
Domain Analysis & Description – Sorts, Types, Intents

DINES BJØRNER, TECHNICAL UNIVERSITY OF DENMARK

ACM Reference Format:

Dines Bjørner, Technical University of Denmark. . Domain Analysis &
Description – Sorts, Types, Intents. 1, 1 (November), 9 pages.

ABSTRACT

In earlier publications on domain analysis & description [5–8, 10,

12] we introduced the notion of discrete endurants, both natural and

artefactual, being parts and characterised classes of these as sorts.
Parts were then analysed with respect to internal qualities such as

unique identifiers, mereologies and attributes and these were char-

acterised in terms of types. In [11] we show how Kai Sørlander’s

philosophy [24–26] justifies our ontology of entities not on empiri-

cal grounds, but on philosophical grounds – and we brought forward

the notion of intentional pull mentioned only briefly in [12]. In [9]

we further analysed certain attribute types in terms of the SI: The In-

ternational System of Units1. In this paper we shall examine some

aspects of sorts, types and intents not covered in [5–12].2

1 INTRODUCTION

By a domain we shall understand a rationally describable seg-

ment of a human assisted reality, i.e., of the world, its physi-
cal parts: natural [“God-given”] and artefactual [“man-made”],

and living species: plants and animals including, notably, hu-
mans. These entities are endurants (“still”), as well as perdurants
(“alive”). Emphasis is placed on “human-assistedness”, that is,

there is at least one (man-made) artifact and, therefore, that hu-
mans are a primary cause for change of endurant states as well as

perdurant behaviours.

1.1 Entities, Endurants and Perdurants

1.1.1 Entity: By an entity we shall understand a phenomenon,

i.e., something that can be observed: touched by humans, or that can

be conceived as an abstraction of an entity; alternatively, a phenom-

enon is an entity, if it exists, it is “being”, it is that which makes

a “thing” what it is: essence, essential nature [23, Vol. I, pg. 665]

Examples: A train, a train ride, an aircraft, a flight

1https://en.wikipedia.org/wiki/International System of Units
2November 21, 2019: 15:51

Dines Bjørner, Technical University of Denmark.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© Association for Computing Machinery.
XXXX-XXXX//11-ART $15.00 doi.org/

1.1.2 Endurant: By an endurant we shall understand an entity

that can be observed, or conceived and described, as a “complete

thing” at no matter which given snapshot of time; alternatively an

entity is endurant if it is capable of enduring, that is persist, “hold

out” [23, Vol. I, pg. 656]. Were we to “freeze” time we would still

be able to observe the entire endurant Examples: A road, an

automobile, a human driver

1.1.3 Perdurant: By a perdurant we shall understand an en-

tity for which only a fragment exists if we look at or touch them at

any given snapshot in time. Were we to freeze time we would only

see or touch a fragment of the perdurant, alternatively an entity is

perdurant if it endures continuously, over time, persists, lasting [23,

Vol. II, pg. 1552] Examples: A train ride, an aircraft flight

1.2 Discrete and Continuous Endurants

1.2.1 Discrete Endurant: By a discrete endurant we shall

understand an endurant which is separate, individual or distinct in

form or concept Examples: A pipeline and its individual units:

pipes, valves, pumps, forks, etc.

1.2.2 Continuous Endurants: Non-solids: By a contin-
uous endurant (a non-solid) we shall understand an endurant

which is prolonged, without interruption, in an unbroken series or

pattern Examples: Water, oil, gas, compressed air, etc. A con-

tainer, which we consider a discrete endurant, may contain a non-

solid, like a gas pipeline unit may contain gas

1.3 A Domain Ontology

Figure 1 graphs an essence of the domain ontology of entities, en-

durants, perdurants, etc., as these concepts were covered in [12]. Sec-

tions 1.1 – 1.2 covered some aspects of the first three layers, from

the top, of that domain ontology. Following [12], as also justified,

Actions Events

Behaviours

Indescribables

Transcendense

Endurants Perdurants

Channels

Actors

Entities

Plants

Humans

= Describables

E

E

transcendental injection of endurants into perdurants

E

E

A
to

m
ic

Artifacts

Mereologies
Attributes

Continuous Endurants

Non−solids

Solids =
Discrete Endurants

Unique Identifiers

Structures

Phenomena of a Universe of Discourse

Cont. Ends. Cont. Ends.

Living Species

Animals

E1,...,Es

Man−madeNatural

Physical Parts

Natural Parts

Internal Qualities

External Qualities

LS

NS

Observer function "states"

www.imm.dtu.dk/~dibj/2019/cacm−research/cacm−research−1.pdf

E
−

s
e
t

C
o

n
cr

et
e

T
yp

e

E
1
,.
..
,E

p

C
o

m
p

o
si

te

Fig. 1. A Domain Ontology

on grounds of philosophy, by [11], we shall claim that the manifest

, Vol. 1, No. 1, Article . Publication date: .

doi.org/

:2 � Dines Bjørner, Technical University of Denmark

world, i.e., the physical and living endurants, can be analysed with

respect to their observable, i.e., viewable and touchable, i.e., exter-
nal qualities, respectively their measurable, i.e., internal quali-
ties. The external qualities are summarised in sorts. Values of sorts,

i.e., physical and living endurants [we shall omit treatment of struc-

tures in this paper], can be summarised in three (internal quality)

categories: unique identifiers, mereologies, and attributes. These in-

ternal qualities are summarised by types3.
•••

We shall, in this paper, make a pragmatic distinction between sorts

and types. Sorts will be used to characterise observable endurants.

Types will be used to characterise sorts ! Intents are then [something]

associated with man-made endurants.

2 SORTS

By a sort we shall generally mean a named set of endurants which

we shall later further characterise.

2.1 Physical Parts, Living Species and Structures

With discrete endurants we associate sorts.

2.1.1 Physical Parts: By a physical part we shall understand

a discrete endurant existing in time and subject to laws of physics,

including the causality principle and gravitational pull 4 Classes

of “similar” physical parts are given names and these we shall refer

to as sort names. Our investigation into sorts, types and intents will

focus on physical, in particular artefactual parts.

2.1.2 Living Species: By a living species we shall understand

a discrete endurant, subject to laws of physics, and additionally sub-

ject to causality of purpose. Living species must have some form

they can be developed to reach ; which they must be causally deter-

mined to maintain. This development and maintenance must further

in an exchange of matter with an environment. It must be possible

that living species occur in one of two forms: one form which is char-

acterised by development, form and exchange; another form which,

additionally, can be characterised by the ability to purposeful move-

ment The first we call plants, the second we call animals We

shall not, in this paper further deal with living species

2.1.3 Structures: By a structure we shall understand a dis-

crete endurant which the domain engineer chooses to describe as

consisting of one or more endurants, whether discrete or continuous,

but to not endow with internal qualities: unique identifiers, mere-

ology or attributes We shall not, in this paper further deal with

the concept of structures.

2.2 Natural Parts and Artefacts

Physical parts are either natural parts, or are artefacts, i.e. man-made

parts, which possess internal qualities: unique identification,

mereology, and one or more attributes For more on internal

qualities, see Sect. 3.2.

3The RAISE [19] Specification Language. RSL [18], as we use it in this paper, does
not distinguish between sorts and types.
4This characterisation is the result of our study of relations between philosophy and
computing science, notably influenced by Kai Sørlander’s Philosophy. We refer to our
research report [11].

2.2.1 Natural Parts: Natural parts are in space and time; are

subject to the laws of physics, and also subject to the principle of

causality and gravitational pull Examples: an island, a moun-

tain, a river, a lake, a granite rock, a gold lode

2.2.2 Artefacts: By an artifact we shall understand a man-

made physical part Examples: road nets, road intersections (hubs),

links (roads between adjacent hubs); automobiles

2.3 Various Forms of Physical Parts

We now arrive at the point where sorts come into play. Natural parts

are either atomic, or composite, and artefactual parts are either of

atomic sort, or of composite sort, or of set sort.

2.3.1 Atomic Parts: Atomic Parts are those which, in a given

context, are deemed to not consist of meaningful, separately observ-

able proper sub-parts. A sub-part is a part Examples: a hub, a

link, a pipe, a valve, a wheel, an engine, a door, a window

2.3.2 Composite Parts: Composite Parts are those which,

in a given context, are deemed to indeed consist of meaningful,

separately observable proper sub-parts Examples: an automobile,

a road net, a pipeline

2.3.3 Set Sort Parts: Set Sort Parts are simplifications of

components. A set sort part is a set of parts of the same sort. The do-

main analyser cum describer chooses to indeed endow components

with mereology Examples: Road nets are considered composi-

tions of two parts. a hub aggregate and a link aggregate. The hub

aggregate is a set sort part and consists of a set of hubs; the link ag-

gregate is a set sort part and consists of a set of links Set sort parts

are pragmatic constructions.

2.4 Analysis and Description Prompts

Implicit in the “story” of Sects. 2.1–2.3 are the following analysis
prompts:

• is entity

• is endurant

• is perdurant

• is discrete

• is continuous

• is phys. part

• is liv. species

• is structure

• is natural part

• is artefact

• is atomic

• is composite

• is components

• is set sort

• et cetera ()

The boxes imply analysis states where the following description prompts
are applicable:

• observe composite sorts

• observe component sorts

• observe set sort

respectively (– et cetera). The description observers can be formalised:
type: observe composite sorts: E→Text

Narrative:

s. narrative text on sorts E1,...,En

o. narrative text on observers obs E1,...,obs En

p. narrative text on proof obligation: P

Formalisation:

, Vol. 1, No. 1, Article . Publication date: November .

Domain Analysis & Description – Sorts, Types, Intents � :3

s. type E1,...,En

o. value obs E1: E→E1,...,obs En: E→En

p. proof obligation P: ∀ i:{1..n}•is Ei(e)≡
∧
{∼E j(e)|j:[1..n]\{i}|j:[1..n]}

In any specific domain analysis & description the analyser cum de-

scriber chooses which subset of composite sorts to analyse & de-

scribe. That is: any one domain model emphasises certain aspects

and leaves out many “other” aspects.
type: observe set sort: E→Text

Narratives:

s. narrative text on sort P

o. narrative text on observer obs Ps

Formalisation:

s. type P, Ps = P-set

o. value obs Ps: E→P-set

Typically P may be a sort expression: P1|P2|...|Pn where Pi are

sorts.

2.5 An Example: Road Transport

External Qualities

1 The road transport system consists of two aggregates: a road net and automo-
biles.

2 The road net consists of aggregates of atomic hubs (street intersections) and
atomic links (streets).

3 Hub aggregates are sets of hubs and link aggregates are sets of links.

4 Automobile aggregates are sets of automobiles.

type
1. RTS, RN, AA
value
1. obs RN: RTS → RN
1. obs AA: RTS → AA
type
2. AH, AL
value
2. obs AH: RN → AH
2. obs AL: RN → AL

type
3. Hs = H-set, H
3. Ls = L-set, L
value
3. obs Hs: AH → Hs
3. obs Ls: AL → Ls
type
4. As = A-set, A
value
4. obs As: AA → As

3 TYPES

By a type we shall generally mean a named set of values which

we, at the instance of introducing the type name, either define as an

atomic token type, or as a concrete type. By an atomic token type

we mean a set of further undefined atomic values. By a concrete type

we shall here mean either a set of values of type T, i.e., T-set, or a

list of values of type T, i.e., T∗, or a map from values of type A to

values of type B, i.e., A→m B, or a Cartesian product (a “record”,

a “structure”) of A, B, ..., C typed values, i.e., A×B×·· ·×C. A

type can also be a union type, that is, the set union of distinct types

A, B, ..., C, i.e., A|B| · · · |C. Tokens, Integers, Natural Num-
bers, Reals, Characters, POINT,T, and TI, for the latter three,

see Sect. 3.1, are base, or “atomic”, types. Concrete types of com-

mon programming languages include arrays (vectors, matrices,

tensors, etc.) and records. Eventually it all ends up in atomic (i.e.,

base) types.

3.1 Space and Time

Space and time “fall” somewhat outside a “standard view” of types.

We do not prescribe, really, a type space. It is just there. We shall

present a view of time different from those of [14, 16, 27].

3.1.1 Space: There is an abstract notion of (definite) SPACE(s)

of further un-analysable points; and there is a notion of POINTs in

SPACE. Space is not an attribute of endurants. Space is just there.

So we do not define an observer, observe space.

5 A point observer, observe POINT, is a function which ap-

plies to a[ny] specific “location” on a physical endurant, e,

and yields a point, ℓ : POINT.

value
5 obs POINT: E → POINT

3.1.2 Time: By a definite time we shall understand an abstract

representation of time such as for example year, day, hour, minute,

second, et cetera We shall not be concerned with any representa-

tion of time. That is, we leave it to the domain analyser cum de-

scriber to choose an own representation [16]. Similarly we shall not

be concerned with any representation of time intervals.5

6 So there is an abstract type Time,

7 and an abstract type TI: TimeInterval.

8 There is no Time origin, but there is a “zero” TIme interval.

9 One can add (subtract) a time interval to (from) a time and

obtain a time.

10 One can add and subtract two time intervals and obtain a time

interval – with subtraction respecting that the subtrahend is

smaller than or equal to the minuend.

11 One can subtract a time from another time obtaining a time

interval respecting that the subtrahend is smaller than or equal

to the minuend.

12 One can multiply a time interval with a real and obtain a time

interval.

13 One can compare two times and two time intervals.

type
6 T

7 TI

value
8 0:TI
9 +,−: T × TI → T

10 +,−: TI × TI
∼
→ TI

11 −: T × T → TI

12 ∗: TI × Real → TI

13 <,≤,=,6=,≥,>: T × T → Bool
13 <,≤,=,6=,≥,>: TI × TI → Bool
axiom
9 ∀ t:T • t+0 = t

14 We define the signature of the meta-physical time observer.

value
14 record TIME(): Unit → T

5– but point out, that although a definite time interval may be referred to by number
of years, number of days (less than 365), number of hours (less than 24), number of
minutes (less than 60)number of seconds (less than 60), et cetera, this is not a time, but
a time interval.

, Vol. 1, No. 1, Article . Publication date: November .

:4 � Dines Bjørner, Technical University of Denmark

The time recorder applies to nothing and yields a time. record TIME()

can only occur in action, event and behavioural descriptions.

3.2 Internal Qualities

The internal qualities of endurants may include: unique identifiers,

for physical parts and living species; mereologies, for atomic, com-

posite, set sort and human parts; and attributes, for physical parts

and living species.

3.2.1 Unique Identifiers: Every discrete endurant, e:E, is unique

and can hence be ascribed a unique identifier; that identifier can

be ascertained by applying the uid E observer function to e.

3.2.2 Mereologies: Mereology is the study of parts and the

wholes they form We shall interpret the mereology of a part,
p, here as as the topological and/or conceptual relations between

that part and other parts. Typically we can express the mereology of

p, i.e., mereo P(p), in terms of the sets of unique identifiers of the

other parts with which p is related. Generally, we can express that re-

lationship as a triplet: mereo P(p)=(ips,iops,ops) where ips is the

set of unique identifiers of those parts “from” which p “receives in-

put”, whatever ‘input’ means (!); iops is the set of unique identifiers

of those parts “with” which p mutually “shares” properties, what-

ever ‘shares’ means (!); ops is the set of unique identifiers of those

parts “to” which p “delivers output”, whatever ‘output’ means (!);

and where the three sets are mutually disjoint.

3.2.3 Attributes: Part attributes form more “free-wheeling” sets

of internal qualities than those of unique identifiers and mereolo-

gies.

Non-solids are typically recognised because of their spatial form

and are otherwise characterised by their intangible, but measurable

attributes. That is, whereas endurants, whether discrete (as are parts

and components) or continuous (as are materials), are tangible, in

the sense of being spatial [or being abstractions, i.e., concepts, of

spatial endurants], attributes are intangible: cannot normally be touched,

but can be objectively measured. Thus, in our quest for describing

domains where humans play an active rôle, we rule out subjective

“attributes”: feelings, sentiments, moods. Thus we shall abstain, in

our domain science also from matters of aesthetics.

Thus, to any part and non-solid, e, we can associate one or more

attributes A1, A2, ..., Am, where Ai is an attribute type name and

where attr Ai(e) is the corresponding attribute observer.

3.2.4 Internal Quality Observers: We can summarise the

observers for internal qualities while otherwise referring to [12] for

details.
type observe unique identifier: P→Text

Narratives:

i. text on unique identifier: UI

o. text on unique identifier observer: uid E

Formalisation:

i. type UI

o. value uid E: E → UI

type observe mereology: P→Text

Narratives:

m. text on mereology: M

o. text on mereology observer: mereo E

Formalisation:

m. type M = E (UIa, ..., UIc)

o. value mereo E: E → M

For the expression of E (UIa,...,UIc) the domain analyser cum de-

scriber need not take into consideration any concern for possible

“data structure efficiency” as we are not prescribing software re-

quirements let alone specifying a software design. The choice of

E (UIa,...,UIc), that is, of the mereology of any one sort E , depends

on the aspects of the domain that its analyser cum describer wishes

to study. That is, “one and the same domain” may give rise to differ-

ent models each emphasizing their aspects.
type observe attributes: P→Text

Narratives:

a. texts on attributes: Ai, ..., Ak

o. texts on attribute observers: attr Ai, ..., attr Ak

Formalisation:

a. type Ai [= Ai], ..., Ak [= Ak]

o. value obs Ai: E → Ai, ..., obs Ak : E → Ak

where [= A j] refer to an optional type expression.

In the expression of A j the domain analyser cum describer need

not take into consideration any concern for possible data structure

efficiency as we are not prescribing software requirements let alone

specifying a software design.

One and “seemingly” the same domain may give rise to different

analyses & descriptions. Each of these emphasize different aspects.

Example: Road Net: In one model of a road net emphasis may be

on automobile traffic (aiming, eventually, at a road pricing system).

I another model of “the same” road net emphasis may be on the

topological layout (aiming, eventually, at its construction). In yet a

third model “over” a road net emphasis may be on traffic control

For each such “road net” model the domain analyser cum describer

selects different overlapping sets of attributes.

3.2.5 Three Categories of Attributes: We can identify

three kinds of attributes: (i) physics, (i) artefactual and (i) inten-

tional.

3.3 Physics Attributes

Typically, when physicists write computer programs, intended for

calculating physics behaviours, they “lump” all of these into the

type Real, thereby hiding some important physics ’dimensions’. In

this section we shall review that which is missing !

The subject of physical dimensions in programming languages is

rather decisively treated in David Kennedy’s 1996 PhD Thesis [22]

— so there really is no point in trying to cast new light on this subject

other than to remind the reader of what these physical dimensions

are all about.

3.3.1 SI: The International System of Quantities: In

physics we operate on values of attributes of manifest, i.e., physical

phenomena. The type of some of these attributes are recorded in

well known tables, cf. Tables 1–3. Table 1 on the next page shows

the base units of physics.

, Vol. 1, No. 1, Article . Publication date: November .

Domain Analysis & Description – Sorts, Types, Intents � :5

Base quantity Name Type

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Table 1. Base SI Units

Table 2 on the facing page shows the units of physics derived from
the base units. Table 3 shows further units of physics derived from

Name Type Derived Quantity Derived Type

radian rad angle m/m

steradian sr solid angle m2×m−2

Hertz Hz frequency s−1

newton N force, weight kg×m×s−2

pascal Pa pressure, stress N/m2

joule J energy, work, heat N×m
watt W power, radiant flux J/s
coulomb C electric charge s×A
volt V electromotive force W/A (kg×m2×s−3×A−1)

farad F capacitance C/V (kg−1×m−2×s4×A2)

ohm Ω electrical resistance V/A (kg×m2×s3×A2)

siemens S electrical conductance A/V (kg1×m2×s3×A2)

weber Wb magnetic flux V×s (kg×m2×s−2×A−1)
tesla T magnetic flux density Wb/m2 (kg×s2×A−1)

henry H inductance Wb/A (kg×m2×s−2×A2)
degree Celsius oC temp. rel. to 273.15 K K
lumen lm luminous flux cd×sr (cd)

lux lx illuminance lm/m2 (m2×cd)

Table 2. Derived SI Units

the base units. The upper half of Table 5 shows standard prefixes for

Name Explanation Derived Type

area square meter m2

volume cubic meter m3

speed, velocity meter per second m/s

acceleration meter per second squared m/s2

wave number reciprocal meter m-1

mass density kilogram per cubic meter kg/m3

specific volume cubic meter per kilogram m3/kg

current density ampere per square meter A/m2

magnetic field strength ampere per meter A/m
substance concentration mole per cubic meter mol/m3

luminance candela per square meter cd/m2

mass fraction kilogram per kilogram kg/kg = 1

Table 3. Further SI Units

SI units of measure and the lower half of Table 5 shows fractions of
SI units.

Prefix name deca hecto kilo mega giga
Prefix symbol da h k M G

Factor 100 101 102 103 106 109

Prefix name tera peta exa zetta yotta
Prefix symbol T P E Z Y

Factor 1012 1015 1018 1021 1024

Table 4. Standard Prefixes for SI Units of Measure

•••

Prefix name deci centi milli micro nano
Prefix symbol d c m µ n

Factor 100 10−1 10−2 10−3 10−6 10−9

Prefix name pico femto atto zepto yocto
Prefix symbol p f a z y

Factor 10−12 10−15 10−18 10−21 10−24

Table 5. Fractions

The point in bringing this material is that when modelling, i.e., de-

scribing domains we must be extremely careful in not falling into

the trap of modelling physics types, etc., as we do in programming

– by simple Reals. We claim, without evidence, that many trivial

programming mistakes are due to confusions between especially de-

rived SI units, fractions and prefixes.

Units are Atomic. A volt, kg×m2×s−3×A−1, see Table 2, is

atomic. It is not a composite structure of mass, length, time, and

electric current – in some intricate relationship.
Example 1: Physics Attributes

Hub attributes:

15 number of lanes,
surface,
etc.;

type
15. NoL, SUR, ...
value
15. attr NoL:H→NoL
15. attr SUR:H→SUR, ...

Link attributes:

16 number of lanes,
surface.
etc.

value
16. attr NoL:L→NoL
16. attr SUR:L→SUR, ...

Automobile attributes:

17 Power,
Fuel (Gasoline, Diesel, Elec-
tric, ...),
Size, ...

18 Velocity,
Acceleration, ...

type
17. BHp = Nat:kg×m−2×s−3

17. Fuel
17. Length = Nat:cm
17. Width = Nat:cm
17. Height = Nat:cm
18. Vel = Real:m×s−1

18. Acc = Real:m×s−2

value
17. attr BHp: A→BHp
17. attr Fuel: A→Fuel
17. attr Length: A→Length
17. attr Width: A→Width
17. attr Height: A→Height
18. attr Vel: A→Vel
18. attr Acc: A→Acc

•••
Physical attributes may ascribe mass and volume to endurants. But

they do not reveal the substance, i.e., the material from which the

endurant is made. That is done by chemical attributes.

3.3.2 Chemical Elements: The mole, mol, substance is about

chemical molecules. A mole contains exactly 6.02214076×1023 (the

Avogadro number) constituent particles, usually atoms, molecules,

or ions – of the elements, cf. ’The Periodic Table’, en.wikipedi-
a.orgwiki/Periodic table, cf. Fig. 2. Any specific molecule

is then a compound of two or more elements, for example, calcium-
phosphat: Ca3(PO4)2.

Moles bring substance to endurants. The physics attributes may

ascribe weight and volume to endurants, but they do not explain

what it is that gives weight, i.e., fills out the volume.

, Vol. 1, No. 1, Article . Publication date: November .

:6 � Dines Bjørner, Technical University of Denmark

Fig. 2. Periodic Table

3.4 Artefactual Attributes

3.4.1 Examples of Artefactual Attributes: We exemplify

some artefactual attributes.

• Designs. Artefacts are man-made endurants. Hence “exhibit”

a design. My three dimensional villa has floor plans, etc. The

artefact attribute: ‘design’ can thus be presented by the archi-

tect’s or the construction engineer’s CAD/CAM drawings.

• States of an artefact, such as, for example, a road intersection

(or railway track) traffic signal; and

• Currency, e.g., Kr, $, £, e , U, et cetera, used as an attribute6,

say the cost of a train ticket.

• Artefactual Dimensions. Let the domain be that of indus-

trial production whose attributes could then be: production:

units produced per year, Units/Year; growth: increase in units

produced per year, Units×Year−2; productivity: production

per staff, Units×Year−1×Staff−1 — where the base for units
and staff are natural numbers.

Document Artefactual Attributes
Let us consider documents as artefactual parts. Typical document attributes are: (i)
kind of document: book, report, pamphlet, letter and ticket, (ii) publi-
cation date, (iii) number of pages, (iv) author/publisher and (v) possible colophon
information. All of these attributes are non-physics quantities.

Road Net Artefactual Attributes
Hub attributes:

19 state: set of pairs of link identifiers from, respectively to

which automobiles may traverse the hub;

20 state space: set of all possible hub states.

type
19. HΣ = (LI×LI)-set
20. HΩ = HΣ-set

value
19. attr HΣ:H→HΣ

20. attr HΩ:H→HΩ

Link attributes:

6One could also consider a [10 e] bank note to be an artefact, i.e., a part.

21 state: set of 0, 1, 2 or 3 pairs of adjacent hub identifiers, the

link is closed, open in one direction (closed in the opposite),

open in the other direction, or open in both directions; and

22 state space: set of all possible link states.

type
21. LΣ = (LI×LI)-set
22. LΩ = LΣ-set

value
21. attr LΣ:L→LΣ

22. attr LΩ:L→LΩ

4 INTENTS

4.1 Expressing Intents

Artefacts are made with an intent: one or more purposes for which

the parts are to serve. Usually intents involve two or more part sorts.

Examples of Intents.

• Road Transport: roads are “made to accommodate” auto-

mobiles, and automobiles are “made to drive” on roads

• Credit Card System: credit cards are for “payment of pur-

chased merchandise”, and retailers are “there to sell merchan-

dise”

4.2 Intent Modelling

We do not here suggest a formal way of expressing intents. That

is, we do not formalise “made to accommodate”, “made to drive”,

et cetera ! Intents, instead, are expressed as intentional pulls, and

these are then expressed in terms of “intent-related” attributes.

Examples of Intent-related Attributes. The intent-related at-

tributes are not based on physical evidence, but on what we can, but

do not necessarily speak about.
Example: Intentional Attributes

Road Transport:

23 Hub traversal history: the recording of which automobiles traversed a hub at
which time.

24 Link traversal history: the recording of which automobiles traversed a link at
which time.

25 Automobile history: the recording of which hubs and links were traversed at
which time.

type
23. HHist=AI→m T-set
24. LHist=AI→m T-set
25. AHist=(HI|LI)→m T-set

value
23. attr HHist:H→HHist
24. attr LHist:L→LHist
25. attr AHist:A→AHist

All three history attributes are subject to constraints: the automobile, hub and link
identifiers must be of automobiles, hubs and links of a (i.e., the) road net; the same

automobile cannot be at two or more hubs and/or links at any one time (23–24) and
the timed visits must be commensurate with the road net; et cetera.

Credit Card System:

26 Credit card histories X “records” Y 7, by time, the shop and the merchandise
bought.

27 Shop histories “record”, by time, the credit card and the merchandise sold.

, Vol. 1, No. 1, Article . Publication date: November .

Domain Analysis & Description – Sorts, Types, Intents � :7

type
26. CHist = T →m (SI×MI)
27. SHist = T →m (CI×MI)

value
26. attr CHist: C → CHist
27. attr SHist: S → SHist

The two history attributes are subject to constraints: the shop and credit card identi-
fiers must be of shops and credit cards of the credit card system; and the merchandise
identifier must be of a merchandise of the identified shop.

4.3 Intentional Pull

The term ‘intentional pull’ was first introduced in [12].

An Aside: Road Transport System States. In order to ex-

press intentional pulls we need introduce a notion of states. In gen-

eral, by a state, we shall mean any collection of parts each of which

contains one or more dynamic attributes, that is, attributes whose

values may change.
Road Net States &c.

We shall consider the following states:

28 any road transport system;
29 the set of all its hubs;

30 the set of all its links; and
31 the set of all its automobiles.

value
28. rtn:RTN
29. hs:obs Hs(obs AH(rtn))

30. ls:obs Ls(obs AL(rtn))
31. as:obs As(obs AA(rtn))

32 From the set of hubs we can extract the map of hub histories:
from hub identifiers to hub histories.

type

32. HHists=HI→m (AI→m T-set)

value

32. extr HHists:H-set→HHists

32. extr HHists(hs) ≡ [hi 7→attr HHist(h)|h:H•h ∈ hs ∧ hi=uid H(h)]

33 From the set of links we can extract the map of link histories:
from link identifiers to link histories.

type

33. LHists=LI→m (AI→m T-set)

value

33. extr LHists:L-set→LHists

33. extr LHists(ls) ≡ [li 7→attr LHist(l)|l:L•l ∈ ls ∧ li=uid L(l)]

34 From the set of automobiles we can extract the map of automobile histories:
from automobile identifiers to automobile histories.

type

34. AHists=AI→m ((HI|LI)→m T-set)

value

34. extr AHists:A-set→AHists

34. extr AHists(as) ≡ [ai 7→attr AHist(a)|a:A•a ∈as ∧ ai=uid A(a)]

35 We can merge the hub and link histories.

type

35. HLHists=(HI|LI)→m (AI→m T-set)

value

35. mergeHLHists:(HHists×LHists)→HLHists

35. mergeHLHists(hhists,lhists) ≡ hhists ∪ lhists

36 The ahists:AI→m ((HI|LI)→m T-set) can be “inverted”:

inv ahists(ahists)8into hlhists:(HI|LI)→m (AI→m T-set)

37 and then “re-inverted”:
inv hlhists(hlhists) into ahists′:AI→m ((HI|LI)→m T-set)

38 to [re-]obtain ahists
as no automobile can be in any two or more places at any one time.

value

36. inv ahists: AHists → HLHists

36. inv ahists(ahists) ≡

36. [hli 7→[ai′ 7→(ahists(ai′))(hli)|ai′:AI•ai′∈ dom ahists∧hli∈dom ahists(ai′)]

36. |ai:AI,hli:(HI|LI)•ai∈dom ahists∧hli∈dom ahists(ai)]

assertion:

38. ∀ ahists:AHists • inv hlhists(inv ahists(ahists)) = ahists

where:

37. inv hlhists: HLHists → AHists

37. inv hlhists(hlhists) ≡ left to the reader

Examples of Intentional Pulls. Road Transport:

39 If an automobile history records that an automobile was at a

hub or on a link at some time,

then that hub, respectively link, history records that that auto-

mobile was there at that time,

and vice versa — and only that.

intentional pull:
39. � ∀ rtn:RTN, hs:Hs, ls:Ls, as:As•

39. hs=obs Hs(obs AH(rtn))
39. ∧ ls=obs Ls(obs AL(rtn))
39. ∧ as=obs As(obs AA(rtn))
39. ∧ let ahists=xtr AHists(as),
39. hlhists=xtr HHists(hs)∪xtr LHists(ls) in
39. inv AHists(ahists) = hlhists end

Credit Card System:

40 If a credit card history records that an purchase was made at

a shop of some merchandise and at

41 some time,

42 then that shop’s history records that that such a purchase was

made there at that time,

43 and vice versa — and only that.

We leave the formalisation to the reader

5 ACTIONS, EVENTS, BEHAVIOURS

By a transcendental deduction [12] we shall interpret discrete

endurants as behaviours. Behaviours are sets of sequences of actions,

events and behaviours. Behaviours communicate, for example, by

means of CSP channels and output/input commands [21].

5.1 Actions

Actions are functions which purposefully are initiated by behaviours

and potentially changes a state. Actions apply to behaviour argu-

ments and yield updates to these.

5.2 Events

Events are functions which surreptitiously “occur” to behaviours,

typically instigated by “some outside”, and usually changes a state.

Events updates behaviour arguments. Events can be expressed as

CSP [21] inputs.

5.3 Behaviours

To every part we shall, in principle, associate a behaviour. The be-

haviour is unique identified by the unique identifier of the part. The

behaviour communicates with such other parts as are identified by

8Note the subtle use of free and bound variables in the map comprehension expressions.

, Vol. 1, No. 1, Article . Publication date: November .

:8 � Dines Bjørner, Technical University of Denmark

the mereology of the parts. The behaviour otherwise depends on

arguments: the unique part identifier, the part mereology, the part at-

tributes separated into the static attributes, i.e., those with constant

values, the programmable attributes, and the remaining dynamic at-

tributes. The programmable attributes are those whose values are set

by the behaviour, i.e., its actions.

5.4 Summary

The “miracle” of transcendental deduction is fundamental to domain

analysis & description. It “ties” sorts: their external and internal

qualities strongly to the dynamics of domains. Details on transcen-

dental deductions, actions, events and behaviours are given in [12].

6 CONCLUSION

The sort, type and intent concepts of the domain analysis & descrip-

tion method covered in [12] has been studied in further detail. Al-

though, as also illustrated by Fig. 1 on Page 1, the method includes

the analysis of natural and living species, it is primarily aimed at

artefacts and domains dominated by such. We refer to [13] for a

dozen or so examples of medium-scale domain analysis & descrip-

tion case studies. You will see from those examples that they are

all rather frugal with respect to ascribing attributes. That is: An en-

durant may have very many attributes, but in any one domain de-

scription in which it is present the analyser cum describer may have

chosen to “abstract some out (!)”, that is, to not consider some —

often very many of these — of these attributes.

6.1 Sort versus Types

“Sorts are not recursive !” That is, parts of sort S do not contain

proper sub-parts of same sort S.

6.1.1 Pragmatics: In this paper we have used the terms ‘sorts’

and ‘types’ as follows. Sorts are used to describe external qualities

of endurants: whether discrete or continuous (solids or non-solids),

whether physical parts, living species or structures, whether natural

parts or artefacts, and whether atomic, composite, components or

set sorts. Types are used to describe internal qualities of endurants:

unique identifiers, mereologies, and attributes.

6.1.2 Syntactics: Sorts are defined by simple identifiers:

• type S.

Types are defined either by base type definitions type T = BTE,
where BTE is an atomic type expression, for example either of,

•
Intg[:Dim],

•
Nat[:Dim],

•
Real[:Dim],

•
Char[:Dim],

•
Token,

•
POINT

and

• T,TI.

where [:Dim] is either absent or some standard prefix and fraction

SI unit. Or types are defined by composite type expressions, type T
= CTE, for example of the form:

CTE = A-set | B×C×...×D | E→m F | etc.

where A, B, C, ..., D, E, F, etc., are type expressions – where

[recursive] T is allowed.

6.1.3 Semantics: We start with types. Types are sets of either

base (type) values, or structures over these: sets of sets (of etc.), sets

of Cartesians (of etc.), sets of maps (from etc.), et cetera. Sorts are

sets of endurants as characterised by their being discrete or continu-

ous (solids or non-solids), physical parts, living species or structures,

natural parts or artefacts, and atomic, composite, components or set

sorts; and as furthermore characterised by the types of their possible

unique identifiers, possible mereologies (components have no mere-

ologies), and attributes.

6.2 An Earlier Review of Types

Section 5.3, Pages 43–48, of [8], brings an extensive review of pub-

lished papers on types. That review does not make the distinction

made in this paper as summarised in Sect. 6.1.

MORE TO COME

6.3 Domain Oriented Programming Languages

I found out about Kennedy’s work from [20]. My own interest in

the subject goes back to the early 1980s. Around year 2000 I had an

MSc student work out formal specifications and compilers for two

“small” programming languages: one for senior high school [stu-

dent] physics and one for business college [student] accounting. I

otherwise refer to [2, Exercise 9.4, Page 235].

One could, rather easily, augment standard programming languages,

for use in physics calculations, to feature a refined type system that

reflects the SI units, simple and composite, as well as standard SI

prefixes and fractions.

We refer to the very elegant domain-specific actuarial program-

ming language, Actulus, [15] for life insurance and pensions.

Our Domain Specific Language dogma is this: the design (and
semantics) of any DSL must be based on a carefully analysed
and both informally and formally described domain.

6.4 Research Topics

• Artefactual Types: A further study of artefactual types seems

reasonable: are there identifiable categories of artefactual types ?

• Intents: We have remarked that we suggest no formal repre-

sentation of intents. But should there be ?

• Intentional Pull: Although we have illustrated some “inten-

tional pulls”, also in [11, 12], it seems only reasonable to

study further examples.

Attributes of Living Species: The Swedish botanist, zoologist,

and physician, Carl von Linné, is the father of modern taxonomy:

the science that finds, describes, classifies, and names living things,

published [28, in 1748]. In domain analysing & describing living

species one, of course, cannot really contribute much new. So we

leave that area to the living species taxonomists – while referring to

[17, Formal Concept Analysis — Mathematical Foundations]. See

also [8, Sect. 1.8].

6.5 Acknowledgements

It is a pleasure to acknowledge my collaboration over recent years

with Klaus Havelund.

[11]

, Vol. 1, No. 1, Article . Publication date: November .

Domain Analysis & Description – Sorts, Types, Intents � :9

REFERENCES
[1] Dines Bjørner. Domain Models of ”The Market” — in Preparation for

E–Transaction Systems. In Practical Foundations of Business and Sys-
tem Specifications (Eds.: Haim Kilov and Ken Baclawski), The Nether-
lands, December 2002. Kluwer Academic Press. http://www2.imm.dtu.-
dk/~dibj/themarket.pdf.

[2] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and
Languages. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006. Chapters 12–14 are primarily authored by Christian Krog
Madsen. See [3, 4].

[3] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and
Languages. Qinghua University Press, 2008.

[4] Dines Bjørner. Chinese: Software Engineering, Vol. 2: Specification of
Systems and Languages. Qinghua University Press. Translated by Dr Liu
Bo Chao et al., 2010.

[5] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen,
editors, Formal Methods: State of the Art and New Directions, Eds. Paul
Boca and Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.

[6] Dines Bjørner. Domain Science & Engineering – From Computer Sci-
ence to The Sciences of Informatics, Part I of II: The Engineering
Part. Kibernetika i sistemny analiz, 2(4):100–116, May 2010.

[7] Dines Bjørner. Domain Science & Engineering – From Computer Sci-
ence to The Sciences of Informatics Part II of II: The Science
Part. Kibernetika i sistemny analiz, 2(3):100–120, June 2011.

[8] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects
of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

[9] Dines Bjørner. Domain analysis & description - the implicit and explicit se-
mantics problem. In Régine Laleau, Dominique Méry, Shin Nakajima, and
Elena Troubitsyna, editors, Proceedings Joint Workshop on Handling IMPlicit
and EXplicit knowledge in formal system development (IMPEX) and For-
mal and Model-Driven Techniques for Developing Trustworthy Systems
(FM&MDD), Xi’An, China, 16th November 2017, volume 271 of Electronic
Proceedings in Theoretical Computer Science, pages 1–23. Open Publish-
ing Association, 2018.

[10] Dines Bjørner. Domain Facets: Analysis & Description. Technical report,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark,
May 2018. Extensive revision of [5]. imm.dtu.dk/~dibj/2016/facets/-
faoc-facets.pdf.

[11] Dines Bjørner. Domain Analysis & Description – A Philosophy Basis. Tech-
nical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte,
Denmark, November 2019. imm.dtu.dk/~dibj/2019/filo/main2.pdf.

[12] Dines Bjørner. Domain Analysis & Description – Principles, Tech-
niques and Modelling Languages. ACM Trans. on Software En-
gineering and Methodology, 29(2):..., April 2019. imm.dtu.-
dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf.

[13] Dines Bjørner. Domain Case Studies:
• 2019: Container Line, ECNU, Shanghai, China imm.dtu.dk/~db/cont-

ainer-paper.pdf
• 2018: Documents, TongJi Univ., Shanghai, China imm.dtu.-

dk/~dibj/2017/docs/docs.pdf

• 2017: Urban Planning, TongJi Univ., Shanghai, China imm.dtu.-
dk/~dibj2017/up/urban-planning.pdf

• 2017: Swarms of Drones, Inst. of Softw., Chinese Acad. of Sci., Peking,
China imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf

• 2013: Road Transport, Techn. Univ. of Denmark imm.dtu.-
dk/~dibj/road-p.pdf

• 2012: Credit Cards, Uppsala, Sweden imm.dtu.dk/~dibj/2016/cre-

dit/accs.pdf
• 2912: Weather Information, Bergen, Norway imm.dtu.dk/~dibj/-

2016/wis/wis-p.pdf
• 2010: Web-based Transaction Processing, Techn. Univ. of Vienna, Aus-

tria imm.dtu.dk/~dibj/wfdftp.pdf
• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan imm.dtu.-

dk/~db/todai/tse-1.pdf, imm.dtu.dk/~db/todai/tse-2.pdf
• 2009: Pipelines, Techn. Univ. of Graz, Austria imm.dtu.-

dk/~dibj/pipe-p.pdf

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark
imm.dtu.dk/~dibj/container-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark imm.dtu.dk/~dibj/the-

market.pdf, [1]
• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium imm.-

dtu.dk/~dibj/train-book.pdf
Experimental research reports, Technical University of Denmark, Fredsvej
11, DK-2840 Holte, Denmark.

[14] Wayne D. Blizard. A Formal Theory of Objects, Space and Time. The
Journal of Symbolic Logic, 55(1):74–89, March 1990.

[15] David R. Christiansen, Klaus Grue, Henning Niss, Peter Sestoft, and
Kristján S. Sigtryggsson. Actulus Modeling Language - An actu-
arial programming language for life insurance and pensions. Tech-
nical Report, edlund.dk/sites/default/files/Downloads/paper ac-

tulus-modeling-language.pdf, Edlund A/S, Denmark, Bjerreg̊ards
Sidevej 4, DK-2500 Valby. (+45) 36 15 06 30. edlund@edlund.dk,
http://www.edlund.dk/en/insights/scientific-papers, 2015. This paper il-
lustrates how the design of pension and life insurance products, and their
administration, reserve calculations, and audit, can be based on a common
formal notation. The notation is human-readable and machine-processable,
and specialised to the actuarial domain, achieving great expressive power
combined with ease of use and safety.

[16] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Mod-
eling Time in Computing. Monographs in Theoretical Computer Science.
Springer, 2012.

[17] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis — Mathe-
matical Foundations. Springer-Verlag, January 1999.

[18] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen,
Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner.
The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

[19] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert
Milne, Søren Prehn, and Jan Storbank Pedersen. The RAISE Development
Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

[20] J Paul Gibson and Dominique Méry. Explicit modelling of physical mea-
sures: From event-b to java. In Régine Laleau, Dominique Méry, Shin
Nakajima, and Elena Troubitsyna, editors, Proceedings Joint Workshop on
Handling IMPlicit and EXplicit knowledge in formal system development
(IMPEX) and Formal and Model-Driven Techniques for Developing Trust-
worthy Systems (FM&MDD), Xi’An, China, 16th November 2017, volume
271 of Electronic Proceedings in Theoretical Computer Science, pages 64–
79. Open Publishing Association, 2018.

[21] Charles Anthony Richard Hoare. Communicating Sequential Processes.
C.A.R. Hoare Series in Computer Science. Prentice-Hall International,
1985. Published electronically: usingcsp.com/cspbook.pdf (2004).

[22] Andrew Kennedy. Programming languages and dimensions. PhD the-
sis, University of Cambridge, Computer Laboratory, April 1996. 149
pages: cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf. Technical re-
port UCAM-CL-TR-391, ISSN 1476-298.

[23] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Ox-
ford English Dictionary on Historical Principles. Clarendon Press, Oxford,
England, 1973, 1987. Two vols.

[24] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The In-
evitable – Philosophical Deductions, with a foreword by Georg Henrik von
Wright]. Munksgaard · Rosinante, 1994. 168 pages.

[25] Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eter-
nity]. Munksgaard · Rosinante, 1997. 200 pages.

[26] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy].
Informations Forlag, 2016. 233 pages.

[27] Johan van Benthem. The Logic of Time, volume 156 of Synthese Li-
brary: Studies in Epistemology, Logic, Methhodology, and Philosophy of
Science (Editor: Jaakko Hintika). Kluwer Academic Publishers, P.O.Box
17, NL 3300 AA Dordrecht, The Netherlands, second edition, 1983, 1991.

[28] Carl von Linné. An Introduction to the Science of Botany. Lipsiae [Leipzig]:
Impensis Godofr. Kiesewetteri, 1748.

, Vol. 1, No. 1, Article . Publication date: November .

