

494 18 An “Extensible” Virtual Shared Memory [May–July 2010]

18.5.2.2 Semantics: Predefined Selector Queries . 508
18.5.2.2.1 Count . 508
18.5.2.2.2 Sort Up . 509

This document presents work in progress. The document constitutes a technical note. It reports
on an attempt to formalise XVSM: the Extensible Virtual Shared Memory as reported in the Dipl.Ing.
thesis by Stefan Craß: A Formal Model of the Extensible Virtual Shared Memory (XVSM) and its
Implementation in Haskell – Design and Specification. Technische Universität Wien, 05.02.2010
[76].

18.1 Introduction

XVSM, the Extensible Virtual Shared Memory concept, has been described in a number of conference
proceeding publications: [113, 114, 77, 13]. The MSc Thesis [76] claims to present a formal model,
but what is presented is not a proper formal model. To be a proper formal model there must be an
abstract presentation in some formal, that is, mathematically well defined specification language
and there must be a formal proof system for that language. Usually a formal semantics is also an
abstract specification. Haskell, although a commendable programming language, is not suited
for the specification of a semantics of XVSM, and [76] presents a Haskell implementation of XVSM
and not an abstraction. A reasonably precise, even readable (and also executable), definition of
XVSM could have been done in Haskell. Such a definition would carefully build up definitions, in
Haskell, of the syntax of XVSM XTrees, of XVSM queries, etc. We shall present a formal definition of
XVSM in RSL, the Raise Specification Language [92, 93].

18.1.1 On Targets of Formal Specification

Formalisation of software concepts started in the 1960s. The most notable example was that of the
formal (operational semantics) description of the PL/I programming language [8, 9, 10]. The ULD
notation emerged (ULD I, ULD II, ULD III -- ULD for Universal Language Description). This
name of notation was later renamed into VDL (Vienna Language Description) by J.A.N. Lee [115].
Peter Lucas (sometimes with Kurt Walk) reviewed the [123, 118, 117, 119, 120, 121, 122] semantics
descriptions of notably ULD III and the background for VDM (the Vienna Development Method).

As a result of the VDL (research and experimental development) work the IBM Vienna Labo-
ratory undertook, in 1973, to develop, for the IBM market a new PL/I compiler for a new IBM
computer (code named FSM: Future Systems machine). The US and European IBM laboratories’
development of this computer was, eventually, curtailed, in February 1974. Nevertheless, the IBM
Vienna Laboratory, was able to complete the work on a formal (denotational semantics-like) de-
scription of PL/I [7]. This work led to VDM [64, 109, 65, 110, 111, 90] – which later led to RAISE
[92, 93] (1990). All the other now available formal specification languages came after VDM: Alloy
[106] (2000), B, Event B [2] (1990, 2000) and Z [155] (1980).

First with VDM and now, as here, with RSL, formal specification has been used – other than for the
semantics description of programming languages – first for formalising software designs, then for
formalising requirements for general software, and for formalising (their) domain descriptions.

In this technical note we apply, not for the first time, formal specification to what the proposers
of XVSM refers to as middleware: computer software that connects software components or ap-
plications. The software consists of a set of services that allows multiple processes running on
one or more machines to interact (including sharing data). Middleware technology evolved to
provide for interoperability in support of the move to coherent distributed architectures, which
are most often used to support and simplify complex distributed applications. It includes web

18.1 Introduction 495

servers, application servers, and similar tools that support application development and delivery.
Middleware is especially integral to modern information technology based on XML, SOAP, Web
services, and service-oriented architecture.

18.1.2 Why Specify Software Concepts Formally

A number of independent reasons can be given for why one might wish to formally specify a
software concept197. We itemize some of these:

• As a design aid: In researching and experimentally developing the design of a software concept,
experiments with formal models of the software concept, or just some of its sub-concepts, have
shown to help clarify and simplify many design issues198.

• As a communication document: A suitably narrated and formalised specification, such as the
present technical note lays a ground for (but is not yet), can be used as a, or the, ‘semantics’
specification for XVSM. It can serve as a standards document.

• As a basis for implementation: A suitably narrated and formalised specification, such as the
present technical note, can serve as a basis for (thus provably) correct implementations of proper
XVSMmiddleware.

• As a basis for teaching & training: An XVSM communication document can serve as the basis
for instruction in the use (i.e., ‘programming’) of XVSM-dependent applications.

• As a basis for proving properties of XVSM: The formal specfication of XVSM, such as attempted, or
at least begun, with the present technical note, can be referred to in formal proofs of properties
of XVSM and its applications.

18.1.3 An XVSM Type System

One of the great contributions of computing science to mathematics has been the studies made of
type systems. And one of the great advances of software engineering from the middle 1950s till
today has been the use of suitable, usually static, type systems.

The current author has (therefore) been quite surprised when discovering, that a language such
as the XVSM query language and the Core Application Programming Interface Languages199 (such
as CAPI-1, CAPI-2, and CAPI-3) has not been endowed by a type system. Instead of erroneous
query and transaction results (here modelled by chaos) an XVSM programme could use these type
testing facilties to secure provably correct uses of XVSM.

We shall, here and there, ‘divert’ from a straight line reformulation of [76], and present compo-
nents of an XVSM Type System (XVSM/TS).

197 By a software concept we mean such concepts as (the semantics of) programming languages, database models
or database management systems, operating systems, specific application systems [such as for air traffic, banking,
manufacturing, transportation, or other], their requirements, their underlying domains, etc.
198 The current author offers the following observation (i) and advice (ii): (i) it seems that formalisation was not
used in the conceptualisation of XVSM; and (ii) further extensions of XVSM should preferably be based on the present
– or similar, reworked – formalisation and should itself use formal modelling. In reading publications about XVSM
an experienced reader of precise descriptions too easily resolves that there are simply far too many ambiguous,
incinsistent and incomplete description points: they may not be so, but the current egnlish texts leaves such an
experienced reader of precise descriptions to resolve so.
199 An application programming interface (API) is an interface implemented by a software program which enables
it to interact with other software.

496 18 An “Extensible” Virtual Shared Memory [May–July 2010]

18.1.3.1 Type Systems

Many kinds of type systems can be proposed for XVSM. Defining a type system may imply that
only correctly typed data, i.e., XTrees, and only arguments to operations: queries and actions, that,
in some weak or strong sense, satisfy the signature (that is, the type) of the operation are allowed.
(We then speak of a weakly, respectively strongly type language.) We shall, through the judicious
use of concepts of sub, commensurate- and super-types, suggest one (of several possible) XVSM
type systems. It is important to emphasize this: that either one of several XVSM type systems are
possible. The one presented ehre may not be the best for a number of contemplated applications
of XVSM, but it is probably a sensible one! Recommendable monographs cum textbooks on type
systems and programming languages are [143, 129]. Further foundational studies of type systems
are provided in the monographs [94, 1].

18.1.3.2 Static and Dynamic Type Systems

A programming language is said to use static typing when type checking can be performed during
compile-time as opposed to run-time.

A programming language is said to be dynamically typed when the majority of its type checking
can only be performed at run-time as opposed to at compile-time. In dynamic typing, values have
types but variables do not (necessarily); that is, a variable can refer to a value of any type. Whether
one can speak of XVSM variables is not known.

We shall anyway think of the type system that we shall put forward for XVSM as being a dynamic
type system.

18.1.3.3 Why Type Systems

Reasons for endowing XVSMwith a type system can be itemized:

• Safety: Checking, before execution, that an operation, with the types of its argument and the
types of the space-based data, that is, XTrees, satisfy the type rules helps avoid otherwise
meaningless operations.

• Optimisation: Static type-checking may provide useful compile-time information. Dynamic
type-checking may provide useful run-time information.

• Documentation: In expressive type systems, types can serve as a form of documentation, since
they can illustrate the intent of the programmer.

• Abstraction (Modularity): Types allow programmers to think about programs at a higher level
than the bit or byte, not bothering with low-level implementation.

Any one chosen type system will have been devised so as to satisfy at least one of the above
reasons.

18.1.4 Words of Caution

The type system proposed here for XVSM is just an example. I am not quite sure that my particular
design choices are the right ones for a system like XVSM. A perhaps more proper XVSM type system
should evolve as the result of close, concentrated discussions and work, in Vienna, not over the
Internet, between the leading authors of [113, 114, 77, 13, 76] and Dines Bjørner. But what I am
rather sure of is that for XVSM to be considered a serious contender for so-called space-based

18.2 XVSM Trees 497

computing XVSM must be endowed with a type system and with a suitable set of type system
(run-time) operations.

18.2 XVSM Trees

18.2.1 XTree Rules

18. There are labels and labels are further unspecified quantities.
19. Properties are pairs of labels and XTrees, that is, a property is such a pair.
20. An XTree is either an XTree value or an XTreemultiset or an XTree sequence (an XTree list).

a. An XTree value is either some XTree text or is some XTree integer.
b. An XTreemultiset consists of a multiset of properties.
c. An XTree sequence consists of a list of properties.

type
18 L

19 P = L × XT

20 XT = XV | XL | XS
20a XV == µακST(sel txt:Text) | µακIN(sel i:Int)
20b XS == µακXS(sel xs:(P→m Nat))
20c XL == µακXL(sel xl:P∗)

18.2.2 XTree Types

21. An XTree type is either

a. an integer type, or
b. a text type, or
c. a multiset type which maps its entry labels into corresponding XTree type, or
d. a sequence type which is a sequence of labelled XTree types.

type
21 XTTy = IntTy | TxtTy | MulTy | SeqTy

21a IntTy == mkITy

21b TxtTy == mkTTy
21c MulTy == µακMTy(m:(L →m XTTy))

21d SeqTy == µακSTy(m:(L × XTTy)∗)

XTTy are type designators.

18.2.3 XTree Type Designator Wellformedness

22. A type designator, i.e., any XTTy is wellformed if it satisfies the following conditions:

a. Integer and text type designators are wellformed.
b. Multiset type designators are wellformed if the type designators for any label are wellformed.

498 18 An “Extensible” Virtual Shared Memory [May–July 2010]

c. Sequence type designators are wellformed if all labelled type designators are wellformed
and if the type designators for identifically labelled entries are the same type.200

value
22. wf XTTy: XTTy→ Bool
22. wf XTTy(t) ≡

22. case t of
22a. mkITy → true,

22a. mkTTy→ true,

22b. µακMTy(tym)→ ∀ t
′
:XXTy•t

′
∈ rng tym⇒ wf XTTy(t

′
)

22c. µακSTy(tyl)→

22c. ∀ (l
′
,t
′
):(L×XTTy)•(l

′
,t
′
) ∈ elems tyl⇒ wf XTTy(t

′
) ∧

22c. ∀ (l
′′
,t
′′
):(L×XTTy)•(l

′′
,t
′′
)∈ elems tyl⇒ xtr type(t

′
) = xtr type(t

′′
) end

18.2.4 XTree Type Functions

23. Given an XTree one can “extract” its type:

a. The type of an integer value is mkITy.
b. The type of a text value is mkTTy.
c. The type of an XTreemultiset, ms, is µακMTy(tym)where tym is a mapping from the labels

of ms to the XTree type of the corresponding values.201

d. The type of an XTree sequence, sq, is µακSTy(tys)where tys is a sequence of labelled XTree
types of the indexed (and labelled) XTree values of the sequence.

value

23. xtr type: XT
∼
→ XTTy

23. xtr type(xt) ≡

23. case xt of
23a. µακIN(intg) → mkITy,

23b. µακST(text)→ mkTTy,

23c. µακXS(xs) → µακMTy([l7→xtr type(xt
′
)|l:L•l ∈ dom xs ∧ xt

′
∈ xs(l)]),

23d. µακXL(xl) → µακSTy(〈(l,xtr type(xt
′
))|i:Nat•i ∈ inds xl ∧ xl(i)=(l,xt

′
)〉)

23. end
23. pre: type conform(xt)

18.2.5 XTree Wellformedness

24. An XTree is type conformant if

a. it is an integer, or
b. it is a text, or
c. it is a multiset all of whose XTrees are type conformant and all identically labelled XTrees

have the same type, or

200 Note: This constraints is in line with the constraint of Item 21c on the previous page.
201 Note: Thus we constrain two or more properties with the same label to be of the same type – or, as we shall see,
subtypes of such a type. This is a consequence of Item 21c on the preceding page.

18.2 XVSM Trees 499

d. it is a sequence all of whose XTrees are type conformant and all of whose identically labelled
XTrees have the same type.

value
24. type conform: XT→ Bool
24a. type conform(xt) ≡

24. case xt of
24a. µακIN(intg)→ true,

24b. µακST(text)→ true,

24c. µακXS(xs)→
24c. ∀ (l

′
,xt
′
),(l
′′
,xt
′′
):(L×XT)•{(l

′
,xt
′
),(l
′′
,xt
′′
)}⊆dom xs ∧

24c. type conform(xt
′
) ∧

24c.a l
′
=l
′′
⇒ xtr type(xt

′
) = xtr type(xt

′′
),

24d. µακXL(xl)→

24d. ∀ (l
′
,xt
′
),(l
′′
,xt
′′
):(L×XT)•{(l

′
,xt
′
),(l
′′
,xt
′′
)}⊆elems xl ∧

24d. type conform(xt
′
) ∧

24d.a l
′
=l
′′
⇒ xtr type(xt

′
)=xtr type(xt

′′
)

24. end

Discussion: Whether, in formula lines 24c.a and 24d.a, to insist on equality of types or to allow
one type to be a subtype of the other (whichever way) is a question to be considered.

18.2.6 XTree Subtypes

25. We define a subtype relation as a relation between a pair of type designators:

a. The XTree integer type is (i.e., designates) a subtype of itself.
b. The XTree text type is (i.e., designates) a subtype of itself.
c. Let two multiset type designators be µακMTy(tym′) and µακMTy(tym′′).
µακMTy(tym′) is (i.e., designates) a subtype of µακMTy(tym′′)

i. if the definition set of labels of µακMTy(tym′) is a subset of the definition set of labels of
µακMTy(tym′′),

ii. and, if for identical labels, ℓ, in µακMTy(tym′) and µακMTy(tym′(ℓ)) is (i.e., designates) a
subtype of µακMTy(tym′′(ℓ)).

d. Let two sequence type designators be µακSTy(tyl′) and µακSTy(tyl′′).
µακSTy(tyl′) is (i.e., designates) a subtype of µακSTy(tyl′′)
i. if the length of tyl′ is less than or equal to the length of tyl′,202

ii. if for index positions, i, of tyl′ the labels of the indexed properties tyl′(i) (= (l′,t′)) and tyl′′(i)

(= (l′′,t′′)) are the same (l′=l′′) and
iii. type designator t′ is (i.e., designates) a subtype of t′′.

e. Only such pairs of types as implied by the above can possibly enjoy a subtype relation.

value
25. is subtype: XXTy × XXTy→ Bool
25. is subtype(ta,tb) ≡

25. case (ta,tb) of
25a. (mkITy,mkITy)→ true,

25b. (mkTTy,mkTTy)→ true,
25c. (µακMTy(tym′),µακMTy(tym′))→

202 We could, instead of this “prefix” subtype property, have defined an “embedded” subtype property: that tyl′ is
a subtype of a properly embedded sequence of tyl′′

500 18 An “Extensible” Virtual Shared Memory [May–July 2010]

25(c)i. dom tym′ ⊆ tym′′ ∧

25(c)ii. ∀ l:L•l ∈ dom tym′ ⇒ is subtype(tym′(l),tym′′(l)),

25d. (µακSTy(tyl′),µακSTy(tyl′))→
25(d)i. len tyl′ ≤ tyl′′ ∧

25(d)ii. ∀ i:Nat • 1≤i≤len tyl′ ⇒
25(d)ii. let ((l

′
,t
′
),(l
′′
,t
′′
))=(tyl′(i),tyl′′(i)) in

25(d)ii. l
′
=l
′′
∧

25(d)iii. is subtype(t
′
,t
′′
) end,

25e. → false
25. end

Please note that if td′ and td′′ are type designators, then either td′ denotes a subtype of td′′ or td′′

denotes a subtype of td′ or neither denotes a subtype of the other.

18.3 XTree Operations

18.3.1 XTree Multiset Union

26. By the union of two multisets we understand their bag (i.e., multiset) union.

a. For any property which is common to both multisets the multiset union maps the property
into the sum of its number of occurrences in the two argument multisets.

b. For any property which is only in one of the multisets the multiset union contains that
property with the number of occurrences designated by that multiset.

c. Shared label values must be of comparable types.

value
26 XSunion: XS × XS→ XS
26a XSunion(µακXS(xs1),µακXS(xs2)) ≡

26a µακXS([p7→xs1(p)+xs2(p)|p ∈ dom xs1 ∩ dom xs2]
26b ∪ xs1\dom xs2 ∪ xs2\dom xs1)
26c pre: comparable types(xtr type(µακXS(xs1)),xtr type(µακXS(xs2)))

18.3.2 Commensurate Multiset Arguments

27. Two multiset values (types) are comparable
28. if for identical (i.e., shared) labels have identical types (are equal);
29. or maybe we should just ask for an appropriate subtype relation.

value
27. comparable values: XS × XS→ Bool
27. comparable values(µακXS(lm

′
),µακXS(lm

′′
)) ≡

28. ∀ l:L • l ∈ dom lm
′
∩ lm

′′
⇒

28. (xtr type(lm
′
(l)) = xtr type(lm

′′
(l)) ∨

29. is subtype(xtr type(lm
′
(l)),xtr type(lm

′′
(l))) ∨

29. is subtype(xtr type(lm
′′
(l)),xtr type(lm

′
(l))))

18.3 XTree Operations 501

value
27. comparable types: XTTy × XTTy→ Bool
27. comparable types(µακXT(lmt

′
),µακXT(lmt

′′
)) ≡

28. ∀ l:L • l ∈ dom lmt
′
∩ lmt

′′
⇒

28. (lmt
′
(l) = lmt

′′
(l) ∨

29. is subtype(lmt
′
(l),lmt

′′
(l)) ∨ is subtype(lmt

′′
(l),lmt

′
(l)))

18.3.3 Type “Prediction”

30. One can calculate the type of the result of a multiset union from its two arguments:

a.
b.
c.
d.

30.

30a.

30b.
30c.

30d.

18.3.4 A Theorem: Correctness of Type “Prediction”

31. One can prove the following theorem:

a.
b.
c.
d.
e.

31.
31a.

31b.

31c.
31d.

31e.

18.3.5 XTree Multiset Equality

32. Multiset equality is bag equality of the multisets.

value
32 XSequal: XS × XS→ Bool
32 XSequal(µακXS(xs1),µακXS(xs2)) ≡ xs1 = xs2

502 18 An “Extensible” Virtual Shared Memory [May–July 2010]

18.3.6 XTree Multiset Subset

33. One multiset is a subset of another multiset

a. if the first has a subset of the properties of the latter and
b. and, for each property of the first its number of occurrences in the former is equal to or

smaller than its number of occurrences in the latter.

value
33 XSsubset: XS × XS→ Bool
33 XSsubset(µακXS(xs1),µακXS(xs2)) ≡
33a dom xs1 ⊆ dom xs2 ∧

33b ∀ p:P • p ∈ dom xs1⇒ xs1(p)≤xs2(p)

18.3.7 Property Multiset Membership

34. A property, p=(l,xt), is in a multiset if it occurs in the multiset with a cardinality higher than 0.

value
34 XSmember: P × XS→ Bool
34 XSmember(p,µακXS(xs)) ≡ p ∈ dom xs ∧ xs(p)>0

18.3.8 XTree Multiset Membership

35. An XTree, xt, is a member of a multiset, xs, if there exists a label, ℓ such that the property (ℓ,xt)
is a member of xs.

value
35 XSmember: XT × XS→ Bool
35 XSmember(xt,µακXS(xs)) ≡ ∃ l:L • XSmember((l,xt),µακXS(xs))

18.3.9 XTree Multiset Cardinality

36. The cardinality of a multiset is the sum total of all the XTrees of distinct properties of that
multiset.

value
36 XScard(µακXS(xs)) ≡

36 if xs = [] then 0
36 else
36 let (l,xt):P•(l,xt)∈ dom xs in
36 xs(l,xt) + XScard(µακXS(xs\{(l,xt)})) end end

18.3 XTree Operations 503

18.3.10 Arbitrary Selection of XTrees or Properties from Multisets

37. To select an XTree of a multiset

a. is undefined if the multiset is empty.
b. If it is not empty then an arbitrary property is chosen from the (definition set of the) multiset

and the XTree of that property is yielded.
c. To select a property of a multiset basically follows the above description.

value

37 XSselectXT: XS
∼
→ XT

37 XSselectXT(µακXS(xs)) ≡

37a if xs=[]
37a then chaos
37b else let (l,xt):P•(l,xt) ∈ dom xs in xt end
37b end

37 XSselectP: XS
∼
→ P

37 XSselectP(µακXS(xs)) ≡

37a if xs=[]

37a then chaos
37c else let p:P•p ∈ dom xs in p end
37c end

18.3.11 XTree Multiset Difference

38. The multiset difference of two multisets, xs1 and xs2,

a. is the multiset where properties that are in both xs1 and xs2 occur in the result with their
number of occurrences being their difference, if larger than 0,

b. to which is joined the multiset of xs1 whose properties are not in xs2.

value
38 XTreeDiff: XS × XS→ XS

38 XTreeDiff(µακXS(xs1),µακXS(xs2)) ≡
38a mkXS(rm0([p7→xs1(p)−xs2(p)|p:P•p ∈ dom xs1 ∩ dom xs2])
38b ∪ xs1\dom xs2)

rm0: (P→m Int)→ (P→m Nat)
rm0(pmn) ≡ [p7→pmn(p)|p:P•p ∈ dom pmn ∧ pmn(p)>0]

18.3.12 XTree List Concatenation

39. The concatenation of two XTree lists is the usual concatenation of lists.
40. Labels, ℓ, common to the two XTree lists must designate XTree, xt1 and xt2 (i.e., properties

(ℓ,xt1) and (ℓ,xt2)) where one is a subtype of the pther (i.e., including “vice versa”).

504 18 An “Extensible” Virtual Shared Memory [May–July 2010]

value
39 XTreeListConc: XL × XL→ XL

39 XTreeListConc(µακXL(xl1),µακXL(xl2)) ≡ µακXL(xl1̂ xl2)
40 pre ∀ (l1,xtt),(l2,xt2):P•(l1,xt1) ∈ elems xl1∧(l2,xt2) ∈ elems xl2 ∧ l1=l2⇒

40 subtype(xt1,xt2)∨subtype(xt2,xt1)

18.3.13 XTree List Equality

41. The equality of two XTree lists is the usual equality of lists.

value
41 XTreeListEqual: XL × XL→ Bool
41 XTreeListEqual(µακXL(xl1),µακXL(xl2)) ≡ xl1=xl2

18.3.14 XTree List Property Membership

42. A property is a member of an XTree list
43. if there is an index into the list which identifies that property.

value
42 XMbrTreeList: P × XL→ Bool
43 XMbrTreeList(p,µακXL(xl)) ≡ ∃ i:Nat • i ∈ inds xl ∧ p=xl(i)

18.3.15 XTree List XTree Membership

44. An XTree is a member of an XTree list
45. if there is an index into the list which identifies that XTree.

value
44 XMbrTreeList: XT × XL→ Bool
45 XMbrTreeList(xt,µακXL(xl)) ≡ ∃ i:Nat,l:Label • i ∈ inds xl ∧ (l,xt)=xl(i)

18.3.16 XTree List Length

46. The length of an XTree list

a. is the length of the list it contains.

value
46 XTreeListLength: XL→ Nat
46a XTreeListLength(µακXL(xl)) ≡ len xl

18.4 Indexing 505

18.3.17 XTree List Head

47. The head, or first, element of an XTree list

a. is the head property of the list it contains.

value
47 XTreeListHead: XL→ P
47a XTreeListHead(µακXL(xl)) ≡ if xl=〈〉 then chaos else hd xl end

18.3.18 XTree List Tail

48. The tail, or rest, of an XTree list

a. is the tail of the list it contains.

value
48 XTreeListTail: XL→ XL

48a XTreeListTail(µακXL(xl)) ≡ if xl=〈〉 then chaos else µακXL(tl xl) end

18.3.19 XTree List Nth Element

49. The nth element of a list

a. if n is an index of the list then it is the property indexed by n else it is undefined.

value

49 NthXTreeListElem: Nat × XL
∼
→ P

49a NthXTreeListElem(n,µακXL(xl)) ≡ if 0<n≤len xl then xl(n) else chaos end

18.4 Indexing

18.4.1 Paths and Indexes

50. An index is either a label or a wildcard or a ???
51. non-zero natural number.
52. A path is a finite sequence of zero, one or more indexes.

type
50 Index == µακL(l:L) | µακWldCrd | µακNat(i:Nat1)

51 Nat1 = {|n:Nat•n>0|}
52 Path = Index∗

506 18 An “Extensible” Virtual Shared Memory [May–July 2010]

18.4.2 Proper Index

53. We define an is Index predicate over indexes and Xtrees.

a. If there is a property, (ℓ,xt), which is in a multiset µακXS(xs) then ℓ is an index of that
µακXS(xs).

b. If there is an index, j, into the list, xl, of an XTree list, µακXL(xl), then j is an index of that
mkXL(xl);

c. if, furthermore, there is the property, (ℓ,xt) at list xl position j, then ℓ is an index into mkXL(xl);
and

d. µακWldCrd is (always) an index.

value
is Index: Index × XT→ Bool
is Index(i,xt) ≡

case (i,xt) of
53a (µακL(l),µακXS(xs))→ ≡ ∃ xt

′
:XT•(l,xt

′
) ∈ dom xs,

53b (µακNat(j),µακXL(xl))→ j ∈ inds xl,
53c (µακL(l),µακXL(xl))→ ∃ j:Nat1,xt

′
:XT•j ∈ inds xl∧xl(j)=(l,xt

′
),

53d (µακWldCrd,)→ true,

→ false
end

18.4.3 Index Selecting

54. Given an index it thus may or may not identify an XTree, xt′, or a property, p:P, of an argument
XTree, xt. The definition follows those of Items 53a–53c.

value

54 Identify: Index × XT
∼
→ (XT|P)

54 Identify(i,xt) ≡

54 case (i,xt) of
53a (µακL(l),µακXS(xs))→ let xt

′
:XT•(l,xt

′
)∈ dom xs in xt

′
end,

53b (µακNat1(i),µακXL(xl))→ xl(i),

53c (µακL(l),µακXL(xl))→ let i:Nat1,xt
′
:XT•i ∈ inds xl∧xl(i)=(l,xt

′
) in xt

′
end,

53d (µακWldCrd,µακXS(xs))→ let p:P•p ∈ dom xs in p end,

53d (µακWldCrd,µακXL(xl))→ hd xl

54 end
54 pre is Index(i,xt)

18.4.4 Path Indexing

55. Given an XTree, xt, a path, pth, may or may not identify an XTree, xtr′, of xt. The selection
function, Select is defined recursively:

a. If the path is empty then the argument XTree, xt, is yielded.
b. If the head of the path is an index of the XTree, xt, then the so indexed XTree, xtx, is selected.
c. Otherwise the path, pth, is ill-defined.

18.5 Queries 507

value

55 Select: XT × Path
∼
→ XT | P

55a Select(xtop,〈〉) ≡ xtop

55b Select(xt,〈i〉̂ pth) ≡

55b if is Index(i,xt)
55b then
55b let e = Identify(i,xt) in
55b if e:P ∧ pth,〈〉 then chaos end
55b Select(e,pth) end
55c else chaos end

18.5 Queries

56. An XVSM query is a [piped] sequence of simple XVSM queries.

type
56 Q = SQ∗

18.5.1 Generally on Semantics

57. The idea is the following:

a. The meaning of a simple XVSM query, sq:SQ, as applied to an XTree, xt:XT, is expressed as
MSQ(sq)(xt), and is to be an XTreemultiset or an XTree list. Not an XTree value ?

b. The meaning of an XVSM query, q:Q, as applied to an XTree, xt:XT, is expressed as MQ(q)(xt),
and is to be an XTreemultiset or an XTree list.

c. The meaning function, MQ, when applied to an empty query, 〈〉, is MQ(〈〉)(xt), that is, xt.
d. The meaning function, MQ, when applied to a non-empty query, 〈sq〉̂ q, is MQ(q)(MSQ(sq)(xt)).
e. Both MSQ and MQ may be undefined for some combinations of queries and Xtrees.

value

57a MSQ: SQ→ XT
∼
→ XT

57b MQ: Q→ XT
∼
→ XT

57b MSQ(sq) as xt
57c MQ(〈〉)(xt) ≡ xt

57d MQ(〈sq〉̂ q)(xt) ≡ MQ(q)(MSQ(sq)(xt))

57e MQ(〈sq〉̂ q)(xt) ≡

57e if IS UNDEFINED(MSQ(sq)(xt))

57e then IS UNDEFINED(MQ(〈sq〉̂ q)(xt))
57e else ... to be defined ...
57e end

508 18 An “Extensible” Virtual Shared Memory [May–July 2010]

18.5.2 Syntax: Simple XVSM Queries

58. A simple XVSM query is either a selector query or a matchmaker query.
59. A [simple] selector [XVSM] query is either a predefined selector quiry or ...

type
58 SQ = SelQ | MatchQ

59 SelQ = PreSelQ | ...

18.5.2.1 Syntax: Predefined Selector Queries

60. A predefined selector query is either a count, a sort up, a sort down, a reverse, an identity, or
a unique (slector) query.

a. A count query states a non-zero natural number.
b. A sort up query states a path.
c. A sort down query states a path.
d. A reverse query does not present an argument.
e. An identity query does not present an argument.
f. A unique (selector) query states a path.

60 PreSelQ = Cnt | SrtUp | SrtDo | Rev | Id | Uniq | ...
60a Cnt == µακCnt(sel n:Nat)
60b SrtUp == µακSrtUp(sel p:Path)

60c SrtDo == µακSrtDo(sel p:Path)

60d Rev == mk Rev
60e Id == mk Id

60f Uniq == µακUniq(sel p:Path)

18.5.2.2 Semantics: Predefined Selector Queries

18.5.2.2.1 Count

61. The µακCnt(n) selector query applies to an XTree, xt, and,

a. if it is an XTree list and if the list is of length n or more, yields the XTree list µακXL(xl′) of
the first n properties of xt = µακXL(xl), else it yields chaos; or

b. if it is an XTreemultiset and if the multiset has at least n properties, yields an XTree multiset,
µακXS(xs′), of n arbitrarily chosen properties of xt = µακXS(xs), else it yields chaos.

61 MPreSelQ: PreSelQ→ XT
∼
→ XT

61 MPreSelQ(µακCnt(n))(xt) ≡
61 case xt of
61a µακXL(xl)→

61a if len xl≥n then µακXL(〈xl(i)|i:Nat•i:[1..n]〉) else chaos end,
61b µακXS(xs)→

61b if card dom xs≥n
61b then let ps:P-set•card ps=n ∧ ps⊆dom xs in
61b µακXS([p7→xs(p)|p:P•p ∈ ps]) end
61b else chaos

18.5 Queries 509

61b end,

61b → chaos
61b end

18.5.2.2.2 Sort Up

62. The µακSrtUp selector query applies to a (relative) path, ptĥ ℓ, and an XTree, xt.

a. First we Select from xt the XTree, xt′′, identified by the path pth.
b. The selected XTree, xt′′, is either a list or a multiset.
c. The result of MPreSelQ(µακSrtUp(ptĥ ℓ))(xt) is the XTree list xt′ which has all the entries

that xt has except that these are now ordered with respect to the ordering of the ℓ values of
xt′′.

value
62 MPreSelQ: SrtUp→ XT→ XL

62 MPreSelQ(µακSrtUp(ptĥ ℓ))(xt) ≡

62a let xt
′′
= Select(xt)(pth) in

62b let vl =

62c end end

much more to come

Part IV

Bibliography

Chapter 19

Bibliography

Contents
19.1 Bibliographical Notes . 513
19.2 References . 513

19.1 Bibliographical Notes

to be written

19.2 References

1. Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science. Springer–Verlag,
New York, NY, USA, August 1996.

2. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System and
Software Engineering. Cambridge University Press, Cambridge, England, 1996 and 2009.

3. Rober Audi. The Cambridge Dictionary of Philosophy. Cambridge University Press, The Pitt Building, Trump-
ington Street, Cambridge CB2 1RP, England, 1995.

4. Mordecai Avriel, Michal Penn, and Naomi Shpirer. Container ship stowage problem: complexity and connec-
tion to the coloring of circle graphs. Discrete Applied Mathematics, 103(1–3):271–279, 15 July 2000. Faculty
of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa 3200, Israel.

5. Mordecai Avriel, Michal Penn, Naomi Shpirer, and Smadar Witteboon. Stowage planning for container ships
to reduce the number of shifts. Annals of Operations Research, 76(9):55–71, January 1998.

6. David Basin and Se’an Matthews. A conservative extension of first-order logic and its applications to theorem
proving. In FSTTCS 1993: Foundations of Software Technology and Theoretical Computer Science, volume
761 of Lecture Notes in Computer Science, pages 151–160. Springer, 2005.

7. H. Bekič, D. Bjørner, W. Henhapl, C. B. Jones, and P. Lucas. A Formal Definition of a PL/I Subset. Technical
Report 25.139, IBM Laboratory, Vienna, December 1974.

8. Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version I. Technical
report, IBM Laboratory, Vienna, 1966.

9. Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version II. Technical
report, IBM Laboratory, Vienna, 1968.

10. Hans Bekič, Peter Lucas, Kurt Walk, and Many Others. Formal Definition of PL/I, ULD Version III. IBM
Laboratory, Vienna, 1969.

11. Claude Berge. Théorie des Graphes et ses Applications. Collection Universitaire de Mathematiques. Dunod,
Paris, 1958. See [12].

12. Claude Berge. Graphs, volume 6 of Mathematical Library. North-Holland Publ. Co., second revised edition
of part 1 of the 1973 english version edition, 1985. See [11].

513

514 References

13. Sandford Bessler, Eva Kühn, Richard Mordinyi, and Slobodanka Tomic. Using tuple-spaces to manage the
storage and dissemination of spatial-temporal content. Journal of Computer and System Sciences, page 10,
February 2010. Link: http://dx.doi.org/10.1016/j.jcss.2010.01.010.

14. D. Bjørner. Stepwise Transformation of Software Architectures. In [65], chapter 11, pages 353–378. Prentice-
Hall, 1982.

15. Dines Bjørner. Software Development Graphs — A Unifying Concept for Software Development? In K.V. Nori,
editor, Vol. 241 of Lecture Notes in Computer Science: Foundations of Software Technology and Theoretical
Computer Science, pages 1–9. Springer–Verlag, Dec. 1986.

16. Dines Bjørner. The Stepwise Development of Software Development Graphs: Meta-Programming VDM De-
velopments. In See [66], volume 252 of LNCS, pages 77–96. Springer-Verlag, Heidelberg, Germany, March
1987.

17. Dines Bjørner. Specification and Transformation: Methodology Aspects of the Vienna Development Method.
In TAPSOFT’89, volume 352 of Lab. Note, pages 1–35. Springer-Verlag, Heidelberg, Germany, 1989.

18. Dines Bjørner. Software Systems Engineering — From Domain Analysis to Requirements Capture: An Air
Traffic Control Example. In 2nd Asia-Pacific Software Engineering Conference (APSEC ’95). IEEE Computer
Society, 6–9 December 1995. Brisbane, Queensland, Australia.

19. Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC
Symposium on Control in Transportation Systems, pages 1–12, Technical University, Braunschweig, Ger-
many, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für
Fahrzeug– und Verkehrstechnik. Invited talk.

20. Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In Practical
Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken Baclawski), The Netherlands,
December 2002. Kluwer Academic Press. www2.imm.dtu.dk/˜dibj/themarket.pdf.

21. Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software Engi-
neering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK, August 4-6
2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki. www2.imm.-
dtu.dk/˜dibj/ifac-dynamics.pdf.

22. Dines Bjørner. New Results and Trends in Formal Techniques for the Development of Software for Transporta-
tion Systems. In FORMS2003: Symposium on Formal Methods for Railway Operation and Control Systems.
Institut für Verkehrssicherheit und Automatisierungstechnik, Techn.Univ. of Braunschweig, Germany, 15–16
May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany.
www2.imm.dtu.dk/˜dibj/dines-amore.pdf.

23. Dines Bjørner. The Grand Challenge – FAQs of the R&D of a Railway Domain Theory. In IFIP World
Computer Congress, Topical Days: TRain: The Railway Domain, IFIP, Amsterdam, The Netherlands, 2004.
Kluwer Academic Press.

24. Dines Bjørner. Towards a Formal Model of CyberRail. In Building the Information Society, IFIP 18th World
Computer Congress, Tpical Sessions, 22–27 August, 2004, Toulouse, France — Ed. Renéne Jacquart, pages
657–664. Kluwer Academic Publishers, August 2004.

25. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical Computer
Science, the EATCS Series. Springer, 2006. See [29, 32].

26. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily authored by Christian
Krog Madsen. See [30, 33].

27. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theo-
retical Computer Science, the EATCS Series. Springer, 2006. See [31, 34].

28. Dines Bjørner. A Container Line Industry Domain. www.imm.dtu.dk/ db/container-paper.pdf. Techn.
report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, June 2007.

29. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University Press, 2008.
30. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua University

Press, 2008.
31. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Qinghua Uni-

versity Press, 2008.
32. Dines Bjørner. Chinese: Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University Press.

Translated by Dr Liu Bo Chao et al., 2010.
33. Dines Bjørner. Chinese: Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua

University Press. Translated by Dr Liu Bo Chao et al., 2010.
34. Dines Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software Design.

Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.
35. Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of

the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.
36. Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics,

Part I of II: The Engineering Part . Kibernetika i sistemny analiz, 2(4):100–116, May 2010.

References 515

37. Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas and Suggestions. Techni-
cal, Technical University of Vienna, August–October 2010. www.imm.dtu.dk/˜dibj/wfdftp.pdf.

38. Dines Bjørner. The Tokyo Stock Exchange Trading Rules www.imm.dtu.dk/˜db/todai/tse-1.pdf,
www.imm.dtu.dk/˜db/todai/tse-2.pdf. R&D Experiment, Techn. Univ. of Denmark, Fredsvej 11, DK-2840
Holte, Denmark, 2010.

39. Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics
Part II of II: The Science Part . Kibernetika i sistemny analiz, 2(3):100–120, June 2011.

40. Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions.
In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of His 70th Anniversary.,
Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer, Heidelberg, Germany,
January 2011. www.imm.dtu.dk/˜dibj/maurer-bjorner.pdf.

41. Dines Bjørner. Documents – a Domain Description. Experimental Research Report 2013-3, DTU Compute
and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

42. Dines Bjørner. Pipelines – a Domain www.imm.dtu.dk/˜dibj/pipe-p.pdf. Experimental Research Report
2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

43. Dines Bjørner. Road Transportation – a Domain Description www.imm.dtu.dk/˜dibj/road-p.pdf. Experi-
mental Research Report 2013-4, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

44. Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio
Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, October 2014.

45. Dines Bjørner. A Credit Card System: Uppsala Draft www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf. Tech-
nical Report: Experimental Research, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Den-
mark, November 2016.

46. Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions.
Extensive revision of [40]. www.imm.dtu.dk/ dibj/2016/demos/faoc-demo.pdf. Technical report, Technical
University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, 2016.

47. Dines Bjørner. Weather Information Systems: Towards a Domain Description www.imm.dtu.-

dk/˜dibj/2016/wis/wis-p.pdf. Technical Report: Experimental Research, Technical University of Den-
mark, Fredsvej 11, DK-2840 Holte, Denmark, November 2016.

48. Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/ dibj/2015/faoc/-

faoc-bjorner.pdf. Formal Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.
49. Dines Bjørner. Domain analysis & description - the implicit and explicit semantics problem
www.imm.dtu.dk/ dibj/2017/bjorner-impex.pdf. In Régine Laleau, Dominique Méry, Shin Nakajima, and
Elena Troubitsyna, editors, Proceedings Joint Workshop on Handling IMPlicit and EXplicit knowledge in formal
system development (IMPEX) and Formal and Model-Driven Techniques for Developing Trustworthy Systems
(FM&MDD), Xi’An, China, 16th November 2017, volume 271 of Electronic Proceedings in Theoretical Com-
puter Science, pages 1–23. Open Publishing Association, 2018.

50. Dines Bjørner. Domain Facets: Analysis & Description. Extensive revision of [35].
www.imm.dtu.dk/ dibj/2016/facets/faoc-facets.pdf. Technical report, Technical University of Denmark,
Fredsvej 11, DK-2840 Holte, Denmark, May 2018.

51. Dines Bjørner. To Every Manifest Domain a CSP Expression www.imm.dtu.dk/ dibj/2016/mereo/mereo.pdf.
Journal of Logical and Algebraic Methods in Programming, 1(94):91–108, January 2018.

52. Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modeling Languages.
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering and
Methodology, 28(2):66 pages, March 2019.

53. Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modelling Languages. www.imm.-
dtu.dk/˜dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering and Methodology,
28(2), April 2019. 68 pages.

54. Dines Bjørner. Domain Analysis & Description: Sorts, Types, Intents.
www.imm.dtu.dk/ dibj/2019/ty+so/HavelundFestschriftOctober2020.pdf. Technical report, Tech-
nical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November 2019. Paper for Klaus
Havelund Festschrift, October 2020.

55. Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS Mono-
graphs in Theoretical Computer Science. Springer, 2021.

56. Dines Bjørner. Rigorous Domain Descriptions. A compendium of draft domain description sketches car-
ried out over the years 1995–2021. Chapters cover: Graphs, Railways, Road Transport The “7 Seas”, The
“Blue Skies”, Credit Cards Weather Information, Documents, Urban Planning, Swarms of Drones, Container
Terminals, A Retailer Market, Shipping, Rivers, Canals, Stock Exchangew, and Web Transactions. This docu-
ment is currently being edited. Own: www.imm.dtu.dk/ dibj/2021/dd/dd.pdf, Fredsvej 11, DK-2840 Holte,
Denmark, Fall 2021.

57. Dines Bjørner. [59] Chap. 10: Towards a Family of Script Languages – – Licenses and Contracts – Incomplete
Sketch, pages 283–328. JAIST Press, March 2009.

58. Dines Bjørner. [59] Chap. 7: Documents – A Rough Sketch Domain Analysis, pages 179–200. JAIST Press,
March 2009.

516 References

59. Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. A JAIST Press
Research Monograph # 4, 536 pages, March 2009.

60. Dines Bjørner. Domain Case Studies:

• 2021: Shipping, April 2021. www.imm.dtu.dk/˜dibj/2021/ral/ral.pdf
• 2021: Rivers and Canals – Endurants – A Technical Note, March 2021. www.imm.dtu.dk/˜dibj/2021/-
Graphs/Rivers-and-Canals.pdf

• 2021: A Retailer Market, January 2021. www.imm.dtu.dk/˜dibj/2021/Retailer/BjornerHeraklit27-
January2021.pdf

• 2019: Container Terminals, ECNU, Shanghai, China www.imm.dtu.dk/˜dibj/2018/yangshan/-

maersk-pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China www.imm.dtu.dk/˜dibj/2017/docs/docs.pdf
• 2017: Urban Planning, TongJi Univ., Shanghai, China www.imm.dtu.dk/˜dibj/2018/BjornerUrbanPlan-
ning24Jan2018.pdf

• 2017: Swarms of Drones, Inst. of Softw., Chinese Acad. of Sci., Peking, China www.imm.dtu.-
dk/˜dibj/2017/swarms/swarm-paper.pdf

• 2013: Road Transport, Techn. Univ. of Denmark www.imm.dtu.dk/˜dibj/road-p.pdf
• 2012: Credit Cards, Uppsala, Sweden www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf
• 2012: Weather Information, Bergen, Norway www.imm.dtu.dk/˜dibj/2016/wis/wis-p.pdf
• 2010: Web-based Transaction Processing, Techn. Univ. of Vienna, Austria www.imm.dtu.dk/˜dibj/-
wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan www.imm.dtu.dk/˜db/todai/tse-1.pdf,
www.imm.dtu.dk/˜db/todai/tse-2.pdf

• 2009: Pipelines, Techn. Univ. of Graz, Austria www.imm.dtu.dk/˜dibj/pipe-p.pdf
• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark www.imm.dtu.dk/˜dibj/container-
-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark www.imm.dtu.dk/˜dibj/themarket.pdf
• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium www.imm.dtu.dk/˜dibj/train-

-book.pdf

Experimental research reports carried out to “discover”, try-out and refine method principles, techniques and
tools, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark.

61. Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for Domain
Engineering. Relations to Requirements Engineering and Software for Control Applications. In Integrated
Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box 1299, Grand View,
Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science. www2.imm.dtu.-
dk/˜dibj/pasadena-25.pdf.

62. Dines Bjørner, Christian Gram, Ole N. Oest, and Leif Rystrøm. Dansk Datamatik Center. In 3rd IFIP WG
9.7 Working Conference on History of Nordic Computing, IFIP Advances in Information and Communication
Technology, pages 2–34. Springer, 2010.

63. Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61
of LNCS. Springer, 1978.

64. Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61
of LNCS. Springer, 1978. This was the first monograph on Meta-IV.

65. Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-Hall,
1982.

66. Dines Bjørner, Cliff B. Jones, Micheal Mac an Airchinnigh, and Erich J. Neuhold, editors. VDM – A For-
mal Method at Work. Proc. VDM-Europe Symposium 1987, Brussels, Belgium, Springer, Lecture Notes in
Computer Science, Vol. 252, March 1987.

67. Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS. Springer,
1980.

68. Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway Systems: Domains. Technical
report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800 Lyngby, Denmark, September 23
1999. Presented at the FME Rail Workshop on Formal Methods in Railway Systems, FM’99 World Congress
on Formal Methods, Toulouse, France. Avaliable on CD ROM.

69. Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway Systems: Requirements. Tech-
nical report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800 Lyngby, Denmark, Septem-
ber 23 1999. Presented at the FME Rail Workshop on Formal Methods in Railway Systems, FM’99 World
Congress on Formal Methods, Toulouse, France. Avaliable on CD ROM.

70. Nikolaj Bjørner, Maxwell Levatich, Nuno P. Lopes, Andrey Rybalchenko, and Chandrasekar Vuppalapati. Su-
percharging plant configurations using Z3. In Peter J. Stuckey, editor, Integration of Constraint Programming,
Artificial Intelligence, and Operations Research - 18th International Conference, CPAIOR 2021, Vienna, Aus-
tria, July 5-8, 2021, Proceedings, volume 12735 of Lecture Notes in Computer Science, pages 1–25. Springer,
2021.

References 517

71. Dines Bjørner. Urban Planning Processes. www.imm.dtu.dk/˜dibj/2017/up/urban-planning.pdf. Re-
search Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, July 2017.

72. Andrzej Blikle and Mikkel Thorup. On conservative extensions of syntax in the process of system develop-
ment. In Proceedings of VDM’90, VDM and Z—Formal Methods in Software Development, volume 428 of
Lecture notes in computer science, page 22. Springer, 1990.

73. J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. American Elsevier, N.Y. and MacMillan,
London, 1976.

74. Bram Borgman, Eelco van Asperen, and Rommert Dekker. Online rules for container stacking. OR Spectrum,
32:687–716, 19 March 2010.

75. Roberto Casati and Achille C. Varzi. Parts and Places: the structures of spatial representation. MIT Press,
1999.

76. Stefan Craß. A Formal Model of the Extensible Virtual Shared Memory (XVSM) and its Implementation in
Haskell – Design and Specification. M.sc., Technische Universität Wien, A-1040 Wien, Karlsplatz 13, Austria,
Febrauary 5 2010.

77. Steran Craß, Eva Kühn, and Gernot Salzer. Algebraic Foundation of a Data Model for an Extensible Space-
based Collaboration Protocol. In Bipin C. Desai, editor, IDEAS 2009, pages 301–306, Cetraro, Calabria, Italy,
September 16–18 2009.

78. Dieter Klaua. Über einen ansatz zur mehrwertigen mengenlehre. Monatsbreicht, 7:859867, 1965.
79. Opher Dubrovsky, Gregory Levitin, and Michal Penn. A genetic algorithm with a compact solution encoding

for the container ship stowage problem. Journal of Heuristics, 8(6):585–599, November 2002.
80. Ali Enayat. Conservative extensions of models of set theory and generalizations. The Journal of Symbolic

Logic, 51(4):1005–1021, December 1986.
81. S. Even. Graph Algorithms. Computer Science Press, Md., USA, 1979.
82. Bureau Export. A-Z Dictionary of Export, Trade and Shipping Terms. www.exportbureau.com/trade ship-

ping terms/dictionary.html, 2007.
83. Peter Fettke and Wolfgang Reisig. Modelling service-oriented systems and cloud services with Heraklit.

CoRR, abs/2009.14040, 2020.
84. Peter Fettke and Wolfgang Reisig. Heraklit – epistemologically motivated modeling of computer-integrated

systems. Heraklit working paper, v1, December 15, 2020, http://www.heraklit.org, 2020.
85. Peter Fettke and Wolfgang Reisig. Heraklit case study: 8-second hell. Heraklit working paper, v1, December

12, 2020, http://www.heraklit.org, 2020.
86. Peter Fettke and Wolfgang Reisig. Heraklit case study: adder. Heraklit working paper, v1, December 5, 2020,

http://www.heraklit.org, 2020.
87. Peter Fettke and Wolfgang Reisig. Heraklit case study: parallel adder. Heraklit working paper, v1, December

5, 2020, http://www.heraklit.org, 2020.
88. Peter Fettke and Wolfgang Reisig. Heraklit case study: retailer. Heraklit working paper, v1, December 21,

2020, http://www.heraklit.org, 2020.
89. Peter Fettke and Wolfgang Reisig. Heraklit case study: service system. Heraklit working paper, v1, November

20, 2020, http://www.heraklit.org, 2020.
90. John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in Software

Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN
0-521-62348-0.

91. Arve Gengelbach and Tjark Weber. Model-theoretic conservative extension for definitional theories. Elec-
tronic Notes Theoretical Computer Science, (338):133–145, 2017.

92. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix
Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

93. Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank
Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

94. Jean-Yves Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7. Cambridge Univ. Press, Cambridge,
UK, Cambridge Tracts in Theoretical Computer Science edition, 1989.

95. David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274, 1987.

96. David Harel and Rami Marelly. Come, Let’s Play – Scenario-Based Programming Using LSCs and the Play-
Engine. Springer-Verlag, 2003.

97. Frank Harrary. Graph Theory. Addison Wesley Publishing Co., 1972.
98. Charles Anthony Richard Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8),

Aug. 1978.
99. Charles Anthony Richard Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8),

Aug. 1978.
100. Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer

Science. Prentice-Hall International, 1985.

518 References

101. Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science. Prentice-Hall International, 1985. Published electronically: usingcsp.com/cspbook.pdf (2004).

102. Charles Anthony Richard Hoare. Communicating Sequential Processes. Published electronically:
usingcsp.com/cspbook.pdf, 2004. Second edition of [100]. See also usingcsp.com/.

103. Lloyd Humberstone. On a conservative extension argument of dana scott. Logic Journal of the IGPL,
19(1):241–288, February 2011.

104. Akio Imai, Kazuya Sasaki, Etsuko Nishimura, and Stratos Papadimitriou. Multi-objective simultaneous
stowage and load planning for a container ship with container rehandle in yard stacks. European Journal
of Operational Research, 171:373–389, 2006.

105. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996, 1999.
106. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass.,

USA, April 2006. ISBN 0-262-10114-9.
107. Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices.

ACM Press. Addison-Wesley, Reading, England, 1995.
108. James J. Buckley and Esfanidar Eslami. An Introduction to Fuzzy Logic and Fuzzy Sets. Springer, 2002.
109. C. B. Jones. Software Development: A Rigorous Approach. Prentice-Hall, 1980.
110. C. B. Jones. Systematic Software Development — Using VDM. Prentice-Hall, 1986.
111. C. B. Jones. Systematic Software Development — Using VDM, 2nd Edition. Prentice-Hall, 1989.
112. Dieter Klaus. The Logic of Fuzzy Set Theory: A Historical Approach, page 22 pages. Springer, Heidel-

berg Germany, 2014. www.researchgate.net/publication/266736510 The Logic of Fuzzy Set Theory A Hi-
storical Approach.

113. Eva Kühn, Richard Mordinyi, László Keszthelyi, and Christian Schreiber. Introducing the Concept of Cus-
tomizable Structued Space for Agent Coordination in the Production of Automation Domain. In Sierra Decker,
Sichman and Castelfranchi, editors, 8th Intl. Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS
2009), volume 625–632 of Proceedings of Autonomous Agents and Multi-Agent Systems, Budapest, Hun-
gary, May 10–15 2009. 8.

114. Eva Kühn, Richard Mordinyi, László Keszthelyi, Christian Schreiber, Sandford Bessler, and Slobodanka
Tomic. Aspect-oriented Space Containers for Efficient Publish/Subscribe Scenarios in Intelligent Transporta-
tion Systems. In T. Dillon and P. HereroR. Meersmann, editors, OTM 2009, Part I, volume 5870 of LNCS,
pages 432–448. Springer, 2009.

115. J.A.N. Lee and W. Delmore. The Vienna Definition Language, a generalization of instruction definitions. In
SIGPLAN Symp. on Programming Language Definitions, San Francisco, Aug. 1969.

116. W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary on Historical
Principles. Clarendon Press, Oxford, England, 1973, 1987. Two vols.

117. P. Lucas. Formal Definition of Programming Languages and Systems. In Proc. IFIP’71. IFIP World Congress
Proceedings, Springer, 1971.

118. P. Lucas. On the Semantics of Programming Languages and Software Devices. In Rustin, editor, Formal
Semantics of Programming Languages. Prentice-Hall, 1972.

119. P. Lucas. On the formalization of programming languages: Early history and main approaches. In D. Bjørner
and C. B. Jones, editors, [64]. Springer, 1978.

120. P. Lucas. Formal Semantics of Programming Languages: VDL. IBM Journal of Devt. and Res., 25(5):549–
561, 1981.

121. P. Lucas. Main approaches to formal specification. In [14], chapter 1, pages 3–24. Prentice-Hall, 1982.
122. P. Lucas. Origins, hopes, and achievements. In [66], pages 1–18. Springer, 1987.
123. P. Lucas and K. Walk. On the Formal Description of PL/I. Annual Review Automatic Programming Part 3,

6(3), 1969.
124. Usama Mehmood, Radu Grosu, Ashish Tiwari, Nicola Paoletti, Shan Lin, Yang JunXing, Dung Phan, Scott D.

Stoller, and Scott A. Smolka. Declarative vs Rule-based Control for Flocking Dynamics. In Proceedings of
ACM/SIGAPP Symposium on Applied Computing (SACC 2018). ACM Press, April 9–13, 2018. 8 pages.

125. Lev Nachmanson. Microsofts Automated Layout Tool. Technical report, MS Research, 2021.
https://github.com/microsoft/automated-graph-layout.

126. Reza Olfati-Saber. Flocking for Multi-agent Dynamic Systems: Algorithms and Theory. IEEE Transactions
on Automatic Control, 51(3):401–420, 13 March 2006. http://ieeexplore.ieee.org/document/1605401/; DOI:
10.1109/TAC.2005.864190; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.

127. Oystein Ore. Graphs and their Uses . The Mathematical Association of America, 1963.
128. International Labour Organisation. Portworker Development Programme: PDP Units. Enumerate PDP units.

, April 2002.
129. Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002.
130. Martin Pěnička and Dines Bjørner. From Railway Resource Planning to Train Operation — a Brief Survey

of Complementary Formalisations. In Building the Information Society, IFIP 18th World Computer Congress,
Topical Sessions, 22–27 August, 2004, Toulouse, France — Ed. Renéne Jacquart, pages 629–636. Kluwer
Academic Publishers, August 2004.

References 519

131. Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing. In
FORMS’2003: Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan Hon-
grie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder,
Germany. www2.imm.dtu.dk/˜dibj/martin.pdf.

132. K.V. Ramani. An interactive simulation model for the logistics planning of container operations in seaports.
SIMULATION, 66(5):291–300, 1996.

133. Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical Computer
Science. Springer Verlag, May 1985.

134. Wolfgang Reisig. A Primer in Petri Net Design. Springer Verlag, March 1992. 120 pages.
135. Wolfgang Reisig. The Expressive Power of Abstract State Machines. Computing and Informatics, 22(1–2),

2003.
136. Wolfgang Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der Informatik.

Vieweg+Teubner, 1st edition, 15 June 2010. 248 pages; ISBN 978-3-8348-1290-2.
137. Wolfgang Reisig. Understanding Petri Nets Modeling Techniques, Analysis Methods, Case Studies. Springer,

2013. 230+XXVII pages, 145 illus.
138. Craig Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model. SIGGRAPH Computer Graph-

ics, 21(4), August 1987. https://doi.org/10.1145/37402.37406.
139. Craig Reynolds. Steering Behaviors for Autonomous Characters. In Proceedings of Game Developers Con-

ference, pages 763–782, 1999.
140. Craig Reynolds. OpenSteer, Steering Behaviours for Autonomous Characters, 2004.

http://opensteer.sourceforge.net.
141. A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer Science. Prentice-Hall,

1997. http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.
142. Douglas T. Ross. Toward foundations for the understanding of type. In Proceedings of the 1976 con-

ference on Data: Abstraction, definition and structure, pages 63–65, New York, NY, USA, 1976. ACM.
http://doi.acm.org/10.1145/800237.807120.

143. David A. Schmidt. The Structure of Typed Programming Languages. MIT Press, 1994. ISBN 0262193493.
144. Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series in Computer

Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England, January
2000.

145. Joseph R. Schoenfeld. Mathematical Logic. Addison-Wesley Publishing Company, 1967. (On Conservative
Extensions, pp 55-56).

146. Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deductions, with
a foreword by Georg Henrik von Wright]. Munksgaard · Rosinante, 1994. 168 pages.

147. Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eternity]. Munksgaard · Rosinante,
1997. 200 pages.

148. Kai Sørlander. Den Endegyldige Sandhed [The Final Truth]. Rosinante, 2002. 187 pages.
149. Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, 2016. 233 pages.
150. Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation and operations research - a

classification and literature review. OR Spectrum, 26(1):3–49, January 2004.
151. Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In FORMS2003:

Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan Hongrie, 15–16
May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany.
www2.imm.dtu.dk/˜dibj/albena.pdf.

152. Tetsuo Tamai. Social Impact of Information System Failures. Computer, IEEE Computer Society Journal,
42(6):58–65, June 2009.

153. I.D. Wilson and P.A. Roach. Container stowage planning: a methodology for generating computerised solu-
tions. Journal of the Operational Research Society, 51(11):1248–1255, 1 November 2000. Palgrave Macmil-
lan. University of Glamorgan, UK.

154. I.D. Wilson, P.A. Roach, and J. A. Ware. Container stowage pre-planning: using search to generate solutions,
a case study. Knowledge-Based Systems, 14(3–4):137–145, June 2001.

155. James Charles Paul Woodcock and James Davies. Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, 1996.

156. Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

Part V

Appendix

Appendix A

Domain Analysis & Description: A Primer

Contents
A.1 Domains . 524
A.2 Endurants . 524

A.2.1 External Qualities . 525
A.2.1.1 A Classification Calculus . 525

A.2.1.1.1 Classification Predicates . 525
A.2.1.1.2 A Classification Calculus . 526

A.2.1.2 An Observer Calculus . 526
A.2.1.2.1 Classifiers versus Observers . 527

A.2.1.3 A Description Calculus . 527
A.2.1.3.1 Endurant Describers . 527

A.2.1.4 A State of Endurants . 529
A.2.2 Internal Qualities . 530

A.2.2.1 Unique Identification . 530
A.2.2.1.1 The Unique Identifier Observer . 530
A.2.2.1.2 The Unique Identifier Describer . 530

A.2.2.2 Mereology . 531
A.2.2.2.1 The Mereology Observer . 531
A.2.2.2.2 The Mereology Describer . 531

A.2.2.3 Attributes . 532
A.2.2.3.1 The Attribute Observers . 532
A.2.2.3.2 The Attribute Categories . 533
A.2.2.3.3 Attribute Pragmatics . 533
A.2.2.3.4 The Attributes Describer . 533

A.2.2.4 Intentional “Pull” . 535
A.2.3 Narratives . 535

A.3 Space, State and Time . 535
A.3.1 Space . 536

A.3.1.1 Spatial Types . 536
A.3.1.2 Spatial Attributes . 536

A.3.2 State . 536
A.3.3 Time . 537

A.3.3.1 Time and Time Interval Sorts and Operators 537
A.3.3.2 The Time Observer . 537

A.4 Perdurants . 537
A.4.1 Actions, Events and Behaviours . 538
A.4.2 Determinacy and Non-determinacy . 538
A.4.3 Co-operating Domains . 539
A.4.4 Transcendental Deduction . 539
A.4.5 Channels . 540
A.4.6 Behaviours . 540

A.4.6.1 Behaviour Signatures . 540
A.4.6.2 Behaviour Definition ‘Bodies’ . 541

A.4.6.2.1 Semiformal Examples of Behaviour Interactions 541
A.4.7 Compilation of Domain Descriptions . 543
A.4.8 Initialising Domains . 544

523

524 A Domain Analysis & Description: A Primer

A.1 Domains

By a domain we shall understand a rationally describable area of a discrete dynamics segment
of a human assisted reality, i.e., of the world, its solid or fluid entities: natural [“God-given”]
and artefactual [“man-made”] parts, and its living species entities: plants and animals in-
cluding, notably, humans [55, Sect. 4.2, Defn. 27]

A phenomenon, φ, is an entity, is entity(φ), if it can be observed, i.e., be seen or touched
by humans, or that can be conceived as an abstraction of an entity; alternatively, a phenomenon
is an entity if it exists, it is “being”, it is that which makes a “thing” what it is: essence, essential
nature [116, Vol. I, pg. 665]

There are an indefinite number of entities in any domain. This follows from philosophic-analytic
reasoning outlined by the philosopher Kai Sørlander [146, 147, 148, 149]. We refer to [55, Sect. 2.2.3]
for a summary.

By an endurant, is endurant(e), we shall understand an entity, e, that can be observed, or
conceived and described, as a “complete thing” at no matter which given snapshot of time;
alternatively an entity is endurant if it is capable of enduring, that is persist, “hold out” [116,
Vol. I, pg. 656]. Were we to “freeze” time we would still be able to observe the entire endurant.

By a perdurant, is perdurant(e), we shall understand an entity, e, for which only a fragment
exists if we look at or touch them at any given snapshot in time. Were we to freeze time we would
only see or touch a fragment of the perdurant [116, Vol. II, pg. 1552]

External qualities of endurants of a manifest domain are, in a simplifying sense, those we, for
example with our eyes blinded, can touch, hence manifestedly “observe”, and hence speak about
abstractly. We shall say more about external qualities in Sect. A.2.1.

Internal qualities of endurants of a manifest domain are those we, with our eyes open and
with instruments, can measure We shall say more about internal qualities in Sect. A.2.2.

A.2 Endurants

We shall now present the analysis & description calculi, that we, as humans, i.e., scientists and
engineers, deploy when observing a domain. As we shall see those calculi relate to the upper
ontology of domain descriptions such as shown in Fig. A.1.

Events

Behaviours

Indescribables

Channels

Actors

Entities = Describables

transcendental injection of endurants into perdurants

A
to

m
ic

 P
ar

t

Living Species

E

Endurants

External Qualities

Describer "states"

PerdurantsPerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

Actions

Internal Qualities

Solids F Fluids

Transcendense
Animals

P
la

n
ts

H
u

m
an

s...

Mereologies

Unique Identifiers

Attributes

A

Parts P

A
lt

er
n

at
iv

e
S

o
rt

s
P

ar
ts

P
ar

t
S

et
s

C
o

m
p

o
si

te
 P

ar
t

Compound
Parts

E
a

=
E

1|
...

|E
a

P
, P

s
=

P
−s

et

E
1,

...
,E

c

Structures

P
ar

t
S

et
 S

tr
u

ct
u

re

C
o

m
p

o
si

te
 P

ar
t

S
tr

u
ct

u
re

Fig. A.1 An Upper Ontology

A.2 Endurants 525

A.2.1 External Qualities

Our treatment of endurants “follow” the upper ontology of Fig. A.1 in a left-to-right, depth-first
traversal of the endurant “tree” (of Fig. A.1).

A.2.1.1 A Classification Calculus

A.2.1.1.1 Classification Predicates

Endurants, e [is endurant(e)], are either solid [is solid(e)]; or fluid [is fluid(e)] (such as
liquids, gases and plasmas). Solid endurants appears to be the “work-horse” of the domains we
shall be concerned with.

A solid, e, is either a part [is part(e)]; or a structure [is structure(e)]; or a living species
[is living species(e)].

A part, p, is either an atomic part [is atomic part(p)]; or an alternative sorts part [is al-

ternative sorts part(p)]; or a compound part [is compound part(p)].
An atomic part, by definition, has no proper sub-parts. It is the domain analyser cum describer

who decides which parts are atomic and which not. Atomic parts are further characterised by
their internal qualities.

An alternative sorts part is a part which is of either of two or more distinct sorts; alternative
sorts parts may be atomic – so analysis leading, eventually to a decision on atomicity is preceded
by one of inquiring as to alternate “sorting” !

A compound part is either a part set [is part set(p)], or a composite part [is compos-

ite(p)];.
A part set is a set of parts of some sort.
A composite part consists of two or more parts (and could be modeled as a Cartesian of these).
A structure is either a part set structure [is part set structure]; or a composite structure

[is composite structure].
A part set structure is a set of parts.
A composite structure consists of two or more parts (and could be modeled as a Cartesian of

these).
A living species is either an animal [is animal(e)]; or a plant [is plant(e)].
An animal is either a human [is human(e)]; or other.
Fluids are presently further un-analysed.

A Note on Living Species ‘Parts’: In this primer we could, but do not, consider living species
as parts in the sense of later, in this primer, considering their transcendental “morphing” into
behaviours. The reader is invited to fill in the necessary details !

A Note on Structures: The distinction between non-structure and structure compounds is one of
pragmatics. For non-structure compounds we shall ascribe internal qualities, i.e., unique identi-
fiers, mereologies and attributes, to their parts, for structure compounds we shall not. Eventually
non-structure parts will also be represented as behaviours, structure parts not. In Fig. A.1 this latter
is indicated by their being no dashed vertical lines from structure sets and composites connecting
to horisontal internal quality lines. Section A.2.1.4 should clarify this issue.

. Begin Example 0: Some Examples

An automobile is a solid and a part. The fuel contents of an automobile is a fluid. The amalgam
of a road net and the amalgam of a set of automobiles is here seen as a structure. Water, gasoline
and beer are examples of liquids. The air in a room is an example of a gas. Ionized gases are
plasmas, such as that of a neon tube. From the point of view of an owner, an automobile is an

526 A Domain Analysis & Description: A Primer

atomic part; from the point of view of an auto manufacturer and an auto maintenance & repair
shop, an automobile is a composite part.
. End of Example 0

A.2.1.1.2 A Classification Calculus

We summarise the predicates:

• is entity,
• is endurant,
• is perdurant,
• is solid,
• is fluid,
• is part,
• is structure,
• is part set structure,
• is composite structure,
• is living species,

• is atomic,
• is alternative sort ,
• is compound,

• is set ,
• is composite ,
• is animal,
• is human,

• is ..., and
• is plant.

The classifier predicates are mental tools to be used by domain analysers & describers. They are,
so to speak, part of their ”mental luggage”. Domain analysers & describers analyse the domain.
They identify entities; they focus first on endurants (and, later, perdurants); and they apply
the above-listed predicates, one-by-one, in order to classify what is being analysed. In Fig. A.1
magenta-coloured squares, s, are affixed to a number of [“leaf”] nodes. Once endurants are
classified into either of these magenta–coloured classes we can start observing and describing
these endurants.

• An Aside: Types and Sorts

By a type we shall understand a set of (further characerised) values. By a concrete type the
“further characterisation” may amount to typing the values as being for example integers, or
Booleans, or sets or Cartesians of otherwise typed values, or total or partial functions or maps

from otherwise typed definition set values to typed range values, etc. By sort we shall understand
an abstract type, i.e., a type which is not concrete, one whose “inner constellation” is not revealed.

• A Last Aside: Natural and Artefactual Endurants

Our delineation of the concept of ‘domain’, such as we study it, critically embodied the terms
‘human assisted’ and ‘artefactual’. The distinction between these two is not explicitly reflected in
the set of classification predicates.

A.2.1.2 An Observer Calculus

We suggest some observers.
observe alternative sorts applies to parts p of sort P (for which is alternative sort(p) is

claimed to hold) and yields a part, p′ of sort P′ different from P. Observing, in a repeated fashion,
distinct alternative-sort parts, pa,pb, ..., or pc – exhaustively1 – shall yield pai

, pb j
, ..., or pck

, all of

respective, corresponding sorts Pa, Pb, ..., Pc. These are the alternative sorts.

1 – till no other parts px are observed of sorts different from sort Pa, Pb, ..., Pc

A.2 Endurants 527

observe part set applies to parts p of sort P (for which is part set(p) is claimed to hold)
and yields a set of sub-parts, {pa,pb, ...,pc} of the same sort P′. Observing, in a repeated fashion,
distinct single-sort set parts, p, p′, ..., p′′, all [claimed to be of the] of the same sort, P, shall yield
pai

, p
b j, ..., pck, p′ai

, p′
b j

, ..., p′ck
, ..., respectively p′′ai

, p′′
b j

, ..., p′′ck
, all of same sort P′.

observe composite part applies to parts p of sort P (for which is composite part(p) holds)
and yields a compound of sub-parts, pi,p j, ...,pk of respective, different sorts: Pi,P j, ...,Pk. Observing,
in a repeated fashion, distinct composite parts, p,p′, ...,p′′, all [claimed to be of the] of the same sort,
P, shall yield pi,p j, ...,pk, and p′

i
,p′

j
, ...,p′

k
, ..., respectively p′′

i
,p′′

j
, ...,p′′

k
, all of respective, corresponding

sorts Pi,P j, ...,Pk.
We do not formalise the language in which the above observer function “definitions” , cf.≡, are

expressed.

A.2.1.2.1 Classifiers versus Observers

The classification predicates are “applied”, by the domain analysers & describers, to phenomena
of a “real” world, i.e., the domain, and yields, in the mind of the domain analyser & describer,
truth values, true or false. The observer functions, Sect. A.2.1.2, are “applied”, by the domain
analysers & describers, to phenomena of a “real” world, i.e., the domain, and yields, in the mind
of the domain analyser & describer, a segment, i.e., endurants, of that domain.

A.2.1.3 A Description Calculus

One thing is the domain with its endurants and perdurants. Another thing is its analysis, observa-
tion and description. We can analyse, observe and describe the domain. Our analyses, observations
and descriptions, of course, does not change the domain. Domain analysis yields truth values in
the mind of the analyser. Domain observation focuses attention on a subset of the domain. Domain
descriptions yield, as we shall see, RSL+text. That is RSL texts augmented with an indefinite num-
ber of endurant (obs P), this section), unique identifier (see Sect. A.2.2.1, uid P), mereology (see
Sect. A.2.2.2 mereo P), and attribute (see Sect. A.2.2.3 attr A) observer function symbols. The obs P

observer function applies to parts of sort P’ and yield sub-parts of sort P. For uid P, mereo P and
attr A see respective Sects. A.2.2.1, A.2.2.2 and A.2.2.3. We shall in the sequel omit the “bold-facing”
of obs , uid , mereo and attr . We shall not formalise the RSL+text description language.

A.2.1.3.1 Endurant Describers

Each of the describer functions make use of the observer functions defined in Sect. A.2.1.2. The
describer functions apply to domain endurants and yield RSL+text. The texts, txt, between ❝ and
❞, i.e., ❝ txt❞, is the RSL+text being “generated” !

• Describe Alternative Sort Parts

describe alternative sorts part(p) ≡

let ((p1,❝ E1 ❞),...,(pn,❝ En ❞))
= observe alternative sorts part(p) in

❝ Narration:
[s] ... narrative on alternative sorts ...
[o] ... narrative on sort observers ...
[p] ... narrative on proof obligations ...

Formalisation:
type

528 A Domain Analysis & Description: A Primer

[s] Ea = E 1 | ... | E n

[s] E 1 :: End 1, ..., E n :: End n

value
[o] obs Ea: E→ Ea

axiom
[p] [disjointness of alternative sorts] E 1, ..., E n

end
pre: is alternative sorts set(p) ❞

• Describe Part Sets

describe part sets(p) ≡

let (,❝ P ❞) = observe part sets(p) in
❝ Narration:

[s] ... narrative on sort ...
[o] ... narrative on sort observer ...
[p] ... narrative on proof obligation ...

Formalisation:
type
[s] P

[s] Ps = P-set
value
[o] obs Ps: E→ Ps

end
pre: is single sort set(p) ❞

• Describe Composite Parts

describe composite part(p) ≡

let (2,(❝ E1,...,En ❞)) = observe composite part(p) in
❝ Narration:

[s] ... narrative on sorts ...
[o] ... narrative on sort observers ...
[p] ... narrative on proof obligations ...

Formalisation:
type
[s] E1, ❞...❝ , Em

value
[o] obs E1: E→ E1, ❞...❝ , obs Em: E→ Em

proof obligation
[p] [Disjointness of endurant sorts]
end
pre: is composite(p) ❞

• Describe Parts In summary:

value
describe parts(p) ≡

is alternative sorts part(p)→

→ describe alternative sorts part(p),

is part sets(p)

1 1 The use of the underscore, , shall inform the reader that there is no need, here, for naming a value.

A.2 Endurants 529

→ describe part sets(p),

is composite part(p)

→ describe composite part(p)

A.2.1.4 A State of Endurants

By means of the endurant observers, obs P, one can, for a given domain and instant of time,
speak of the domain endurant state, say σ:Σ. It consists of all the observed parts, whether atomic
and proper, i.e., non-structure parts: part sets (and their parts, etc.), and composite parts (and its
parts, etc.). Informally:

value
gen state: P-set→ P→ P-set
gen state(ps)(p) ≡

is atomic(p)→ {p},

is part set(p)→ {p} ∪ { gen state(p′) | p′ ∈ obs Ps(p) },

is composite(p)→ {p} ∪
gen state(obs P1(p)) ∪ gen state(obs P2(p)) ∪ ... ∪ gen state(obs Pn(p)),

is structure(p)→

is part set structure(p)→ { gen state(p′) | p′ ∈ obs Ps(p) },
is composite structure(p)→

gen state(obs P1(p)) ∪ gen state(obs P2(p)) ∪ ... ∪ gen state(obs Pn(p))

Note that the structure part p is not added to ‘structure’ results in accordance with being a structure.
Now the state of a domain universe of discourse, uod, is gen state(uod). We return to the notion
of state in Sect. A.3.2.

. Begin Example 1: External Qualities

63. The universe of discourse is a road transport system.
64. The road transport system is a structure, a composite of three part sets: road links, road inter-

sections and automobiles.
65. Links, hus and automobolies are considered atomic.

type
63. RTS
64. RLS, RHS, AS

64. RLs = L-set, RHs = H-set, As = A-set
65. L, H, A

value
64. obs RLS: RTS→RLS, obs RHS: RHS→RLS, obs AS: RTS→AS
64. obs RLs: RLS→RLs, obs RHs: RHS→RHs, obs As: AS→As

66. Let ls stand for all links of a domain.
67. Let hs stand for all hubs of a domain.
68. Let as stand for all automobiles of a domain.
69. The domain state consists of all road hubs, road links and automobiles.
70. If there is a link then there is a hub, otherwise the link, hub and automobile sets may be empty.

value
66. ls = obs RLs(obs RLS(rts))

67. hs = obs RHs(obs RHS(rts))

530 A Domain Analysis & Description: A Primer

68. as = obs As(obs AS(rts))

69. domain state: RTS→ (H|L|A)-set
69. domain state(rts) ≡ ls∪hs∪as
axiom
70. ls , {} ⇒ hs , {}

. End of Example 1

A.2.2 Internal Qualities

Internal qualities of endurants of a manifest domain are, in a simplifying sense, those which we
may not be able to see or “feel” when “touching” an endurant, but they can, as we now ‘mandate’
them, be reasoned about, as for unique identifiers and mereologies, or be measured by some
physical/chemical means, or be “spoken of” by intentional deduction, and be reasoned about,
as we do when we attribute properties to endurants.

We refer to [55, Sects. 2.2.3–4, 3.8, and 5.2–5.3] for a fuller discussion of the concepts and unique
identification and mereology.

A.2.2.1 Unique Identification

Parts are uniquely identified. This follows from philosophic-analytic reasoning outlined by Kai
Sørlander [146, 147, 148, 149]. We refer to [55, Chapter 2 and Sect. 5.2.1] for summaries.

A.2.2.1.1 The Unique Identifier Observer

With each part sort P we associate a further undefined unique identifier sort Π and a similarly
further undefined unique identifier observer function uid P such that for all parts p,p′, ...,p′′ of
sort P uid P(p), uid P(p′), ..., uid P(p′′) yield distinct unique identifiers (π,π′, ...,π′′ respectively).

A.2.2.1.2 The Unique Identifier Describer

unique identifier observer(p) ≡

❝ Narration:
[s] ... narrative on unique identifier sort UI ...
[u] ... narrative on unique identifier observer ...
[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:
type
[s] UI
value
[u] uid P: P→ UI

axiom
[a] [disjointness of UI wrt. all sorts] ❞

. Begin Example 2: Internal Qualities: Unique Identifiers

71. Each link, hub and automobile has a unique identifier.

A.2 Endurants 531

72. Let lis,his,ais stand for all link, hub and automobile identfiers of a domain.
73. No two or more links, hubs or automobiles have identifical identifiers.
74. Given a link identififier of a domain one can extract the identified link.
75. Given a hub identififier of a domain one can extract the identified hub.

type
71. LI, HI, AI

value
71. uid L: L→LI, uid H: H→HI, uid A: A→AI
71. lis = {uid LI(l)|l:L•l ∈ ls}
71. his = {uid HI(h)|h:H•h ∈ hs}
71. ais = {uid AI(a)|a:A•a ∈ as}
axiom
73. card lis + card his + card ais = card ls + card hs + card as
value
74. xtr L: LI→ L

74. xtr L(li) ≡ let l:L • l ∈ ls ∧ uid L(l)=li in l end
75. xtr H: HI→ H

75. xtr H(hi) ≡ let h:H • h ∈ hs ∧ uid H(h)=hi in h end

. End of Example 2

A.2.2.2 Mereology

“Mereology is a theory of part-hood relations: of the relations of part to whole and the relations
of part to part within a whole”2.

We shall deploy mereology practically. That is, we are not studying mereology. We are using
the ideas of mereology for experimental research and engineering purposes.

For natural endurants a typical relation is that of “next-to”. For artefactual endurants typical
relations make explicit how the designers of these artefacts intended their logical, not necessarily
geographical relationship, to be: “next-to”, “to-be-part-of”, “as-an-element-of-a-set”, etcetera.

A.2.2.2.1 The Mereology Observer

The mereology relations are here expressed in terms of the unique part identifiers. Let p : P (of sort
P) be a part with unique identifiers π. Let {p1 : P1,p2 : P2, ...,pm : Pm} be the set of parts (or respective
sorts) to which p is [mereologically] related. We can express this my stating that obs mereo P(p)=
{π1 :Π1,π2 :Π2, ...,pπm :Πm} or value obs mereo P: P→UI-set – i.e., as a set of unique identifiers.
mereo P is the mereology observer. One could also express the mereology of a part, p, as a triplet
(iuis, iouis,ouis) of sets of unique identifiers: those, iuis, of parts from whose transcendentally
deduced (see Sect. A.4.4) corresponding behaviours p only receives “input”, those, iouis, of parts
from and to whose behaviours p receives “input” and “output”, and those, ouis, of parts to whose
behaviours p only delivers “output”, In general: value obs mereo P: P→MT where MT is a type
expression over unique identifier types.

A.2.2.2.2 The Mereology Describer

mereology observer(p) ≡

2 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [75].

532 A Domain Analysis & Description: A Primer

❝ Narration:
[t] ... narrative on mereology type ...
[m] ... narrative on mereology observer ...
[a] ... narrative on mereology type constraints ...

Formalisation:
type
[t] MT =M(UIi,UI j,...,UIk)

value
[m] obs mereo P: P→ MT

axiom [Well−formedness of Domain Mereologies]
[a] A: A(MT): Well−formedness of Mereologies ❞

. Begin Example 3: Internal Qualities: Mereology

76. The mereology of links is a set of two distinct hubs identifiers [of the hubs of the domain to
which the link is connected] and a set of automobile identifiers [of the automobiles allowed to
enter the link].

77. The mereology of hubs is a set of one or more link identifiers [of the links of the domain to
which the hub is connected] and a set of automobile identifiers [of the automobiles allowed to
enter the hub].

78. The mereology of an automobile is a set of link and hub identifiers [of the links and hubs of the
domain that the automobile may enter].

type
76. LM = HI-set×AI-set
77. HM = LI-set×AI-set
78. AM = (LI|HI)-set
value
76.–78. mereo L: L→LM, mereo H: H→HM, mereo A: A→AM

axiom
76. ∀ l:L•l ∈ ls⇒ let (his,ais) = mereo L(l) in
76. his ⊆ his ∧ ais ⊆ ais end
77. ∀ h:H•h ∈ hs⇒ let (lis,ais) = mereo H(h) in
77. lis ⊆ lis ∧ ais ⊆ ais end
78. ∀ a:A•a ∈ as⇒ let ris = mereo A(a) in
78. ris ⊆ lis ∪ his end

. End of Example 3

A.2.2.3 Attributes

Whereas unique identification and mereology are both of abstract, existential, logic nature, at-
tributes are of concrete nature: physical, biological or historical nature. Attributes have values and
attribute values are of types. Two or more endurants that all have sets of attribute values of the
same type, as well as the same unique identifier type and mereology types, are of the same sort.
This is an endurant sort-determining mantra.

A.2.2.3.1 The Attribute Observers

From any part, p:P, we can thus identify a set of attribute type names, Ap1 ,Ap2 , ...App , informally:

A.2 Endurants 533

• attributes P: P→ ❝ Ap1 ,Ap2 ,...,App ❞.

Given a p:P, attr A obtains the value of attribute A. The attr Api
s are attribute observers of pi:Pi.

A.2.2.3.2 The Attribute Categories

Michael A. Jackson [107] has suggested a hierarchy of attribute categories. Static attributes: values
do not change. Dynamic attributes: values can change. Within the dynamic attribute category
there are either: inert attributes: values are not determined by the endurant, but by “an outside”
(e.g., other endurants); or reactive attributes: values which, if they change, change in response to
external stimuli; or active attributes: values which change of the “own volition” of the part; within
the active attribute category there are: autonomous attributes: values which change only on the
“own volition” of the part; biddable attributes: values, values that may be prescribed3 but may
fail to attain the prescribed value; and programmable attributes: values which are prescribed etc.
For our purposes we “reduce” these six categories to four, CAT = STA|INR|MON|PRO:

• static [STA],
• inert [INR],

• monitorable [MON], and
• programmable [PRO].

A.2.2.3.3 Attribute Pragmatics

There are many kinds of attributes. There are the obvious attributes of physical nature: spatial
attributes: length (e.g., m), area (e.g., m2), volume (e.g., m3); temporal attributes: time stamps, and
time intervals (e.g., s); spatio-temporal attributes: velocity (e.g., m/s), acceleration (e.g., m/s2), etc.;
and other physics attributes: mass (e.g., kg), electric current (e.g., A), thermodynamic temperature
(e.g., K), amount of substance (mole), and luminous intensity (lumen). Based on these a multitude
of further, additional kinds of physical attributes can be expressed; we refer to [55, Table 5.2,
Sect. 5.4.5.1.]

There are the attributes of chemical nature, related to substance, i.e., matter (mole), as typified
by the periodic table of elements (hydrogen, lithium, beryllium, etc.).

And then there are the attributes of historical nature. By this we mean, attributes which record
events related to parts. Often such (historical, i.e., time–stamped) events relate two parts: “part p
‘interacted’ with part q at such-and-such a time”.

Finally there are a kind of concept of appearance attributes ‘colour’, ‘newness/usedness/a-
ged’, ‘roughness’/‘smoothness’, etcetera, of a part. We shall often find that these attributes are of
a fuzzy nature [78, 112, 156, 108].

A.2.2.3.4 The Attributes Describer

describe attributes(p) ≡
let {❝ A1, ..., Am ❞} = attributes P(p) in
❝ Narration:

[t] ... narrative on attribute sorts ...
[o] ... narrative on attribute sort observers ...
[p] ... narrative on attribute sort proof obligations ...

Formalisation:
type
[t] A1, ..., Am,

3 – by the transcendent part behaviour

534 A Domain Analysis & Description: A Primer

value
[o] attr A1: P→A1 [CAT],
[o] attr A1: P→A2 [CAT],
[o] ...,
[o] attr A1: P→Am [CAT].
proof obligation [Disjointness of Attribute Types]
[p] PO: let P be any part sort in
[p] let a:(A1|A2|...|Am) in
[p] is Ai(a) , is A j(a) [i,i, i,j:[1..m]] end end ❞

end

. Begin Example 4: Internal Qualities: Attributes

79. Link attributes:

a. Link have lengths.
b. A link history records the time-ordered discrete times that any automobile has appeared on

the link.

80. Hub attributes:

a. A hub history records the time-ordered discrete times that any automobile has appeared at
the hub.

b. A hub state, hσ:HΣ, models the red/yellow/green signal setting. It expresses which pairs of
links have green light from in to out.

c. A hub state space, hω:HΩ, models the set of all road intersection, i.e., hub signal settings. A
hub with no signal has a single hub state hub state space with that state having green light
in all directions !

d. Any current hub state must be in the hub state space.

81. Automobile attributes:

a. An automobile history records the discrete times that the automobile has been on a link and
at a hub.

b. An automobile has a road position: either at a hub, or along a link, a fraction of the distanve
from one hub to the next.

type
79a. LEN
79b. LHist = AI →m TIME

∗

80a. HHist = AI →m TIME
∗

80b. HΣ = (LI×LI)-set
80c. HΩ = HΣ-set
81a. AHist = RI →m TIME

∗ , RI = LI|HI

81b. APos == atH | onL
81b. atH :: HI

81b. onL :: LI × HI × F
81b. F = Real axiom ∀ f:F • 0≤f≤1

value
79a. attr LEN: L→ LEN
79b. attr LHist: L→ LHist

80a. attr HHist: H→ HHist

80b. attr HΣ: H→ HΣ
80c. attr HΩ: H→ HΩ

A.3 Space, State and Time 535

axiom
79b.–80a. ∀ lhist:LHist, hhist:HHist •

79b.–80a. ∀ tl:TIME∗•tl ∈ rng lhist ∪ rng lhist⇒is ordered(tl)
80d. ∀ h:H • h ∈ hs⇒ attr HΣ(h) ∈ attr HΩ(h)

value
79b.–80a. is ordered: TIME∗ → Bool
79b.–80a. is ordered(tl) ≡ ∀ i,j:Nat•{i,j}∈ inds tl∧i<j⇒tl[i]<tl[j]
axiom
81b. ∀ ath:atH • s HI:ath ∈ his
81b. ∀ onl:onL • s LI(onl)∈lis∧s HI(onl)∈his
81b. ∧s HI(onl)∈mereo L(xtr L(s LI(onl)))

. End of Example 4

A.2.2.4 Intentional “Pull”

The concept of intentional “pull” is [also] a new concept4. For artefacts one can claim that certain
parts p:P are created in order to serve other parts q:Q, and vice versa. “roads serve to convey
transport, automobiles serve to transport goods”. Historical events record interactions between
such parts p and q. So a historical attribute of p records its interaction with q, and a historical
attribute of q records its interaction with p, and “one cannot have one without the other”, and this
is what we mean by intentional “pull” ! So introducing historical attributes for a sort P usually
entails also introducing historical attributes for another sort Q, etcetera. And this consequentially
implies that the domain analyser cum describer must express a necessary intentional “pull”

axiom that expresses that “one cannot have one without the other”.

. Begin Example 5: Internal Qualities: Intentional Pull

We leave it to the reader to formally narrate and formalise the following example of intentional
pull. The example continues that of the attributes of links, hubs and automobiles above.

If an automobile is recorded, in the history of a link, to have been on that link, at time τ, then
that link records the automobile to have been there at that time. And vice-versa: if a link history
records an automobile, at some time, then that automobile’s history records that link, at that time.
. End of Example 5

A.2.3 Narratives

How much, how little ?̇
Narratives on external qualities should be very short. Perhaps it is admissible to just mention

sort/part names and their composition, relying on the readers’ goodwill.
The real narrative description of endurants comes with their internal qualities: mereology and

attributes.

A.3 Space, State and Time

Three notions: space, state and time, are given by analytic-philosophic reasoning [146, 147, 148,
149]. That is, they are neither endurants nor perdurants; nor, more “down-to-earth”, attributes.

4 It “parallels” the gravitational pull of physics; hence the ‘naming’ !

536 A Domain Analysis & Description: A Primer

A.3.1 Space

“The two relations asymmetric and symmetric, by a transcendental deduction, can be given an
interpretation: the relation (spatial) direction is asymmetric; and the relation (spatial) distance
is symmetric. Direction and distance can be understood as spatial relations. From these relations
are derived the relation in-between. Hence we must conclude that [...] entities exist in space.
Space is therefore an unavoidable characteristic of any possible world” [149, pp 154]

A.3.1.1 Spatial Types

82. There is an abstract notion of (definite) SPACE(s) of further unanalysable points; and
83. there is a notion of POINT in SPACE.

type
82 SPACE

83 POINT

Space is not an attribute of endurants. Space is just there. So we do not define an observer,
observe space. For us, bound to model mostly artefactual worlds on this earth there is but one
space. Although SPACE, as a type, could be thought of as defining more than one space we shall
consider these isomorphic !

A.3.1.2 Spatial Attributes

84. A point observer, observe POINT, is a function which applies to endurants, e, and yield an
indefinite point, ℓ : POINT, of, or within, that endurant !

value
84 observe POINT: E→ POINT

A.3.2 State

We first touched upon the notion of ‘state’ in Sect. A.2.1.4. In [that] section a state was delineated
as any set of domain endurants. We can now offer a more refined delineation of state: a state is
[now] any set of endurants each of which has at least one dynamic attribute.

Internal qualities of endurants allow us to express predicates over endurant values. It is thus
the internal qualities of endurants that gives “flesh” to the notion of manifest endurants.

Analytic-philosophically we can argue: “Entities may be ascribed predicates which it is not
logically necessary that they are ascribed. How can that be possible ? Only if we accept that
entities may be ascribed predicates which are in-commensurable with predicates that they are
actually ascribed. That is possible, we must conclude, if entities can exist in distinct states” [149,
158–159]

A.4 Perdurants 537

A.3.3 Time

“Two different states must necessarily be ascribed different incompatible predicates. But how can
we ensure so ? Only if states stand in an asymmetric relation to one another. This state relation is
also transitive. So that is an indispensable property of any world. By a transcendental deduction
we say that [...] entities exist in time. So every possible world must exist in time” [149, pp 159]

A.3.3.1 Time and Time Interval Sorts and Operators

85. There is an abstract type Time,
86. and an abstract type TI: TimeInterval.
87. There is no Time origin, but there is a “zero” TIme interval.
88. One can add (subtract) a time interval to (from) a time and obtain a time; and one can add and

subtract two time intervals and obtain a time interval – with subtraction respecting that the
subtrahend is smaller than or equal to the minuend.

89. One can subtract a time from another time obtaining a time interval respecting that the subtra-
hend is smaller than or equal to the minuend.

90. One can multiply a time interval with a real and obtain a time interval.
91. One can compare two times and two time intervals.

type
85 T

86 TI

value
87 0:TI

88 +,-: (T × TI→ T|TI × TI
∼
→ TI)

89 -: T × T→ TI

90 *: TI × Real→ TI
91 <,≤,=,,,≥,>: (T × T|TI × TI)→ Bool
axiom
88 ∀ t:T • t+0 = t

A.3.3.2 The Time Observer

92. We define the signature of the meta-physical
time observer.

type

92 T

value
92 record TIME: Unit→ T

The time recorder applies to nothing and yields a time. record TIME() can only occur in action,
event and behavioural descriptions.

A.4 Perdurants

We introduce this section with remarks on actions, events and behaviours, on determinacy and
non-determinacy, on co-operating domains, and on transcendental deduction. The real “meat” of
this section are sections A.4.5, A.4.6, and A.4.8.

538 A Domain Analysis & Description: A Primer

A.4.1 Actions, Events and Behaviours

By a action we shall understand something that occurs in time, lasting, however, no time, or, at
least, we ignore time – considering actions as indivisible, taking place as the result of a “willed”
[other] action, and usually changing the state.

By an event we shall understand something that occurs in time, lasting, however, no time,
taking place as spontaneously, not as the result of a “willed” action, but possibly as the result of
another event, and usually changing the state.

By a behaviour we shall understand a set of sequences of actions, events and [other, sub-]
behaviours, some of which relate to, i.e., interact with one another, cf. Sect. A.4.3.5

•••

The purpose of this overall section on perdurants is to indicate how part descriptions lead to
behaviour descriptions such that domains with two or more parts lead to domain behaviours
consisting of two or more concurrent behaviours.

A.4.2 Determinacy and Non-determinacy

The remarks of this section are informal. They relate to the meaning, the semantics, of descriptions
of behaviours. We assume acceptance of the state concept as outline in Sects. A.2.1.4 and A.3.2.

Simple Behaviour Descriptions: A behaviour description is a simple one if it consists only of
a sequence of action and event descriptions.

Serial Executions: Now let us consider the meaning, operationally, in terms of executions of
simple behaviour description. We shall call such executions serial executions. A serial execution
consists of the interpretation of action and event descriptions, one-by-one, one-after-the-other,
step-by-step. Execution of actions and the occurrence of events result, usually, in state changes.

Determinacy: If the state change, as the result of an action execution, is predictable from the
action description and the state just before action execution, then we say that the execution is
determinate, i.e., represents determinacy.

Non-determinacy: If the state change, as the result of an action execution, is not predictable,
i.e. represent non-determinacy, then we say that the execution is non-determinate. Occurence of
events represents non-determinacy.

Single Behaviour Internal Non-determinism: Single behaviour descriptions may offer a next
action or event in the form of a choice between two or more alternatives. When that choice is left
to the behaviour itself we refer to it as an internal choice, leading to internal non-determinism.

Concurrent Behaviour Descriptions: A general behaviour description consists of simple and
general behaviour descriptions. A general behaviour description describes concurrency. These
may or may not be describing interaction between the intended behaviours. Henceforth we assume
that the behaviour descriptions do describe interaction.

Concurrent Executions: Thus a general behaviour description describes concurrent executions.
Internal Non-determinacy: We now assume a general behaviour description and its denoted

executions. When a behaviour description offers the choice between two or more alternative next
actions or events where that choice is left to the behaviour itself we refer to it as an internal choice,
leading to internal non-determinism.

Multiple Behaviour and Internal and External Non-determinacy: We now assume a general
behaviour description and its denoted executions.

5 This ‘relation’ is, in CSP [99, 100, 141, 144, 101], expressed in terms of CSP input/outputs: ch[index] ?, respectively
ch[index] ! value where values are communicated over indexed channels.

A.4 Perdurants 539

External Non-determinacy: When a behaviour description offers the choice between two or
more alternative next actions or events where that choice is determined by other behaviours the
we refer to it as an external choice, leading to external non-determinism.

Determinacy: When (segments of) a behaviour description does not imply non-determinacy,
then it implies determinacy, i.e., next-state predictability.

A.4.3 Co-operating Domains

A domain usually consists of two or more parts. And hence, as we shall see, domains consists
of a corresponding number of behaviours. Usually these behaviours co-operate, i.e., interact.
Interaction may take many forms. A common form is that of two behaviours synchronising
and communicating. They synchronise at a point in their behaviours, i.e., both being at specific
points, when they communicate. They communicate, for example, by one behaviour offering a
value of some kind to the other of the two behaviours. There could be other forms of behaviour
interaction. The one we have chosen corresponds to Tony Hoare’s concept of communicating

sequential processes [101] One could have chosen other descriptional models: Petri nets
[137], or Message Sequence Charts, MSC [105], or Statecharts [95], or Live Sequence Charts
[96], or other.

A.4.4 Transcendental Deduction

A Philosophical Principle: “A transcendental argument is an argument which elucidates the
conditions for the possibility of some fundamental phenomenon whose existence is unchallenged
or uncontroversial in the philosophical context in which the argument is propounded” [3, Anthony
Brueckner, page 808].

“Such an argument proceeds deductively, from a premise of asserting the existence of some
basic phenomenon (such as a meaningful discourse, conceptualisation of objective states of affairs,
or the practice of making promises), to a conclusion asserting the existence of some interesting,
substantive enabling conditions for that phenomenon” [3, Anthony Brueckner, page 808].

From Parts to Behaviours: The Possibility: So from the existence of endurants we shall assert the
existence of behaviours. That is, from the existence of parts, we shall elucidate the conditions for the
possibility of behaviours; with the existence of behaviours being unchallenged or uncontroversial
in the philosophical context in which the argument is propounded.

. Begin Example 6: From Parts to Behaviours

A railway train, in the vernacular, i.e., common parlance, may refer to either a train, as a[n
endurant] part, waiting on a platform at a railway station, or a train, as a [perdurant] behaviour,
“speeding” down the tracks, or a train [departures and arrivals], as an element of a time table
[attribute].
. End of Example 6

From Parts to Behaviours: The Deduction: So, for each, usually atomic, part we analyse and
describe (i) the actions, (ii) the events, and (iii) the behaviour of that part, with that behaviour
being a sequence of these actions (i), events (ii), and [suitable] sub-behaviours. The behaviour is
then composed from these actions, events and sub-behaviours. The composition follows the part
analysis wrt. actions, event and behaviours.

•••

540 A Domain Analysis & Description: A Primer

As mentioned above, we do not consider the transcendental “morphing” of living species into
behaviours, but could !

A.4.5 Channels

The mereology-analysis of parts and their relations transcendentally leads to the CSP notion of
channels [99, 100, 141, 144, 101]. The interaction between behaviours is afforded by means of
channels. We model “our” channels in the form of CSP channels. For any given domain there is
thus a channel array:

• channel { ch[{ui j,uik}] | ... }: MSG

where (...) ui j,uik is any distinct pair of unique domain part identifiers, and where MSG is the type
of messages communicated over these channels.

A.4.6 Behaviours

We first deal with behaviour signatures. They are strongly related to the internal qualities of
parts. Then we deal with the definitions of behaviour ‘bodies’. Here we have little, as concerns a
systematic treatment, really, to say ! Finally we deal with the compilation of all distinct part sort
domain behaviours.

A.4.6.1 Behaviour Signatures

Part behaviours are modeled as never-ending CSP processes [99, 100, 141, 144, 101]. The definition
of the signature of these processes entail:

• naming the behaviour: the part sort name, P,

and the parameters:

• a unique part identifier type, UI,
• a mereology type expression, Mereo,
• a set of static attribute, i.e., constant valued variable, types, Stat Attrs,
• a set of programmable attribute types, Prgr Attrs,
• a set of channel expressions, {ch[...]|...} – to model inert and monitorable attributes,6 and
• the Unit literal.

value
P: ui:UI × Mereo × Stat Attrs

→ Prgr Attrs→ { ch[...] | ... } Unit

The Unit literal expresses that the behaviour is cyclic (expressed by tail-recursion of the behaviour
‘body’ description) and that the behaviour [potentially] changes the state — with that state now
being represented by the full ensemble of all domain part behaviours.

6 We refer to [55, Sect.7̇.7.3] for details !

A.4 Perdurants 541

A.4.6.2 Behaviour Definition ‘Bodies’

Parts, whether they are atomic, composite or sets, are simply translated7:

TranslatePart(e) ≡
❝ value

MP(ui,me,sv)(pv) ≡
let (me′,pv′) = FP(ui,me,sv)(pv) in
MP(ui,me′,sv)(pv′) end

FP: UI × Mereo × Stat Attrs

→ Prgr Attrs→ { ch[...] | ... }
→ (Mereo×Prgr Attrs)

FP(ui,me,sv)(pv) ≡ ... ❞

The interesting aspect here is the function FP. As already mentioned above, we shall not present
a rigorous analysis of how part behaviours interact. But we shall somewhat informally reason
about interaction possibilities. From what we shall present next we hope one day to present as
rigorous a perdurant analysis & descriptions as we claim to have presented an endurant analysis
& description.

A.4.6.2.1 Semiformal Examples of Behaviour Interactions

Let P and Q each stand for a set of behaviours. Both defined by a single definitions, hinted at in
formula lines 93– 101 respectively 102–103 below. That is, these P and Q “body” definitions hint
at FP, respectively FQ definitions.

93. A behaviour P is defined.
94. n clauses are to be deterministically executed: first clause 1, then clause 1, etc., finally clause n.
95. An internal non-deterministic choice is to be made between the elaboration of either clause 1

or clause 2 or ... or clause n.
96. Behaviour P(pui)(...,...)(...) deterministically offers behaviour Q(quj)(...,...)(...) a message –
97. which may be accepted by that behaviour.
98. Behaviour P(pui)(...,...)(...) externally non-deterministically offers either of behaviours Q(quj)(...,...)(...)

a message –
99. which may be accepted by one of these behaviours.

100. Behaviour P(pui)(...,...)(...) internally non-deterministically offers either of behaviours Q(quj)(...,...)(...)

a message –
99 which may be accepted by one of these behaviours.

101. Behaviour P(pui)(...,...)(...) is resumed.

102. Behaviour Q(quj)(...,...)(...) is defined.
97 Behaviour Q(quj)(...,...)(...) determinisitically offers to accept communication with a specific

behaviour P(pui)(...,...)(...).
99 Behaviour Q(quj)(...,...)(...) external non-deterministically offers to accept communication with

either of behaviours P(pui)(...,...)(...) where pui ranges of a set.
103. Behaviour Q(quj)(...,...)(...) internal non-deterministically chooses to accept a message from any

of the behaviours P(pui)(...,...)(...), if offered.
104. Behaviour Q(quj)(...,...)(...) is resumed.

7 Note that FP “returns” also a possibly updated part mereology: hubs and links may be inserted into or removed
from a road net.

542 A Domain Analysis & Description: A Primer

value
93. P(pui)(...,...)(...) ≡
94. ... clause 1 ; clause 2 ; ... ; clause n ...
95. ... clause 1 ⌈⌉ clause 2 ⌈⌉ ... ⌈⌉ clause n ...
96. ... ch[{pui,quj}] ! mkMsg(...) ...
98. ... ⌈⌉⌊⌋ { ch[{pui,quj}] ! mkMsg(...) | quj:QUJ • ... } ...
100. ... ⌈⌉ { ch[{pui,quj}] ! mkMsg(...) | quj:QUJ • ... } ...
101. ... P(pui)(...,...)(...)

102. Q(quj)(...,...)(...) ≡
97. ... let mkMsg(...) = ch[{pui,quj}] ? in ... end ...
99. ... let mkMsg(...) = ⌈⌉⌊⌋ { ch[{pui,quj}] ? | pui:PUI • ... } in ... end ...
103. ... let mkMsg(...) = ⌈⌉ { ch[{pui,quj}] ? | pui:PUI • ... } in ... end ...
104. ... Q(quj)(...,...)(...)

. Begin Example 7: Automobile and Link Behaviours

105. We simplify automobile behaviour on a Link.

a. Provisionally, “updating” the automobile history.
b. Internally non-deterministically, either

i. the automobile remains, “idling”, i.e., not moving, on the link and with update history,
ii. however, first informing the link of its position,

c. or
i. if if the automobile’s position on the link has not yet reached the hub, then

1. then the automobile moves an arbitrary small, positive Real-valued increment along
the link,

2. informing the hub of this,
3. while resuming being an automobile ate the new position with updated history, or

ii. else,
1. while obtaining a “next link” from the mereology of the hub (where that next link

could very well be the same as the link the vehicle is about to leave),
2. the vehicle informs the hub that it is now at that hub, identified by th ui,
3. and updates its history,
4. whereupon the vehicle resumes the vehicle behaviour positioned at that hub with

updated history;
d. or
e. the vehicle “disappears — off the radar” !

value
105 auto: ai:AI × ris:AM→ onL(fhi,li,f,thi):APos × AHist

105 → {ch[{ai,ri}]|ri:RI•ri ∈ ris} Unit
105 auto(ai,ris)(onL(fhi,li,f,thi),ahi) ≡

105a let ahi′ = ahi†[li 7→ 〈record TIME()〉̂ ahi(li)] in
105(b)ii (ch[{li,ai}] ! onL(fhi,li,f,thi) ;
105(b)i auto(ai,ris)(vp,ahi′))

105b ⌈⌉

105(c)i if f<1
105(c)i then
105(c)i1 let onl = onL(fhi,li,incr(f),thi) in
105(c)i2 ch[{li,ai}] ! onl ;
105(c)i3 auto(ai,ris)(onl,ahi′) end

A.4 Perdurants 543

105(c)ii else
105(c)ii1 let nli:L UI • nli ∈ mereo H(get H(thi)) in
105(c)ii2 ch[{thi,ai}] ! atH(thi) ;
105(c)ii3 let ahi′′ = ahi†[thi 7→ 〈record TIME()〉̂ ahi(thi)] in
105(c)ii4 auto(ai,ris)(atH(li,thi,nxt lui),ahi′′)
105(c)ii3 end end
105(c)i end
105d ⌈⌉

105e stop end
105(c)i1 incr: Fract→ Fract ...

106. We abstract link behaviours.

a. Externally non-deterministically a link behaviour is here simplified to
b. offer to accept communication messages, m, cf. Items 105(b)ii and 105(c)i2 above,
c. from any automobile in its mereology,
d. the link behaviour history is updated, and
e. the link behaviour resumes with that history.

value
106 link: LI × (his,ais):LM × LEN
106 → LHist→ { ch[{li,ai}] | ai ∈ ais } Unit
106 link(li,(his,ais),le)(lhi) ≡
106 ⌈⌉⌊⌋

106a { let m = ch[li,ai] ? in
106d let lhi′ = lhi † [li 7→ 〈record TIME()〉̂ lhi(li)] in
106e link(li,m,le)(lhi′)

106c | ai:AI • ai ∈ ais end end }

. End of Example 7

A.4.7 Compilation of Domain Descriptions

Every part, p, of sort P (P = type name(p)), of a domain is compiled, TranslateP(p), once. The
compilation applies to a universe of discourse and yields an RSL+text. Informally that compilation
proceeds as follows: ps stand for all domain parts, whether atomic or composite. p s ns stand for
the type names of all these parts – if there are several parts of the same sort, then its sort name is
represented once in p s ns. u s ps is now a subset of ps, with exactly one representative for each
part sort. Thê clause: 〈 ... | p ∈ u s ps 〉 concatenates the RSL+text sequences of the individual
part descriptions.

value
compile system: UoD→ RSL+text

compile system(uod) ≡
let ps = calc parts({uod})({}) in
let p s ns = {typ nam(p)|p ∈ ps} in
let u s ps = {p|p ∈ ps, typ nam(p) ∈ p s ns} in
̂ 〈describe parts(p),

unique identifier observer(d),

mereology observer(p),
describe attributes(p),

544 A Domain Analysis & Description: A Primer

TranslateP(p)|p ∈ u s ps〉

end end end

A.4.8 Initialising Domains

For each part sort there is exactly one description. But for each part sort there may be many
instances of that part in the domain.

107. initialising a domain system starts with a domain, uod, and yields a behaviour, Unit.
108. It is based on all parts, ps.
109. The domain behaviour is the parallel, ‖, composition
110. of the behaviours of
111. all parts – whose
112. unique identifier, mereology and
113. static and programmable attribute values,
114. as well as the mereology-determined channels – have been “extracted” from the endurant part,
115. where also the behaviour signature have been stated.

value
107. initialise domain behaviour: UoD→ Unit
107. initialise domain behaviour(uod) ≡

108. let ps = calc parts({uod})({}) in
109. ‖ {

112. let ui = uid P(p), me = mereo P(p),

112. sv = stat attrs(p), pv = progr attrs(p),

112. ioc = in o channels(me) in
115. MP → ui:UI × me:MT × sv:Stat Attrs

115. → pv:Prgr Attrs→ ioc Unit
110. MP(ui,me,sv)(pv)

111. | p:P • p ∈ ps end }
108. end

Here index P and suffix P has the P be type name(p) where type name is defined from the part
observer functions.

Appendix B

An RSL Primer

Contents
B.1 Types . 547

B.1.1 Type Expressions . 547
B.1.1.1 Atomic Types . 547

B.1.1.1.1 Basic Types: . 547
B.1.1.2 Composite Types . 547

B.1.1.2.1 Composite Type Expressions: . 548
B.1.2 Type Definitions . 548

B.1.2.1 Concrete Types . 548
B.1.2.1.1 Type Definition: . 549
B.1.2.1.2 Variety of Type Definitions: . 549
B.1.2.1.3 Record Types: . 549

B.1.2.2 Subtypes . 549
B.1.2.2.1 Subtypes: . 549

B.1.2.3 Sorts — Abstract Types . 550
B.1.2.3.1 Sorts: . 550

B.2 The RSL Predicate Calculus . 550
B.2.1 Propositional Expressions . 550

B.2.1.0.1 Propositional Expressions: . 550
B.2.2 Simple Predicate Expressions . 550

B.2.2.0.1 Simple Predicate Expressions: . 550
B.3 Concrete RSL Types: Values and Operations . 551

B.3.1 Arithmetic . 551
B.3.1.0.1 Arithmetic: . 551

B.3.2 Set Expressions . 551
B.3.2.1 Set Enumerations . 551

B.3.2.1.1 Set Enumerations: . 551
B.3.2.2 Set Comprehension . 551

B.3.2.2.1 Set Comprehension: . 551
B.3.3 Cartesian Expressions . 552

B.3.3.1 Cartesian Enumerations . 552
B.3.3.1.1 Cartesian Enumerations: . 552

B.3.4 List Expressions . 552
B.3.4.1 List Enumerations . 552

B.3.4.1.1 List Enumerations: . 552
B.3.4.2 List Comprehension . 552

B.3.4.2.1 List Comprehension: . 552
B.3.5 Map Expressions . 553

B.3.5.1 Map Enumerations . 553
B.3.5.1.1 Map Enumerations: . 553

B.3.5.2 Map Comprehension . 553
B.3.5.2.1 Map Comprehension: . 553

B.3.6 Set Operations . 553
B.3.6.1 Set Operator Signatures . 553

B.3.6.1.1 Set Operations: . 553

545

546 B An RSL Primer

B.3.6.2 Set Examples . 554
B.3.6.2.1 Set Examples: . 554

B.3.6.3 Informal Explication . 554
B.3.6.4 Set Operator Definitions . 555

B.3.6.4.1 Set Operation Definitions: . 555
B.3.7 Cartesian Operations . 555

B.3.7.0.1 Cartesian Operations: . 555
B.3.8 List Operations . 555

B.3.8.1 List Operator Signatures . 555
B.3.8.1.1 List Operations: . 555

B.3.8.2 List Operation Examples . 556
B.3.8.2.1 List Examples: . 556

B.3.8.3 Informal Explication . 556
B.3.8.4 List Operator Definitions . 556

B.3.8.4.1 List Operator Definitions: . 556
B.3.9 Map Operations . 557

B.3.9.1 Map Operator Signatures and Map Operation Examples 557
B.3.9.2 Map Operation Explication . 558
B.3.9.3 Map Operation Redefinitions . 558

B.3.9.3.1 Map Operation Redefinitions: . 558
B.4 λ-Calculus + Functions . 559

B.4.1 The λ-Calculus Syntax . 559
B.4.1.0.1 λ-Calculus Syntax: . 559

B.4.2 Free and Bound Variables . 559
B.4.2.0.1 Free and Bound Variables: . 559

B.4.3 Substitution . 559
B.4.3.0.1 Substitution: . 559

B.4.4 α-Renaming and β-Reduction . 560
B.4.4.0.1 α and β Conversions: . 560

B.4.5 Function Signatures . 560
B.4.5.0.1 Sorts and Function Signatures: . 560

B.4.6 Function Definitions . 560
B.4.6.0.1 Explicit Function Definitions: . 560
B.4.6.0.2 Implicit Function Definitions: . 561

B.5 Other Applicative Expressions . 561
B.5.1 Simple let Expressions . 561

B.5.1.0.1 Let Expressions: . 561
B.5.2 Recursive let Expressions . 561

B.5.2.0.1 Recursive let Expressions: . 561
B.5.3 Predicative let Expressions . 562

B.5.3.0.1 Predicative let Expressions: . 562
B.5.4 Pattern and “Wild Card” let Expressions . 562

B.5.4.0.1 Patterns: . 562
B.5.5 Conditionals . 562

B.5.5.0.1 Conditionals: . 563
B.5.6 Operator/Operand Expressions . 563

B.5.6.0.1 Operator/Operand Expressions: . 563
B.6 Imperative Constructs . 563

B.6.1 Statements and State Changes . 563
B.6.1.0.1 Statements and State Change: . 564

B.6.2 Variables and Assignment . 564
B.6.2.0.1 Variables and Assignment: . 564

B.6.3 Statement Sequences and skip . 564
B.6.3.0.1 Statement Sequences and skip: . 564

B.6.4 Imperative Conditionals . 564
B.6.4.0.1 Imperative Conditionals: . 564

B.6.5 Iterative Conditionals . 565
B.6.5.0.1 Iterative Conditionals: . 565

B.6.6 Iterative Sequencing . 565
B.6.6.0.1 Iterative Sequencing: . 565

B.7 Process Constructs . 565
B.7.1 Process Channels . 565

B.7.1.0.1 Process Channels: . 565

B.1 Types 547

B.7.2 Process Composition . 565
B.7.2.0.1 Process Composition: . 565

B.7.3 Input/Output Events . 566
B.7.3.0.1 Input/Output Events: . 566

B.7.4 Process Definitions . 566
B.7.4.0.1 Process Definitions: . 566

B.8 Simple RSL Specifications . 566
B.8.0.0.1 Simple RSL Specifications: . 566

B.9 RSL Module Specifications . 567
B.9.1 Modules . 567
B.9.2 Schemes . 567
B.9.3 Module Extension . 568

This is an ultra-short introduction to the RAISE Specification Language, RSL.

B.1 Types

The reader is kindly asked to study first the decomposition of this section into its sub-parts and
sub-sub-parts.

B.1.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite sets of values (of
“that” type).

B.1.1.1 Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent
(sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.
RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers,

reals, characters, and texts.

B.1.1.1.1 Basic Types:

type
[1] Bool
[2] Int
[3] Nat
[4] Real
[5] Char
[6] Text

B.1.1.2 Composite Types

Composite types have composite values. That is, values which we consider to have proper con-
stituent (sub-)values, i.e., can, to us, be meaningfully “taken apart”.

548 B An RSL Primer

From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists,
maps, etc.

Let A, B and C be any type names or type expressions, then:

B.1.1.2.1 Composite Type Expressions:

[7] A-set
[8] A-infset
[9] A × B × ... × C

[10] A∗

[11] Aω

[12] A →m B
[13] A→ B

[14] A
∼
→ B

[15] A | B | ... | C
[16] mk id(sel a:A,...,sel b:B)

[17] sel a:A ... sel b:B

The following are generic type expressions:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., –2, –1, 0, 1, 2,
3. The natural number type of positive integer values 0, 1, 2, ...
4. The real number type of real values, i.e., values whose numerals can be written as an integer,

followed by a period (“.”), followed by a natural number (the fraction).
5. The character type of character values

′′
a
′′
,
′′
bb
′′
, ...

6. The text type of character string values
′′
aa
′′
,
′′
aaa

′′
, ...,

′′
abc

′′
, ...

7. The set type of finite cardinality set values.
8. The set type of infinite and finite cardinality set values.
9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.
11. The list type of infinite and finite length list values.
12. The map type of finite definition set map values.
13. The function type of total function values.
14. The function type of partial function values.
15. The postulated disjoint union of types A, B, . . . , and C.
16. The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of

respective types. The distinct identifiers sel a, etc., designate selector functions.
17. The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective

types. The distinct identifiers sel a, etc., designate selector functions.

B.1.2 Type Definitions

B.1.2.1 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

B.1 Types 549

B.1.2.1.1 Type Definition:

type
A = Type expr

Some schematic type definitions are:

B.1.2.1.2 Variety of Type Definitions:

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name

′
• P(v) |}

where a form of [2–3] is provided by combining the types:

B.1.2.1.3 Record Types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)

...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the
use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧

... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1
′
,a2
′
,...,ai

′
) = a in

a1
′
= s a1(a) ∧ a2

′
= s a2(a) ∧ ... ∧ ai

′
= s ai(a) end

Note: Values of type A, where that type is defined by A::B×C×D, can be expressed A(b,c,d) for
b:B, c:D, d:D.

B.1.2.2 Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
The set of values b which have type B and which satisfy the predicateP, constitute the subtype A:

B.1.2.2.1 Subtypes:

type
A = {| b:B • P(b) |}

550 B An RSL Primer

B.1.2.3 Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

B.1.2.3.1 Sorts:

type
A, B, ..., C

B.2 The RSL Predicate Calculus

B.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or
chaos]). Then:

B.2.1.0.1 Propositional Expressions:

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a,b

are propositional expressions having Boolean values.∼,∧,∨,⇒,=,,and� are Boolean connectives
(i.e., operators). They can be read as: not, and, or, if then (or implies), equal and not equal.

B.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or
term expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

B.2.2.0.1 Simple Predicate Expressions:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least)

one y (value in type Y) such that the predicate Q(y) holds; and there exists a unique z (value in
type Z) such that the predicate R(z) holds.

B.3 Concrete RSL Types: Values and Operations 551

B.3 Concrete RSL Types: Values and Operations

B.3.1 Arithmetic

B.3.1.0.1 Arithmetic:

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,,,≥,> (Nat|Int|Real)→ (Nat|Int|Real)

B.3.2 Set Expressions

B.3.2.1 Set Enumerations

Let the below a’s denote values of type A, then the below designate simple set enumerations:

B.3.2.1.1 Set Enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

B.3.2.2 Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehension. The expression
“builds” the set of values satisfying the given predicate. It is abstract in the sense that it does not
do so by following a concrete algorithm.

B.3.2.2.1 Set Comprehension:

type
A, B

P = A→ Bool

Q = A
∼
→ B

value
comprehend: A-infset × P × Q→ B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

552 B An RSL Primer

B.3.3 Cartesian Expressions

B.3.3.1 Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions are
simple Cartesian enumerations:

B.3.3.1.1 Cartesian Enumerations:

type
A, B, ..., C

A × B × ... × C

value
(e1,e2,...,en)

B.3.4 List Expressions

B.3.4.1 List Enumerations

Let a range over values of type A, then the below expressions are simple list enumerations:

B.3.4.1.1 List Enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the set of
integers from the value of ei to and including the value of e j. If the latter is smaller than the former,
then the list is empty.

B.3.4.2 List Comprehension

The last line below expresses list comprehension.

B.3.4.2.1 List Comprehension:

type

A, B, P = A→ Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡

〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

B.3 Concrete RSL Types: Values and Operations 553

B.3.5 Map Expressions

B.3.5.1 Map Enumerations

Let (possibly indexed) u and v range over values of type T1 and T2, respectively, then the below
expressions are simple map enumerations:

B.3.5.1.1 Map Enumerations:

type
T1, T2

M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2

[], [u7→v], ..., [u17→v1,u27→v2,...,un7→vn] ∀ ∈ M

B.3.5.2 Map Comprehension

The last line below expresses map comprehension:

B.3.5.2.1 Map Comprehension:

type
U, V, X, Y

M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U→ Bool
value

comprehend: M×F×G×P→ (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

B.3.6 Set Operations

B.3.6.1 Set Operator Signatures

B.3.6.1.1 Set Operations:

value
18 ∈: A × A-infset→ Bool
19 <: A × A-infset→ Bool
20 ∪: A-infset × A-infset→ A-infset
21 ∪: (A-infset)-infset→ A-infset
22 ∩: A-infset × A-infset→ A-infset

554 B An RSL Primer

23 ∩: (A-infset)-infset→ A-infset
24 \: A-infset × A-infset→ A-infset
25 ⊂: A-infset × A-infset→ Bool
26 ⊆: A-infset × A-infset→ Bool
27 =: A-infset × A-infset→ Bool
28 ,: A-infset × A-infset→ Bool

29 card: A-infset
∼
→ Nat

B.3.6.2 Set Examples

B.3.6.2.1 Set Examples:

examples
a ∈ {a,b,c}

a < {}, a < {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}

∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}

∩{{a},{a,b},{a,d}} = {a}

{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}

{a,b,c} ⊆ {a,b,c}

{a,b,c} = {a,b,c}
{a,b,c} , {a,b}

card {} = 0, card {a,b,c} = 3

B.3.6.3 Informal Explication

18. ∈: The membership operator expresses that an element is a member of a set.
19. <: The nonmembership operator expresses that an element is not a member of a set.
20. ∪: The infix union operator. When applied to two sets, the operator gives the set whose members

are in either or both of the two operand sets.
21. ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the

set whose members are in some of the operand sets.
22. ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose

members are in both of the two operand sets.
23. ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives

the set whose members are in some of the operand sets.
24. \: The set complement (or set subtraction) operator. When applied to two sets, the operator

gives the set whose members are those of the left operand set which are not in the right operand
set.

25. ⊆: The proper subset operator expresses that all members of the left operand set are also in the
right operand set.

26. ⊂: The proper subset operator expresses that all members of the left operand set are also in the
right operand set, and that the two sets are not identical.

27. =: The equal operator expresses that the two operand sets are identical.
28. ,: The nonequal operator expresses that the two operand sets are not identical.
29. card: The cardinality operator gives the number of elements in a finite set.

B.3 Concrete RSL Types: Values and Operations 555

B.3.6.4 Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

B.3.6.4.1 Set Operation Definitions:

value
s
′
∪ s

′′
≡ { a | a:A • a ∈ s

′
∨ a ∈ s

′′
}

s
′
∩ s

′′
≡ { a | a:A • a ∈ s

′
∧ a ∈ s

′′
}

s
′
\ s
′′
≡ { a | a:A • a ∈ s

′
∧ a < s

′′
}

s
′
⊆ s

′′
≡ ∀ a:A • a ∈ s

′
⇒ a ∈ s

′′

s
′
⊂ s

′′
≡ s

′
⊆ s

′′
∧ ∃ a:A • a ∈ s

′′
∧ a < s

′

s
′
= s

′′
≡ ∀ a:A • a ∈ s

′
≡ a ∈ s

′′
≡ s⊆s

′
∧ s

′
⊆s

s
′
, s

′′
≡ s

′
∩ s

′′
, {}

card s ≡
if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

B.3.7 Cartesian Operations

B.3.7.0.1 Cartesian Operations:

type
A, B, C
g0: G0 = A × B × C

g1: G1 = (A × B × C)

g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value
va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,

(va,vb,vc):G1

((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1
′
,b1
′
,c1
′
) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

B.3.8 List Operations

B.3.8.1 List Operator Signatures

B.3.8.1.1 List Operations:

value

hd: Aω
∼
→ A

tl: Aω
∼
→ Aω

len: Aω
∼
→ Nat

inds: Aω → Nat-infset

556 B An RSL Primer

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω

=: Aω × Aω → Bool
,: Aω × Aω → Bool

B.3.8.2 List Operation Examples

B.3.8.2.1 List Examples:

examples
hd〈a1,a2,...,am〉=a1

tl〈a1,a2,...,am〉=〈a2,...,am〉

len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai

〈a,b,c〉̂ 〈a,b,d〉 = 〈a,b,c,a,b,d〉

〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 , 〈a,b,d〉

B.3.8.3 Informal Explication

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this

set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in a list.
• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements

larger than or equal to i, gives the i th element of the list.
• :̂ Concatenates two operand lists into one. The elements of the left operand list are followed

by the elements of the right. The order with respect to each list is maintained.
• =: The equal operator expresses that the two operand lists are identical.
• ,: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

B.3.8.4 List Operator Definitions

B.3.8.4.1 List Operator Definitions:

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true→ if q = 〈〉 then 0 else 1 + len tl q end,

B.3 Concrete RSL Types: Values and Operations 557

false→ chaos end

inds q ≡
case is finite list(q) of

true→ { i | i:Nat • 1 ≤ i ≤ len q },
false→ { i | i:Nat • i,0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡

if i=1
then

if q,〈〉
then let a:A,q

′
:Q • q=〈a〉̂ q

′
in a end

else chaos end
else q(i−1) end

fq̂ iq ≡

〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq,chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq
′
= iq

′′
≡

inds iq
′
= inds iq

′′
∧ ∀ i:Nat • i ∈ inds iq

′
⇒ iq

′
(i) = iq

′′
(i)

iq
′
, iq

′′
≡ ∼(iq

′
= iq

′′
)

B.3.9 Map Operations

B.3.9.1 Map Operator Signatures and Map Operation Examples

value

m(a): M→ A
∼
→ B, m(a) = b

dom: M→ A-infset [domain of map]
dom [a17→b1,a27→b2,...,an7→bn] = {a1,a2,...,an}

rng: M→ B-infset [range of map]
rng [a17→b1,a27→b2,...,an7→bn] = {b1,b2,...,bn}

†: M × M→ M [override extension]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
] † [a

′
7→b

′′
,a
′′
7→b

′
] = [a7→b,a

′
7→b

′′
,a
′′
7→b

′
]

∪: M × M→ M [merge ∪]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
] ∪ [a

′′′
7→b

′′′
] = [a7→b,a

′
7→b

′
,a
′′
7→b

′′
,a
′′′
7→b

′′′
]

\: M × A-infset→ M [restriction by]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
]\{a} = [a

′
7→b

′
,a
′′
7→b

′′
]

558 B An RSL Primer

/: M × A-infset→ M [restriction to]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
]/{a

′
,a
′′
} = [a

′
7→b

′
,a
′′
7→b

′′
]

=,,: M × M→ Bool

◦: (A →m B) × (B →m C)→ (A →m C) [composition]
[a7→b,a

′
7→b

′
] ◦ [b7→c,b

′
7→c

′
,b
′′
7→c

′′
] = [a7→c,a

′
7→c

′
]

B.3.9.2 Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a map.
• rng: Range/Image Set gives the set of values which are mapped to in a map.
• †: Override/Extend. When applied to two operand maps, it gives the map which is like an

override of the left operand map by all or some “pairings” of the right operand map.
• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.
• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the

left operand map to the elements that are not in the right operand set.
• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the

left operand map to the elements of the right operand set.
• =: The equal operator expresses that the two operand maps are identical.
• ,: The nonequal operator expresses that the two operand maps are not identical.
• ◦: Composition. When applied to two operand maps, it gives the map from definition set

elements of the left operand map, m1, to the range elements of the right operand map, m2, such
that if a is in the definition set of m1 and maps into b, and if b is in the definition set of m2 and
maps into c, then a, in the composition, maps into c.

B.3.9.3 Map Operation Redefinitions

The map operations can also be defined as follows:

B.3.9.3.1 Map Operation Redefinitions:

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡

dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1⇒ m1(a) = m2(a)

B.4 λ-Calculus + Functions 559

m1 , m2 ≡ ∼(m1 = m2)

m◦n ≡
[a7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

B.4 λ-Calculus + Functions

B.4.1 The λ-Calculus Syntax

B.4.1.0.1 λ-Calculus Syntax:

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

B.4.2 Free and Bound Variables

B.4.2.0.1 Free and Bound Variables:

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x , y and x is free in e.
• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

B.4.3 Substitution

In RSL, the following rules for substitution apply:

B.4.3.0.1 Substitution:

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a, x;

560 B An RSL Primer

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P)) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x,y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y,x and y is free in N and x is free in P
(where z is not free in (N P)).

B.4.4 α-Renaming and β-Reduction

B.4.4.0.1 α and β Conversions:

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can
rename the formal parameter of a λ-function expression provided that no free variables of its
body M thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free variables
of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

B.4.5 Function Signatures

For sorts we may want to postulate some functions:

B.4.5.0.1 Sorts and Function Signatures:

type
A, B, C

value
obs B: A→ B,

obs C: A→ C,
gen A: B×C→ A

B.4.6 Function Definitions

Functions can be defined explicitly:

B.4.6.0.1 Explicit Function Definitions:

value
f: Arguments→ Result

f(args) ≡ DValueExpr

B.5 Other Applicative Expressions 561

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause

pre P(args)

Or functions can be defined implicitly:

B.4.6.0.2 Implicit Function Definitions:

value
f: Arguments→ Result

f(args) as result

post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result

pre P2(args)

post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments. Partial

functions should be assisted by preconditions stating the criteria for arguments to be meaningful
to the function.

B.5 Other Applicative Expressions

B.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

B.5.1.0.1 Let Expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

B.5.2 Recursive let Expressions

Recursive let expressions are written as:

B.5.2.0.1 Recursive let Expressions:

let f = λa:A • E(f) in B(f,a) end

562 B An RSL Primer

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

B.5.3 Predicative let Expressions

Predicative let expressions:

B.5.3.0.1 Predicative let Expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the
body B(a).

B.5.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

B.5.4.0.1 Patterns:

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ ℓ = list in ... end
let 〈a, ,b〉̂ ℓ = list in ... end

let [a7→b] ∪ m = map in ... end
let [a7→b,] ∪ m = map in ... end

B.5.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

B.6 Imperative Constructs 563

B.5.5.0.1 Conditionals:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1

elsif b expr 2 then c expr 2

elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1→ expr 1,
choice pattern 2→ expr 2,

...
choice pattern n or wild card→ expr n

end

B.5.6 Operator/Operand Expressions

B.5.6.0.1 Operator/Operand Expressions:

〈Expr〉 ::=

〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉

| 〈Expr〉 〈Suffix Op〉

| ...
〈Prefix Op〉 ::=

− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng
〈Infix Op〉 ::=

= | , | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | < | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ |̂ | † | ◦

〈Suffix Op〉 ::= !

B.6 Imperative Constructs

B.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative
constructs which, through stages of refinements, are turned into concrete and imperative con-
structs. Imperative constructs are thus inevitable in RSL.

564 B An RSL Primer

B.6.1.0.1 Statements and State Change:

Unit
value

stmt: Unit→ Unit
stmt()

• Statements accept no arguments.
• Statement execution changes the state (of declared variables).
• Unit→ Unit designates a function from states to states.
• Statements, stmt, denote state-to-state changing functions.
• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

B.6.2 Variables and Assignment

B.6.2.0.1 Variables and Assignment:

0. variable v:Type := expression

1. v := expr

B.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or
side-effect.

B.6.3.0.1 Statement Sequences and skip:

2. skip
3. stm 1;stm 2;...;stm n

B.6.4 Imperative Conditionals

B.6.4.0.1 Imperative Conditionals:

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

B.7 Process Constructs 565

B.6.5 Iterative Conditionals

B.6.5.0.1 Iterative Conditionals:

6. while expr do stm end
7. do stmt until expr end

B.6.6 Iterative Sequencing

B.6.6.0.1 Iterative Sequencing:

8. for e in list expr • P(b) do S(b) end

B.7 Process Constructs

B.7.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

B.7.1.0.1 Process Channels:

channel c:A
channel { k[i]:B • i:Idx }

channel { k[i,j,...,k]:B • i:Idx,j:Jdx,...,k:Kdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the
designated types (A and B).

B.7.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to
engage in input and/or output events, thereby communicating over declared channels. Let P() and
Q stand for process expressions, then:

B.7.2.0.1 Process Composition:

P ‖ Q Parallel composition

P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)

P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

566 B An RSL Primer

express the parallel (‖) of two processes, or the nondeterministic choice between two processes:
either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes
are forced to communicate only with one another, until one of them terminates.

B.7.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

B.7.3.0.1 Input/Output Events:

c ?, k[i] ? Input

c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively
“writes” an output.

B.7.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow
express, in their signature, via which channels they wish to engage in input and output events.

B.7.4.0.1 Process Definitions:

value
P: Unit→ in c out k[i]
Unit
Q: i:KIdx→ out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

B.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemas, classes, and objects, as is
often done in RSL. An RSL specification is simply a sequence of one or more types, values (including
functions), variables, channels and axioms:

B.8.0.0.1 Simple RSL Specifications:

type
...

B.9 RSL Module Specifications 567

variable
...

channel
...

value
...

axiom
...

B.9 RSL Module Specifications

B.9.1 Modules

Modules are clusters of one or more declarations:

Id =
class

declaration 1
declaration 2

...
declaration n

end

where declarations are either

• types
• values
• axioms
• variables
• channels
• modules

By a class we mean a possibly infinite set of one or more mathematical entities satisfying the
declarations.

B.9.2 Schemes

scheme Id =

class
declaration 1
declaration 2

...
declaration n

end

By a scheme we mean a named possibly infinite set of one or more mathematical entities satisfying
the declarations.

568 B An RSL Primer

B.9.3 Module Extension

Id = extend Id 1,Id 2,...,Id m with
class

declaration 1

declaration 2
...
declaration n

end

Usually we make sure that the extensions are conservative [145, 80, 72, 6, 103, 91].
Etcetera !

