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Dr.techn. Tesen
Domæne Videnskab og Ingeniørkunst
En Basis for Programmeludvikling

AFHANDLINGENS TESE

Denne afhandlings tese er to-foldig:

• (i) domæne videnskab og ingeniørkunst tilbyder en mulig, første fase af programmel-udvikling;

• (ii) domæne videnskab og ingeniørkunst tilbyder et værdigt forsknings-felt.

Vi motiverer denne dobbelte påstand som følger:

• (a) begreberne domæne videnskab og domæne ingeniørkunst er nye;

• (b) begreberne domæne videnskab og domæne ingeniørkunst gives en veldefineret betydning;

• (c) domæne videnskab og domæne ingeniørkunst tilskrives et fundament in denne tese;

• (d) og deres rolle i programmel-udvikling etableres.

Domæne videnskab og domæne ingeniørkunst får programmel-udvikling til at fremstaa i et helt nyt lys.

DANSK RESUMÉ

Afhandlingen1 består af revisioner af seks tidligere publicerede artikler. Afhandingen fremstilles og ind-

sendes som en monografi.

Kapitel 1, Domain Analysis & Description [Domæne Analyse og Beskrivelse], er afhandlingens

kerne-punkt. Her studeres kalkyler til brug ved analyse og beskrivelse af observérbare statiske en-

titeter (kaldet ‘enduranter’) i manifestérbare, diskret dynamiske domæner. Til ‘enduranter’ knyttes der

tre klasser “interne” kvaliteter: eentyding identification, mereologi og attributter. Ved en transcendental

deduktion knyttes tids-bestemte processer (kaldet ‘perduranter’) til diskrete enduranter — og det vises

hvorledes disse processer’s signatur følger fra ‘interne’ endurant kvaliteter.

Kapitel 2, Domain Facets: Analysis & Description [Domæne Facetter], studerer yderligere klasser

af egenskaber ved manifestérbare, diskret dynamiske domæner: teknologi-understøttelse, regler og regu-

lativer, manuskripter, licens sprog, ledelse & organisation, og menneskelig opførsel.

Kapitel 3, Towards Formal Models of [Analysis & Description] Processes and Prompts [Formelle

Modeller af Analyse & Beskrivelse], præsenterer en rimelig matematisk model af domæne-analyse &

-beskrivelses processen.

Kapitel 4, To Every Manifest Domain Mereology [there corresponds] a CSP Expression [Til en-
hver Manifestérbar Domæne Mereologi korrensponderes et CSP Udtryk ], viser hvorledes Stanisław

Leśniewski’s axiom system for mereologi har en model i den måde vi (f.eks., i Kapitel 1) beskriver

sådanne domæner.

Kapitel 5, From Domain Descriptions to Requirements Prescriptions [Fra Domæne-Beskrivelser
til Krav-Specifikationer], viser hvorledes man rigorøst kan aflede krav-specifikationer fra domæne-

beskrivelser. Der indføres, som noget nyt, det at projicere, instantiere, determinere, udvide og “tilpasse”
domæne/krav-specifikationer. Såkaldte “bruger-” og “system”-krav “erstattes” af grænseflade-, afledte-
og maskin-krav.

Kapitel 6, Demos, Simulators, Monitors and Controllers [“Demo”er, Simulatorer, Overvågning og

Styring], udgør en “let” sag, en fortolkning af de muligheder de indbyrdes afhængigheder, som tre-

kløveret domæne-, krav-, hhv. program-specifikationer, muliggør ved fortolkningen af begreberne simu-
lering, overv̊agning og styring.

Kapitel 7, Summing Up [Opsummering], opsummerer og konkluderer.

1 Siderne i–vi + 1–214 + bibliografi

September 6, 2019, 16:27, A Foundation for Software Development c© Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark
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The Dr.techn. Thesis
Domain Science and Engineering
A Foundation for Software Development

THE THESIS

The thesis of this submission is twofold:

• (i) domain science & engineering is a possible, initial phase of software development;

• (ii) domain science & engineering is a worthwhile topic of research.

We support this claim as follows:

• (a) the concepts of domain science and domain engineering are new;

• (b) the terms domain science and domain engineering are well-defined;

• (c) domain science and domain engineering are given a foundation in this thesis;

• (d) and their rôle in software development is established.

Domain Science & Engineering casts a completely new light on Software Development.

ENGLISH SUMMARY

The thesis2 consists of revisions of six previously published papers — presented and submitted as a

monograph.

Chapter 1, Domain Analysis & Description, is the core chapter of the thesis. It studies calculi for

the analysis and description of observable static entities (called ‘endurants’) of manifest, discrete dy-

namics domains. With endurants we then associate “internal” qualities: unique identification, mereology

and attributes. By a transcendental deduction we then associate time-evolving behaviours with discrete

endurants — and it is shown how the signature of such behaviours follows from ‘internal’ qualities of the

discrete endurants.

Chapter 2, Domain Facets: Analysis & Description, studies further classes of properties of manifest,

discrete dynamics domains: technology support, rules & regulations, scripts, license languages, manage-
ment & organisation, and human behaviour.

Chapter 3, Formal Models of [Analysis & Description] Processes and Prompts, presents a suitable

mathematical model of the domain analysis & description process.

Chapter 4, To Every Manifest Domain Mereology [there corresponds] a CSP Expression, shows how

Stanisław Leśniewski’s axiom system for mereology has a model in the way we (f.ex., in Chapter 1)

describe such domains.

Chapter 5, From Domain Descriptions to Requirements Prescriptions, shows how one can rigorously

derive requirements prescriptions from domain descriptions. We introduce, as new concepts, projection,
instantiation, determination, extension, and the “fitting” of domain/requirements specifications. So-called

“user” and “system” requirements are replaced by interface, derived and machine requirements.
Chapter 6, Demos, Simulators, Monitors and Controllers, is a somewhat “lightweight” chapter: an

interpretation of the of the mutual dependencies, which the triptych — of domain, requirements and

program specifications — makes possible in the interpretation of the concepts of simulation, monitoring
and control.

Chapter 7, Summing Up, summarises and concludes.

Dines Bjørner, September 6, 2019: 16:27

Fredsvej 11, DK–2840 Holte, Denmark

2 Pages i–vi, 1–214 + bibliography.

c© Dines Bjørner 2018 Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering September 6, 2019, 16:27



Preface

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain,

so we must study, analyse and describe it.

General

The thesis of this monograph is twofold: (i) that domain engineering is a viable, yes, we would claim,

necessary initial phase of software development; and (ii) that domain science & engineering is a worthwhile

topic of research. I mean this rather seriously: How can one think of implementing software, preferably

satisfying some requirements, without demonstrating that one understands the domain ? So in this thesis

I shall explain what domain engineering is, some of the science that goes with it, and how one can ’derive”

requirements prescriptions (for computing systems) from domain descriptions. But there is an altogether

different reason, also, for presenting this thesis: Software houses may not take up the challenge to develop

software that satisfies customers expectations, that is, reflects the domain such as these customers know it,

and software that is correct with respect to requirements, with proofs of correctness often having to refer

to the domain. But computing scientists are shown, in these chapters, that domain science and engineering

is a field full of interesting problems to be researched. We consider domain descriptions, requirements

prescriptions and software design specifications to be mathematical quantities.

A Brief Guide

Six (twelve) revised publications (in early, published, and in a recent, only in two cases, republished, form)

are collected in this thesis:

• Chapter 1: [75, 67, Domains Analysis & Description] Pages 3–74

• Chapter 2: [71, 43, Domain Facets: Analysis & Description] Pages 75–103

• Chapter 3: [61, 57, Formal Models of Processes and Prompts] Pages 105–127

• Chapter 4: [73, 39, To Every Manifest Domain Mereology a CSP Expression] Pages 129–149

• Chapter 5: [63, 33, From Domain Descriptions to Requirements Prescriptions] Pages 153–198

• Chapter 6: [62, 50, Domains: Their Simulation, Monitoring and Control] Pages 201–210

We urge the reader to study the Contents listing and from there to learn that there is a

• Bibliography common to all six chapters,

• an RSL primer, and

• a set of Indexes into definitions, concepts, analysis and description prompts, and RSL symbols.



vi

Chapter Dependency

Chapters 1–6 relate as diagrammed:

Analysis &
Description

Domain

Domain
Facets

Towards Formal
Models of Processes
and Prompts

Toe Every Manifest
Domain Mereology a
CSP Expression

From Domain
Descriptions 

to Requirements
Prescriptions

Demos, Simulators,
Monitors and 
Controllers

2

1

3

4

5 6

Fig. 0.1. Chapter Dependency

• Chapters 2–5 all require Chapter 1 as a prerequsite, and can be read in any order.

• Chapter 6 require Chapter 5 as a prerequsite.

Common Frame

By a method we shall mean a set of principles of analysis and for selecting and applying a number

of techniques and tools in the construction of some artefact, say a domain description. We shall present

a method for constructing domain descriptions. Among the tools we shall only be concerned with are the

analysis and synthesis languages.

By a formal method we shall understand a method whose techniques and tools can be explained in

mathematics. If, for example, the method includes a specification language, then that language has a

formal syntax, a formal semantics, and a formal proof system. The techniques of a formal method

help construct a specification, and/or analyse a specification, and/or transform (refine) one (or more)

specification(s) into a program.

By computer science we shall understand the study of and knowledge about the mathematical struc-

tures that “exists inside” computers.

By computing science we shall understand the study of and knowledge about how to construct those

structures. The term programming methodology is here used synonymously with computing science.

Software engineering is the actual pursuit of software development based primarily on computing science

insight.

By engineering we shall understand the design of technology based on scientific insight and the anal-

ysis of technology in order to assess its properties (including scientific content) and practical applications.

Software engineering, to us, ideally entails the engineering of domain descriptions (D), the engi-
neering of requirements prescriptions (R), the engineering of software designs [and code] (S ), and

the engineering of informal and formal relations between domain descriptions and requirements prescrip-

tions: R is a model of D , and domain descriptions, requirements prescriptions and software designs: S

can be proved correct with respect to R in the context of D .

c© Dines Bjørner 2018 Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering September 6, 2019, 16:27
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Part I

The Domain Analysis & Description Method





1

Domain Analysis & Description

We1 present a method for analysing and describing manifest (discrete dynamics) domains.

1.1 Introduction

By a domain we shall understand a rationally describable segment of a discrete dynamics segment of

a human assisted reality, i.e., of the world, its physical parts: natural [“God-given”] and artifactual
[“man-made”], and living species: plants and animals including, notably, humans. These are endurants
(“still”), as well as perdurants (“alive”). Emphasis is placed on “human-assistedness”, that is, that there

is at least one (man-made) artifact and, therefore, that humans are a primary cause for change of endurant

states as well as perdurant behaviours.
Please note the ‘delimiter’: discrete dynamics. Control theory, the study of the control of continuously

operating dynamical systems in engineered processes and machines, is one thing; domain engineering is “a

different thing”. Where control theory builds upon classical physics, and uses classical mathematics, partial

differential equations, etc., to model phenomena of physics and therefrom engineered ‘machines’; domain

science & engineering, in some contrast, builds upon mathematical logic, and, to some extent, modern

algebra, to model phenomena of mostly artefactual systems.

Domain science & engineering marks a new area of computing science. Just as we are formalising
the syntax and semantics of programming languages, so we are formalising the syntax and semantics
of human-assisted domains. Just as physicists are studying the natural physical world, endowing it with

mathematical models, so we, computing scientists, are studying these domains, endowing them with math-
ematical models, A difference between the endeavours of physicists and ours lies in the tools: the physics

models are based on classical mathematics, differential equations and integrals, etc.; our models are based

on mathematical logic, set theory, and algebra.

Where physicists thus classically use a variety of differential and integral calculi to model the physical

world, we shall be using the analysis & description calculi presented in this chapter to model primarily

artefactual domains.

1.1.1 Foreword

Dear reader!̇ You are about to embark on a journey. The chapter in front of you is long ! But it is not the

number of pages, 74, or duration of your studying the chapter that I am referring to. It is the mind that

should be prepared for a journey. It is a journey into a new realm. A realm where we confront the computer

1 Chapter 1 is primarily based on [75]. That paper was based on [67]. Section 1.5.2’s Part Relations is changed wrt.

[75, Sect. 4.2.1]. Section 9.7 of [75] has here been replaced by Sect. 1.10.7 which is taken from [67]. Remaining

editing changes are of syntactics art.
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& computing scientists with a new universe: a universe in which we build a bridge between the informal
world, that we live in, the context for eventual, formal software, and that formal software.

The bridge involves a novel construction, new in computing science: a transcendental deduction.

We are going to present you, we immodestly claim, with a new way of looking at the “origins” of software,

the domain in which it is to serve. We shall show a method, a set of principles and techniques and a set

of languages, some formal, some “almost” formal, and the informal language of usual computing science

papers for a systematic to rigorous way of analysing & describing domains. We immodestly claim that such

a method has not existed before.

1.1.2 An Engineering and a Science Viewpoint

A Triptych of Software Development

It seems reasonable to expect that before software can be designed we must have a reasonable grasp of its

requirements; before requirements can be expressed we must have a reasonable grasp of the underlying

domain. It therefore seems reasonable to structure software development into: domain engineering,

in which “the underlying” domain is analysed and described 2; requirements engineering, in which

requirements are analysed and prescribed – such as we suggest it [33, 63] – based on a domain description3;

and software design, in which the software is rigorously “derived” from a requirements prescription4. Our

interest, in this chapter, lies sôlely in domain analysis & description.

Domain Science & Engineering:

The present chapter outlines a methodology for an aspect of software development. Domain analysis &

description can be pursued in isolation, for example, without any consideration of any other aspect of

software development. As such domain analysis & description represents an aspect of domain science
& engineering. Other aspects are covered in: Chap. 2 [71, Domain Facets], Chap. 3 [61, An Analysis
& Description Process Model ], Chap. 4 [73, From Mereologies to Lambda-Expressions], Chap. 5 [63,

Requirements Engineering], and in Chap. 6 [62, 50, Domains: Their Simulation, Monitoring and Control].

This work is over-viewed in [72, Domain Science & Engineering – A Review of 10 Years Work]. They are

all facets of an emerging domain science & engineering. We consider the present chapter to outline the
basis for this science and engineering.

1.1.3 Some Issues: Metaphysics, Epistemology, Mereology and Ontology

But there is an even more fundamental issue “at play” here. It is that of philosophy. Let us briefly review

some aspects of philosophy.

Metaphysics is a branch of philosophy that explores fundamental questions, including the nature of

concepts like being, existence, and reality 5

Traditional metaphysics seeks to answer, in a “suitably abstract and fully general manner”, the ques-

tions: What is there ? and And what is it like ? 6. Topics of metaphysical investigation include existence,

objects and their properties, space and time, cause and effect, and possibility.

Epistemology is the branch of philosophy concerned with the theory of knowledge7

2 including the statement and possible proofs of properties of that which is denoted by the domain description
3 including the statement and possible proofs of properties of that which is denoted by the requirements prescription

with respect also to the domain description
4 including the statement and possible proofs of properties of that which is specified by the software design with

respect to both the requirements prescription and the domain description
5 is used to signal the end of a characterisation, a definition, or an example.
6 https://en.wikipedia.org/wiki/Metaphysics
7 https://en.wikipedia.org/wiki/Epistemology
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1.1 Introduction 5

Epistemology studies the nature of knowledge, justification, and the rationality of belief. Much of the

debate in epistemology centers on four areas: (1) the philosophical analysis of the nature of knowledge and

how it relates to such concepts as truth, belief, and justification, (2) various problems of skepticism, (3) the

sources and scope of knowledge and justified belief, and (4) the criteria for knowledge and justification. A

central branch of epistemology is ontology.8

Ontology:An ontology encompasses a representation, formal naming, and definition of the categories,

properties, and relations of the entities that substantiate one, many, or all domains.9. An upper ontology
(also known as a top-level ontology or foundation ontology) is an ontology which consists of very general

terms (such as entity, endurant, attribute) that are common across all domains10

Mereology (from the Greek µερoς ‘part’) is the theory of part-hood relations: of the relations of part

to whole and the relations of part to part within a whole [96]11

Embedded WithinAdjacent
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Fig. 1.1. Immediately ‘Adjacent’ and ‘Embedded Within’ Parts

Accordingly two parts, px and py, (of a same “whole”) are either “adjacent”, or are “embedded within”,

one within the other, as loosely indicated in Fig. 1.1. ‘Adjacent’ parts are direct parts of a same third

part, pz, i.e., px and py are “embedded within” pz; or one (px) or the other (py) or both (px and py) are

parts of a same third part, p′z “embedded within” pz; et cetera; as loosely indicated in Fig. 1.2, or one is

“embedded within” the other — etc. as loosely indicated in Fig. 1.2. Parts, whether ‘adjacent’ or ‘embedded
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Fig. 1.2. Transitively ‘Adjacent’ and ‘Embedded Within’ Parts

within’, can share properties. For adjacent parts this sharing seems, in the literature, to be diagrammatically

expressed by letting the part rectangles “intersect”. Usually properties are not spatial hence ‘intersection’

seems confusing. We refer to Fig. 1.3 on the next page. Instead of depicting parts sharing properties as in

Fig. 1.3 on the following page[L]eft, where shaded, dashed rounded-edge rectangles stands for ‘sharing’,

we shall (eventually) show parts sharing properties as in Fig. 1.3 on the next page[R]ight where •—•
connections connect those parts.

We refer to [73, From Mereologies to Lambda-Expressions].

Mereology is basically the contribution [159, 224] of the Polish philosopher, logician and mathemati-

cian Stanisław Leśniewski (1886–1939).

8 https://en.wikipedia.org/wiki/Metaphysics
9 https://en.wikipeda.org/wiki/On-tology (information science)

10 https://en.wikipedia.org/wiki/Upper ontology
11 https://plato.stanford.edu/entries/mereology
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Fig. 1.3. Two models, [L,R], of parts sharing properties

Kai Sørlander’s Philosophy:

We shall base some of our modelling decisions of Kai Sørlander’s Philosophy [219, 220, 221, 222]. A

main contribution of Kai Sørlander is, on the philosophical basis of the possibility of truth (in contrast to

Kant’s possibility of self-awareness), to rationally and transcendentally deduce the absolutely necessary
conditions for describing any world.

These conditions presume a principle of contradiction and lead to the ability to reason using logical
connectives and to handle asymmetry, symmetry and transitivity. Transcendental deductions then lead to

space and time, not as priory assumptions, as with Kant, but derived facts of any world. From this basis

Kai Sørlander then, by further transcendental deductions, arrive at kinematics, dynamics and the bases for

Newton’s Laws. And so forth.

We build on Sørlander’s basis to argue that the domain analysis & description calculi are necessary and

sufficient for the analysis & description of domains and that a number of relations between domain entities

can be understood transcendentally and as “variants” of laws of physics, biology, etc. !

1.1.4 The Precursor

The present chapter is based on a revision of the published [67] – as published in [75, April 2019]. The

revision considerably simplifies and considerably extends the domain analysis & description calculi of

[67]. The major revision that prompts this complete rewrite is due to a serious study of Kai Sørlander’s

Philosophy. As a result we extend [67]’s ontology of endurants: describable phenomena to not only cover

those of physical phenomena, but also those of living species, notably humans, and, as a result of

that, our understanding of discrete endurants is refined into those of natural parts and artifacts. A new

contribution is that of intentional “pull” akin to the gravitational pull of physics. Both this paper and [67]

are the result of extensive “non-toy” example case studies, see the example: Universes of Discourse – on

Page 9. The last half of these were carried out in the years since [67] was first submitted (i.e., 2014). The

present paper omits the extensive introduction12 and closing of [67, Sects. 1 and 5]. Most notably, however,

is a clarified view on the transition from parts to behaviours, a transcendental deduction from domain
space to domain time.

1.1.5 What is this Chapter About ?

We present a method for analysing &13 describing domains.

Definition 1 Domain: By a domain we shall understand a rationally describable segment of a discrete
dynamics segment of a human assisted reality, i.e., of the world, its physical parts, natural [“God-

given”] and artefactual [“man-made”], and living species: plants and animals including, predominantly,

12 Note added in proof: Omitted from the extensive, five page, literature survey of [67] was [102, Section 5.3]. It is

an interesting study of the domain of geography.
13 By A&B we mean one topic, the confluence of topics A and B.
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1.2 Entities: Endurants and Perdurants 7

humans. These are endurants (“still”) as well as perdurants (“alive”). Emphasis is placed on “human-
assistedness”, that is, that there is at least one (man-made) artefact and that humans are a primary cause

for change of endurant states as well as perdurant behaviours

Definition 2 Domain Description: By a domain description we shall understand a combination of

narration and formalisation of a domain. A formal specification is a collection of sort, or type def-
initions, function and behaviour definitions, together with axioms and proof obligations constraining
the definitions. A specification narrative is a natural language text which in terse statements introduces

the names of (in this case, the domain), and, in cases, also the definitions, of sorts (types), functions,
behaviours and axioms; not anthropomorphically, but by emphasizing their properties

Domain descriptions are (to be) void of any reference to future, contemplated software, let alone IT sys-

tems, that may support entities of the domain. As such domain models14 can be studied separately, for their

own sake, for example as a basis for investigating possible domain theories, or can, subsequently, form the

basis for requirements engineering with a view towards development of (‘future’) software, etc. Our aim is
to provide a method for the precise analysis and the formal description of domains.

1.1.6 Structure of this Chapter

Sections 1.2–1.8 form the core of this chapter. Section 1.2 introduces the first concepts of domain phenom-

ena: endurants and perdurants. Their characterisation, in the form of “definitions”, cannot be mathemati-

cally precise, as is usual in computer science papers. Section 1.3 analyses the so-called external qualities
of endurants into natural parts, structures, materials, living species and artefacts. In doing so it covers the

external quality analysis prompts. Section 1.4 covers the external quality description prompts. Section 1.5

analyses the so-called internal qualities of endurants into unique identification, mereology and attributes.

In doing so it covers both the internal quality analysis prompts and the internal quality description prompts.

Sections 1.3–1.5 cover what this chapter has to say about endurants. Section 1.6 “bridges” Sects. 1.3–1.5

and Sect. 1.8 by introducing the concept of transcendental deduction. These deductions allow us to “trans-

form” endurants into perdurants: “passive” entities into “active” ones. The essence of Sects. 1.6–1.8 is to

“translate” endurant parts into perdurant behaviours. Section 1.8 – although “only” half as long as the three

sections on endurants – covers the analysis & description method for perdurants. We shall model perdu-

rants, notably behaviours, in the form of CSP [137]. Hence we introduce the CSP notions of channels and

channel input/output. Section 1.8 then “derives” the types of the behaviour arguments from the internal

endurant qualities. Section 1.10 summarises the achievements and discusses open issues. Section 1.10.2 on

Page 64 summarises the four languages used in this chapter.

Framed texts either delineate major figures, so-called observer and behaviour schemes.

One major example, that of the domain analysis & description of a road transport system, intersperses

the methodology presentation of 38 examples. Section 1.9 completes that road transport system example.

1.2 Entities: Endurants and Perdurants

1.2.1 A Generic Domain Ontology – A Synopsis

Figure 1.4 on the next page shows an upper ontology for domains such a defined in Defn. 1 on the facing

page.

Kai Sørlander’s Philosophy justifies our organising the entities of any describable domain, for exam-

ple15, as follows: We shall review Fig. 1.4 on the next page by means of a top-down, left-traversal of the

14 We use the terms ‘domain descriptions’ and ‘domain models’ interchangeably.
15 We could organise the ontology differently: entities are either naturals, artefacts or living species, et cetera. If an

upper node (•) satisfies a predicate P then all descendant nodes do likewise.
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8 1 Domain Analysis & Description

tree (whose root is at the top). There are describable phenomena and there are phenomena that we cannot

describe. The former we shall call entities. The entities are either endurants, “still” entities – existing in

space, or perdurants, “alive” entities – existing also in time. Endurants are either discrete or continuous
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Fig. 1.4. An Upper Ontology for Domains

– in which latter case we call them materials16. Discrete endurants are physical parts, living species, or

are structures. Physical parts are either naturals, artefacts, i.e. man-made. Natural and man-made parts are

either atomic or composite. We additionally analyse artefacts into sets of identically typed parts. That

additional analysis could also be expressed for natural parts but as we presently find no use for that we

omit such further analysis. Living Species are either plants or animals. Among animals we have the hu-
mans. Structures consist of one or more endurants. Structures really are parts, but for pragmatic reasons we

choose to not model them as [full fledged] parts. The categorisation into structures, natural parts, artefactual

parts, plants, and animalsis thus partly based in Sørlander’s Philosophy, partly pragmatic. The distinction

between endurants and perdurants, are necessitated by Sørlander as being in space, respectively in space

and time; discrete and continuous are motivated by arguments of natural sciences; structures are purely

pragmatic; plants and animals, including humans, are necessitated by Kai Sørlander’s Philosophy. The dis-

tinction between natural, physical parts, and artefacts is not necessary in Sørlander’s Philosophy, but, we

claim, necessary, philosophically, in order to perform the intentional “pull”, a transcendental deduction.

On Pragmatics: We have used the term ‘pragmatic’ a few times. On one hand there is philosophy’s need

for absolute clarity. On the other hand, when applying the natural part, artefactual part, and living species,

concepts in practice, there can be a need for “loosening” up. As for example: a structure really is a collection

of parts and relations between them. As we shall later see, parts are transcendentally to be understood

16 Please observe that materials were either natural or artefactual, but that we do not “bother” in this chapter. You may

wish to slightly change the ontology diagram to reflect a distinction.
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1.2 Entities: Endurants and Perdurants 9

as behaviours. We know that modelling is imperative when we model a domain, but we may not wish to

model a discrete endurant as a behaviour so we decide, pragmatically, to model it as a structure.

Our reference, here, to Kai Sørlander’s Philosophy, is very terse. We refer to a detailed research report:

A Philosophy of Domain Science & Engineering17 for carefully reasoned arguments. That report is under

continued revision: It reviews the domain analysis & description method; translates many of Sørlander’s

arguments and relates, in detail, the “options” of the domain analysis & description approach to Sørlander’s

Philosophy.

1.2.2 Universes of Discourse

By a universe of discourse we shall understand the same as the domain of interest, that is, the domain
to be analysed & described

Example 1: Universes of Discourse

We refer to a number of Internet accessible experimental reports18 of descriptions of the following domains:

• railways [23, 81, 26],

• container shipping [31],

• stock exchange [46],

• oil pipelines [53],

• “The Market” [24],

• Web systems [45],

• weather information [64],

• credit card systems [60],

• document systems [68],

• urban planning [88],

• swarms of drones [66],

• container terminals [70]

It may be a “large” domain, that is, consist of many, as we shall see, endurants and perdurants, of many

parts and materials, of many humans and artefacts, and of manyactors, actions, events and behaviours.

Or it may be a “small” domain, that is, consist of a few such entities.

The choice of “boundaries”, that is, of how much or little to include, and of how much or little to

exclude is entirely the choice of the domain engineer cum scientist: the choice is crucial, and is not always

obvious. The choice delineates an interface, that is, that which is within the boundary, i.e., is in the domain,

and that which is without, i.e., outside the domain, i.e., is the context of the domain, that is, the external
domain interfaces. Experience helps set reasonable boundaries.

There are two “situations”: Either a domain analysis & description endeavour is pursued in order to

prepare for a subsequent development of requirements modelling , in which case one tends to choose a

“narrow” domain, that is, one that “fits”, includes, but not much more, the domain of interest for the

requirements. Or a domain analysis & description endeavour is pursued in order to research a domain.

Either one that can form the basis for subsequent engineering studies aimed, eventually at requirements

development; in this case “wider” boundaries may be sought. Or one that experimentally “throws a larger

net”, that is, seeks a “large” domain so as to explore interfaces between what is thought of as internal
system interfaces.

Where, then, to start the domain analysis & description ? Either one can start “bottom-up”, that is,

with atomic entities: endurants or perdurants, one-by-one, and work one’s way “out”, to include composite

entities, again endurants or perdurants, to finally reach some satisfaction: Eureka, a goal has been reached.

Or one can start “top-down”, that is, “casting a wide net”. The choice is yours. Our presentation, however,

is “top down”: most general domain aspects first.

Example 2: Universe of Discourse
The universe of discourse is road transport systems. We analyse & describe not the class of all road transport systems

but a representative subclass, UoD, is structured into such notions as a road net, RN, of hubs, H, (nodes, i.e., street

intersections) and links, L, (edges, i.e., street segments between intersections); a fleet of vehicles, FV, structured into

companies, BC, of buses, B, and pools, PA, of private automobiles, A (et cetera); et cetera.

17 http://www.imm.dtu.dk/˜dibj/2018/philosophy/filo.pdf
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10 1 Domain Analysis & Description

1.2.3 Entities

Characterisation 1 Entity: By an entity we shall understand a phenomenon, i.e., something that can

be observed, i.e., be seen or touched by humans, or that can be conceived as an abstraction of an entity;

alternatively, a phenomenon is an entity, if it exists, it is “being”, it is that which makes a “thing” what it
is: essence, essential nature [156, Vol. I, pg. 665]

Analysis Prompt 1 is entity: The domain analyser analyses “things” (θ ) into entities or non-entities.

The method provides the domain analysis prompt:

• is entity – where is entity(θ) holds if θ is an entity19

is entity is said to be a prerequisite prompt for all other prompts.

To sum up: An entity is what we can analyse and describe using the analysis & description prompts
outlined in this chapter.

The entities that we are concerned with are those with which Kai Sørlander’s Philosophy is likewise

concerned. They are the ones that are unavoidable in any description of any possible world. And then,

which are those entities ? In both [219] and [222] Kai Sørlander rationally deduces that these entities must

be in space and time, must satisfy laws of physics – like those of Newton and Einstein, but among them

are also living species: plants and animals and hence humans. The living species, besides still being in

space and time, and satisfying laws of physics, must satisfy further properties – which we shall outline in

Sects. 1.3.4 on Page 15 and 1.5.3 on Page 32.

1.2.4 Endurants and Perdurants

The concepts of endurants and perdurants are not present in, that is, are not essential to Sørlander’s Phi-

losophy. Since our departure point is that of computing science where, eventually, conventional computing

performs operations on, i.e. processes data, we shall, however, introduce these two notions: endurant and

perdurant. The former, in a rough sense, “corresponds” to data; the latter, similarly, to processes.

Characterisation 2 Endurant: By an endurant we shall understand an entity that can be observed, or

conceived and described, as a “complete thing” at no matter which given snapshot of time; alternatively an

entity is endurant if it is capable of enduring, that is persist, “hold out” [156, Vol. I, pg. 656]. Were we to

“freeze” time we would still be able to observe the entire endurant

Example 3: Endurants
Geography Endurants: The geography of an area, like some island, or a country, consists of its geography – “the

lay of the land”, the geodetics of this land, the meteorology of it, et cetera. Railway System Endurants: Example

railway system endurants are: a railway system, its net, its individual tracks, switch points, trains, their individual

locomotives, et cetera.

Analysis Prompt 2 is endurant: The domain analyser analyses an entity, φ , into an endurant as

prompted by the domain analysis prompt:

• is endurant – φ is an endurant if is endurant(φ) holds.

is entity is a prerequisite prompt for is endurant

Characterisation 3 Perdurant: By a perdurant we shall understand an entity for which only a fragment

exists if we look at or touch them at any given snapshot in time. Were we to freeze time we would only see

or touch a fragment of the perdurant, alternatively an entity is perdurant if it endures continuously, over

time, persists, lasting [156, Vol. II, pg. 1552]

19 Analysis prompt definitions and description prompt definitions and schemes are delimited by
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1.3 Endurants: Analysis of External Qualities 11

Example 4: Perdurants
Geography: Example geography perdurants are: the continuous changing of the weather (meteorology); the erosion

of coast lines; the rising of some land and the “sinking” of other land areas; volcano eruptions; earth quakes; et cetera.

Railway Systems: Example railway system perdurants are: the ride of a train from one railway station to another;

and the stop of a train at a railway station from some arrival time to some departure time.

Analysis Prompt 3 is perdurant: The domain analyser analyses an entity e into perdurants as prompted

by the domain analysis prompt:

• is perdurant – e is a perdurant if is perdurant(e) holds.

is entity is a prerequisite prompt for is perdurant

Occurrent is a synonym for perdurant.

1.3 Endurants: Analysis of External Qualities

1.3.1 Discrete and Continuous Endurants

Characterisation 4 Discrete Endurant: By a discrete endurant we shall understand an endurant

which is separate, individual or distinct in form or concept

To simplify matters we shall allow separate elements of a discrete endurant to be continuous !

Example 5: Discrete Endurants
The individual endurants of the above example of railway system endurants were all discrete. Here are examples of

discrete endurants of pipeline systems. A pipeline and its individual units: pipes, valves, pumps, forks, etc.

Analysis Prompt 4 is discrete:The domain analyser analyses endurants e into discrete entities as

prompted by the domain analysis prompt:

• is discrete – e is discrete if is discrete(e) holds

Characterisation 5 Continuous Endurant: By a continuous endurant we shall understand an en-

durant which is prolonged, without interruption, in an unbroken series or pattern

We shall prefer to refer to continuous endurants as materials and otherwise cover materials in Sect. 1.3.5

on Page 16.

Example 6: Materials
Examples of materials are: water, oil, gas, compressed air, etc. A container, which we consider a discrete endurant,

may contain a material, like a gas pipeline unit may contain gas.

Analysis Prompt 5 is continuous:The domain analyser analyses endurants e into continuous entities

as prompted by the domain analysis prompt:

• is continuous – e is continuous if is continuous(e) holds

Continuity shall here not be understood in the sense of mathematics. Our definition of ‘continuity’ fo-

cused on prolonged, without interruption, in an unbroken series or pattern. In that sense materials shall be

seen as ‘continuous’. The mathematical notion of ‘continuity’ is an abstract one. The endurant notion of

‘continuity’ is physical one.
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12 1 Domain Analysis & Description

1.3.2 Discrete Endurants

We analyse discrete endurants into physical parts, living species and structures. Physical parts and living

species can be identified as separate entities – following Kai Sørlander’s Philosophy. To model discrete

endurants as structures represent a pragmatic choice which relieves the domain describer from transcen-

dentally considering structures as behaviours.

Physical Parts

Characterisation 6 Physical Parts: By a physical part we shall understand a discrete endurant existing

in time and subject to laws of physics, including the causality principle and gravitational pull20

Analysis Prompt 6 is physical part: The domain analyser analyses “things” (η) into physical part.

The method provides the domain analysis prompt:

• is physical part – where is physical part(η) holds if η is a physical part

Section 1.3.3 continues our treatment of physical parts.

Living Species

Definition 3 Living Species, I: By a living species we shall understand a discrete endurant, subject to

laws of physics, and additionally subject to causality of purpose.21 [Defn. 9 on Page 15 elaborates further

on this point]

Analysis Prompt 7 is living species: The domain analyser analyses “things” (e) into living species.

The method provides the domain analysis prompt:

• is living species – where is living species(e) holds if e is a living species

Living species have a form they can develop to reach; they are causally determined to maintain this form;

and they do so by exchanging matter with an environment. We refer to [69] for details. Section 1.3.4

continues our treatment of living species.

Structures

Definition 4 Structure: By a structure we shall understand a discrete endurant which the domain engi-

neer chooses to describe as consisting of one or more endurants, whether discrete or continuous, but to not

endow with internal qualities: unique identifiers, mereology or attributes

Structures are “conceptual endurants”. A structure “gathers” one or more endurants under “one umbrella”,

often simplifying a presentation of some elements of a domain description. Sometimes, in our domain

modelling, we choose to model an endurant as a structure, sometimes as a physical part ; it all depends

on what we wish to focus on in our domain model. As such structures are “compounds” where we are

20 This characterisation is the result of our study of relations between philosophy and computing science, notably influ-

enced by Kai Sørlander’s Philosophy. We refer to our research report [69, www.imm.dtu.dk/˜dibj/2018/philosophy/-

filo.pdf].
21 See Footnote 20.
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1.3 Endurants: Analysis of External Qualities 13

interested only in the (external and internal) qualities of the elements of the compound, but not in the

qualities of the structure itself.

Example 7: Structures
A transport system is modelled as structured into a road net structure and an automobile structure. The road net

structure is then structured as a pair: a structure of hubs and a structure of links. These latter structures are then

modelled as set of hubs, respectively links.

Example 8: Structures – Contd.
We could have modelled the road net structure as a composite part with unique identity, mereology and attributes

which could then serve to model a road net authority. We could have modelled the automobile structure as a

composite part with unique identity, mereology and attributes which could then serve to model a department of

vehicles.

The concept of structure is new. Whether to analyse & describe a discrete endurant into a structure or a

physical part is a matter of choice. If we choose to analyse a discrete endurant into a physical part then it

is because we are interested in endowing the part with qualities, the unique identifiers, mereology and one

or more attributes. If we choose to analyse a discrete endurant into a structure then it is because we are

not interested in endowing the endurant with qualities. When we choose that an endurant sort should be

modelled as a part sort with unique identification, mereology and proper attributes, then it is because we

eventually shall consider the part sort as being the basis for transcendentally deduced behaviours.

Analysis Prompt 8 is structure:The domain analyser analyse endurants, e, into structure entities as

prompted by the domain analysis prompt:

• is structure e is a structure if is structure(e) holds

We shall now treat the external qualities of discrete endurants: physical parts (Sect. 1.3.3) and living species
(Sect. 1.3.4). After that we cover materials (Sect. 1.3.5) and artefacts (physical man-made parts, Sect. 1.3.3)

. We remind the reader that in this section, i.e. Sect. 1.3, we cover only the analysis calculus for external
qualities; the description calculus for external qualities is treated in Sect. 1.4. The analysis and description

calculi for internal qualities is covered in Sect. 1.5.

1.3.3 Physical Parts

Physical parts are either natural parts, or sets of parts of the same type, or are artefacts i.e. man-made parts.

The categorisation of physical parts into these four is pragmatic. Physical parts follow from Kai Sørlander’s

Philosophy. Natural parts are what Sørlander’s Philosophy is initially about. Artefacts follow from humans
acting according to their purpose in making “physical parts”. Set of parts is a simplification of composite

natural and composite man-made parts as will be made clear in Sect. 1.4.2.

Natural Parts

Characterisation 7 Natural Parts: Natural parts are in space and time; are subject to the laws of physics,

and also subject to the principle of causality and gravitational pull
The above is a factual characterisation of natural parts. The below is our definition – such as we shall model

natural parts.

Definition 5 Natural Part: By a natural part we shall understand a physical part which the domain

engineer chooses to endow with all three internal qualities: unique identification, mereology, and one or

more attributes

September 6, 2019, 16:27, A Foundation for Software Development c© Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark



14 1 Domain Analysis & Description

Artefacts

Characterisation 8 Man-made Parts: Artefacts: Artefacts are man-made either discrete or continuous

endurants. In this section we shall only consider discrete endurants. Man-made continuous endurants are

not treated separately but are lumped with natural materials. Artefacts are subject to the laws of physics

The above is a factual characterisation of discrete artefacts. The below is our definition – such as we shall

model discrete artefacts.

Definition 6 Artefact: By an artefact we shall understand a man-made physical part which, like for

natural parts, the domain engineer chooses to endow with all three internal qualities: unique identification,

mereology, and one or more attributes

We shall assume, cf. Sect. 1.5.3 [Attributes], that artefacts all come with an attribute of kind intent, that is,

a set of purposes for which the artefact was constructed, and for which it is intended to serve. We continue

our treatment of artefacts in Sect. 1.3.6 below.

Parts

We revert to our treatment of parts.

Example 9: Parts
The geography examples (of Page 10) of are all natural parts. The railway system examples (of Page 10) are all

artefacts

Except for the intent attribute of artefacts, we shall, in the following, treat natural and artefactual parts

on par, i.e., just as physical parts.

Analysis Prompt 9 is part:The domain analyser analyse endurants, e, into part entities as prompted

by the domain analysis prompt:

• is part e is a part if is part(e) holds

Atomic and Composite Parts:

A distinguishing quality of natural and artefactual parts is whether they are atomic or composite. Please note

that we shall, in the following, examine the concept of parts in quite some detail. That is, parts become the

domain endurants of main interest, whereas structures and materials become of secondary interest. This is

a choice. The choice is based on pragmatics. It is still the domain analyser cum describers’ choice whether

to consider a discrete endurant a part or a structure. If the domain engineer wishes to investigate the details

of a discrete endurant then the domain engineer chooses to model22 the discrete endurant as a part.

Atomic Parts

Definition 7 Atomic Part: Atomic parts are those which, in a given context, are deemed to not consist

of meaningful, separately observable proper sub-parts. A sub-part is a part

Analysis Prompt 10 is atomic:The domain analyser analyses a discrete endurant, i.e., a part p into an

atomic endurant:

• is atomic: p is an atomic endurant if is atomic(p) holds

22 We use the term to model interchangeably with the composite term to analyse & describe; similarly a model is used

interchangeably with an analysis & description.

c© Dines Bjørner 2018 Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering September 6, 2019, 16:27



1.3 Endurants: Analysis of External Qualities 15

Example 10: Atomic Road Net Parts

From one point of view all of the following can be considered atomic parts: hubs, links23, and automobiles.

Composite Parts

Definition 8 Composite Part: Composite parts are those which, in a given context, are deemed to

indeed consist of meaningful, separately observable proper sub-parts

Analysis Prompt 11 is composite:The domain analyser analyses a discrete endurant, i.e., a part p

into a composite endurant:

• is composite: p is a composite endurant if is composite(p) holds

is discrete is a prerequisite prompt of both is atomic and is composite.

Example 11: Composite Automobile Parts
From another point of view all of the following can be considered composites parts: an automobile, consisting of, for

example, the following parts: the engine train, the chassis, the car body, the doors and the wheels. These can again

be considered composite parts.

1.3.4 Living Species

We refer to Sect. 1.3.2 for our first characterisation (Page 12) of the concept of living species24: a discrete

endurant existing in time, subject to laws of physics, and additionally subject to causality of purpose25

Definition 9 Living Species, II: Living species must have some form they can be developed to reach ;

which they must be causally determined to maintain. This development and maintenance must further in an

exchange of matter with an environment. It must be possible that living species occur in one of two forms:

one form which is characterised by development, form and exchange; another form which, additionally,

can be characterised by the ability to purposeful movement The first we call plants, the second we call

animals

Analysis Prompt 12 is living species:The domain analyser analyse discrete endurants, ℓ, into liv-

ing species entities as prompted by the domain analysis prompt:

• is living species – where is living speciesℓ holds if ℓ is a living species

Plants

We start with some examples.

Example 12: Plants
Although we have not yet come across domains for which the need to model the living species of plants were needed,

we give some examples anyway: grass, tulip, rhododendron, oak tree.

Analysis Prompt 13 is plant: The domain analyser analyses “things” (ℓ) into a plant. The method

provides the domain analysis prompt:

• is plant – where is plant(ℓ) holds if ℓ is a plant

The predicate is living species(ℓ) is a prerequisite for is plant(ℓ).

23 Hub ≡ street intersection; link ≡ street segments with no intervening hubs.
24 See analysis prompt 7 on Page 12.
25 See Footnote 20 on Page 12.
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16 1 Domain Analysis & Description

Animals

Definition 10 Animal: We refer to the initial definition of living species above – while ephasizing the

following traits: (i) form animals can be developed to reach ; (ii) causally determined to maintain. (iii)

development and maintenance in an exchange of matter with an environment, and (iv) ability to purposeful
movement

Analysis Prompt 14 is animal: The domain analyser analyses “things” (ℓ) into an animal. The

method provides the domain analysis prompt:

• is animal – where is animal(ℓ) holds if ℓ is an animal

The predicate is living species(ℓ) is a prerequisite for is animal(ℓ).

Example 13: Animals
Although we have not yet come across domains for which the need to model the living species of animals, in general,

were needed, we give some examples anyway: dolphin, goose cow dog, lion, fly.

We have not decided, for this chapter, whether to model animals singly or as sets26 of such.

Humans

Definition 11 Human: A human (a person) is an animal, cf. Definition 10, with the additional properties

of having language, being conscious of having knowledge (of its own situation), and responsibility

Analysis Prompt 15 is human: The domain analyser analyses “things” (ℓ) into a human. The method

provides the domain analysis prompt:

• is human – where is human(ℓ) holds if ℓ is a human

The predicate is animal(ℓ) is a prerequisite for is human(ℓ).

We refer to [69, Sects. 10.4–10.5] for a specific treatment of living species, animals and humans, and

to [69] in general for the philosophy background for rationalising the treatment of living species, animals

and humans.

We have not, in our many experimental domain modelling efforts had occasion to model humans;

or rather: we have modelled, for example, automobiles as possessing human qualities, i.e., “subsuming

humans”. We have found, in these experimental domain modelling efforts that we often confer anthropo-

morphic qualities on artefacts27, that is, that these artefacts have human characeristics. You, the reader are

reminded that when some programmers try to explain their programs they do so using such phrases as and
here the program does ... so-and-so !

1.3.5 Continuous Endurants ≡ Materials

Definition 12 Material: By a material we shall understand a continuous endurant

Materials are continuous endurants. Usually they come in sets. That is, sets of of materials of different

sorts (cf. Sect. 1.4.4 on Page 22). So an endurant can (itself) “be” a set of materials. But physical parts may

contain (has materials) materials: natural parts may contain natural materials, artefacts may contain

26 school of dolphins, flock of geese, herd of cattle, pack of dogs, pride of lions, swarm of flies,
27 Cf. Sect. 1.3.6 below.
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1.4 Endurants: The Description Calculus 17

natural and artefactual materials. We leave it to the reader to provide analysis predicates for natural and

artefactual “materials”.

Example 14: Natural and Man-made Materials
A natural part, say a land area, may contain lakes, rivers, irrigation dams and border seas.

An artefact, say an automobile, usually contains gasoline, lubrication oil, engine cooler liquid and window screen

washer water.

Analysis Prompt 16 has materials:The domain analysis prompt:

• has materials(p) yields true if part p:P potentially may contain materials otherwise false

We refer to Sect. 1.4.4 on Page 22 for further treatment of the concept of materials. We shall define the

terms unique identification, mereology and attributes in Sects. 1.5.1–1.5.3.

1.3.6 Artefacts

Definition 13 Artefacts: By artefacts we shall understand a man-made physical part or a man-made

material

Example 15: More Artefacts
From the shipping industry: ship, container vessels, container, container stack, container terminal port, harbour.

Analysis Prompt 17 is artefact: The domain analyser analyses “things” (p) into artefacts. The

method provides the domain analysis prompt:

• is artefact – where is artefact(p) holds if p is an artefact

1.3.7 States

Definition 14 State: By a state we shall understand any number of physical parts and/or materials each

possessing as we shall later introduce them at least one dynamic attribute. There is no need to introduce

time at this point

Example 16: Artefactual States
The following endurants are examples of states (including being elements of state compounds): pipe units (pipes,

valves, pumps, etc.) of pipe-lines; hubs and links of road nets (i.e., street intersections and street segments); automo-

biles (of transport systems).

The notion of state becomes relevant in Sect. 1.8. We shall there exemplify states further: example Con-
stants and States [Indexed States] Page 41.

1.4 Endurants: The Description Calculus

1.4.1 Parts: Natural or Man-made

The observer functions of this section apply to both natural parts and man-made parts (i.e., artefacts).
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18 1 Domain Analysis & Description

On Discovering Endurant Sorts

This section is not really relevant for the “discovery” of artefacts. Artefacts are man-made. Usually the

designers – the engineers, the craftsmen – who make these parts start out by ascribing specific names

to them. And these names become our sort names. So the α,β ,γ points below are more relevant for the

analysis of natural discrete endurants.

Our aim now is to present the basic principles that let the domain analyser decide on part sorts. We

observe parts one-by-one.

(α) Our analysis of parts concludes when we have “lifted” our examination of a particular part
instance to the conclusion that it is of a given sort28, that is, reflects a formal concept.

Thus there is, in this analysis, a “eureka”, a step where we shift focus from the concrete to the abstract,

from observing specific part instances to postulating a sort: from one to the many. If p is a part of sort P,

then we express that as: p:P.

Analysis Prompt 18 observe endurant sorts:The domain analysis prompt:

• observe endurant sorts

directs the domain analyser to observe the sub-endurants of an endurant e and to suggest their sorts. Let

observe endurant sorts(e) = {e1:E1,e2:E2, . . . ,em:Em}

(β ) The analyser analyses, for each of these endurants, ei, which formal concept, i.e., sort, it
belongs to; let us say that it is of sort Ek; thus the sub-parts of p are of sorts {E1,E2, . . . ,Em}.
Some Ek may be natural parts, other artefacts (man-made parts) or structures, or materials. And
parts may be either atomic or composite.

The domain analyser continues to examine a finite number of other composite parts: {p j, pℓ, . . . , pn}. It is

then “discovered”, that is, decided, that they all consists of the same number of sub-parts {ei1 ,ei2 ,. . . ,eim},

{e j1 ,e j2 ,. . . ,e jm}, {eℓ1
,eℓ2

,. . . ,eℓm
}, ..., {en1

,en2
,. . . ,enm}, of the same, respective, endurant sorts.

(γ) It is therefore concluded, that is, decided, that {ei,e j,eℓ,. . . ,en} are all of the same endurant sort
P with observable part sub-sorts {E1,E2,. . . ,Em}.

Above we have type-font-highlighted three sentences: (α,β ,γ). When you analyse what they “prescribe”

you will see that they entail a “depth-first search” for part sorts. The β sentence says it rather directly: “The
analyser analyses, for each of these parts, pk, which formal concept, i.e., part sort it belongs to.” To do

this analysis in a proper way, the analyser must (“recursively”) analyse structures into sub-structures, parts

and materials, and parts “down” to their atomicity. Materials are considered “atomic”, i.e., to not contain

further analysable endurants. For the structures, parts (whether natural or man-made) and materials of the

structure the analyser cum describer decides on their sort, and work (“recurse”) their way “back”, through

possibly intermediate endurants, to the pks. Of course, when the analyser starts by examining atomic parts

and materials, then their endurant structure and part analysis “recursion” is not necessary.

Endurant Sort Observer Functions:

The above analysis amounts to the analyser first “applying” the domain analysis prompt is composite(e)

to a discrete endurant, e, where we now assume that the obtained truth value is true. Let us assume that

endurants e:E consist of sub-endurants of sorts {E1,E2,. . . ,Em}. Since we cannot automatically guarantee

that our domain descriptions secure that E and each Ei (1≤i≤m) denotes disjoint sets of entities we must

prove it.

28 We use the term ’sort’ for abstract types, i.e., for the type of values whose concrete form we are not describing.

The term ‘sort’ is commonly used in algebraic semantics [212].
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1.4 Endurants: The Description Calculus 19

Domain Description Prompt 1 observe endurant sorts : If is composite(p) holds, then the anal-

yser “applies” the domain description prompt

• observe endurant sorts(p)

resulting in the analyser writing down the endurant sorts and endurant sort observers domain description text

according to the following schema:

1. observe endurant sorts Observer schema

Narration:

[s ] ... narrative text on sorts ...
[o ] ... narrative text on sort observers ...
[p ] ... narrative text on proof obligations ...

Formalisation:

type

[s ] E,
[s ] Ei i:[1..m ] comment: Ei i:[1..m ] abbreviates E1, E2, ..., Em

value

[o ] obs Ei: E → Ei i:[1..m ]
proof obligation [Disjointness of endurant sorts ]
[p ] PO : ∀ e:(E1|E2|...|Em) •

∧
{is Ei(e) ≡

∧
{∼is E j(e)|j:[1..m ] \ {i}}|i:[1..m ]}

The is E j(e) is defined by Ei i:[1..m]. is composite is a prerequisite prompt of observe endurant -

sorts. That is, the composite may satisfy is natural or is artefact

Note: The above schema as well as the following schemes introduce, i.e., define in terms of a function

signature, a number of functions whose names begin with bold-faced obs ..., uid ..., mereo ..., attr ... et

cetera. These observer functions are one of the bases of domain descriptions.

In any specific domain analysis & description the analyser cum describer chooses which subset of

composite sorts to analyse & describe. That is: any one domain model emphasises certain aspects and

leaves out many “other” aspects. This means that there may be many different domain descriptions covering

“more-or-less” similar ground !

We do not here state techniques for discharging proof obligations.29

Example 17: Composite Endurant Sorts
1 There is the universe of discourse, UoD.

It is structured into

2 a road net, RN, and

3 a fleet of vehicles, FV.

Both are structures.

type

1 UoD axiom ∀ uod:UoD • is structure(uod).
2 RN axiom ∀ rn:RN • is structure(rn).
3 FV axiom ∀ fv:FV • is structure(fv).
value

2 obs RN: UoD → RN
3 obs FV: UoD → FV

29 – such techniques are given in standard texts on formal specification languages.
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20 1 Domain Analysis & Description

Note: A proper description has two texts, a narrative and a formalisation each is itemised and items are

pairwise numbered.

sLsH

A Road Transport System: Structures and Parts
RN

SH SL

FV

SBC

sA

PABCs

h1:H

h2:H

hm:H

l1:L

ln:L

l2:L

b11:B

b1p:B

bs1:B

bsq:B

a1:A

a2:A

ar:A

bs2:Bb12:B

bc1:sBC bc_s:sBC

Fig. 1.5. A Road Transport System

Example 18: Structures

4 The road net consists of

a a structure, SH, of hubs and

b a structure, SL, of links.

5 The fleet of vehicles consists of

a a structure, SBC, of bus companies, and

b a structure, PA, a pool of automobiles.

type

4a SH axiom ∀ sh:SH • is structure(sh)
4b SL axiom ∀ sl:SL • is structure(sl)
5a SBC axiom ∀ sbc:SBC • is structure(bc)
5b PA axiom ∀ pa:PA • is structure(pa)
value

4a obs SH: RN → SH
4b obs SL: RN → SL
5a obs BC: FV → BC
5b obs PA: FV → PA

1.4.2 Concrete Part Types

Sometimes it is expedient to ascribe concrete types to sorts.

Analysis Prompt 19 has concrete type:The domain analyser may decide that it is expedient, i.e.,

pragmatically sound, to render a part sort, P, whether atomic or composite, as a concrete type, T. That

decision is prompted by the holding of the domain analysis prompt:

• has concrete type.

is discrete is a prerequisite prompt of has concrete type
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1.4 Endurants: The Description Calculus 21

The reader is reminded that the decision as to whether an abstract type is (also) to be described concretely

is entirely at the discretion of the domain engineer.

Domain Description Prompt 2 observe part type : Then the domain analyser applies the domain
description prompt:

• observe part type(p)30

to parts p:P which then yield the part type and part type observers domain description text according to the

following schema:

2. observe part type Observer schema

Narration:

[ t1 ] ... narrative text on sorts and types Si ...
[ t2 ] ... narrative text on types T ...
[o ] ... narrative text on type observers ...

Formalisation:

type

[ t1 ] S1, S2, ..., Sm, ..., Sn,
[ t2 ] T = E (S1,S2,...,Sn)
value

[o ] obs T: P → T

Here S1,S2,...,Sm,...,Sn may be any types, including part sorts, where 0≤m≤n≥1, where m is the number

of new (atomic or composite) sorts, and where n−m is the number of concrete types (like Bool, Int, Nat)

or sorts already analysed & described. and E (S1,S2,...,Sn) is a type expression Usually it is wise to restrict

the part type definitions, Ti = Ei(Q,R,...,S), to simple type (i.e., sort) expressions.31 The type name, T, of

the concrete type, as well as those of the auxiliary types, S1,S2,...,Sm, are chosen by the domain describer:

they may have already been chosen for other sort–to–type descriptions, or they may be new.

Example 19: Concrete Part Types
6 The structure of hubs is a set, sH, of atomic hubs, H.

7 The structure of links is a set, sL, of atomic links, L.

8 The structure of buses is a set, sBC, of composite bus companies, BC.

9 The composite bus companies, BC, are sets of buses, sB.

10 The structure of private automobiles is a set, sA, of atomic automobiles, A.

6 H, sH = H-set axiom ∀ h:H • is atomic(h)
7 L, sL = L-set axiom ∀ l:L • is atomic(l)
8 BC, BCs = BC-set axiom ∀ bc:BC • is composite(bc)
9 B, Bs = B-set axiom ∀ b:B • is atomic(b)
10 A, sA = A-set axiom ∀ a:A • is atomic(a)
value

6 obs sH: SH → sH
7 obs sL: SL → sL
8 obs sBC: SBC → BCs
9 obs Bs: BCs → Bs
10 obs sA: SA → sA

30 has concrete type is a prerequisite prompt of observe part type.
31 T=A-set or T=A∗ or T=ID→m A or T=At |Bt |...|Ct where ID is a sort of unique identifiers, T=At |Bt |...|Ct

defines the disjoint types At==mkAt(s:As), Bt==mkBt(s:Bs), ..., Ct==mkCt(s:Cs), and where A, As, Bs, ...,
Cs are sorts. Instead of At==mkAt(a:As), etc., we may write At ::As etc.
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22 1 Domain Analysis & Description

1.4.3 On Endurant Sorts

Derivation Chains

Let E be a composite sort. Let E1, E2, . . . , Em be the part sorts “discovered” by means of observe endu-

rant sorts(e) where e:E. We say that E1, E2, . . . , Em are (immediately) derived from E. If Ek is derived

from E j and E j is derived from Ei, then, by transitivity, Ek is derived from Ei.

No Recursive Derivations:

We “mandate” that if Ek is derived from E j then there E j is different from Ek and there can be no Ek derived

from E j, that is, Ek cannot be derived from Ek. That is, we do not “provide for” recursive domain sorts. It is

not a question, actually of allowing recursive domain sorts. It is, we claim to have observed, in very many

analysis & description experiments, that there are no recursive domain sorts !32,33

Names of Part Sorts and Types:

The domain analysis & description text prompts observe endurant sorts, as well as the below-defined

observe part type, observe component sorts and observe material sorts, – as well as the fur-

ther below defined attribute names, observe material sorts, observe unique identifier, ob-

serve mereology and observe attributes prompts introduced below – “yield” type names. That is,

it is as if there is a reservoir of an indefinite-size set of such names from which these names are selected,

and once obtained are never again selected. There may be domains for which two distinct part sorts may

be composed from identical part sorts. In this case the domain analyser indicates so by prescribing a part
sort already introduced.

1.4.4 Materials

We refer to Sect. 1.3.5 on Page 16 for our initial treatment of ‘materials’. Continuous endurants (i.e.,

materials) are entities, m, which satisfy:

• is material(e) ≡ is continuous(e)

If is material(e) holds then we can apply the domain description prompt: observe material -

sorts(e).

Domain Description Prompt 3 observe material sorts : The domain description prompt:

• observe material sorts(e)

yields the material sorts and material sort observers’ domain description text according to the following schema

whether or not part p actually contains materials:

3. observe material sorts Observer schema

Narration:

32 Some readers may object, but we insist ! If trees are brought forward as an example of a recursively definable

domain, then we argue: Yes, trees can be recursively defined, but it is not recursive. Trees can, as well, be defined

as a variant of graphs, and you wouldn’t claim, would you, that graphs are recursive ?
33 At an IFIP WG2.2 meeting in Kyoto, August 1978, John McCarthy [164, 165], “waking up” from deep thoughts,

asked, in connection with my presentation of abstract models of various database models [157], “is there any recur-

sion in all this ?”, to which I replied, “No ! – whereupon he resumed his interrupted thoughts/
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[s ] ... narrative text on material sorts ...
[o ] ... narrative text on material sort observers ...
[p ] ... narrative text on material sort proof obligations ...

Formalisation:

type

[s ] M1, M2, ..., Mn
[s ] M = M1 | M2 | ... | Mn
[s ] MS = M-set

value

[o ] obs Mi: P → M, [ i:1..n ]
proof obligation [Disjointness of Material Sorts ]
[p ] PO: ∀ mi:M •

∧
{is Mi(mi) ≡

∧
{∼is M j(m j)|j ∈ {1..m} \ {i}}|i:[1..n ]}

The is M j(e) is defined by Mi, i:[1..n].

Let us assume that parts p:P embody materials of sorts {M1,M2,. . . ,Mn}. Since we cannot automatically

guarantee that our domain descriptions secure that each Mi ([1≤i≤n ]) denotes disjoint sets of entities we

must prove it

Example 20: Materials
To illustrate the concept of materials we describe waterways (river, canals, lakes, the open sea) along links as links

with material of type water.

11 Links may contain material.

12 That material is water, W.

type

12 W
value

11 obs material: L → W
11 pre: obs material(l) ≡ has material(h)

1.5 Endurants: Analysis & Description of Internal Qualities

We remind the reader that internal qualities cover unique Identifiers (Sect. 1.5.1), mereology (Sect. 1.5.2)

and attributes (Sect. 1.5.3).

1.5.1 Unique Identifiers

We introduce a notion of unique identification of parts and components. We assume (i) that all parts and

components, p, of any domain P, have unique identifiers, (ii) that unique identifiers (of parts and com-

ponents p:P) are abstract values (of the unique identifier sort PI of parts p:P), (iii) such that distinct part

or component sorts, Pi and P j, have distinctly named unique identifier sorts, say PIi and PI j, (iv) that all

πi:PIi and π j:PI j are distinct, and (v) that the observer function uid P applied to p yields the unique identi-

fier, π :PI, of p. The description language function type name applies to unique identifiers, p ui:P UI, and

yield the name of the type, P, of the parts having unique identifiers of type P UI.

Representation of Unique Identifiers: Unique identifiers are abstractions. When we endow two parts

(say of the same sort) with distinct unique identifiers then we are simply saying that these two parts are

distinct. We are not assuming anything about how these identifiers otherwise come about.
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24 1 Domain Analysis & Description

Domain Description Prompt 4 observe unique identifier : We can therefore apply the domain
description prompt:

• observe unique identifier

to parts p:P resulting in the analyser writing down the unique identifier type and observer domain description

text according to the following schema:

4. observe unique identifier Observer schema

Narration:

[s ] ... narrative text on unique identifier sort PI ...
[u ] ... narrative text on unique identifier observer uid P ...
[a ] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s ] PI
value

[u ] uid P: P → PI
axiom [Disjointness of Domain Identifier Types ]
[a ] A : U (PI,PI i,PI j,...,PI k)

Example 21: Unique Identifiers
13 We assign unique identifiers to all parts.

14 By a road identifier we shall mean a link or a hub identifier.

15 By a vehicle identifier we shall mean a bus or an automobile identifier.

16 Unique identifiers uniquely identify all parts.

a All hubs have distinct [unique] identifiers.

b All links have distinct identifiers.

c All bus companies have distinct identifiers.

d All buses of all bus companies have distinct identifiers.

e All automobiles have distinct identifiers.

f All parts have distinct identifiers.

type

13 H UI, L UI, BC UI, B UI, A UI
14 R UI = H UI | L UI
15 V UI = B UI | A UI
value

16a uid H: H → H UI
16b uid L: H → L UI
16c uid BC: H → BC UI
16d uid B: H → B UI
16e uid A: H → A UI

Section 1.9.1 on Page 56 presents some auxiliary functions related to unique identifiers

We ascribe, in principle, unique identifiers to all parts whether natural or artefactual, and to all components.

We find, from our many experiments, cf. the Universes of Discourse example, Page 9, that we really focus

on those domain entities which are artefactual endurants and their behavioural “counterparts”.
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1.5 Endurants: Analysis & Description of Internal Qualities 25

1.5.2 Mereology

Mereology is the study and knowledge of parts and part relations. Mereology, as a logical/philosophi-

cal discipline, can perhaps best be attributed to the Polish mathematician/logician Stanisław Leśniewski

[96, 55].

Part Relations:

Which are the relations that can be relevant for part-hood ? There are basically two relations: (i) a physical

one, and (ii) a conceptual one.

(i) Physically two or more parts may be topologically either adjacent to one another, like rails of a line,

or within a part, like links and hubs of a road net.

(ii) Conceptually some parts, like automobiles, “belong” to an embedding part, like to an automobile

club, or are registered in the local department of vehicles, or are ‘intended’ to drive on roads

Part Mereology: Types and Functions

Analysis Prompt 20 has mereology:To discover necessary, sufficient and pleasing “mereology-hoods”

the analyser can be said to endow a truth value, true, to the domain analysis prompt:

• has mereology

When the domain analyser decides that some parts are related in a specifically enunciated mereology, the

analyser has to decide on suitable mereology types and mereology observers (i.e., part relations).

17 We may, to illustration, define a mereology type of a part p:P as a triplet type expression over set of

unique [part] identifiers.

18 There is the identification of all those part types Pi1 ,Pi2 , ...,Pim where at least one of whose properties

"is of interest" to parts p:P.

19 There is the identification of all those part types Pio1
,Pio2

, ...,Pion where at least one of whose properties

"is of interest" to parts p:P and vice-versa.

20 There is the identification of all those part types Po1
,Po2

, ...,Poo for whom properties of p:P "is of-

interest" to parts of types Po1
,Po2

, ...,Poo .

21 The the mereology triplet sets of unique identifiers are disjoint and are all unique identifiers of the

universe of discourse.

The three part mereology is just a suggestion. As it is formulated here we mean the three ‘sets’ to be
disjoint. Other forms of expressing a mereology should be considered for the particular domain and for
the particular parts of that domain. We leave out further characterisation of the seemingly vague notion
"is of interest".

type

18 iPI = iPI1 | iPI2 | ... | iPIm
19 ioPI = ioPI1 | ioPI2 | ... | ioPIn
20 oPI = oPI1 | oPI2 | ... | oPIo
17 MT = iPI-set × ioPI-set × oPI-set

axiom

21 ∀ (iset,ioset,oset):MT •

21 card iset + card ioset + card oset = card ∪{iset,ioset,oset}
21 ∪{iset,ioset,oset} ⊆ unique identifiers(uod)
value

21 unique identifiers: P → UI-set

21 unique identifiers(p) ≡ ...
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26 1 Domain Analysis & Description

Domain Description Prompt 5 observe mereology : If has mereology(p) holds for parts p of type P, then the

analyser can apply the domain description prompt:

• observe mereology

to parts of that type and write down the mereology types and observer domain description text according to the

following schema:

5. observe mereology Observer schema

Narration:

[t ] ... narrative text on mereology type ...
[m ] ... narrative text on mereology observer ...
[a ] ... narrative text on mereology type constraints ...

Formalisation:

type

[t ] MT34

value

[m ] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies ]
[a ] A : A (MT)

A (MT) is a predicate over possibly all unique identifier types of the domain description. To write down the con-

crete type definition for MT requires a bit of analysis and thinking. has mereology is a prerequisite prompt for

observe mereology

Example 22: Mereology

22 The mereology of hubs is a pair: (i) the set of all bus and automobile identifiers35, and (ii) the set of unique

identifiers of the links that it is connected to and the set of all unique identifiers of all vehicle (buses and private

automobiles).36.

23 The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii) the set of the two

distinct hubs they are connected to.

24 The mereology of of a bus company is a set the unique identifiers of the buses operated by that company.

25 The mereology of a bus is a pair: (i) the set of the one single unique identifier of the bus company it is operating

for, and (ii) the unique identifiers of all links and hubs37.

26 The mereology of an automobile is the set of the unique identifiers of all links and hubs38.

type

22 H Mer = V UI-set×L UI-set

22 axiom ∀ (vuis,luis):H Mer • luis⊆luis ∧ vuis=vuis

23 L Mer = V UI-set×H UI-set

23 axiom ∀ (vuis,huis):L Mer •

23 vuis=vuis ∧ huis⊆huis ∧ cardhuis=2
24 BC Mer = B UI-set

24 axiom ∀ buis:H Mer • buis = buis

25 B Mer = BC UI×R UI-set

25 axiom ∀ (bc ui,ruis):H Mer•bc ui∈bcuis∧ruis=ruis

26 A Mer = R UI-set

26 axiom ∀ ruis:A Mer • ruis=ruis

value

22 mereo H: H → H Mer
23 mereo L: L → L Mer
24 mereo BC: BC → BC Mer
25 mereo B: B → B Mer

34 The mereology descriptor, MT will be referred to in the sequel.
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1.5 Endurants: Analysis & Description of Internal Qualities 27

26 mereo A: A → A Mer

We can express some additional axioms, in this case for relations between hubs and links:

27 If hub, h, and link, l, are in the same road net,

28 and if hub h connects to link l then link l connects to hub h.

axiom

27 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls ⇒
let ( ,luis)=mereo H(h), ( ,huis)=mereo L(l)

28 in uid L(l)∈luis⇒uid H(h)∈huis end

More mereology axioms need be expressed – but we leave, to the reader, to narrate and formalise those

Formulation of Mereologies:

The observe mereology domain descriptor, Page 26, may give the impression that the mereo type MT
can be described “at the point of issue” of the observe mereology prompt. Since the MT type expression

may, in general, depend on any part sort the mereo type MT can, for some domains, “first” be described

when all part sorts have been dealt with. In [58] we present a model of one form of evaluation of the

TripTych analysis and description prompts, see also Sect. 1.10.2 on Page 66.

Some Modelling Observations:

It is, in principle, possible to find examples of mereologies of natural parts: rivers: their confluence,

lakes and oceans; and geography: mountain ranges, flat lands, etc. But in our experimental case studies,

cf. Example on Page 9, we have found no really interesting such cases. All our experimental case studies

appears to focus on the mereology of artefacts. And, finally, in modelling humans, we find that their mere-

ology encompass all other humans and all artefacts ! Humans cannot be tamed to refrain from interacting

with everyone and everything.

Some domain models may emphasize physical mereologies based on spatial relations, others may em-

phasize conceptual mereologies based on logical “connections”.

1.5.3 Attributes

To recall: there are three sets of internal qualities: unique part identifiers, part mereology and attributes.
Unique part identifiers and part mereology are rather definite kinds of internal endurant qualities. Part

attributes form more “free-wheeling” sets of internal qualities.

Technical Issues:

We divide Sect. 1.5.3 into two subsections: technical issues, the present one, and modelling issues,

Sect. 1.5.3.

Inseparability of Attributes from Parts and Materials:

Parts and materials are typically recognised because of their spatial form and are otherwise characterised

by their intangible, but measurable attributes. That is, whereas endurants, whether discrete (as are parts and

components) or continuous (as are materials), are physical, tangible, in the sense of being spatial [or being

abstractions, i.e., concepts, of spatial endurants], attributes are intangible: cannot normally be touched39, or

39 One can see the red colour of a wall, but one touches the wall.
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seen40, but can be objectively measured41. Thus, in our quest for describing domains where humans play

an active rôle, we rule out subjective “attributes”: feelings, sentiments, moods. Thus we shall abstain, in

our domain science also from matters of aesthetics. We equate all endurants which, besides possible type of

unique identifiers (i.e., excepting materials) and possible type of mereologies (i.e.,, excepting components

and materials), have the same types of attributes, with one sort. Thus removing a quality from an endurant

makes no sense: the endurant of that type either becomes an endurant of another type or ceases to exist

(i.e., becomes a non-entity) !

Attribute Quality and Attribute Value: We distinguish between an attribute (as a logical proposition,

of a name, i.e.) type, and an attribute value, as a value in some value space.

Analysis Prompt 21 attribute types:One can calculate the set of attribute types of parts and mate-

rials with the following domain analysis prompt:

• attribute types

Thus for a part p we may have attribute types(p) = {A1,A2, ...,Am}.

Whether by attribute types(p) we mean the names of the types {A1, A2, ..., Am} for example {ηA1,

ηA2, ..., ηAm} where η is some meta-function which applies to a type and yields its name, or or we mean

the [full] types themselves, i.e., some possibly infinite, suitably structured set of values (of that type), we

shall here leave open !

Attribute Types and Functions:

Let us recall that attributes cover qualities other than unique identifiers and mereology. Let us then consider

that parts and materials have one or more attributes. These attributes are qualities which help characterise

“what it means” to be a part or a material. Note that we expect every part and material to have at least one

attribute. The question is now, in general, how many and, particularly, which.

Domain Description Prompt 6 observe attributes : The domain analyser experiments, thinks and

reflects about part attributes. That process is initiated by the domain description prompt:

• observe attributes.

The result of that domain description prompt is that the domain analyser cum describer writes down

the attribute (sorts or) types and observers domain description text according to the following schema:

6. observe attributes Observer schema

Narration:

[ t ] ... narrative text on attribute sorts ...
[o ] ... narrative text on attribute sort observers ...
[p ] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[ t ] Ai [1≤i≤m ]
value

[o ] attr Ai: P→Ai i:[1..m ]
proof obligation [Disjointness of Attribute Types ]
[p ] PO: let P be any part sort in [the domain description]

40 One cannot see electric current, and one may touch an electric wire, but only if it conducts high voltage can one

know that it is indeed an electric wire.
41 That is, we restrict our domain analysis with respect to attributes to such quantities which are observable, say

by mechanical, electrical or chemical instruments. Once objective measurements can be made of human feelings,

beauty, and other, we may wish to include these “attributes” in our domain descriptions.
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[p ] let a:(A1|A2|...|Am) in is Ai(a) 6= is A j(a) end end [ i 6=i, i,j:[1..m ] ]

The is A j(e) is defined by Ai, i:[1..n].

Let A1, A2, ..., An be the set of all conceivable attributes of parts p:P. (Usually n is a rather large natural

number, say in the order of a hundred conceivable such.) In any one domain model the domain analyser

cum describer selects a modest subset, A1, A2, ..., Am, i.e., m < n. Across many domain models for “more-
or-less the same” domain m varies and the attributes, A1, A2, ..., Am, selected for one model may differ

from those, A′
1, A

′
2, ..., A

′
m′ , chosen for another model.

The type definitions: A1, A2, ..., Am, inform us that the domain analyser has decided to focus on

the distinctly named A1, A2, ..., Am attributes.42 The value clauses attr A1:P→A1, attr A2:P→A2, ...,

attr An:P→An are then “automatically” given: if a part, p:P, has an attribute Ai then there is postulated, “by

definition” [eureka] an attribute observer function attr Ai:P→Ai etcetera

We cannot automatically, that is, syntactically, guarantee that our domain descriptions secure that the

various attribute types for a part sort denote disjoint sets of values. Therefore we must prove it.

Attribute Categories: Michael A. Jackson [144] has suggested a hierarchy of attribute categories: static

or dynamic values – and within the dynamic value category: inert values or reactive values or active values –

and within the dynamic active value category: autonomous values or biddable values or programmable val-

ues. We now review these attribute value types. The review is based on [144, M.A. Jackson]. Part attributes
are either constant or varying, i.e., static or dynamic attributes.

Attribute Category: 1 By a static attribute, a:A, is static attribute(a), we shall understand an

attribute whose values are constants, i.e., cannot change.

Attribute Category: 2 By a dynamic attribute, a:A, is dynamic attribute(a), we shall understand

an attribute whose values are variable, i.e., can change. Dynamic attributes are either inert, reactive or

active attributes.

Attribute Category: 3 By an inert attribute, a:A, is inert attribute(a), we shall understand a

dynamic attribute whose values only change as the result of external stimuli where these stimuli prescribe

new values.

Attribute Category: 4 By a reactive attribute, a:A, is reactive attribute(a), we shall understand

a dynamic attribute whose values, if they vary, change in response to external stimuli, where these stimuli

come from outside the domain of interest.

Attribute Category: 5 By an active attribute, a:A, is active attribute(a), we shall understand a

dynamic attribute whose values change (also) of its own volition. Active attributes are either autonomous,
biddable or programmable attributes.

Attribute Category: 6 By an autonomous attribute, a:A, is autonomous attribute(a), we shall

understand a dynamic active attribute whose values change only “on their own volition”. The values of an

autonomous attributes are a “law onto themselves and their surroundings”.

Attribute Category: 7 By a biddable attribute, a:A, is biddable attribute(a) we shall understand

a dynamic active attribute whose values are prescribed but may fail to be observed as such.

Attribute Category: 8 By a programmable attribute, a:A, is programmable attribute(a), we

shall understand a dynamic active attribute whose values can be prescribed.

Figure 1.6 on the following page captures an attribute value ontology.

42 The attribute type names are not like type names of, for example, a programming language. Instead they are chosen

by the domain analyser to reflect on domain phenomena.
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Fig. 1.6. Attribute Value Ontology

Example 23: Attributes
We treat part attributes, sort by sort. Hubs: We show just a few attributes:

29 There is a hub state. It is a set of pairs, (l f ,lt ) of link identifiers, where these link identifiers are in the
mereology of the hub. The meaning of the hub state, in which, e.g., (l f ,lt) is an element, is that the hub
is open, “green”, for traffic f rom link l f to link lt . If a hub state is empty then the hub is closed, i.e.,
“red” for traffic from any connected links to any other connected links.

30 There is a hub state space. It is a set of hub states. The meaning of the hub state space is that its states
are all those the hub can attain. The current hub state must be in its state space.

31 Since we can think rationally about it, it can be described, hence it can model, as an attribute of hubs a
history of its traffic: the recording, per unique bus and automobile identifier, of the time ordered presence
in the hub of these vehicles.

32 The link identifiers of hub states must be in the set, luis, of the road net’s link identifiers.

type

29 HΣ = (L UI×L UI)-set

axiom

29 ∀ h:H • obs HΣ(h) ∈ obs HΩ(h)
type

30 HΩ = HΣ -set

31 H Traffic
31 H Traffic = (A UI|B UI) →m (T × VPos)∗

axiom

31 ∀ ht:H Traffic,ui:(A UI|B UI) •

31 ui ∈ dom ht ⇒ time ordered(ht(ui))
value

29 attr HΣ : H → HΣ

30 attr HΩ : H → HΩ
31 attr H Traffic: H → H Traffic
axiom

32 ∀ h:H • h ∈ hs ⇒
32 let hσ = attr HΣ(h) in

32 ∀ (luii,liuii
′):(L UI×L UI) •

32 (luii,luii
′) ∈ hσ

32 ⇒ {luii ,l
′
uii
} ⊆ luis end

value

31 time ordered: T ∗ → Bool

31 time ordered(tvpl) ≡ ...

Attributes for remaining sorts are shown in Sect. 1.9.2 on Page 57.
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Calculating Attributes:

33 Given a part p we can meta-linguistically43 calculate names for its static attributes.

34 Given a part p we can meta-linguistically calculate name for its monitorable attributes attributes.

35 Given a part p we can meta-linguistically calculate name for its monitorable and controllable attributes.

36 Given a part p we can meta-linguistically calculate names for its controllable attributes.

37 These three sets make up all the attributes of part p.

The type names nSA, nMA nMCA, nCA designate sets of names.

value

33 stat attr typs: P → nSA-set

34 mon attr typs: P → nMA-set

35 mon ctrl attr typs: P → nMCA-set

36 ctrl attr typs: P → nCA-set

axiom

37 ∀ p:P •

33 let stat nms = stat attr typs(p),
34 mon nms = mon attr typs(p),
35 mon ctrl nms = mon ctrl attr typs(p),
36 ctrl nms = mon ctrl typs(p) in

37 card stat nms + card mon nms + card mon ctrl nms + card ctrl nms
37 = card(stat nms ∪ mon nms ∪ mon ctrl nms ∪ ctrl nms) end

The above formulas are indicative, like mathematical formulas, they are not computable.

38 Given a part p we can meta-linguistically calculate its static attribute values.

39 Given a part p we can meta-linguistically calculate its controllable, i.e., programmable attribute values.

Et cetera for monitorable and monitorable & controllable attribute values.

The type names sa1, ..., cac refer to the types denoted by the corresponding types name nsa1, ..., ncac.

value

38 stat attr vals: P → SA1×SA2×...×SAs
38 stat attr vals(p) ≡ let {nsa1,nsa2,...,nsas}
38 = stat attr typs(p) in (attr sa1(p),attr sa2(p),...,attr sas(p)) end

39 ctrl attr vals: P → CA1×CA2×...×CAc
39 ctrl attr vals(p) ≡ let {nca1,nca2,...,ncac}
39 = ctrl attr typs(p) in (attr ca1(p),attr ca2(p),...,attr cac(p)) end

The “ordering” of type values, (attr sa1(p),...,attr sas(p)), respectively (attr ca1(p),...,attr cac(p)), is

arbitrary.

43 By using the term meta-linguistically here we shall indicate that we go outside what is computable – and thus appeal

to the reader’s forbearance.
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Basic Principles for Ascribing Attributes:

Section 1.5.3 dealt with technical issues of expressing attributes. This section will indicate some modelling

principles.

Natural Parts: are subject to laws of physics. So basic attributes focus on physical (including chemical)

properties. These attributes cover the full spectrum of attribute categories outlined in Sect. 1.5.3.

Materials: are subject to laws of physics. So basic attributes focus on physical, especially chemical prop-

erties. These attributes cover the full spectrum of attribute categories outlined in Sect. 1.5.3.

The next paragraphs, living species, animate entities and humans, reflect Sørlander’s Philosophy

[222, pp 14–182].

• • •

Causality of Purpose: If there is to be the possibility of language and meaning then there must exist

primary entities which are not entirely encapsulated within the physical conditions; that they are stable

and can influence one another. This is only possible if such primary entities are subject to a supplementary
causality directed at the future: a causality of purpose.

Living Species: These primary entities are here called living species. What can be deduced about them ?

They are characterised by causality of purpose: they have some form they can be developed to reach; and

which they must be causally determined to maintain; this development and maintenance must further in an
exchange of matter with an environment. It must be possible that living species occur in one of two forms:

one form which is characterised by development, form and exchange, and another form which, additionally,

can be characterised by the ability to purposeful movements. The first we call plants, the second we call

animals.

Animate Entities: For an animal to purposefully move around there must be “additional conditions” for

such self-movements to be in accordance with the principle of causality: they must have sensory organs

sensing among others the immediate purpose of its movement; they must have means of motion so that it

can move; and they must have instincts, incentives and feelings as causal conditions that what it senses can

drive it to movements. And all of this in accordance with the laws of physics.

Animals: To possess these three kinds of “additional conditions”, must be built from special units which

have an inner relation to their function as a whole; Their purposefulness must be built into their physical

building units, that is, as we can now say, their genomes. That is, animals are built from genomes which give

them the inner determination to such building blocks for instincts, incentives and feelings. Similar kinds

of deduction can be carried out with respect to plants. Transcendentally one can deduce basic principles of

evolution but not its details.

Humans: Consciousness and Learning: The existence of animals is a necessary condition for there being

language and meaning in any world. That there can be language means that animals are capable of develop-
ing language. And this must presuppose that animals can learn from their experience. To learn implies that

animals can feel pleasure and distaste and can learn. One can therefore deduce that animals must possess

such building blocks whose inner determination is a basis for learning and consciousness.

Language: Animals with higher social interaction uses signs, eventually developing a language. These

languages adhere to the same system of defined concepts which are a prerequisite for any description of

any world: namely the system that philosophy lays bare from a basis of transcendental deductions and the

principle of contradiction and its implicit meaning theory. A human is an animal which has a language.

Knowledge: Humans must be conscious of having knowledge of its concrete situation, and as such that

human can have knowledge about what he feels and eventually that human can know whether what he feels

is true or false. Consequently a human can describe his situation correctly.

Responsibility: In this way one can deduce that humans can thus have memory and hence can have

responsibility, be responsible. Further deductions lead us into ethics.
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We shall not develop the theme of living species: plants and animals, thus excluding, most notably humans,

much further in this chapter. We claim that the present chapter, due to its foundation in Kai Sørlander’s Phi-

losophy, provides a firm foundation withing which we, or others, can further develop this theme: analysis
& description of living species.

Intentionality: Intentionality is a philosophical concept and is defined by the Stanford Encyclopedia

of Philosophy44 as “the power of minds to be about, to represent, or to stand for, things, properties and
states of affairs.”

Definition 15 Intentional Pull: Two or more artefactual parts of different sorts, but with overlapping

sets of intents may excert an intentional “pull” on one another

This intentional “pull” may take many forms. Let px : X and py : Y be two parts of different sorts (X ,Y ),

and with common intent, ι . Manifestations of these, their common intent must somehow be subject to
constraints, and these must be expressed predicatively.

Example 24: Intentional Pull

We illustrate the concept of intentional “pull”:

40 automobiles include the intent of ’transport’,

41 and so do hubs and links.

40 attr Intent: A → (’transport’|...)-set

41 attr Intent: H → (’transport’|...)-set

41 attr Intent: L → (’transport’|...)-set

Manifestations of ’transport’ is reflected in automobiles having the automobile position attribute, APos, Item 123

Pg. 59, hubs having the hub traffic attribute, H Traffic, Item 31 Pg. 30, and in links having the link traffic attribute,

L Traffic, Item 115 Pg. 58.

42 Seen from the point of view of an automobile there is its own traffic history, A Hist, which is a (time ordered)

sequence of timed automobile’s positions;

43 seen from the point of view of a hub there is its own traffic history, H Traffic Item 31 Pg. 30, which is a (time

ordered) sequence of timed maps from automobile identities into automobile positions; and

44 seen from the point of view of a link there is its own traffic history, L Traffic Item 115 Pg. 58, which is a (time

ordered) sequence of timed maps from automobile identities into automobile positions.

The intentional “pull” of these manifestations is this:

45 The union, i.e. proper merge of all automobile traffic histories, AllATH, must now be identical to the same

proper merge of all hub, AllHTH, and all link traffic histories, AllLTH.

type

42 A Hi = (T × APos)∗

31 H Trf = A UI →m (T × APos)∗

115 L Trf = A UI→m (T×APos)∗

45 AllATH=T→m (AUI→m APos)
45 AllHTH=T→m (AUI→m APos)
45 AllLTH=T→m (AUI→m APos)
axiom

45 let allA=mrg AllATH({(a,attr A Hi(a))|a:A•a ∈ as}),
45 allH=mrg AllHTH({attr H Trf(h)|h:H•h ∈ hs}),
45 allL=mrg AllLTH({attr L Trf(l)|l:L•h ∈ ls}) in

45 allA = mrg HLT(allH,allL) end

44 Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (https://seop.illc.-

uva.nl/entries/intentionality/) October 15, 2014, retrieved April 3, 2018.
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34 1 Domain Analysis & Description

We leave the definition of the four merge functions to the reader !

Discussion: We endow each automobile with its history of timed positions and each hub and link with their

histories of timed automobile positions. These histories are facts ! They are not something that is laboriously recorded,

where such recordings may be imprecise or cumbersome45 . The facts are there, so we can (but may not necessarily)

talk about these histories as facts. It is in that sense that the purpose (‘transport’) for which man let automobiles,

hubs and link be made with their ‘transport’ intent are subject to an intentional “pull”. It can be no other way: if
automobiles “record” their history, then hubs and links must together “record” identically the same history !.

Artefacts: Humans create artefacts – for a reason, to serve a purpose, that is, with intent. Artefacts are

like parts. They satisfy the laws of physics – and serve a purpose, fulfill an intent.

Assignment of Attributes: So what can we deduce from the above, a little more than two pages ?

The attributes of natural parts and natural materials are generally of such concrete types – express-

ible as some real with a dimension46 of the International System of Units: https://physics.nist.-
gov/cuu/Units/units.html. Attribute values usually enter differential equations and integrals, that is,

classical calculus.

The attributes of humans, besides those of parts, significantly includes one of a usually non-empty set

of intents. In directing the creation of artefacts humans create these with an intent.

Example 25: Intentional Pull
These are examples of human intents: they create roads and automobiles with the intent of transport, they create

houses with the intents of living, offices, production, etc., and they create pipelines with the intent of oil or gas

transport

Human attribute values usually enter into modal logic expressions.

Artefacts, including Man-made Materials: Artefacts, besides those of parts, significantly includes a

usually singleton set of intents.

Example 26: Intents
Roads and automobiles possess the intent of transport; houses possess either one of the intents of living, offices,

production; and pipelines possess the intent of oil or gas transport.

Artefact attribute values usually enter into mathematical logic expressions.

We leave it to the reader to formulate attribute assignment principles for plants and non-human animals.

1.5.4 Some Axioms and Proof Obligations

To remind you, an axiom – in the context of domain analysis & description – means a logical expression,

usually a predicate, that constrains the types and values, including unique identifiers and mereologies of

domain models. Axioms, together with the sort, including type definitions, and the unique identifier, mere-

ology and attribute observer functions, define the domain value spaces. We refer to axioms in Item [a] of

domain description prompts of unique identifiers: 4 on Page 24 and of mereologies: 5 on Page 26.

Another reminder: a proof obligation – in the context of domain analysis & description – means a

logical expression that predicates relations between the types and values, including unique identifiers, mere-

ologies and attributes of domain models, where these predicates must be shown, i.e., proved, to hold. Proof

obligations supplement axioms. We refer to proof obligations in Item [p] of domain description prompts

about endurant sorts: 1 on Page 19, about materials sorts: 3 on Page 23, and about attribute types: 6 on

Page 28.

The difference between expressing axioms and expressing proof obligations is this:

46 Basic units are meter, kilogram, second, Ampere, Kelvin, mole, and candela. Some derived units are: Newton:
kg×m×s−2, W eber: kg×m2 × s−2 ×A−1, etc.
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• We use axioms when our formula cannot otherwise express it simply, but when physical or other

properties of the domain47 dictates property consistency.

• We use proof obligations where necssary constraints are not necessarily physically impossible.

• Proof obligations finally arise in the transition from endurants to perdurants where endurant axioms

become properties that must be proved to hold.

When considering endurants we interpret these as stable, i.e., that although they may have, for example,

programmable attributes, when we observe them, we observe them at any one moment, but we do not
consider them over a time. That is what we turn to next: perdurants. When considering a part with, for ex-

ample, a programmable attribute, at two different instances of time we expect the particular programmable

attribute to enjoy any expressed well-formedness properties. We shall, in Sect. 1.8, see how these pro-

grammable attributes re-occur as explicit behaviour parameters, “programmed” to possibly new values

passed on to recursive invocations of the same behaviour. If well-formedness axioms were expressed for

the part on which the behaviour is based, then a proof obligation arises, one that must show that new values

of the programmed attribute satisfies the part attribute axiom. This is, but one relation between axioms and

proof obligations. We refer to remarks made in the bullet (•) named Biddable Access Page 48.

1.5.5 Discussion of Endurants

Domain descriptions are, as we have already shown, formulated, both informally and formally, by means

of abstract types, that is, by sorts for which no concrete models are usually given. Sorts are made to denote

possibly empty, possibly infinite, rarely singleton, sets of entities on the basis of the qualities defined

for these sorts, whether external or internal. By junk we shall understand that the domain description

unintentionally denotes undesired entities. By confusion we shall understand that the domain description

unintentionally have two or more identifications of the same entity or type. The question is can we formulate
a [formal] domain description such that it does not denote junk or confusion ? The short answer to this is

no ! So, since one naturally wishes “no junk, no confusion” what does one do ? The answer to that is one
proceeds with great care !

1.6 A Transcendental Deduction

1.6.1 An Explanation

It should be clear to the reader that in domain analysis & description we are reflecting on a number of

philosophical issues. First and foremost on those of epistemology, especially ontology. In this section on

a sub-field of epistemology, namely that of a number of issues of transcendental nature, we refer to [139,

Oxford Companion to Philosophy, pp 878–880] [6, The Cambridge Dictionary of Philosophy, pp 807–810]

[92, The Blackwell Dictionary of Philosophy, pp 54–55 (1998)].

Definition 16 Transcendental: By transcendental we shall understand the philosophical notion: the a
priori or intuitive basis of knowledge, independent of experience

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but also determines

rational thought.

Definition 17 Transcendental Deduction: By a transcendental deduction we shall understand the

philosophical notion: a transcendental ”conversion” of one kind of knowledge into a seemingly
different kind of knowledge

47 – examples of such properties are: (i) topologies of the domain makes certain compositions of parts physically

impossible, and (ii) conservation laws of the domain usually dictates that endurants cannot suddenly arise out of

nothing.
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Example 27: Some Transcendental Deductions
We give some intuitive examples of transcendental deductions. They are from the “domain” of programming lan-

guages. There is the syntax of a programming language, and there are the programs that supposedly adhere to this

syntax. Given that, the following are now transcendental deductions. The software tool, a syntax checker, that takes

a program and checks whether it satisfies the syntax, including the statically decidable context conditions, i.e., the

statics semantics – that tool is one of several forms of transcendental deductions; The software tools, an automatic

theorem prover48 and a model checker, for example SPIN [138], that takes a program and some theorem, respec-

tively a Promela statement, and proves, respectively checks, the program correct with respect the theorem, or the

statement. A compiler and an interpreter for any programming language. Yes, indeed, any abstract interpretation

[106, 89] reflects a transcendental deduction: First these examples show that there are many transcendental deduc-

tions. Secondly they show that there is no single-most preferred transcendental deduction.

A transcendental deduction, crudely speaking, is just any abstraction that can be “linked” to another, not

by logical necessity, but by logical (and philosophical) possibility !

Definition 18 Transcendentality: By transcendentality we shall here mean the philosophical notion:

the state or condition of being transcendental

Example 28: Transcendentality

We can speak of a bus in at least three senses:

(i) The bus as it is being "maintained, serviced, refueled";

(ii) the bus as it "speeds" down its route; and

(iii) the bus as it "appears" (listed) in a bus time table.

The three senses are:

(i) as an endurant (here a part),

(ii) as a perdurant (as we shall see a behaviour), and

(iii) as an attribute49

The above example, we claim, reflects transcendentality as follows:

(i) We have knowledge of an endurant (i.e., a part) being an endurant.

(ii) We are then to assume that the perdurant referred to in (ii) is an aspect of the endurant mentioned in (i)

– where perdurants are to be assumed to represent a different kind of knowledge.

(iii)And, finally, we are to further assume that the attribute mentioned in (iii) is somehow related to both (i)

and (ii) – where at least this attribute is to be assumed to represent yet a different kind of knowledge.

In other words: two (i–ii) kinds of different knowledge; that they relate must indeed be based on a priori
knowledge. Someone claims that they relate ! The two statements (i–ii) are claimed to relate transcenden-

tally.50

1.6.2 Classical Transcendental Deductions

We present a few of the transcendental deductions of [222, Kai Sørlander: Introduction to The Philosophy,

2016]

50 – the attribute statement was “thrown” in “for good measure”, i.e., to highlight the issue !
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Space:

[222, pp 154]“The two relations asymmetric and symmetric, by a transcendental deduction, can be given

an interpretation: The relation (spatial) direction is asymmetric; and the relation (spatial) distance is
symmetric. Direction and distance can be understood as spatial relations. From these relations are
derived the relation in-between. Hence we must conclude that primary entities exist in space. Space is

therefore an unavoidable characteristic of any possible world”

Time:

[222, pp 159]“Two different states must necessarily be ascribed different incompatible predicates. But how

can we ensure so ? Only if states stand in an asymmetric relation to one another. This state relation is also

transitive. So that is an indispensable property of any world. By a transcendental deduction we say that

primary entities exist in time. So every possible world must exist in time”

1.6.3 Some Special Notation

The transcendentality that we are referring to is one in which we “translate” endurant descriptions of

parts and their unique identifiers, mereologies and attributes into descriptions of perdurants, i.e., transcen-

dental interpretations of parts as behaviours, part mereologies as channels, and part attributes as attribute
value accesses. The translations referred to above, compile endurant descriptions into RSL+Text. We shall

therefore first explain some aspects of this translation.

Where in the function definition bodies we enclose some RSL+Text, e.g., rsl+ text, in ≪|≫| s, i.e., ≪|
rsl+ text ≫| we mean that text. Where in the function definition bodies we write ≪| rsl+ text ≫| func-
tion expression we mean that rsl+ text concatenated to the RSL+Text emanating from function expression.

Where in the function definition bodies we write ≪|≫| function expression we mean just rsl+ text emanat-

ing from function expression. That is: ≪|≫| function expression ≡ function expression and ≪|≫| ≪|≫| ≡ ≪|≫|
. Where in the function definition bodies we write { ≪| f (x) ≫| | x:RSL+Text} we mean the “expansion”

of the RSL+Text f (x), in arbitrary, linear text order, for appropriate RSL+Texts x.

1.7 Space and Time

This section is a necessary prelude to our treatment of perdurants.

Following Kai Sørlander’s Philosophy we must accept that space and time are rationally potentially

mandated in any domain description. It is, however not always necessary to model space and time. We can

talk about space and time; and when we do, we must model them.

1.7.1 Space

General:

Mathematicians and physicists model space in, for example, the form of Hausdorf (or topological) space51;

or a metric space which is a set for which distances between all members of the set are defined; Those

distances, taken together, are called a metric on the set; a metric on a space induces topological properties

like open and closed sets, which lead to the study of more abstract topological spaces; or Euclidean space,

due to Euclid of Alexandria.

51 Armstrong, M. A. (1983) [1979]. Basic Topology. Undergraduate Texts in Mathematics. Springer. ISBN 0-387-

90839-0.
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Space Motivated Philosophically

Characterisation 9 Indefinite Space: We motivate the concept of indefinite space as follows: [222,

pp 154]“The two relations asymmetric and symmetric, by a transcendental deduction, can be given an

interpretation: The relation (spatial) direction is asymmetric; and the relation (spatial) distance is sym-
metric. Direction and distance can be understood as spatial relations. From these relations are derived
the relation in-between. Hence we must conclude that primary entities exist in space. Space is therefore

an unavoidable characteristic of any possible world”

From the direction and distance relations one can derive Euclidean Geometry.

Characterisation 10 Definite Space: By a definite space we shall understand a space with a definite

metric

There is but just one space. It is all around us, from the inner earth to the farthest galaxy. It is not manifest.

We can not observe it as we observe a road or a human.

Space Types

The Spatial Value:

46 There is an abstract notion of (definite) SPACE(s) of further unanalysable points; and

47 there is a notion of POINT in SPACE.

type

46 SPACE

47 POINT

Space is not an attribute of endurants. Space is just there. So we do not define an observer, observe space.

For us, bound to model mostly artifactual worlds on this earth there is but one space. Although SPACE, as

a type, could be thought of as defining more than one space we shall consider these isomorphic !

Spatial Observers

48 A point observer, observe POINT, is a function which applies to physical endurants, e, and yield a

point, ℓ : POINT.

value

48 observe POINT: E → POINT

1.7.2 Time

Concepts of time52 continue to fascinate thinkers [229, 116, 166, 187, 192, 193, 194, 195, 196, 197, 205]

and [120, Mandrioli et al.].

52 Time:
(i) a moving image of eternity;

(ii) the number of the movement in respect of the before and the after;

(iii) the life of the soul in movement as it passes from one stage of act or experience to another;

(iv) a present of things past: memory, a present of things present: sight, and a present of things future: expectations.

[6, (i) Plato, (ii) Aristotle, (iii) Plotinus, (iv) Augustine].
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Time Motivated Philosophically

Characterisation 11 Indefinite Time: We motivate the abstract notion of time as follows. [222, pp 159]“Two

different states must necessarily be ascribed different incompatible predicates. But how can we ensure so ?

Only if states stand in an asymmetric relation to one another. This state relation is also transitive. So that

is an indispensable property of any world. By a transcendental deduction we say that primary entities exist
in time. So every possible world must exist in time”

Characterisation 12 Definite Time: By a definite time we shall understand an abstract representation

of time such as for example year, month, day, hour, minute, second, et cetera

Example 29: Temporal Notions of Endurants
By temporal notions of endurants we mean time properties of endurants, usually modelled as attributes. Examples

are: (i) the time stamped link traffic, cf. Item 115 on Page 58 and (ii) the time stamped hub traffic, cf. Item 31 on

Page 30.

Time Values

We shall not be concerned with any representation of time. That is, we leave it to the domain analyser cum

describer to choose an own representation [120]. Similarly we shall not be concerned with any representa-

tion of time intervals.53

49 So there is an abstract type Time,

50 and an abstract type TI: TimeInterval.

51 There is no Time origin, but there is a “zero”

TIme interval.

52 One can add (subtract) a time interval to (from)

a time and obtain a time.

53 One can add and subtract two time intervals and

obtain a time interval – with subtraction respect-

ing that the subtrahend is smaller than or equal

to the minuend.

54 One can subtract a time from another time ob-

taining a time interval respecting that the sub-

trahend is smaller than or equal to the minuend.

55 One can multiply a time interval with a real and

obtain a time interval.

56 One can compare two times and two time inter-

vals.

type

49 T

50 TI

value

51 0:TI
52 +,−: T × TI → T

53 +,−: TI × TI
∼
→ TI

54 −: T × T → TI

55 ∗: TI × Real → TI

56 <,≤,=, 6=,≥,>: T × T → Bool

56 <,≤,=, 6=,≥,>: TI × TI → Bool

axiom

52 ∀ t:T • t+0 = t

Temporal Observers

57 We define the signature of the meta-physical time observer.

type

57 T

value

57 record TIME(): Unit → T

53 – but point out, that although a definite time interval may be referred to by number of years, number of days (less

than 365), number of hours (less than 24), number of minutes (less than 60)number of seconds (less than 60), et

cetera, this is not a time, but a time interval.
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The time recorder applies to nothing and yields a time. record TIME() can only occur in action, event and

behavioural descriptions.

Models of Time:

Modern models of time, by mathematicians and physicists evolve around spacetime54 We shall not be con-

cerned with this notion of time. Models of time related to computing differs from those of mathematicians

and physicists in focusing on divergence and convergence, zero (Zenon) time and interleaving time [238]

are relevant in studies of real-time, typically distributed computing systems. We shall also not be concerned

with this notion of time.

Spatial and Temporal Modelling:

It is not always that we are compelled to endow our domain descriptions with those of spatial and/or

temporal properties. In our experimental domain descriptions, for example, [64, 88, 68, 66, 31, 46, 60, 24],

we have either found no need to model space and/or time, or we model them explicitly, using slightly

different types and observers than presented above.

1.7.3 Whither Attributes ?

Are space and time attributes of endurants ? Of course not ! Space and time surround us. Every endurant

is in the one-and-only space we know of. Every endurant is “somewhere” in that space. We represent that

‘somewhere’ by a point in space. Every endurant point can be recorded. And every such recording can be

time-stamped.

1.7.4 Whither Entities ?

Are space and time entities ? Of course not ! They are simply abstract concepts that apply to any entity.

1.8 Perdurants

The main transcendental deduction of this chapter is that of associating with each part a behaviour. This

section shows the details of this association. A main conjecture of this chapter is this:

Perdurants are understood in terms of a notion of time and a notion of state. We covered the notion of

state in Sect. 1.3.7 on Page 17 and time in Sect. 1.7.2 on Page 38.

1.8.1 States, Actors, Actions, Events and Behaviours: A Preview

Example 30: Constants and States
Constants: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58 Let there be given a universe of discourse, rts. It is an example of a state.

From that state we can calculate other states.

59 The set of all hubs, hs.

60 The set of all links, ls.

54 The concept of Spacetime was first “announced” by Hermann Minkowski, 1907–08 – based on work

by Henri Poincaré, 1905–06, https://en.wikisource.org/wiki/Translation: The Fundamental Equa-

tions for Electromagnetic Processes in Moving Bodies
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61 The set of all hubs and links, hls.

62 The set of all bus companies, bcs.

63 The set of all buses, bs.

64 The map from the unique bus company identifiers to the set of all the identifies bus company’s buses, bcuibs.

65 The set of all private automobiles, as.

66 The set of all parts, ps.

value

58 rts:UoD [58]
59 hs:H-set ≡:H-set ≡ obs sH(obs SH(obs RN(rts)))
60 ls:L-set ≡:L-set ≡ obs sL(obs SL(obs RN(rts)))
61 hls:(H|L)-set ≡ hs∪ls

62 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
63 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
64 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

Indexed States: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We shall

67 index bus companies,

68 index buses, and

69 index automobiles

using the unique identifiers of these parts.

type

67 BCui

68 Bui

69 Aui

value

67 ibcs:BCui-set ≡
67 { bcui | bc:BC,bc:BCui:BCui • bc∈bcs∧ui=uid BC(bc) }
68 ibs:Bui-set ≡
68 { bui | b:B,b:Bui:Bui • b∈bs∧ui=uid B(b) }
69 ias:Aui-set ≡
69 { aui | a:A,a:Aui:Aui • a∈as∧ui=uid A(a) }

Actors, Actions, Events, Behaviours and Channels

To us perdurants are further, pragmatically, analysed into actions, events, and behaviours. We shall define

these terms below. Common to all of them is that they potentially change a state. Actions and events are here

considered atomic perdurants. For behaviours we distinguish between discrete and continuous behaviours.

Time Considerations

We shall, without loss of generality, assume that actions and events are atomic and that behaviours are

composite. Atomic perdurants may “occur” during some time interval, but we omit consideration of and

concern for what actually goes on during such an interval. Composite perdurants can be analysed into “con-

stituent” actions, events and “sub-behaviours”. We shall also omit consideration of temporal properties of

behaviours. Instead we shall refer to two seminal monographs: Specifying Systems [153, Leslie Lamport]

and Duration Calculus: A Formal Approach to Real-Time Systems [240, Zhou ChaoChen and Michael

Reichhardt Hansen] (and [30, Chapter 15]). For a seminal book on “time in computing” we refer to the

eclectic [120, Mandrioli et al., 2012]. And for seminal book on time at the epistemology level we refer to

[229, J. van Benthem, 1991].
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Actors

Definition 19 Actor: By an actor we shall understand something that is capable of initiating and/or car-
rying out actions, events or behaviours

The notion of “carrying out” will be made clear in this overall section. We shall, in principle, associate

an actor with each part55. These actors will be described as behaviours. These behaviours evolve around a

state. The state is the set of qualities, in particular the dynamic attributes, of the associated parts and/or any

possible components or materials of the parts.

Discrete Actions

Definition 20 Discrete Action: By a discrete action [234, Wilson and Shpall] we shall understand a

foreseeable thing which deliberately and potentially changes a well-formed state, in one step, usually into

another, still well-formed state, for which an actor can be made responsible

An action is what happens when a function invocation changes, or potentially changes a state.

Discrete Events

Definition 21 Event: By an event we shall understand some unforeseen thing, that is, some ‘not-planned-

for’ “action”, one which surreptitiously, non-deterministically changes a well-formed state into another,

but usually not a well-formed state, and for which no particular domain actor can be made responsible

Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a

time or time interval . The notion of event continues to puzzle philosophers [112, 201, 168, 109, 130, 12,

95, 185, 94].

Discrete Behaviours

Definition 22 Discrete Behaviour: By a discrete behaviour we shall understand a set of sequences of

potentially interacting sets of discrete actions, events and behaviours

Discrete behaviours now become the focal point of our investigation. To every part we associate, by tran-

scendental deduction, a behaviour. We shall express these behaviours as CSP processes [137] For those

behaviours we must therefore establish their means of communication via channels; their signatures; and

their definitions – as translated from endurant parts.

Example 31: Behaviours

In the figure of the Channels example of Page 44 we “symbolically”, i.e., the “...”, show the following parts: each

individual hub, each individual link, each individual bus company, each individual bus, and each individual automo-

bile – and all of these. The idea is that those are the parts for which we shall define behaviours. That figure, however,

and in contrast to Fig. 1.5 on Page 20, shows the composite parts as not containing their atomic parts, but as if they

were “free-standing, atomic” parts. That shall visualise the transcendental interpretation as atomic part behaviours

not being somehow embedded in composite behaviours, but operating concurrently, in parallel

55 This is an example of a transcendental deduction.
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1.8.2 Channels and Communication

We choose to exploit the CSP [137]subset of RSL since CSP is a suitable vehicle for expressing suitably

abstract synchronisation and communication between behaviours.

The mereology of domain parts induces channel declarations.

CSP channels are loss-free. That is: two CSP processes, of which one offers and the other offers to

accept a message do so synchronously and without forgetting that message. If you model actual, so-called

“real-life” communication via queues or allowing “channels” to forget, then you must model that explicitly

in CSP. We refer to [137, 206, 214].

The CSP Story:

CSP processes (models of domain behaviours), Pi,Pj, ...,Pk can proceed in parallel:

P i ‖ P j ‖ ... ‖ P k

Behaviours sometimes synchronise and usually communicate. Synchronisation and communication is ab-

stracted as the sending (ch !m) and receipt (ch ?) of messages, m:M, over channels, ch.

type M
channel ch:M

Communication between (unique identifier) indexed behaviours have their channels modeled as similarly

indexed channels:

out: ch[ idx ]!m
in: ch[ idx ]?
channel {ch[ ide ]:M|ide:IDE}

where IDE typically is some type expression over unique identifier types.

The expression

P i ⌈⌉ P j ⌈⌉ ... ⌈⌉ P k

can be understood as a choice: either P i, or P j, or ... or P k is non-deterministically internally chosen

with no stipulation as to why !

The expression

P i ⌈⌉⌊⌋ P j ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ P k

can be understood as a choice: either P i, or P j, or ... or P k is deterministically externally chosen on

the basis that the one chosen offers to participate in either an input, ch ?, or an output, ch !msg, event. If
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44 1 Domain Analysis & Description

more than one P i offers a communication then one is arbitrarily chosen. If no P i offers a communication

the behaviour halts till some P j offers a communication.

Example 32: Channels

a2:A

a1:Ab11:B

b12:B

b1j:B

bp1:B

bpq:B ar:A

bp2:B

bcp:BCbc1:BC

h1:H

h2:H

hm:H ln:L

l2:L

l1:L

. . . 

hl_ch[*,*]:HL_Msg

v_r_ch[*,*]:V_R_Msg b
c

_
b

_
c

h
[*

,*
]:

B
C

_
B

_
M

s
g

We shall argue for hub-to-link channels based on the mereologies of those parts. Hub parts may be topologically

connected to any number, 0 or more, link parts. Only instantiated road nets knows which. Hence there must be

channels between any hub behaviour and any link behaviour. Vice versa: link parts will be connected to exactly two

hub parts. Hence there must be channels from any link behaviour to two hub behaviours. See the figure above.

Channel Message Types: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We ascribe types to the messages offered on channels.

70 Hubs and links communicate, both ways, with one another, over channels, hl ch, whose indexes are determined

by their mereologies.

71 Hubs send one kind of messages, links another.

72 Bus companies offer timed bus time tables to buses, one way.

73 Buses and automobiles offer their current, timed positions to the road element, hub or link they are on, one way.

type

71 H L Msg, L H Msg
70 HL Msg = H L Msg | L F Msg
72 BC B Msg = T × BusTimTbl
73 V R Msg = T × (BPos|APos)

Channel Declarations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

74 This justifies the channel declaration which is calculated to be:

channel

74 { hl ch[h ui,l ui ]:H L Msg
74 | h ui:H UI,l ui:L UI•i ∈ huis∧j ∈ lhuim(h ui) }
74 ∪
74 { hl ch[h ui,l ui ]:L H Msg
74 | h ui:H UI,l ui:L UI•l ui ∈ luis∧i ∈ lhuim(l ui) }

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus companies need

communicate to all its buses, but not the buses of other bus companies. Buses of a bus company need communicate

to their bus company, but not to other bus companies.

75 This justifies the channel declaration which is calculated to be:

channel

75 { bc b ch[bc ui,b ui ] | bc ui:BC UI, b ui:B UI
75 • bc ui ∈ bcuis ∧ b ui ∈ buis }: BC B Msg
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We shall argue for vehicle to road element channels based on the mereologies of those parts. Buses and automobiles

need communicate to all hubs and all links.

76 This justifies the channel declaration which is calculated to be:

channel

76 { v r ch[v ui,r ui ] | v ui:V UI,r ui:R UI
76 • v ui∈ vuis∧r ui∈ ruis }: V R Msg

The channel calculations are described on Pages 48–50

From Mereologies to Channel Declarations:

The fact that a part, p of sort P with unique identifier pi, has a mereology, for example the set of unique iden-

tifiers {qa,qb, ...,qd} identifying parts {qa,qb, ...,qd} of sort Q, may mean that parts p and {qa,qb, ...,qd}
may wish to exchange – for example, attribute – values, one way (from p to the qs) or the other (vice versa)

or in both directions. Figure 1.7 shows two dotted rectangle box diagrams. The left fragment of the figure

m:j

m:i m:i m:i m:i

m:{j...l}

u:i

u:j u:j u:k u:l

u:i

p:P

q1:Q q2:Q qn:Qq:Q

p:P

1:1 Constallation 1:n Constallation

Parts

..... m:i m:i

.....

.....
m:i m:i

m:j

1:1 Constallation 1:n Constallation

m:{j...l}

Behaviours & Channels

u:i u:i

u:j u:j u:k u:l

ch_PQ[i,j]
ch_PQ[i,k]

ch_PQ[i,l]

c
h

_
P

Q
[i

,j
] 

=
 c

h
_
P

Q

ch_PQ

{ch_PQ[i,x]|x:{j,k,...,l}} = {ch_PQ[x]|x:{j,k,...,l}}

Fig. 1.7. Two Part and Channel Constallations. u:p unique id. p; m:p mereology p

intends to show a 1:1 Constallation of a single p:P box and a single q:Q part, respectively, indicating,

within these parts, their unique identifiers and mereologies. The right fragment of the figure intends to show

a 1:n Constallation of a single p:P box and a set of q:Q parts, now with arrowed lines connecting the

p part with the q parts. These lines are intended to show channels. We show them with two way arrows.

We could instead have chosen one way arrows, in one or the other direction. The directions are intended

to show a direction of value transfer. We have given the same channel names to all examples, ch PQ. We

have ascribed channel message types MPQ to all channels.56 Figure 1.8 shows an arrangement similar to

that of Fig. 1.7, but for an m:n Constallation.

The channel declarations corresponding to Figs. 1.7 and 1.8 are:

channel

[1 ] ch PQ[ i,j ]:MPQ
[2 ] { ch PQ[ i,x ]:MPQ | x:{j,k,...,l} }
[3 ] { ch PQ[p,q ]:MPQ | p:{x,y,...,z}, q:{j,k,...,l} }

Since there is only one index i and j for channel [1], its declaration can be reduced. Similarly there is only

one i for declaration [2]:

56 Of course, these names and types would have to be distinct for any one domain description.
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m:{j...l} m:{j...l} m:{j...l}

m:{x...z} m:{x...z} m:{x...z}

Parts

. . . . .

.....
u:x u:y u:z

u:j u:k u:l

m:{j...l} m:{j...l} m:{j...l}

m:{x...z} m:{x...z} m:{x...z}

...
...

..... ...

...

... ......

Behaviours and Channels

. . . . .

u:x u:y u:z

u:j u:k u:l

{ch_PQ[p,q]|p:{x,y,...,z},q:{j,k,...,l}}

Fig. 1.8. Multiple Part and Channel Arrangements: u:p unique id. p; m:p mereology p

channel

[1 ] ch PQ:MPQ
[2 ] { ch PQ[x ]:MPQ | x:{j,k,...,l} }

77 The following description identities holds:

77 { ch PQ[x ]:MPQ | x:{j,k,...,l} } ≡ ch PQ[ j ],ch PQ[k ],...,ch PQ[ l ],

77 { ch PQ[p,q ]:MPQ | p:{x,y,...,z}, q:{j,k,...,l} } ≡
77 ch PQ[x,j ],ch PQ[x,k ],...,ch PQ[x,l ],
77 ch PQ[y,j ],ch PQ[y,k ],...,ch PQ[y,l ],
77 ...,
77 ch PQ[z,j ],ch PQ[z,k ],...,ch PQ[z,l ]

We can sketch a diagram similar to Figs. 1.7 on the preceding page and 1.8 for the case of composite parts.

Continuous Behaviours:

By a continuous behaviour we shall understand a continuous time sequence of state changes. We shall

not go into what may cause these state changes. And we shall not go into continuous behaviours in this

chapter.

1.8.3 Perdurant Signatures

We shall treat perdurants as function invocations. In our cursory overview of perdurants we shall focus on

one perdurant quality: function signatures.

Definition 23 Function Signature: By a function signature we shall understand a function name and

a function type expression

Definition 24 Function Type Expression: By a function type expression we shall understand a pair

of type expressions. separated by a function type constructor either → (for total function) or
∼
→ (for

partial function)

The type expressions are part sort or type, or material sort or type, or component sort or type, or attribute

type names, but may, occasionally be expressions over respective type names involving -set, ×, ∗, →m and

| type constructors.
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Action Signatures and Definitions:

Actors usually provide their initiated actions with arguments, say of type VAL. Hence the schematic func-

tion (action) signature and schematic definition:

action: VAL → Σ
∼
→ Σ

action(v)(σ) as σ ′

pre: P(v,σ)
post: Q(v,σ ,σ ′)

expresses that a selection of the domain, as provided by the Σ type expression, is acted upon and possibly

changed. The partial function type operator
∼
→ shall indicate that action(v)(σ) may not be defined for

the argument, i.e., initial state σ and/or the argument v:VAL, hence the precondition P(v,σ). The post

condition Q(v,σ ,σ ′) characterises the “after” state, σ ′:Σ , with respect to the “before” state, σ :Σ , and

possible arguments (v:VAL). Which could be the argument values, v:VAL, of actions ? Well, there can

basically be only the following kinds of argument values: parts, components and materials, respectively

unique part identifiers, mereologies and attribute values.

Perdurant (action) analysis thus proceeds as follows: identifying relevant actions, assigning

names to these, delineating the “smallest” relevant state57, ascribing signatures to action functions, and

determining action pre-conditions and action post-conditions. Of these, ascribing signatures is the most

crucial: In the process of determining the action signature one oftentimes discovers that part or component

or material attributes have been left (“so far”) “undiscovered”.

Event Signatures and Definitions:

Events are usually characterised by the absence of known actors and the absence of explicit “external”

arguments. Hence the schematic function (event) signature:

value

event: Σ × Σ
∼
→ Bool

event(σ ,σ ′) as tf
pre: P(σ)
post: tf = Q(σ ,σ ′)

The event signature expresses that a selection of the domain as provided by the Σ type expression is “acted”

upon, by unknown actors, and possibly changed. The partial function type operator
∼
→ shall indicate that

event(σ ,σ ′) may not be defined for some states σ . The resulting state may, or may not, satisfy axioms and

well-formedness conditions over Σ – as expressed by the post condition Q(σ ,σ ′). Events may thus cause

well-formedness of states to fail. Subsequent actions, once actors discover such “disturbing events”, are

therefore expected to remedy that situation, that is, to restore well-formedness. We shall not illustrate this

point.

Discrete Behaviour Signatures

Signatures: We shall only cover behaviour signatures when expressed in RSL/CSP [123]. The behaviour

functions are now called processes. That a behaviour function is a never-ending function, i.e., a process, is

“revealed” by the “trailing” Unit:

behaviour: ... → ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

57 By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain analyser cum

describer should strive for identifying the smallest state.
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behaviour: Unit → ...

That a process accepts channel, viz.: ch, inputs, is “revealed” as follows:

behaviour: ... → in ch ...

That a process offers channel, viz.: ch, outputs is “revealed” as follows:

behaviour: ... → out ch ...

That a process accepts other arguments is “revealed” as follows:

behaviour: ARG → ...

where ARG can be any type expression:

T, T→T, T→T→T, etcetera

where T is any type expression.

Attribute Access, An Interpretation:

We shall only be concerned with part attributes. And we shall here consider them in the context of part

behaviours. Part behaviour definitions embody part attributes.

• Static attributes designate constants. As such they can be “compiled” into behaviour definitions. We

choose, instead to list them as arguments.

• Inert attributes designate values provided by external stimuli, that is, must be obtained by channel

input: attr Inert A ch ?, i.e., are considered monitorable.

• Reactive attributes are functions of other attribute values.

• Autonomous attributes must be input, like inert attributes: attr Autonomous A ch ?, i.e., are con-

sidered monitorable.

• Programmable attribute values are calculated by their behaviours. We list them as behaviour argu-

ments. The behaviour definitions may then specify new values. These are provided in the position of

the programmable attribute arguments in tail recursive invocations of these behaviours.

• Biddable attributes are now considered programmable attributes, but when provided, in possibly tail

recursive invocations of their behaviour, the calculated biddable attribute value is modified, usually by

some perturbation of the calculated value – to reflect that although they are prescribed they may fail to
be observed as such.

Calculating In/Output Channel Signatures:

Given a part p we can calculate the RSL+Text that designates the input channels on which part p behaviour

obtains monitorable attribute values. For each monitorable attribute, A, the text ≪| attr A ch≫| is to be

“generated”. One or more such channel declaration contributions is to be preceded by the text ≪| in ≫|. If

there are no monitorable attributes then no text is t be yielded.

78 The function calc i o chn refs apply to parts and yield RSL+Text.
a From p we calculate its unique identifier value, its mereology value, and its monitorable attribute

values.

b If there the mereology is not void and/or the are monitorable values then a (Currying58) right

pointing arrow, →, is inserted.59

58 https://en.wikipedia.org/wiki/Currying
59 We refer to the three parts of the mereology value as the input, the input/output and the output mereology (values).
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c If there is an input mereology and/or there are monitorable values then the keyword in is inserted

in front of the monitorable attribute values and input mereology.

d Similarly for the input/output mereology;

e and for the output mereology.

value

78 calc i o chn refs: P → RSL+Text
78 calc i o chn refs(p) ≡ ;
78a let ui = uid P(p), (ics,iocs,ocs) = obs mereo (p), atrvs = obs attrib values P(p) in

78b if ics ∪ iocs ∪ ocs ∪ atrvs 6= {} then ≪| → ≫| end ;
78c if ics ∪ atrvs 6={} then ≪| in≫| calc attr chn refs(ui,atrvs), calc chn refs(ui,ichs) end ;
78d if iocs 6={} then ≪| in,out≫| calc chn refs(ui,iochs) end ;
78e if ocs 6={} then ≪| out≫| calc chn refs(ui,ochs) end end

79 The function calc attr chn refs
a apply to a set, mas, of monitorable attribute types and yield RSL+Text.
b If achs is empty no text is generated. Otherwise a channel declaration attr A ch is generated for

each attribute type whose name, A, which is obtained by applying η to an observed attribute value,

ηa.

79a calc attr chn refs: UI × A-set → RSL+Text
79b calc attr chn refs(ui,mas) ≡ { ≪| attr ηa ch[ui ] ≫| | a:A•a ∈ mas }

80 The function calc chn refs
a apply to a pair, (ui,uis) of a unique part identifier and a set of unique part identifiers and yield

RSL+Text.
b If uis is empty no text is generated. Otherwise an array channel declaration is generated.

80a calc chn refs: P UI × Q UI-set → RSL+Text
80b calc chn refs(pui,quis) ≡ { ≪| η(pui,qui) ch[pui,qui ] ≫| | qui:Q UI•qui ∈ quis }

81 The function calc all chn dcls
a apply to a pair, (pui,quis) of a unique part identifier and a set of unique part identifiers and yield

RSL+Text.
b If quis is empty no text is generated. Otherwise an array channel declaration

• { ≪| η(pui,qui) ch[pui,qui ]:η(pui,qui)M ≫| | qui:Q UI•qui ∈ quis }
is generated.

81a calc all chn dcls: P UI × Q UI-set → RSL+Text
81a calc all chn dcls(pui,quis) ≡ { ≪| η(pui,qui) ch[pui,qui ]:η(pui,qui)M ≫| | qui:Q UI•qui ∈ quis }

The η(pui,qui) invocation serves to prefix-name both the channel, η(pui,qui) ch[pui,qui ], and the channel

message type, η(pui,qui)M.

82 The overloaded η operator60 is here applied to a pair of unique identifiers.

82 η : (UI → RSL+Text)|((X UI×Y UI) → RSL+Text)
82 η(x ui,y ui) ≡ (≪|(η x uiη y ui≫|))

Repeating these channel calculations over distinct parts p1,p2,...,pn of the same part type P will yield

“similar” behaviour signature channel references:

60 The η operator applies to a type and yields the ηame of the type.
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{PQ ch[p1ui
,qui ]|p1ui

:P UI,qui:Q UI•qui ∈ quis}
{PQ ch[p2ui

,qui ]|p2ui
:P UI,qui:Q UI•qui ∈ quis}

...
{PQ ch[pnui

,qui ]|pnui
:P UI,qui:Q UI•qui ∈ quis}

These distinct single channel references can be assembled into one:

{ PQ ch[pui,qui ] | pui:P UI,qui:Q UI : −pui ∈ puis,qui ∈ quis }
where puis = { p1ui

,p2ui
,...,pnui

}

As an example we have already calculated the array channels for Fig. 1.8 Pg. 46– cf. the left, the Parts, of

that figure – cf. Items [1–3] Pages 45–46.The identities Item 77 Pg. 46 apply.

1.8.4 Discrete Behaviour Definitions

We associate with each part, p:P, a behaviour name M P. Behaviours have as first argument their unique

part identifier: uid P(p). Behaviours evolves around a state, or, rather, a set of values: its possibly changing

mereology, mt:MT and the attributes of the part.61 A behaviour signature is therefore:

M P: ui:UI×me:MT×stat attr typs(p) → ctrl attr typs(p) → calc i o chn refs(p) Unit

where (i) ui:UI is the unique identifier value and type of part p; (ii) me:MT is the value and type mere-

ology of part p, me = obs mereo P(p); (iii) stat attr typs(p): static attribute types of part p:P; (iv)

ctrl attr typs(p): controllable attribute types of part p:P; (v) calc i o chn refs(p) calculates references

to the input, the input/output and the output channels serving the attributes shared between part p and the

parts designated in its mereology me. Let P be a composite sort defined in terms of endurant62 sub-sorts

E1, E2, . . . , En. The behaviour description translated from p:P, is composed from a behaviour description,

M P, relying on and handling the unique identifier, mereology and attributes of part p to be translated with

behaviour descriptions β1,β2, . . . ,βn where β1 is translated from e1:E1, β2 is translated from e2:E2, ..., and

βn is translated from en:En. The domain description translation schematic below “formalises” the above.

Abstract is composite(p) Behaviour schema

value

TranslateP: P → RSL+Text
TranslateP(p) ≡

let ui = uid P(p), me = obs mereo P(p),
sa = stat attr vals(p), ca = ctrl attr vals(p),
MT = mereo type(p), ST = stat attr typs(p), CT = ctrl attr typs(p),
IOR = calc i o chn refs(p), IOD = calc all ch dcls(p) in

≪| channel

IOD
value

M P: P UI × MT × ST CT IOR Unit

M P(ui,me,sta)(pa) ≡ BP(ui,me,sta)ca
,≫| TranslateP1

(obs endurant sorts E1(p))
≪|,≫| TranslateP2

(obs endurant sorts E2(p))
≪|,≫| ...
≪|,≫| TranslatePn(obs endurant sorts En(p))

end

61 We leave out consideration of possible components and materials of the part.
62 – structures or composite
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Expression BP(ui,me,sta,pa) stands for the behaviour definition body in which the names ui, me, sta, pa
are bound to the behaviour definition head, i.e., the left hand side of the ≡. Endurant sorts E1, E2, ..., En

are obtained from the observe endurant sorts prompt, Page 19. We informally explain the TranslatePi

function. It takes endurants and produces RSL+Text. Resulting texts are bracketed: ≪| rsl text≫|.

Example 33: Signatures
We first decide on names of behaviours. In Sect. 1.8.4, Pages 50–53, we gave schematic names to behaviours of the

form M P. We now assign mnemonic names: from part names to names of transcendentally interpreted behaviours

and then we assign signatures to these behaviours.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

83 hubhui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first those allowing communication between hub

and link behaviours,

d and then those allowing communication between hub and vehicle (bus and automobile) behaviours.

value

83 hubhui
:

83a h ui:H UI×(vuis,luis, ):H Mer×HΩ
83b → (HΣ×H Traffic)
83c → in,out { h l ch[h ui,l ui ] | l ui:L UI•l ui ∈ luis }
83d { ba r ch[h ui,v ui ] | v ui:V UI•v ui∈vuis } Unit

83a pre: vuis = vuis ∧ luis = luis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84 linklui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first those allowing communication between hub

and link behaviours,

d and then those allowing communication between link and vehicle (bus and automobile) behaviours.

value

84 linklui
:

84a l ui:L UI×(vuis,huis, ):L Mer×LΩ
84b → (LΣ×L Traffic)
84c → in,out { h l ch[h ui,l ui ] | h ui:H UI:h ui ∈ huis }
84d { ba r ch[ l ui,v ui ] | v ui:(B UI|A UI)•v ui∈vuis } Unit

84a pre: vuis = vuis ∧ huis = huis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

85 bus companybcui
:

a there is here just a “doublet” of arguments: unique identifier and mereology;

b then there is the one programmable attribute;

c and finally there are the input/output channel references allowing communication between the bus company

and buses.

value

85 bus companybcui
:

85a bc ui:BC UI×( , ,buis):BC Mer
85b → BusTimTbl
85c in,out {bc b ch[bc ui,b ui ]|b ui:B UI•b ui∈buis} Unit
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85a pre: buis = buis ∧ huis = huis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86 busbui
:

a there is here just a “doublet” of arguments: unique identifier and mereology;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first the input/output allowing communication

between the bus company and buses,

d and the input/output allowing communication between the bus and the hub and link behaviours.

value

86 busbui
:

86a b ui:B UI×(bc ui, ,ruis):B Mer
86b → (LN × BTT × BPOS)
86c → out bc b ch[bc ui,b ui ],
86d {ba r ch[ r ui,b ui ]|r ui:(H UI|L UI)•ui∈vuis} Unit

86a pre: ruis = ruis ∧ bc ui ∈ bcuis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87 automobileaui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b then there is the one programmable attribute;

c and finally there are the input/output channel references allowing communication between the automobile

and the hub and link behaviours.

value

87 automobileaui
:

87a a ui:A UI×( , ,ruis):A Mer×rn:RegNo
87b → apos:APos
87c in,out {ba r ch[a ui,r ui ]|r ui:(H UI|L UI)•r ui∈ruis} Unit

87a pre: ruis = ruis ∧ a ui ∈ auis

For the case that an endurant is a structure there is only its elements to compile; otherwise Schema 2 is as

Schema 1.

Abstract is structure(e) Behaviour schema

value

TranslateE(e) ≡
TranslateE1

(obs endurant sorts E1(e))
≪|,≫| TranslateE2

(obs endurant sorts E2(e))
≪|,≫| ...
≪|,≫| TranslateEn(obs endurant sorts En(e))

Let P be a composite sort defined in terms of the concrete type Q-set. The process definition compiled

from p:P, is composed from a process, M P, relying on and handling the unique identifier, mereology and

attributes of process p as defined by P operating in parallel with processes q:obs part Qs(p). The domain

description “compilation” schematic below “formalises” the above.

Concrete is composite(p) Behaviour schema

type

Qs = Q-set
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value

qs:Q-set = obs part Qs(p)
TranslateP(p) ≡

let ui = uid P(p), me = obs mereo P(p),
sa = stat attr vals(p), ca = ctrl attr vals(p)
ST = stat attr typs(p), CT = ctrl attr typs(p),
IOR = calc i o chn refs(p), IOD = calc all ch dcls(p) in

≪| channel

IOD
value

M P: P UI×MT×ST CT IOR Unit

M P(ui,me,sa)ca ≡ BP(ui,me,sa)ca ≫|
{ ≪| ,≫| TranslateQ(q)|q:Q•q ∈ qs }

end

Atomic is atomic(p) Behaviour schema

value

TranslateP(p) ≡
let ui = uid P(p), me = obs mereo P(p),

sa = stat attr vals(p), ca = ctrl attr vals(p),
ST = stat attr typs(p), CT = ctrl attr typs(p),
IOR = calc i o chn refs(p), IOD = calc all chs(p) in

≪| channel

IOD
value

MP: P UI×MT×ST PT IOR Unit

MP(ui,me,sa)ca ≡ BP(ui,me,sa)ca ≫|
end

The core processes can be understood as never ending, “tail recursively defined” processes:

Core Behaviour schema

BP: uid:P UI×me:MT×sa:SA → ct:CT → in in chns(p) in,out in out chns(me) Unit

BP(p)(ui,me,sa)(ca) ≡ let (me′,ca′) = FP(ui,me,sa)ca in M P(ui,me′,sa)ca′ end

FP: P UI×MT×ST → CT→ in out chns(me) → MT×CT

We refer to [67, Process Schema V: Core Process (II), Page 40] for possible forms of FP.

Example 34: Automobile Behaviour (at a hub)
We define the behaviours in a different order than the treatment of their signatures. We “split” definition of the

automobile behaviour into the behaviour of automobiles when positioned at a hub, and into the behaviour automo-
biles when positioned at on a link. In both cases the behaviours include the “idling” of the automobile, i.e., its “not

moving”, standing still.

88 We abstract automobile behaviour at a Hub (hui).
89 The vehicle remains at that hub, “idling”,

90 informing the hub behaviour,

91 or, internally non-deterministically,
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a moves onto a link, tli, whose “next” hub, identified by th ui, is obtained from the mereology of the link

identified by tl ui;
b informs the hub it is leaving and the link it is entering of its initial link position,

c whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning (0) of that link,

92 or, again internally non-deterministically,

93 the vehicle “disappears — off the radar” !

88 automobileaui
(a ui,({},(ruis,vuis),{}),rn)

88 (apos:atH(fl ui,h ui,tl ui)) ≡
89 (ba r ch[a ui,h ui ] ! (record TIME(),atH(fl ui,h ui,tl ui));
90 automobileaui

(a ui,({},(ruis,vuis),{}),rn)(apos))
91 ⌈⌉
91a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in

91a assert: fh ui=h ui ∧ ruis=ruis′

88 let onl = (tl ui,h ui,0,th ui) in

91b (ba r ch[a ui,h ui ] ! (record TIME(),onL(onl)) ‖
91b ba r ch[a ui,tl ui ] ! (record TIME(),onL(onl))) ;
91c automobileaui

(a ui,({},(ruis,vuis),{}),rn)
91c (onL(onl)) end end)
92 ⌈⌉
93 stop

Section 1.9.3 presents the definition of the remaining automobile, hub, link, bus company and bus be-

haviours.

1.8.5 Running Systems

It is one thing to define the behaviours corresponding to all parts, whether composite or atomic. It is another

thing to specify an initial configuration of behaviours, that is, those behaviours which “start” the overall

system behaviour. The choice as to which parts, i.e., behaviours, are to represent an initial, i.e., a start

system behaviour, cannot be “formalised”, it really depends on the “deeper purpose” of the system. In

other words: requires careful analysis and is beyond the scope of the present chapter.
Example 34: Initial System

Initial States: We recall the hub, link, bus company, bus and the automobile states first mentioned in
Sect. 1.3.7 Page 17.

value

59 hs:H-set ≡ ≡ obs sH(obs SH(obs RN(rts)))
60 ls:L-set ≡ ≡ obs sL(obs SL(obs RN(rts)))
62 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
63 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
65 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

Starting Initial Behaviours: We are reaching the end of this domain modelling example. Behind us there
are narratives and formalisations1 Pg. 19 – 137 Pg. 62.Based on these we now express the signature and the
body of the definition of a “system build and execute” function.

94 The system to be initialised is
a the parallel composition (‖) of
b the distributed parallel composition (‖{...|...}) of
c all the hub behaviours,
d all the link behaviours,
e all the bus company behaviours,
f all the bus behaviours, and
g all the automobile behaviours.
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value

94 initial system: Unit → Unit

94 initial system() ≡
94c ‖ { hubhui

(h ui,me,hω)(htrf,hσ)
94c | h:H•h ∈ hs,
94c h ui:H UI•h ui=uid H(h),
94c me:HMetL•me=mereo H(h),
94c hω:HΩ •hω=attr HΩ(h),
94c htrf:H Traffic•htrf=attr H Traffic H(h),
94c hσ :HΣ •hσ=attr HΣ(h)∧hσ ∈ hω

94c }

94a ‖
94d ‖ { linklui

(l ui,me,lω)(ltrf,lσ)
94d l:L•l ∈ ls,
94d l ui:L UI•l ui=uid L(l),
94d me:LMet•me=mereo L(l),
94d lω:LΩ •lω=attr LΩ(l),
94d ltrf:L Traffic•ltrf=attr L Traffic H(l),
94d lσ :LΣ •lσ=attr LΣ(l)∧lσ ∈ lω
94d }

94a ‖
94e ‖ { bus companybcui

(bcui,me)(btt)
94e bc:BC•bc ∈ bcs,
94e bc ui:BC UI•bc ui=uid BC(bc),
94e me:BCMet•me=mereo BC(bc),
94e btt:BusTimTbl•btt=attr BusTimTbl(bc)
94e }

94a ‖
94f ‖ { busbui

(b ui,me)(ln,btt,bpos)
94f b:B•b ∈ bs,
94f b ui:B UI•b ui=uid B(b),
94f me:BMet•me=mereo B(b),
94f ln:LN:pln=attr LN(b),
94f btt:BusTimTbl•btt=attr BusTimTbl(b),
94f bpos:BPos•bpos=attr BPos(b)
94f }

94a ‖
94g ‖ { automobileaui

(a ui,me,rn)(apos)
94g a:A•a ∈ as,
94g a ui:A UI•a ui=uid A(a),
94g me:AMet•me=mereo A(a),
94g rn:RegNo•rno=attr RegNo(a),
94g apos:APos•apos=attr APos(a)
94g }
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1.8.6 Concurrency: Communication and Synchronisation

Process Schemas I, II, III and V (Pages 50, 52, 52 and 53), reveal that two or more parts, which temporally

coexist (i.e., at the same time), imply a notion of concurrency . Process Schema IV, Page 53, through the

RSL/CSP language expressions ch ! v and ch ?, indicates the notions of communication and synchronisa-
tion . Other than this we shall not cover these crucial notion related to parallelism .

1.8.7 Summary and Discussion of Perdurants

The most significant contribution of Sect. 1.8 has been to show that for every domain description there

exists a normal form behaviour — here expressed in terms of a CSP process expression.

Summary

We have proposed to analyse perdurant entities into actions, events and behaviours – all based on notions

of state and time. We have suggested modelling and abstracting these notions in terms of functions with

signatures and pre-/post-conditions. We have shown how to model behaviours in terms of CSP (commu-

nicating sequential processes). It is in modelling function signatures and behaviours that we justify the

endurant entity notions of parts, unique identifiers, mereology and shared attributes.

Discussion

The analysis of perdurants into actions, events and behaviours represents a choice. We suggest skeptical

readers to come forward with other choices.

1.9 The Example Concluded

Example 34:

1.9.1 Unique Identifier Concepts

We define a few concepts related to unique identification.

Extract Parts from Their Unique Identifiers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95 From the unique identifier of a part we can retrieve, ℘, the part having that identifier.

type

95 P = H | L | BC | B | A
value

95 ℘: H UI→H | L UI→L | BC UI→BC | B UI→B | A UI→A
95 ℘(ui) ≡ let p:(H|L|BC|B|A)•p∈ps∧uid P(p)=ui in p end

Unique Identifier Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can calculate:

96 the set, huis, of unique hub identifiers;
97 the set, luis, of unique link identifiers;
98 the map, hluim, from unique hub identifiers to the set of unique link iidentifiers of the links connected to the zero,

one or more identified hubs,
99 the map, lhuim, from unique link identifiers to the set of unique hub iidentifiers of the two hubs connected to the

identified link;
100 the set, ruis, of all unique hub and link, i.e., road identifiers;
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101 the set, bcuis, of unique bus company identifiers;
102 the set, buis, of unique bus identifiers;
103 the set, auis, of unique private automobile identifiers;
104 the set, vuis, of unique bus and automobile, i.e., vehicle identifiers;
105 the map, bcbuim, from unique bus company identifiers to the set of its unique bus identifiers; and
106 the (bijective) map, bbcuibm, from unique bus identifiers to their unique bus company identifiers.

96 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}
97 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}
100 ruis:R UI-set ≡ huis∪luis

98 hluim:(H UI→m L UI-set) ≡
98 [h ui7→luis|h ui:H UI,luis:L UI-set•h ui∈huis

98 ∧( ,luis, )=mereo H(η(h ui)) ] [cf. Item 22]
99 lhuim:(L+UI→m H UI-set) ≡
99 [ l ui7→huis [cf. Item 23]
99 | h ui:L UI,huis:H UI-set • l ui∈luis

99 ∧ ( ,huis, )=mereo L(η(l ui)) ]
101 bcuis:BC UI-set ≡ {uid BC(bc)|bc:BC•bc ∈ bcs}
102 buis:B UI-set ≡ ∪{uid B(b)|b:B•b ∈ bs}
103 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}
104 vuis:V UI-set ≡ buis ∪ auis

105 bcbuim:(BC UI→m B UI-set) ≡
105 [ bc ui 7→ buis
105 | bc ui:BC UI, bc:BC •

105 bc∈bcs ∧ bc ui=uid BC(bc)
105 ∧ ( , ,buis)=mereo BC(bc) ]
106 bbcuibm:(B UI→m BC UI) ≡
106 [ b ui 7→ bc ui
106 | b ui:B UI,bc ui:BC ui •

106 bc ui=dombcbuim∧b ui∈bcbuim(bc ui) ]

Uniqueness of Part Identifiers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We refer to Sect. 1.5.4 Pg. 34. We must express the following axioms:

107 All hub identifiers are distinct.

108 All link identifiers are distinct.

109 All bus company identifiers are distinct.

110 All bus identifiers are distinct.

111 All private automobile identifiers are distinct.

112 All part identifiers are distinct.

107 card hs = card huis

108 card ls = card luis

109 card bcs = card bcuis

110 card bs = card buis

111 card as = card auis

112 card {huis∪luis∪bcuis∪buis∪auis}
112 = card huis+card luis+card bcuis+card buis+card auis

1.9.2 Further Transport System Attributes

Links: We show just a few attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

113 There is a link state. It is a set of pairs, (h f ,ht), of distinct hub identifiers, where these hub identifiers are in the

mereology of the link. The meaning of a link state in which (h f ,ht) is an element is that the link is open, “green”,

for traffic f rom hub h f to hub ht . Link states can have either 0, 1 or 2 elements.
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114 There is a link state space. It is a set of link states. The meaning of the link state space is that its states are all those

the which the link can attain. The current link state must be in its state space. If a link state space is empty then

the link is (permanently) closed. If it has one element then it is a one-way link. If a one-way link, l, is imminent

on a hub whose mereology designates that link, then the link is a “trap”, i.e., a “blind cul-de-sac”.

115 Since we can think rationally about it, it can be described, hence it can model, as an attribute of links a history

of its traffic: the recording, per unique bus and automobile identifier, of the time ordered positions along the link

(from one hub to the next) of these vehicles.

116 The hub identifiers of link states must be in the set, huis, of the road net’s hub identifiers.

type

113 LΣ = H UI-set [programmable, Df.8 Pg.29]
axiom

113 ∀ lσ :LΣ •card lσ=2
113 ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
type

114 LΩ = LΣ -set [static, Df.1 Pg.29]
115 L Traffic [programmable, Df.8 Pg.29]
115 L Traffic = (A UI|B UI) →m (T×(H UI×Frac×H UI))∗

115 Frac = Real, axiom frac:Fract • 0<frac<1
value

113 attr LΣ : L → LΣ
114 attr LΩ : L → LΩ

115 attr L Traffic: : → L Traffic
axiom

115 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht
115 ⇒ time ordered(ht(ui))

116 ∀ l:L • l ∈ ls ⇒
116 let lσ = attr LΣ(l) in

116 ∀ (huii,huii
′):(H UI×K UI) •

116 (huii,huii
′) ∈ lσ ⇒ {huii ,h

′
uii
} ⊆ huis end

Bus Companies: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bus companies operate a number of lines that service passenger transport along routes of the road net. Each line being

serviced by a number of buses.

117 Bus companies create, maintain, revise and distribute [to the public (not modeled here), and to buses] bus time

tables, not further defined.

type

117 BusTimTbl [programmable, Df.8 Pg.29]
value

117 attr BusTimTbl: BC → BusTimTbl

There are two notions of time at play here: the indefinite “real” or “actual” time; and the definite calendar, hour, minute

and second time designation occurring in some textual form in, e.g., time tables.

Buses: We show just a few attributes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

118 Buses run routes, according to their line number, ln:LN, in the

119 bus time table, btt:BusTimTbl obtained from their bus company, and and keep, as inert attributes, their segment

of that time table.

120 Buses occupy positions on the road net:

a either at a hub identified by some h ui,
b or on a link, some fraction, f:Fract, down an identified link, l ui, from one of its identified connecting hubs,

fh ui, in the direction of the other identified hub, th ui.
121 Et cetera.
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type

118 LN [programmable, Df.8 Pg.29]
119 BusTimTbl [inert, Df.3 Pg.29]
120 BPos == atHub | onLink [programmable, Df.8 Pg.29]
120a atHub :: h ui:H UI
120b onLink :: fh ui:H UI×l ui:L UI×frac:Fract×th ui:H UI
120b Fract = Real, axiom frac:Fract • 0<frac<1
121 ...
value

119 attr BusTimTbl: B → BusTimTbl
120 attr BPos: B → BPos

Private Automobiles: We show just a few attributes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We illustrate but a few attributes:

122 Automobiles have static number plate registration numbers.
123 Automobiles have dynamic positions on the road net:

[120a] either at a hub identified by some h ui,
[120b] or on a link, some fraction, frac:Fract down an identified link, l ui, from one of its identified connecting

hubs, fh ui, in the direction of the other identified hub, th ui.

type

122 RegNo [static, Df.1 Pg.29]
123 APos == atHub | onLink [programmable, Df.8 Pg.29]
120a atHub :: h ui:H UI
120b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI
120b Fract = Real, axiom frac:Fract • 0<frac<1
value

122 attr RegNo: A → RegNo
123 attr APos: A → APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or backward movement,

turning right, left or going straight, etc. The acceleration, deceleration, even velocity, or turning right, turning left,

moving straight, or forward or backward are seen as command actions. As such they denote actions by the automobile

— such as pressing the accelerator, or lifting accelerator pressure or braking, or turning the wheel in one direction

or another, etc. As actions they have a kind of counterpart in the velocity, the acceleration, etc. attributes.

Discussion:

Observe that bus companies each have their own distinct bus time table, and that these are modeled as
programmable, Item 117 on the facing page, Page 58. Observe then that buses each have their own distinct
bus time table, and that these are model-led as inert, Item 119 on the preceding page, Page 58. In Items 133–
134b Pg. 61 we shall see how the buses communicate with their respective bus companies in order for the buses
to obtain the programmed bus time tables “in lieu” of their inert one ! In Items 31 Pg. 30 and 115 Pg. 58, we
illustrated an aspect of domain analysis & description that may seem, and at least some decades ago would
have seemed, strange: namely that if we can think, hence speak, about it, then we can model it “as a fact”
in the domain. The case in point is that we include among hub and link attributes their histories of the timed
whereabouts of buses and automobiles.63

1.9.3 Behaviours

Automobile Behaviour (on a link) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124 We abstract automobile behaviour on a Link.

63 In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so strange: We

now know, at least in principle, of technologies that can record approximations to the hub and link traffic attributes.
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a Internally non-deterministically, either

i the automobile remains, “idling”, i.e., not moving, on the link,

ii however, first informing the link of its position,

b or

i if if the automobile’s position on the link has not yet reached the hub, then

1 then the automobile moves an arbitrary small, positive Real-valued increment along the link

2 informing the hub of this,

3 while resuming being an automobile ate the new position, or

ii else,

1 while obtaining a “next link” from the mereology of the hub (where that next link could very well

be the same as the link the vehicle is about to leave),

2 the vehicle informs both the link and the imminent hub that it is now at that hub, identified by th ui,
3 whereupon the vehicle resumes the vehicle behaviour positioned at that hub;

c or

d the vehicle “disappears — off the radar” !

124 automobileaui
(a ui,({},ruis,{}),rno)

124 (vp:onL(fh ui,l ui,f,th ui)) ≡
124(a)ii (ba r ch[thui,aui ]!atH(lui,thui,nxt lui) ;
124(a)i automobileaui

(a ui,({},ruis,{}),rno)(vp))
124b ⌈⌉
124(b)i (if not yet at hub(f)
124(b)i then

124(b)i1 (let incr = increment(f) in

88 let onl = (tl ui,h ui,incr,th ui) in

124(b)i2 ba−r ch[ l ui,a ui ] ! onL(onl) ;
124(b)i3 automobileaui

(a ui,({},ruis,{}),rno)
124(b)i3 (onL(onl))
124(b)i end end)
124(b)ii else

124(b)ii1 (let nxt lui:L UI•nxt lui ∈ mereo H(℘(th ui)) in

124(b)ii2 ba r ch[thui,aui ]!atH(l ui,th ui,nxt lui) ;
124(b)ii3 automobileaui

(a ui,({},ruis,{}),rno)
124(b)ii3 (atH(l ui,th ui,nxt lui)) end)
124(b)i end)
124c ⌈⌉
124d stop

124(b)i1 increment: Fract → Fract

Hub Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . We model the hub behaviour vis-a-vis vehicles: buses and automobiles.

125 The hub behaviour

a non-deterministically, externally offers

b to accept timed vehicle positions —

c which will be at the hub, from some vehicle, v ui.
d The timed vehicle hub position is appended to the front of that vehicle’s entry in the hub’s traffic table;

e whereupon the hub proceeds as a hub behaviour with the updated hub traffic table.

f The hub behaviour offers to accept from any vehicle.

g A post condition expresses what is really a proof obligation: that the hub traffic, ht′ satisfies the axiom of

the endurant hub traffic attribute Item 31 Pg. 30.

value

125 hubhui
(h ui,(,(luis,vuis)),hω)(hσ ,ht) ≡

125a ⌈⌉⌊⌋
125b { let m = ba r ch[h ui,v ui ] ? in

125c assert: m=( ,atHub( ,h ui, ))
125d let ht′ = ht † [h ui 7→ 〈m〉̂ht(h ui) ] in
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125e hubhui
(h ui,(,(luis,vuis)),(hω))(hσ ,ht′)

125f | v ui:V UI•v ui∈vuis end end }
125g post: ∀ v ui:V UI•v ui ∈ dom ht′⇒time ordered(ht′(v ui))

Link Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126 The link behaviour non-deterministically, externally offers

127 to accept timed vehicle positions —

128 which will be on the link, from some vehicle, v ui.
129 The timed vehicle link position is appended to the front of that vehicle’s entry in the link’s traffic table;

130 whereupon the link proceeds as a link behaviour with the updated link traffic table.

131 The link behaviour offers to accept from any vehicle.

132 A post condition expresses what is really a proof obligation: that the link traffic, lt′ satisfies the axiom of the

endurant link traffic attribute Item 115 Pg. 58.

126 linklui
(l ui,( ,(huis,vuis), ),lω)(lσ ,lt) ≡

126 ⌈⌉⌊⌋
127 { let m = ba r ch[ l ui,v ui ] ? in

128 assert: m=( ,onLink( ,l ui, , ))
129 let lt′ = lt † [ l ui 7→ 〈m〉 l̂t(l ui) ] in

130 linklui
(l ui,(huis,vuis),hω)(hσ ,lt′)

131 | v ui:V UI•v ui∈vuis end end }
132 post: ∀ v ui:V UI•v ui ∈ dom lt′⇒time ordered(lt′(v ui))

Bus Company Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We model bus companies very rudimentary. Bus companies keep a fleet of buses. Bus companies create, maintain,

distribute bus time tables. Bus companies deploy their buses to honor obligations of their bus time tables. We shall

basically only model the distribution of bus time tables to buses. We shall not cover other aspects of bus company

management, etc.

133 Bus companies non-deterministically, internally, chooses among

a updating their bus time tables

b whereupon they resume being bus companies, albeit with a new bus time table;

134 “interleaved” with

a offering the current time-stamped bus time table to buses which offer willingness to received them

b whereupon they resume being bus companies with unchanged bus time table.

85 bus companybcui
(bcui,( ,buis, ))(btt) ≡

133a (let btt′ = update(btt,...) in

133b bus companybcui
(bcui,( ,buis, ))(btt′) end )

134 ⌈⌉
134a ( ⌈⌉⌊⌋ {bc b ch[bc ui,b ui ] ! btt | b ui:B UI•b ui∈buis
134b bus companybcui

(bcui,( ,buis, ))(record TIME(),btt) } )

We model the interface between buses and their owning companies — as well as the interface between buses and the

road net, the latter by almost “carbon-copying” all elements of the automobile behaviour(s).

135 The bus behaviour chooses to either

a accept a (latest) time-stamped buss time table from its bus company –

b where after it resumes being the bus behaviour now with the updated bus time table.

136 or, non-deterministically, internally,

a based on the bus position

i if it is at a hub then it behaves as prescribed in the case of automobiles at a hub,

ii else, it is on a link, and then it behaves as prescribed in the case of automobiles on a link.
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135 busbui
(b ui,( ,(bc ui,ruis), ))(ln,btt,bpos) ≡

135a (let btt′ = b bc ch[b ui,bc ui ] ? in

135b busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt′,bpos) end)

136 ⌈⌉
136a (case bpos of

136(a)i atH(fl ui,h ui,tl ui) →
136(a)i atH busbui

(b ui,( ,(bc ui,ruis), ))(ln,btt,bpos),
136(a)ii aonL(fh ui,l ui,f,th ui) →
136(a)ii onL busbui

(b ui,( ,(bc ui,ruis), ))(ln,btt,bpos)
136a end)

Bus Behaviour at a Hub The atH busbui
behaviour definition is a simple transcription of the automobileaui

(atH)
behaviour definition: mereology expressions being changed from to , programmed attributes being changed from

atH(fl ui,h ui,tl ui) to (ln,btt,atH(fl ui,h ui,tl ui)), channel references a ui being replaced by b ui, and behaviour

invocations renamed from automobileaui
to busbui

. So formula lines 89–124d below presents “nothing new” !

136(a)i atH busbui
(b ui,( ,(bc ui,ruis), ))

136(a)i (ln,btt,atH(fl ui,h ui,tl ui)) ≡
89 (ba r ch[b ui,h ui ] ! (record TIME(),atH(fl ui,h ui,tl ui));
90 busbui

(b ui,({},(bc ui,ruis),{}))(ln,btt,bpos))
135a ⌈⌉
91a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in

91a assert: fh ui=h ui ∧ ruis=ruis′

88 let onl = (tl ui,h ui,0,th ui) in

91b (ba r ch[b ui,h ui ] ! (record TIME(),onL(onl)) ‖
91b ba r ch[b ui,tl ui ] ! (record TIME(),onL(onl))) ;
91c busbui

(b ui,({},(bc ui,ruis),{}))
91c (ln,btt,onL(onl)) end end )
124c ⌈⌉
124d stop

Bus Behaviour on a Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The onL busbui
behaviour definition is a similar simple transcription of the automobileaui

(onL) behaviour defini-

tion. So formula lines 89–124d below presents “nothing new” !

137 – this is the “almost last formula line” !

136(a)ii onL busbui
(b ui,( ,(bc ui,ruis), ))

136(a)ii (ln,btt,bpos:onL(fh ui,l ui,f,th ui)) ≡
89 (ba r ch[b ui,h ui ] ! (record TIME(),bpos);
90 busbui

(b ui,({},(bc ui,ruis),{}))(ln,btt,bpos))
135a ⌈⌉
124(b)i (if not yet at hub(f)
124(b)i then

124(b)i1 (let incr = increment(f) in

88 let onl = (tl ui,h ui,incr,th ui) in

124(b)i2 ba−r ch[ l ui,b ui ] ! onL(onl) ;
124(b)i3 busbui

(b ui,({},(bc ui,ruis),{}))
124(b)i3 (ln,btt,onL(onl))
124(b)i end end)
124(b)ii else

124(b)ii1 (let nl ui:L UI•nxt lui∈mereo H(℘(th ui)) in

124(b)ii2 ba r ch[thui,b ui ]!atH(l ui,th ui,nxt lui) ;
124(b)ii3 busbui

(b ui,({},(bc ui,ruis),{}))
124(b)ii3 (ln,btt,atH(l ui,h ui,nxt lui))
124(b)ii1 end)end)
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124c ⌈⌉
124d stop

1.10 Closing

Domain models abstract some reality. They do not pretend to capture all of it.

1.10.1 What Have We Achieved ?

A step-wise method, its principles, techniques, and a series of languages for the rigorous development of

domain models has been presented. A seemingly large number of domain concepts has been established:

entities, endurants and perdurants, discrete and continuous endurants, structure, part, component and ma-
terial endurants, living species, plants, animals, humans and artefacts, unique identifiers, mereology and

attributes.

It is shown how CSP channels can be calculated from endurant mereologies, and how the form of

behaviour arguments can be calculated from respective attribute categorisations.

The domain concepts outlined above form a domain ontology that applies to a wide variety of domains.

The Transcendental Deduction: A concept of transcendental deduction has been introduced. It is used

to justify the interpretation of endurant parts as perdurant behaviours – à la CSP. The interpretation of

endurant parts as perdurant behaviours represents a transcendental deduction – and must, somehow, be

rationally justified. the justification is here seen as exactly that: a transcendental deduction. We claim that

when, as an example, programmers, in thinking about or in explaining their code, anthropomorphically64,

say that “the program does so and so” they ‘perform’ and transcendental deduction. We refer to the forth-

coming [69, Philosophical Issues in Domain Modeling].

• This concept should be studied further: Transcendental Deduction in Computing Science.

Living Species: The concept of living species has been introduced, but it has not been “sufficiently”

studied, that is, we have, in Sect. 1.5.3 on Page 32, hinted at a number of ‘living species’ notions: causality
of purpose et cetera, but no hints has been given as to the kind of attributes that living species, especially

humans give rise to.

• This concept should be studied further: Attributes of Living Species in Computing Science.

Intentional “Pull”: A new concept of intentional “pull” has been introduced. It applies, in the form of

attributes, to humans and artifacts. It “corresponds”, in a way, to gravitational pull ; that concept invites

further study. The pair of gravitational pull and intentional “pull” appears to lie behind the determination

of the mereologies of parts; that possibility invites further study.

• This concept should be studied further: Intentional “Pull” in Computing Science.

What Can Be Described ? When you read the texts that explain when phenomena can be considered

entities, entities can be considered endurants or perdurants, endurants can be considered discrete or con-

tinuous, discrete endurants can be considered structures, parts or components, et cetera, then you probably,

expecting to read a technical/scientific paper, realise that those explanations are not precise in the sense of

such papers.

Many of our definitions are taken from [156, The Oxford Shorter English Dictionary] and from the

Internet based [239, The Stanford Encyclopedia of Philosophy].

In technical/scientific papers definitions are expected to be precise, but can be that only if the definer

has set up, beforehand, or the reported work is based on a precise, in our case mathematical framework.

That can not be done here. There is no, a priori given, model of the domains we are interested in. This

raises the more general question, such as we see it: “which are the absolutely necessary and unavoidable
bases for describing the world ?” This is a question of philosophy. We shall not develop the reasoning here.

64 Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities.
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Some other issues are to be further studied. (i) When to use physical mereologies and when to apply

conceptual mereologies, cf. final paragraph of Sect. 1.5.2 on Page 27. (ii) How do we know that the cate-

gorisation into unique identification, mereology and attributes embodies all internal qualities; could there

be a fourth, etc. ? (iii) Is intent an attribute, or does it “belong” to a fourth internal quality category, or a

fifth ? (iv) It seems that most of what we first thought off as natural parts really are materials: geographic

land masses, etc. – subject, still, to the laws of physics: geo-physics.

• We refer to the forthcoming study [69, Philosophical Issues in Domain Modeling] based on [219,

220, 221, 222].

A Conjecture: It could be interesting to study under what circumstances, including for which kind of
behaviours, we can postulate the following:

Conjecture: Parts ∼= Behaviours

To every part there is a behaviour, and to every suitably expressed behaviour there is a part.

We shall leave this study to the reader !

The Contribution: In summary we have shown that the domain analysis & description calculi form a

sound, consistent and complete approach to domain modelling, and that this approach takes its “resting

point” in Kai Sørlander’s Philosophy.

1.10.2 The Four Languages of Domain Analysis & Description

Usually mathematics, in many of its shades and forms are deployed in describing properties of nature, as

when pursuing physics, Usually the formal specification languages of computer & computing science have

a precise semantics and a consistent proof system. To have these properties those languages must deal with

computable objects. Domains are not computable.
So we revert, in a sense, to mathematics as our specification language. Instead of the usual, i.e., the

classical style of mathematics, we “couch” the mathematics in a style close to RSL [123, 27]. We shall refer

to this language as RSL+. Main features of RSL+ evolves in this chapter, mainly in Sect. 1.8.3.

Here we shall make it clear that we need three languages: (i) an analysis language, (ii) a description
language, i.e., RSL+, and (iii) the language of explaining domain analysis & description, (iv) in modelling

“the fourth” language, the domain, its syntax and some abstract semantics.

The Analysis Language:

Use of the analysis language is not written down. It consists of a number of single, usually is or has ,

prefixed domain analysis prompt and domain description prompt names. The domain analysis prompts
are:

The Analysis Prompts

a. is entity, 10
b. is endurant, 10
c. is perdurant, 11
d. is discrete, 11
e. is continuous, 11
f. is physical part, 12
g. is living species, 12
h. is structure, 13
i. is part, 14
j. is atomic, 14
k. is composite, 15

l. is living species, 15

m. is plant, 15

n. is animal, 16

o. is human, 16

p. has materials, 17

q. is artefact, 17

r. observe endurant sorts, 18

s. has concrete type, 20

t. has mereology, 25

u. attribute types, 28
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They apply to phenomena in the domain, that is, to “the world out there” ! Except for observe endurants

and attribute types these queries result in truth values; observe endurants results in the domain
scientist cum engineer noting down, in memory or in typed form, suggestive names [of endurant sorts];

and attribute types results in suggestive names [of attribute types]. The truth-valued queries directs,

as we shall see, the domain scientist cum engineer to either further analysis or to “issue” some domain
description prompts. The ‘name’-valued queries help the human analyser to formulate the result of domain
description prompts:

The Description Prompts

[1] observe endurant sorts, 18
[2] observe part type, 20
[3] observe material sorts, 22

[4] observe unique identifier, 24
[5] observe mereology, 25
[6] observe attributes, 28

Again they apply to phenomena in the domain, that is, to “the world out there” ! In this case they result in

RSL+Text !

The Description Language:

The description language is RSL+. It is a basically applicative subset of RSL [123, 27], that is: no

assignable variables. Also we omit RSL’s elaborate scheme, class, object notions.

The Description Language Primitives

• Structures, Parts, Components and Materials:
⋄⋄ obs E, dfn. 1, [o] pg. 19

⋄⋄ obs T: P, dfn. 2, [t2] pg. 21

• Part and Component Unique Identifiers:
⋄⋄ uid P, dfn. 4, [u] pg. 24

• Part Mereologies:
⋄⋄ obs mereo P, dfn. 5, [m] pg. 26

• Part and Material Attributes:
⋄⋄ attr Ai, dfn. 6, [a] pg. 28

We refer, generally, to all these functions as observer functions. They are defined by the analyser cum

describer when “applying” description prompts. That is, they should be considered user-defined. In our

examples we use the non-bold-faced observer function names.

The Language of Explaining Domain Analysis & Description:

In explaining the analysis & description prompts we use a natural language which contains terms and

phrases typical of the technical language of computer & computing science, and the language of philos-
ophy , more specifically epistemology and ontology . The reason for the former should be obvious. The

reason for the latter is given as follows: We are, on one hand, dealing with real, actual segments of domains

characterised by their basis in nature, in economics, in technologies, etc., that is, in informal “worlds”, and,

on the other hand, we aim at a formal understanding of those “worlds”. There is, in other words, the task of

explaining how we observe those “worlds”, and that is what brings us close to some issues well-discussed

in philosophy .
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The Language of Domains:

We consider a domain through the semiotic looking glass of its syntax and its semantics; we shall not

consider here its possible pragmatics. By “its syntax” we shall mean the form and “contents”, i.e., the

external and internal qualities of the endurants of the domain, i.e., those entities that endure. By “its
semantics” we shall, by a transcendental deduction , mean the perdurants: the actions, the events, and the

behaviours that center on the the endurants and that otherwise characterise the domain.

An Analysis & Description Process:

It will transpire that the domain analysis & description process can be informally modeled as follows:
Program Schema: A Domain Analysis & Description Process

type

V = Part VAL | Komp VAL | Mat VAL
variable

new:V-set := {uod:UoD} ,
gen:V-set := {} ,
txt:Text := {}

value

discover sorts: Unit → Unit

discover sorts() ≡
while new 6= {} do

let v:V • v ∈ new in

new := new \ {v} ‖ gen := gen ∪ {v} ;
is part(v) →

( is atomic(v) → skip ,
is composite(v) →

let {e1:E1,e:E2,...,en:En} = observe endurants(v) in

new := new ∪ {e1,e,...,en} ; txt := txt ∪ observe endurant sorts(e) end ,
has concrete type(v) →

let {s1,s2,...,sm} = new sort values(v) in

new := new ∪ {s1,s2,...,sm} ; txt := txt ∪ observe part type(v) end ) ,
has components(v) → let {k1:K1,k2:K2,...,kn:Kn} = observe components(v) in

new := new ∪ {k1,k2,...,kn} ; txt := txt ∪ observe component sorts(v) end ,
has materials(v) → txt := txt ∪ observe material sorts(v) ,

is structure(v) → ... EXERCISE FOR THE READER !

end

end

discover uids: Unit → Unit

discover uids() ≡
for ∀ v:(PVAL|KVAL) • v ∈ gen
do txt := txt ∪ observe unique identifier(v) end

discover mereologies: Unit → Unit

discover mereologies() ≡
for ∀ v:PVAL • v ∈ gen
do txt := txt ∪ observe mereology(v) end

discover attributes: Unit → Unit

discover attributes() ≡
for ∀ v:(PVAL|MVAL) • v ∈ gen
do txt := txt ∪ observe attributes(v) end

analysis+description: Unit → Unit
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analysis+description() ≡
discover sorts(); discover uids(); discover mereologies(); discover attributes()

Possibly duplicate texts “disappear” in txt – the output text.

1.10.3 Relation to Other Formal Specification Languages

In this contribution we have based the analysis and description calculi and the specification texts emanating

as domain descriptions on RSL [123]. There are other formal specification languages:

• Alloy [143],

• B (etc.) [1],

• CafeObj [121],

• CASL [105],

• VDM [83, 84, 118],

• Z [236],

to mention a few. Two conditions appear to apply for any of these other formal specification languages to

become a basis for analysis and description calculi similar to the ones put forward in the current chapter: (i)

it must be possible, as in RSL, to define and express sorts, i.e., further undefined types, and (ii) it must be

possible, as with RSL’s “built-in” CSP [137] in some form or another, to define and express concurrency.

Insofar as these and other formal languages can satisfy these two conditions, they can certainly also be the

basis for domain analysis & description.

We do not consider Coq [110, 140, 182]65, CSP [137] The Duration Calculus [240] nor TLA+
[153] as candidates for expressing full-fledged domain descriptions. Some of these formal specification

languages, like Coq, are very specifically oriented towards proofs (of properties of specifications). Some,

like The Duration Calculus and CSP, go very well in hand with other formal specification languages

like VDM, RAISE66 and Z. It seems, common to these languages, that, taken in isolation, they can be

successfully used for the development and proofs of properties of algorithms and code for, for example

safety-critical and embedded systems. But our choice (of not considering) is not a “hard nailed” one ! Also

less formal, usually computable, languages, like Scala [https://www.scala-lang.org/] or Python
[https:/www.python.org/], can, if they satisfy criteria (i-ii), serve similarly. We refer, for a more gen-

eral discussion – of issues related to the choice of other formal language being the basis for domain analysis

& description – to [82, 40 Years of Formal Methods — 10 Obstacles and 3 Possibilities] for a general

discussion that touches upon the issue of formal, or near-formal, specification languages.

1.10.4 Two Frequently Asked Questions

How much of a DOMAIN must or should we ANALYSE & DESCRIBE ? When this question is raised, after

a talk of mine over the subject, and by a colleague researcher & scientist I usually reply: As large a domain
as possible ! This reply is often met by this comment (from the audience) Oh ! No, that is not reasonable !
To me that comment shows either or both of: the questioner was not asking as a researcher/scientist, but

as an engineer. Yes, an engineer needs only analyse & describe up to and slightly beyond the “border” of

the domain-of-interest for a current software development – but a researcher cum scientist is, of course,

interested not only in a possible requirements engineering phase beyond domain engineering, but is also

curious about the larger context of the domain, in possibly establishing a proper domain theory, etc.

How, then, should a domain engineer pursue DOMAIN MODELLING ? My answer assumes a “state-

of-affairs” of domain science & engineering in which domain modelling is an established subject, i.e.,

where the domain analysis & description topic, i.e., its methodology, is taught, where there are “text-book”

65 http://doi.org/10.5281/zenodo.1028037
66 A variant of CSP is thus “embedded” in RSL
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examples from relevant fields – that the domain engineers can rely on, and in whose terminology they

can communicate with one another; that is, there is an acknowledged body of knowledge. My answer is

therefore: the domain engineer, referring to the relevant body of knowledge, develops a domain model that

covers the domain and the context on which the software is to function, just, perhaps covering a little bit

more of the context, than possibly necessary — just to be sure. Until such a “state-of-affairs” is reached the

domain model developer has to act both as a domain scientist and as a domain engineer, researching and

developing models for rather larger domains than perhaps necessary while contributing also to the domain
science & engineering body of knowledge.

1.10.5 On How to Pursue Domain Science & Engineering

We set up a dogma and discuss a ramification. One thing is the doctrine, the method for domain analysis

& description outlined in this chapter. Another thing is its practice. I find myself, when experimentally

pursuing the modelling of domains, as, for example, reported in [23, 81, 26, 200, 226, 54, 53, 31, 21, 66,

64, 88, 68, 70], that I am often not following the doctrine ! That is: (i) in not first, carefully, exploring

parts, components and materials, the external properties, (ii) in not then, again carefully settling issues of

unique identifiers, (iii) then, carefully, the issues of mereology, (iv) followed by careful consideration of

attributes, then the transcendental deduction of behaviours from parts; (v) carefully establishing channels:

(v.i) their message types, and (v.ii) declarations, (vi) followed by the careful consideration of behaviour

signatures, systematically, one for each transcendentally deduced part, (vii) then the careful definition of

each of all the deduced behaviours, and, finally, (iix) the definition of the overall system initialisation. No,

instead I faulter, get diverted into exploring “this & that” in the domain exploration. And I get stuck. When

despairing I realise that I must “slavically” follow the doctrine. When reverting to the strict adherence of the

doctrine, I find that I, very quickly, find my way, and the domain modelling get’s unstuck ! I remarked this

situation to a dear friend and colleague. His remark stressed what was going on: the creative engineer took
possession, the exploring, sometimes sceptic scientist entered the picture, the well-trained engineer

lost ground in the realm of imagination. But perhaps, in the interest of innovation etc. it is necessary

to be creative and sceptic and loose ground – for a while ! I knew that, but had sort-of-forgotten it ! I
thank Ole N. Oest for this observation.

The lesson is: waver between adhering to the method and being innovative, curious – a dreamer !

1.10.6 Domain Science & Engineering

The present chapter is but one in a series on the topic of domain science & engineering. With this chap-

ter the author expects to have laid a foundation. With the many experimental case studies, referenced in

Example Universes of Discourse Page 9, the author seriously think that reasonably convincing arguments

are given for this domain science & engineering. We comment on some previous publications: [43, 71] ex-

plores additional views on analysing & describing domains, in terms of domain facets: intrinsics, support
technologies, rules & regulations, scripts, management & organisation, and human behaviour. [39, 73]

explores relations between Stanisław Leśhnieiski’s mereology and ours. [33, 63] shows how to rigorously

transform domain descriptions into software system requirements prescriptions. [59] explores relations be-

tween the present domain analysis & description approach and issues of safety critical software design.

[62] discusses various interpretations of domain models: as bases for demos, simulators, real system mon-

itors and real system monitor & controllers. [77] is a compendium of reports around the management and

engineering of software development based in domain analysis & description. These reports were the result

of a year at JAIST: Japan Institute of Science & Technology, Ishikawa, Japan.

1.10.7 Comparison to Related Work67

67 This section was not in [75]. It is a slightly edited version of [67, Sect. 5.3].
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We shall now compare the approach of this chapter to a number of techniques and tools that are somehow

related — if only by the term ‘domain’ ! Common to all the “other” approaches is that none of them presents

a prompt calculus that help the domain analyser elicit a, or the, domain description. Figure 1.4 on Page 8

shows the tree-like structuring of what modern day AI researchers cum ontologists would call an upper
ontology.

General

Two related approaches to structuring domain understanding will be reviewed.

0: Ontology Science & Engineering:

Ontologies are “formal representations of a set of concepts within a domain and the relationships
between those concepts” — expressed usually in some logic. Ontology engineering [14] construct on-

tologies. Ontology science appears to mainly study structures of ontologies, especially so-called upper
ontology structures, and these studies “waver” between philosophy and information science. Internet pub-

lished ontologies usually consists of thousands of logical expressions. These are represented in some, for

example, low-level mechanisable form so that they can be interchanged between ontology research groups

and processed by various tools. There does not seem to be a concern for “deriving” such ontologies into

requirements for software. Usually ontology presentations either start with the presentation of, or makes

reference to its reliance on, an upper ontology . The term ‘ontology’ has been much used in connection

with automating the design of various aspects WWW applications [232]. Description Logic [8] has been

proposed as a language for the Semantic Web [9].

The interplay between endurants and perdurants is studied in [18]. That study investigates axiom sys-

tems for two ontologies. One for endurants (SPAN), another for perdurants (SNAP). No examples of descrip-

tions of specific domains are, however, given, and thus no specific techniques nor tools are given, method

components which could help the engineer in constructing specific domain descriptions. [18] is therefore

only relevant to the current chapter insofar as it justifies our emphasis on endurant versus perdurant en-

tities.The interplay between endurant and perdurant entities and their qualities is studied in [148]. In our

study the term quality is made specific and covers the ideas of external and internal qualities. External qual-

ities focus on whether endurant or perdurant, whether part, component or material, whether action, event

or behaviour, whether atomic or composite part, etcetera. Internal qualities focus on unique identifiers (of

parts), the mereology (of parts), and the attributes (of parts, components and materials), that is, of endurants.

In [148] the relationship between universals (types), particulars (values of types) and qualities is not “re-

stricted” as in the TripTych domain analysis, but is axiomatically interwoven in an almost “recursive”

manner. Values [of types (‘quantities’ [of ‘qualities’])] are, for example, seen as sub-ordinated types; this is

an ontological distinction that we do not make. The concern of [148] is also the relations between qualities

and both endurant and perdurant entities, where we have yet to focus on “qualities”, other than signatures,

of perdurants. [148] investigates the quality/quantity issue wrt. endurance/perdurance and poses the ques-

tions: [b] are non-persisting quality instances enduring, perduring or neither ? and [c] are persisting quality

instances enduring, perduring or neither ? and arrives, after some analysis of the endurance/perdurance

concepts, at the answers: [b′] non-persisting quality instances are neither enduring nor perduring particu-

lars (i.e., entities), and [c′] persisting quality instances are enduring particulars. Answer [b′] justifies our

separating enduring and perduring entities into two disjoint, but jointly “exhaustive” ontologies. The more

general study of [148] is therefore really not relevant to our prompt calculi, in which we do not speculate

on more abstract, conceptual qualities, but settle on external endurant qualities, on the unique identifier ,

mereology and attribute qualities of endurants, and the simple relations between endurants and perdurants,

specifically in the relations between signatures of actions, events and behaviours and the endurant sorts,

and especially the relation between parts and behaviours.. That is, the TripTych approach to ontology,

i.e., its domain concept, is not only model-theoretic, but, we risk to say, radically different. The concerns

of TripTych domain science & engineering is based on that of algorithmic engineering. The domains to
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which we are applying our analysis & description tools and techniques are spatio-temporal, that is, can be

observed, physically; this is in contrast to such conceptual domains as various branches of mathematics,

physics, biology, etcetera. Domain science & engineering is not aimed at letting the computer solve prob-

lems based on the knowledge it may have stored. Instead it builds models based on knowledge of, but not

“in” the domain. The TripTych form of domain science & engineering differs from conventional ontolog-
ical engineering in the following, essential ways: The TripTych domain descriptions rely essentially on a

“built-in” upper ontology: types, abstract as well as model-oriented (i.e., concrete) and actions, events and

behaviours. Domain science & engineering is not, to a first degree, concerned with modalities, and hence

do not focus on the modeling of knowledge and belief, necessity and possibility, i.e., alethic modalities,

epistemic modality (certainty), promise and obligation (deontic modalities), etcetera.

The TripTych emphasis is on the method for constructing descriptions. It seems that publications

on ontological engineering, in contrast, emphasise the resulting ontologies. The papers on ontologies are

almost exclusively computer science (i.e., information science) than computing science papers.

The next section overlaps with the present section.

1: Knowledge Engineering:

The concept of knowledge has occupied philosophers since Plato. No common agreement on what ‘knowl-

edge’ is has been reached. From [156, 6, 170, 225] we may learn that knowledge is a familiarity with
someone or something; it can include facts, information, descriptions, or skills acquired through experi-
ence or education; it can refer to the theoretical or practical understanding of a subject; knowledge is
produced by socio-cognitive aggregates (mainly humans) and is structured according to our understanding
of how human reasoning and logic works. The seminal reference here is [114]. The aim of knowledge engi-
neering was formulated, in 1983, by an originator of the concept, Edward A. Feigenbaum [117] knowledge
engineering is an engineering discipline that involves integrating knowledge into computer systems in or-

der to solve complex problems normally requiring a high level of human expertise. Knowledge engineering
focus on continually building up (acquire) large, shared data bases (i.e., knowledge bases), their contin-

ued maintenance, testing the validity of the stored ‘knowledge’, continued experiments with respect to

knowledge representation , etcetera. Knowledge engineering can, perhaps, best be understood in contrast to

algorithmic engineering: In the latter we seek more-or-less conventional, usually imperative programming
language expressions of algorithms whose algorithmic structure embodies the knowledge required to solve
the problem being solved by the algorithm. The former seeks to solve problems based on an interpreter

inferring possible solutions from logical data. This logical data has three parts: a collection that “mimics”
the semantics of, say, the imperative programming language, a collection that formulates the problem, and
a collection that constitutes the knowledge particular to the problem. We refer to [85]. Domain science &

engineering is not aimed at letting the computer solve problems based on the knowledge it may have stored.

Instead it builds models based on knowledge of the domain.

Finally, the domains to which we are applying ‘our form of’ domain analysis are domains which focus

on spatio-temporal phenomena. That is, domains which have concrete renditions: air traffic, banks, con-

tainer lines, manufacturing, pipelines, railways, road transport, stock exchanges, etcetera. In contrast one

may claim that the domains described in classical ontologies and knowledge representations are mostly

conceptual: mathematics, physics, biology, etcetera.

Specific

2: Database Analysis:

There are different, however related “schools of database analysis”. DSD: the Bachman (or data struc-

ture) diagram model [10]; RDM: the relational data model [104]; and ER: entity set relationshp model [98]

“schools”. DSD and ER aim at graphically specifying database structures. Codd’s RDM simplifies the data

models of DSD and ER while offering two kinds of languages with which to operate on RDM databases: SQL
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and Relational Algebra. All three “schools” are focused more on data modeling for databases than on

domain modeling both endurant and perdurant entities.

3: Domain Analysis:

Domain analysis, or product line analysis (see below), as it was then conceived in the early 1980s by James

Neighbors [176], is the analysis of related software systems in a domain to find their common and variable

parts. This form of domain analysis turns matters “upside-down”: it is the set of software “systems” (or

packages) that is subject to some form of inquiry, albeit having some domain in mind, in order to find

common features of the software that can be said to represent a named domain.

In this section we shall mainly be comparing the TripTych approach to domain analysis to that of

Reubén Prieto-Dı̃az’s approach [189, 190, 191]. Firstly, our understanding of domain analysis basically

coincides with Prieto-Dı̃az’s. Secondly, in, for example, [189], Prieto-Dı̃az’s domain analysis is focused on

the very important stages that precede the kind of domain modeling that we have described: major concerns

are selection of what appears to be similar, but specific entities, identification of common features, abstrac-
tion of entities and classification. Selection and identification is assumed in our approach, but we suggest

to follow the ideas of Prieto-Dı̃az. Abstraction (from values to types and signatures) and classification into

parts, materials, actions, events and behaviours is what we have focused on. All-in-all we find Prieto-Dı̃az’s

work very relevant to our work: relating to it by providing guidance to pre-modeling steps, thereby em-

phasising issues that are necessarily informal, yet difficult to get started on by most software engineers.

Where we might differ is on the following: although Prieto-Dı̃az does mention a need for domain specific
languages, he does not show examples of domain descriptions in such DSLs. We, of course, basically use

mathematics as the DSL. In our approach we do not consider requirements, let alone software components,

as do Prieto-Dı̃az, but we find that that is not an important issue.

4: Domain Specific Languages:

Martin Fowler68 defines a Domain-specific language (DSL) as a computer programming language of lim-
ited expressiveness focused on a particular domain [119]. Other references are [169, 223]. Common to

[223, 169, 119] is that they define a domain in terms of classes of software packages; that they never really

“derive” the DSL from a description of the domain; and that they certainly do not describe the domain in

terms of that DSL, for example, by formalising the DSL. In [135] a domain specific language for railway

tracks is the basis for verification of the monitoring and control of train traffic on these tracks. Specifica-

tions in that domain specific language, DSL, manifested by track layout drawings and signal interlocking

tables, are translated into SystemC [126]. [135] thus takes one very specific DSL and shows how to (infor-

mally) translate their “programs”, which are not “directly executable”, and hence does not satisfy Fowler’s

definition of DSLs, into executable programs. [135] is a great paper, but it is not solving our problem, that

of systematically describing any manifest domain. [135] does, however, point a way to search for — say

graphical — DSLs and the possible translation of their programs into executable ones. [135] rely on the

DSL of that paper. But it does not give an analysis and a description, i.e., a semantics, of the raliway system

domain. Such a description, in fact any domain analysis & description, such as we advocate, can then be a

basis for one or more specific railway domain DSLs.

DSL Dogma: Domain Specific Languages
Our dogma with respect to DSL’s is: The basis for the design of any DSL, DSL, must be a domain

analysis & description of that domain, for example, as per the method of the present chapter. Based on

such a domain description, D , we can give semantics to DSL and somehow show that that semantics

relates to D .

68 http://martinfowler.com/dsl.html
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5: Feature-oriented Domain Analysis (FODA ):

Feature oriented domain analysis (FODA) is a domain analysis method which introduced feature modeling

to domain engineering. FODA was developed in 1990 following several U.S. Government research projects.

Its concepts have been regarded as “critically advancing software engineering and software reuse.” The US

Government–supported report [150] states: “FODA is a necessary first step” for software reuse. To the extent

that TripTych domain engineering with its subsequent requirements engineering indeed encourages reuse

at all levels: domain descriptions and requirements prescription , we can only agree. Another source on

FODA is [107]. Since FODA “leans” quite heavily on ‘Software Product Line Engineering’ our remarks in

that section, next, apply equally well here.

6: Software Product Line Engineering:

Software product line engineering, earlier known as domain engineering, is the entire process of reusing
domain knowledge in the production of new software systems. Key concerns of software product line en-

gineering are reuse, the building of repositories of reusable software components, and domain specific lan-
guages with which to more-or-less automatically build software based on reusable software components.

These are not the primary concerns of TripTych domain science & engineering. But they do become

concerns as we move from domain descriptions to requirements prescriptions. But it strongly seems that

software product line engineering is not really focused on the concerns of domain description — such as

is TripTych domain engineering . It seems that software product line engineering is primarily based, as is,

for example, FODA: Feature-oriented Domain Analysis, on analysing features of software systems.

Our [51] puts the ideas of software product lines and model-oriented software development in the context

of the TripTych approach.

7: Problem Frames:

The concept of problem frames is covered in [145] Jackson’s prescription for software development focus

on the “triple development” of descriptions of the problem world , the requirements and the machine (i.e.,

the hardware and software) to be built. Here domain analysis means the same as for us: the problem world
analysis. In the problem frame approach the software developer plays three, that is, all the TripTych

rôles: domain engineer , requirements engineer and software engineer , “all at the same time”, iterating

between these rôles repeatedly. So, perhaps belabouring the point, domain engineering is done only to

the extent needed by the prescription of requirements and the design of software. These, really are minor

points. But in “restricting” oneself to consider only those aspects of the domain which are mandated by the

requirements prescription and software design one is considering a potentially smaller fragment [146] of

the domain than is suggested by the TripTych approach. At the same time one is, however, sure to consider

aspects of the domain that might have been overlooked when pursuing domain description development in

the “more general” TripTych approach.

8: Domain Specific Software Architectures (DSSA ):

It seems that the concept of DSSA was formulated by a group of ARPA69 project “seekers” who also per-

formed a year long study (from around early-mid 1990s); key members of the DSSA project were Will

Tracz, Bob Balzer, Rick Hayes-Roth and Richard Platek [228]. The [228] definition of domain engineering
is “the process of creating a DSSA: domain analysis and domain modeling followed by creating a soft-
ware architecture and populating it with software components.” This definition is basically followed also

by [171, 216, 167]. Defined and pursued this way, DSSA appears, notably in these latter references, to

start with the analysis of software components, “per domain”, to identify commonalities within applica-

tion software, and to then base the idea of software architecture on these findings. Thus DSSA turns matter

69 ARPA: The US DoD Advanced Research Projects Agency
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“upside-down” with respect to TripTych requirements development by starting with software compo-
nents, assuming that these satisfy some requirements, and then suggesting domain specific software built

using these components. This is not what we are doing: we suggest, Chapter 4, From Domain Descrip-
tions to Requirements Prescriptions, [63], that requirements can be “derived” systematically from,

and formally related back to domain descriptionss without, in principle, considering software components,

whether already existing, or being subsequently developed. Of course, given a domain description it is ob-

vious that one can develop, from it, any number of requirements prescriptions and that these may strongly

hint at shared, (to be) implemented software components; but it may also, as well, be the case that two

or more requirements prescriptions “derived” from the same domain description may share no software
components whatsoever ! It seems to this author that had the DSSA promoters based their studies and prac-

tice on also using formal specifications, at all levels of their study and practice, then some very interesting

insights might have arisen.

9: Domain Driven Design (DDD ):

Domain-driven design (DDD)70 “is an approach to developing software for complex needs by deeply con-
necting the implementation to an evolving model of the core business concepts; the premise of domain-
driven design is the following: placing the project’s primary focus on the core domain and domain logic;
basing complex designs on a model; initiating a creative collaboration between technical and domain ex-
perts to iteratively cut ever closer to the conceptual heart of the problem.”71 We have studied some of the

DDD literature, mostly only accessible on the Internet, but see also [136], and find that it really does not

contribute to new insight into domains such as we see them: it is just “plain, good old software engineering

cooked up with a new jargon.

10: Unified Modeling Language (UML ):

Three books representative of UML are [90, 210, 147]. jacobson@Ivar Jacobson The term domain analysis
appears numerous times in these books, yet there is no clear, definitive understanding of whether it, the

domain , stands for entities in the domain such as we understand it, or whether it is wrought up, as in several

of the ‘approaches’ treated in this section, to wit, in items [3–5, 7–9] with either software design (as it most

often is), or requirements prescription . Certainly, in UML, in [90, 210, 147] jacobson@Ivar Jacobsons well

as in most published papers claiming “adherence” to UML, that domain analysis usuallyis manifested in

some UML text which “models” some requirements facet. Nothing is necessarily wrong with that, but it is

therefore not really the TripTych form of domain analysis with its concepts of abstract representations of

endurant and perdurants, with its distinctions between domain and requirements, and with its possibility

of “deriving” requirements prescriptions from domain descriptions. The UML notion of class diagrams is

worth relating to our structuring of the domain. Class diagrams appear to be inspired by [10, Bachman,

1969] and [98, Chen, 1976]. It seems that (i) each part sort — as well as other than part sorts — deserves

a class diagram (box); and (ii) that (assignable) attributes — as well as other non-part types — are written

into the diagram box. Class diagram boxes are line-connected with annotations where some annotations

are as per the mereology of the part type and the connected part types and others are not part related. The

class diagrams are said to be object-oriented but it is not clear how objects relate to parts as many are rather

implementation-oriented quantities. All this needs looking into a bit more, for those who care.

11: Requirements Engineering:

There are in-numerous books and published papers on requirements engineering . A seminal one is [231]. I,

myself, find [154] full of very useful, non-trivial insight. [111] is seminal in that it brings a number or early

contributions and views on requirements engineering . Conventional text books, notably [184, 188, 218]

all have their “mandatory”, yet conventional coverage of requirements engineering . None of them “derive”

70 Eric Evans: http://www.domaindrivendesign.org/
71 http://en.wikipedia.org/wiki/Domain-driven design
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requirements from domain descriptions, yes, OK, from domains, but since their description is not mandated

it is unclear what “the domain” is. Most of them repeatedly refer to domain analysis but since a written

record of that domain analysis is not mandated it is unclear what “domain analysis” really amounts to. Axel

van Laamsweerde’s book [231]s remarkable. Although also it does not mandate descriptions of domains it

is quite precise as to the relationships between domains and requirements. Besides, it has a fine treatment

of the distinction between goals and requirements, also formally. Most of the advices given in [154] can

beneficially be followed also in TripTych requirements development . Neither [231]or [154] preempts

TripTych requirements development .

Summary of Comparisons

We find that there are two kinds of relevant comparisons: the concept of ontology, its science more than its

engineering, and the Problem Frame work of Michael A. Jackson. The ontology work, as commented upon

in Item [1] (Pages 69–70), is partly relevant to our work: There are at least two issues: Different classes

of domains may need distinct upper ontologies. Our approach admits that there may be different upper

ontologies for non-manifest domains such as financial systems, etcetera. This seems to warrant at least a

comparative study. We have assumed, cf. Sect. 1.5.3, that attributes cannot be separated from parts. [148,

Johansson 2005] develops the notion that persisting quality instances are enduring particulars. The issue

need further clarification.

Of all the other “comparison” items ([2]–[12]) basically only Jackson’s problem frames (Item [8])
and [135] (Item [5]) really take the same view of domains and, in essence, basically maintain similar

relations between requirements prescription and domain description . So potential sources of, we should

claim, mutual inspiration ought be found in one-another’s work — with, for example, [127, 146, 135], and

the present document, being a good starting point.

But none of the referenced works make the distinction between discrete endurants (parts) and their

qualities, with their further distinctions between unique identifiers, mereology and attributes.
And none of them makes the distinction between parts, components and materials. Therefore our con-

tribution can include the mapping of parts into behaviours interacting as per the part mereologies.

1.10.8 Tony Hoare’s Summary on ‘Domain Modelling’

In a 2006 e-mail, in response, undoubtedly to my steadfast – perhaps conceived as stubborn – insistence, on

domain engineering, Tony Hoare summed up his reaction to domain engineering as follows, and I quote72:

“There are many unique contributions that can be made by domain modelling.

1 The models describe all aspects of the real world that are relevant for any good software design in the
area.
They describe possible places to define the system boundary for any particular project.

2 They make explicit the preconditions about the real world that have to be made in any embedded
software design,
especially one that is going to be formally proved.

3 They describe the whole range of possible designs for the software,
and the whole range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements,
which is wholly independent of the technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier or later in any design project,
and identify those that are independent and those that conflict.
Late discovery of feature interactions can be avoided.”

All of these issues were covered in [30, Part IV].

72 E-Mail to Dines Bjørner, July 19, 2006
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2

Domain Facets: Analysis & Description

We1 investigate some principles and techniques for analysing & describing domain facets.

2.1 Introduction

In Chapter 1 we outlined a method for analysing &2 and describing domains. In this chapter we cover

domain analysis & description principles and techniques not covered in Chapter 1. That chapter focused

on manifest domains. Here we, on one side, go “outside” the realm of manifest domains, and, on the other

side, cover, what we shall refer to as, facets, not covered in Chapter 1.

2.1.1 Facets of Domains

By a domain facet we shall understand one amongst a finite set of generic ways of analysing a domain:
a view of the domain, such that the different facets cover conceptually different views, and such that these
views together cover the domain Now, the definition of what a domain facet is can seem vague. It cannot

be otherwise. The definition is sharpened by the definitions of the specific facets. You can say, that the

definition of domain facet is the “sum” of the definitions of these specific facets. The specific facets – so

far3 – are:

• intrinsics (Sect. 2.2),

• support technology (Sect. 2.3),

• rules & regulations (Sect. 2.4),

• scripts (Sect. 2.5),

• license languages (Sect. 2.6),

• management & organisation (Sect. 2.7) and

• human behaviour (Sect. 2.8).

Of these, the rules & regulations, scripts and license languages are closely related. Vagueness may “pop

up”, here and there, in the delineation of facets. It is necessarily so. We are not in a domain of computer

1 Chapter 2 is primarily based on [71]. which itself was based on publication [43]. Introductory sections are different,

but of no real consequence to this thesis. The present chapter represents the with respect to [43]: Unnumbered initial

paragrapphs of [43] are not present in chapter 2. Sections 1–3 of [43] are basically omitted here. Their contents

already, in another form, present in Chapter 1 of this thesis. Section 4.1 of [43] corresponds, roughly, to Sects. 2.2.

Example 7, Traffic Signals, of Section 2.3 of the present chapter is new. Section 2.6 of this chapter is new wrt. [43].

Present Sect. 2.7 moved wrt. Sects. 4.4–4.5 of [43]. Example 20 of Sect. 2.7 is new.
2 We use the ampersand (logogram), &, in the following sense: Let A and B be two concepts. By A and B we mean

to refer to these two concepts. With A&B we mean to refer to a composite concept “containing” elements of both A

and B.
3 We write: ‘so far’ in order to “announce”, or hint that there may be other specific facets. The one listed are the ones

we have been able to “isolate”, to identify, in the most recent 10-12 years.
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science, let alone mathematics, where we can just define ourselves precisely out of any vagueness problems.

We are in the domain of (usually) really world facts. And these are often hard to encircle.

2.1.2 Relation to Previous Work

The present chapter is a rather complete rewrite of [43]. The reason for the rewriting is the expected

publication of [76]. [43] was finalised already in 2006, 10 years ago, before the analysis & description

calculus of [76] had emerged. It was time to revise [43] rather substantially.

2.1.3 Structure of Chapter

The structure of this chapter follows the seven specific facets, as listed above. Each section, 2.2.–2.8., starts

by a definition of the specific facet , Then follows an analysis of the abstract concepts involved usually

with one or more examples – with these examples making up most of the section. We then “speculate” on

derivable requirements thus relating the present chapter to [63]. We close each of the sections, 2.2.–2.8.,

with some comments on how to model the specific facet of that section.

• • •

Examples 1–22 of sections 2.2.–2.8. present quite a variety. In that, they reflect the wide spectrum of facets.

• • •

More generally, domains can be characterised by intrinsically being endurant, or function, or event, or

behaviour intensive. Software support for activities in such domains then typically amount to database

systems, computation-bound systems, real-time embedded systems, respectively distributed process mon-

itoring and control systems. Other than this brief discourse we shall not cover the “intensity”-aspect of

domains in this chapter.

2.2 Intrinsics

• By domain intrinsics we shall understand those phenomena and concepts of a domain which are
basic to any of the other facets (listed earlier and treated, in some detail, below), with such domain
intrinsics initially covering at least one specific, hence named, stakeholder view

2.2.1 Conceptual Analysis

The principles and techniques of domain analysis & description, as unfolded in Chapter 1, focused on and

resulted in descriptions of the intrinsics of domains. They did so in focusing the analysis (and hence the

description) on the basic endurants and their related perdurants, that is, on those parts that most readily

present themselves for observation, analysis & description.

Example 1 Railway Net Intrinsics: We narrate and formalise three railway net intrinsics.

From the view of potential train passengers a railway net consists of lines, l:L, with names, ln:Ln, sta-
tions, s:S, with names sn:Sn, and trains, tn:TN, with names tnm:Tnm. A line connects exactly two distinct
stations.

scheme N0 =
class

type

N, L, S, Sn, Ln, TN, Tnm
value
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2.2 Intrinsics 77

obs Ls: N → L-set, obs Ss: N → S-set

obs Ln: L → Ln, obs Sn: S → Sn
obs Sns: L → Sn-set, obs Lns: S → Ln-set

axiom

...
end

N, L, S, Sn and Ln designate nets, lines, stations, station names and line names. One can observe lines and

stations from nets, line and station names from lines and stations, pair sets of station names from lines, and

lines names (of lines) into and out from a station from stations. Axioms ensure proper graph properties of

these concepts.

From the view of actual train passengers a railway net — in addition to the above — allows for several

lines between any pair of stations and, within stations, provides for one or more platform tracks, tr:Tr, with

names, trn:Trn, from which to embark on or alight from a train.

scheme N1 = extend N0 with

class

type

Tr, Trn
value

obs Trs: S → Tr-set, obs Trn: Tr → Trn
axiom

...
end

The only additions are that of track and track name types, related observer functions and axioms.

From the view of train operating staff a railway net — in addition to the above — has lines and stations

consisting of suitably connected rail units. A rail unit is either a simple (i.e., linear, straight) unit, or is a

switch unit, or is a simple crossover unit, or is a switchable crossover unit, etc. Simple units have two con-

nectors. Switch units have three connectors. Simple and switchable crossover units have four connectors.

A path, p:P, (through a unit) is a pair of connectors of that unit. A state, σ : Σ , of a unit is the set of paths,

in the direction of which a train may travel. A (current) state may be empty: The unit is closed for traffic.

A unit can be in any one of a number of states of its state space, ω : Ω .

scheme N2 = extend N1 with

class

type

U, C
P′ = U × (C×C)
P = {| p:P′

• let (u,(c,c′))=p in (c,c′)∈ ∪ obs Ω(u) end |}
Σ = P-set

Ω = Σ -set

value

obs Us: (N|L|S) → U-set

obs Cs: U → C-set

obs Σ : U → Σ
obs Ω : U → Ω

axiom

...
end

Unit and connector types have been added as have concrete types for paths, unit states, unit state spaces

and related observer functions, including unit state and unit state space observers.
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78 2 Domain Facets: Analysis & Description

Different stakeholder perspectives, not only of intrinsics, as here, but of any facet, lead to a number of

different models. The name of a phenomenon of one perspective, that is, of one model, may coincide

with the name of a “similar” phenomenon of another perspective, that is, of another model, and so on. If

the intention is that the “same” names cover comparable phenomena, then the developer must state the

comparison relation.

Example 2 Intrinsics of Switches: The intrinsic attribute of a rail switch is that it can take on a number

of states. A simple switch (
c|

Y
c/

c
) has three connectors: {c,c|,c/}. c is the connector of the common rail

from which one can either “go straight” c|, or “fork” c/ (Fig. 2.1). So we have that a possible state space
of such a switch could be ωgs :

{{},
{(c,c|)},{(c|,c)},{(c,c|),(c|,c)},
{(c,c/)},{(c/,c)},{(c,c/),(c/,c)},{(c/,c),(c|,c)},
{(c,c|),(c|,c),(c/,c)},{(c,c/),(c/,c),(c|,c)},{(c/,c),(c,c|)},{(c,c/),(c|,c)}}

   

   

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Fig. 2.1. Possible states of a rail switch

The above models a general switch ideally. Any particular switch ωps may have ωps⊂ωgs . Nothing is said
about how a state is determined: who sets and resets it, whether determined solely by the physical position
of the switch gear, or also by visible or virtual (i.e., invisible, intangible) signals up or down the rail, away
from the switch.

Example 3 An Intrinsics of Documents: Think of documents, written, by hand, or typed “onto” a
computer text processing system. One way of considering such documents is as follows. First we abstract
from the syntax that such a document, or set of more-or-less related documents, or just documents, may
have: whether they are letters, with sender and receive addressees, dates written, sent and/or received,
opening and closing paragraphs, etc., etc.; or they are books, technical, scientific, novels, or otherwise,
or they are application forms, tax returns, patient medical records, or otherwise. Then we focus on the
operations that one may perform on documents: their creation, editing, reading, copying, authorisation,
“transfer”4, “freezing”5, and shredding. Finally we consider documents as manifest parts, cf. Chapter 1,
Parts, so documents have unique identifications, in this case, changeable mereology, and a number of
attributes. The mereology of a document, d, reflects those other documents upon which a document is
based, i.e., refers to, and/or refers to d. Among the attributes of a document we can think of (i) a trace of
what has happened to a document, i.e., a trace of all the operations performed on “that” document, since
and including creation — with that trace, for example, consisting of time-stamped triples of the essence of
the operations, the “actor” of the operation (i.e., the operator), and possibly some abstraction of the locale

4 to other editors, readers, etc.
5 i.e., prevention of future operations
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2.3 Support Technologies 79

of the document when operated upon; (ii) a synopsis of what the document text “is all about”, (iii) and
some “rendition” of the document text. We refer to experimental technical research report [68].

This view of documents, whether “implementable” or “implemented” or not, is at the basis of our view

of license languages (for digital media, health-care (patient medical record), documents, and transport
(contracts) as that facet is covered in Sect. 2.6.

2.2.2 Requirements

Chapter 5 illustrates requirements “derived” from the intrinsics of a road transport system – as outlined in

Chapter 1. So the presentchapter has little to add to the subject of requirements “derived” from intrinsics.

2.2.3 On Modeling Intrinsics

Chapter 1 outlines basic principles, techniques and tools for modeling the intrinsics of manifest domains.

Modeling the domain intrinsics can often be expressed in property-oriented specification languages (like

CafeOBJ [121]), model-oriented specification languages (like Alloy [143], B [1], VDM-SL [83, 84, 118],

RSL [123], or Z [236]), event-based languages (like Petri nets or [202] or CSP [137], respectively in

process-based specification languages (like MSCs [142], LSCs [133], Statecharts [132], or CSP [137]. An

area not well-developed is that of modeling continuous domain phenomena like the dynamics of automo-

bile, train and aircraft movements, flow in pipelines, etc. We refer to [179].

2.3 Support Technologies

• By a domain support technology we shall understand ways and means of implementing certain
observed phenomena or certain conceived concepts

The “ways and means” may be in the form of “soft technologies”: human manpower, see, however,

Sect. 2.8, or in the form of “hard” technologies: electro-mechanics, etc. The term ‘implementing’ is cru-

cial. It is here used in the sense that, ψτ , which is an ‘implementation’ of a endurant or perdurant, φ , is

an extension of φ , with φ being an abstraction of ψτ . We strive for the extensions to be proof theoretic
conservative extensions [161].

2.3.1 Conceptual Analysis

There are [always] basically two approaches the task of analysing & describing the support technology

facets of a domain. One either stumbles over it, or one tries to tackle the issue systematically. The “stum-

bling” approach occurs when one, in the midst of analysing & describing a domain realises that one is

tackling something that satisfies the definition of a support technology facet. In the systematic approach to

the analysis & description of the support technology facets of a domain one usually starts with a basically

intrinsics facet-oriented domain description. We then suggest that the domain engineer “inquires” of every

endurant and perdurant whether it is an intrinsic entity or, perhaps a support technology.

Example 4 Railway Support Technology: We give a rough sketch description of possible rail unit
switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e., by railway staff assigned to
and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers6 and steel wires, switches were
made to change state by means of “throwing” levers in a cabin tower located centrally at the station (with
the lever then connected through wires etc., to the actual switch).
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80 2 Domain Facets: Analysis & Description

(iii) This partial mechanical technology then emerged into electro-mechanics, and cabin tower staff was
“reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a station track, or from a station track
to a station departure point, are set and reset by means also of electronics, by what is known as interlocking
(for example, so that two different routes cannot be open in a station if they cross one another).

It must be stressed that Example 4 is just a rough sketch. In a proper narrative description the software (cum

domain) engineer must describe, in detail, the subsystem of electronics, electro-mechanics and the human

operator interface (buttons, lights, sounds, etc.). An aspect of supporting technology includes recording the

state-behaviour in response to external stimuli. We give an example.

Example 5 Probabilistic Rail Switch Unit State Transitions: Figure 2.2 indicates a way of formal-
ising this aspect of a supporting technology. Figure 2.2 intends to model the probabilistic (erroneous and
correct) behaviour of a switch when subjected to settings (to switched (s) state) and re-settings (to direct
(d) state). A switch may go to the switched state from the direct state when subjected to a switch setting s
with probability psd.

Input stimuli:

Probabilities:  0 <= p.. <= 1

States:

sw/psd

di/1−pdd−edd

sw/pss

di/1−pds−eds

sw/esssw/esd

sw/1−psd−esd

di/pdd
di/edsdi/edd

sw/1−pss−ess

di/pds

e sd

sw: Switch to switched state

di: Revert to direct state

pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

s: Switched state

d: Direct (reverted) state

e: Error state

Fig. 2.2. Probabilistic state switching

Example 6 Traffic Signals: A traffic signal represents a technology in support of visualising hub states
(transport net road intersection signaling states) and in effecting state changes.

138 A traffic signal, ts:TS, is here7 considered a part with observable hub states and hub state spaces. Hub
states and hub state spaces are programmable, respectively static attributes of traffic signals.

6 https://en.wikipedia.org/wiki/Pulley and http://en.wikipedia.org/wiki/Lever
7 In Chapter 1 a traffic signal was an attribute of a hub.
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139 A hub state space, hω , is a set of hub states such that each current hub state is in that hubs’ hub state
space.

140 A hub state, hσ , is now modeled as a set of hub triples.
141 Each hub triple has a link identifier li (“coming from”), a colour (red, yellow or green), and another

link identifier l j (“going to”).
142 Signaling is now a sequence of one or more pairs of next hub states and time intervals, ti:TI, for

example: <(hσ1, ti1),(hσ2, ti2), ...,(hσn−1, tin−1),(hσn, tin)>, n>0. The idea of a signaling is to first
change the designated hub to state hσ1, then wait ti1 time units, then set the designated hub to state hσ2,
then wait ti2 time units, etcetera, ending with final state σn and a (supposedly) long time interval tin
before any decisions are to be made as to another signaling. The set of hub states {hσ1,hσ2, ...,hσn−1}
of <(hσ1, ti1),(hσ2, ti2), ...,(hσn−1, tin−1),(hσn, tin)>, n>0, is called the set of intermediate states.
Their purpose is to secure an orderly phase out of green via yellow to red and phase in of red via
yellow to green in some order for the various directions. We leave it to the reader to devise proper
well-formedness conditions for signaling sequences as they depend on the hub topology.

143 A street signal (a semaphore) is now abstracted as a map from pairs of hub states to signaling sequences.
The idea is that given a hub one can observe its semaphore, and given the state, hσ (not in the above
set), of the hub “to be signaled” and the state hσn into which that hub is to be signal-led “one looks
up” under that pair in the semaphore and obtains the desired signaling.

type

138 TS ≡ H, HΣ , HΩ
value

139 attr HΣ : H,TS → HΣ
139 attr HΩ : H,TS → HΩ
type

140 HΣ = Htriple-set

140 HΩ = HΣ -set

141 Htriple = LI×Colour×LI
axiom

139 ∀ ts:TS • attr HΣ(ts) ∈ attr HΩ(ts)
type

141 Colour == red | yellow | green
142 Signaling = (HΣ×TI)∗

142 TI
143 Sempahore = (HΣ×HΣ) →m Signalling
value

143 attr Semaphore:TS → Sempahore

144 We treat hubs as processes with hub state spaces and semaphores as static attributes and hub states as

programmable attributes. We ignore other attributes and input/outputs.

145 We can think of the change of hub states as taking place based the result of some internal, non-

deterministic choice.

value

144. hub: HI × LI-set × (HΩ×Semaphore) → HΣ in ... out ... Unit

144. hub(hi,lis,(hω ,sema))(hσ) ≡
144. ...
145. ⌈⌉ let hσ ′:HI • ... in hub(hi,lis,(hω ,sema))(signaling(hσ ,hσ ′)) end

144. ...
144. pre: {hσ ,hσ ′} ⊆ hω

where we do not bother about the selection of hσ ′.
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146 Given two traffic signal, i.e., hub states, hσinit and hσend, where hσinit designates a present hub state

and hσend designates a desired next hub state after signaling.

147 Now signaling is a sequence of one or more successful hub state changes.

value

146 signaling: (HΣ×HΣ) × Semaphore → HΣ → HΣ
147 signaling(hσ init,hσend,sema)(hσ) ≡ let sg = sema(hσ init,hσend) in signal sequence(sg)(hσ) end

147 pre hσ init = hσ ∧ (hσ init,hσend) ∈ dom sema

If a desired hub state change fails (i.e., does not meet the pre-condition, or for other reasons (e.g., failure

of technology)), then we do not define the outcome of signaling.

147 signal sequence(〈〉)(hσ) ≡ hσ
147 signal sequence(〈(hσ ‘,ti)〉̂ sg)(hσ) ≡ wait(ti); signal sequence(sg)(hσ ‘)

We omit expression of a number of well-formedness conditions, e.g., that the htriple link identifiers are

those of the corresponding mereology (lis), etcetera. The design of the semaphore, for a single hub or for a

net of connected hubs has many similarities with the design of interlocking tables for railway tracks [135].

Another example shows another aspect of support technology: Namely that the technology must guarantee

certain of its own behaviours, so that software designed to interface with this technology, together with the

technology, meets dependability requirements.

Example 7 Railway Optical Gates: Train traffic (itf:iTF), intrinsically, is a total function over some
time interval, from time (t:T) to continuously positioned (p:P) trains (tn:TN). Conventional optical gates
sample, at regular intervals, the intrinsic train traffic. The result is a sampled traffic (stf:sTF). Hence the
collection of all optical gates, for any given railway, is a partial function from intrinsic to sampled train
traffics (stf). We need to express quality criteria that any optical gate technology should satisfy — relative
to a necessary and sufficient description of a closeness predicate. The following axiom does that:

• For all intrinsic traffics, itf, and for all optical gate technologies, og, the following must hold: Let stf be
the traffic sampled by the optical gates. For all time points, t, in the sampled traffic, those time points
must also be in the intrinsic traffic, and, for all trains, tn, in the intrinsic traffic at that time, the train
must be observed by the optical gates, and the actual position of the train and the sampled position must
somehow be check-able to be close, or identical to one another.

Since units change state with time, n:N, the railway net, needs to be part of any model of traffic.

type

T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

close: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt ⇒
∀ Tn:TN • tn ∈ dom trf(itt(t))

⇒ tn ∈ dom trf(stt(t)) ∧ close(itt(t),tn,stt(t)) end

Check-ability is an issue of testing the optical gates when delivered for conformance to the closeness

predicate, i.e., to the axiom.
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2.3.2 Requirements

Section 4.4 [Extension] of [63] illustrates a possible toll-gate, whose behaviour exemplifies a support tech-

nology. So do pumps of a pipe-line system such as illustrated in Examples 24, 29 and 42–44 in [76]. A pump

of a pipe-line system gives rise to several forms of support technologies: from the Egyptian Shadoof [irriga-

tion] pumps, and the Hellenic Archimedian screw pumps, via the 11th century Su Song pumps of China8,

and the hydraulic “technologies” of Moorish Spain9 to the centrifugal and gear pumps of the early industrial

age, etcetera, The techniques – to mention those that have influenced this author – of [240, 149, 178, 135]

appears to apply well to the modeling of support technology requirements.

2.3.3 On Modeling Support Technologies

Support technologies in their relation to the domain in which they reside typically reflect real-time em-

beddedness. As such the techniques and languages for modeling support technologies resemble those for

modeling event and process intensity, while temporal notions are brought into focus. Hence typical model-

ing notations include event-based languages (like Petri nets [202] or CSP) [137], respectively process-based

specification languages (like MSCs, [142], LSCs [133], Statecharts [132], or CSP) [137], as well as tem-

poral languages (like the Duration Calculus and [240] and Temporal Logic of Actions, TLA+) [153]).

2.4 Rules & Regulations

• By a domain rule we shall understand some text (in the domain) which prescribes how people
or equipment are expected to behave when dispatching their duties, respectively when performing
their functions

• By a domain regulation we shall understand some text (in the domain) which prescribes what
remedial actions are to be taken when it is decided that a rule has not been followed according to
its intention

The domain rules & regulations need or may not be explicitly present, i.e., written down. They may be part

of the “folklore”, i.e., tacitly assumed and understood.

2.4.1 Conceptual Analysis

Example 8 Trains at Stations:

• Rule: In China the arrival and departure of trains at, respectively from, railway stations is subject to the
following rule:

In any three-minute interval at most one train may either arrive to or depart from a railway
station.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which
prescribes administrative or legal management and/or staff action, as well as some correction to the
railway traffic.

Example 9 Trains Along Lines:

• Rule: In many countries railway lines (between stations) are segmented into blocks or sectors. The
purpose is to stipulate that if two or more trains are moving along the line, then:

8 https://en.wikipedia.org/wiki/Su Song
9 http://www.islamicspain.tv/Arts-and-Science/The-Culture-of-Al-Andalus/Hydraulic-Technology.htm
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There must be at least one free sector (i.e., without a train) between any two trains along
a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which
prescribes administrative or legal management and/or staff action, as well as some correction to the
railway traffic.

At a meta-level, i.e., explaining the general framework for describing the syntax and semantics of the

human-oriented domain languages for expressing rules and regulations, we can say the following: There

are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when expressing) rules and

regulations (respectively when invoking actions that are subject to rules and regulations). Two languages,

Rules and Reg, exist for describing rules, respectively regulations; and one, Stimulus, exists for describing

the form of the [always current] domain action stimuli. A syntactic stimulus, sy sti, denotes a function,

se sti:STI: Θ → Θ , from any configuration to a next configuration, where configurations are those of the

system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands for, i.e., has as its semantics,

its meaning, rul:RUL, a predicate over current and next configurations, (Θ × Θ) → Bool, where these next

configurations have been brought about, i.e., caused, by the stimuli. These stimuli express: If the predicate

holds then the stimulus will result in a valid next configuration.

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value

meaning: Stimulus → STI
meaning: Rule → RUL
valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ ) ≡ meaning(sy rul)(θ ,(meaning(sy sti))(θ ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e., has as its semantics, its mean-

ing, a semantic regulation, se reg:REG, which is a pair. This pair consists of a predicate, pre reg:Pre REG,
where Pre REG = (Θ × Θ) → Bool, and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ , that is, both involving current and next domain configurations. The two kinds

of functions express: If the predicate holds, then the action can be applied. The predicate is almost the

inverse of the rules functions. The action function serves to undo the stimulus function.

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg → REG

The idea is now the following: Any action (i.e., event) of the system, i.e., the application of any stimulus,

may be an action (i.e., event) in accordance with the rules, or it may not. Rules therefore express whether

stimuli are valid or not in the current configuration. And regulations therefore express whether they should

be applied, and, if so, with what effort. More specifically, there is usually, in any current system con-

figuration, given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such pair. Let sy sti
be any possible stimulus. And let θ be the current configuration. Let the stimulus, sy sti, applied in that

configuration result in a next configuration, θ ′, where θ ′ = (meaning(sy sti))(θ ). Let θ ′ violate the rule,
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∼valid(sy sti,sy rul)(θ ), then if predicate part, pre reg, of the meaning of the regulation, sy reg, holds

in that violating next configuration, pre reg(θ ,(meaning(sy sti))(θ )), then the action part, act reg, of the

meaning of the regulation, sy reg, must be applied, act reg(θ ), to remedy the situation.

axiom

∀ (sy rul,sy reg):Rul and Reg •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ :Θ •

∼valid(sy sti,se rul)(θ )
⇒ pre reg(θ ,(meaning(sy sti))(θ ))

⇒ ∃ nθ :Θ • act reg(θ )=nθ ∧ se rul(θ ,nθ )
end

It may be that the regulation predicate fails to detect applicability of regulations actions. That is, the inter-

pretation of a rule differs, in that respect, from the interpretation of a regulation. Such is life in the domain,

i.e., in actual reality.

2.4.2 Requirements

Implementation of rules & regulations implies monitoring and partially control ling the states symbolised

by Θ in Sect. 2.4.1. Thus some partial implementation of Θ must be required; as must some monitoring

of states θ :Θ and implementation of the predicates meaning, valid, interpret, pre reg and action(s) act reg.

The emerging requirements follow very much in the line of support technology requirements.

2.4.3 On Modeling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities, including those grouped

into “the state”, functions, events, and behaviours. Thus the full spectrum of model-ling techniques and

notations may be needed. Since rules usually express properties one often uses some combination of axioms

and wellformedness predicates. Properties sometimes include temporality and hence temporal notations

(like Duration Calculus or Temporal Logic of Actions ) are used. And since regulations usually express

state (restoration) changes one often uses state changing notations (such as found in Allard [143], B or

event-B [1], RSL [123], VDM-SL [83, 84, 118], and Z [236]). In some cases it may be relevant to model

using some constraint satisfaction notation [3] or some Fuzzy Logic notations [230].

2.5 Scripts

• By a domain script we shall understand the structured, almost, if not outright, formally expressed,
wording of a procedure on how to proceed, one that has legally binding power, that is, which may
be contested in a court of law

2.5.1 Conceptual Analysis

Rules & regulations are usually expressed, even when informally so, as predicates. Scripts, in their proce-

dural form, are like instructions, as for an algorithm.

Example 10 A Casually Described Bank Script: Our formulation amounts to just a (casual) rough
sketch. It is followed by a series of four large examples. Each of these elaborate on the theme of (bank)
scripts. The problem area is that of how repayments of mortgage loans are to be calculated. At any one time
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a mortgage loan has a balance, a most recent previous date of repayment, an interest rate and a handling
fee. When a repayment occurs, then the following calculations shall take place: (i) the interest on the
balance of the loan since the most recent repayment, (ii) the handling fee, normally considered fixed, (iii)
the effective repayment — being the difference between the repayment and the sum of the interest and
the handling fee — and the new balance, being the difference between the old balance and the effective
repayment. We assume repayments to occur from a designated account, say a demand/deposit account. We
assume that bank to have designated fee and interest income accounts. (i) The interest is subtracted from
the mortgage holder’s demand/deposit account and added to the bank’s interest (income) account. (ii) The
handling fee is subtracted from the mortgage holder’s demand/deposit account and added to the bank’s fee
(income) account. (iii) The effective repayment is subtracted from the mortgage holder’s demand/deposit
account and also from the mortgage balance. Finally, one must also describe deviations such as overdue
repayments, too large, or too small repayments, and so on.

Example 11 A Formally Described Bank Script: First we must informally and formally define the
bank state: There are clients (c:C), account numbers (a:A), mortgage numbers (m:M), account yields
(ay:AY) and mortgage interest rates (mi:MI). The bank registers, by client, all accounts (ρ :A Register)
and all mortgages (µ :M Register). To each account number there is a balance (α:Accounts). To each mort-
gage number there is a loan (ℓ:Loans). To each loan is attached the last date that interest was paid on the
loan.

value

r, r′:Real axiom ...
type

C, A, M, Date
AY′ = Real, AY = {| ay:AY′

• 0<ay≤r |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤r′ |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β :Bank′ • wf Bank(β )|}
A Register = C →m A-set

Accounts = A →m Balance
M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

Then we must define well-formedness of the bank state:

value

ay:AY, mi:MI
wf Bank: Bank → Bool

wf Bank(ρ ,α,µ ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ay<mi [ ∧ ... ]

We — perhaps too rigidly — assume that mortgage interest rates are higher than demand/deposit account

interest rates: ay<mi. Operations on banks are denoted by the commands of the bank script language. First

the syntax:

type

Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
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Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P,d:Date)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

value

period: Date × Date → Days [ for calculating interest ]
before: Date × Date → Bool [first date is earlier than last date ]

And then the semantics:

int Cmd(mkPM(c,a,m,p,d))(ρ ,α,µ ,ℓ) ≡
let (b,d′) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,period(d,d′)),
ℓ′ = ℓ † [m 7→ℓ(m)−(p−i) ]
α ′ = α † [a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ a ∈ dom α ∧ m ∈ µ(c)
post before(d,d′)

interest: MI × Loan × Days → P

The idea about scripts is that they can somehow be objectively enforced: that they can be precisely under-

stood and consistently carried out by all stakeholders, eventually leading to computerisation. But they are,

at all times, part of the domain.

2.5.2 Requirements

Script requirements call for the possibly interactive computerisation of algorithms, that is, for rather clas-

sical computing problems. But sometimes these scripts can be expressed, computably, in the form of pro-

grams in a domain specific language. As an example we refer to [103]. [103] illustrates how the design of

pension and life insurance products, and their administration, reserve calculations, and audit, can be based

on a common formal notation. The notation is human-readable and machine-processable,and specialised

to the actuarial domain, achieving great expressive power combined with ease of use and safety. More

specifically (a) product definitions based on standard actuarial models, including arbitrary continuous-time

Markov and semi-Markov models, with cyclic transitions permitted; (b) calculation descriptions for re-

serves and other quantities of interest, based on differential equations; and (c) administration rules.

2.5.3 On Modeling Scripts

Scripts (as are licenses) are like programs (respectively like prescriptions program executions). Hence

the full variety of techniques and notations for modeling programming (or specification) languages apply

[13, 129, 204, 213, 227, 235]. [29, Chaps. 6–9] cover pragmatics, semantics and syntax techniques for

defining functional, imperative and concurrent programming languages.
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2.6 License Languages

License: a right or permission
granted in accordance with law

by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction

which but for such license would be unlawful

Merriam Webster Online [170]

2.6.1 Conceptual Analysis

The Settings

A special form of scripts are increasingly appearing in some domains, notably the domain of electronic, or

digital media. Here licenses express that a licensor , o, permits a licensee, u, to render (i.e., play) works

of proprietary nature CD ROM-like music, DVD-like movies, etc. while obligating the licensee to pay the

licensor on behalf of the owners of these, usually artistic works. Classical digital rights license languages,

[15, 5, 99, 100, 101, 141, 97, 128, 131, 158, 174, 172, 160, 152, 211, 199, 198, 2, 175], applied to the

electronic “downloading”, payment and rendering (playing) of artistic works (for example music, literature

readings and movies). In this chapter we generalise such applications languages and we extend the concept

of licensing to also cover work authorisation (work commitment and promises) in health care, public gov-

ernment and schedule transport. The digital works for these new application domains are patient medical

records, public government documents and bus/train/aircraft transport contracts. Digital rights licensing for

artistic works seeks to safeguard against piracy and to ensure proper payments for the rights to render these

works. Health care and public government license languages seek to ensure transparent and professional

(accurate and timely) health care, respectively ‘good governance’. Transport contract languages seeks to

ensure timely and reliable transport services by an evolving set of transport companies. Proper mathemat-

ical definition of licensing languages seeks to ensure smooth and correct computerised management of

licenses and contracts.

On Licenses

The concepts of licenses and licensing express relations between (i) actors (licensors (the authority) and

licensees), (ii) entities (artistic works, hospital patients, public administration, citizen documents) and bus

transport contracts and (iii) functions (on entities), and as performed by actors. By issuing a license to

a licensee, a licensor wishes to express and enforce certain permissions and obligations: which functions

on which entities the licensee is allowed (is licensed, is permitted) to perform. In this chapter we shall

consider four kinds of entities: (i) digital recordings of artistic and intellectual nature: music, movies,

readings (“audio books”), and the like, (ii) patients in a hospital as represented also by their patient medical

records, (iii) documents related to public government, and (iv) transport vehicles, time tables and transport

nets (of a buses, trains and aircraft).

Permissions and Obligations

The permissions and obligations issues are, (1) for the owner (agent) of some intellectual property to

be paid (an obligation) by users when they perform permitted operations (rendering, copying, editing,

sub-licensing) on their works; (2) for the patient to be professionally treated — by medical staff who

are basically obliged to try to cure the patient; (3) for public administrators and citizens to enjoy good

governance: transparency in law making (national parliaments and local prefectures and city councils),

in law enforcement (i.e., the daily administration of laws), and law interpretation (the judiciary) — by
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agents who are basically obliged to produce certain documents while being permitted to consult (i.e., read,

perhaps copy) other documents; and (4) for bus passengers to enjoy reliable bus schedules — offered by

bus transport companies on contract to, say public transport authorities and on sub-contract to other such

bus transport companies where these transport companies are obliged to honour a contracted schedule.

2.6.2 The Pragmatics

By pragmatics we understand the
study and practice of the factors that govern
our choice of language in social interaction

and the effects of our choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the four domains of (1) production,

distribution and consumption of artistic works, (2) the hospitalisation of patient, i.e., hospital health care,

(3) the handling of law-based document in public government and (4) the operational management of

schedule transport vehicles. The emphasis is on the pragmatics of the terms, i.e., the language used in these

four domains.

Digital Media

Example 12 Digital Media: The intrinsic entities of the performing arts are the artistic works: drama
or opera performances, music performances, readings of poems, short stories, novels, or jokes, movies,
documentaries, newsreels, etc. We shall limit our span to the scope of electronic renditions of these artistic
works: videos, CDs or other. In this chapter we shall not touch upon the technical issues of “download-
ing”(whether ”streaming” or copying, or other). That and other issues should be analysed in [237].

Operations on Digital Works:

For a consumer to be able to enjoy these works that consumer must (normally first) usually “buy a ticket”
to their performances. The consumer, i.e., the theatre, opera, concert, etc., “goer” (usually) cannot copy the
performance (e.g., “tape it”), let alone edit such copies of performances. In the context of electronic, i.e.,
digital renditions of these performances the above “cannots” take on a new meaning. The consumer may
copy digital recordings, may edit these, and may further pass on such copies or editions to others. To do
so, while protecting the rights of the producers (owners, performers), the consumer requests permission to
have the digital works transferred (“downloaded”) from the owner/producer to the consumer, so that the
consumer can render (“play”) these works on own rendering devices (CD, DVD, etc., players), possibly
can copy all or parts of them, then possibly can edit all or parts of the copies, and, finally, possibly can
further license these “edited” versions to other consumers subject to payments to “original” licensor.

License Agreement and Obligation:

To be able to obtain these permissions the user agrees with the wording of some license and pays for the
rights to operate on the digital works.

Two Assumptions:

Two, related assumptions underlie the pragmatics of the electronics of the artistic works. The first as-
sumption is that the format, the electronic representation of the artistic works is proprietary, that is, that
the producer still owns that format. Either the format is publicly known or it is not, that is, it is somehow
“secret”. In either case we “derive” the second assumption (from the fulfillment of the first). The second as-
sumption is that the consumer is not allowed to, or cannot operate10 on the works by own means (software,
machines). The second assumption implies that acceptance of a license results in the consumer receiving
software that supports the consumer in performing all operations on licensed works, their copies and edited
versions: rendering, copying, editing and sub-licensing.

10 render, copy and edit
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Protection of the Artistic Electronic Works:

The issue now is: how to protect the intellectual property (i.e., artistic) and financial (exploitation) rights of
the owners of the possibly rendered, copied and edited works, both when, and when not further distributed.

Health-care

Example 13 Health-care: Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients, in a sense, issue a request to
be treated with the aim of full or partial restitution. This request is directed at medical staff, that is, the
patient authorises medical staff to perform a set of actions upon the patient. One could claim, as we shall,
that the patient issues a license.

Patients and Patient Medical Records:

So patients and their attendant patient medical records (PMRs) are the main entities, the “works” of this
domain. We shall treat them synonymously: PMRs as surrogates for patients. Typical actions on patients
— and hence on PMRs — involve admitting patients, interviewing patients, analysing patients, diagnosing
patients, planning treatment for patients, actually treating patients, and, under normal circumstance, to
finally release patients.

Medical Staff:

Medical staff may request (‘refer’ to) other medical staff to perform some of these actions. One can con-
ceive of describing action sequences (and ‘referrals’) in the form of hospitalisation (not treatment) plans.
We shall call such scripts for licenses.

Professional Health Care:

The issue is now, given that we record these licenses, their being issued and being honoured, whether the
handling of patients at hospitals follow, or does not follow properly issued licenses.

Government Documents

Example 14 Documents: By public government we shall, following Charles de Secondat, baron de
Montesquieu (1689–1755)11, understand a composition of three powers: the law-making (legislative), the
law-enforcing and the law-interpreting parts of public government. Typically national parliament and local
(province and city) councils are part of law-making government. Law-enforcing government is called the
executive (the administration). And law-interpreting government is called the judiciary [system] (including
lawyers etc.).

Documents:

A crucial means of expressing public administration is through documents.12 We shall therefore provide
a brief domain analysis of a concept of documents. (This document domain description also applies to
patient medical records and, by some “light” interpretation, also to artistic works — insofar as they also are
documents.) Documents are created, edited and read; and documents can be copied, distributed, the subject
of calculations (interpretations) and be shared and shredded.

11 De l’esprit des lois (The Spirit of the Laws), published 1748
12 Documents are, for the case of public government to be the “equivalent” of artistic works.
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Document Attributes:

With documents one can associate, as attributes of documents, the actors who created, edited, read, copied,
distributed (and to whom distributed),shared, performed calculations and shredded documents. With these
operations on documents, and hence as attributes of documents one can, again conceptually, associate the
location and time of these operations.

Actor Attributes and Licenses:

With actors (whether agents of public government or citizens) one can associate the authority (i.e., the
rights) these actors have with respect to performing actions on documents. We now intend to express these
authorisations as licenses.

Document Tracing:

An issue of public government is whether citizens and agents of public government act in accordance with
the laws — with actions and laws reflected in documents such that the action documents enables a trace
from the actions to the laws “governing” these actions. We shall therefore assume that every document
can be traced back to its law-origin as well as to all the documents any one document-creation or -editing
was based on.

Transportation

Example 15 Passenger and Goods Transport:

A Synopsis:

Contracts obligate transport companies to deliver bus traffic according to a timetable. The timetable is part
of the contract. A contractor may sub-contract (other) transport companies to deliver bus traffic according
to timetables that are sub-parts of their own timetable. Contractors are either public transport authorities or
contracted transport companies. Contracted transport companies may cancel a subset of bus rides provided
the total amount of cancellations per 24 hours for each bus line does not exceed a contracted upper limit
The cancellation rights are spelled out in the contract. A sub-contractor cannot increase a contracted upper
limit for cancellations above what the sub-contractor was told (in its contract) by its contractor. Etcetera.

A Pragmatics and Semantics Analysis:

The “works” of the bus transport contracts are two: the timetables and, implicitly, the designated (and
obligated) bus traffic. A bus timetable appears to define one or more bus lines, with each bus line giving
rise to one or more bus rides. Nothing is (otherwise) said about regularity of bus rides. It appears that
bus ride cancellations must be reported back to the contractor. And we assume that cancellations by a
sub-contractor is further reported back also to the sub-contractor’s contractor. Hence eventually that the
public transport authority is notified. Nothing is said, in the contracts, such as we shall model them, about
passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be paid back from a sub-
contractor to the contractor. So we shall not bother, in this example, about transport costs nor transport
subsidies. But will leave that necessary aspect as an exercise. The opposite of cancellations appears to be
‘insertion’ of extra bus rides, that is, bus rides not listed in the time table, but, perhaps, mandated by special
events13 We assume that such insertions must also be reported back to the contractor. We assume concepts
of acceptable and unacceptable bus ride delays. Details of delay acceptability may be given in contracts, but
we ignore further descriptions of delay acceptability. but assume that unacceptable bus ride delays are also
to be (iteratively) reported back to contractors. We finally assume that sub-contractors cannot (otherwise)
change timetables. (A timetable change can only occur after, or at, the expiration of a license.) Thus we
find that contracts have definite period of validity. (Expired contracts may be replaced by new contracts,
possibly with new timetables.)

13 Special events: breakdown (that is, cancellations) of other bus rides, sports event (soccer matches), etc.
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Contracted Operations, An Overview:

The actions that may be granted by a contractor according to a contract are: (i) start: to commence, i.e., to
start, a bus ride (obligated); (ii) end: to conclude a bus ride (obligated); (iii) cancel: to cancel a bus ride
(allowed, with restrictions); (iv) insert: to insert a bus ride; and (v) subcontract: to sub-contract part or all
of a contract.

2.6.3 Schematic Rendition of License Language Constructs

There are basically two aspects to licensing languages: (i) the [actual] licensing [and sub-licensing], in the

form of licenses, ℓ, by licensors, o, of permissions and thereby implied obligations, and (ii) the carrying-

out of these obligations in the form of licensee, u, actions. We shall treat licensors and licensees on par,

that is, some os are also us and vice versa. And we shall think of licenses as not necessarily material entities

(e.g., paper documents), but allow licenses to be tacitly established (understood).

Licensing

The granting of a license ℓ by a licensor o, to a set of licensees uu1
,uu2

, ...,uuu in which ℓ expresses that

these may perform actions aa1
,aa2

, ...,aaa on work items ee1
,ee2

, ...,eee can be schematised:

ℓ : licensor o contracts licensees {uu1
,uu2

,...,uuu}
to perform actions {aa1

,aa2
,...,aaa} on work items {ee1

,ee2
,...,eee}

allowing sub-licensing of actions {aai
,aa j

,...,aak
} to {uux ,uuy ,...,uuz}

The two sets of action designators, das :{aa1
,aa2

, ...,aaa} and sas :{aax,aay , ...,aaz} need not relate. Sub-
licensing: Line 3 of the above schema, ℓ, expresses that licensees uu1

,uu2
, ...,uuu , may act as licensors

and (thereby sub-)license ℓ to licensees us : {uux,uuy , ...,uuz}, distinct from sus : {uu1
,uu2

, ...,uuu}, that is,

us∩sus = {}. Variants: One can easily “cook up” any number of variations of the above license schema.

Revoke Licenses: We do not show expressions for revoking part or all of a previously granted license.

Licensors and Licensees

Example 16 Licensors and Licensees:

Digital Media:

For digital media the original licensors are the original producers of music, film, etc. The “original” li-
censees are you and me ! Thereafter some of us may become licensors, etc.

Heath-care:

For health-care the original licensors are, say in Denmark, the Danish governments’ National Board of
Health14; and the “original” licensees are the national hospitals. These then sub-license their medical clinics
(rheumatology, cancer, urology, gynecology, orthopedics, neurology, etc.) which again sub-licenses their
medical staff (doctors, nurses, etc.). A medical doctor may, as is the case in Denmark for certain actions,
not [necessarily] perform these but may sub-license their execution to nurses, etc.

14 In the UK: the NHS, etc.
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Documents:

For government documents the original licensor are the (i) heads of parliament, regional and local govern-
ments, (ii) government (prime minister) and the heads of respective ministries, respectively the regional
and local agencies and administrations. The “original” licensees are (i′) the members of parliament, re-
gional and local councils charged with drafting laws, rules and regulations, (ii′) the ministry, respectively
the regional and local agency department heads. These (the ′s) then become licensors when licensing their
staff to handle specific documents.

Transport:

For scheduled passenger (etc.) transportation the original licensors are the state, regional and/or local trans-
port authorities. The “original” licensees are the public and private transport firms. These latter then become
licensors licensors licensing drivers to handle specific transport lines and/or vehicles.

Actors and Actions

Example 17 Actors and Actions:

Digital Media:

w refers to a digital “work” with w′ designating a newly created one; si refers to a sector of some work.
render w(si,s j , ...,sk): sectors si,s j , ...,sk of work w are rendered (played, visualised) in that order. w′

:= copy w(si,s j, ...,sk): sectors si,s j , ...,sk of work w are copied and becomes work w′. w′ := edit w

with E (wα (sa,sb, ...,sc), ...,wγ (sp,sq, ...,sr)): work w is edited while [also] incorporating references to or
excerpts from [other] works wα(sa,sb, ...,sc), ...,wγ (sp,sq, ...,sr). read w: work w is read, i.e., information
about work w is somehow displayed. ℓ : licensor m contracts licensees {uu1

,uu2
,...,uuu} to perform

actions {RENDER, COPY, EDIT, READ} on work items {wi1 ,wi2 , ...,wiw}. Etcetera: other forms of actions
can be thought of.

Heath-care:

Actors are here limited to the patients and the medical staff. We refer to Fig. 2.3 on the next page. It shows
an archetypal hospitalisation plan and identifies a number of actions; π designates patients, t designates
treatment (medication, surgery, . . . ). Actions are performed by medical staff, say h, with h being an implicit
argument of the actions. interview π : a PMR with name, age, family relations, addresses, etc., is established
for patient π . admit π : the PMR records the anamnese (medical history) for patient π . establish analysis

plan π : the PMR records which analyses (blood tests, ECG, blood pressure, etc.) are to be carried out.
analyse π : the PMR records the results of the analyses referred to previously. diagnose π : medical staff
h diagnoses, based on the analyses most recently performed. plan treatment for π : medical staff h sets
up a treatment plan for patient π based on the diagnosis most recently performed. treat π wrt. t: medical
staff h performs treatment t on patient π , observes “reaction” and records this in the PMR. Predicate
“actions”: more analysis π ?, more treatment π ? and more diagnosis π ?. release π : either the patient
dies or is declared ready to be sent ’home’. ℓ : licensor o contracts medical staff {mm1

,mm2
, ...,mmm}

to perform actions {INTERVIEW, ADMIT, PLAN ANALYSIS, ANALYSE, DIAGNOSE, PLAN TREATMENT,

TREAT, RELEASE} on patients {πp1
,πp2

, ...,πpp}. Etcetera: other forms of actions can be thought of.

Documents:

d refer to documents with d′ designating new documents. d′ := create based on dx,dy, ...,dz: A new docu-
ment, named d′, is created, with no information “contents”, but referring to existing documents dx,dy, ...,dz.
edit d with E based on dnα ,dβ , ...,dγ : document d is edited with E being the editing function and E −1

being its “undo” inverse. read d: document d is being read. d′ := copy d: document d is copied into a
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Fig. 2.3. An example single-illness non-fatal hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

new document named d′. freeze d: document d can, from now on, only be read. shred d: document d is
shredded. That is, no more actions can be performed on d. ℓ : licensor o contracts civil service staff

{cc1
,cc2

, ...,ccc} to perform actions {CREATE, EDIT, READ, COPY, FREEZE, SHRED} on documents

{dd1
,dd2

, ...,ddd
}. Etcetera: other forms of actions can be thought of.

Transport:

We restrict, without loss of generality, to bus transport. There is a timetable, tt. It records bus lines, l, and
specific instances of bus rides, b. start bus ride l,b at time t: Bus line l is recorded in tt and its departure
in tt is recorded as τ . Starting that bus ride at t means that the start is either on time, i.e., t=τ , or the start
is delayed δd : τ-t or advanced δa : t-τ where δd and δa are expected to be small intervals. All this is to be
reported, in due time, to the contractor. end bus ride l,b at time t: Ending bus ride l,b at time t means that
it is either ended on time, or earlier, or delayed. This is to be reported, in due time, to the contractor. cancel

bus ride l,b at time t: t must be earlier than the scheduled departure of bus ride l,b. insert an extra bus

l,b′ at time t: t must be the same time as the scheduled departure of bus ride l,b with b′ being a “marked”
version of b. ℓ : licensor o contracts transport staff {bb1

,bb2
, ...,bbb

} to perform actions {START, END,

CANCEL, INSERT} on work items {ee1
,ee2

,...,eee}. Etcetera: other forms of actions can be thought of.

2.6.4 Requirements

Requirements for license language implementation basically amounts to requirements for three aspects.

(i) The design of the license language, its abstract and concrete syntax, its interpreter, and its interfaces

to distributed licensor and licensee behaviours; (ii) the requirements for a distributed system of licensor

and licensee behaviours; and (iii) the monitoring and partial control of the states of licensor and licensee

behaviours. The structuring of these distributed licensor and licensee behaviours differ from slightly to

somewhat, but not that significant in the four license languages examples. Basically the licensor and li-

censee behaviours form a set of behaviours. Basically everyone can communicate with everyone. For the
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case of digital media licensee behaviours communicate back to licensor behaviours whenever a properly

licensed action is performed – resulting in the transfer of funds from licensees to licensors. For the case of

health care some central authority is expected to validate the granting of licenses and appear to be bound

by medical training. For the case of documents such checks appear to be bound by predetermined autho-

risation rules. For the case of transport one can perhaps speak of more rigid management & organisation

dependencies as licenses are traditionally transferred between independent authorities and companies.

2.6.5 On Modeling License Languages

Licensors are expected to maintain a state which records all the licenses it has issued. Whenever at licensee

“reports back” (the begin and/or the end) of the performance of a granted action, this is recorded in its state.

Sometimes these granted actions are subject to fees. The licensor therefore calculates outstanding fees —

etc. Licensees are expected to maintain a state which records all the licenses it has accepted. Whenever an

action is to be performed the licensee records this and checks that it is permitted to perform this action. In

many cases the licensee is expected to “report back”, both the beginning and the end of performance of that

action, to the licensor. A typical technique of modeling licensors, licensees and patients, i.e., their PMRs, is

to model them as (never ending) processes, a la CSP [137]with input/output, ch ?/ch ! m, communications

between licensors, licensees and PMRs. Their states are modeled as programmable attributes.

2.7 Management & Organisation

• By domain management we shall understand such people (such decisions) (i) who (which) deter-
mine, formulate and thus set standards (cf. rules and regulations, Sect. 2.4) concerning strategic,
tactical and operational decisions; (ii) who ensure that these decisions are passed on to (lower)
levels of management and to floor staff; (iii) who make sure that such orders, as they were, are
indeed carried out; (iv) who handle undesirable deviations in the carrying out of these orders cum
decisions; and (v) who “backstops” complaints from lower management levels and from “floor”
staff

• By domain organisation we shall understand (vi) the structuring of management and non-
management staff “overseeable” into clusters with “tight” and “meaningful” relations; (vii) the al-
location of strategic, tactical and operational concerns to within management and non-management
staff clusters; and hence (viii) the “lines of command”: who does what, and who reports to whom,
administratively and functionally

The ‘&’ is justified from the interrelations of items (i–viii).

• • •

Chapter 1 outlined the general principle, techniques and tools for analysing & decribing discrete, composite

endurants. Organisations and the management of these form such composite endurants. We shall therefore,

really, not have much really new to add in this section !

2.7.1 Conceptual Analysis

We first bring some examples.

Example 18 Train Monitoring, I: In China, as an example, till the early 1990s, rescheduling of trains
occurs at stations and involves telephone negotiations with neighbouring stations (“up and down the lines”).
Such rescheduling negotiations, by phone, imply reasonably strict management and organisation (M&O).
This kind of M&O reflects the geographical layout of the rail net.
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Example 19 Railway Management and Organisation: Train Monitoring, II: We single out a rather
special case of railway management and organisation. Certain (lowest-level operational and station-located)
supervisors are responsible for the day-to-day timely progress of trains within a station and along its in-
coming and outgoing lines, and according to given timetables. These supervisors and their immediate
(middle-level) managers (see below for regional managers) set guidelines (for local station and incoming
and outgoing lines) for the monitoring of train traffic, and for controlling trains that are either ahead of or
behind their schedules. By an incoming and an outgoing line we mean part of a line between two stations,
the remaining part being handled by neighbouring station management. Once it has been decided, by such
a manager, that a train is not following its schedule, based on information monitored by non-management
staff, then that manager directs that staff: (i) to suggest a new schedule for the train in question, as well as
for possibly affected other trains, (ii) to negotiate the new schedule with appropriate neighbouring stations,
until a proper reschedule can be decided upon, by the managers at respective stations, (iii) and to enact that
new schedule.15 A (middle-level operations) manager for regional traffic, i.e., train traffic involving several
stations and lines, resolves possible disputes and conflicts.

The above, albeit rough-sketch description, illustrated the following management and organisation issues:

(i) There is a set of lowest-level (as here: train traffic scheduling and rescheduling) supervisors and their

staff; (ii) they are organised into one such group (as here: per station); (iii) there is a middle-level (as here:

regional train traffic scheduling and rescheduling) manager (possibly with some small staff), organised with

one such per suitable (as here: railway) region; and (iv) the guidelines issued jointly by local and regional

(...) supervisors and managers imply an organisational structuring of lines of information provision and

command.

People staff enterprises, the components of infrastructures with which we are concerned, i.e., for which

we develop software. The larger these enterprises — these infrastructure components — the more need

there is for management and organisation. The role of management is roughly, for our purposes, twofold:

first, to perform strategic, tactical and operational work, to set strategic, tactical and operational policies —

and to see to it that they are followed. The role of management is, second, to react to adverse conditions,

that is, to unforeseen situations, and to decide how they should be handled, i.e., conflict resolution. Policy

setting should help non-management staff operate normal situations — those for which no management

interference is thus needed. And management “backstops” problems: management takes these problems

off the shoulders of non-management staff. To help management and staff know who’s in charge wrt.

policy setting and problem handling, a clear conception of the overall organisation is needed. Organisation

defines lines of communication within management and staff, and between these. Whenever management

and staff has to turn to others for assistance they usually, in a reasonably well-functioning enterprise, follow

the command line: the paths of organigrams — the usually hierarchical box and arrow/line diagrams.

The management and organisation model of a domain is a partial specification; hence all the usual

abstraction and modeling principles, techniques and tools apply. More specifically, management is a set of

predicate functions, or of observer and generator functions These either parametrise other, the operations

functions, that is, determine their behaviour, or yield results that become arguments to these other functions.

Organisation is thus a set of constraints on communication behaviours. Hierarchical, rather than linear, and

matrix structured organisations can also be modeled as sets (of recursively invoked sets) of equations.

To relate classical organigrams to formal descriptions we first show such an organigram (Fig. 2.4),

and then we show schematic processes which — for a rather simple scenario — model managers and the

managed! Based on such a diagram, and modeling only one neighbouring group of a manager and the staff

working for that manager we get a system in which one manager, mgr, and many staff, stf, coexist or work

concurrently, i.e., in parallel. The mgr operates in a context and a state modeled by ψ . Each staff, stf(i)
operates in a context and a state modeled by sσ(i).

type

15 That enactment may possibly imply the movement of several trains incident upon several stations: the one at which

the manager is located, as well as possibly at neighbouring stations.
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Fig. 2.4. Organisational structures

Msg, Ψ , Σ , Sx
SΣ = Sx →m Σ

channel

{ ms[ i ]:Msg | i:Sx }
value

sσ :SΣ , ψ :Ψ

sys: Unit → Unit

sys() ≡ ‖ { stf(i)(sσ(i)) | i:Sx } ‖ mgr(ψ)

In this system the manager, mgr, (1) either broadcasts messages, m, to all staff via message channel ms[i].
The manager’s concoction, m out(ψ), of the message, msg, has changed the manager state. Or (2) is

willing to receive messages, msg, from whichever staff i the manager sends a message. Receipt of the

message changes, m in(i,m)(ψ), the manager state. In both cases the manager resumes work as from the

new state. The manager chooses — in this model — which of thetwo things (1 or 2) to do by a so-called

non-deterministic internal choice (⌈⌉).

mg: Ψ → in,out {ms[ i ]|i:Sx} Unit

mgr(ψ) ≡
(1) let (ψ ′,m)=m out(ψ) in ‖ {ms[ i ]!m|i:Sx};mgr(ψ ′) end

⌈⌉
(2) let ψ ′ = ⌈⌉⌊⌋ {let m=ms[ i ]? in m in(i,m)(ψ) end|i:Sx} in mgr(ψ ′) end

m out: Ψ → Ψ × MSG,
m in: Sx × MSG → Ψ → Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg, from the manager, and then

to change, st in(msg)(σ), state accordingly, or (2) to concoct, st out(σ), a message, msg (thus changing

state) for the manager, and send it ms[i]!msg. In both cases the staff resumes work as from the new state.

The staff member chooses — in this model — which of thetwo “things” (1 or 2) to do by a non-deterministic

internal choice (⌈⌉).

stf: i:Sx → Σ → in,out ms[ i ] Unit

stf(i)(σ) ≡
(1) let m = ms[ i ]? in stf(i)(stf in(m)(σ)) end
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⌈⌉
(2) let (σ ′,m) = st out(σ) in ms[ i ]!m; stf(i)(σ ′) end

st in: MSG → Σ → Σ ,
st out: Σ → Σ × MSG

Both manager and staff processes recurse (i.e., iterate) over possibly changing states. The management

process non-deterministically, internal choice, “alternates” between “broadcast”-issuing orders to staff and

receiving individual messages from staff. Staff processes likewise non-deterministically, internal choice,

alternate between receiving orders from management and issuing individual messages to management.

The conceptual example also illustrates modeling stakeholder behaviours as interacting (here CSP-like)

processes.

Example 20 Strategic, Tactical and Operations Management: We think of (i) strategic, (ii) tactic,
and (iii) operational managers as well as (iv) supervisors, (v) team leaders and the rest of the (vi) staff
(i.e., workers) of a domain enterprise as functions. Each category of staff, i.e., each function, works in state
and updates that state according to schedules and resource allocations — which are considered part of the
state. To make the description simple we do not detail the state other than saying that each category works
on an “instantaneous copy” of “the” state. Now think of six staff category activities, strategic managers,
tactical managers, operational managers, supervisors, team leaders and workers as six simultaneous sets of
actions. Each function defines a step of collective (i.e., group) (strategic, tactical, operational) management,
supervisor, team leader and worker work. Each step is considered “atomic”. Now think of an enterprise
as the “repeated” step-wise simultaneous performance of these category activities. Six “next” states arise.
These are, in the reality of the domain, ameliorated, that is reconciled into one state. however with the next
iteration, i.e., step, of work having each category apply its work to a reconciled version of the state resulting
from that category’s previously yielded state and the mediated “global” state. Caveat: The below is not a
mathematically proper definition. It suggests one !

type

0. Σ , Σs,Σt ,Σo,Σu,Σe,Σw

value

1. str, tac, opr, sup, tea, wrk: Σ i → Σ i

2. stra, tact, oper, supr, team, work: Σ → (Σx1
×Σx2

×Σx3
×Σx4

×Σx5
) → Σ

3. objective: (Σs×Σt×Σo×Σu×Σe×Σw) → Bool

3. enterprise,ameliorate: (Σs×Σt×Σo×Σu×Σe×Σw) → Σ
4. enterprise: (σs,σt ,σu,σe,σw) ≡
6. let σ ′

s = stra(str(σ s))(σ
′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w),

7. σ ′
t = tact(tac(σ t))(σ

′
s,σ

′
o,σ

′
u,σ

′
e,σ

′
w),

8. σ ′
o = oper(opr(σo))(σ

′
s,σ

′
t ,σ

′
u,σ

′
e,σ

′
w),

9. σ ′
u = supr(sup(σu))(σ

′
s,σ

′
t ,σ

′
o,σ

′
e,σ

′
w),

10. σ ′
e = team(tea(σ e))(σ

′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
w),

11. σ ′
w = work(wrk(σw))(σ

′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e) in

12. if objective(σ ′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w)

13. then ameliorate(σ ′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w)

14. else enterprise(σ ′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w)

15. end end

0. Σ is a further undefined and unexplained enterprise state space. The various enterprise players view

this state in their own way.

1. Six staff group operations, str, tac, opr, sup, tea and wrk, each act in the enterprise state such as

conceived by respective groups to effect a resulting enterprise state such as achieved by respective

groups.
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2. Six staff group state amelioration functions, ame s,ame t, ame o, ame u, ame e and ame w, each

apply to the resulting enterprise states such as achieved by respective groups to yield a result state such

as achieved by that group.

3. An overall objective function tests whether a state summary reflects that the objectives of the enterprise

has been achieved or not.

4. The enterprise function applies to the tuple of six group-biased (i.e., ameliorated) states. Initially these

may all be the same state. The result is an ameliorated state.

5. An iteration, that is, a step of enterprise activities, lines 5.–13. proceeds as follows:

6. strategic management operates

• in its state space, σs : Σ ;

• effects a next (un-ameliorated strategic management) state σ ′
s;

• and ameliorates this latter state in the context of all the other player’s ameliorated result states.

7.–11. The same actions take place, simultaneously for the other players: tac, opr, sup, tea and wrk.

12. A test, has objectives been met, is made on the six ameliorated states.

13. If test is successful, then the enterprise terminates in an ameliorated state.

14. Otherwise the enterprise recurses, that is, “repeats” itself in new states.

The above “function” definition is suggestive. It suggests that a solution to the fix-point 6-tuple of equations

over “intermediate” states, σ ′
x, where x is any of s, t,o,u,e,w, is achieveable by iteration over just these 6

equations.

2.7.2 Requirements

Top-level, including strategic management tends to not be amenable to “automation”. Increasingly tactical

management tends to “divide” time between “bush-fire, stop-gap” actions – hardly automatable and formu-

lating, initiating and monitoring main operations. The initiation and monitoring of tactical actions appear

amenable to partial automation. Operational management – with its reliance on rules & regulations, scripts

and licenses – is where computer monitoring and partial control has reaped the richest harvests.

2.7.3 On Modeling Management and Organisation

Management and organisation basically spans entity, function, event and behaviour intensities and thus

typically require the full spectrum of modeling techniques and notations — summarised in Sect. 2.2.3.

2.8 Human Behaviour

• By domain human behaviour we shall understand any of a quality spectrum of carrying out
assigned work: from (i) careful, diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent
work, to (iv) outright criminal pursuit

Although we otherwise do not go into any depth with respect to the analysis & description of humans, we

shall momentarily depart from this “abstinence”.

2.8.1 Conceptual Analysis

To model human behaviour “smacks” like modeling human actors, the psychology of humans, etc. ! We

shall not attempt to model the psychological side of humans — for the simple reason that we neither know

how to do that nor whether it can at all be done. Instead we shall be focusing on the effects on non-human

manifest entities of human behaviour.
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Example 21 Banking — or Programming — Staff Behaviour: Let us assume a bank clerk, “in ye
olde” days, when calculating, say mortgage repayments (cf. Example 10). We would characterise such a
clerk as being diligent, etc., if that person carefully follows the mortgage calculation rules, and checks and
double-checks that calculations “tally up”, or lets others do so. We would characterise a clerk as being
sloppy if that person occasionally forgets the checks alluded to above. We would characterise a clerk as
being delinquent if that person systematically forgets these checks. And we would call such a person a
criminal if that person intentionally miscalculates in such a way that the bank (and/or the mortgage client)
is cheated out of funds which, instead, may be diverted to the cheater. Let us, instead of a bank clerk,
assume a software programmer charged with implementing an automatic routine for effecting mortgage
repayments (cf. Example 11). We would characterise the programmer as being diligent if that person
carefully follows the mortgage calculation rules, and throughout the development verifies and tests that the
calculations are correct with respect to the rules. We would characterise the programmer as being sloppy
if that person forgets certain checks and tests when otherwise correcting the computing program under
development. We would characterise the programmer as being delinquent if that person systematically
forgets these checks and tests. And we would characterise the programmer as being a criminal if that
person intentionally provides a program which miscalculates the mortgage interest, etc., in such a way that
the bank (and/or the mortgage client) is cheated out of funds.

Example 22 A Human Behaviour Mortgage Calculation: Example 11 gave a semantics to the mort-
gage calculation request (i.e., command) as would a diligent bank clerk be expected to perform it. To
express, that is, to model, how sloppy, delinquent, or outright criminal persons (staff?) could behave we
must modify the int Cmd(mkPM(c,a,m,p,d′))(ρ ,α,µ ,ℓ) definition.

int Cmd(mkPM(c,a,m,p,d))(ρ ,α,µ ,ℓ) ≡
let (b,d′) = ℓ(m) in

if q(α(a),p) [α(a)≤p∨α(a)=p∨α(a)≤p∨... ]
then

let i = f1(interest(mi,b,period(d,d′))),
ℓ′ = ℓ † [m 7→f2(ℓ(m)−(p−i)) ],
α ′ = α † [a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),a“staff” 7→f“staff”(α(a“staff”)+i) ] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P [ typically: f“staff” = λp.p ]

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example 22 are deliberately left undefined.

They are being defined by the “staffer” when performing (incl., programming) the mortgage calculation

routine. The point of Example 22 is that one must first define the mortgage calculation script precisely as

one would like to see the diligent staff (programmer) to perform (incl., correctly program) it before one

can “pinpoint” all the places where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4 and

f“staff” designate those places. The point of Example 22 is also that we must first domain-define, “to the

best of our ability” all the places where human behaviour may play other than a desirable role. If we cannot,

then we cannot claim that some requirements aim at countering undesirable human behaviour.

Commensurate with the above, humans interpret rules and regulations differently, and, for some hu-

mans, not always consistently — in the sense of repeatedly applying the same interpretations. Our final

specification pattern is therefore:
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type

Action = Θ
∼
→ Θ -infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ -infset

hum beha(sy sti,sy rul)(α)(θ ) as θ set
post

θ set = α(θ ) ∧ action(sy sti)(θ ) ∈ θ set
∧ ∀ θ ′:Θ •θ ′ ∈ θ set ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ )⇒se rul(θ ,θ ′)

The above is, necessarily, sketchy: There is a possibly infinite variety of ways of interpreting some rules.

A human, in carrying out an action, interprets applicable rules and chooses one which that person believes

suits some (professional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies the intent,

i.e., yields true on the pre/post-configuration pair, when the action is performed — whether as intended by

the ones who issued the rules and regulations or not. We do not cover the case of whether an appropriate

regulation is applied or not. The above-stated axioms express how it is in the domain, not how we would

like it to be. For that we have to establish requirements.

2.8.2 Requirements

Requirements in relation to the human behaviour facet is not requirements about software that “replaces”

human behaviour. Such requirements were hinted at in Sects. 2.5.2–2.7.2. Human behaviour facet require-

ments are about software that checks human behaviour; that its remains diligent; that it does not transgress

into sloppy, delinquent, let alone criminal behaviour. When transgressions are discovered, appropriate re-

medial actions may be prescribed.

2.8.3 On Modeling Human Behaviour

To model human behaviour is, “initially”, much like modeling management and organisation. But only ‘ini-

tially’. The most significant human behaviour modeling aspect is then that of modeling non-determinism

and looseness, even ambiguity. So a specification language which allows specifying non-determinism and

looseness (like CafeOBJ [121] and RSL [123]) is to be preferred. To prescribe requirements is to prescribe

the monitoring of the human input at the computer interface.

2.9 Conclusion

We have introduced the scientific and engineering concept of domain theories and domain engineering;

and we have brought but a mere sample of the principles, techniques and tools that can be used in creating

domain descriptions.

2.9.1 Completion

Domain acquisition results in typically up to thousands of units of domain descriptions. Domain analysis

subsequently also serves to classify which facet any one of these description units primarily characterises.

But some such “compartmentalisations” may be difficult, and may be deferred till the step of “completion”.

It may then be, “at the end of the day”, that is, after all of the above facets have been modeled that some

description units are left as not having been described, not deliberately, but “circumstantially”. It then

behooves the domain engineer to fit these “dangling” description units into suitable parts of the domain
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description. This “slotting in” may be simple, and all is fine. Or it may be difficult. Such difficulty may

be a sign that the chosen model, the chosen description, in its selection of entities, functions, events and

behaviours to model — in choosing these over other possible selections of phenomena and concepts is not

appropriate. Another attempt must be made. Another selection, another abstraction of entities, functions,

etc., may need be chosen. Usually however, after having chosen the abstractions of the intrinsic phenomena

and concepts, one can start checking whether “dangling” description units can be fitted in “with ease”.

2.9.2 Integrating Formal Descriptions

We have seen that to model the full spectrum of domain facets one needs not one, but several specification

languages. No single specification language suffices. It seems highly unlikely and it appears not to be desir-

able to obtain a single, “universal” specification language capable of “equally” elegantly, suitably abstractly

modeling all aspects of a domain. Hence one must conclude that the full modeling of domains shall deploy

several formal notations – including plain, good old mathematics in all its forms. The issues are then the

following which combinations of notations to select, and how to make sure that the combined specification

denotes something meaningful. The ongoing series of “Integrating Formal Methods” conferences [4] is a

good source for techniques, compositions and meanings.

2.9.3 The Impossibility of Describing Any Domain Completely

Domain descriptions are, by necessity, abstractions. One can never hope for any notion of complete domain

descriptions. The situation is no better for domains such as we define them than for physics. Physicists

strive to understand the manifest world around us – the world that was there before humans started creating

“their domains”. The physicists describe the physical world “in bits and pieces” such that large collections

of these pieces “fit together”, that is, are based on some commonly accepted laws and in some commonly

agreed mathematics. Similarly for such domains as will be the subject of domain science & engineering

such as we cover that subject in [76, 63] and in the present chapter and reports [71, 65]. Individual such

domain descriptions will be emphasizing some clusters of facets, others will be emphasizing other aspects.

2.9.4 Rôles for Domain Descriptions

We can distinguish between a spectrum of rôles for domain descriptions. Some of the issues brought for-

ward below may have been touched upon in [76, 63].

Alternative Domain Descriptions:

It may very well be meaningful to avail oneself of a variety of domain models (i.e., descriptions) for any

one domain, that is, for what we may consider basically one and the same domain. In control theory (a

science) and automation (an engineering) we develop specific descriptions, usually on the form of a set of

differential equations, for any one control problem. The basis for the control problem is typically the science

of mechanics. This science has many renditions (i.e., interpretations). For the control problem, say that of

keeping a missile carried by a train wagon, erect during train movement and/or windy conditions, one may

then develop a “self-contained” description of the problem based on some mechanics theory presentation.

Similarly for domains. One may refer to an existing domain description. But one may re-develop a textually

“smaller” domain description for any one given, i.e., specific problem.

Domain Science:

A domain description designates a domain theory. That is, a bundle of propositions, lemmas and theorems

that are either rather explicit or can be proven from the description. So a domain description is the basis

for a theory as well as for the discovery of domain laws, that is, for a domain science. We have sciences of

physics (incl. chemistry), biology, etc. Perhaps it is about time to have proper sciences, to the extent one

can have such sciences for human-made domains.
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Business Process Re-engineering:

Some domains manifest serious amounts of human actions and interactions. These may be found to not

be efficient to a degree that one might so desire. A given domain description may therefore be a basis

for suggesting other management & organisation structures, and/or rules & regulations than present ones.

Yes, even making explicit scripts or a license language which have hitherto been tacitly understood –

without necessarily computerising any support for such a script or license language. The given and the

resulting domain descriptions may then be the basis for operations research models that may show desired

or acceptable efficiency improvements.

Software Development:

[63] shows one approach to requirements prescription. Domain analysis & description, i.e., domain engi-

neering, is here seen as an initial phase, with requirements prescription engineering being a second phase,

and software design being a third phase. We see domain engineering as indispensable, that is, an absolute

must, for software development. [51, Domains: Their Simulation, Monitoring and Control ] further illus-

trates how domain engineering is a base for the development of domain simulators, demos, monitors and

controllers.

2.9.5 Grand Challenges of Informatics17

To establish a reasonably trustworthy and believable theory of a domain, say the transportation, or just

the railway domain, may take years, possibly 10–15 ! Similarly for domains such as the financial service

industry, the market (of consumers and producers, retailers, wholesaler, distribution cum supply chain),

health care, and so forth. The current author urges younger scientists to get going! It is about time.

2.10 Bibliographical Notes

To create domain descriptions, or requirements prescriptions, or software designs, properly, at least such

as this author sees it, is a joy to behold. The beauty of carefully selected and balanced abstractions, their

interplay with other such, the relations between phases, stages and steps, and many more conceptual con-

structions make software engineering possibly the most challenging intellectual pursuit today. For this and

more consult [27, 29, 30].

17 In the early-to-mid 2000s there were a rush of research foundations and scientists enumerating “Grand Challenges

of Informatics”
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3

Towards Formal Models of Processes and Prompts

We1 sketch an approach to a formal semantics of the domain analysis & description process of Chapter 1.

3.1 Introduction

Chapter 1 introduced a method for analysing and describing manifest domains. In this chapter we formalise

the calculus of this method. The formalisation has two aspects: the formalisation of the process of sequenc-

ing the prompts of the calculus, and the formalisation of the individual prompts.

The presentation of a calculus for analysing and describing manifest domains, introduced in Chapter 1

was and is necessarily informal. The human process of “extracting” a description of a domain, based on

analysis, “wavers” between the domain, as it is revealed to our senses, and therefore necessarily informal,

and its recorded description, which we present in two forms, an informal narrative and a formalisation.

In the present chapter we shall provide a formal, operational semantics formalisation of the analysis and

description calculus. There are two aspects to the semantics of the analysis and description calculus. There

is the formal explanation of the process of applying the analysis and description prompts, in particular

the practical meaning2 of the results of applying the analysis prompts, and there is the formal explanation

of the meaning of the results of applying the description prompts. The former (i.e., the practical meaning

of the results of applying the analysis prompts) amounts to a model of the process whereby the domain

analyser cum describer navigates “across” the domain, alternating between applying sequences of one or

more analysis prompts and applying description prompts. The latter (formal explanation of the meaning of

the results of applying the description prompts) amounts to a model of the domain (as it evolves in the mind

of the analyser cum describer3), the meaning of the evolving description, and thereby the relation between

the two.

1 Chapter 3 is primarily based on [57]. which evolved into [61]. The present chapter presents an analysis & description

process and prompt semantics model based on the domain ontology and the analysis & description process as

presented in [57]. It may not be exactly the domain ontology of this thesis; but the differences are not substantial

enough, we think, to warrant a rewrite of the formulas of the present chapter.
2 in contrast to a formal mathematical meaning
3 By ‘domain analyser cum describer’ we mean a group of one or more professionals, well-educated and trained in

the domain analysis & description techniques outlined in, for example, [67], and where these professionals work

closely together. By ‘working closely together’ we mean that they, together, day-by-day work on each their sections

of a common domain description document which they “buddy check”, say every morning, then discuss, as a group,

also every day, and then revise and further extend, likewise every day. By “buddy checking” we mean that group

member A reviews group member B’s most recent sections – and where this reviewing alternates regularly: A

may first review B’s work, then C ’s, etcetera.

We shall, occasionally refer to the ‘domain analyser cum describer’ as the ‘domain engineer’.
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3.1.1 Related Work

To this author’s knowledge there are not many papers, other than the author’s own, [75, 67, 71, 63, 62] and

the present chapter, which proposes a calculus of analysis and description prompts for capturing a domain,

let alone, as this chapter tries, to formalise aspects of this calculus.

There is, however a “school of software engineering”, “anchored” in the 1987 publication: [180, Leon

Osterweil]. As the title of that paper reveals: “Software Processes Are Software Too” the emphasis is on

considering the software development process as prescribable by a software program. That is not what we

are aiming at. We are aiming at an abstract and formal description of a large class of domain analysis &

description processes in terms of possible development calculi. And in such a way that one can reason about

such processes. The Osterweil paper suggests that any particular software development can be described

by a program, and, if we wish to reason about the software development process we must reason over that

program, but there is no requirement that the “software process programs” be expressed in a language with

a proof system.4 In contrast we can reason over the properties of the development calculi as well as over

the resulting description.

There is another “school of programming”, one that more closely adheres to the use of a calculus

[11, 173]. The calculus here is a set of refinement rules, a Refinement Calculus5, that “drives” the developer

from a specification to an executable program. Again, that is not what we are doing here. The proposed

calculi of analysis and of description prompts [67] “drives” the domain engineer in developing a domain

description. That description may then be ‘refined’ using a refinement calculus.

3.1.2 Structure of Chapter

Section 3.2 provides a terse summary of the analysis & description of endurants. It is without examples. For

such we refer to [67, Sects. 2.–3., Pages 7–29.]. Section 3.3 is informal. It discusses issues of syntax and se-

mantics. The reason we bring this short section is that the current chapter turns “things upside/down”: from

semantics we extract syntax ! From the real entities of actual domains we extract domain descriptions. Sec-

tion 3.4 presents a pseudo-formal operational semantics explication of the process of proceeding through

iterated sequences of analysis prompts to description prompts. The formal meaning of these prompts are

given in Sect. 3.8. But first we must “prepare the ground”: The meaning of the analysis and description

prompts is given in terms of some formal “context” in which the domain engineer works. Section 3.5 dis-

cusses this notion of “image” — an informal aspect of the ‘context’. It is a brief discussion. Section 3.6

presents the formal aspect of the ‘context’: perceived abstract syntaxes of the ontology of domain endurants

and of endurant values. Section 3.7 Discusses, in a sense, the mental processes – from syntax to semantics
and back again ! – that the domain engineer appears to undergo while analysing (the semantic) domain enti-

ties and synthesizing (the syntactic) domain descriptions. Section 3.8 presents the analysis and description

prompts meanings. It represents a high point of this chapter. It so-to-speak justifies the whole “exercise” !

Section 3.9 concludes the chapter. We summarize what we have “achieved”. And we discuss whether this

“achievement” is a valid one !

3.2 Domain Analysis and Description

We refer to Chapter 1
Both [57] and [61] brought at this point extensive sections on the analysis & description method of this

thesis, i.e., Chapter 1. Here we just refer to that chapter.

4 The RAISE Specification Language [124] does have a proof system.
5 Ralph–Johan Back appears to be the first to have proposed the idea of refinement calculi, cf. his 1978 PhD the-

sis On the Correctness of Refinement Steps in Program Development, http://users.abo.fi/backrj/index.php?page=-

Refinement calculus all.html&menu=3.
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3.3 Syntax and Semantics

3.3.1 Form and Content

Sections 1.4, 1.5 and 1.8 [Chapter 1] appears to be expressed in the syntax of the Raise [124] Specification

Language, RSL [123]. But it only “appears” so. When, in the “conventional” use of RSL, we apply mean-

ing functions, we apply them to syntactic quantities. In Sect. 3.2 the “meaning” functions are the analysis,

a.–j., and description, 1.–8., prompts:

a. is entity, 10

b. is endurant, 10

c. is perdurant, 11

d. is discrete, 11

e. is continuous, 11

f. is physical part, 12

g. is living species, 12

h. is structure, 13

i. is part, 14

j. is atomic, 14

k. is composite, 15

l. is living species, 15

m. is plant, 15

n. is animal, 16

o. is human, 16

p. has materials, 17

q. is artefact, 17

r. observe endurant sorts, 18

s. has concrete type, 20

t. has mereology, 25

u. attribute types, 28

and

[1] observe endurant sorts, 18

[2] observe part type, 20

[3] observe material sorts, 22

[4] observe unique identifier, 24

[5] observe mereology, 25

[6] observe attributes, 28

The quantities that these prompts are “applied to” are semantic ones, in effect, they are the “ultimate”

semantic quantities that we deal with: the real, i.e., actual domain entities ! The quantities that these prompts

“yield” are syntactic ones ! That is, we have “turned matters inside/out”. From semantics we “extract”

syntax. The arguments of the above-listed 22 prompts are domain entities, i.e., in principle, in-formalisable

things. Their types, typically listed as P, denote possibly infinite classes, P , of domain entities. When we

write P we thus mean P .

3.3.2 Syntactic and Semantic Types

When we, classically, define a programming language, we first present its syntax, then it semantics. The lat-

ter is presented as two – or three – possibly interwoven texts: the static semantics, i.e., the well-formedness

of programs, the dynamic semantics, i.e., the mathematical meaning of programs — with a corresponding

proof system being the “third texts”. We shall briefly comment on the ideas of static and dynamic seman-

tics. In designing a programming language, and therefore also in narrating and formalising it, one is well

advised in deciding first on the semantic types, then on the syntactic ones. With describing [f.ex., manifest]

domains, matters are the other way around: The semantic domains are given in the form of the endurants

and perdurants; and the syntactic domains are given in the form that we, the humans of the domain, men-

tion in our speech acts [215, 7]. That is, from a study of actual life domains, we extract the essentials that

speech acts deal with when these speech acts are concerned with performing or talking about entities in

some actual world.
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3.3.3 Names and Denotations

Above, we may have been somewhat cavalier with the use of names for sorts and names for their meaning.

Being so, i.e., “cavalier”, is, unfortunately a “standard” practice. And we shall, regrettably, continue to

be cavalier, i.e., “loose” in our use of names of syntactic “things” and names for the denotation of these

syntactic “things”. The context of these uses usually makes it clear which use we refer to: a syntactic use

or a semantic one. As from Sect. 3.6 we shall be more careful in distinguishing clearly between the names

of sorts and the values of sorts, i.e., between syntax and semantics.

3.4 A Model of the Domain Analysis & Description Process

3.4.1 Introduction

A Summary of Prompts

In Sect. 3.3.1 we listed the two classes of prompts: the domain [endurant] analysis prompts: and the domain
[endurant] description prompts: These prompts are “imposed” upon the domain by the domain analyser

cum describer. They are “figuratively” applied to the domain. Their orderly, sequenced application follows

the method hinted at in the previous section, detailed in Chapter 1. This process of application of prompts

will be expressed in a pseudo-formal notation in this section. The notation looks formal but since we have

not formalised these prompts it is only pseudo-formal. We formalise these prompts in Sect. 3.8.

Preliminaries

Let P be a sort, that is, a collection of endurants. By P we shall understand both a syntactic quantity: the

name ofP, and a semantic quantity, the type (of all endurant values of type)P. By

ιp:P6 we shall understand

a semantic quantity: an (arbitrarily selected) endurant in P. To guide our analysis & description process we

decompose it into steps. Each step “handles” a part sort p:P or a material sort m:M. Steps handling discov-

ery of composite part sorts generates a set of part sort names P1, P2, . . . , Pn:PNm. Steps handling dis-

covery of atomic part sorts may generate a material sort name, m:MNm. The part and material sort names

are put in a reservoir for sorts to be inspected. Once handled, the sort name is removed from that reservoir.

Handling of material sorts besides discovering their attributes may involve the discovery of further part

sorts — which we assume to be atomic. Each domain description prompt results in domain specification

text (here we show only the formal texts, not the narrative texts) being deposited in the domain descrip-

tion reservoir, a global variable τ . We do not formalise this text. Clauses of the form observe XXX(p),
where XXX ranges over part sorts, concrete type, unique identifier, mereology, part at-

tributes, part material sorts, and material part sorts, stand for ′′text′′ generating functions.

They are defined in Sect. 3.8.3.

Initialising the Domain Analysis & Description Process

We remind the reader that we are dealing only with endurant domain entities. The domain analysis ap-

proach covered in Sect. 3.2 was based on decomposing an understanding of a domain from the “overall

domain” into its separate entities, and these, if not atomic, into their sub-entities. So we need to initialise

the domain analysis & description process by selecting (or choosing) the domain ∆ . Here is how we think

of that “initialisation” process. The domain analyser & describer spends some time focusing on the domain,

maybe at the “white board”7, rambling, perhaps in an un-structured manner, across its domain, ∆ , and its

6 ι

is Whitehead and Russell’s description operator [233, Principia Mathematica]: an inverted ι ;

plato.stanford.edu/entries/pm-notation
7 Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow “post-it” stickers, or it could be

an electronic conference “gadget”.
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sub-domains. Informally jotting down more-or-less final sort names, building, in the domain analyser &

describer’s mind an image of that domain. After some time doing this the domain analyser & describer is

ready. An image of the domain includes the or a domain endurant, δ :∆ . Let ∆nm be the name of the sort

∆ . That name may be either a part sort name, or a material sort name.

3.4.2 A Model of the Analysis & Description Process

A Process State

148 Let Nm denote either a part or a material sort name.

149 A global variable αps will accumulate all the sort names being discovered.

150 A global variable νps will hold names of sorts that have been “discovered”, but have yet to be analysed

& described.

type

148. Nm = PNm | MNm
variable

149. αps := [∆nm ] type Nm-set

150. νps := [∆nm ] type Nm-set

We shall explain the use of [...]s and operations on the above variables in Sect. 3.4.3 on Page 112. Each it-

eration of the “root” function, analyse and describe endurant sort(Nm, ι:nm), as we shall call it, involves

the selection of a sort (value) (which is that of either a part sort or a material sort) with this sort (value)

then being removed.

151 The selection occurs from the global state νps (hence: ()) and changes that state (hence Unit).

value

151. sel and rem Nm: Unit → Nm
151. sel and rem Nm() ≡ let nm:Nm • nm ∈ νps in νps := νps \ {nm} ; nm end; pre: νps 6= {}

A Technicality

152 The main analysis & description functions of the next sections, except the “root” function, are all

expressed in terms of a pair, (nm,val):NmVAL, of a sort name and an endurant value of that sort.

type

152. NmVAL = (PNm×PVAL) | (MNm×MVAL)

Analysis & Description of Endurants

153 To analyse and describe endurants means to first

a examine those endurants which have yet to be so analysed and described

b by selecting (and removing from νps) a yet un-examined sort nm;

c then analyse and describe an endurant entity (

ι:nm) of that sort — this analysis, when applied to

composite parts, leads to the insertion of zero8 or more sort names9.

8 If the sub-parts of

ιnm are all either atomic and have no materials or have already been analysed, then no new sort

names are added to the repository νps).
9 These new sort names are then “picked-up” for sort analysis &c. in a next iteration of the while loop.
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As is indicated in Sect. 1.5.2 [Chapter 1], the mereology of a part, if it has one, may involve unique iden-

tifiers of any part sort, hence must be done after all such part sort unique identifiers have been identified.

Similarly for attributes which also may involve unique identifiers,

154 then, if it has a mereology,

a to analyse and describe the mereology of each part sort,

155 and finally to analyse and describe the attributes of each sort.

value

153. analyse and describe endurants: Unit → Unit

153. analyse and describe endurants() ≡
153a. while ∼is empty(νps) do

153b. let nm = sel and rem Nm() in

153c. analyse and describe endurant sort(nm, ι:nm) end end ;
154. for all nm:PNm • nm ∈ αps do if has mereology(nm, ι:nm)10

154a. then observe mereology(nm, ι:nm)11 end end

155. for all nm:Nm • nm ∈ αps do observe attributes(nm, ι:nm)12 end

The

ι:nm of Items 153c, 154, 154a and 155 are crucial. The domain analyser is focused on (part or material)

sort nm and is “directed” (by those items) to choose (select) an endurant (a part or a material)

ι:nm of that

sort.

156 To analyse and describe an endurant

a is to find out whether it is a part. If so then it is to analyse and describe it.

b If it instead is a material, then to analyse and describe it as a material.

value

156. analyse and describe endurant sort: NmVAL → Unit

156. analyse and describe endurant sort(nm,val) ≡
156a. is part(nm,val)13 →14 analyse and describe part sorts(nm,val),
156b. is material(nm,val)15 → observe material part sort(nm,val)16

157 To analyse and describe the internal qualities of a part

a first describe its unique identifier.

b If the part is atomic it is analysed and described as such;

c If composite it is analysed and described as such.

d Part p must be discrete.

value

157. analyse and describe part sorts: NmVAL → Unit

157. analyse and describe part sorts(nm,val) ≡
157a. observe unique identifier(nm,val)17;
157b. is atomic(nm,val)18→ analyse and describe atomic part(nm,val),
157c. is composite(nm,val)19→ analyse and describe composite parts(nm,val)
157d. pre: is discrete(nm,val)20

12 We formalise has mereology in Sect. 3.8.2 on Page 123.
12 We formalise observe mereology in Sect. 3.8.3 on Page 125.
12 We formalise observe attributes in Sect. 3.8.3 on Page 125.
16 We formalise is part in Sect. 3.8.2 on Page 122.
16 The conditional clause: cond1→clau1,cond2→clau2,...,condn→claun

is same as if cond1 then clau1 else if cond2 then clau2 else ... if condn then claun end end ... end .
16 We formalise is material in Sect. 3.8.2 on Page 122.
16 We formalise observe material part sort in Sect. 3.8.3 on Page 126.
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158 To analyse and describe an atomic part is to inquire whether

a it embodies materials, then we analyse and describe these;

b and if it further has components, then we describe their sorts.

value

158. analyse and describe atomic part: NmVAL → Unit

158. analyse and describe atomic part(nm,val) ≡
158a. if has material(nm,val)21 then observe material part sort(nm,val)22 end

159 To analyse and describe a composite endurant of sort nm (and value val)
a is to analyse if the sort has a concrete type

b then we analyse and describe that concrete sort type

c else we analyse and describe the abstract sort.

value

159. analyse and describe composite endurant: NmVAL → Unit

159. analyse and describe composite endurant(nm,val) ≡
159a. if has concrete type(nm,val)23

159b. then observe concrete type(nm,val)24

159c. else observe abstract sorts(nm,val)25

159a. end

159. pre is composite(nm,val)26

We do not associate materials with composite parts.

3.4.3 Discussion of The Process Model

The above model lacks a formal understanding of the individual prompts as listed in Sect. 3.4.1; such an

understanding is attempted in Sect. 3.8.

Termination

The sort name reservoir νps is “reduced” by one name in each iteration of the while loop of the anal-
yse and describe endurants, cf. Item 153b on Page 109, and is augmented by new part, material and com-

ponent sort names in some iterations of that loop. We assume that (manifest) domains are finite, hence there

are only a finite number of domain sorts. It remains to (formally) prove that the analysis & description pro-

cess terminates.

Axioms and Proof Obligations

We have omitted, from Sect. 3.2, treatment of axioms concerning well-formedness of parts, materials and

attributes and proof obligations concerning disjointedness of observed part and material sorts and attribute

types. [67] exemplifies axioms and sketches some proof obligations.

20 We formalise observe unique identifier in Sect. 3.8.3 on Page 124.
20 We formalise is atomic in Sect. 3.8.2 on Page 122.
20 We formalise is composite in Sect. 3.8.2 on Page 123.
20 We formalise is discrete in Sect. 3.8.2 on Page 122.
22 We formalise has material in Sect. 3.8.2 on Page 123.
22 We formalise observe part material sort in Sect. 3.8.3 on Page 125.
23 We formalise has concrete type in Sect. 3.8.2 on Page 123.
23 We formalise observe concrete type in Sect. 3.8.3 on Page 124.
23 We formalise observe part sorts in Sect. 3.8.3 on Page 124.
23 We formalise is composite in Sect. 3.8.2 on Page 123.
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Order of Analysis & Description: A Meaning of ‘⊕’

The variables αps, νps and τ can be defined to hold either sets or lists. The operator ⊕ can be thought of

as either set union (∪ and [...]≡{...}) — in which case the domain description text in τ is a set of domain

description texts — or as list concatenation (̂ and [...]≡〈...〉) of domain description texts. The list operator

ℓ1 ⊕ ℓ2 now has at least two interpretations: either ℓ1̂ℓ2 or ℓ2̂ℓ1. Thus, in the case of lists, the ⊕, i.e.,

,̂ does not (suffix or prefix) append ℓ2 elements already in ℓ1. The sel and rem Nm function on Page 109

applies to the set interpretation. A list interpretation is:

value

153b. sel and rem Nm: Unit → Nm
153b. sel and rem Nm() ≡ let nm = hd ν ps in ν ps := tl ν ps; nm end; pre: νps 6=<>

In the first case (ℓ1̂ℓ2) the analysis and description process proceeds from the root, breadth first, In the

second case (ℓ2̂ℓ1) the analysis and description process proceeds from the root, depth first. .

Laws of Description Prompts

The domain ‘method’ outlined in the previous section suggests that many different orders of analysis &

description may be possible. But are they ? That is, will they all result in “similar” descriptions ? If, for

example, Da and Db are two domain description prompts where Da and Db can be pursued in any order

will that yield the same description ? And what do we mean by ‘can be pursued in any order’, and ‘same

description’ ? Let us assume that sort P decomposes into sorts Pa and Pb (etcetera). Let us assume that the

domain description prompt Da is related to the description of Pa and Db to Pb. Here we would expect Da

and Db to commute, that is Da;Db yields same result as does Db;Da. In [49] we made an early exploration

of such laws of domain description prompts. To answer these questions we need a reasonably precise model

of domain prompts. We attempt such a model in Sect. 3.8. But we do not prove theorems.

3.5 A Domain Analyser’s & Describer’s Domain Image

Assumptions: We assume that the domain analysers cum describers are well educated and well trained

in the domain analysis & description techniques such as laid out in [67]. This assumption entails that the

domain analysis & description development process is structured in sequences of alternating (one or more)

analysis prompts and description prompts. We refer to Footnote 3 (Page 105) as well as to the discussion,

“Towards a methodology of manifest domain analysis & description” of [67, Sect. 1.6]. We further assume

that the domain analysers cum describers makes repeated attempts to analyse & describe a domain. We

assume, further, that it is “the same domain” that is being analysed & described – two, three or more times,

“all-over”, before commitment is made to attempt a – hopefully – final analysis & description24, from

“scratch”, that is, having “thrown away”, previous drafts25. We then make the further assumption, as this

iterative analysis & description process proceeds, from iteration i to i+1, that each and all members of the

analysis & description group are forming, in their minds (i.e., brains) an “image” of the domain being anal-

ysed. As iterations proceed one can then say that what is being analysed & described increasingly becomes

this ‘image’ as much as it is being the domain — which we assume is not changing across iterations. The

iterated descriptions are now postulated to converge: a “final” iteration “differs” only “immaterially.” from

the description of the “previous” iteration.

• • •

24 – and if that otherwise planned, final analysis & description is not satisfactory, then yet one more iteration is taken.
25 It may be useful, though, to keep a list of the names of all the endurant parts and their attribute names, should the

group members accidentally forget such endurants and attributes: at least, if they do not appear in later document

iterations, then it can be considered a deliberate omission.
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The Domain Engineer’s Image of Domains: In the opening (‘Assumptions’) of this section, i.e.,

above, we hinted at “an image”, in the minds of the domain analysers & describers, of the domain being

researched and for which a description document is being engineered. In this paragraph we shall analyse

what we mean by such a image. Since the analysis & description techniques are based on applying the

analysis and description prompts (reviewed in Sect. 3.2) we can assume that the image somehow relates to

the ‘ontology’ of the domain entities, whether endurants or perdurants, such as graphed in Fig. 1.4. Rather

than further investigating (i.e., analysing / arguing) the form of this, until now, vague notion, we simply

conjecture that the image is that of an ‘abstract syntax of domain types’.

• • •

The Iterative Nature of The Description Process: Assume that the domain engineers are analysing

& describing a particular endurant; that is, as we shall understand it, are examining a given endurant node

in the domain description tree ! The domain description tree is defined by the facts that composite parts

have sub-parts which may again be composite (tree branches), ending with atomic parts (the leaves of the

tree) but not “circularly”, i.e. recursively

To make this claim: the domain analysers cum describers are examining a given endurant node in the
domain description tree amounts to saying that the domain engineers have in their mind a reasonably
“stable” “picture” of a domain in terms of a domain description tree.

We need explain this assumption. In this assumption there is “buried” an understanding that the domain

analysers cum describers during the — what we can call “the final” — domain analysis & description

process, that leads to a “deliverable” domain description, are not investigating the domain to be described

for the first time. That is, we certainly assume that any “final” domain analysis & description process has

been preceded by a number of iterations of “trial” domain analysis & description processes.

Hopefully this iteration of experimental domain analysis & description processes converges. Each iter-

ation leads to some domain description, that is, some domain description tree. A first iteration is thus based

on a rather incomplete domain description tree which, however, “quickly” emerges into a less incomplete

one in that first iteration. When the domain engineers decide that a “final” iteration seems possible then

a “final” description emerges If acceptable, OK, otherwise yet an “final” iteration must be performed.

Common to all iterations is that the domain analysers cum describers have in mind some more-or-less

“complete” domain description tree and apply the prompts introduced in Sect. 3.4.

3.6 Domain Types

There are two kinds of types associated with domains: the syntactic types of endurant descriptions, and the

semantic types of endurant values.

3.6.1 Syntactic Types: Parts and Materials

In this section we outline an ‘abstract syntax of domain types’. In Sect. 3.6.1 we introduce the concept

of sort names. Then, in Sects. 3.6.1–3.6.1, we describe the syntax of part and material sorts. Finally, in

Sects. 3.6.1–3.6.1, we analyse this syntax with respect to a number of well-formedness criteria.

Syntax of Part and Material Sort Names

160 There is a further undefined sort, N, of tokens (which we shall consider atomic and the basis for forming

names).

161 From these we form three disjoint sets of sort names:

a part sort names and

b material sort names.

September 6, 2019, 16:27, A Foundation for Software Development c© Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark



114 3 Towards Formal Models of Processes and Prompts

160 N
161a PNm :: mkPNm(N)
161b MNm :: mkMNm(N)

An Abstract Syntax of Domain Endurants

162 We think of the types of parts and materials to be a map from their type names to respective type

expressions.

163 Thus part types map part sort names into part types; and

164 material types map material sort names into material types.

165 Thus we can speak of endurant types to be either part types or material types.

166 A part type expression is either an atomic part type expression or is a composite part type expression

or is a concrete composite part type expression.

167 An atomic part type expression consists of a type expression for the qualities of the atomic part and,

optionally, a material type name.

168 An abstract composite part type expression consists of a type expression for the qualities of the com-

posite part and a finite set of one or more part type names.

169 A concrete composite part type expression consists of a type expression for the qualities of the part and

a part sort name standing for a set of parts of that sort.

170 A material part type expression consists of of a type expression for the qualities of the material and an

optional part type name.

Endurants: Syntactic Types

162 TypDef = PTypes ∪ MTypes
163 PTypes = PNm →m PaTyp
164 MTypes = MNm →m MaTyp
165 ENDType = PaTyp | MaTyp
166 PaTyp == AtPaTyp | AbsCoPaTyp | ConCoPaTyp
167 AtPaTyp :: mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn))
168 AbsCoPaTyp :: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set)
168 axiom ∀ mkAbsCoPaTyp(pq,pns):AbsCoPaTyp • pns 6= {}
169 ConCoPaTyp :: mkConCoPaTyp(s qs:PQ,s p:PNm)
170 MaTyp :: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm))

Quality Types

171 There are three aspects to part qualities: the type of the part unique identifiers, the type of the part

mereology, and the name and type of attributes.

172 The type unique part identifiers is a not further defined atomic quantity.

173 A part mereology is either "nil" or it is an expression over part unique identifiers, where such ex-

pressions are those of either simple unique identifier tokens, or of set, or otherwise over simple unique

identifier tokens, or ..., etc.

174 The type of attributes pairs distinct attribute names with attribute types —

175 both of which we presently leave further undefined.

176 Material attributes is the only aspect to material qualities.
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Qualities: Syntactic Types

171 PQ = s ui:UI×s me:ME×s atrs:ATRS}
172 UI
173 ME == “nil”|mkUI(s ui:UI)|mkUIset(s uil:UI)|...
174 ATRS = ANm →m ATyp
175 ANm, ATyp
176 MQ = s atrs:ATRS

It is without loss of generality that we do not distinguish between part and material attribute names and

types. Material attributes do not refer to any part or any other material attributes.

Well-formed Syntactic Types

Well-formed Definitions

177 We need define an auxiliary function, names, which, given an endurant type expression, yields the sort

names that are referenced immediately by that type.

a If an abstract composite part type then the sort names of its parts.

b If a concrete composite part type then the sort name is that of the sort of its set of parts.

c If a material type then sort name is that of the sort of its optional parts.

value

177. names: TypDef → (PNm|MNm) → (PNm|MNm)-set

177. names(td)(n) ≡
177. ∪ { ns | ns:(PNm|MNm)-set •

177. case td(n) of

177a. mkAbsCoPaTyp( ,ns′) → ns=ns′,
177b. mkConCoPaTyp( ,pn) → ns={pn},
177c. mkMaTyp( ,n′) → ns={n′}
177. end }

178 Endurant sort names being referenced in part types, PaTyp and in material types, MaTyp, of the

typdef:Typdef definition, must be defined in the defining set, dom typdef, of the typdef:Typdef defi-

nition.

value

178. wf TypDef 1: TypDef → Bool

178. wf TypDef 1(td) ≡ ∀ n:(PNm|MNm)•n ∈ dom td ⇒ names(td)(n)⊆dom td

Perhaps Item 178. should be sharpened:

179 from “must be defined in” [178.] to “must be equal to” :

179. ∧ ∀ n:(PNm|MNm) • n ∈ dom td ⇒ names(td)(n)=dom td

No Recursive Definitions

180 Type definitions must not define types recursively.

a A type definition, typdef:TypDef, defines, typically composite part sorts, named, say, n, in terms

of other part and material types. This is captured in the
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• mncs (Item 167),

• pns (Item 168),

• p (Item 169) and

• pns (Item 170),

selectable elements of respective type definitions. These elements identify type names of material

parts, a part, and parts, respectively. None of these names may be n.

b The identified type names may further identify type definitions none of whose selected type names

may be n.

c And so forth.

value

180. wf TypDef 2: TypDef → Bool

180. wf TypDef 2(typdef) ≡ ∀ n:(PNm|MNm)• n ∈ dom typdef ⇒ n 6∈ type names(typdef)(n)

180a. type names: TypDef → (PNm|MNm) → (PNm|MNm)-set

180a. type names(typdef)(nm) ≡
180b. let ns = names(typdef)(nm) ∪ { names(typdef)(n) | n:(PNm|MNm) • n ∈ ns } in

180c. nm 6∈ ns end

ns is the least fix-point solution to the recursive definition of ns.

3.6.2 Semantic Types: Parts and Materials

Part and Material Values

We define the values corresponding to the type definitions of Items 160.–176, structured as per type defini-

tion Item 165 on Page 114.

181 An endurant value is either a part value, a material values or a component value.

182 A part value is either the value of an atomic part, or of an abstract composite part, or of a concrete

composite part.

183 A atomic part value has a part quality value and, optionally, either a material or a possibly empty set

of component values.

184 An abstract composite part value has a part quality value and of at least (hence the axiom) of

185 one or more (distinct part type) part values.

186 A concrete composite part value has a part quality value and a set of part values.

187 A material value has a material quality value (of material attributes) and a (usually empty) finite set of

part values.

Endurant Values: Semantic Types

181 ENDVAL = PVAL | MVAL
182 PVAL == AtPaVAL|AbsCoPVAL|ConCoPVAL
183 AtPaVAL :: mkAtPaVAL(s qval:PQVAL,s omkvals:({|”nil”|}|MVAL))
184 AbsCoPVAL :: mkAbsCoPaVAL(s qval:PQVAL,s pvals:(PNm→m PVAL))
185 axiom ∀ mkAbsCoPaVAL(pqs,ppm):AbsCoPVAL • ppm 6= [ ]
186 ConCoPVAL :: mkConCoPaVAL(s qval:PQVAL,s pvals:PVAL-set)
187 MVAL :: mkMaVAL(s qval:MQVAL,s pvals:PVAL-set)

Quality Values

188 A part quality value consists of three qualities:

189 a unique identifier type name, resp. value, which are both further undefined (atomic value) tokens;

190 a mereology expression, resp. value, which is either a single unique identifier (type, resp.) value, or a

set of such unique identifier (types, resp.) values, or ...; and
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191 an aggregate of attribute values, modeled here as a map from attribute type names to attribute values.

192 In this chapter we leave attribute type names and attribute values further undefined.

193 A material quality value consists just of an aggregate of attribute values, modeled here as a map from

attribute type names to attribute values.

Qualities: Semantic Types

188 PQVAL = UIVAL×MEVAL×ATTRVALS
189 UIVAL
190 MEVAL == mkUIVAL(s ui:UIVAL)|mkUIVALset(s uis:UIVAL-set)|...
191 ATTRVALS = ANm→m AVAL
192 ANm, AVAL
193 MQVAL = ATTRVALS

We have left to define the values of attributes. For each part and material attribute value we assume a finite

set of values. And for each unique identifier type (i.e., for each UI) we likewise assume a finite set of

unique identifiers of that type. The value sets may be large. These assumptions help secure that the set of

part, material and component values are also finite.

Type Checking

For part, material and component qualities we postulate an overloaded, simple type checking function,

type of, that applies to unique identifier values, uiv:UIVAL, and yield their unique identifier type name,

ui:UI, to mereology values, mev:MEVAL, and yield their mereology expression, me:ME, and to attribute

values,AVAL andATTRSVAL, and yield their types:ATyp, respectively (ANm→m AVAL)→(ANm→m ATyp).
Since we have let undefined both the syntactic type of attributes types, ATyp, and the semantic type of at-

tribute values, AVAL, we shall leave type of further unspecified.

value type of: (UIVAL→UI)|(MEVAL→ME)|(AVAL→ATyp)|((ANm→m AVAL)→(ANm→m ATyp))

The definition of the syntactic type of attributes types, ATyp, and the semantic type of attribute values,

AVAL, is a simple exercise in a first-year programming language semantics course.

3.7 From Syntax to Semantics and Back Again !

The two syntaxes of the previous section: that of the syntactic domains, formula Items 160–176 (Pages 113–

114), and that of the semantic domains, formula Items 181–187 (Pages 116–116), are not the syntaxes of

domain descriptions, but of some aspects common to all domain descriptions developed according to the

calculi of this chapter. The syntactic domain formulas underlie (“are common to”, i.e., “abstracts”) aspects

of all domain descriptions. The semantic domain formulas underlay (“are common to”, i.e., “abstracts”)

aspects of the meaning of all domain descriptions. These two syntaxes, hence, are, so-to-speak, in the minds

of the domain engineer (i.e., the analyser cum describer) while analysing the domain.

3.7.1 The Analysis & Description Prompt Arguments

The domain engineer analyse & describe endurants on the basis of a sort name i.e., a piece of syntax,

nm:Nm, and an endurant value, i.e. a “piece” of semantics, val:VAL, that is, the arguments, (nm,ι:nm), of

the analysis and description prompts of Sect. 3.4. Those two quantities are what the domain engineer are

“operating” with, i.e., are handling: One is tangible, i.e. can be noted (i.e., “scribbled down”), the other

is “in the mind” of the analysers cum describers. We can relate the two in terms of the two syntaxes, the

syntactic types, and the meaning of the semantic types. But first some “preliminaries”.
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3.7.2 Some Auxiliary Maps: Syntax to Semantics and Semantics to Syntax

We define two kinds of map types:

194 Nm to ENDVALS are maps from endurant sort names to respective sets of all corresponding endurant

values of, and

195 ENDVAL to Nm are maps from endurant values to respective sort names.

type

194. Nm to ENDVALS = (PNm→m PVAL-set)∪(MNm→m MVAL-set)
195. ENDVAL to Nm = (PVAL→m PNm )∪(MVAL→m MNm)

We can derive values of these map types from type definitions:

196 a function, typval, from type definitions, typdef:TypDef to Nm to ENDVALS, and

197 a function valtyp, from Nm to ENDVALS, to ENDVAL to Nm.

value

196. typval: TypDef
∼
→ Nm to ENDVALS

197. valtyp: Nm to ENDVALS
∼
→ ENDVAL to Nm

198 The typval function is defined in terms of a meaning functionM (let ρ :ENV abbreviateNm to ENDVALS:

198. M: (PaTyp→ENV
∼
→PVAL-set)|(MaTyp→ENV

∼
→MVAL-set)

196. typval(td) ≡ let ρ = [n 7→M(td(n))(ρ)|n:(PNm|MNm)•n ∈ dom td ] in ρ end

197. valtyp(ρ) ≡ [v7→n|n:(PNm|MNm),v:(PVAL|MVAL)•n ∈ dom ρ∧v ∈ ρ(n) ]

The environment, ρ , of typval, Item 196, is the least fix point of the recursive equation

• 196. let ρ = [n 7→M(td(n))(ρ)|n:(PNm|MNm)•n ∈ dom td ] in ...

The M function is defined next.

3.7.3 M: A Meaning of Type Names

Preliminaries

The typval function provides for a homomorphic image fromTypDef to TypNm to VALS. So, the narrative

below, describes, item-by-item, this image. We refer to formula Items 196 and 198. The definition of M is

decomposed into five sub-definitions, one for each kind of endurant type:

• Atomic parts: mkAtPaTyp(s qs:(UI×ME×ATRS),s omkn:({|”nil”|}|MNn)), Items 199 on the facing

page;

• Abstract composite parts: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set), 200 on the next page;

• Concrete composite parts: mkConCoPaTyp(s qs:PQ,s p:PNm), Items 201 on Page 120; and

• Materials: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm)), Items 202 on Page 120.

We abbreviate, by ENV, the M function argument, ρ , of type: Nm to ENDVALS.
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Atomic Parts

199 The meaning of an atomic part type expression,

Item 167. mkAtPaTyp((ui,me,attrs),omkn)
in mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn)),
is the set of all atomic part values,

Items 183., 188., 191. mkAtPaVAL((uiv,mev,attrvals),omkval)
in mkAtPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),

s omkvals:({|”nil”|}|MVAL|KVAL-set)).
a uiv is a value in UIVAL of type ui,
b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d omkvals is a value in ({|”nil”|}|MVAL):
i either ’’nil’’,

ii or one material value of type MNm.

199. M: mkAtPaTyp((UI×ME×(ANm→m ATyp))×({|”nil”|}|MVAL))→ENV
∼
→PVAL-set

199. M(mkAtPaTyp((ui,me,attrs),omkn))(ρ) ≡
199. { mkATPaVAL((uiv,mev,attrval),omkvals) |
199a. uiv:UIVAL•type of(uiv)=ui,
199b. mev:MEVAL•type of(mev)=me,
199c. attrval:(ANm→m AVAL)•type of(attrval)=attrs,
199d. omkvals: case omkn of

199(d)i. ”nil” → ”nil”,
199(d)ii. mkMNn( ) → mval:MVAL•type of(mval)=omkn
199d. end }

Formula terms 199a–199(d)ii express that any applicable uiv is combined with any applicable mev is com-

bined with any applicable attrval is combined with any applicable omkvals.

Abstract Composite Parts

200 The meaning of an abstract composite part type expression,

Item 168. mkAbsCoPaTyp((ui,me,attrs),pns)
in mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set),
is the set of all abstract, composite part values,

Items 184., 188., 191., mkAbsCoPaVAL((uiv,mev,attrvals),pvals)
in mkAbsCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),s pvals:(PNm→m PVAL)).

a uiv is a value in UIVAL of type ui: UI,
b mev is a value in MEVAL of type me: ME,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d pvals is a map of part values in (PNm→m PVAL), one for each name, pn:PNm, in pns such that

these part values are of the type defined for pn.

200. M: mkAbsCoPaTyp((UI×ME×(ANm→m ATyp)),PNm-set) → ENV
∼
→ PVAL-set

200. M(mkAbsCoPaTyp((ui,me,attrs),pns))(ρ) ≡
200. { mkAbsCoPaVAL((uiv,mev,attrvals),pvals) |
200a. uiv:UIVAL•type of(uiv)=ui
200b. mev:MEVAL•type of(mev)=me,
200c. attrvals:(ANm→m ATyp)•type of(attrsval)=attrs,
200d. pvals:(PNm→m PVAL)•pvals∈{[pn 7→pval|pn:PNm,pval:PVAL•pn∈ pns∧pval∈ρ(pn) ]} }
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Concrete Composite Parts

201 The meaning of a concrete composite part type expression, Item 169.

mkConCoPaTyp((ui,me,attrs),pn)
in mkConCoPaTyp(s qs:(UI×ME×(ANm→m ATyp)),s pn:PNm),
is the set of all concrete, composite set part values,

Item 186. mkConCoPaVAL((uiv,mev,attrvals),pvals)
in mkConCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),s pvals:PVAL-set).

a uiv is a value in UIVAL of type ui,
b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type attrs, and

d pvals is a[ny] value in PVAL-set where each part value in pvals is of the type defined for pn.

201. M: mkConCoPaTyp((UI×ME×(ANm→m ATyp))×PNm) → ENV
∼
→ PVAL-set

201. M(mkConCoPaTyp((ui,me,attrs),pn))(ρ) ≡
201. { mkConCoPaVAL((uiv,mev,attrvals),pvals) |
201a. uiv:UIVAL•type of(uiv)=ui,
201b. mev:MEVAL•type of(mev)=me,
201c. attrsval:(ANm→m AVAL)•type of(attrsval)=attrs,
201d. pvals:PVAL-set•pvals⊆ρ(pn) }

Materials

202 The meaning of a material type, 170.,

expression mkMaTyp(mq,pn) in mkMaTyp(s qs:MQ,s pn:PNm)
is the set of values mkMaVAL(mqval,ps)
in mkMaVAL(s qval:MQVAL,s pvals:PVAL-set) such that

a mqval in MQVAL is of type mq, and

b ps is a set of part values all of type pn.

202. M: mkMaTyp(s mq:(ANm→m ATyp),s pn:PNm) → ENV
∼
→ MVAL-set

202. M(mq,pn)(ρ) ≡
202. { mkMVAL(mqval,ps) |
202a. mqval:MVAL•type of(mqval)=mq,
202b. ps:PVAL-set•ps⊆ρ(pn) }

3.7.4 The ι Description Function

We can now define the meaning of the syntactic clause:

• ιNm:Nm

203 ιNm:Nm “chooses” an arbitrary value from amongst the values of sort Nm:

value

203. ι nm:Nm ≡ iota(nm)
203. iota: Nm → TypDef → VAL
203. iota(nm)(td) ≡ let val:(PVAL|MVAL|KVAL)•val ∈ (typval(td))(nm) in val end
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Discussion

From the above two functions, typval and valtyp, and the type definition “table” td:TypDef and “argu-

ment value” val:PVAL|MVAL|KVAL, we can form some expressions. One can understand these expres-

sions as, for example reflecting the following analysis situations:

• typval(td): From the type definitions we form a map, by means of function typval, from sort names to

the set of all values of respective sorts: Nm to ENDVALS.

That is, whenever we, in the following, as part of some formula, write typval(td), then we mean to

express that the domain engineer forms those associations, in her mind, from sort names to usually

very large, non-trivial sets of endurant values.

• valtyp(typval(td)): The domain analyser cum describer “inverts”, again in his mind, the typval(td)
into a simple map, ENDVAL to Nm, from single endurant values to their sort names.

• (valtyp(typval(td)))(val): The domain engineer now “applies”, in her mind, the simple map (above)

to an endurant value and obtains its sort name nm:Nm.

• td((valtyp(typval(td)))(val)): The domain analyser cum describer then applies the type definition

“table” td:TypDef to the sort name nm:Nm and obtains, in his mind, the corresponding type definition,

PaTyp|MaTyp.

We leave it to the reader to otherwise get familiarised with these expressions.

3.8 A Formal Description of a Meaning of Prompts

3.8.1 On Function Overloading

In Sect. 3.4 the analysis and description prompt invocations were expressed as

• is XXX(e), has YYY(e) and observe ZZZ(e)

where XXX, YYY, and ZZZ were appropriate entity sorts and e were appropriate endurants (parts, compo-

nents and materials). The function invocations, is XXX(e), etcetera, takes place in the context of a type

definition, td:TypDef, that is, instead of is XXX(e), etc. we get

• is XXX(e)(td), has YYY(e)(td) and observe ZZZ(e)(td).

We say that the functions is XXX, etc., are “lifted”.

3.8.2 The Analysis Prompts

The analysis is expressed in terms of the analysis prompts:

a. is entity, 10

b. is endurant, 10

c. is perdurant, 11

d. is discrete, 11

e. is continuous, 11

f. is physical part, 12

g. is living species, 12

h. is structure, 13

i. is part, 14

j. is atomic, 14

k. is composite, 15

l. is living species, 15

m. is plant, 15

n. is animal, 16

o. is human, 16

p. has materials, 17

q. is artefact, 17

r. observe endurant sorts, 18

s. has concrete type, 20

t. has mereology, 25

u. attribute types, 28
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The analysis takes place in the context of a type definition “image”, td:TypDef, in the minds of the domain

engineers.

is entity

The is entity predicate is meta-linguistic, that is, we cannot model it on the basis of the type systems

given in Sect. 3.6. So we shall just have to accept that.

is endurant

See analysis prompt definition 2 on Page 10 and Formula Item 156a on Page 110.

value

is endurant: Nm×VAL → TypDef
∼
→ Bool

is endurant( ,val)(td) ≡ val ∈ dom valtyp(typval(td)); pre: VAL is any value type

is discrete

See analysis prompt definition 4 on Page 11 and Formula Item 157d on Page 110.

value

is discrete: NmVAL → TypDef
∼
→ Bool

is discrete( ,val)(td) ≡ (is PaTyp|is CoTyp)(td((valtyp(typval(td)))(val)))

is part

See analysis prompt definition 9 on Page 14 and Formula Item 156a on Page 110.

value

is part: NmVAL → TypDef
∼
→ Bool

is part( ,val)(td) ≡ is PaTyp(td((valtyp(typval(td)))(val)))

is material [≡ is continuous]

See analysis prompt definition 5 on Page 11 and Formula Item 156b on Page 110.

We remind the reader that is continuous≡is material.

value

is material: NmVAL → TypDef
∼
→ Bool

is material( ,val)(td) ≡ is MaTyp(td((valtyp(typval(td)))(val)))

is atomic

See analysis prompt definition 10 on Page 14 and Formula Item 157b on Page 110.

value

is atomic: NmVAL → TypDef
∼
→ Bool

is atomic( val)(td) ≡ is AtPaTyp(td((valtyp(typval(td)))()))
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is composite

See analysis prompt definition 11 on Page 15 and Formula Item 157c on Page 110.

value

is composite: NmVAL → TypDef
∼
→ Bool

is composite( ,val)(td) ≡ (is AbsCoPaTyp|is ConCoPaTyp)(td((valtyp(typval(td)))(val)))

has concrete type

See analysis prompt definition 19 on Page 20 and Formula Item 159a on Page 111.

value

has concrete type: NmVAL → TypDef
∼
→ Bool

has concrete type( ,val)(td) ≡ is ConCoPaTyp(td((valtyp(typval(td)))(val)))

has mereology

See analysis prompt definition 20 on Page 25 and Formula Item 154 on Page 110.

value

has mereology: NmVAL → TypDef
∼
→ Bool

has mereology( ,val)(td) ≡ s me(td((valtyp(typval(td)))(val)))6=′′nil′′

has materials

See analysis prompt definition 16 on Page 17 and Formula Item 158a on Page 111.

value

has material: NmVAL → TypDef
∼
→ Bool

has material( ,val)(td) ≡ is MNm(s omkn(td((valtyp(typval(td)))(val))))
pre: is AtPaTyp(td((valtyp(typval(td)))(val)))

3.8.3 The Description Prompts

These are the domain description prompts to be defined:

[1] observe endurant sorts, 18

[2] observe part type, 20

[3] observe material sorts, 22

[4] observe unique identifier, 24

[5] observe mereology, 25

[6] observe attributes, 28

A Description State

In addition to the analysis state components αps and νps there is now an additional, the description text

state component.

204 Thus a global variable τ will hold the (so far) generated (in this case only) formal domain description

text.

variable

204. τ := [ ] Text-set

We shall explain the use of [...]s and the operations of \ and ⊕ on the above variables in Sect. 3.4.3 on

Page 112.
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observe part sorts

See description prompt definition 1 on Page 19 and Formula Item 159c on Page 111.

value

observe part sorts: NmVAL → TypDef → Unit

observe part sorts(nm,val)(td) ≡
let mkAbsCoPaTyp( ,{P1,P2,...,Pn}) = td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [” type P1,P2,...,Pn;
value

obs part P1nm→P1

obs part P2:nm→P2

...,
obs part Pn:nm→Pn;

proof obligation
D ; ” ]

‖ νps := νps ⊕ ([P1,P2,...,Pn ] \ αps)
‖ αps := αps ⊕ [P1,P2,...,Pn ]

end

pre: is AbsCoPaTyp(td((valtyp(typval(td)))(val)))

D is a predicate expressing the disjointedness of part sorts P1,P2,...,Pn

observe concrete type

See description prompt definition 2 on Page 21 and Formula Item 159b on Page 111.

value

observe concrete type: NmVAL → TypDef → Unit

observe concrete type(nm,val)(td) ≡
let mkConCoPaTyp( ,P) = td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [”type T = P-set ; value obs part T: nm→T; ” ]
‖ νps := νps ⊕ ([P ] \ αps)
‖ αps := αps ⊕ [P ]

end

pre: is ConCoPaTyp(td((valtyp(typval(td)))(val)))

observe unique identifier

See description prompt definition 4 on Page 24 and Formula Item 157a on Page 110.

value

observe unique identifier: P → TypDef → Unit

observe unique identifier(nm,val)(td) ≡
τ := τ ⊕ [” type PI ; value uid PI: nm → PI ; axiom U ; ” ]

U is a predicate expression over unique identifiers.
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observe mereology

See description prompt definition 5 on Page 26 and Formula Item 154a on Page 110.

value

observe mereology: NmVAL → TypDef → Unit

observe mereology(nm,val)(td) ≡
τ := τ ⊕ [”type MT = M (PI1,PI2,...,PIn) ;

value obs mereo P: nm → MT ;
axiom ME ; ” ]

pre: has mereology(nm,val)(td) 26

M (PI1,PI2,...,PIn) is a type expression over unique part identifiers. ME is a predicate expression over

unique part identifiers.

observe part attributes

See description prompt definition 6 on Page 28 and Formula Item 155 on Page 110.

value

observe part attributes: NmVAL → TypDef → Unit

observe part attributes(nm,val)(td) ≡
let {A1,A2,...,Aa} = dom s attrs(s qs(val)) in

τ := τ ⊕ [” type A1, A2, ..., Aa

value attr A1: nm→Ai

attr A2: nm→A1

...
attr Aa: nm→Ai

proof obligation [Disjointness of Attribute Types ]
A ; ” ]

end

A is a predicate over attribute types A1, A2, ..., Aa.

observe part material sort

See description prompt definition 3 on Page 22 and Formula Item 158a on Page 111.

value

observe part material sort: NmVAL → TypDef → Unit

observe part material sort(nm,val)(td) ≡
let M = s pns(td((valtyp(typval(td)))(val))) in

τ := τ ⊕ [” type M ; value obs mat sort M:nm→M ” ]
‖ νps := νps ⊕ ([M ]\αps)
‖ αps := αps ⊕ [M ]
end

pre: is AtPaVAL(val) ∧ is MNm(s pns(td((valtyp(typval(td)))(val))))

26 See analysis prompt definition 20 on Page 25
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observe material part sort

See description prompt definition 3 on Page 22 and Formula Item 158a on Page 111.

value

observe material part sort: NmVAL → TypDef → Unit

observe material part sort(nm,val)(td) ≡
let P = s pns(td((valtyp(typval(td)))(val))) in

τ := τ ⊕ [” type P ; value obs part P: nm → P ” ]
‖ νps := νps ⊕ ([P ] \ αps)
‖ αps := αps ⊕ [P ]
end

pre is MaTyp(td((valtyp(typval(td)))(val))) ∧ is PNm(s pns(td((valtyp(typval(td)))(val))))

3.8.4 Discussion of The Prompt Model

The prompt model of this section is formulated so as to reflect a “wavering”, of the domain engineer,

between syntactic and semantic reflections. The syntactic reflections are represented by the syntactic ar-

guments of the sort names, nm, and the type definitions, td. The semantic reflections are represented by

the semantic argument of values, val. When we, in the various prompt definitions, use the expression

td((valtyp(typval(td)))(val)) we mean to model that the domain analyser cum describer reflects semanti-

cally: “viewing”, as it were, the endurant. We could, as well, have written td(nm) — reflecting a syntactic

reference to the (emerging) type model in the mind of the domain engineer.

3.9 Conclusion

It is time to summarise, conclude and look forward.

3.9.1 What Has Been Achieved ?

Chapter 1 proposes a set of domain analysis & description prompts. Sections 3.4. and 3.8. proposed an

operational semantics for the process of selecting and applying prompts, respectively a more abstract

meaning of of these prompts, the latter based on some notions of an “image” of perceived abstract types of

syntactic and of semantic structures of the perceived domain. These notions were discussed in Sects. 3.5.

and 3.6. To the best of our knowledge this is the first time a reasonably precise notion of ‘method’ with a

similarly reasonably precise notion of a calculi of tools has been backed up formal definitions.

3.9.2 Are the Models Valid ?

Are the formal descriptions of the process of selecting and applying the analysis & description prompts,

Sect. 3.4., and the meaning of these prompts, Sect. 3.8, modeling this process and these meanings real-

istically ? To that we can only answer the following: The process model is definitely modeling plausible

processes. We discuss interpretations of the analysis & description order that this process model imposes in

Sect. 3.4.3. There might be other orders, but the ones suggested in Sect. 3.4 can be said to be “orderly” and

reflects empirical observations. The model of the meaning of prompts, Sect. 3.8, is more of an hypothesis.

This model refers to “images” that the domain engineer is claimed to have in her mind. It must necessarily

be a valid model, perhaps one of several valid models. We have speculated, over many years, over the

existence of other models. But this is the most reasonable to us.
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3.9.3 Future Work

We have hinted at possible ‘laws of description prompts’ in Sect. 3.4.3. Whether the process and prompt

models (Sects. 3.4 and 3.8) are sufficient to express, let alone prove such laws is an open question. If the

models are sufficient, then they certainly are valid.
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4

To Every Manifest Domain Mereology a CSP Expression

We1 give an abstract model of parts and part-hood relations, of Stansław Leśniewski’s mereology [96].

4.1 Introduction

Mereology applies to software application domains such as the financial service industry, railway systems,
road transport systems, health care, oil pipelines, secure [IT] systems, etcetera. We relate this model to

axiom systems for mereology, showing satisfiability, and show that for every mereology there corresponds

a class of Communicating Sequential Processes [137], that is: a λ –expression.

4.1.1 Mereology

The term ‘mereology’ is accredited to the Polish mathematician, philosopher and logician Stansław

Leśniewski (1886–1939). In this contribution we shall be concerned with only certain aspects of mere-

ology, namely those that appear most immediately relevant to domain science (a relatively new part of

current computer science). Our knowledge of ‘mereology’ has been through studying, amongst others,

[96].

“Mereology (from the Greek µερoς ‘part’) is the theory of parthood relations: of the relations of

part to whole and the relations of part to part within a whole”2. In this contribution we restrict ‘parts’ to

be those that, firstly, are spatially distinguishable, then, secondly, while “being based” on such spatially

distinguishable parts, are conceptually related. We use the term ‘part’ in a more general sense than in [67].

The relation: “being based”, shall be made clear in this chapter. Accordingly two parts, px and py, (of a same

“whole”) are are either “adjacent”, or are “embedded within”, one within the other, as loosely indicated in

Fig. 4.1 on the following page. ‘Adjacent’ parts are direct parts of a same third part, pz, i.e., px and py

are “embedded within” pz; or one (px) or the other (py) or both (px and py) are parts of a same third part,

p′z “embedded within” pz; etcetera; as loosely indicated in Fig. 4.2 on the next page, or one is “embedded

within” the other — etc. as loosely indicated in Fig. 1.2 on Page 5. Parts, whether ‘adjacent’ or ‘embedded

within’, can share properties. For adjacent parts this sharing seems, in the literature, to be diagrammatically

expressed by letting the part rectangles “intersect”. Usually properties are not spatial hence ‘intersection’

seems confusing. We refer to Fig. 4.3 on the next page. Instead of depicting parts sharing properties as in

Fig. 4.3 on the following page[L]eft, where shaded, dashed rounded-edge rectangles stands for ‘sharing’,

we shall (eventually) show parts sharing properties as in Fig. 4.3 on the next page[R]ight where •—•
connections connect those parts.

1 This paper is a complete rewrite of [56].
2 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [96].



130 4 To Every Manifest Domain Mereology a CSP Expression

Embedded WithinAdjacent

p

p

p

p

x

y

z z

p
x

yp

Fig. 4.1. Immediately ‘Adjacent’ and ‘Embedded Within’ Parts

Embedded WithinAdjacent

p

p p

x

z z
p

y

z
p’

p y

p
x

zp"

Embedded WithinAdjacent

p

p p

x

z z
p

y

p yz
p’

p
x

p"z

Fig. 4.2. Transitively ‘Adjacent’ and ‘Embedded Within’ Parts

[L]

p p
z z

p
x

yp

p
x

p
y

Embedded SharingAdjacent and Sharing
,

Embedded WithinAdjacent

p

p

p

p

x

y

z z

p
x

yp

[R]

Fig. 4.3. Two models, [L,R], of parts sharing properties

4.1.2 From Domains via Requirements to Software

One reason for our interest in mereology is that we find that concept relevant to the modeling of domains.

A derived reason is that we find the modeling of domains relevant to the development of software. Conven-

tionally a first phase of software development is that of requirements engineering. To us domain engineering

is (also) a prerequisite for requirements engineering, cf. Chapter 5. Thus to properly design Software we

need to understand its or their Requirements; and to properly prescribe Requirements one must under-
stand its Domain. To argue correctness of Software with respect to Requirements one must usually make
assumptions about the Domain: D,S |= R. Thus description of Domains become an indispensable part

of Software development.

4.1.3 Domains: Science and Engineering

Domain Science is the study and knowledge of domains. Domain Engineering is the practice of “walk-
ing the bridge” from domain science to domain descriptions: to create domain descriptions on the

background of scientific knowledge of domains, the specific domain “at hand”, or domains in general;

and to study domain descriptions with a view to broaden and deepen scientific results about domain

descriptions. This contribution is based on the engineering and study of many descriptions, of air traffic,
banking, commerce (the consumer/retailer/wholesaler/producer supply chain), container lines, health
care, logistics, pipelines, railway systems, secure [IT] systems, stock exchanges, etcetera.
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4.1.4 Contributions of This Chapter

A general contribution of this chapter is that of providing elements of a domain science. Three specific

contributions are those of (i) giving a model that satisfies published formal, axiomatic characterisations of

mereology; (ii) showing that to every (such modeled) mereology there corresponds a CSP [137] program;

and (iii) suggesting complementing syntactic and semantic theories of mereology.

4.1.5 Structure of Chapter

We briefly overview the structure of this contribution. First, in Sect. 4.2, we loosely characterise how
we look at mereologies: “what they are to us !”. Then, in Sect. 4.3, we give an abstract, model-
oriented specification of a class of mereologies in the form of composite parts and composite and

atomic subparts and their possible connections. In preparation for Sect. 4.4 summarizes some of the part

relations introduced by Leśniewski. The abstract model as well as the axiom system of Sect. 4.5 focuses on

the syntax of mereologies. Following that, in Sect. 4.6, we indicate how the model of Sect. 4.3 sat-
isfies the axiom system of that Sect. 4.5. In preparation for Sect. 4.7 we present characterisations
of attributes of parts, whether atomic or composite. Finally Sect. 4.7 presents a semantic model
of mereologies, one of a wide variety of such possible models. This one emphasizes the possibility of

considering parts and subparts as processes and hence a mereology as a system of processes. Section 4.8

concludes with some remarks on what we have achieved.

4.2 Our Concept of Mereology

4.2.1 Informal Characterisation

Mereology, to us, is the study and knowledge about how physical and conceptual parts relate and what

it means for a part to be related to another part: being disjoint, being adjacent, being neighbours, being
contained properly within, being properly overlapped with, etcetera.

By physical parts we mean such spatial individuals which can be pointed to.

Examples: a road net (consisting of street segments and street intersections); a street segment (between
two intersections); a street intersection; a road (of sequentially neigbouring street segments of the same
name); a vehicle; and a platoon (of sequentially neigbouring vehicles).

By a conceptual part we mean an abstraction with no physical extent, which is either present or not.

Examples: a bus timetable (not as a piece or booklet of paper, or as an electronic device, but) as an
image in the minds of potential bus passengers; and routes of a pipeline, that is, neighbouring sequences of
pipes, valves, pumps, forks and joins, for example referred to in discourse: “the gas flows through “such-
and-such” a route”. The tricky thing here is that a route may be thought of as being both a concept or

being a physical part — in which case one ought give them different names: a planned route and an actual

road, for example.

The mereological notion of subpart, that is: contained within can be illustrated by examples: the in-
tersections and street segments are subparts of the road net; vehicles are subparts of a platoon; and pipes,
valves, pumps, forks and joins are subparts of pipelines.

The mereological notion of adjacency can be illustrated by examples. We consider the various controls
of an air traffic system, cf. Fig. 4.4 on the following page, as well as its aircraft, as adjacent within the air
traffic system; the pipes, valves, forks, joins and pumps of a pipeline, cf. Fig. 4.9 on Page 136, as adjacent
within the pipeline system; two or more banks of a banking system, cf. Fig. 4.6 on Page 134, as being
adjacent.

The mereo-topological notion of neighbouring can be illustrated by examples: Some adjacent pipes of
a pipeline are neighbouring (connected) to other pipes or valves or pumps or forks or joins, etcetera; two
immediately adjacent vehicles of a platoon are neighbouring.
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The mereological notion of proper overlap can be illustrated by examples some of which are of a

general kind: two routes of a pipelines may overlap; and two conceptual bus timetables may overlap with
some, but not all bus line entries being the same; and some really reflect adjacency: two adjacent pipe
overlap in their connection, a wall between two rooms overlap each of these rooms — that is, the rooms
overlap each other “in the wall”.

4.2.2 Six Examples

We shall, in Sect. 4.3, present a model that is claimed to abstract essential mereological properties of air

traffic, buildings and their installations, machine assemblies, financial service industry, the oil industry and

oil pipelines, and railway nets.

Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

This right 1/2 is a "mirror image" of left 1/2 of the figure

Fig. 4.4. A schematic air traffic system

Figure 4.4 shows nine adjacent (9) boxes and eighteen adjacent (18) lines. Boxes and lines are parts.

The line parts “neighbours” the box parts they “connect”. Individually boxes and lines represent adjacent

parts of the composite air traffic “whole”. The rounded corner boxes denote buildings. The sharp corner

box denote aircraft. Lines denote radio telecommunication. The “overlap” between neigbouring line and

box parts are indicated by “connectors”. Connectors are shown as small filled, narrow, either horisontal

or vertical “filled” rectangle3 at both ends of the double-headed-arrows lines, overlapping both the line

arrows and the boxes. The index ranges shown attached to, i.e., labeling each unit, shall indicate that there

are a multiple of the “single” (thus representative) box or line unit shown. These index annotations are

what makes the diagram of Fig. 4.4 schematic. Notice that the ‘box’ parts are fixed installations and that

the double-headed arrows designate the ether where radio waves may propagate. We could, for example,

assume that each such line is characterised by a combination of location and (possibly encrypted) radio

communication frequency. That would allow us to consider all lines for not overlapping. And if they were

overlapping, then that must have been a decision of the air traffic system.
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Fig. 4.5. A building plan with installation

Buildings

Figure 4.5 shows a building plan — as a composite part. The building consists of two buildings, A and H.

The buildings A and H are neighbours, i.e., shares a common wall. Building A has rooms B, C, D and E,

Building H has roomsI, J and K; Rooms L and M are within K. Rooms F and G are within C. The thick lines

labeled N, O, P, Q, R, S, and T models either electric cabling, water supply, air conditioning, or some such

“flow” of gases or liquids. Connection κιo provides means of a connection between an environment, shown

by dashed lines, and B or J, i.e. “models”, for example, a door. Connections κ provides “access” between

neighbouring rooms. Note that ‘neighbouring’ is a transitive relation. Connection ωιo allows electricity

(or water, or oil) to be conducted between an environment and a room. Connection ω allows electricity (or

water, or oil) to be conducted through a wall. Etcetera. Thus “the whole” consists of A and H. Immediate

subparts of A are B, C, D and E. Immediate subparts of C are G and F. Etcetera.

Financial Service Industry

Figure 4.6 on the next page is rather rough-sketchy! It shows seven (7) larger boxes [6 of which are shown

by dashed lines], six [6] thin lined “distribution” boxes, and twelve (12) double-arrowed lines. Boxes and

lines are parts. (We do not described what is meant by “distribution”.) Where double-arrowed lines touch

upon (dashed) boxes we have connections. Six (6) of the boxes, the dashed line boxes, are composite parts,

five (5) of them consisting of a variable number of atomic parts; five (5) are here shown as having three

atomic parts each with bullets “between” them to designate “variability”. Clients, not shown, access the

outermost (and hence the “innermost” boxes, but the latter is not shown) through connections, shown by

bullets, •.

Machine Assemblies

Figure 4.7 on the following page shows a machine assembly. Square boxes designate either composite or

atomic parts. Black circles or ovals show connections. The full, i.e., the level 0, composite part consists

3 There are 36 such rectangles in Fig. 4.4 on the facing page.
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Fig. 4.7. An air pump, i.e., a physical mechanical system

of four immediate parts and three internal and three external connections. The Pump is an assembly of

six (6) immediate parts, five (5) internal connections and three (3) external connectors. Etcetera. Some

connections afford “transmission” of electrical power. Other connections convey torque. Two connections

convey input air, respectively output air.
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Fig. 4.8. A Schematic of an Oil Industry

Oil Industry

“The” Overall Assembly

Figure 4.8 shows a composite part consisting of fourteen (14) composite parts, left-to-right: one oil field, a

crude oil pipeline system, two refineries and one, say, gasoline distribution network, two seaports, an ocean

(with oil and ethanol tankers and their sea lanes), three (more) seaports, and three, say gasoline and ethanol

distribution networks. Between all of the neighbouring composite parts there are connections, and from

some of these composite parts there are connections (to an external environment). The crude oil pipeline

system composite part will be concretised next.

A Concretised Composite Pipeline

Figure 4.9 on the following page shows a pipeline system. It consists of 32 atomic parts: fifteen (15) pipe

units (shown as directed arrows and labeled p1–p15), four (4) input node units (shown as small circles, ◦,

and labeled ini–inℓ), four (4) flow pump units (shown as small circles, ◦, and labeled fpa–fpd ), five (5)

valve units (shown as small circles, ◦, and labeled vx–vw), three (3) join units (shown as small circles, ◦,

and labeled jb–jc), two (2) fork units (shown as small circles, ◦, and labeled fb–fc), one (1) combined join

& fork unit (shown as small circles, ◦, and labeled jafa), and four (4) output node units (shown as small

circles, ◦, and labeled onp–ons). In this example the routes through the pipeline system start with node

units and end with node units, alternates between node units and pipe units, and are connected as shown

by fully filled-out dark coloured disc connections. Input and output nodes have input, respectively output

connections, one each, and shown as lighter coloured connections. In [53] we present a description of a

class of abstracted pipeline systems.

Railway Nets

The left of Fig. 4.10 on the next page [L] diagrams four rail units, each with two, three or four connectors

shown as narrow, somewhat “longish” rectangles. Multiple instances of these rail units can be assembled

(i.e., composed) by their connectors as shown on Fig. 4.10 on the following page [L] into proper rail nets.

The right of Fig. 4.10 on the next page [R] diagrams an example of a proper rail net. It is assembled from

the kind of units shown in Fig. 4.10 [L]. In Fig. 4.10 [R] consider just the four dashed boxes: The dashed

boxes are assembly units. Two designate stations, two designate lines (tracks) between stations. We refer

to the caption four line text of Fig. 4.10 on the following page for more “statistics”. We could have chosen

to show, instead, for each of the four “dangling’ connectors, a composition of a connection, a special “end

block” rail unit and a connector.
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Fig. 4.9. A Pipeline System

[L]

Turnout / PointTrack / Line / Segment

/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit
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Linear Unit

SwitchTrack
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Fig. 4.10. To the left: Four rail units.To the right: A “model” railway net:

An Assembly of four Assemblies: two stations and two lines.

Lines here consist of linear rail units.

Stations of all the kinds of units shown to the left.

There are 66 connections and four “dangling” connectors

Discussion

We have brought these examples only to indicate the issues of a “whole” and atomic and composite parts,

adjacency, within, neighbour and overlap relations, and the ideas of attributes and connections. We shall

make the notion of ‘connection’ more precise in the next section.
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4.3 An Abstract, Syntactic Model of Mereologies

4.3.1 Parts and Subparts

205 We distinguish between atomic and composite parts.
206 Atomic parts do not contain separately distinguishable parts.

207 Composite parts contain at least one separately distinguishable part.

type

205. P == AP | CP4

206. AP :: mkAP(...)5

207. CP :: mkCP(...,s sps:P-set)6 axiom ∀ mkCP( ,ps):CP • ps 6={}

It is the domain analyser who decides what constitutes “the whole”, that is, how parts relate to one another,

what constitutes parts, and whether a part is atomic or composite. We refer to the proper parts of a composite

part as subparts. Figure 4.11 illustrates composite and atomic parts. The slanted sans serif uppercase

identifiers of Fig. 4.11 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are meta-linguistic, that is. they stand for

the parts they “decorate”; they are not identifiers of “our system”.

Atomic parts

A3A2

A6
A5 A4

A1

C3

C1

C2

Composite parts

Part w: The whole!

Fig. 4.11. Atomic and Composite Parts

4.3.2 No “Infinitely” Embedded Parts

The above syntax, Items 205–207, does not prevent composite parts, p, to contain composite parts, p′,

“ad-infinitum” ! But we do not wish such “recursively” contained parts !

208 To express the property that parts are finite we introduce a notion of part derivation .

209 The part derivation of an atomic part is the empty set.

210 The part derivation of a composite part, p, mkC(...,ps) where ... is left undefined, is the set ps of

subparts of p.

4 In the RAISE [124] Specification Languge, RSL [123], writing type definitions X == Y|Z means that Y and Z are

to be disjoint types. In Items 206.–207. the identifiers mkAP and mkCP are distinct, hence their types are disjoint.
5 Y :: mkY(...): y values (...) are marked with the “make constructor” mkY, cf. [164, 165].
6 In Y :: mkY(s w:W,...) s w is a “selector function” which when applied to an y, i.e., s w(y) identifies the W

element, cf. [164, 165].

September 6, 2019, 16:27, A Foundation for Software Development c© Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark



138 4 To Every Manifest Domain Mereology a CSP Expression

value

208. pt der: P → P-set

209. pt der(mkAP(...)) ≡ {}
210. pt der(mkCP(...,ps)) ≡ ps

211 We can also express the part derivation, pt der(ps) of a set, ps, of parts.

212 If the set is empty then pt der({}) is the empty set, {}.

213 Let mkA(pq) be an element of ps, then pt der({mkA(pq)}∪ps′) is ps′.
214 Let mkC(pq,ps′) be an element of ps, then pt der(ps′∪ps) is ps′.

211. pt der: P-set → P-set

212. pt der({}) ≡ {}
213. pt der({mkA(..)}∪ps) ≡ ps
214. pt der({mkC(..,ps’)}∪ps) ≡ ps’∪ps

215 Therefore, to express that a part is finite we postulate

216 a natural number, n, such that a notion of iterated part set derivations lead to an empty set.

217 An iterated part set derivation takes a set of parts and part set derive that set repeatedly, n times.

218 If the result is an empty set, then part p was finite.

value

215. no infinite parts: P → Bool

216. no infinite parts(p) ≡
216. ∃ n:Nat • it pt der({p})(n)={}
217. it pt der: P-set → Nat → P-set

218. it pt der(ps)(n) ≡
218. let ps′ = pt der(ps) in

218. if n=1 then ps′ else it pt der(ps′)(n−1) end end

4.3.3 Unique Identifications

Each physical part can be uniquely distinguished for example by an abstraction of its properties at a time

of origin. In consequence we also endow conceptual parts with unique identifications.

219 In order to refer to specific parts we endow all parts, whether atomic or composite, with unique

identifications.

220 We postulate functions which observe these unique identifications, whether as parts in general or as

atomic or composite parts in particular.

221 such that any to parts which are distinct have unique identifications.

type

219. UI
value

220. uid UI: P → UI
axiom

221. ∀ p,p′:P • p 6=p′ ⇒ uid UI(p)6=uid UI(p′)

A model for uid UI can be given. Presupposing subsequent material (on attributes and mereology) —

“lumped” into part qualities, pq:PQ, we augment definitions of atomic and composite parts:
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type

206. AP :: mkA(s pq:(s uid:UI,...))
207. CP :: mkC(s pq:(s uid:UI,...),s sps:P-set)
value

220. uid UI(mkA((ui,...))) ≡ ui
220. uid UI(mkC((ui,...)),...) ≡ ui

Figure 4.12 illustrates the unique identifications of composite and atomic parts.

ci1

ai5 ai4

ai1

ci3

ai2

ci2

ai3

ai6

Fig. 4.12. ai j: atomic part identifiers, cik: composite part identifiers

No two parts have the same unique identifier.

222 We define an auxiliary function, no prts uis, which applies to a[ny] part, p, and yields a pair: the

number of subparts of the part argument, and the set of unique identifiers of parts within p.

223 no prts uis is defined in terms of yet an auxiliary function, sum no pts uis.

value

222. no prts uis: P → (Nat × UI-set) → (Nat × UI-set)
222. no pts uis(mkA(ui,...))(n,uis) ≡ (n+1,uis∪{ui})
222. no pts uis(mkC((ui,...),ps))(n,uis) ≡
222. let (n′,uis′) = sum no pts uis(ps) in

222. (n+n′,uis∪uis’) end

222. pre: no infinite parts(p)
223. sum no pts uis: P-set → (Nat × UI-set) → (Nat × UI-set)
223. sum no pts uis(ps)(n,uis) ≡
223. case ps of

223. {}→(n,uis),
223. {mkA(ui,...)}∪ps’→sum no pts uis(ps′)(n+1,uis∪{ui}),
223. {mkC((ui,...),ps′)}∪ps” →
223. let (n′′,uis′′)=sum no pts uis(ps′)(1,{ui}) in

223. sum no pts uis(ps′′)(n+n′′,uis∪uis”) end

223. end

223. pre: ∀ p:P•p ∈ ps ⇒ no infinite parts(p)

224 That no two parts have the same unique identifier can now be expressed by demanding that the number

of parts equals the number of unique identifiers.

axiom

224. ∀ p:P • let (n,uis)=no prts uis(0,{}) in n=carduis end
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4.3.4 Attributes

Attribute Names and Values

225 Parts have sets of named attribute values, attrs:ATTRS.

226 One can observe attributes from parts.

227 Two distinct parts may share attributes:

a For some (one or more) attribute name that is among the attribute names of both parts,

b it is always the case that the corresponding attribute values are identical.

type

225. ANm, AVAL, ATTRS = ANm→m AVAL
value

226. attr ATTRS: P → ATTRS
227. share: P×P → Bool

227. share(p,p′) ≡
227. p 6=p′ ∧ ∼trans adj(p,p′) ∧
227a. ∃ anm:ANm • anm ∈ dom attr ATTRS(p) ∩ dom attr ATTRS(p′) ⇒
227b. � (attr ATTRS(p))(anm) = (attr ATTRS(p′))(anm)

The function trans adj is defined in Sect. 4.4.4 on Page 143.

Attribute Categories

One can suggest a hierarchy of part attribute categories: static or dynamic values — and within the dy-

namic value category: inert values or reactive values or active values — and within the dynamic active

value category: autonomous values or biddable values or programmable values. By a static attribute,

a:A, is static attribute(a), we shall understand an attribute whose values are constants, i.e., can-

not change. By a dynamic attribute, a:A, is dynamic attribute(a), we shall understand an attribute

whose values are variable, i.e., can change. By an inert attribute, a:A, is inert attribute(a), we shall

understand a dynamic attribute whose values only change as the result of external stimuli where these stim-

uli prescribe properties of these new values. By a reactive attribute, a:A, is reactive attribute(a),

we shall understand a dynamic attribute whose values, if they vary, change value in response to the change

of other attribute values. By an active attribute, a:A, is active attribute(a), we shall understand

a dynamic attribute whose values change (also) of its own volition. By an autonomous attribute, a:A,

is autonomous attribute(a), we shall understand a dynamic active attribute whose values change value

only “on their own volition”. The values of an autonomous attributes are a “law onto themselves and their

surroundings”. By a biddable attribute, a:A, is biddable attribute(a), (of a part) we shall under-

stand a dynamic active attribute whose values are prescribed but may fail to be observed as such. By a

programmable attribute, a:A, is programmable attribute(a:A), we shall understand a dynamic ac-

tive attribute whose values can be prescribed. By an external attribute we mean inert, reactive, active

or autonomous attribute. By a controllable attribute we mean a biddable or programmable attribute. We

define some auxiliary functions:

228 SA applies to attrs:ATTRS and yields a grouping (sa1,sa2,...,sans )
7, of static attribute values.

229 CA applies to attrs:ATTRS and yields a grouping (ca1,ca2,...,canc)8 of controllable attribute values.

230 EA applies to attrs:ATTRS and yields a set, {eA1,eA2,...,eAne}
9 of external attribute names.

7 – where {sa1,sa2,...,sans
}⊆rng attrs

8 – where {ca1,ca2,...,cans
}⊆rng attrs

9 – where {eA1,eA2,...,eAne
}⊆dom attrs
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type

SA,CA = AVAL∗

EA = ANm−st
value

228. SA : ATTRS → SA
229. CA : ATTRS → CA
230. EA : ATTRS → EA

The attribute names of static, controllable and external attributes do not overlap and together make up the

attribute names of attrs.

4.3.5 Mereology

In order to illustrate other than the within and adjacency part relations we introduce the notion of mereol-

ogy. Figure 4.13 illustrates a mereology between parts. A specific mereology-relation is, visually, a •—•
line that connects two distinct parts.

ai6
ai5 ai4

ai1
ai3ai2

ci1

ci3

ci2

Fig. 4.13. Mereology: Relations between Parts

231 The mereology of a part is a set of unique identifiers of other parts.

type

231. ME = UI-set

We may refer to the connectors by the two element sets of the unique identifiers of the parts they connect.

For example with respect to Fig. 4.13:

• {ci1,ci3},

• {ai2,ai3},

• {ai6,ci1},

• {ai3,ci1},

• {ai6,ai5} and

• {ai1,ci1}.

4.3.6 The Model

232 The “whole” is a part.

233 A part value has a part sort name and is either the value of an atomic part or of an abstract composite

part.

234 An atomic part value has a part quality value.

235 An abstract composite part value has a part quality value and a set of at least of one or more part values.

236 A part quality value consists of a unique identifier, a mereology, and a set of one or more attribute

named attribute values.
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232 W = P
233 P = AP | CP
234 AP :: mkA(s pq:PQ)
235 CP :: mkC(s pq:PQ,s ps:P-set)
236 PQ = UI×ME×(ANm→m AVAL)

We now assume that parts are not “recursively infinite”, and that all parts have unique identifiers

4.4 Some Part Relations

4.4.1 ‘Immediately Within’

237 One part, p, is said to be immediately within, imm within(p,p′), another part, if p′ is a composite part

and p is observable in p′.

value

237. imm within: P × P → Bool

237. imm within(p,p′) ≡
237. case p′ of

237. ( ,mkA( ,ps)) → p ∈ ps,
237. ( ,mkC( ,ps)) → p ∈ ps,
237. → false

237. end

4.4.2 ‘Transitive Within’

We can generalise the ‘immediate within’ property.

238 A part, p, is transitively within a part p′, trans within(p,p′),
a either if p, is immediately within p′

b or

c if there exists a (proper) composite part p′′ of p′ such that trans within(p′′,p).

value

238. trans wihin: P × P → Bool

238. trans within(p,p′) ≡
238a. imm within(p,p′)
238b. ∨
238c. case p′ of

238c. ( ,mkC( ,ps)) → p ∈ ps ∧
238c. ∃ p′′:P• p′′ ∈ ps ∧ trans within(p′′,p),
238c. → false

238. end

4.4.3 ‘Adjacency’

239 Two parts, p,p′, are said to be immediately adjacent, imm adj(p,p′)(c), to one another, in a composite

part c, such that p and p′ are distinct and observable in c.
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value

239. imm adj: P × P → P → Bool

239. imm adj(p,p′)(mkA( ,ps)) ≡ p 6=p′ ∧ {p,p′}⊆ps
239. imm adj(p,p′)(mkC( ,ps)) ≡ p 6=p′ ∧ {p,p′}⊆ps
239. imm adj(p,p′)(mkA( )) ≡ false

4.4.4 Transitive ‘Adjacency’

We can generalise the immediate ‘adjacent’ property.

240 Two parts, p′,p′′, of a composite part, p, are trans adj(p′, p′′) in p
a either if imm adj(p′,p′′)(p),
b or if there are two p′′′ and p′′′′ such that

i p′′′ and p′′′′ are immediately adjacent parts of p and

ii p is equal to p′′′ or p′′′ is properly within p and p′ is equal to p′′′′ or p′′′′ is properly within p′

We leave the formalisation to the reader.

4.5 An Axiom System

Classical axiom systems for mereology focus on just one sort of “things”, namely Parts. Leśniewski had

in mind, when setting up his mereology to have it supplant set theory. So parts could be composite and

consisting of other, the sub-parts — some of which would be atomic; just as sets could consist of elements

which were sets — some of which would be empty.

4.5.1 Parts and Attributes

In our axiom system for mereology we shall avail ourselves of two sorts: Parts, and A ttributes.10

• type P,A

A ttributes are associated with Parts. We do not say very much about attributes: We think of attributes of

parts to form possibly empty sets. So we postulate a primitive predicate, ∈, relating Parts and A ttributes.

• ∈: A ×P → Bool.

4.5.2 The Axioms

The axiom system to be developed in this section is a variant of that in [96]. We introduce the following

relations between parts:

part of: P : P ×P → Bool Page 144

proper part of: PP : P ×P → Bool Page 144

overlap: O : P ×P → Bool Page 144

underlap: U : P ×P → Bool Page 144

over crossing: OX : P ×P → Bool Page 144

under crossing: UX : P ×P → Bool Page 144

proper overlap: PO : P ×P → Bool Page 144

proper underlap: PU : P ×P → Bool Page 144

10 Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers P and A stand for

property-oriented types (parts and attributes).
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Let P denote part-hood; px is part of py, is then expressed as P(px, py).
11 (4.1) Part px is part of itself

(reflexivity). (4.2) If a part px is part py and, vice versa, part py is part of px, then px = py (anti-symmetry).

(4.3) If a part px is part of py and part py is part of pz, then px is part of pz (transitivity).

∀px : P •P(px, px) (4.1)

∀px, py : P • (P(px, py)∧P(py, px))⇒px = py (4.2)

∀px, py, pz : P • (P(px, py)∧P(py, pz))⇒P(pz, pz) (4.3)

Let PP denote proper part-hood. px is a proper part of py is then expressed as PP(px, py). PP can be

defined in terms of P. PP(px, py) holds if px is part of py, but py is not part of px.

PP(px, py)
△
= P(px, py)∧¬P(py, px) (4.4)

Overlap, O, expresses a relation between parts. Two parts are said to overlap if they have “something” in

common. In classical mereology that ‘something’ is parts. To us parts are spatial entities and these cannot

“overlap”. Instead they can ‘share’ attributes.

O(px, py)
△
= ∃a : A • a ∈ px ∧a ∈ py (4.5)

Underlap, U, expresses a relation between parts. Two parts are said to underlap if there exists a part pz of

which px is a part and of which py is a part.

U(px, py)
△
= ∃pz : P •P(px, pz)∧P(py, pz) (4.6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.

Over-cross, OX, px and py are said to over-cross if px and py overlap and px is not part of py.

OX(px, py)
△
=O(px, py)∧¬P(px, py) (4.7)

Under-cross, UX, px and py are said to under cross if px and py underlap and py is not part of px.

UX(px, py)
△
= U(px, pz)∧¬P(py, px) (4.8)

Proper Overlap, PO, expresses a relation between parts. px and py are said to properly overlap if px and

py over-cross and if py and px over-cross.

PO(px, py)
△
= OX(px, py)∧OX(py, px) (4.9)

Proper Underlap, PU, px and py are said to properly underlap if px and py under-cross and py and px

under-cross.

PU(px, py)
△
= UX(px, py)∧UX(py, px) (4.10)

4.6 Satisfaction

We shall sketch a proof that the model of Sect. 4.3, satisfies, i.e., is a model of, the axioms of Sect. 4.5.

4.6.1 Some Definitions

To that end we first define the notions of interpretation, satisfiability, validity and model. Interpretation:
By an interpretation of a predicate we mean an assignment of a truth value to the predicate where the

assignment may entail an assignment of values, in general, to the terms of the predicate. Satisfiability: By

the satisfiability of a predicate we mean that the predicate is true for some interpretation. Valid: By the

validity of a predicate we mean that the predicate is true for all interpretations. Model: By a model of a

predicate we mean an interpretation for which the predicate holds.

11 Our notation now is not RSL but a conventional first-order predicate logic notation.
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4.6.2 A Proof Sketch

We assign

241 P as the meaning of P

242 ATR as the meaning of A ,

243 imm within as the meaning of P,

244 trans within as the meaning of PP,

245 ∈: ATTR×ATTRS-set→Bool as the meaning of ∈: A ×P →Bool and

246 sharing as the meaning of O.

With the above assignments it is now easy to prove that the other axiom-operatorsU, PO, PU, OX and UX

can be modeled by means of imm within, within, ATTR×ATTRS-set→Bool and sharing.

4.7 A Semantic CSP Model of Mereology

The model of Sect. 4.3 can be said to be an abstract model-oriented definition of the syntax of mereology.

Similarly the axiom system of Sect. 4.5 can be said to be an abstract property-oriented definition of the

syntax of mereology. We show that to every mereology there corresponds a program of communicating

sequential processes CSP. We assume that the reader has practical knowledge of Hoare’s CSP [137].

4.7.1 Parts ≃ Processes

The model of mereology presented in Sect. 4.3 focused on (i) parts, (ii) unique identifiers and (iii) mere-

ology. To parts we associate CSP processes. Part processes are indexed by the unique part identifiers. The

mereology reveals the structure of CSP channels between CSP processes.

4.7.2 Channels

We define a general notion of a vector of channels. One vector element for each “pair” of distinct unique

identifiers. Vector indices are set of two distinct unique identifiers.

247 Let w be the “whole” (i.e., a part).

248 Let uis be the set of all unique identifiers of the “whole”.

249 Let M be the type of messages sent over channels.

250 Channels provide means for processes to synchronise and communicate.

value

247. w:P
248. uis = let ( ,uis′)=no prts uis(w) in uis′ end

type

249. M
channel

250. {ch[{ui,ui′} ]:M|ui,ui′:UI•ui 6=ui′ ∧ {ui,ui′}⊆uis}

251 We also define channels for access to external attribute values.

Without loss of generality we do so for all possible parts and all possible attributes.

channel

251. {xch[ui,an ]:AVAL|ui:UI• ui ∈ uis,an:ANm}
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4.7.3 Compilation

We now show how to compile “real-life, actual” parts into RSL-Text. That is, turning “semantics” into

syntax !

value

comp P: P → RSL-Text
comp P(mkA(ui,me,attrs)) ≡ “Ma(ui,me,attrs)”
comp P(mkC((ui,me,attrs),{p1,p2,...,pn})) ≡

“Mc(ui,me,attrs) ‖
” comp process(p1)“‖”comp process(p2)“‖”...“‖”comp process(pn)

The so-called core process expressions Ma and Mc relate to atomic and composite parts. They are defined,

schematically, below as just M . The compilation expressions have two elements: (i) those embraced by

double quotes: “...”, and (ii) those that invoke further compilations, The first texts, (i), shall be understood as

RSL-Texts. The compilation invocations, (ii), as expending into RSL-Texts. We emphasize the distinction

between ‘usages’ and ‘definitions’. The expressions between double quotes: “...” designate usages. We

now show how some of these usages require “definitions”. These ‘definitions’ are not the result of ‘parts-

to-processes’ compilations. They are shown here to indicate, to the domain engineers, what must be further

described, beyond the ‘mere’ compilations.

value

M : ui:UI×me:ME×attrs:ATTRS → ca:CA (attrs) → RSL-Text
M (ui,me,attrs)(ca) ≡

let (me′,ca′) = F (ui,me,attrs)(ca) in M (ui,me′,attrs)(ca′) end

F : ui:UI×me:ME×attrs:ATTRS→ca:CA→
in in chs(ui,attrs) in,out in out chs(ui,me)→ME×CA ′

Recall (Page 140) that CA (attrs) is a grouping, (ca1,ca2,...,canc), of controlled attribute values.

252 The in chs function applies to a set of uniquely named attributes and yields some RSL-Text, in the

form of input channel declarations, one for each external attribute.

252. in chs: ui:UI × attrs:ATTRS → RSL−Text

252. in chs(ui,attrs) ≡ “in { xch[ui,xai ] | xai:ANm • xai∈EA (attrs) }”

253 The in out chs function applies to a pair, a unique identifier and a mereology, and yields some RSL-
Text, in the form of input/output channel declarations, one for each unique identifier in the mereology.

253. in out chs: ui:UI × me:ME → RSL−Text

253. in out chs(ui,me) ≡ “in,out { xch[ui,ui′ ]|ui:UI • ui’∈me }”

F is an action: it returns a possibly updated mereology and possibly updated controlled attribute values.

We present a rough sketch of F . The F action non-deterministically internal choice chooses between

• either [1,2,3,4]

⋄⋄ [1] accepting input from

⋄⋄ [4] a suitable (“offering”) part process,

⋄⋄ [2] optionally offering a reply;

⋄⋄ [3] leading to an updated state;

• or [3,4]

⋄⋄ [5] finding a suitable “order” (val)

⋄⋄ [8] to a suitable (“inquiring”) behaviour,

⋄⋄ [6] offering that value,

⋄⋄ [7] leading to an updated state;

• or [9] doing own work leading to an new state.
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value

F (ui,me,attrs)(ca) ≡
[1 ] ⌈⌉⌊⌋ {let val=ch[{ui,ui′} ]? in

[2 ] (ch[{ui,ui′} ]!in reply(val,(ui,me,attrs))(ca)) ;
[3 ] in update(val,(ui,me,attrs))(ca) end

[4 ] | ui′:UI • ui′ ∈ me}
[5 ] ⌈⌉ ⌈⌉⌊⌋ {let val=await reply(ui′,me,attrs)(ca) in

[6 ] ch[{ui,ui′} ]!val ;
[7 ] out update(val,(ui,me,attrs))(ca) end

[8 ] | ui′:UI • ui′ ∈ me}
[9 ] ⌈⌉ (me,own work(ui,attrs)(ca))

in reply: VAL×(ui:UI×me:ME×attrs:ATTRS)→ca:CA→
in in chs(attrs) in,out in out chs(ui,me)→VAL

in update: VAL × (ui:UI×me:ME×attrs:ATTRS)→ca:CA→
in,out in out chs(ui,me)→ME×CA

await reply: (ui:UI,me:ME)→ca:CA→in,out in out chs(ui,me:ME)→VAL
out update: (VAL×(ui:UI×me:ME<>attrs:ATTRS))→ca:CA→

in,out in out chs(ui,me)→ME×CA
own work: (ui:UI×attrs:ATTRS)→CA→in,out in out chs(ui,me) CA

The above definitions of channels and core functions M and F are not examples of what will be compiled

but of what the domain engineer must, after careful analysis, “create”.

4.7.4 Discussion

General

A little more meaning has been added to the notions of parts and their mereology. The within and ad-
jacent to relations between parts (composite and atomic) reflect a phenomenological world of geometry,

and the mereological relation between parts reflect both physical and conceptual world understandings:

physical world in that, for example, radio waves cross geometric “boundaries”, and conceptual world in

that ontological classifications typically reflect lattice orderings where overlaps likewise cross geometric

“boundaries”.

Specific

The notion of parts is far more general than that of Chapter 1. We have been able to treat Stansław

Leśniewski’s notion of mereology sôlely based on parts, that is, their semantic values, without introducing

the notion of the syntax of parts. Our compilation functions are (thus) far more general than defined in

Chapter 1.

4.8 Concluding Remarks

4.8.1 Relation to Other Work

The present contribution has been conceived in the following context.

My first awareness of the concept of ‘mereology’ was from listening to many presentations by Dou-
glas T. Ross (1929–2007) at IFIP working group WG 2.3 meetings over the years 1980–1999. In

[209] Douglas T. Ross and John E. Ward report on the 1958–1967 MIT project for computer-aided
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design (CAD) for numerically controlled production.12 Pages 13–17 of [209] reflects on issues bor-

dering to and behind the concerns of mereology. Ross’ thinking is clearly seen in the following text:

Douglas T. Ross 1927–2007.

Courtesy MIT Museum

“. . . our consideration of fundamentals begins not with
design or problem-solving or programming or even mathe-
matics, but with philosophy (in the old-fashioned meaning
of the word) – we begin by establishing a “world-view”.
We have repeatedly emphasized that there is no way to
bound or delimit the potential areas of application of our
system, and that we must be prepared to cope with any
conceivable problem. Whether the system will assist in
any way in the solution of a given problem is quite an-
other matter, . . . , but in order to have a firm and uniform
foundation, we must have a uniform philosophical basis
upon which to approach any given problem. This “world-
view” must provide a working framework and methodol-
ogy in terms of which any aspect of our awareness of the
world may be viewed. It must be capable of expressing the
utmost in reality, giving expression to unending layers of
ever-finer and more concrete detail, but at the same time abstract chimerical 13 visions bor-
dering on unreality must fall within the same scheme. “Above all, the world-view itself must
be concrete and workable, for it will form the basis for all involvement of the computer in
the problem-solving process, as well as establishing a viewpoint for approaching the unknown
human component of the problem-solving team.”

Yes, indeed, the philosophical disciplines of ontology, epistemology and mereology, amongst others, ought

be standard curricula items in the computer science and software engineering studies, or better: domain

engineers cum software system designers ought be imbued by the wisdom of those disciplines as was

Doug.

“. . . in the summer of 1960 we coined the word plex to serve as a generic term for these
philosophical ruminations. ”Plex” derives from the word plexus, “An interwoven combination
of parts in a structure”, (Webster). . . . The purpose of a ‘modeling plex’ is to represent
completely and in its entirety a “thing”, whether it is concrete or abstract, physical or concep-
tual. A ‘modeling plex’ is a trinity with three primary aspects, all of which must be present. If
any one is missing a complete representation or modeling is impossible. The three aspects of
plex are data, structure, and algorithm. . . . ” which “. . . is concerned with the behavioral
characteristics of the plex model – the interpretive rules for making meaningful the data and
structural aspects of the plex, for assembling specific instances of the plex, and for interrelat-
ing the plex with other plexes and operators on plexes. Specification of the algorithmic aspect
removes the ambiguity of meaning and interpretation of the data structure and provides a
complete representation of the thing being modeled.”

In the terminology of the current chapter a plex is a part (whether composite or atomic), the data are the

properties (of that part), the structure is the mereology (of that part) and the algorithm is the process (for

that part). Thus Ross was, perhaps, a first instigator (around 1960) of object-orientedness. A first, “top of

the iceberg” account of the mereology-ideas that Doug had then can be found in the much later (1976)

three page note [208]. Doug not only ‘invented’ CAD but was also the father of AED (Algol Extended

for Design), the Automatically Programmed Tool (APT) language, SADT (Structured Analysis and Design

12 Doug is said to have coined the term and the abbreviation CAD [207].
13 Chimerical: existing only as the product of unchecked imagination: fantastically visionary or improbable
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Technique) and helped develop SADT into the IDEF014 method for the Air Force’s Integrated Computer-

Aided Manufacturing (ICAM) program’s IDEF suite of analysis and design methods. Douglas T. Ross

went on for many years thereafter, to deepen and expand his ideas of relations between mereology and the

programming language concept of type at the IFIP WG2.3 working group meetings. He did so in the, to

some, enigmatic, but always fascinating style you find on Page 63 of [208].

In [155] Henry S. Leonard and Henry Nelson Goodman: A Calculus of Individuals and Its Uses
present the American Pragmatist version of Leśniewski’s mereology. It is based on a single primitive:

discreet. The idea of the calculus of individuals is, as in Leśniewski’s mereology, to avoid having to deal

with the empty sets while relying on explicit reference to classes (or parts).

[96] R. Casati and A. Varzi: Parts and Places: the structures of spatial representation has been the

major source for this chapter’s understanding of mereology. Our motivation was not the spatial or topologi-

cal mereology, [217]. The present chapter does not utilize any of these concepts’ axiomatision in [96, 217].

Still it is best to say that this chapter has benefited much from these publications.

Domain descriptions, besides mereological notions, also depend, in their successful form. on FCA:

Formal Concept Analysis. Here a main inspiration has been drawn, since the mid 1990s, from B. Ganter
and R. Wille’s Formal Concept Analysis — Mathematical Foundations [122].

The approach takes as input a matrix specifying a set of objects and the properties thereof,
called attributes, and finds both all the “natural” clusters of attributes and all the “natural”
clusters of objects in the input data, where a “natural” object cluster is the set of all objects
that share a common subset of attributes, and a “natural” property cluster is the set of all
attributes shared by one of the natural object clusters. Natural property clusters correspond
one-for-one with natural object clusters, and a concept is a pair containing both a natural
property cluster and its corresponding natural object cluster. The family of these concepts
obeys the mathematical axioms defining a lattice, a Galois connection).

Thus the choice of adjacent and embedded (‘within’) parts and their connections is determined after serious

formal concept analysis.

4.8.2 What Has Been Achieved ?

We have given a model-oriented specification of mereology. We have indicated that the model satisfies a

widely known axiom system for mereology. We have suggested that (perhaps most) work on mereology

amounts to syntactic studies. So we have suggested one of a large number of possible, schematic semantics

of mereology. And we have shown that to every mereology there corresponds a set of communicating

sequential process (CSP).

14 IDEF0: Icam DEFinition for Function Modeling: https://en.wikipedia.org/wiki/IDEF0
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5

From Domain Descriptions to Requirements Prescriptions

Chapter 1 introduces a method for analysing and describing manifest domains. In this chapter we show

how to systematically, but, of course, not automatically, “derive” requirements prescriptions from domain

descriptions.

5.1 Introduction

We survey preliminary issues.

5.1.1 The Triptych Dogma of Software Development

We see software development progressing as follows: Before one can design software one must have a firm
grasp of the requirements. Before one can prescribe requirements one must have a reasonably firm grasp
of the domain. Software engineering, to us, therefore include these three phases: domain engineering,
requirements engineering and software design.

5.1.2 Software As Mathematical Objects

Our base view is that computer programs are mathematical objects. That is, the text that makes up a

computer program can be reasoned about. This view entails that computer program specifications can be

reasoned about. And that the requirements prescriptions upon which these specifications are based can be

reasoned about. This base view entails, therefore, that specifications, whether software design specifica-
tions, or requirements prescriptions, or domain descriptions, must [also] be formal specifications. This is

in contrast to considering software design specifications being artifacts of sociological, or even of psycho-

logical “nature”.

5.1.3 The Contribution of Chapter

We claim that the present chapter contributes to our understanding and practice of software engineering as

follows: (1) it shows how the new phase of engineering, domain engineering, as introduced in [67], forms

a prerequisite for requirements engineering; (2) it endows the “classical” form of requirements engineering

with a structured set of development stages and steps: (a) first a domain requirements stage, (b) to be

followed by an interface requirements stages, and (c) to be concluded by a machine requirements stage;

(3) it further structures and gives a reasonably precise contents to the stage of domain requirements: (i)

first a projection step, (ii) then an instantiation step, (iii) then a determination step, (iv) then an extension

step, and (v) finally a fitting step — with these five steps possibly being iterated; and (4) it also structures
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and gives a reasonably precise contents to the stage of interface requirements based on a notion of shared

entities, Each of the steps (i–v) open for the possibility of simplifications. Steps (a–c) and (i-v), we claim,

are new. They reflect a serious contribution, we claim, to a logical structuring of the field of requirements

engineering and its very many otherwise seemingly diverse concerns.

5.1.4 Some Comments

This chapter is, perhaps, unusual in the following respects: (i) It is a methodology chapter, hence there are

no “neat” theories about development, no succinctly expressed propositions, lemmas nor theorems, and

hence no proofs1. (ii) As a consequence the chapter is borne by many, and by extensive examples. (iii) The

examples of this chapter are all focused on a generic road transport net. (iv) To reasonably fully exemplify

the requirements approach, illustrating how our method copes with a seeming complexity of interrelated

method aspects, the full example of this chapter embodies very many description and prescription elements:

hundreds of concepts (types, axioms, functions). (v) This methodology chapter covers a “grand” area of

software engineering: Many textbooks and papers are written on Requirements Engineering. We postulate,

in contrast to all such books (and papers), that requirements engineering should be founded on domain
engineering . Hence we must, somehow, show that our approach relates to major elements of what the

Requirements Engineering books put forward. (vi) As a result, this chapter is long.

5.1.5 Structure of Chapter

The structure of the chapter is as follows: Section 5.2 provides a fair-sized, hence realistic example. Sec-

tions 5.3–5.5 covers our approach to requirements development. Section 5.3 overviews the issue of ‘re-

quirements’; relates our approach (i.e., Sects. 5.4–5.5) to systems, user and external equipment and func-
tional requirements; and Sect. 5.3 also introduces the concepts of the machine to be requirements pre-

scribed, the domain, the interface and the machine requirements. Section 5.4 covers the domain require-
ments stages of projection (Sect. 5.4.1), instantiation (Sect. 5.4.2), determination (Sect. 5.4.3), extension
(Sect. 5.4.4) and fitting (Sect. 5.4.5). Section 5.5 covers key features of interface requirements: shared
phenomena (Sect. 5.5.1), shared endurants (Sect. 5.5.1) and shared actions, shared eventsand shared be-
haviours (Sect. 5.5.1). Section 5.5.1 further introduces the notion of derived requirements. Section 5.7 con-

cludes the chapter.

5.2 An Example Domain: Transport

In order to exemplify the various stages and steps of requirements development we first bring a domain

description example.2 The example follows the steps of an idealised domain description. First we describe

the endurants, then we describe the perdurants. Endurant description initially focus on the composite and

atomic parts. Then on their “internal” qualities: unique identifications, mereologies, and attributes. The de-

scriptions alternate between enumerated, i.e., labeled narrative sentences and correspondingly “numbered”

formalisations. The narrative labels cum formula numbers will be referred to, frequently in the various

steps of domain requirements development.

5.2.1 Endurants

Since we have chosen a manifest domain, that is, a domain whose endurants can be pointed at, seen,

touched, we shall follow the analysis & description process as outlined in [67] and formalised in [58]. That

1 — where these proofs would be about the development theories. The example development of requirements do

imply properties, but formulation and proof of these do not constitute new contributions — so are left out.
2 The example of this section is that of the “running example” of Chapter 1.
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is, we first identify, analyse and describe (manifest) parts, composite and atomic, abstract (Sect. 5.2.2) or

concrete (Sect. 5.2.2). Then we identify, analyse and describe their unique identifiers (Sect. 5.2.2), mere-

ologies (Sect. 5.2.2), and attributes (Sects. 5.2.2–5.2.2).
The example fragments will be presented in a small type-font.

5.2.2 Domain, Net, Fleet and Monitor

The root domain, ∆ , is that of a composite traffic system (254a.) with a road net, (254b.) with a fleet of

vehicles and (254c.) of whose individual position on the road net we can speak, that is, monitor.3

254 We analyse the traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

type

254 ∆
254a N
254b F
254c M
value

254a obs part N: ∆ → N
254b obs part F: ∆ → F
254c obs part M: ∆ → M

Applying observe endurant sorts, the domain description prompt 1 on Page 19, to a net, n:N, yields

the following.

255 The road net consists of two composite parts,

a an aggregation of hubs and

b an aggregation of links.

type

255a HA
255b LA
value

255a obs part HA: N → HA
255b obs part LA: N → LA

Hubs and Links

Applying observe part type, the domain description prompt 2 on Page 21, to hub and link aggregates

yields the following.

256 Hub aggregates are sets of hubs.

257 Link aggregates are sets of links.

258 Fleets are set of vehicles.

3 The monitor can be thought of, i.e., conceptualised. It is not necessarily a physically manifest phenomenon.
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type

256 H, HS = H-set

257 L, LS = L-set

258 V, VS = V-set

value

256 obs part HS: HA → HS
257 obs part LS: LA → LS
258 obs part VS: F → VS

259 We introduce some auxiliary functions.

a links extracts the links of a network.

b hubs extracts the hubs of a network.

value

259a links: ∆ → L-set

259a links(δ ) ≡ obs part LS(obs part LA(obs part N(δ )))
259b hubs: ∆ → H-set

259b hubs(δ ) ≡ obs part HS(obs part HA(obs part N(δ )))

Unique Identifiers

Applying observe unique identifier, the domain description prompt 4 on Page 24, to the observed

parts yields the following.

260 Nets, hub and link aggregates, hubs and links, fleets, vehicles and the monitor all

a have unique identifiers

b such that all such are distinct, and

c with corresponding observers.

type

260a NI, HAI, LAI, HI, LI, FI, VI, MI
value

260c uid NI: N → NI
260c uid HAI: HA → HAI
260c uid LAI: LA → LAI
260c uid HI: H → HI
260c uid LI: L → LI
260c uid FI: F → FI
260c uid VI: V → VI
260c uid MI: M → MI
axiom

260b NI
⋂
HAI=Ø, NI

⋂
LAI=Ø, NI

⋂
HI=Ø, etc.

where axiom 260b. is expressed semi-formally, in mathematics. We introduce some auxiliary functions:

261 xtr lis extracts all link identifiers of a traffic system.

262 xtr his extracts all hub identifiers of a traffic system.

263 Given an appropriate link identifier and a net get link ‘retrieves’ the designated link.

264 Given an appropriate hub identifier and a net get hub ‘retrieves’ the designated hub.
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value

261 xtr lis: ∆ → LI-set

261 xtr lis(δ ) ≡
261 let ls = links(δ ) in {uid LI(l)|l:L•l ∈ ls} end

262 xtr his: ∆ → HI-set

262 xtr his(δ ) ≡
262 let hs = hubs(δ ) in {uid HI(h)|h:H•k ∈ hs} end

263 get link: LI → ∆
∼
→ L

263 get link(li)(δ ) ≡
263 let ls = links(δ ) in

263 let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

263 pre: li ∈ xtr lis(δ )

264 get hub: HI → ∆
∼
→ H

264 get hub(hi)(δ ) ≡
264 let hs = hubs(δ ) in

264 let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end

264 pre: hi ∈ xtr his(δ )

Mereology

We cover the mereologies of all part sorts introduced so far. We decide that nets, hub aggregates, link aggre-

gates and fleets have no mereologies of interest. Applying observe mereology, the domain description

prompt 5 on Page 26, to hubs, links, vehicles and the monitor yields the following.

265 Hub mereologies reflect that they are connected to zero, one or more links.

266 Link mereologies reflect that they are connected to exactly two distinct hubs.

267 Vehicle mereologies reflect that they are connected to the monitor.

268 The monitor mereology reflects that it is connected to all vehicles.

269 For all hubs of any net it must be the case that their mereology designates links of that net.

270 For all links of any net it must be the case that their mereologies designates hubs of that net.

271 For all transport domains it must be the case that

a the mereology of vehicles of that system designates the monitor of that system, and that

b the mereology of the monitor of that system designates vehicles of that system.

value

265 obs mereo H: H → LI-set

266 obs mereo L: L → HI-set

axiom

266 ∀ l:L•cardobs mereo L(l)=2
value

267 obs mereo V: V → MI
268 obs mereo M: M → VI-set

axiom

269 ∀ δ :∆ , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δ ) •

269 ∀ h:H•h ∈ hs•obs mereo H(h)⊆xtr lis(δ ) ∧
270 ∀ l:L•l ∈ ls•obs mereo L(l)⊆xtr his(δ ) ∧
271a let f:F•f=obs part F(δ ) ⇒
271a let m:M•m=obs part M(δ ),
271a vs:VS•vs=obs part VS(f) in

271a ∀ v:V•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)
271b ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
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271b end end

Attributes, I

We may not have shown all of the attributes mentioned below — so consider them informally introduced !

• Hubs: locations4 are considered static, hub states and hub state spaces are considered programmable;

• Links: lengths and locations are considered static, link states and link state spaces are considered

programmable;

• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine power
(kW/horse power) are considered static; velocity and acceleration may be considered reactive (i.e.,

a function of gas pedal position, etc.), global position (informed via a GNSS: Global Navigation

Satellite System) and local position (calculated from a global position) are considered biddable

Applying observe attributes, the domain description prompt 6 on Page 28, to hubs, links, vehicles and

the monitor yields the following.

First hubs.

272 Hubs

a have geodetic locations, GeoH,

b have hub states which are sets of pairs of identifiers of links connected to the hub5,

c and have hub state spaces which are sets of hub states6.

273 For every net,

a link identifiers of a hub state must designate links of that net.

b Every hub state of a net must be in the hub state space of that hub.

274 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub state.

type

272a GeoH
272b HΣ = (LI×LI)-set

272c HΩ = HΣ -set

value

272a attr GeoH: H → GeoH
272b attr HΣ : H → HΣ
272c attr HΩ : H → HΩ
axiom

273 ∀ δ :∆ • let hs = hubs(δ ) in

273 ∀ h:H • h ∈ hs •

273a xtr lis(h)⊆xtr lis(δ )
273b ∧ attr Σ(h) ∈ attr Ω(h)
273 end

value

274 xtr lis: H → LI-set

274 xtr lis(h) ≡ {li | li:LI,(li′,li′′):LI×LI • (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}

Then links.

275 Links have lengths.

4 By location we mean a geodetic position.
5 A hub state “signals” which input-to-output link connections are open for traffic.
6 A hub state space indicates which hub states a hub may attain over time.
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276 Links have geodetic location.

277 Links have states and state spaces:

a States modeled here as pairs, (hi′,hi′′), of identifiers the hubs with which the links are connected

and indicating directions (from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or 4 such

pairs.

b State spaces are the set of all the link states that a link may enjoy.

type

275 LEN
276 GeoL
277a LΣ = (HI×HI)-set

277b LΩ = LΣ -set

value

275 attr LEN: L → LEN
276 attr GeoL: L → GeoL
277a attr LΣ : L → LΣ
277b attr LΩ : L → LΩ
axiom

277 ∀ n:N • let ls = xtr−links(n), hs = xtr hubs(n) in

277 ∀ l:L•l ∈ ls ⇒
277a let lσ = attr LΣ(l) in

277a 0≤card lσ≤4
277a ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ ⇒ {hi′,hi′′}=obs mereo L(l)
277b ∧ attr LΣ(l) ∈ attr LΩ(l)
277 end end

Then vehicles.

278 Every vehicle of a traffic system has a position which is either ‘on a link’ or ‘at a hub’.

a An ‘on a link’ position has four elements: a unique link identifier which must designate a link of

that traffic system and a pair of unique hub identifiers which must be those of the mereology of

that link.

b The ‘on a link’ position real is the fraction, thus properly between 0 (zero) and 1 (one) of the length

from the first identified hub “down the link” to the second identifier hub.

c An ‘at a hub’ position has three elements: a unique hub identifier and a pair of unique link identi-

fiers — which must be in the hub state.

type

278 VPos = onL | atH
278a onL :: LI HI HI R
278b R = Real axiom ∀ r:R • 0≤r≤1
278c atH :: HI LI LI
value

278 attr VPos: V → VPos
axiom

278a ∀ n:N, onL(li,fhi,thi,r):VPos •

278a ∃ l:L•l ∈obs part LS(obs part N(n)) ⇒ li=uid L(l)∧{fhi,thi}=obs mereo L(l),
278c ∀ n:N, atH(hi,fli,tli):VPos •

278c ∃ h:H•h ∈obs part HS(obs part N(n)) ⇒ hi=uid H(h)∧(fli,tli) ∈ attr LΣ(h)

279 We introduce an auxiliary function distribute.

a distribute takes a net and a set of vehicles and
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b generates a map from vehicles to distinct vehicle positions on the net.

c We sketch a “formal” distribute function, but, for simplicity we omit the technical details that

secures distinctness — and leave that to an axiom !

280 We define two auxiliary functions:

a xtr links extracts all links of a net and

b xtr hub extracts all hubs of a net.

type

279b MAP = VI →m VPos
axiom

279b ∀ map:MAP • card dom map = card rng map
value

279 distribute: VS → N → MAP
279 distribute(vs)(n) ≡
279a let (hs,ls) = (xtr hubs(n),xtr links(n)) in

279a let vps = {onL(uid (l),fhi,thi,r) | l:L•l ∈ls∧{fhi,thi} ⊆obs mereo L(l)∧0≤r≤1}
279a ∪ {atH(uid H(h),fli,tli) | h:H•h ∈hs∧{fli,tli} ⊆obs mereo H(h)} in

279b [uid V(v)7→vp|v:V,vp:VPos•v ∈vs∧vp∈vps ] end

279 end

280a xtr links: N → L-set

280a xtr links(n) ≡ obs part LS(obs part LA(n))
280b xtr hubs: N → H-set

280a xtr hubs(n) ≡ obs part H(obs part HA∆ (n))

And finally monitors. We consider only one monitor attribute.

281 The monitor has a vehicle traffic attribute.

a For every vehicle of the road transport system the vehicle traffic attribute records a possibly empty

list of time marked vehicle positions.

b These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier, the same pair

of ‘’to’ and ‘from’ hub identifiers and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and hub mere-

ologies, and

iv such that vehicle transition from a hub to a link is commensurate with the hub and link mere-

ologies.

type

281 Traffic = VI →m (T × VPos)∗

value

281 attr Traffic: M → Traffic
axiom

281b ∀ δ :∆ •

281b let m = obs part M(δ ) in

281b let tf = attr Traffic(m) in

281b dom tf ⊆ xtr vis(δ ) ∧
281b ∀ vi:VI • vi ∈ dom tf •

281b let tr = tf(vi) in

281b ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

281b let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in

281b t<t′
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281(b)i ∧ case (vp,vp′) of

281(b)i (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
281(b)i → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′ ∧ li ∈ xtr lis(δ ) ∧ {fhi,thi} = obs mereo L(get link(li)(δ )),
281(b)ii (atH(hi,fli,tli),atH(hi′,fli′,tli′))
281(b)ii → hi=hi′∧fli=fli′∧tli=tli′ ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),
281(b)iii (onL(li,fhi,thi,1),atH(hi,fli,tli))
281(b)iii → li=fli∧thi=hi ∧ {li,tli} ⊆ xtr lis(δ ) ∧ {fhi,thi}=obs mereo L(get link(li)(δ ))
281(b)iii ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),
281(b)iv (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
281(b)iv → etcetera,
281b → false

281b end end end end end

5.2.3 Perdurants

Our presentation of example perdurants is not as systematic as that of example endurants. Give the simple

basis of endurants covered above there is now a huge variety of perdurants, so we just select one example

from each of the three classes of perdurants (as outline in [67]): a simple hub insertion action (Sect. 5.2.3),

a simple link disappearance event (Sect. 5.2.3) and a not quite so simple behaviour, that of road traffic

(Sect. 5.2.3).

Hub Insertion Action

282 Initially inserted hubs, h, are characterised

a by their unique identifier which not one of any hub in the net, n, into which the hub is being

inserted,

b by a mereology, {}, of zero link identifiers, and

c by — whatever — attributes, attrs, are needed.

283 The result of such a hub insertion is a net, n′,

a whose links are those of n, and

b whose hubs are those of n augmented with h.

value

282 insert hub: H → N → N
283 insert hub(h)(n) as n′

282a pre: uid H(h) 6∈ xtr his(n)
282b ∧ obs mereo H= {}
282c ∧ ...
283a post: obs part Ls(n) = obs part Ls(n′)
283b ∧ obs part Hs(n) ∪ {h} = obs part Hs(n′)

Link Disappearance Event

We formalise aspects of the link disappearance event:

284 The result net, n’:N’, is not well-formed.

285 For a link to disappear there must be at least one link in the net;

286 and such a link may disappear such that

287 it together with the resulting net makes up for the “original” net.
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value

284 link diss event: N × N′ × Bool

284 link diss event(n,n′) as tf
285 pre: obs part Ls(obs part LS(n))6={}
286 post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
287 l 6∈ obs part Ls(obs part LS(n′))
287 ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))

Road Traffic

The analysis & description of the road traffic behaviour is composed (i) from the description of the global

values of nets, links and hubs, vehicles, monitor, a clock, and an initial distribution, map, of vehicles,

“across” the net; (ii) from the description of channels between vehicles and the monitor; (iii) from the

description of behaviour signatures, that is, those of the overall road traffic system, the vehicles, and the

monitor; and (iv) from the description of the individual behaviours, that is, the overall road traffic system,

rts, the individual vehicles, veh, and the monitor, mon.

Global Values:

There is given some globally observable parts.

288 besides the domain, δ :∆ ,

289 a net, n:N,

290 a set of vehicles, vs:V-set,

291 a monitor, m:M, and

292 a clock, clock, behaviour.

293 From the net and vehicles we generate an initial distribution of positions of vehicles.

The n:N, vs:V-set and m:M are observable from any road traffic system domain δ .

value

288 δ :∆
289 n:N = obs part N(δ ),
289 ls:L-set=links(δ ),hs:H-set=hubs(δ ),
289 lis:LI-set=xtr lis(δ ),his:HI-set=xtr his(δ )
290 va:VS=obs part VS(obs part F(δ )),
290 vs:Vs-set=obs part Vs(va),
290 vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
291 m:obs part M(δ ),
291 mi=uid MI(m),
291 ma:attributes(m)
292 clock: T → out {clk ch[vi|vi:VI•vi ∈ vis ]} Unit

293 vm:MAP•vpos map = distribute(vs)(n);

Channels:

294 We additionally declare a set of vehicle-to-monitor-channels indexed

a by the unique identifiers of vehicles

b and the (single) monitor identifier.7

and communicating vehicle positions.

7 Technically speaking: we could omit the monitor identifier.
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channel

294 {v m ch[vi,mi ]|vi:VI•vi ∈ vis}:VPos

Behaviour Signatures:

295 The road traffic system behaviour, rts, takes no arguments (hence the first Unit)8; and “behaves”, that

is, continues forever (hence the last Unit).

296 The vehicle behaviour

a is indexed by the unique identifier, uid V(v):VI,
b the vehicle mereology, in this case the single monitor identifier mi:MI,
c the vehicle attributes, obs attribs(v)
d and — factoring out one of the vehicle attributes — the current vehicle position.

e The vehicle behaviour offers communication to the monitor behaviour (on channel vm ch[vi]); and

behaves “forever”.

297 The monitor behaviour takes

a the monitor identifier,

b the monitor mereology,

c the monitor attributes,

d and — factoring out one of the vehicle attributes — the discrete road traffic, drtf:dRTF, being

repeatedly “updated” as the result of input communications from (all) vehicles;

e the behaviour otherwise behaves forever.

value

295 rts: Unit → Unit

296 vehvi:VI : mi:MI → vp:VPos → out vm ch[vi,mi ] Unit

297 monmi:MI : vis:VI-set → RTF → in {v m ch[vi,mi ]|vi:VI•vi ∈ vis},clk ch Unit

The Road Traffic System Behaviour:

298 Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and, to “observe”, or, as we shall call it, to

monitor their movements,

b the monitor behaviour.

value

298 rts() =
298a ‖ {vehuid VI(v)(mi)(vm(uid VI(v)))|v:V•v ∈ vs}
298b ‖ monmi(vis)([vi 7→〈〉|vi:VI•vi ∈ vis ])

where, wrt, the monitor, we dispense with the mereology and the attribute state arguments and instead just

have a monitor traffic argument which records the discrete road traffic, MAP, initially set to “empty” traces

(〈〉, of so far “no road traffic”!).

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate their

positions to the monitor via a vehicle to monitor channel. In order for the monitor to time-stamp these

positions it must be able to “read” a clock.

299 We describe here an abstraction of the vehicle behaviour at a Hub (hi).
a Either the vehicle remains at that hub informing the monitor of its position,

b or, internally non-deterministically,

8 The Unit designator is an RSL technicality.
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i moves onto a link, tli, whose “next” hub, identified by thi, is obtained from the mereology of

the link identified by tli;
ii informs the monitor, on channel vm[vi,mi], that it is now at the very beginning (0) of the link

identified by tli, whereupon the vehicle resumes the vehicle behaviour positioned at the very

beginning of that link,

c or, again internally non-deterministically, the vehicle “disappears — off the radar” !

299 vehvi(mi)(vp:atH(hi,fli,tli)) ≡
299a v m ch[vi,mi ]!vp ; vehvi(mi)(vp)
299b ⌈⌉
299(b)i let {hi′,thi}=obs mereo L(get link(tli)(n)) in

299(b)i assert: hi′=hi
299(b)ii v m ch[vi,mi ]!onL(tli,hi,thi,0) ;
299(b)ii vehvi(mi)(onL(tli,hi,thi,0)) end

299c ⌈⌉ stop

300 We describe here an abstraction of the vehicle behaviour on a Link (ii). Either

a the vehicle remains at that link position informing the monitor of its position,

b or, internally non-deterministically, if the vehicle’s position on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓε (less than or equal to the distance to the hub)

along the link informing the monitor of this, or

ii else,

1 while obtaining a “next link” from the mereology of the hub (where that next link could

very well be the same as the link the vehicle is about to leave),

2 the vehicle informs the monitor that it is now at the hub identified by thi, whereupon the

vehicle resumes the vehicle behaviour positioned at that hub.

c or, internally non-deterministically, the vehicle “disappears — off the radar” !

300 vehvi(mi)(vp:onL(li,fhi,thi,r)) ≡
300a v m ch[vi,mi ]!vp ; vehvi(mi,va)(vp)
300b ⌈⌉ if r + ℓε≤1
300(b)i then

300(b)i v m ch[vi,mi ]!onL(li,fhi,thi,r+ℓε) ;
300(b)i vehvi(mi)(onL(li,fhi,thi,r+ℓε))
300(b)ii else

300(b)ii1 let li′:LI•li′ ∈ obs mereo H(get hub(thi)(n)) in

300(b)ii2 v m ch[vi,mi ]!atH(li,thi,li′);
300(b)ii2 vehvi(mi)(atH(li,thi,li′)) end end

300c ⌈⌉ stop

The Monitor Behaviour

301 The monitor behaviour evolves around

a the monitor identifier,

b the monitor mereology,

c and the attributes, ma:ATTR
d — where we have factored out as a separate arguments — a table of traces of time-stamped vehicle

positions,

e while accepting messages

i about time

ii and about vehicle positions

f and otherwise progressing “in[de]finitely”.
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302 Either the monitor “does own work”

303 or, internally non-deterministically accepts messages from vehicles.

a A vehicle position message, vp, may arrive from the vehicle identified by vi.
b That message is appended to that vehicle’s movement trace – prefixed by time (obtained from the

time channel),

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over all identified vehicles.

301 monmi(vis)(trf) ≡
302 monmi(vis)(trf)
303 ⌈⌉
303a ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi ]?) in

303b let trf′ = trf † [vi 7→ trf(vi)̂ <tvp> ] in

303c monmi(vis)(trf
′)

303d end end | vi:VI • vi ∈ vis}

We are about to complete a long, i.e., a 6.3 page example (!). We can now comment on the full example:

The domain, δ : ∆ is a manifest part. The road net, n : N is also a manifest part. The fleet, f : F , of vehicles,

vs : VS, likewise, is a manifest part. But the monitor, m : M, is a concept. One does not have to think of

it as a manifest “observer”. The vehicles are on — or off — the road (i.e., links and hubs). We know that

from a few observations and generalise to all vehicles. They either move or stand still. We also, similarly,

know that. Vehicles move. Yes, we know that. Based on all these repeated observations and generalisations

we introduce the concept of vehicle traffic. Unless positioned high above a road net — and with good

binoculars — a single person cannot really observe the traffic. There are simply too many links, hubs,

vehicles, vehicle positions and times. Thus we conclude that, even in a richly manifest domain, we can also

“speak of”, that is, describe concepts over manifest phenomena, including time !

5.2.4 Domain Facets

The example of this section, i.e., Sect. 5.2, focuses on the domain facet [43, 2008] of (i) intrinsic. It does

not reflect the other domain facets: (ii) domain support technologies, (iii) domain rules, regulations &

scripts, (iv) organisation & management, and (v) human behaviour. The requirements examples, i.e., the

rest of this chapter, thus builds only on the domain intrinsic. This means that we shall not be able to cover

principles, technique and tools for the prescription of such important requirements that handle failures

of support technology or humans. We shall, however point out where we think such, for example, fault

tolerance requirements prescriptions “fit in” and refer to relevant publications for their handling.

5.3 Requirements

This and the next three sections, Sects. 5.4.–5.5., are the main sections of this chapter. Section 5.4. is the

most detailed and systematic section. It covers the domain requirements operations of projection , instan-
tiation , determination , extension and, less detailed, fitting . Section 5.5. surveys the interface requirements
issues of shared phenomena: shared endurants, shared actions, shared events and shared behaviour , and

“completes” the exemplification of the detailed domain extension of our requirements into a road pricing
system. Section 5.5. also covers the notion of derived requirements.

5.3.1 The Three Phases of Requirements Engineering

There are, as we see it, three kinds of design assumptions and requirements: (i) domain requirements, (ii)

interface requirements and (iii) machine requirements. (i) Domain requirements are those requirements
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which can be expressed sôlely using terms of the domain (ii) Interface requirements are those re-

quirements which can be expressed only using technical terms of both the domain and the machine (iii)

Machine requirements are those requirements which, in principle, can be expressed sôlely using terms

of the machine

Definition 25 Verification Paradigm: Some preliminary designations: let D designate the the domain

description; let R designate the requirements prescription, and let S designate the system design. Now

D ,S |=R shall be read: it must be verified that the S ystem design satisfies the Requirements prescription

in the context of the Domain description

The “in the context of D ...” term means that proofs of S oftware design correctness with respect to

Requirements will often have to refer to Domain requirements assumptions. We refer to [127, Gunter,

Jackson and Zave, 2000] for an analysis of a varieties of forms in which |= relate to variants of D , R and

S .

5.3.2 Order of Presentation of Requirements Prescriptions

The domain requirements development stage — as we shall see — can be sub-staged into: projection , in-
stantiation , determination , extension and fitting . The interface requirements development stage — can be

sub-staged into shared: endurant, action, event and behaviour developments, where “sharedness” pertains

to phenomena shared between, i.e., “present” in, both the domain (concretely, manifestly) and the machine

(abstractly, conceptually). These development stages need not be pursued in the order of the three stages

and their sub-stages. We emphasize that one thing is the stages and steps of development, as for example

these: projection, instantiation, determination, extension, fitting, shared endurants, shared actions, shared

events, shared behaviours, etcetera, another thing is the requirements prescription that results from these

development stages and steps. The further software development, after and on the basis of the requirements

prescription starts only when all stages and steps of the requirements prescription have been fully devel-

oped. The domain engineer is now free to rearrange the final prescription, irrespective of the order in which

the various sections were developed, in such a way as to give a most pleasing, pedagogic and cohesive

reading (i.e., presentation). From such a requirements prescription one can therefore not necessarily see in

which order the various sections of the prescription were developed.

5.3.3 Design Requirements and Design Assumptions

A crucial distinction is between design requirements and design assumptions. The design requirements
are those requirements for which the system designer has to implement hardware or software in order

satisfy system user expectations The design assumptions are those requirements for which the system

designer does not have to implement hardware or software, but whose properties the designed hardware,

respectively software relies on for proper functioning

Example 5.1. . Road Pricing System — Design Requirements: The design requirements for the road

pricing calculator of this chapter are for the design (ii) of that part of the vehicle software which interfaces

the GNSS receiver and the road pricing calculator (cf. Items 382–385), (iii) of that part of the toll-gate software

which interfaces the toll-gate and the road pricing calculator (cf. Items 390–392) and (i) of the road pricing

calculator (cf. Items 421–434)

Example 5.2. . Road Pricing System — Design Assumptions: The design assumptions for the road

pricing calculator include: (i) that vehicles behave as prescribed in Items 381–385, (ii) that the GNSS regularly

offers vehicles correct information as to their global position (cf. Item 382), (iii) that toll-gates behave as

prescribed in Items 387–392, and (iv) that the road net is formed and well-formed as defined in Examples 5.7–

5.9
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Example 5.3. . Toll-Gate System — Design Requirements: The design requirements for the toll-gate

system of this chapter are for the design of software for the toll-gate and its interfaces to the road pricing

system, i.e., Items 386–387

Example 5.4. . Toll-Gate System — Design Assumptions: The design assumptions for the toll-gate

system include (i) that the vehicles behave as per Items 381–385, and (ii) that the road pricing calculator

behave as per Items 421–434

5.3.4 Derived Requirements

In building up the domain, interface and machine requirements a number of machine concepts are intro-

duced. These machine concepts enable the expression of additional requirements. It is these we refer to as

derived requirements. Techniques and tools espoused in such classical publications as [108, 145, 240, 154,

231] can in those cases be used to advantage.

5.4 Domain Requirements

Domain requirements primarily express the assumptions that a design must rely upon in order that that de-

sign can be verified. Although domain requirements firstly express assumptions it appears that the software

designer is well-advised in also implementing, as data structures and procedures, the endurants, respectively

perdurants expressed in the domain requirements prescriptions. Whereas domain endurants are “real-life”

phenomena they are now, in domain requirements prescriptions, abstract concepts (to be represented by a

machine).

Definition 26 Domain Requirements Prescription: A domain requirements prescription is that

subset of the requirements prescription whose technical terms are defined in a domain description

To determine a relevant subset all we need is collaboration with requirements, cum domain stake-holders.

Experimental evidence, in the form of example developments of requirements prescriptions from domain

descriptions, appears to show that one can formulate techniques for such developments around a few do-

main-description-to-requirements-prescription operations. We suggest these: projection , instantiation , de-
termination , extension and fitting . In Sect. 5.3.2 we mentioned that the order in which one performs these

domain-description-to-domain-requirements-prescription operations is not necessarily the order in which

we have listed them here, but, with notable exceptions, one is well-served in starting out requirements

development by following this order.

5.4.1 Domain Projection

Definition 27 Domain Projection:By a domain projection is meant a subset of the domain description,
one which projects out all those endurants: parts, materials and components, as well as perdurants: actions,
events and behaviours that the stake-holders do not wish represented or relied upon by the machine

The resulting document is a partial domain requirements prescription . In determining an appropriate subset

the requirements engineer must secure that the final “projection prescription” is complete and consistent

— that is, that there are no “dangling references”, i.e., that all entities and their internal properties that are

referred to are all properly defined.
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Domain Projection — Narrative

We now start on a series of examples that illustrate domain requirements development.

Example 5.5. . Domain Requirements. Projection: A Narrative Sketch: We require that the road

pricing system shall [at most] relate to the following domain entities – and only to these9: the net, its links and

hubs, and their properties (unique identifiers, mereologies and some attributes), the vehicles, as endurants, and

the general vehicle behaviours, as perdurants. We treat projection together with a concept of simplification.

The example simplifications are vehicle positions and, related to the simpler vehicle position, vehicle behaviours.

To prescribe and formalise this we copy the domain description. From that domain description we remove all

mention of the hub insertion action, the link disappearance event, and the monitor

As a result we obtain ∆P , the projected version of the domain requirements prescription10.

Domain Projection — Formalisation

The requirements prescription hinges, crucially, not only on a systematic narrative of all the projected,

instantiated, determinated, extended and fitted specifications, but also on their formalisation. In the formal

domain projection example we, regretfully, omit the narrative texts. In bringing the formal texts we keep

the item numbering from Sect. 5.2, where you can find the associated narrative texts.

Example 5.6. . Domain Requirements — Projection: Main Sorts

type

254 ∆P

254a NP

254b FP

value

254a obs part NP : ∆P→NP

254b obs part FP : ∆P→FP

type

255a HAP

255b LAP

value

255a obs part HA: NP → HA
255b obs part LA: NP → LA

Concrete Types

type

256 HP , HSP = HP -set

257 LP , LSP = LP -set

258 VP , VSP = VP -set

value

256 obs part HSP : HAP → HSP

257 obs part LSP : LAP → LSP

258 obs part VSP : FP → VSP

259a links: ∆P → L-set

259a links(δP) ≡ obs part LSR(obs part LAR(δR))
259b hubs: ∆P → H-set

259b hubs(δP) ≡ obs part HSP(obs part HAP(δP ))

9 By ‘relate to . . . these’ we mean that the required system does not rely on domain phenomena that have been

“projected away”.
10 Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.

c© Dines Bjørner 2018 Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering September 6, 2019, 16:27



5.4 Domain Requirements 169

Unique Identifiers

type

260a HI, LI, VI, MI
value

260c uid HI: HP → HI
260c uid LI: LP → LI
260c uid VI: VP → VI
260c uid MI: MP → MI
axiom

260b HI
⋂
LI=Ø, HI

⋂
VI=Ø, HI

⋂
MI=Ø,

260b LI
⋂
VI=Ø, LI

⋂
MI=Ø, VI

⋂
MI=Ø

Mereology

value

265 obs mereo HP : HP → LI-set

266 obs mereo LP : LP → HI-set

266 axiom ∀ l:LP
• cardobs mereo LP (l)=2

267 obs mereo VP : VP → MI
268 obs mereo MP : MP → VI-set

axiom

269 ∀ δP :∆P , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δP) ⇒
269 ∀ h:HP

•h ∈ hs ⇒ obs mereo HP(h)⊆xtr his(δP ) ∧
270 ∀ l:LP

•l ∈ ls • obs mereo LP (l)⊆xtr lis(δP) ∧
271a let f:FP

•f=obs part FP (δP ) ⇒ vs:VSP
•vs=obs part VSP(f) in

271a ∀ v:VP
•v ∈ vs ⇒ uid VP (v) ∈ obs mereo MP(m)

271b ∧ obs mereo MP(m) = {uid VP(v)|v:V•v ∈ vs}
271b end

Attributes: We project attributes of hubs, links and vehicles. First hubs:

type

272a GeoH
272b HΣP = (LI×LI)-sett
272c HΩP = HΣP -set

value

272b attr HΣP : HP → HΣP

272c attr HΩP : HP → HΩP

axiom

273 ∀ δP :∆P ,
273 let hs = hubs(δP) in

273 ∀ h:HP
• h ∈ hs •

273a xtr lis(h)⊆xtr lis(δP)
273b ∧ attr ΣP(h) ∈ attr ΩP(h)
273 end

Then links:

type

276 GeoL
277a LΣP = (HI×HI)-set

277b LΩP = LΣP -set

value

September 6, 2019, 16:27, A Foundation for Software Development c© Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark



170 5 From Domain Descriptions to Requirements Prescriptions

276 attr GeoL: L → GeoL
277a attr LΣP : LP → LΣP

277b attr LΩP : LP → LΩP

axiom

277a− 277b on Page 159.

Finally vehicles: For ‘road pricing’ we need vehicle positions. But, for “technical reasons”, we must ab-

stain from the detailed description given in Items 278–278c11 We therefore simplify vehicle positions.

304 A simplified vehicle position designates

a either a link

b or a hub,

type

304 SVPos = SonL | SatH
304a SonL :: LI
304b SatH :: HI
axiom

278a’ ∀ n:N, SonL(li):SVPos • ∃ l:L•l ∈obs part LS(obs part N(n)) ⇒ li=uid L(l)
278c’ ∀ n:N, SatH(hi):SVPos • ∃ h:H•h ∈obs part HS(obs part N(n)) ⇒ hi=uid H(h)

Global Values

value

288 δP :∆P ,
289 n:NP = obs part NP(δP),
289 ls:LP-set = links(δP),
289 hs:HP-set = hubs(δP),
289 lis:LI-set = xtr lis(δP),
289 his:HI-set = xtr his(δP)

Behaviour Signatures: We omit the monitor behaviour.

305 We leave the vehicle behaviours’ attribute argument undefined.

type

305 ATTR
value

295 trsP : Unit → Unit

296 vehP : VI×MI×ATTR → ... Unit

The System Behaviour: We omit the monitor behaviour.

value

298a trsP()=‖{vehP (uid VI(v),obs mereo V(v), ) | v:VP
•v ∈ vs}

The Vehicle Behaviour: Given the simplification of vehicle positions we simplify the vehicle behaviour given in Items 299–300

299′ vehvi(mi)(vp:SatH(hi)) ≡
299a′ v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(SatH(hi))
299(b)i’ ⌈⌉ let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

299(b)ii′ v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li)) end

299c′ ⌈⌉ stop

11 The ‘technical reasons’ are that we assume that the GNSS cannot provide us with direction of vehicle movement

and therefore we cannot, using only the GNSS provide the details of ‘offset’ along a link (onL ) nor the “from/to

link” at a hub (atH ).

c© Dines Bjørner 2018 Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering September 6, 2019, 16:27



5.4 Domain Requirements 171

300′ vehvi(mi)(vp:SonL(li)) ≡
300a′ v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li))
300(b)ii1′ ⌈⌉ let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

300(b)ii2′ v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(atH(hi)) end

300c′ ⌈⌉ stop

We can simplify Items 299′–300c′ further.

306 vehvi(mi)(vp) ≡
307 v m ch[vi,mi ]!vp ; vehvi(mi)(vp)
308 ⌈⌉ case vp of

308 SatH(hi) →
309 let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

310 v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li)) end,
308 SonL(li) →
311 let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

312 v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(atH(hi)) end end

313 ⌈⌉ stop

306 This line coalesces Items 299′ and 300′.

307 Coalescing Items 299a′ and 300′.

308 Captures the distinct parameters of Items 299′ and 300′.

309 Item 299(b)i′.

310 Item 299(b)ii′.

311 Item 300(b)ii1′.

312 Item 300(b)ii2′.

313 Coalescing Items 299c′ and 300c′.

The above vehicle behaviour definition will be transformed (i.e., further “refined”) in Sect. 5.5.1’s Exam-

ple 5.15; cf. Items 381– 385 on Page 184

Discussion

Domain projection can also be achieved by developing a “completely new” domain description — typically

on the basis of one or more existing domain description(s) — where that “new” description now takes the

rôle of being the project domain requirements.

5.4.2 Domain Instantiation

Definition 28 Domain Instantiation: By domain instantiation we mean a refinement of the partial
domain requirements prescription (resulting from the projection step) in which the refinements aim at
rendering the endurants: parts, materials and components, as well as the perdurants: actions, events and
behaviours of the domain requirements prescriptionmore concrete, more specific Instantiations usually

render these concepts less general.

Properties that hold of the projected domain shall also hold of the (therefrom) instantiated domain.

Refinement of endurants can be expressed (i) either in the form of concrete types, (ii) or of further

“delineating” axioms over sorts, (iii) or of a combination of concretisation and axioms. We shall exemplify

the third possibility. Example 5.7 express requirements that the road net (on which the road-pricing system

is to be based) must satisfy. Refinement of perdurants will not be illustrated (other than the simplification

of the vehicle projected behaviour).
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Domain Instantiation

Example 5.7. . Domain Requirements. Instantiation Road Net: We now require that there is, as
before, a road net, nI :NI , which can be understood as consisting of two, “connected sub-nets”. A toll-road
net, trnI :TRNI , cf. Fig. 5.1, and an ordinary road net, nP ′ . The two are connected as follows: The toll-road
net, trnI , borders some toll-road plazas, in Fig. 5.1 shown by white filled circles (i.e., hubs). These toll-road
plaza hubs are proper hubs of the ‘ordinary’ road net, n′

P
.

tij

trn

tpj

... ... ...... ......

exitentry

toll−road intersection hubordinary net hub link

no

tpa tpb

tia tib tic

tpc tpm

tim

tp

ti

l

l

Fig. 5.1. A simple, linear toll-road net trn. t p j: toll plaza j, ti j: toll road intersection j.
Upper dashed sub-figure hint at an ordinary road net no.
Lower dotted sub-figure hint at a toll-road net trn.
Dash-dotted (- - -) ”V”-images above t p js hint at links to remaining “parts” of no.

314 The instantiated domain, δI :∆I has just the net, nI :NI being instantiated.
315 The road net consists of two “sub-nets”

a an “ordinary” road net, no:NP ′ and
b a toll-road net proper, trn:TRNI —
c “connected” by an interface hil:HIL:

i That interface consists of a number of toll-road plazas (i.e., hubs), modeled as a list of
hub identifiers, hil:HI∗.

ii The toll-road plaza interface to the toll-road net, trn:TRNI
12, has each plaza, hil[i], con-

nected to a pair of toll-road links: an entry and an exit link: (le:L, lx:L).
iii The toll-road plaza interface to the ‘ordinary’ net, no:NP ′ , has each plaza, i.e., the

hub designated by the hub identifier hil[i], connected to one or more ordinary net links,
{li1 , li2 , · · · , lik}.

315b The toll-road net, trn:TRNI , consists of three collections (modeled as lists) of links and hubs:
i a list of pairs of toll-road entry/exit links: 〈(le1

, lx1
), · · · ,(leℓ , lxℓ)〉,

ii a list of toll-road intersection hubs: 〈hi1 ,hi2 , · · · ,hiℓ〉, and
iii a list of pairs of main toll-road (“up” and “down”) links: 〈(mli1u

,mli1d
),(mi2u

,mi2d
), · · · ,-

(miℓu ,miℓd )〉.
d The three lists have commensurate lengths (ℓ).

ℓ is the number of toll plazas, hence also the number of toll-road intersection hubs and therefore a
number one larger than the number of pairs of main toll-road (“up” and “down”) links

12 We (sometimes) omit the subscript I when it should be clear from the context what we mean.
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type

314 ∆I

315 NI = NP ′ × HIL × TRN
315a NP ′

315b TRNI = (L×L)∗×H∗×(L×L)∗

315c HIL = HI∗

axiom

315d ∀ nI :NI
•

315d let (n∆ ,hil,(exll,hl,lll)) = nI in

315d len hil = len exll = len hl = len lll + 1
315d end

We have named the “ordinary” net sort (primed) NP ′ . It is “almost” like (unprimed)NP — except that the

interface hubs are also connected to the toll-road net entry and exit links.

The partial concretisation of the net sorts, NP , into NI requires some additional well-formedness

conditions to be satisfied.

316 The toll-road intersection hubs all13 have distinct identifiers.

316 wf dist toll road isect hub ids: H∗→Bool

316 wf dist toll road isect hub ids(hl) ≡ len hl = card xtr his(hl)

317 The toll-road links all have distinct identifiers.

317 wf dist toll road u d link ids: (L×L)∗→Bool

317 wf dist toll road u d link ids(lll) ≡ 2 × len lll = card xtr lis(lll)

318 The toll-road entry/exit links all have distinct identifiers.

318 wf dist e x link ids: (L×L)∗→Bool

318 wf dist e x link ids(exll) ≡ 2 × len exll = card xtr lis(exll)

319 Proper net links must not designate toll-road intersection hubs.

319 wf isoltd toll road isect hubs: HI∗×H∗→NI→Bool

319 wf isoltd toll road isect hubs(hil,hl)(nI ) ≡
319 let ls=xtr links(nI ) in

319 let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in

319 his ∩ xtr his(hl) = {} end end

320 The plaza hub identifiers must designate hubs of the ‘ordinary’ net.

320 wf p hubs pt of ord net: HI∗→N′
∆→Bool

320 wf p hubs pt of ord net(hil)(n’∆ ) ≡ elems hil ⊆ xtr his(n′∆ )

321 The plaza hub mereologies must each,

a besides identifying at least one hub of the ordinary net,

b also identify the two entry/exit links with which they are supposed to be connected.

13 A ‘must’ can be inserted in front of all ‘all’s,

September 6, 2019, 16:27, A Foundation for Software Development c© Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark



174 5 From Domain Descriptions to Requirements Prescriptions

321 wf p hub interf: N′
∆→Bool

321 wf p hub interf(no,hil,(exll, , )) ≡
321 ∀ i:Nat • i ∈ inds exll ⇒
321 let h = get H(hil(i))(n′∆ ) in

321 let lis = obs mereo H(h) in

321 let lis′ = lis \ xtr lis(n′) in

321 lis′ = xtr lis(exll(i)) end end end

322 The mereology of each toll-road intersection hub must identify

a the entry/exit links

b and exactly the toll-road ‘up’ and ‘down’ links

c with which they are supposed to be connected.

322 wf toll road isect hub iface: NI→Bool

322 wf toll road isect hub iface( , ,(exll,hl,lll)) ≡
322 ∀ i:Nat • i ∈ inds hl ⇒
322 obs mereo H(hl(i)) =
322a xtr lis(exll(i)) ∪
322 case i of

322b 1 → xtr lis(lll(1)),
322b len hl → xtr lis(lll(len hl−1))
322b → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))
322 end

323 The mereology of the entry/exit links must identify exactly the

a interface hubs and the

b toll-road intersection hubs

c with which they are supposed to be connected.

323 wf exll: (L×L)∗×HI∗×H∗→Bool

323 wf exll(exll,hil,hl) ≡
323 ∀ i:Nat • i ∈ len exll
323 let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in

323 obs mereo L(el) = obs mereo L(xl)
323 = {hi} ∪ {uid H(h)} end

323 pre: len eell = len hil = len hl

324 The mereology of the toll-road ‘up’ and ‘down’ links must

a identify exactly the toll-road intersection hubs

b with which they are supposed to be connected.

324 wf u d links: (L×L)∗×H∗→Bool

324 wf u d links(lll,hl) ≡
324 ∀ i:Nat • i ∈ inds lll ⇒
324 let (ul,dl) = lll(i) in

324 obs mereo L(ul) = obs mereo L(dl) =
324a uid H(hl(i)) ∪ uid H(hl(i+1)) end

324 pre: len lll = len hl+1

We have used some additional auxiliary functions:
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xtr his: H∗→HI-set

xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set

xtr lis(l′,l′′) ≡ {uid LI(l′)}∪{uid LI(l′′)}
xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l′,l′′)|(l′,l′′):(L×L)•(l′,l′′)∈ elems lll}

325 The well-formedness of instantiated nets is now the conjunction of the individual well-formedness

predicates above.

325 wf instantiated net: NI → Bool

325 wf instantiated net(n′∆ ,hil,(exll,hl,lll))
316 wf dist toll road isect hub ids(hl)
317 ∧ wf dist toll road u d link ids(lll)
318 ∧ wf dist e e link ids(exll)
319 ∧ wf isolated toll road isect hubs(hil,hl)(n′)
320 ∧ wf p hubs pt of ord net(hil)(n′)
321 ∧ wf p hub interf(n′∆ ,hil,(exll, , ))
322 ∧ wf toll road isect hub iface( , ,(exll,hl,lll))
323 ∧ wf exll(exll,hil,hl)
324 ∧ wf u d links(lll,hl)

Domain Instantiation — Abstraction

Example 5.8. . Domain Requirements. Instantiation Road Net, Abstraction: Domain instantiation
has refined an abstract definition of net sorts, nP :NP , into a partially concrete definition of nets, nI :NI . We
need to show the refinement relation:

• abstraction(nI ) = nP .

value

326 abstraction: NI → NP

327 abstraction(n′∆ ,hil,(exll,hl,lll)) ≡
328 let nP :NP

•

328 let hs = obs part HSP(obs part HAP (n′
P
)),

328 ls = obs part LSP(obs part LAP(n′
P
)),

328 ths = elems hl,
328 eells = xtr links(eell), llls = xtr links(lll) in

329 hs∪ths=obs part HSP(obs part HAP (nP))
330 ∧ ls∪eells∪llls=obs part LSP(obs part LAP (nP))
331 nP end end

326 The abstraction function takes a concrete net, nI :NI , and yields an abstract net, nP :NP .

327 The abstraction function doubly decomposes its argument into constituent lists and sub-lists.

328 There is postulated an abstract net, nP :NP , such that

329 the hubs of the concrete net and toll-road equals those of the abstract net, and

330 the links of the concrete net and toll-road equals those of the abstract net.

331 And that abstract net, nP :NP , is postulated to be an abstraction of the concrete net.
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Discussion

Domain descriptions, such as illustrated in [67, Manifest Domains: Analysis & Description] and in this

chapter, model families of concrete, i.e., specifically occurring domains. Domain instantiation, as exem-

plified in this section (i.e., Sect. 5.4.2), “narrow down” these families. Domain instantiation, such as it is

defined, cf. Definition 28 on Page 171, allows the requirements engineer to instantiate to a concrete in-

stance of a very specific domain, that, for example, of the toll-road between Bolzano Nord and Trento Sud
in Italy (i.e., n=7)14.

5.4.3 Domain Determination

Definition 29 Determination: By domain determination we mean a refinement of the partial domain
requirements prescription, resulting from the instantiation step, in which the refinements aim at rendering
the endurants: parts, materials and components, as well as the perdurants: functions, events and behaviours
of the partial domain requirements prescription less non-determinate, more determinate

Determinations usually render these concepts less general. That is, the value space of endurants that are

made more determinate is “smaller”, contains fewer values, as compared to the endurants before determi-

nation has been “applied”.

Domain Determination: Example

We show an example of ‘domain determination’. It is expressed sôlely in terms of axioms over the concrete

toll-road net type.

Example 5.9. . Domain Requirements. Determination Toll-roads: We focus only on the toll-road net.
We single out only two ’determinations’:

All Toll-road Links are One-way Links

332 The entry/exit and toll-road links

a are always all one way links,
b as indicated by the arrows of Fig. 5.1 on Page 172,
c such that each pair allows traffic in opposite directions.

332 opposite traffics: (L×L)∗ × (L×L)∗ → Bool

332 opposite traffics(exll,lll) ≡
332 ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll ⇒
332a let (ltσ ,lfσ) = (attr LΣ(lt),attr LΣ(lf)) in

332a′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
332a′′. ∧ card ltσ = 1 = card lfσ
332 ∧ let ({(hi,hi′)},{(hi′′,hi′′′)}) = (ltσ ,lfσ) in

332c hi=hi′′′ ∧ hi′=hi′′

332 end end

Predicates 332a′. and 332a′′. express the same property.

All Toll-road Hubs are Free-flow

333 The hub state spaces are singleton sets of the toll-road hub states which always allow exactly these

(and only these) crossings:

a from entry links back to the paired exit links,

14 Here we disregard the fact that this toll-road does not start/end in neither Bolzano Nord nor Trento Sud.
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b from entry links to emanating toll-road links,

c from incident toll-road links to exit links, and

d from incident toll-road link to emanating toll-road links.

333 free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

333 free flow toll road hubs(exl,ll) ≡
333 ∀ i:Nat•i ∈ inds hl ⇒
333 attr HΣ(hl(i)) =
333a hσ ex ls(exl(i))
333b ∪ hσ et ls(exl(i),(i,ll))
333c ∪ hσ tx ls(exl(i),(i,ll))
333d ∪ hσ tt ls(i,ll)

333a: from entry links back to the paired exit links:

333a hσ ex ls: (L×L)→LΣ
333a hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}

333b: from entry links to emanating toll-road links:

333b hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
333b hσ et ls((e, ),(i,ll)) ≡
333b case i of

333b 2 → {(uid LI(e),uid LI(em(ll(1))))},
333b len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},
333b → {(uid LI(e),uid LI(em(ll(i−1)))),
333b (uid LI(e),uid LI(em(ll(i))))}
333b end

The em and in in the toll-road link list (em:L×in:L)∗ designate selectors for emanating, respectively incident

links. 333c: from incident toll-road links to exit links:

333c hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
333c hσ tx ls(( ,x),(i,ll)) ≡
333c case i of

333c 2 → {(uid LI(in(ll(1))),uid LI(x))},
333c len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},
333c → {(uid LI(in(ll(i−1))),uid LI(x)),
333c (uid LI(in(ll(i))),uid LI(x))}
333c end

333d: from incident toll-road link to emanating toll-road links:

333d hσ tt ls: Nat×(em:L×in:L)∗→LΣ
333d hσ tt ls(i,ll) ≡
333d case i of

333d 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
333d len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
333d → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),
333d (uid LI(in(ll(i))),uid LI(em(ll(i))))}
333d end

The example above illustrated ‘domain determination’ with respect to endurants. Typically “endurant deter-

mination” is expressed in terms of axioms that limit state spaces — where “endurant instantiation” typically

“limited” the mereology of endurants: how parts are related to one another. We shall not exemplify domain

determination with respect to perdurants.
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Discussion

The borderline between instantiation and determination is fuzzy. Whether, as an example, fixing the number

of toll-road intersection hubs to a constant value, e.g., n=7, is instantiation or determination, is really a

matter of choice !

5.4.4 Domain Extension

Definition 30 Extension: By domain extension we understand the introduction of endurants (see
Sect. 5.4.4) and perdurants (see Sect. 5.5.2) that were not feasible in the original domain, but for which,
with computing and communication, and with new, emerging technologies, for example, sensors, actua-
tors and satellites, there is the possibility of feasible implementations, hence the requirements, that what is
introduced becomes part of the unfolding requirements prescription

Endurant Extensions

Definition 31 Endurant Extension: By an endurant extension we understand the introduction of one

or more endurants into the projected, instantiated and determined domain DR resulting in domain DR
′,

such that these form a conservative extension of the theory, TDR
denoted by the domain requirements DR

(i.e., “before” the extension), that is: every theorem of TDR
is still a theorem of TDR

′ .

Usually domain extensions involve one or more of the already introduced sorts. In Example 5.10 we intro-

duce (i.e., “extend”) vehicles with GPSS-like sensors, and introduce toll-gates with entry sensors, vehicle

identification sensors, gate actuators and exit sensors. Finally road pricing calculators are introduced.

Example 5.10. . Domain Requirements — Endurant Extension: We present the extensions in several
steps. Some of them will be developed in this section. Development of the remaining will be deferred to
Sect. 5.5.1. The reason for this deferment is that those last steps are examples of interface requirements.
The initial extension-development steps are: [a] vehicle extension, [b] sort and unique identifiers of road price
calculators, [c] vehicle to road pricing calculator channel, [d] sorts and dynamic attributes of toll-gates, [e] road
pricing calculator attributes, [f] “total” system state, and [g] the overall system behaviour. This decomposition
establishes system interfaces in “small, easy steps”.

[a] Vehicle Extension:

334 There is a domain, δE :∆E , which contains
335 a fleet, fE :FE , that is,
336 a set, vsE :VSE , of
337 extended vehicles, vE :VE — their extension amounting to
338 a dynamic reactive attribute, whose value, ti-gpos:TiGpos, at any time, reflects that vehicle’s

time-stamped global position.15

339 The vehicle’s GNSS receiver calculates, loc pos, its local position, lpos:LPos, based on these signals.
340 Vehicles access these external attributes via the external attribute channel, attr TiGPos ch.

15 We refer to literature on GNSS, global navigation satellite systems. The simple vehicle position, vp:SVPos, is deter-

mined from three to four time-stamped signals received from a like number of GNSS satellites [113].
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type

334 ∆E

335 FE

336 VSE = VE -set

337 VE

338 TiGPos = T × GPos
339 GPos, LPos
value

334 δE :∆E

335 obs part FE : ∆E → FE

335 f = obs part FE (δE )
336 obs part VSE : FE → VSE

336 vs = obs part VSE (f)
336 vis = xtr vis(vs)
338 attr TiGPos ch[vi ]?
339 loc pos: GPos → LPos
channel

339 {attr TiGPos ch[vi ]|vi:VI•vi ∈ vis}:TiGPos

We define two auxiliary functions,

341 xtr vs, which given a domain, or a fleet, extracts its set of vehicles, and

342 xtr vis which given a set of vehicles generates their unique identifiers.

value

341 xtr vs: (∆E |FE |VSE ) → VE -set

341 xtr vs(arg) ≡
341 is ∆E (arg) → obs part VSE (obs part FE (arg)),
341 is FE (arg) → obs part VSE (arg),
341 is VSE (arg) → arg
342 xtr vis: (∆E |FE |VSE ) → VI-set

342 xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

[b] Road Pricing Calculator: Basic Sort and Unique Identifier:

343 The domain δE :∆E , also contains a pricing calculator, c:CδE
, with unique identifier ci:CI.

type

343 C, CI
value

343 obs part C: ∆E → C
343 uid CI: C → CI
343 c = obs part C(δE )
343 ci = uid CI(c)

[c] Vehicle to Road Pricing Calculator Channel:

344 Vehicles can, on their own volition, offer the timed local position, viti-lpos:VITiLPos
345 to the pricing calculator, c:CE along a vehicles-to-calculator channel, v c ch.

type

344 VITiLPos = VI × (T × LPos)
channel

345 {v c ch[vi,ci ]|vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:VITiLPos
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[d] Toll-gate Sorts and Dynamic Types:

We extend the domain with toll-gates for vehicles entering and exiting the toll-road entry and exit links.

Figure 5.2 illustrates the idea of gates.

exit sensorgate

Vehicle

entry sensor

identify sensor

Fig. 5.2. A toll plaza gate

Figure 5.2 is intended to illustrate a vehicle entering (or exiting) a toll-road arrival link. The toll-gate is

equipped with three sensors: an arrival sensor, a vehicle identification sensor and an departure sensor. The

arrival sensor serves to prepare the vehicle identification sensor. The departure sensor serves to prepare the

gate for closing when a vehicle has passed. The vehicle identify sensor identifies the vehicle and “delivers”

a pair: the current time and the vehicle identifier. Once the vehicle identification sensor has identified a

vehicle the gate opens and a message is sent to the road pricing calculator as to the passing vehicle’s

identity and the identity of the link associated with the toll-gate (see Items 362- 363 on the next page).

346 The domain contains the extended net, n:NE ,

347 with the net extension amounting to the toll-road net, TRNE , that is, the instantiated toll-road net,

trn:TRNI , is extended, into trn:TRNE , with entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

348 their unique identifier and

349 their mereology: pairs of entry-, respectively exit link and calculator unique identifiers; further

350 a pair of gate entry and exit sensors modeled as external attribute channels, (ges:ES,gls:XS), and

351 a time-stamped vehicle identity sensor modeled as external attribute channels.

type

346 NE

347 TRNE = (EG×XG)∗ × TRNI

348 GI
value

346 obs part NE : ∆E → NE

347 obs part TRNE : NE → TRNE

348 uid G: (EG|XG) → GI
349 obs mereo G: (EG|XG) → (LI×CI)
347 trn:TRNE = obs part TRNE (δE )
channel

350 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} ′′enter′′

350 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} ′′exit′′

351 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI
type

351 TIVI = T × VI

We define some auxiliary functions over toll-road nets, trn:TRNE :
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352 xtr eGℓ extracts the ℓist of entry gates,

353 xtr xGℓ extracts the ℓist of exit gates,

354 xtr eGIds extracts the set of entry gate identifiers,

355 xtr xGIds extracts the set of exit gate identifiers,

356 xtr Gs extracts the set of all gates, and

357 xtr GIds extracts the set of all gate identifiers.

value

352 xtr eGℓ: TRNE → EG∗

352 xtr eGℓ(pgl, ) ≡ {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
353 xtr xGℓ: TRNE → XG∗

353 xtr xGℓ(pgl, ) ≡ {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
354 xtr eGIds: TRNE → GI-set

354 xtr eGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr eGs(pgl, )}
355 xtr xGIds: TRNE → GI-set

355 xtr xGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr xGs(pgl, )}
356 xtr Gs: TRNE → G-set

356 xtr Gs(pgl, ) ≡ xtr eGs(pgl, ) ∪ xtr xGs(pgl, )
357 xtr GIds: TRNE → GI-set

357 xtr GIds(pgl, ) ≡ xtr eGIds(pgl, ) ∪ xtr xGIds(pgl, )

358 A well-formedness condition expresses

a that there are as many entry end exit gate pairs as there are toll-plazas,

b that all gates are uniquely identified, and

c that each entry [exit] gate is paired with an entry [exit] link and has that link’s unique identifier

as one element of its mereology, the other elements being the calculator identifier and the vehicle

identifiers.

The well-formedness relies on awareness of

359 the unique identifier, ci:CI, of the road pricing calculator, c:C, and

360 the unique identifiers, vis:VI-set, of the fleet vehicles.

axiom

358 ∀ n:NR3
, trn:TRNR3

•

358 let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

358a len exgl = len exl = len hl = len lll + 1
358b ∧ card xtr GIds(exgl) = 2 ∗ len exgl
358c ∧ ∀ i:Nat•i ∈ inds exgl•

358c let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

358c obs mereo G(eg) = (uid U(el),ci,vis)
358c ∧ obs mereo G(xg) = (uid U(xl),ci,vis)
358 end end

[e] Toll-gate to Calculator Channels:

361 We distinguish between entry and exit gates.

362 Toll road entry and exit gates offers the road pricing calculator a pair: whether it is an entry or an exit

gates, and pair of the passing vehicle’s identity and the time-stamped identity of the link associated

with the toll-gate

363 to the road pricing calculator via a (gate to calculator) channel.
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type

361 EE = ′′entry′′|′′exit′′

362 EEVITiLI = EE×(VI×(T×SonL))
channel

363 {g c ch[gi,ci ]|gi:GI•gi ∈ gis}:EETiVILI

[f] Road Pricing Calculator Attributes:

364 The road pricing attributes include a programmable traffic map, trm:TRM, which, for each vehicle

inside the toll-road net, records a chronologically ordered list of each vehicle’s timed position, (τ,lpos),
and

365 a static (total) road location function, vplf:VPLF. The vehicle position location f unction, vplf:VPLF,

which, given a local position, lpos:LPos, yields either the simple vehicle position, svpos:SVPos, des-

ignated by the GNSS-provided position, or yields the response that the provided position is off the

toll-road net The vplf:VPLF function is constructed, construct vplf,
366 from awareness, of a geodetic road map, GRM, of the topology of the extended net, nE :NE , including

the mereology and the geodetic attributes of links and hubs.

type

364 TRM = VI →m (T × SVPos)∗

365 VPLF = GRM → LPos → (SVPos | ′′off_N′′)
366 GRM
value

364 attr TRM: CE → TRM
365 attr VPLF: CE → VPLF

The geodetic road map maps geodetic locations into hub and link identifiers.

276 Geodetic link locations represent the set of point locations of a link.

272a Geodetic hub locations represent the set of point locations of a hub.

367 A geodetic road map maps geodetic link locations into link identifiers and geodetic hub locations into

hub identifiers.

368 We sketch the construction, geo GRM, of geodetic road maps.

type

367 GRM = (GeoL →m LI)
⋃

(GeoH →m HI)
value

368 geo GRM: N → GRM
368 geo GRM(n) ≡
368 let ls = xtr links(n), hs = xtr hubs(n) in

368 [attr GeoL(l)7→uid LI(l)|l:L•l ∈ ls ]
368 ∪
368 [attr GeoH(h)7→uid HI(h)|h:H•h ∈ hs ] end

369 The vplf:VPLF function obtains a simple vehicle position, svpos, from a geodetic road map, grm:GRM,

and a local position , lpos:

value

369 obtain SVPos: GRM → LPos → SVPos
369 obtain SVPos(grm)(lpos) as svpos
369 post: case svpos of

369 SatH(hi) → within(lpos,grm(hi)),
369 SonL(li) → within(lpos,grm(li)),
369 ′′off_N′′ → true end
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where within is a predicate which holds if its first argument, a local position calculated from a GNSS-

generated global position, falls within the point set representation of the geodetic locations of a link or a

hub. The design of the obtain SVPos represents an interesting challenge.

[g] “Total” System State:

Global values:

370 There is a given domain, δE :∆E ;

371 there is the net, nE :NE , of that domain;

372 there is toll-road net, trnE :TRNE , of that net;

373 there is a set, egsE :EGE -set, of entry gates;

374 there is a set, xgsE :XGE -set, of exit gates;

375 there is a set, gisE :GIE -set, ofgate identifiers;

376 there is a set, vsE :VE -set, of vehicles;

377 there is a set, visE :VIE -set, of vehicle identifiers;

378 there is the road-pricing calculator, cE :CE and

379 there is its unique identifier, ciE :CI.

value

370 δE :∆E

371 nE :NE = obs part NE (δE )
372 trnE :TRNE = obs part TRNE (nE )
373 egsE :EG-set = xtr egs(trnE )
374 xgsE :XG-set = xtr xgs(trnE )
375 gisE :XG-set = xtr gis(trnE )
376 vsE :VE -set = obs part VS(obs part FE (δE ))
377 visE :VI-set = {uid VI(vE )|vE :VE

•vE ∈ vsE }
378 cE :CE = obs part CE (δE )
379 ciE :CIE = uid CI(cE )

In the following we shall omit the cumbersome E subscripts.

[h] “Total” System Behaviour:

The signature and definition of the system behaviour is sketched as are the signatures of the vehicle, toll-

gate and road pricing calculator. We shall model the behaviour of the road pricing system as follows: we

shall not model behaviours nets, hubs and links; thus we shall model only the behaviour of vehicles, veh,

the behaviour of toll-gates, gate, and the behaviour of the road-pricing calculator, calc, The behaviours of

vehicles and toll-gates are presented here. But the behaviour of the road-pricing calculator is “deferred” till

Sect. 5.5.1 since it reflects an interface requirements.

380 The road pricing system behaviour, sys, is expressed as

a the parallel, ‖, (distributed) composition of the behaviours of all vehicles,

b with the parallel composition of the parallel (likewise distributed) composition of the behaviours

of all entry gates,

c with the parallel composition of the parallel (likewise distributed) composition of the behaviours

of all exit gates,

d with the parallel composition of the behaviour of the road-pricing calculator,

value

380 sys: Unit → Unit

380 sys() ≡
380a ‖ {vehuid V (v)(obs mereo V(v))|v:V•v ∈ vs}
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380b ‖ ‖ {gateuid EG(eg)(obs mereo G(eg),”entry”)|eg:EG•eg ∈ egs}
380c ‖ ‖ {gateuid XG(xg)(obs mereo G(xg),”exit”)|xg:XG•xg ∈ xgs}
380d ‖ calcuid C(c)(vis,gis)(rlf)(trm)

381 vehvi: (ci:CI×gis:GI-set) → in attr TiGPos[vi ] out v c ch[vi,ci ] Unit

387 gategi: (ci:CI×VI-set×LI)×ee:EE →
387 in attr entry ch[gi,ci ],attr id ch[gi,ci ],attr exit ch[gi,ci ]
387 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

421 calcci: (vis:VI-set×gis:GI-set)×VPLF→TRM→
421 in {v c ch[vi,ci ]|vi:VI•vi ∈ vis},{g c ch[gi,ci ]|gi:GI•gi ∈ gis} Unit

We consider ”entry” or ”exit” to be a static attribute of toll-gates. The behaviour signatures were determined

as per the techniques presented in [67, Sect. 4.1.1 and 4.5.2].

Vehicle Behaviour: We refer to the vehicle behaviour, in the domain, described in Sect. 5.2’s The Road
Traffic System Behaviour Items 299 and Items 300, Page 164 and, projected, Page 171.

381 Instead of moving around by explicitly expressed internal non-determinism16 vehicles move around by

unstated internal non-determinism and instead receive their current position from the global positioning

subsystem.

382 At each moment the vehicle receives its time-stamped global position, (τ,gpos):TiGPos,
383 from which it calculates the local position, lpos:VPos
384 which it then communicates, with its vehicle identification, (vi,(τ,lpos)), to the road pricing subsystem

—

385 whereupon it resumes its vehicle behaviour.

value

381 vehvi: (ci:CI×gis:GI-set) →
381 in attr TiGPos ch[vi ] out v c ch[vi,ci ] Unit

381 vehvi(ci,gis) ≡
382 let (τ,gpos) = attr TiGPos ch[vi ]? in

383 let lpos = loc pos(gpos) in

384 v c ch[vi,ci ] ! (vi,(τ,lpos)) ;
385 vehvi(ci,gis) end end

381 pre vi ∈ vis

The vehicle signature has attr TiGPos ch[vi ] model an external vehicle attribute and v c ch[vi,ci ] the

embedded attribute sharing [67, Sect. 4.1.1 and 4.5.2] between vehicles (their position) and the price cal-

culator’s road map. The above behaviour represents an assumption about the behaviour of vehicles. If we

were to design software for the monitoring and control of vehicles then the above vehicle behaviour would

have to be refined in order to serve as a proper interface requirements. The refinement would include han-

dling concerns about the drivers’ behaviour when entering, passing and exiting toll-gates, about the proper

function of the GNSS equipment, and about the safe communication with the road price calculator. The

above concerns would already have been addressed in a model of domain facets such as human behaviour,
technology support, proper tele-communications scripts, etcetera. We refer to [43].

Gate Behaviour: The entry and the exit gates have “vehicle enter”, “vehicle exit” and “timed vehicle

identification” sensors. The following assumption can now be made: during the time interval between a

gate’s vehicle “entry” sensor having first sensed a vehicle entering that gate and that gate’s “exit” sensor

having last sensed that vehicle leaving that gate that gate’s vehicle time and “identify” sensor registers the

time when the vehicle is entering the gate and that vehicle’s unique identification. We sketch the toll-gate

behaviour:

16 We refer to Items 299b, 299c on Page 164 and 300b, 300(b)ii, 300c on Page 164
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386 We parameterise the toll-gate behaviour as either an entry or an exit gate.

387 Toll-gates operate autonomously and cyclically.

388 The attr enter ch event “triggers” the behaviour specified in formula line Item 389–391 starting with

a ”Raise” barrier action.

389 The time-of-passing and the identity of the passing vehicle is sensed by attr passing ch channel events.

390 Then the road pricing calculator is informed of time-of-passing and of the vehicle identity vi and the

link li associated with the gate – and with a ”Lower” barrier action.

391 And finally, after that vehicle has left the entry or exit gate the barrier is again ”Lower”ered and

392 that toll-gate’s behaviour is resumed.

type

386 EE = ”enter” | ”exit”
value

387 gategi: (ci:CI×VI-set×LI)×ee:EE →
387 in attr enter ch[gi ],attr passing ch[gi ],attr leave ch[gi ]
387 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

387 gategi((ci,vis,li),ee) ≡
388 attr enter ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”
389 let (τ,vi) = attr passing ch[gi ] ? in assert vi ∈ vis
390 (attr barrier ch[gi ] ! ”Raise”
390 ‖ g c ch[gi,ci ] ! (ee,(vi,(τ,SonL(li))))) ;
391 attr leave ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”
392 gategi((ci,vis,li),ee)
387 end

387 pre li ∈ lis

The gate signature’s attr enter ch[gi ], attr passing ch[gi ], attr barrier ch[gi ] and attr leave ch[gi ] model

respective external attributes [67, Sect. 4.1.1 and 4.5.2] (the attr barrier ch[gi ] models reactive (i.e., output)

attribute), while g c ch[gi,ci ] models the embedded attribute sharing between gates (their identification of

vehicle positions) and the calculator road map. The above behaviour represents an assumption about the

behaviour of toll-gates. If we were to design software for the monitoring and control of toll-gates then the

above gate behaviour would have to be refined in order to serve as a proper interface requirements. The re-

finement would include handling concerns about the drivers’ behaviour when entering, passing and exiting

toll-gates, about the proper function of the entry, passing and exit sensors, about the proper function of the

gate barrier (opening and closing), and about the safe communication with the road price calculator. The

above concerns would already have been addressed in a model of domain facets such as human behaviour,
technology support, proper tele-communications scripts, etcetera. We refer to [43]

We shall define the calculator behaviour in Sect. 5.5.1 on Page 191. The reason for this deferral is that it

exemplifies interface requirements.

Discussion

The requirements assumptions expressed in the specifications of the vehicle and gate behaviours assume

that these behave in an orderly fashion. But they seldom do ! The attr TiGPos ch sensor may fail. And so

may the attr enter ch, attr passing ch, and attr leave ch sensors and the attr barrier ch actuator. These

attributes represent support technology facets. They can fail. To secure fault tolerance one must prescribe

very carefully what counter-measures are to be taken and/or the safety assumptions. We refer to [240, 149,

178]. They cover three alternative approaches to the handling of fault tolerance. Either of the approaches

can be made to fit with our approach. First one can pursue our approach to where we stand now. Then we

join the approaches of either of [240, 149, 178]. [149] likewise decompose the requirements prescription

as is suggested here.
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5.4.5 Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in some areas with, another domain:

transportation with logistics, health-care with insurance, banking with securities trading and/or insurance,

and so on. The issue of requirements fitting arises when two or more software development projects are

based on what appears to be the same domain. The problem then is to harmonise the two or more software

development projects by harmonising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn , being consid-

ered, and that these pertain to the same domain — and can hence be assumed covered by a same domain

description.

Definition 32 Requirements Fitting: By requirements fitting we mean a harmonisation of n > 1

domain requirements that have overlapping (shared) not always consistent parts and which results in n

partial domain requirements’, pdr1
, pdr2

, . . . , pdrn
, and m shared domain requirements, sdr1

, sdr2
, . . . , sdrm

,

that “fit into” two or more of the partial domain requirements The above definition pertains to the result

of ‘fitting’. The next definition pertains to the act, or process, of ‘fitting’.

Definition 33 Requirements Harmonisation: By requirements harmonisation we mean a number of

alternative and/or co-ordinated prescription actions, one set for each of the domain requirements actions:

Projection, Instantiation, Determination and Extension. They are – we assume n separate software product

requirements: Projection: If the n product requirements do not have the same projections, then identify a

common projection which they all share, and refer to it as the common projection. Then develop, for each

of the n product requirements, if required, a specific projection of the common one. Let there be m such

specific projections, m ≤ n. Instantiation: First instantiate the common projection, if any instantiation is

needed. Then for each of the m specific projections instantiate these, if required. Determination: Likewise,

if required, “perform” “determination” of the possibly instantiated common projection, and, similarly, if

required, “perform” “determination” of the up to m possibly instantiated projections. Extension: Finally

“perform extension” likewise: First, if required, of the common projection (etc.), then, if required, on the

up m specific projections (etc.). These harmonization developments may possibly interact and may need

to be iterated

By a partial domain requirements we mean a domain requirements which is short of (that is, is missing)

some prescription parts: text and formula By a shared domain requirements we mean a domain

requirements By requirements fitting m shared domain requirements texts, sdrs, into n partial domain

requirements we mean that there is for each partial domain requirements, pdri, an identified, non-empty

subset of sdrs (could be all of sdrs), ssdrsi, such that textually conjoining ssdrsi to pdri, i.e., ssdrsi ⊕ pdri

can be claimed to yield the “original” dri
, that is, M (ssdrsi ⊕ pdri) ⊆ M (dri

), where M is a suitable

meaning function over prescriptions

5.4.6 Discussion

Facet-oriented Fittings: An altogether different way of looking at domain requirements may be achieved

when also considering domain facets — not covered in neither the example of Sect. 5.2 nor in this section

(i.e., Sect. 5.4) nor in the following two sections. We refer to [43].

Example 5.11. . Domain Requirements — Fitting: Example 5.10 hints at three possible sets of inter-
face requirements: (i) for a road pricing [sub-]system, as will be illustrated in Sect. 5.5.1; (ii) for a vehicle
monitoring and control [sub-]system, and (iii) for a toll-gate monitoring and control [sub-]system. The
vehicle monitoring and control [sub-]system would focus on implementing the vehicle behaviour, see
Items 381- 385 on Page 184. The toll-gate monitoring and control [sub-]system would focus on imple-
menting the calculator behaviour, see Items 387- 392 on the preceding page. The fitting amounts to (a)
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making precise the narrative and formal texts specific to each of of the three (i–iii) separate sub-system
requirements are kept separate; (b) ensuring that meaning-wise shared texts that have different names
for meaning-wise identical entities have these names renamed appropriately; (c) that these texts are
subject to commensurate and ameliorated further requirements development; etcetera

5.5 Interface and Derived Requirements

We remind the reader that interface requirements can be expressed only using terms from both the do-

main and the machine Users are not part of the machine. So no reference can be made to users, such as

“the system must be user friendly”, and the like !17 By interface requirements we [also] mean require-
ments prescriptions which refines and extends the domain requirements by considering those requirements
of the domain requirements whose endurants (parts, materials) and perdurants (actions, events and be-
haviours) are “shared” between the domain and the machine (being requirements prescribed) The two

interface requirements definitions above go hand–in–hand, i.e., complement one-another.

By derived requirements we mean requirements prescriptions which are expressed in terms of the
machine concepts and facilities introduced by the emerging requirements

5.5.1 Interface Requirements

Shared Phenomena

By sharing we mean (a) that some or all properties of an endurant is represented both in the domain and

“inside” the machine, and that their machine representation must at suitable times reflect their state in the

domain; and/or (b) that an action requires a sequence of several “on-line” interactions between the machine

(being requirements prescribed) and the domain, usually a person or another machine; and/or (c) that an

event arises either in the domain, that is, in the environment of the machine, or in the machine, and need be

communicated to the machine, respectively to the environment; and/or (d) that a behaviour is manifested

both by actions and events of the domain and by actions and events of the machine So a systematic

reading of the domain requirements shall result in an identification of all shared endurants, parts, materials

and components; and perdurants actions, events and behaviours. Each such shared phenomenon shall then

be individually dealt with: endurant sharing shall lead to interface requirements for data initialisation and

refreshment as well as for access to endurant attributes; action sharing shall lead to interface requirements

for interactive dialogues between the machine and its environment; event sharing shall lead to interface

requirements for how such event are communicated between the environment of the machine and the ma-

chine; and behaviour sharing shall lead to interface requirements for action and event dialogues between

the machine and its environment.

Environment–Machine Interface:

Domain requirements extension, Sect. 5.4.4, usually introduce new endurants into (i.e., ‘extend’ the) do-

main. Some of these endurants may become elements of the domain requirements. Others are to be pro-

jected “away”. Those that are let into the domain requirements either have their endurants represented,

somehow, also in the machine, or have (some of) their properties, usually some attributes, accessed by the

machine. Similarly for perdurants. Usually the machine representation of shared perdurants access (some

of) their properties, usually some attributes. The interface requirements must spell out which domain ex-

tensions are shared. Thus domain extensions may necessitate a review of domain projection, instantiations

and determination. In general, there may be several of the projection–eliminated parts (etc.) whose dynamic

attributes need be accessed in the usual way, i.e., by means of attr XYZ ch channel communications (where

XYZ is a projection–eliminated part attribute).

17 So how do we cope with the statement: “the system must be user friendly” ? We refer to Sect. 5.5.3 on Page 195

for a discussion of this issue.
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Example 5.12. . Interface Requirements — Projected Extensions: We refer to Fig. 5.2 on Page 180.We
do not represent the GNSS system in the machine: only its “effect”: the ability to record global positions
by accessing the GNSS attribute (channel):

channel

340 {attr TiGPos ch[vi ]|vi:VI•vi ∈ xtr VIs(vs)}: TiGPos

And we do not really represent the gate nor its sensors and actuator in the machine. But we do give an

idealised description of the gate behaviour, see Items 387–392 Instead we represent their dynamic gate

attributes:

(350) the vehicle entry sensors (leftmost s),

(350) the vehicle identity sensor (center ), and

(351) the vehicle exit sensors (rightmost s)

by channels — we refer to Example 5.10 (Sect. 5.5.1, Page 180):

channel

350 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} ′′enter′′

350 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} ′′exit′′

351 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI

Shared Endurants

Example 5.13. . Interface Requirements. Shared Endurants: The main shared endurants are the
vehicles, the net (hubs, links, toll-gates) and the price calculator. As domain endurants hubs and
links undergo changes, all the time, with respect to the values of several attributes: length, geodetic
information, names, wear and tear (where-ever applicable), last/next scheduled maintenance (where-ever
applicable), state and state space, and many others. Similarly for vehicles: their position, velocity and
acceleration, and many other attributes. We then come up with something like hubs and links are to
be represented as tuples of relations; each net will be represented by a pair of relations a hubs relation
and a links relation; each hub and each link may or will be represented by several tuples; etcetera. In
this database modeling effort it must be secured that “standard” operations on nets, hubs and links
can be supported by the chosen relational database system

Data Initialisation:

In general, one must prescribe data initialisation, that is provision for an interactive user interface dialogue

with a set of proper display screens, one for establishing net, hub or link attributes names and their types,

and, for example, two for the input of hub and link attribute values. Interaction prompts may be prescribed:

next input, on-line vetting and display of evolving net, etc. These and many other aspects may therefore

need prescriptions.

Example 5.14. . Interface Requirements. Shared Endurant Initialisation: The domain is that of the

road net, n:N. By ‘shared road net initialisation’ we mean the “ab initio” establishment, “from scratch”, of

a data base recording the properties of all links, l:L, and hubs, h:H, their unique identifications, uid L(l) and

uid H(h), their mereologies, obs mereo L(l) and obs mereo H(h), the initial values of all their static and

programmable attributes and the access values, that is, channel designations for all other attribute categories.

393 There are rl and rh “recorders” recording link, respectively hub properties – with each recorder
having a unique identity.

394 Each recorder is charged with the recording of a set of links or a set of hubs according to some
partitioning of all such.

395 The recorders inform a central data base, net db, of their recordings (ri,hol,(u j,m j,attrs j)) where
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396 ri is the identity of the recorder,
397 hol is either a hub or a link literal,
398 u j = uid L(l) or uid H(h) for some link or hub,
399 m j = obs mereo L(l) or obs mereo H(h) for that link or hub and
400 attrs j are attributes for that link or hub — where attributes is a function which “records” all

respective static and dynamic attributes (left undefined).

type

393 RI
value

393 rl,rh:NAT axiom rl>0 ∧ rh>0
type

395 M = RI×′′link′′×LNK | RI×′′hub′′×HUB
395 LNK = LI × HI-set × LATTRS
395 HUB = HI × LI-set × HATTRS

value

394 partitioning: L-set→Nat→(L-set)∗

394 | H-set→Nat→(H-set)∗

394 partitioning(s)(r) as sl
394 post: len sl = r ∧ ∪ elems sl = s
394 ∧ ∀ si,sj:(L-set|H-set) •

394 si 6={}∧sj6={}∧{si,sj}⊆elems ss⇒si ∩ sj={}

401 The rl + rh recorder behaviours interact with the one net db behaviour

channel

401 r db: RI×(LNK|HUB)
value

401 link rec: RI → L-set → out r db Unit

401 hub rec: RI → H-set → out r db Unit

401 net db: Unit → in r db Unit

402 The data base behaviour, net db, offers to receive messages from the link and hub recorders.

403 The data base behaviour, net db, deposits these messages in respective variables.

404 Initially there is a net, n : N,

405 from which is observed its links and hubs.

406 These sets are partitioned into rl , respectively rh length lists of non-empty links and hubs.

407 The ab-initio data initialisation behaviour, ab initio data, is then the parallel composition of link

recorder, hub recorder and data base behaviours with link and hub recorder being allotted appropri-

ate link, respectively hub sets.

408 We construct, for technical reasons, as the reader will soon see, disjoint lists of link, respectively hub

recorder identities.

value

402 net db:
variable

403 lnk db: (RI×LNK)-set

403 hub db: (RI×HUB)-set

value
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404 n:N
405 ls:L-set = obs Ls(obs LS(n))
405 hs:H-set = obs Hs(obs HS(n))
406 lsl:(L-set)∗ = partitioning(ls)(rl)
406 lhl:(H-set)∗ = partitioning(hs)(rh)
408 rill:RI∗ axiom len rill = rl = card elems rill
408 rihl:RI∗ axiom len rihl = rh = card elems rihl
407 ab initio data: Unit → Unit

407 ab initio data() ≡
407 ‖ {lnk rec(rill[ i ])(lsl[ i ])|i:Nat•1≤i≤rl} ‖
407 ‖ {hub rec(rihl[ i ])(lhl[ i ])|i:Nat•1≤i≤rh}
407 ‖ net db()

409 The link and the hub recorders are near-identical behaviours.

410 They both revolve around an imperatively stated for all ... do ... end. The selected link (or hub) is

inspected and the “data” for the data base is prepared from

411 the unique identifier,

412 the mereology, and

413 the attributes.

414 These “data” are sent, as a message, prefixed the senders identity, to the data base behaviour.

415 We presently leave the . . . unexplained.

value

401 link rec: RI → L-set → Unit

409 link rec(ri,ls) ≡
410 for ∀ l:L•l ∈ ls do uid L(l)
411 let lnk = (uid L(l),
412 obs mereo L(l),
413 attributes(l)) in

414 rdb ! (ri,′′link′′,lnk);
415 ... end

410 end

401 hub rec: RI × H-set → Unit

409 hub rec(ri,hs) ≡
410 for ∀ h:H•h ∈ hs do uid H(h)
411 let hub = (uid L(h),
412 obs mereo H(h),
413 attributes(h)) in

414 rdb ! (ri,′′hub′′,hub);
415 ... end

410 end

416 The net db data base behaviour revolves around a seemingly “never-ending” cyclic process.

417 Each cycle “starts” with acceptance of some,

418 either link or hub data.

419 If link data then it is deposited in the link data base,

420 if hub data then it is deposited in the hub data base.
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value

416 net db() ≡
417 let (ri,hol,data) = r db ? in

418 case hol of

419 ′′link′′ → ... ; lnk db := lnk db ∪ (ri,data),
420 ′′hub′′ → ... ; hub db := hub db ∪ (ri,data)
418 end end ;
416′ ... ;
416 net db()

The above model is an idealisation. It assumes that the link and hub data represent a well-formed net. In-

cluded in this well-formedness are the following issues: (a) that all link or hub identifiers are communicated

exactly once, (b) that all mereologies refer to defined parts, and (c) that all attribute values lie within an

appropriate value range. If we were to cope with possible recording errors then we could, for example, ex-

tend the model as follows: (i) when a link or a hub recorder has completed its recording then it increments

an initially zero counter (say at formula Item 415); (ii) before the net data base recycles it tests whether all

recording sessions has ended and then proceeds to check the data base for well-formedness issues (a–b–c)

(say at formula Item 416′)

The above example illustrates the ‘interface’ phenomenon: In the formulas, for example, we show both

manifest domain entities, viz., n, l,h etc., and abstract (required) software objects, viz., (ui,me,attrs).

Data Refreshment:

One must also prescribe data refreshment: an interactive user interface dialogue with a set of proper dis-

play screens one for selecting the updating of net, of hub or of link attribute names and their types and,

for example, two for the respective update of hub and link attribute values. Interaction-prompts may be

prescribed: next update, on-line vetting and display of revised net, etc. These and many other aspects may

therefore need prescriptions.

Shared Perdurants

We can expect that for every part in the domain that is shared with the machine and for which there is a cor-

responding behaviour of the domain there might be a corresponding process of the machine. If a projected,

instantiated, ‘determinated’ and possibly extended domain part is dynamic, then it is definitely a candi-

date for being shared and having an associated machine process. We now illustrate the concept of shared

perdurants via the domain requirements extension example of Sect. 5.4.4, i.e. Example 5.10 Pages 178–185.

Example 5.15. . Interface Requirements — Shared Behaviours: Road Pricing Calculator Behaviour:

421 The road-pricing calculator alternates between offering to accept communication from
422 either any vehicle
423 or any toll-gate.

421 calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
422 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},
423 {g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

421 calc(ci,(vis,gis))(rlf)(trm) ≡
422 react to vehicles(ci,(vis,gis))(rlf)(trm)
421 ⌈⌉⌊⌋
423 react to gates(ci,(vis,gis))(rlf)(trm)
421 pre ci = ciE ∧ vis = visE ∧ gis = gisE
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The calculator signature’s v c ch[ci,vi ] and g c ch[ci,gi ] model the embedded attribute sharing between

vehicles (their position), respectively gates (their vehicle identification) and the calculator road map [67,

Sect. 4.1.1 and 4.5.2].

424 If the communication is from a vehicle inside the toll-road net

425 then its toll-road net position, vp, is found from the road location function, rlf,
426 and the calculator resumes its work with the traffic map, trm, suitably updated,

427 otherwise the calculator resumes its work with no changes.

422 react to vehicles(ci,(vis,gis),vplf)(trm) ≡
422 let (vi,(τ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi ]?|vi:VI•vi∈ vis} in

424 if vi ∈ dom trm
425 then let vp = vplf(lpos) in

426 calc(ci,(vis,gis),vplf)(trm†[vi 7→trm̂〈(τ,vp)〉 ]) end

427 else calc(ci,(vis,gis),vplf)(trm) end end

428 If the communication is from a gate,

429 then that gate is either an entry gate or an exit gate;

430 if it is an entry gate

431 then the calculator resumes its work with the vehicle (that passed the entry gate) now recorded, afresh,

in the traffic map, trm.

432 Else it is an exit gate and

433 the calculator concludes that the vehicle has ended its to-be-paid-for journey inside the toll-road net,

and hence to be billed;

434 then the calculator resumes its work with the vehicle now removed from the traffic map, trm.

423 react to gates(ci,(vis,gis),vplf)(trm) ≡
423 let (ee,(τ,(vi,li))) = ⌈⌉⌊⌋ {g c ch[ci,gi ]?|gi:GI•gi∈ gis} in

429 case ee of

430 ”Enter” →
431 calc(ci,(vis,gis),vplf)(trm∪[vi 7→〈(τ,SonL(li))〉 ]),
432 ”Exit” →
433 billing(vi,trm(vi)̂ 〈(τ,SonL(li))〉);
434 calc(ci,(vis,gis),vplf)(trm\{vi}) end end

The above behaviour is the one for which we are to design software

5.5.2 Derived Requirements

Definition 34 Derived Perdurant: By a derived perdurant we shall understand a perdurant which is

not shared with the domain, but which focus on exploiting facilities of the software or hardware of the

machine

“Exploiting facilities of the software”, to us, means that requirements, imply the presence, in the machine,

of concepts (i.e., hardware and/or software), and that it is these concepts that the derived requirements
“rely” on. We illustrate all three forms of perdurant extensions: derived actions, derived events and derived

behaviours.
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Derived Actions

Definition 35 Derived Action: By a derived action we shall understand (a) a conceptual action (b) that

calculates a usually non-Boolean valued property from, and possibly changes to (c) a machine behaviour

state (d) as instigated by some actor

Example 5.16. . Domain Requirements. Derived Action: Tracing Vehicles: The example is based

on the Road Pricing Calculator Behaviour of Example 5.15 on Page 191. The “external” actor, i.e., a user

of the Road Pricing Calculator system wishes to trace specific vehicles “cruising” the toll-road. That user (a

Road Pricing Calculator staff), issues a command to the Road Pricing Calculator system, with the identity

of a vehicle not already being traced. As a result the Road Pricing Calculator system augments a possibly

void trace of the timed toll-road positions of vehicles. We augment the definition of the calculator definition

Items 421–434, Pages 191–192.

435 Traces are modeled by a pair of dynamic attributes:
a as a programmable attribute, tra:TRA, of the set of identifiers of vehicles being traced, and
b as a reactive attribute, vdu:VDU18, that maps vehicle identifiers into time-stamped sequences
of simple vehicle positions, i.e., as a subset of the trm:TRM programmable attribute.

436 The actor-to-calculator begin or end trace command, cmd:Cmd, is modeled as an autonomous
dynamic attribute of the calculator.

437 The calculator signature is furthermore augmented with the three attributes mentioned above.
438 The occurrence and handling of an actor trace command is modeled as a non-deterministic external

choice and a react to trace cmd behaviour.
439 The reactive attribute value (attr vdu ch ?) is that subset of the traffic map (trm) which records

just the time-stamped sequences of simple vehicle positions being traced (tra).

type

435a TRA = VI-set

435b VDU = TRM
436 Cmd = BTr | ETr
436 BTr :: VI
436 ETr :: VI

value

437 calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA
422,423 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},
422,423 {g c ch[ci,gi ]|gi:GI•gi ∈ gis},
438,439 attr cmd ch,attr vdu ch Unit

421 calc(ci,(vis,gis))(rlf)(trm)(tra) ≡
422 react to vehicles(ci,(vis,gis),)(rlf)(trm)(tra)
423 ⌈⌉⌊⌋ react to gates(ci,(vis,gis))(rlf)(trm)(tra)
438 ⌈⌉⌊⌋ react to trace cmd(ci,(vis,gis))(rlf)(trm)(tra)
421 pre ci = ciE ∧ vis = visE ∧ gis = gisE
439 axiom � attr vdu ch[ci ]? = trm|tra

The 438,439 attr cmd ch,attr vdu ch of the calculator signature models the calculator’s external command
and visual display unit attributes.

440 The react to trace cmd alternative behaviour is either a ”Begin” or an ”End” request which identifies

the affected vehicle.

18 VDU: visual display unit
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441 If it is a ”Begin” request

442 and the identified vehicle is already being traced then we do not prescribe what to do !

443 Else we resume the calculator behaviour, now recording that vehicle as being traced.

444 If it is an ”End” request

445 and the identified vehicle is already being traced then we do not prescribe what to do !

446 Else we resume the calculator behaviour, now recording that vehicle as no longer being traced.

440 react to trace cmd(ci,(vis,gis))(vplf)(trm)(tra) ≡
440 case attr cmd ch[ci ]? of

441,442,443 mkBTr(vi) → if vi ∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra ∪ {vi}) end

444,445,446 mkETr(vi) → if vi 6∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra\{vi}) end

440 end

The above behaviour, Items 421–446, is the one for which we are to design software

Example 5.16 exemplifies an action requirement as per definition 35: (a) the action is conceptual, it has no

physical counterpart in the domain; (b) it calculates (439) a visual display (vdu); (c) the vdu value is based

on a conceptual notion of traffic road maps (trm), an element of the calculator state; (d) the calculation is

triggered by an actor (attr cmd ch).

Derived Events

Definition 36 Derived Event: By a derived event we shall understand (a) a conceptual event, (b) that

calculates a property or some non-Boolean value (c) from a machine behaviour state change

Example 5.17. . Domain Requirements. Derived Event: Current Maximum Flow: The example is
based on the Road Pricing Calculator Behaviour of Examples 5.16 and 5.15 on Page 191. By “the current
maximum flow” we understand a time-stamped natural number, the number representing the highest number
of vehicles which at the time-stamped moment cruised or now cruises around the toll-road net. We augment
the definition of the calculator definition Items 421–446, Pages 191–194.

447 We augment the calculator signature with
448 a time-stamped natural number valued dynamic programmable attribute, (t:T,max:Max).
449 Whenever a vehicle enters the toll-road net, through one of its [entry] gates,

a it is checked whether the resulting number of vehicles recorded in the road traffic map is higher than
the hitherto max imum recorded number.

b If so, that programmable attribute has its number element “upped” by one.
c Otherwise not.

450 No changes are to be made to the react to gates behaviour (Items 423–434 Page 192) when a vehicle exits
the toll-road net.

type

448 MAX = T × NAT
value

437,447 calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA → MAX
422,423 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis}, {g c ch[ci,gi ]|gi:GI•gi ∈ gis}, attr cmd ch,attr vdu ch Unit

423 react to gates(ci,(vis,gis))(vplf)(trm)(tra)(t,m) ≡
423 let (ee,(τ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

429 case ee of

449 ”Enter” →
449 calc(ci,(vis,gis))(vplf)(trm∪[vi7→〈(τ,SonL(li))〉 ])(tra)(τ,if card dom trm=m then m+1 else m end),
450 ”Exit” →
450 billing(vi,trm(vi)̂〈(τ,SonL(li))〉); calc(ci,(vis,gis))(vplf)(trm\{vi})(tra)(t,m) end

429 end
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The above behaviour, Items 421 on Page 191 through 449c on the facing page, is the one for which we are to design

software

Example 5.17 exemplifies a derived event requirement as per Definition 36: (a) the event is conceptual, it

has no physical counterpart in the domain; (b) it calculates (449b) the max value based on a conceptual

notion of traffic road maps (trm), (c) which is an element of the calculator state.

No Derived Behaviours

There are no derived behaviours. The reason is as follows. Behaviours are associated with parts. A possibly

‘derived behaviour’ would entail the introduction of an ‘associated’ part. And if such a part made sense it

should – in all likelihood – already have been either a proper domain part or become a domain extension.

If the domain–to-requirements engineer insist on modeling some interface requirements as a process then

we consider that a technical matter, a choice of abstraction.

5.5.3 Discussion

Derived Requirements

Formulation of derived actions or derived events usually involves technical terms not only from the domain

but typically from such conceptual ‘domains’ as mathematics, economics, engineering or their visualisa-

tion. Derived requirements may, for some requirements developments, constitute “sizable” requirements

compared to “all the other” requirements. For their analysis and prescription it makes good sense to first

having developed “the other” requirements: domain, interface and machine requirements. The treatment of

the present chapter does not offer special techniques and tools for the conception, &c., of derived require-

ments. Instead we refer to the seminal works of [108, 154, 231].

Introspective Requirements

Humans, including human users are, in this chapter, considered to never be part of the domain for which a

requirements prescription is being developed. If it is necessary to involve humans in the domain description

or the requirements prescription then their prescription is to reflect assumptions upon whose behaviour the

machine rely. It is therefore that we, above, have stated, in passing, that we cannot accept requirements of

the kind: “the machine must be user friendly”, because, in reality, it means “the user must rely upon the
machine being ‘friendly’ ” whatever that may mean. We are not requirements prescribing humans, nor their

sentiments !

5.6 Machine Requirements

Other than listing a sizable number of machine requirement facets we shall not cover machine requirements

in this chapter. The reason for this is as follows. We find, cf. [30, Sect. 19.6], that when the individual

machine requirements are expressed then references to domain phenomena are, in fact, abstract references,

that is, they do not refer to the semantics of what they name. Hence machine requirements “fall” outside

the scope of this chapter — with that scope being “derivation” of requirements from domain specifications
with emphasis on derivation techniques that relate to various aspects of the domain.

(A) There are the technology requirements of (1) performance and (2) dependability . Within depend-
ability requirements there are (a) accessibility , (b) availability , (c) integrity , (d) reliability , (e) safety , (f)

security and (g) robustness requirements. A proper treatment of dependability requirements need a care-

ful definition of such terms as failure, error, fault, and, from these dependability. (B) And there are the
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development requirements of (i) process, (ii) maintenance, (iii) platform , (iv) management and (v) docu-
mentation requirements. Within maintenance requirements there are (ii.1) adaptive, (ii.2) corrective, (ii.3)

perfective, (ii.4) preventive, and (ii.5) extensional requirements. Within platform requirements there are

(iii.1) development , (iii.2) execution , (iii.3) maintenance, and (iii.4) demonstration platform requirements.

We refer to [30, Sect. 19.6] for an early treatment of machine requirements.

5.7 Conclusion

Conventional requirements engineering considers the domain only rather implicitly. Requirements gath-

ering (‘acquisition’) is not structured by any pre-existing knowledge of the domain, instead it is “struc-

tured” by a number of relevant techniques and tools [145, 231, 146] which, when applied, “fragment-by-

fragment” “discovers” such elements of the domain that are immediately relevant to the requirements. The

present chapter turns this requirements prescription process “up-side-down”. Now the process is guided

(“steered”, “controlled”) almost exclusively by the domain description which is assumed to be existing

before the requirements development starts. In conventional requirements engineering many of the relevant

techniques and tools can be said to take into account sociological and psychological facets of gathering

the requirements and linguistic facets of expressing these requirements. That is, the focus is rather much

on the process. In the present chapter’s requirements “derivation” from domain descriptions the focus is

all the time on the descriptions and prescriptions, in particular on their formal expressions and the “trans-

formation” of these. That is (descriptions and) prescriptions are considered formal, mathematical objects.

That is, the focus is rather much on the objects.

• • •

We conclude by briefly reviewing what has been achieved, present shortcomings & possible research chal-

lenges, and a few words on relations to “classical requirements engineering”.

5.7.1 What has been Achieved ?

We have shown how to systematically “derive” initial aspects of requirements prescriptions from domain

descriptions. The stages19 and steps20 of this “derivation”21 are new. We claim that current requirements

engineering approaches, although they may refer to a or the ‘domain’, are not really ‘serious’ about

this: they do not describe the domain, and they do not base their techniques and tools on a reasoned

understanding of the domain. In contrast we have identified, we claim, a logically motivated decomposition

of requirements into three phases, cf. Footnote 19., of domain requirements into five steps, cf. Footnote 20

(Page 196), and of interface requirements, based on a concept of shared entities, tentatively into (α) shared

endurants, (β ) shared actions, (γ) shared events, and (δ ) shared behaviours (with more research into the

(α-δ ) techniques needed).

5.7.2 Present Shortcomings and Research Challenges

We see three shortcomings: (1) The “derivation” techniques have yet to consider “extracting” requirements

from domain facet descriptions. Only by including domain facet descriptions can we, in “deriving” require-
ments prescriptions, include failures of, for example, support technologies and humans, in the design of

fault-tolerant software. (2) The “derivation” principles, techniques and tools should be given a formal

treatment. (3) There is a serious need for relating the approach of the present chapter to that of the seminal

text book of [231, Axel van Lamsweerde]. [231] is not being “replaced” by the present work. It tackles a

different set of problems. We refer to the penultimate paragraph before the Acknowledgment closing.

19 (a) domain, (b) interface and (c) machine requirements
20 For domain requirements: (i) projection, (ii) instantiation, (iii) determination, (iv) extension and (v) fitting; etc.
21 We use double quotation marks: “. . . ” to indicate that the derivation is not automatable.
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5.7.3 Comparison to “Classical” Requirements Engineering:

Except for a few, represented by two, we are not going to compare the contributions of the present chapter

with published journal or conference papers on the subject of requirements engineering. The reason for this

is the following. The present chapter, rather completely, we claim, reformulates requirements engineering,

giving it a ‘foundation’, in domain engineering , and then developing requirements engineering from there,

viewing requirements prescriptions as “derived” from domain descriptions. We do not see any of the papers,

except those reviewed below [149] and [108], referring in any technical sense to ‘domains’ such as we

understand them.

[149, Deriving Specifications for Systems That Are Connected to the Physical World]

The paper that comes closest to the present chapter in its serious treatment of the [problem] domain as

a precursor for requirements development is that of [149, Jones, Hayes & Jackson]. A purpose of [149]

(Sect. 1.1, Page 367, last §) is to see “how little can one say” (about the problem domain) when expressing

assumptions about requirements. This is seen by [149] (earlier in the same paragraph) as in contrast to our

form of domain modeling. [149] reveals assumptions about the domain when expressing rely guarantees in

tight conjunction with expressing the guarantee (requirements). That is, analysing and expressing require-

ments, in [149], goes hand-in-hand with analysing and expressing fragments of the domain. The current

chapter takes the view that since, as demonstrated in [67], it is possible to model sizable aspects of domains,

then it would be interesting to study how one might “derive” — and which — requirements prescriptions

from domain descriptions; and having demonstrated that (i.e., the “how much can be derived”) it seems of

scientific interest to see how that new start (i.e., starting with a priori given domain descriptions or starting

with first developing domain descriptions) can be combined with existing approaches, such as [149]. We

do appreciate the “tight coupling” of rely–guarantees of [149]. But perhaps one looses understanding the

domain due to its fragmented presentation. If the ‘relies’ are not outright, i.e., textually directly expressed

in our domain descriptions, then they obviously must be provable properties of what our domain descrip-

tions express. Our, i.e., the present, chapter — with its background in [67, Sect. 4.7] — develops — with

a background in [144, M.A. Jackson] — a set of principles and techniques for the access of attributes. The

“discovery” of the CM and SG channels of [149] and of the type of their messages, seems, compared to our

approach, less systematic. Also, it is not clear how the [149] case study “scales” up to a larger domain. The

sluice gate of [149] is but part of a large (‘irrigation’) system of reservoirs (water sources), canals, sluice

gates and the fields (water sinks) to be irrigated. We obviously would delineate such a larger system and re-

search & develop an appropriate, both informal, a narrative, and formal domain description for such a class

of irrigation systems based on assumptions of precipitation and evaporation. Then the users’ requirements,

in [149], that the sluice gate, over suitable time intervals, is open 20% of the time and otherwise closed,

could now be expressed more pertinently, in terms of the fields being appropriately irrigated.

[108, Goal-directed Requirements Acquisition]

outlines an approach to requirements acquisition that starts with fragments of domain description. The

domain description is captured in terms of predicates over actors, actions, events, entities and (their) rela-
tions. Our approach to domain modeling differs from that of [108] as follows: Agents, actions, entities and

relations are, in [108], seen as specialisations of a concept of objects. The nearest analogy to relations, in

[67], as well as in this chapter, is the signatures of perdurants. Our ‘agents’ relate to discrete endurants, i.e.,

parts, and are the behaviours that evolve around these parts: one agent per part ! [108] otherwise include

describing parts, relations between parts, actions and events much like [67] and this chapter does. [108]

then introduces a notion of goal . A goal, in [108], is defined as ′′a nonoperational objective to be achieved
by the desired system. Nonoperational means that the objective is not formulated in terms of objects and
actions “available” to some agent of the system 22′′ [108] then goes on to exemplify goals. In this, the

22 We have reservations about this definition: Firstly, it is expressed in terms of some of the “things” it is not ! (To

us, not a very useful approach.) Secondly, we can imagine goals that are indeed formulated in terms of objects
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current chapter, we are not considering goals, also a major theme of [231].23 Typically the expression of

goals of [108, 231], are “within” computer & computing science and involve the use of temporal logic.24

′′Constraints are operational objectives to be achieved by the desired (i.e., required) system, . . . , formulated
in terms of objects and actions “available” to some agents of the system. . . . Goals are made operational
through constraints. . . . A constraint operationalising a goal amounts to some abstract “implementation”
of this goal ′′ [108]. [108] then goes on to express goals and constraints operationalising these. [108] is a

fascinating paper25 as it shows how to build goals and constraints on domain description fragments.

• • •

These papers, [149] and [108], as well as the current chapter, together with such seminal monographs as

[240, 178, 231], clearly shows that there are many diverse ways in which to achieve precise requirements

prescriptions. The [240, 178] monographs primarily study the D ,S |= R specification and proof tech-

niques from the point of view of the specific tools of their specification languages26. Physics, as a natural

science, and its many engineering ‘renditions’, are manifested in many separate sub-fields: Electricity, me-

chanics, statics, fluid dynamics — each with further sub-fields. It seems, to this author, that there is a need

to study the [240, 178, 231] approaches and the approach taken in this chapter in the light of identifying

sub-fields of requirements engineering. The title of the present chapter suggests one such sub-field.

5.8 Bibliographical Notes

I have thought about domain engineering for more than 20 years. But serious, focused writing only started

to appear since [30, Part IV] — with [25, 22] being exceptions: [32] suggests a number of domain science

and engineering research topics; [43] covers the concept of domain facets; [80] explores compositionality

and Galois connections. [33, 79] show how to systematically, but, of course, not automatically, “derive”

requirements prescriptions from domain descriptions; [48] takes the triptych software development as a

basis for outlining principles for believable software management; [39, 55] presents a model for Stanisław

Leśniewski’s [96] concept of mereology; [44, 49] present an extensive example and is otherwise a precursor

for the present chapter; [51] presents, based on the TripTych view of software development as ideally

proceeding from domain description via requirements prescription to software design, concepts such as

software demos and simulators; [52] analyses the TripTych, especially its domain engineering approach,

with respect to [162, 163, Maslow]’s and [183, Peterson’s and Seligman’s]’s notions of humanity: how can

computing relate to notions of humanity; the first part of [58] is a precursor for [67] with the second part

of [58] presenting a first formal model of the elicitation process of analysis and description based on the

prompts more definitively presented in the current chapter; and with [59] focus on domain safety criticality.

and actions ‘available’ to some agent of the system. For example, wrt. the ongoing library examples of [108], the

system shall automate the borrowing of books, etcetera. Thirdly, we assume that by “ ‘available’ to some agent of

the system” is meant that these agents, actions, entities, etc., are also required.
23 An example of a goal — for the road pricing system — could be that of shortening travel times of motorists, reducing

gasoline consumption and air pollution, while recouping investments on toll-road construction. We consider tech-

niques for ensuring the above kind of goals “outside” the realm of computer & computing science but “inside” the

realm of operations research (OR) — while securing that the OR models are commensurate with our domain models.
24 In this chapter we do not exemplify goals, let alone the use of temporal logic. We cannot exemplify all aspects of

domain description and requirements prescription, but, if we were, would then use the temporal logic of [240, The

Duration Calculus].
25 — that might, however, warrant a complete rewrite.
26 The Duration Calculus [DC], respectively DC, Timed Automata and Z
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Some Implications for Software





6

Demos, Simulators, Monitors and Controllers

A Divertimento of Ideas and Suggestions.

We1 muse over the concepts of demos, simulators, monitors and controllers.

6.1 Introduction

We sketch some observations of the concepts of domain, requirements and modeling – where abstract

interpretations of these models cover both a priori, a posteriori and real-time aspects of the domain as

well as 1–1 (i.e., real-time), microscopic and macroscopic simulations, real-time monitoring and real-time

monitoring & control of that domain. The reference frame for these concepts are domain models: carefully

narrated and formally described domains. On the basis of a familiarising example2 of a domain description,

we survey more-or-less standard ideas of verifiable software developments and conjecture software product

families of demos, simulators, monitors and monitors & controllers – but now these “standard ideas” are

recast in the context of core requirements prescriptions being “derived” from domain descriptions.

A background setting for this chapter is the concern for (α) professionally developing the right soft-

ware, i.e., software which satisfies users expectations, and (ω) software that is right: i.e., software which

is correct with respect to user requirements and thus has no “bugs”, no “blue screens”. The present chap-

ter must be seen on the background of a main line of experimental research around the topics of domain

science & engineering and requirements engineering and their relation. For details I refer to [67, 71, 63].

“Confusing Demos”:

This author has had the doubtful honour, on his many visits to computer science and software engineering

laboratories around the world, to be presented, by his colleagues’ aspiring PhD students, so-called demos

of “systems” that they were investigating. There always was a tacit assumption, namely that the audience,

i.e., me, knew, a priori, what the domain “behind” the “system” being “demo’ed” was. Certainly, if there

was such an understanding, it was brutally demolished by the “demo” presentation. My questions, such as

“what are you demo’ing” (etcetera) went unanswered. Instead, while we were waiting to see “something

interesting” to be displayed on the computer screen we were witnessing frantic, sometimes failed, input

of commands and data, “nervous” attempts with “mouse” clickings, etc. – before something intended was

displayed. After a, usually 15 minute, grace period, it was time, luckily, to proceed to the next “demo”.

Aims & Objectives:

The aims of this chapter is to present (a) some ideas about software that either “demo”, simulate, monitor

or monitor & control domains; (b) some ideas about “time scaling”: demo and simulation time versus

1 This chapter is a slightly edited rendition of [50].
2 – take that of Chapter 1
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domain time; and (c) how these kinds of software relate. The (undoubtedly very naı̈ve) objectives of the

chapter is also to improve the kind of demo-presentations, alluded to above, so as to ensure that the basis

for such demos is crystal clear from the very outset of research & development, i.e., that domains be well-

described. The chapter, we think, tackles the issue of so-called ‘model-oriented (or model-based) software

development’ from altogether different angles than usually promoted.

An Exploratory Chapter:

The chapter is exploratory. There will be no theorems and therefore there will be no proofs. We are present-

ing what might eventually emerge into (α) a theory of domains, i.e., a domain science [32, 80, 37, 49], and

(β ) a software development theory of domain engineering versus requirements engineering [48, 33, 38, 44].

The chapter is not a “standard” research chapter: it does not compare its claimed achievements with

corresponding or related achievements of other researchers – simply because we do not claim “achieve-

ments” which have been reasonably well formalised. But we would suggest that you might find some of

the ideas of the chapter (in Sect. 6.3) worthwhile. Hence the “divertimento” suffix to the chapter title.

Structure of Chapter:

The structure of the chapter is as follows. In Sect. 6.3 we then outline a series of interpretations of domain

descriptions. These arise, when developed in an orderly, professional manner, from requirements prescrip-

tions which are themselves orderly developed from the domain description3, cf. [63].

The essence of Sect. 6.3 is (i) the (albeit informal) presentation of such tightly related notions as de-
mos (Sect. 6.3.1), simulators (Sect. 6.3.2), monitors (Sect. 6.3.3) and monitors & controllers (Sect. 6.3.3)

(these notions can be formalised), and (ii) the conjectures on a product family of domain-based software

developments (Sect. 6.3.5). A notion of script-based simulation extends demos and is the basis for monitor

and controller developments and uses. The scripts used in our examples are related to time, but one can

define non-temporal scripts – so the “carrying idea” of Sect. 6.3 extends to a widest variety of software. We

claim that Sect. 6.3 thus brings these new ideas: a tightly related software engineering concept of demo-
simulator-monitor-controller machines, and an extended notion of reference models for requirements and
specifications [127].

6.2 Domain Descriptions

By a domain description we shall mean a combined narrative, that is, precise, but informal, and a formal

description of the application domain as it is: no reference to any possible requirements let alone software

that is desired for that domain. Thus a requirements prescription is a likewise combined precise, but infor-

mal, narrative, and a formal prescription of what we expect from a machine (hardware + software) that is to

support endurants, actions, events and behaviours of a possibly business process re-engineered application

domain. Requirements expresses a domain as we would like to to be.

We further refer to the literature for examples: [23, railways (2000)], [24, the ’market’ (2000)], [38, pub-
lic government, IT security, hospitals (2006) chapters 8–10], [33, transport nets (2008)] and [44, pipelines
(2010)]. On the net you may find technical reports covering “larger” domain descriptions. “Older” publica-

tions on the concept of domain descriptions are [44, 49, 39, 80, 33, 32, 43] all summarised in [67, 71, 63].

Domain descriptions do not necessarily describe computable objects. They relate to the described do-

main in a way similar to the way in which mathematical descriptions of physical phenomena stand to “the

physical world”.

6.3 Interpretations

In this main section of the chapter we present a number of interpretations of rôles of domain descriptions.

3 We do not show such orderly “derivations” but outline their basics in Sect. 6.3.4.
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6.3.1 What Is a Domain-based Demo?

A domain-based demo is a software system which “present” endurants and perdurants4: actions, events

and behaviours of a domain. The “presentation” abstracts these phenomena and their related concepts in

various computer generated forms: visual, acoustic, etc.

Examples

There are two main examples. One was given in Chapter 1. The other is summarised below. It is from

Chapter 5 on “deriving requirements prescriptions from domain descriptions”. The summary follows.

The domain description of Sect. 5.2 outlines an abstract concept of transport nets (of hubs [street inter-

sections, train stations, harbours, airports] and links [road segments, rail tracks, shipping lanes, air-lanes]),

their development, traffic [of vehicles, trains, ships and aircraft], etc. We shall assume such a transport

domain description below.

Endurants are, for example, presented as follows: (a) transport nets by two dimensional (2D) road,

railway or air traffic maps, (b) hubs and links by highlighting parts of 2D maps and by related photos –

and their unique identifiers by labeling hubs and links, (c) routes by highlighting sequences of paths (hubs

and links) on a 2D map, (d) buses by photographs and by dots at hubs or on links of a 2D map, and (e) bus

timetables by, well, indeed, by showing a 2D bus timetable.

Actions are, for example, presented as follows: ( f ) The insertion or removal of a hub or a link by

showing “instantaneous” triplets of “before”, “during” and “after” animation sequences. (g) The start or

end of a bus ride by showing flashing animations of the appearance, respectively the flashing disappearance

of a bus (dot) at the origin, respectively the destination bus stops.

Events are, for example, presented as follows: (h) A mudslide [or fire in a road tunnel, or collapse of a

bridge] along a (road) link by showing an animation of part of a (road) map with an instantaneous sequence

of (α) the present link , (β ) a gap somewhere on the link, (γ) and the appearance of two (“symbolic”) hubs

“on either side of the gap”. (i) The congestion of road traffic “grinding to a halt” at, for example, a hub, by

showing an animation of part of a (road) map with an instantaneous sequence of the massive accumulation

of vehicle dots moving (instantaneously) from two or more links into a hub.

Behaviours are, for example, presented as follows: (k) A bus tour: from its start, on time, or “there-

abouts”, from its bus stop of origin, via (all) intermediate stops, with or without delays or advances in

times of arrivals and departures, to the bus stop of destination (ℓ) The composite behaviour of “all bus

tours”, meeting or missing connection times, with sporadic delays, with cancellation of some bus tours,

etc. – by showing the sequence of states of all the buses on the net.

We say that behaviours (( j)–(ℓ)) are script-based in that they (try to) satisfy a bus timetable ((e)).

Towards a Theory of Visualisation and Acoustic Manifestation

The above examples shall serve to highlight the general problem of visualisation and acoustic manifesta-

tion. Just as we need sciences of visualising scientific data and of diagrammatic logics, so we need more
serious studies of visualisation and acoustic manifestation — so amply, but, this author thinks, inconsis-
tently demonstrated by current uses of interactive computing media.

6.3.2 Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act of simulating something
generally entails representing certain key characteristics or behaviours of a selected physical or abstract
system” [Wikipedia] for the purposes of testing some hypotheses usually stated in terms of the model

being simulated and pairs of statistical data and expected outcomes.

4 The concepts of ‘endurants’ and ‘perdurants’ were defined in [67].
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Explication of Figure 6.1

Figure 6.1 attempts to indicate four things: (i) Left top: the rounded edge rectangle labeled “The Domain”
alludes to some specific domain (“out there”). (ii) Left middle: the small rounded rectangle labeled “A
Domain Description” alludes to some document which narrates and formalises a description of “the do-

main”. (iii) Left bottom: the medium sized rectangle labeled “A Domain Demo based on the Domain
Description” (for short “Demo”) alludes to a software system that, in some sense (to be made clear later)

“simulates” “The Domain.” (iv) Right: the large rectangle (a) shows a horisontal time axis which basically

“divides” that large rectangle into two parts: (b) Above the time axis the “fat” rounded edge rectangle

alludes to the time-wise behaviour, a domain trace, of “The Domain” (i.e., the actual, the real, domain).

(c) Below the time axis there are eight “thin” rectangles. These are labels S1, S2, S3, S4, S5, S6, S7 and

S8. (d) Each of these denote a “run”, i.e., a time-stamped “execution”, a program trace, of the “Demo”.

Their “relationship” to the time axis is this: their execution takes place in the real time as related to that of

“The Domain” behaviour.

A trace (whether a domain or a program execution trace) is a time-stamped sequence of states: domain

states, respectively demo, simulator, monitor and monitor & control states.

t eb

β ε

based on the
Domain Description

Description
A Domain

The Domain

A Behaviour, a Trace of the Domain

Simulation Traces

Time

S5

S4

S2S1
εβ

S7

S3 S6

S8

Legend: A development; S1, S2, S3, S4, S5, S6, S7, S8: "runs" of the Domain Simulation

Domain Demo/Simulator

Fig. 6.1. Simulations

From Fig. 6.1 and the above explication we can conclude that “executions” S4 and S5 each share exactly

one time point, t, at which “The Domain” and “The Simulation” “share” time, that is, the time-stamped

execution S4 and S5 reflect a “Simulation” state which at time t should reflect (some abstraction of) “The
Domain” state.

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the simulation trace, or, vice-versa

(cf. Fig. 6.1[S4,S5]), is there a “shared” time. Only if the ‘begin’ and ‘end’ times of the domain behaviour

are identical to the ‘start’ and ‘finish’ times of the simulation trace, is there an infinity of shared 1–1 times.

Only then do we speak of a real-time simulation.

In Fig 6.2 on Page 206 we show “the same” “Domain Behaviour” (three times) and a (1) simulation, a

(2) monitoring and a (3) monitoring & control, all of whose ‘begin/start’ (b/β ) and ‘end/finish’ (e/ε) times

coincide. In such cases the “Demo/Simulation” takes place in real-time throughout the ‘begin· · · · · ·end’

interval.

Let β and ε be the ‘start’ and ‘finish’ times of either S4 or S5. Then the relationship between t,β ,ε ,

b and e is t−b
e-t = t−β

ε−t
— which leads to a second degree polynomial in t which can then be solved in the

usual, high school manner.
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Script-based Simulation

A script-based simulation is the behaviour, i.e., an execution, of, basically, a demo which, step-by-step,

follows a script: that is a prescription for highlighting endurants, actions, events and behaviours.

Script-based simulations where the script embodies a notion of time, like a bus timetable, and unlike

a route, can be thought of as the execution of a demos where “chunks” of demo operations take place in

accordance with “chunks”5 of script prescriptions. The latter (i.e., the script prescriptions) can be said to

represent simulated (i.e., domain) time in contrast to “actual computer” time. The actual times in which

the script-based simulation takes place relate to domain times as shown in Simulations S1 to S8 in Fig. 6.1

and in Fig. 6.2(1–3). Traces Fig. 6.2(1–3) and S8 Fig. 6.1 are said to be real-time: there is a one-to-one

mapping between computer time and domain time. S1 and S4 Fig. 6.1 are said to be microscopic: disjoint

computer time intervals map into distinct domain times. S2, S3, S5, S6 and S7 are said to be macroscopic:
disjoint domain time intervals map into distinct computer times.

In order to concretise the above “vague” statements let us take the example of simulating bus traffic

as based on a bus timetable script. A simulation scenario could be as follows. Initially, not relating to any

domain time, the simulation “demos” a net, available buses and a bus timetable. The person(s) who are

requesting the simulation are asked to decide on the ratio of the domain time interval to simulation time

interval. If the ratio is 1 a real-time simulation has been requested. If the ratio is less than 1 a microscopic

simulation has been requested. If the ratio is larger than 1 a microscopic simulation has been requested. A

chosen ratio of, say 48 to 1 means that a 24 hour bus traffic is to be simulated in 30 minutes of elapsed

simulation time. Then the person(s) who are requesting the simulation are asked to decide on the starting

domain time, say 6:00am, and the domain time interval of simulation, say 4 hours – in which case the

simulation of bus traffic from 6am till 10am is to be shown in 5 minutes (300 seconds) of elapsed simulation

time. The person(s) who are requesting the simulation are then asked to decide on the “sampling times” or

“time intervals” : If ‘sampling times’ 6:00 am, 6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30 am and 10:00 am

are chosen, then the simulation is stopped at corresponding simulation times: 0 sec., 37.5 sec., 75 sec.,

150 sec., 225 sec., 262.5 sec. and 300 sec. The simulation then shows the state of selected endurants and

actions at these domain times. If ‘sampling time interval’ is chosen and is set to every 5 min., then the

simulation shows the state of selected endurants and actions at corresponding domain times. The simulation

is resumed when the person(s) who are requesting the simulation so indicates, say by a “resume” icon click.

The time interval between adjacent simulation stops and resumptions contribute with 0 time to elapsed

simulation time – which in this case was set to 5 minutes. Finally the requestor provides some statistical

data such as numbers of potential and actual bus passengers, etc.

Then two clocks are started: a domain time clock and a simulation time clock. The simulation proceeds

as driven by, in this case, the bus time table. To include “unforeseen” events, such as the wreckage of a bus

(which is then unable to complete a bus tour), we allow any number of such events to be randomly sched-

uled. Actually scheduled events “interrupts” the “programmed” simulation and leads to thus unscheduled

stops (and resumptions) where the unscheduled stop now focuses on showing the event.

The Development Arrow

The arrow, , between a pair of boxes (of Fig. 6.1 on the preceding page) denote a step of development: (i)

from the domain box to the domain description box, , it denotes the development of a domain description

based on studies and analyses of the domain; (ii) from the domain description box to the domain demo box,

, it denotes the development of a software system — where that development assumes an intermediate

requirements box which has not been show; (iii) from the domain demo box to either of a simulation

traces, , it denotes the development of a simulator as the related demo software system, again depending

on whichever special requirements have been put to the simulator.

5 We deliberately leave the notion of chunk vague so as to allow as wide an spectrum of simulations.
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6.3.3 Monitoring & Control

Figure 6.2 shows three different kinds of uses of software systems (where (2) [Monitoring] and (3)

[Monitoring & Control] represent further) developments from the demo or simulation software system

mentioned in Sect. 6.3.1 and Sect. 6.3.2 on the previous page. We have added some (three) horisontal and
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Legend: mi,mj,...,mk: monitorings; cx,...,cy: controls

Fig. 6.2. Simulation, Monitoring and Monitoring & Control

labeled (p, q and r) lines to Fig. 6.2(1,2,3) (with respect to the traces of Fig. 6.1 on Page 204). They each

denote a trace of a endurant, an action or an event, that is, they are traces of values of these phenomena

or concepts. A (named) endurant value entails a description of the endurant, whither atomic (‘hub’, ‘link’,

‘bus timetable’) or composite (‘net’, ‘set of hubs’, etc.): of its unique identity, its mereology and a selection

of its attributes. A (named) action value could, for example, be the pair of the before and after states of the

action and some description of the function (‘insertion of a link’, ‘start of a bus tour’) involved in the action.

A (named) event value could, for example, be a pair of the before and after states of the endurants causing,

respectively being effected by the event and some description of the predicate (‘mudslide’, ‘break-down of

a bus’) involved in the event. A cross section, such as designated by the vertical lines (one for the domain

trace, one for the “corresponding” program trace) of Fig. 6.2(1) denotes a state: a domain, respectively a

program state.

Figure 6.2(1) attempts to show a real-time demo or simulation for the chosen domain. Figure 6.2(2) pur-

ports to show the deployment of real-time software for monitoring (chosen aspects of) the chosen domain.

Figure 6.2(3) purports to show the deployment of real-time software for monitoring as well as controlling

(chosen aspects of) the chosen domain.

Monitoring

By domain monitoring we mean “to be aware of the state of a domain”, its endurants, actions, events and

behaviour. Domain monitoring is thus a process, typically within a distributed system for collecting and

storing state data. In this process “observation” points — i.e., endurants, actions and where events may oc-

cur — are identified in the domain, cf. points p, q and r of Fig. 6.2. Sensors are inserted at these points. The
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“downward” pointing vertical arrows of Figs. 6.2(2–3), from “the domain behaviour” to the “monitoring”

and the “monitoring & control” traces express communication of what has been sensed (measured, pho-

tographed, etc.) [as directed by and] as input data (etc.) to these monitors. The monitor (being “executed”)

may store these “sensings” for future analysis.

Control

By domain control we mean “the ability to change the value” of endurants and the course of actions and

hence behaviours, including prevention of events of the domain. Domain control is thus based on domain

monitoring. Actuators are inserted in the domain “at or near” monitoring points or at points related to

these, viz. points p and r of Fig. 6.2 on the preceding page(3). The “upward” pointing vertical arrows of

Fig. 6.2 on the facing page(3), from the “monitoring & control” traces to the “domain behaviour” express

communication, to the domain, of what has been computed by the controller as a proper control reaction in

response to the monitoring.

6.3.4 Machine Development

Machines

By a machine we shall understand a combination of hardware and software. For demos and simulators
the machine is “mostly” software with the hardware typically being graphic display units with tactile in-

struments. For monitors the “main” machine, besides the hardware and software of demos and simulators,

additionally includes sensors distributed throughout the domain and the technological machine means of

communicating monitored signals from the sensors to the “main” machine and the processing of these sig-

nals by the main machine. For monitors & controllers the machine, besides the monitor machine, further

includes actuators placed in the domain and the machine means of computing and communicating control

signals to the actuators.

Requirements Development

Essential parts of Requirements to a Machine can be systematically “derived” from a Domain description.

These essential parts are the domain requirements and the interface requirements. Domain requirements

are those requirements which can be expressed, say in narrative form, by mentioning technical terms only

of the domain. These technical terms cover only phenomena and concepts (endurants, actions, events and

behaviours) of the domain. Some domain requirements are projected, instantiated, made more determin-
istic and extended 6. We bring examples that are taken from Sect. 5.2, cf. Sect. 6.3.1 on Page 203 of the

present chapter. (a) By domain projection we mean a sub-setting of the domain description: parts are left

out which the requirements stake-holders, collaborating with the requirements engineer, decide is of no rel-

evance to the requirements. For our example it could be that our domain description had contained models

of road net attributes such as “the wear & tear” of road surfaces, the length of links, states of hubs and

links (that is, [dis]allowable directions of traffic through hubs and along links), etc. Projection might then

omit these attributes. (b) By domain instantiation we mean a specialisation of endurants, actions, events

and behaviours, refining them from abstract simple entities to more concrete such, etc. For our example it

could be that we only model freeways or only model road-pricing nets – or any one or more other aspects.

(c) By domain determination we mean that of making the domain description cum domain requirements

prescription less non-deterministic, i.e., more deterministic (or even the other way around !). For our exam-

ple it could be that we had domain-described states of street intersections as not controlled by traffic signals

– where the determination is now that of introducing an abstract notion of traffic signals which allow only

certain states (of red, yellow and green). (d) By domain extension we basically mean that of extending the

6 We omit consideration of fitting.
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domain with phenomena and concepts that were not feasible without information technology. For our ex-

amples we could extend the domain with bus mounted GPS gadgets that record and communicate (to, say

a central bus traffic computer) the more-or-less exact positions of buses – thereby enabling the observation

of bus traffic. Interface requirements are those requirements which can be expressed, say in narrative form,

by mentioning technical terms both of the domain and of the machine. These technical terms thus cover

shared phenomena and concepts, that is, phenomena and concepts of the domain which are, in some sense,

also (to be) represented by the machine. Interface requirements represent (i) the initialisation and “on-the-

fly” update of machine endurants on the basis of shared domain endurants; (ii) the interaction between

the machine and the domain while the machine is carrying out a (previous domain) action; (iii) machine

responses, if any, to domain events — or domain responses, if any, to machine events cum “outputs”; and

(iv) machine monitoring and machine control of domain phenomena. Each of these four (i–iv) interface

requirement facets themselves involve projection, instantiation, determination, extension and fitting. Ma-

chine requirements are those requirements which can be expressed, say in narrative form, by mentioning

technical terms only of the machine. (An example is: visual display units.)

6.3.5 Verifiable Software Development

An Example Set of Conjectures

We illustrate some conjectures.

(A) From a domain, D , one can develop a domain description D. D cannot be [formally] verified. It can

be [informally] validated “against” D . Individual properties, PD, of the domain description D and hence,

purportedly, of the domain, D , can be expressed and possibly proved D |= PD and these may be validated

to be properties of D by observations in (or of) that domain.

(B) From a domain description, D, one can develop requirements, RDE , for, and from RDE one can

develop a domain demo machine specification MDE such that D,MDE |= RDE. The formula D,M |= R

can be read as follows: in order to prove that the Machine satisfies the Requirements, assumptions about

the Domain must often be made explicit in steps of the proof.

(C) From a domain description, D, and a domain demo machine specification, SDE , one can develop

requirements, RSI , for, and from such a RSI one can develop a domain simulator machine specification MSI

such that (D;MDE),MSI |= RSI. We have “lumped” (D;MDE) as the two constitute the extended domain

for which we, in this case of development, suggest the next stage requirements and machine development

to take place.

(D) From a domain description,D, and a domain simulator machine specification, MSI , one can develop

requirements,RMO , for, and from such a RMO one can develop a domainmonitor machine specificationMMO

such that (D;MSI),MMO |= RMO .
(E) From a domain description, D, and a domain monitor machine specification, MMO , one can develop

requirements, RMC , for, and from such a RMC one can develop a domain monitor & controller machine

specification MMC such that (D;MMO),MMC |= RMC .

Chains of Verifiable Developments

The above illustrated just one chain (A–E) of developments. There are others. All are shown in Fig. 6.3 on

the facing page.

Figure 6.3 on the next page can also be interpreted as prescribing a widest possible range of machine

cum software products [91, 186] for a given domain. One domain may give rise to many different kinds

of DEmo machines, SImulators, MOnitors and Monitor & Controllers (the unprimed versions of the MT

machines (where T ranges over DE, SI, MO, MC)). For each of these there are similarly, “exponentially”

many variants of successor machines (the primed versions of the MT machines). What does it mean that

a machine is a primed version? Well, here it means, for example, that M′
SI embodies facets of the demo

machine MDE , and that M′′′
MC embodies facets of the demo machine MDE , of the simulator M′

SI , and the
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Fig. 6.3. Chains of Verifiable Developments

monitor M′′
MO . Whether such requirements are desirable is left to product customers and their software

providers [91, 186] to decide.

6.4 Conclusion

Our divertimento is almost over. It is time to conclude.

6.4.1 Discussion

The D,M |=R (‘correctness’ of) development relation appears to have been first indicated in the Computa-

tional Logic Inc. Stack [17, 125] and the EU ESPRIT ProCoS [19, 20] projects; [127] presents this same

idea with a purpose much like ours, but with more technical discussions.

The term ‘domain engineering’ appears to have at least two meanings: the one used here [32, 43]

and one [134, 115, 93] emerging out of the Software Engineering Institute at CMU where it is also called

product line engineering7. Our meaning, is, in a sense, more narrow, but then it seems to also be more highly

specialised (with detailed description and formalisation principles and techniques). Fig. 6.3 illustrates, in

capsule form, what we think is the CMU/SEI meaning. The relationship between, say Fig. 6.3 and model-
based software development seems obvious but need be explored. An extensive discussion of the term

‘domain’, as it appears in the software engineering literature is found in [67, Sect. 5.3].

What Have We Achieved

We have characterised a spectrum of strongly domain-related as well as strongly inter-related (cf. Fig. 6.3)

software product families: demos, simulators, monitors and monitor & controllers. We have indicated va-

rieties of these: simulators based on demos, monitors based on simulators, monitor & controllers based on

monitors, in fact any of the latter ones in the software product family list as based on any of the earlier ones.

We have sketched temporal relations between simulation traces and domain behaviours: a priori, a poste-
riori, macroscopic and microscopic, and we have identified the real-time cases which lead on to monitors

and monitor & controllers.

7 http://en.wikipedia.org/wiki/Domain engineering.
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What Have We Not Achieved — Some Conjectures

We have not characterised the software product family relations other than by the D,M |=R and (D;MXYZ),M |=
R clauses. That is, we should like to prove conjectured type theoretic inclusion relations like:

℘([[MXmod ext.
]])⊒℘([[M

′...′

Xmod ext.
]]), ℘([[M

′...′

Xmod ext.
]])⊒℘([[M

′′....′

Xmod ext.
]])

where X and Y range appropriately, where [[M ]] expresses the meaning of M , where ℘([[M ]]) denote the

space of all machine meanings and where ℘([[Mxmod ext.
]]) is intended to denote that space modulo (“free

of”) the y facet (here ext., for extension).

That is, it is conjectured that the set of more specialised, i.e., n primed, machines of kind x is type

theoretically “contained” in the set of m primed (unprimed) x machines (0 ≤ m < n).

There are undoubtedly many such interesting relations between the DEMO, SIMULATOR, MONITOR

and MONITOR & CONTROLLER machines, unprimed and primed.

What Should We Do Next

This chapter has the subtitle: A Divertimento of Ideas and Suggestions. It is not a proper theoretical chapter.

It tries to throw some light on families and varieties of software, i.e., their relations. It focuses, in particular,

on so-called DEMO, SIMULATOR, MONITOR and MONITOR & CONTROLLER software and their relation

to the “originating” domain, i.e., that in which such software is to serve, and hence that which is being

extended by such software, cf. the compounded ‘domain’ (D;Mi) of in (D;Mi),M j |= D. These notions

should be studied formally. All of these notions: requirements projection, instantiation, determination and

extension can be formalised; and the specification language, in the form used here (without CSP processes,

[137] has a formal semantics and a proof system — so the various notions of development, (D;Mi),M j |=R

and ℘(M) can be formalised.
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Summing Up

Each of Chapters 1–6 have their own closings. Here we summarise their conclusions.

7.1 What Have We Achieved ?

7.1.1 Chapter–by–Chapter Achievement Enumeration

Chapter 1, Pages 3–74: Domain Analysis & Description

The main contribution is that of introducing the domain analysis & description method: principles, tech-

nques and tools. It was hinted at that the ontology for domain entities can be justified on philosophical

grounds. A paper, [74], will expand considerably on this topic. Conventional software engineering previ-

ously began with requirements engineering. Now a predecessor phase has been “put” before that.

I consider this the major contribution of this thesis.

Chapter 2, Pages 75–103: Domain Facets

The main contribution is that of introducing the concept of domain facets and its manifestation: domain in-

trinsics, domain support technology, domain rules & regulations, domain scripts, domain license languages,

domain management & organisation, and domain humain behaviour.

Chapter 3, Pages 105–127: Towards Formal Models of Processes and Prompts

The contribution of this chapter is rather somewhat contrary to traditionalist thinking. Instead of formulat-

ing semantic domains for syntactic quantities we turn matters “upside-down”: from semantic entities we

“derive” syntactic ones !

Chapter 4, Pages 129–149: To Every Manifest Mereology a CSP Expression

The contribution of this chapter is both traditional and novel. Traditional, in that we show how Casati

and Varzi’s axiom system [96] for Leśniewski’s mereology, can be given a model in terms of the domain

ontoloy sorts of Chapter 1. Novel, in that we show, for the first time, in 2009, how manifest merologies, by

transcendental deduction, can be “modelled” as CSP [137] processes.
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Chapter 5, Pages 153–198: From Domains ... to Requirements ...

The contribution of this chapter is methdological. It is not a theory, but it is a set of principles and techniques

for systematically “deriving” requirements prescriptions from domain descriptions. The principles include

the separation of requirements concerns into domain, interface and machine requirements, and, within

domain requirements, the novel concepts of domain projection, instantiation, determination, extension and

fitting.

Chapter 6, Pages 201–210: Demos, Simulators, Monitors and Controllers

The contributions of this chapter are not of scientific nature. They are rather of a “pedagogical” engineering

nature – in that they throw a different light on such notions as demos, simulators, monitors and controllers
by relating these to relations between domain descriptions, requirements prescriptions and software de-
signs.

7.1.2 Fulfillment of Thesis

We refer back to the statement of the thesis of this submission, cf. Page iv.

THE THESIS OF THIS MONOGRAPH

The thesis of this monograph is twofold:

• (i) domain science & engineering is a possible, initial phase of software development;

• (ii) domain science & engineering is a worthwhile topic of research.

We support this claim as follows:

• (a) the concepts of domain science and domain engineering are new;

• (b) the terms domain science and domain engineering are well-defined;

• (c) domain science and domain engineering are given a foundation in this thesis;

• (d) and their rôle in software development is established.

Domain Science & Engineering casts a completely new light on Software Development.

We can now conclude:

THESIS FULFILLED

We claim that the thesis has been fulfilled.

Dines Bjørner, September 6, 2019: 16:27

Fredsvej 11, DK–2840 Holte, Denmark
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Part VI

RSL





A

An RSL Primer

This is an ultra-short introduction to the RAISE Specification Language, RSL.

A.1 Types

The reader is kindly asked to study first the decomposition of this section into its sub-parts and sub-sub-

parts.

A.1.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite sets of values (of “that”

type).

Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent (sub-

)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers, reals,

characters, and texts.

Basic Types:

type

[1 ] Bool

[2 ] Int

[3 ] Nat

[4 ] Real

[5 ] Char

[6 ] Text

Composite Types

Composite types have composite values. That is, values which we consider to have proper constituent

(sub-)values, i.e., can, to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:
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Composite Type Expressions:

[7 ] A-set

[8 ] A-infset

[9 ] A × B × ... × C
[10 ] A∗

[11 ] Aω

[12 ] A →m B
[13 ] A → B

[14 ] A
∼
→ B

[15 ] (A)
[16 ] A | B | ... | C
[17 ] mk id(sel a:A,...,sel b:B)
[18 ] sel a:A ... sel b:B

The following are generic type expressions:

1 The Boolean type of truth values false and true.

2 The integer type on integers ..., –2, –1, 0, 1, 2, ... .

3 The natural number type of positive integer values 0, 1, 2, ...

4 The real number type of real values, i.e., values whose numerals can be written as an integer, followed

by a period (“.”), followed by a natural number (the fraction).

5 The character type of character values ′′a′′, ′′bb′′, ...
6 The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...
7 The set type of finite cardinality set values.

8 The set type of infinite and finite cardinality set values.

9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.

11 The list type of infinite and finite length list values.

12 The map type of finite definition set map values.

13 The function type of total function values.

14 The function type of partial function values.

15 In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the parentheses serve

as simple delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E→m F)), etc.

16 The postulated disjoint union of types A, B, . . . , and C.
17 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of re-

spective types. The distinct identifiers sel a, etc., designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective types.

The distinct identifiers sel a, etc., designate selector functions.

A.1.2 Type Definitions

Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

Type Definition:

type

A = Type expr

Some schematic type definitions are:
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Variety of Type Definitions:

[1 ] Type name = Type expr /∗ without | s or subtypes ∗/
[2 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4 ] Type name :: sel a:Type name a ... sel z:Type name z
[5 ] Type name = {| v:Type name′ • P(v) |}

where a form of [2–3] is provided by combining the types:

Record Types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the use of

the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Note: Values of type A, where that type is defined by A::B×C×D, can be expressed A(b,c,d) for b:B, c:D,
d:D.

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The set of

values b which have type B and which satisfy the predicate P , constitute the subtype A:

Subtypes:

type

A = {| b:B • P(b) |}

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts:

type

A, B, ..., C
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A.2 The RSL Predicate Calculus

A.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos]).

Then:

Propositional Expressions:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e.,

operators). They can be read as: not, and, or, if then (or implies), equal and not equal.

A.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or term

expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

Simple Predicate Expressions:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

are simple predicate expressions.

A.2.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate predicate

expressions in which x,y and z are free. Then:

Quantified Expressions:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least) one y

(value in type Y ) such that the predicate Q(y) holds; and there exists a unique z (value in type Z) such that

the predicate R(z) holds.

A.3 Concrete RSL Types: Values and Operations

A.3.1 Arithmetic

Arithmetic:

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=, 6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)
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A.3.2 Set Expressions

Set Enumerations

Let the below a’s denote values of type A, then the below designate simple set enumerations:

Set Enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehension. The expression “builds”

the set of values satisfying the given predicate. It is abstract in the sense that it does not do so by following

a concrete algorithm.

Set Comprehension:

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

A.3.3 Cartesian Expressions

Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions are simple

Cartesian enumerations:

Cartesian Enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

A.3.4 List Expressions

List Enumerations

Let a range over values of type A, then the below expressions are simple list enumerations:
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List Enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the set of integers

from the value of ei to and including the value of e j. If the latter is smaller than the former, then the list is

empty.

List Comprehension

The last line below expresses list comprehension.

List Comprehension:

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

A.3.5 Map Expressions

Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T2, respectively, then the below expressions

are simple map enumerations:

Map Enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [u 7→v ], ..., [u1 7→v1,u2 7→v2,...,un 7→vn ] ∀ ∈ M

Map Comprehension

The last line below expresses map comprehension:

Map Comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]
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A.3.6 Set Operations

Set Operator Signatures

Set Operations:

value

19 ∈: A × A-infset → Bool

20 6∈: A × A-infset → Bool

21 ∪: A-infset × A-infset → A-infset

22 ∪: (A-infset)-infset → A-infset

23 ∩: A-infset × A-infset → A-infset

24 ∩: (A-infset)-infset → A-infset

25 \: A-infset × A-infset → A-infset

26 ⊂: A-infset × A-infset → Bool

27 ⊆: A-infset × A-infset → Bool

28 =: A-infset × A-infset → Bool

29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼
→ Nat

Set Examples

Set Examples:

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,bb},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,bb},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,bb}
{a,bb} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,bb}
card {} = 0, card {a,b,c} = 3

Informal Explication

19 ∈: The membership operator expresses that an element is a member of a set.

20 6∈: The nonmembership operator expresses that an element is not a member of a set.

21 ∪: The infix union operator. When applied to two sets, the operator gives the set whose members are

in either or both of the two operand sets.

22 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the set whose

members are in some of the operand sets.

23 ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose members

are in both of the two operand sets.

24 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives the set

whose members are in some of the operand sets.
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25 \: The set complement (or set subtraction) operator. When applied to two sets, the operator gives the

set whose members are those of the left operand set which are not in the right operand set.

26 ⊆: The proper subset operator expresses that all members of the left operand set are also in the right

operand set.

27 ⊂: The proper subset operator expresses that all members of the left operand set are also in the right

operand set, and that the two sets are not identical.

28 =: The equal operator expresses that the two operand sets are identical.

29 6=: The nonequal operator expresses that the two operand sets are not identical.

30 card: The cardinality operator gives the number of elements in a finite set.

Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions:

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

A.3.7 Cartesian Operations

Cartesian Operations:

type

A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value

va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

A.3.8 List Operations

List Operator Signatures

List Operations:
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value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

List Operation Examples

List Examples:

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂ 〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this set is

the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements larger

than or equal to i, gives the i th element of the list.

• :̂ Concatenates two operand lists into one. The elements of the left operand list are followed by the

elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

List Operator Definitions

List Operator Definitions:

value

is finite list: Aω → Bool
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len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i 6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then

if q 6=〈〉
then let a:A,q′:Q • q=〈a〉̂ q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

A.3.9 Map Operations

Map Operator Signatures and Map Operation Examples

Map Operations

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map ]
dom [a1 7→b1,a2 7→b2,...,an 7→bn ] = {a1,a2,...,an}

rng: M → B-infset [ range of map ]
rng [a1 7→b1,a2 7→b2,...,an 7→bn ] = {b1,b2,...,bn}

†: M × M → M [override extension ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ] † [a′ 7→bb′′,a′′ 7→bb′ ] = [a 7→b,a′ 7→bb′′,a′′ 7→bb′ ]

∪: M × M → M [merge ∪ ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ] ∪ [a′′′ 7→bb′′′ ] = [a 7→b,a′ 7→bb′,a′′ 7→bb′′,a′′′ 7→bb′′′ ]
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\: M × A-infset → M [ restriction by ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ]\{a} = [a′ 7→bb′,a′′ 7→bb′′ ]

/: M × A-infset → M [ restriction to ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ]/{a′,a′′} = [a′ 7→bb′,a′′ 7→bb′′ ]

=, 6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition ]
[a 7→b,a′ 7→bb′ ] ◦ [bb 7→c,bb′ 7→c′,bb′′ 7→c′′ ] = [a 7→c,a′ 7→c′ ]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an override of

the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left

operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left

operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition set elements of

the left operand map, m1, to the range elements of the right operand map, m2, such that if a is in the

definition set of m1 and maps into b, and if b is in the definition set of m2 and maps into c, then a, in

the composition, maps into c.

Map Operation Redefinitions

The map operations can also be defined as follows:

Map Operation Redefinitions:

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a) ]

m1 ∪ m2 ≡ [ a 7→b | a:A,b:B •

a ∈ dom m1 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a) ]

m \ s ≡ [ a 7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a 7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
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dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)
m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

A.4 λ -Calculus + Functions

A.4.1 The λ -Calculus Syntax

λ -Calculus Syntax:

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ 〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

A.4.2 Free and Bound Variables

Free and Bound Variables: Let x,y be variable names and e, f be λ -expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λ y •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

A.4.3 Substitution

In RSL, the following rules for substitution apply:

Substitution:

• subst([N/x]x)≡ N;

• subst([N/x]a)≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λ x•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λ y• subst([N/x]P),
if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),
if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).
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A.4.4 α-Renaming and β -Reduction

α and β Conversions:

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can rename

the formal parameter of a λ -function expression provided that no free variables of its body M thereby

become bound.

• β -reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided that no free variables of N
thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

A.4.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures:

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: BB×C → A

A.4.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions:

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

Implicit Function Definitions:

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments. Partial functions

should be assisted by preconditions stating the criteria for arguments to be meaningful to the function.
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A.5 Other Applicative Expressions

A.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

A.5.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

A.5.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body

B(a).

A.5.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:
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Patterns:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ ℓ = list in ... end

let 〈a, ,bb〉̂ ℓ = list in ... end

let [a 7→bb ] ∪ m = map in ... end

let [a 7→b, ] ∪ m = map in ... end

A.5.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

Conditionals:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

A.5.6 Operator/Operand Expressions

Operator/Operand Expressions:

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
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= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.6 Imperative Constructs

A.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative con-

structs which, through stages of refinements, are turned into concrete and imperative constructs. Imperative

constructs are thus inevitable in RSL.

Statements and State Change:

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

A.6.2 Variables and Assignment

Variables and Assignment:

0. variable v:Type := expression
1. v := expr

A.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or side-effect.

Statement Sequences and skip:

2. skip

3. stm 1;stm 2;...;stm n

A.6.4 Imperative Conditionals

Imperative Conditionals:

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end
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A.6.5 Iterative Conditionals

Iterative Conditionals:

6. while expr do stm end

7. do stmt until expr end

A.6.6 Iterative Sequencing

Iterative Sequencing:

8. for e in list expr • P(b) do S(b) end

A.7 Process Constructs

A.7.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

Process Channels:

channel c:A
channel { k[ i ]:B • i:Idx }
channel { k[ i,j,...,k ]:B • i:Idx,j:Jdx,...,k:Kdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the desig-

nated types (A and B).

A.7.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage in

input and/or output events, thereby communicating over declared channels. Let P() and Q stand for process

expressions, then:

Process Composition:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes: either

external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes are forced to

communicate only with one another, until one of them terminates.

A.7.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events:

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively “writes” an

output.
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A.7.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express, in

their signature, via which channels they wish to engage in input and output events.

Process Definitions:

value

P: Unit → in c out k[ i ]
Unit

Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

A.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is often

done in RSL. An RSL specification is simply a sequence of one or more types, values (including functions),

variables, channels and axioms:

Simple RSL Specifications:

type

...
variable

...
channel

...
value

...
axiom

...
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interfaces, 9

interfaces

domain, 9

part

quality, 108

quality

part, 108

facet

domain, 71

fitting

requirements, 190, 191

formal

method, 102

software development, 102

software development

method, 102

Formal Method, 102

Formal Software Development, 102

function

expression

type, 47

partial, 47

signature, 47

total, 47

type

expression, 47

Function Signature, 47

Function Type Expression, 47

goal, 202

harmonisation

requirements, 190

Human, 16

human behaviour

domain, 95

Identity of Indiscernibles, 244

Indefinite Space, 39, 228

Indefinite Time, 40, 230

Indiscernibility of Identicals, 244

inert

attribute, 30, 146

instantiation

domain, 176

Intentional “Pull”, 226

Intentional Pull, 34

interest

domain of, 9

interface

requirements, 170, 191

interfaces

domain

external, 9

external

domain, 9

internal

system, 9

system

internal, 9

internal

interfaces

system, 9
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part

quality, 108

qualities, 28

quality

part, 108

system

interfaces, 9

intrinsics, 72

junk, 36

language

analysis, 65

description, 65

Living Species, I, 12

Living Species, II, 15

machine

requirements, 170

Man-made Parts: Artifacts, 14

management

domain, 91

Material, 17, 105

material, 17, 23, 105

Mereology, 221

mereology, 26

type, 26

Metaphysics, 220

Method, 102

method, 71, 102, 158

formal, 102

software development, 102

software development

formal, 102

Methodology, 102

methodology, 102, 158

Natural Part, 13

natural part, 13

Natural Parts, 13

obligation

proof, 35

Ontology, 221

organisation

domain, 91

Part, 105

part, 105

Atomic, 14, 106

Composite, 15, 106

external

quality, 108

internal

quality, 108

qualities, 108

quality

external, 108

internal, 108

partial

domain

requirement, 191

function, 47

requirement

domain, 191

Passive Parts, 231

Perdurant, 10, 222

perdurant, 10, 105, 222

derived, 197

phenomenon, 10, 104, 222

Philosophy, 220

Physical Parts, 12

prerequisite

prompt, 19, 27, 105, 107, 108

is entity, 10, 11

prescription

domain

requirements, 171

requirements

domain, 171

Proactive Parts, 231

programmable

attribute, 31, 146

projection

domain, 171

prompt

description

domain, 27, 109

domain

description, 27, 109

prerequisite, 19, 27, 105, 107, 108

proof

obligation, 35

qualities

internal, 28

part, 108

quality

external

part, 108

internal

part, 108

part
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external, 108

internal, 108

reactive

attribute, 30, 146

regulation

domain, 79

requirement

domain

partial, 191

shared, 191

partial

domain, 191

shared

domain, 191

requirements

derived, 191, 197

design, 170

domain, 169

prescription, 171

fitting, 190, 191

harmonisation, 190

interface, 170, 191

machine, 170

prescription

domain, 171

Requirements Fitting, 190

Requirements Harmonisation, 190

rule

domain, 79

Science

Domain, 136

script

domain, 81

shared

domain

requirement, 191

requirement

domain, 191

sharing, 191

signature

function, 47

software

development

triptych, 102

triptych

development, 102

software development

formal

method, 102

method

formal, 102

space

definite, 39, 229

State, 18

state, 226

static

attribute, 30, 146

Structure, 12

structure, 12

sub-part, 14, 106

support

technology, 75

system

interfaces

internal, 9

internal

interfaces, 9

technology

support, 75

the domain

context of, 9

The Triptych Approach to Software Development,

102

time

definite, 40, 230

total

function, 47

Transcendental, 36

Transcendental Deduction, 36

Transcendentality, 37

tree

description

domain, 118

domain

description, 118

triptych

development

software, 102

software

development, 102

type

expression

function, 47

function

expression, 47

mereology, 26

universe of

discourse, 9

Universe of Discourse, 219

Upper Ontology, 221

Verification Paradigm, 170
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B.2 Concepts

[endurant]

analysis prompts

domain, 113

description prompts

domain, 113

domain

analysis prompts, 113

description prompts, 113

“thing”, 10

abstract

value, 24

abstract type, 391

abstraction, 10, 75, 104, 222

accessibility, 200

action, 42, 67, 88, 232

shared, 158, 169

adaptive, 200

analysed &

described, 9

analysis

domain

prompt, 65

language, 65

prompt

domain, 65

analysis &

description

domain, 9

prompts, 66

domain

description, 9

prompts

description, 66

analysis prompts

[endurant]

domain, 113

domain

[endurant], 113

assumptions

design, 170

atomic part, 391

attribute

embedded

sharing, 189, 196

external, 183, 185, 189

shared, 103

sharing

embedded, 189, 196

update, 103

availability, 200

axiom, 7

behaviour, 7, 42, 67, 232

shared, 158, 169

change

state, 47

common

projection, 190

communication, 57

composite part, 391

composite, 159

computable

objects, 65

computer

program, 157

computer &

computing

science, 65, 66

science

computing, 65, 66

computing

computer &

science, 65, 66

science

computer &, 65, 66

conceive, 10, 104, 222

concrete type, 391

concurrency, 57

conservative

extension, 182

proof theoretic, 75

proof theoretic

extension, 75

Constraint, 202

constructor

function

type, 47

type

function, 47

continuous

time, 47

control, 81

corrective, 200

deduction
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transcendental, 3, 67

demonstration, 200

dependability, 200

requirements, 200

derivation

part, 143

derived

requirements, 158, 169

described

analysed &, 9

description

analysis &

domain, 9

prompts, 66

domain, 157

analysis &, 9

facet, 201

prompt, 27, 65, 66, 109

tree, 118

facet

domain, 201

language, 66

prompt

domain, 27, 65, 66, 109

prompts

analysis &, 66

tree

domain, 118

description prompts

[endurant]

domain, 113

domain

[endurant], 113

design

assumptions, 170

requirements, 170

software

specification, 157

specification

software, 157

determination, 169–171

development, 200

domain

requirements, 170

interface

requirements, 170

requirements, 200

domain, 170

interface, 170

software

triptych, 102

triptych

software, 102

discrete endurant, 391

documentation, 200

domain, 9, 71

[endurant]

analysis prompts, 113

description prompts, 113

analysis

prompt, 65

analysis &

description, 9

analysis prompts

[endurant], 113

description, 157

analysis &, 9

facet, 201

prompt, 27, 65, 66, 109

tree, 118

description prompts

[endurant], 113

development

requirements, 170

engineering, 158, 201

extension

requirements, 192

external

interfaces, 9

facet, 71, 169

description, 201

intrinsics, 72

support technology, 75

instrinsics, 169

interfaces

external, 9

intrinsics, 72

facet, 72

manifest, 71

partial

requirement, 190, 191

prescription

requirements, 171

prompt

analysis, 65

description, 27, 65, 66, 109

requirement

partial, 190, 191

shared, 190, 191

requirements, 169

development, 170

extension, 192
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prescription, 171

semantic, 123

shared

requirement, 190, 191

support technology

facet, 75

syntactic, 123

tree

description, 118

domain requirements

partial

prescription, 171

prescription

partial, 171

embedded

attribute

sharing, 189, 196

sharing

attribute, 189, 196

endurant, 67, 103, 391

discrete, 391

shared, 158, 169

engineering

domain, 158, 201

requirements, 158, 201

software, 157

entities, 67

entity, 391

entry, 186

entry,, 184

epistemology, 66

Euclid of Alexandria, 38, 228

event, 42, 67, 232

shared, 158, 169

execution, 200

exit, 186

exit,, 184

expression

function

type, 47

type, 47

function, 47

extension, 75, 169–171

conservative, 182

proof theoretic, 75

domain

requirements, 192

proof theoretic

conservative, 75

requirements

domain, 192

extensional, 200

external

attribute, 183, 185, 189

domain

interfaces, 9

interfaces

domain, 9

part

quality, 108

qualities, 67

quality

part, 108

facet, 71

description

domain, 201

domain, 71, 169

description, 201

intrinsics, 72

support technology, 75

intrinsics

domain, 72

machine

requirement, 200

requirement

machine, 200

specific, 72

support technology

domain, 75

fitting, 169–171

formal

method

software development, 102

software development

method, 102

specification, 157

formalisation, 7

function, 7

constructor

type, 47

expression

type, 47

name, 47

type

constructor, 47

expression, 47

goal, 202

guarantee, 201

rely, 201
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has concrete type

prerequisite

prompt, 21

prompt

prerequisite, 21

human behaviour, 71

identifier

unique, 24, 25

implementation

partial, 81

instantiation, 169–171

instrinsics, 169

domain, 169

integrity, 200

intensive, 72

interface, 9

development

requirements, 170

requirements, 169, 183, 190, 191

development, 170

interface

requirements, 158

interfaces

domain

external, 9

external

domain, 9

internal

system, 9

system

internal, 9

internal

interfaces

system, 9

part

quality, 108

qualities, 12–14, 67, 105

quality

part, 108

system

interfaces, 9

interval

time, 43

intrinsics, 71

domain, 72

facet, 72

facet

domain, 72

language

analysis, 65

description, 66

license, 84, 88

license languages, 71

licensee, 84, 88

licensing, 88

licensor, 84, 88

machine

facet

requirement, 200

requirement, 200

facet, 200

requirements, 169, 200

maintenance, 200

requirements, 200

management, 200

management & organisation, 71

manifest

domain, 71

mathematical

object, 157

mereology, 16

observer, 26

type, 26

update, 103

method, 71

formal

software development, 102

software development

formal, 102

modelling

requirements, 9

monitor, 81

name

function, 47

narration, 7

object

mathematical, 157

objective

operational, 202

objects

computable, 65

obligation, 88

proof, 7

observe, 10, 104, 222

observe part type

prerequisite

prompt, 21

prompt
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prerequisite, 21

observer

mereology, 26

ontology, 66

operational

objective, 202

operations research, 99

parallelism, 57

part, 14, 106, 391

atomic, 391

composite, 391

derivation, 143

external

quality, 108

internal

quality, 108

quality

external, 108

internal, 108

sort, 18

sub-, 391

partial

domain

requirement, 190, 191

domain requirements

prescription, 171

implementation, 81

prescription

domain requirements, 171

requirement

domain, 190, 191

perdurant, 67, 103

perfective, 200

performance, 200

permission, 88

permit, 84

phenomena

shared, 158

philosophy, 66

platform, 200

requirements, 200

pragmatics, 67

prerequisite

has concrete type

prompt, 21

observe part type

prompt, 21

prompt

has concrete type, 21

observe part type, 21

prescription

domain

requirements, 171

domain requirements

partial, 171

partial

domain requirements, 171

requirements, 157, 201

domain, 171

preventive, 200

principles, 71

process, 200

program

computer, 157

projection, 169–171

common, 190

specific, 190

prompt

analysis

domain, 65

description

domain, 27, 65, 66, 109

domain

analysis, 65

description, 27, 65, 66, 109

has concrete type

prerequisite, 21

observe part type

prerequisite, 21

prerequisite

has concrete type, 21

observe part type, 21

prompts

analysis &

description, 66

description

analysis &, 66

proof

obligation, 7

proof theoretic

conservative

extension, 75

extension

conservative, 75

qualities

external, 67

internal, 12–14, 67, 105

quality

external

part, 108
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internal

part, 108

part

external, 108

internal, 108

reliability, 200

rely

guarantee, 201

requirement

domain

partial, 190, 191

shared, 190, 191

facet

machine, 200

machine, 200

facet, 200

partial

domain, 190, 191

shared

domain, 190, 191

requirements

dependability, 200

derived, 158, 169

design, 170

development, 200

domain, 170

interface, 170

domain, 169

development, 170

extension, 192

prescription, 171

engineering, 158, 201

extension

domain, 192

interface, 169, 183, 190, 191

development, 170

interface , 158

machine, 169, 200

maintenance, 200

modelling, 9

platform, 200

prescription, 157, 201

domain, 171

technology, 200

robustness, 200

rules & regulations, 71

safety, 200

science

computer &

computing, 65, 66

computing

computer &, 65, 66

scripts, 71

security, 200

semantic

domain, 123

semantics, 67

semiotic, 67

shared

action, 158, 169

attribute, 103

behaviour, 158, 169

domain

requirement, 190, 191

endurant, 158, 169

event, 158, 169

phenomena, 158

requirement

domain, 190, 191

sharing

attribute

embedded, 189, 196

embedded

attribute, 189, 196

simplification, 157, 172

simplify, 174

software

design

specification, 157

development

triptych, 102

engineering, 157

specification

design, 157

triptych

development, 102

software development

formal

method, 102

method

formal, 102

sort, 7, 391

part, 18

specific

facet, 72

projection, 190

specification

design

software, 157

formal, 157
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software

design, 157

state, 41

change, 47

sub-part, 14, 15, 106, 391

support

technology, 190

support technology, 71

domain

facet, 75

facet

domain, 75

synchronisation, 57

syntactic

domain, 123

syntax, 67

system

interfaces

internal, 9

internal

interfaces, 9

techniques, 71

technology

requirements, 200

support, 190

time, 41, 43

continuous, 47

interval, 43

tools, 71

transcendental

deduction, 3, 67

tree

description

domain, 118

domain

description, 118

TripTych, 28, 203

triptych

development

software, 102

software

development, 102

type, 7, 391

abstract, 391

concrete, 391

constructor

function, 47

expression, 47

function, 47

function

constructor, 47

expression, 47

mereology, 26

unique

identifier, 24, 25

unique identifier, 394

update

attribute, 103

mereology, 103

value

abstract, 24

B.3 Examples

Domain Requirements

Derived Action:

Tracing Vehicles (# 5.16), 197

Derived Event:

Current Maximum Flow (# 5.17), 198

Determination

Toll-roads (# 5.9), 180

Endurant Extension (# 5.10), 183

Fitting (# 5.11), 191

Instantiation

Road Net (# 5.7), 176

Road Net, Abstraction (# 5.8), 179

Projection (# 5.6), 172

Projection:

A Narrative Sketch (# 5.5), 172

Interface Requirements

Projected Extensions (# 5.12), 192

Shared

Endurant Initialisation (# 5.14), 193

Endurants (# 5.13), 192

Shared Behaviours (# 5.15), 196

Road Pricing System

Design Assumptions (# 5.2), 170

Design Requirements (# 5.1), 170

Toll-Gate System

Design Assumptions (# 5.4), 171

Design Requirements (# 5.3), 171
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B.4 Analysis Prompts

a. is entity, 10

b. is endurant, 10

c. is perdurant, 11

d. is discrete, 11

e. is continuous, 11

f. is physical part, 12

g. is living species, 12

h. is structure, 13

i. is part, 14

j. is atomic, 14

k. is composite, 15

l. is living species, 15

m. is plant, 15

n. is animal, 16

o. is human, 16

p. has materials, 17

q. is artefact, 17

r. observe endurant sorts, 18

s. has concrete type, 20

t. has mereology, 25

u. attribute types, 28

B.5 Description Prompts

[1] observe endurant sorts, 18

[2] observe part type, 20

[3] observe material sorts, 22

[4] observe unique identifier, 24

[5] observe mereology, 25

[6] observe attributes, 28

B.6 Attribute Categories

is active attribute, 30, 146

is autonomous attribute, 30, 146

is biddable attribute, 30, 146

is dynamic attribute, 30, 146

is inert attribute, 30, 146

is programmable attribute, 31, 146

is reactive attribute, 30, 146

is static attribute , 30

is static attribute, 146

B.7 RSL Symbolds

Literals , 478–488

Unit, 488

chaos, 478, 480

false, 472, 474

true, 472, 474

Arithmetic Constructs, 474

ai*a j , 474

ai+a j , 474

ai/a j , 474

ai=a j , 474

ai≥a j , 474

ai>a j , 474

ai≤a j , 474

ai<a j , 474

ai 6=a j , 474

ai−a j , 474

Cartesian Constructs, 475, 478

(e1,e2,...,en) , 475

Combinators, 484–487

... elsif ... , 485

case be of pa1 → c1, ... pan → cn end , 485, 486

do stmt until be end , 487

for e in listexpr • P(b) do stm(e) end , 487

if be then cc else ca end , 485, 486

let a:A • P(a) in c end , 484
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let pa = e in c end , 484

variable v:Type := expression , 486

while be do stm end , 487

v := expression , 486

Function Constructs, 483

post P(args,result), 483

pre P(args), 483

f(args) as result, 483

f(a), 482

f(args) ≡ expr, 483

f(), 486

List Constructs, 475–476, 478–480

<Q(l(i))|i in<1..lenl> •P(a)> , 476

<> , 476

ℓ(i) , 479

ℓ′= ℓ′′ , 479

ℓ′ 6= ℓ′′ , 479

ℓ′̂ℓ′′ , 479

elems ℓ , 479

hd ℓ , 479

inds ℓ , 479

len ℓ , 479

tl ℓ , 479

e1 <e2,e2,...,en > , 476

Logic Constructs, 473–474

bi ∨ b j , 474

∀ a:A • P(a) , 474

∃! a:A • P(a) , 474

∃ a:A • P(a) , 474

∼ b , 474

false, 472, 474

true, 472, 474

bi ⇒ b j , 474

bi ∧ b j , 474

Map Constructs, 476, 480–482

mi ◦ m j , 481

mi ΓE30F m j , 481

mi / m j , 481

dom m , 480

rng m , 480

mi =m j , 481

mi ∪m j , 480

mi † m j , 480

mi 6=m j , 481

m(e) , 480

[ ] , 476

[u1 7→v1,u2 7→v2,...,un 7→vn] , 476

[F(e) 7→G(m(e))|e:E•e∈domm∧P(e)] , 476

Process Constructs, 487–488

channel c:T , 487

channel {k[i]:T•i:Idx} , 487

c ! e , 487

c ? , 487

k[i] ! e , 487

k[i] ? , 487

pi⌈⌉⌊⌋p j , 487

pi⌈⌉p j , 487

pi‖p j , 487

pi–‖p j , 487

P: Unit→ in c out k[i] Unit , 488

Q: i:KIdx → out c in k[i] Unit, 488

Set Constructs, 475, 477–478

∩{s1,s2,...,sn} , 477

∪{s1,s2,...,sn} , 477

card s , 477

e∈s , 477

e 6∈s , 477

si=s j , 477

si∩s j , 477

si∪s j , 477

si⊂s j , 477

si⊆s j , 477

si 6=s j , 477

si\s j , 477

{} , 475

{e1,e2, ...,en} , 475

{Q(a)|a:A•a∈s∧P(a)} , 475

Type Expressions, 471–472

(T1×T2×... ×Tn) , 472

Bool, 471

Char, 471

Int, 471

Nat, 471

Real, 471

Text, 471

Unit, 486

mk id(s1:T1,s2:T2,...,sn:Tn) , 472

s1:T1 s2:T2 ... sn:Tn , 472

T∗ , 472

Tω , 472

T1 × T2 × ... × Tn , 472

T1 | T2 | ... | T1 | Tn , 472

Ti →m T j , 472

Ti
∼
→T j , 472

Ti→T j , 472

T-infset, 472
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T-set, 472

Type Definitions, 472–473

T = Type Expr, 472

T={| v:T′• P(v)|} , 473

T==TE1 | TE2 | ... | TEn , 473
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