ECNU MSc/PhD Course + Project
5–23 November 2018
Domain Analysis & Description
Principles, Techniques and Languages

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark
E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/~db

October 31, 2018

Contents

1 Lecture Particulars 1
 1.1 Title: Domain Analysis & Description 1
 1.2 Aims & Objectives 2
 1.2.1 Aims 2
 1.2.2 Objectives 2
 1.3 Prerequisites 2

2 The Didactic Base 2
 2.1 Method, Methodology and Formal Methods 2
 2.2 The Computer & Computing Sciences 3
 2.2.1 Computer Science 3
 2.2.2 Computing Science 3
 2.3 The Triptych Dogma 3
 2.4 Informatics & IT 3
 2.4.1 Informatics 3
 2.4.2 IT: Information Technology 3

3 Schedule 4
 3.1 Day/Week/Month Overview – A Suggestion 4
 3.2 Lecture-by-Lecture Plan, Proposed 4
 3.3 Office Hourse 5

4 Course Project 5

5 Literature 6

1 Lecture Particulars

1.1 Title: Domain Analysis & Description

- [1] 57 page Paper Domain Analysis and Description
 Principles, Techniques and Languages
1.2 Aims & Objectives

1.2.1 Aims

• The course is aimed at 3rd–4th year MSc + PhD student + PostDocs + Et cetera!
• The course aims to introduce participants to a new aspect of the Computing Sciences

1.2.2 Objectives

The objective of the course is

• to enable participants to rough-sketch domain models,
• to entice them to study domain science & engineering as per [2], and
• to, perhaps, even lure them into research in domain science & engineering.

1.3 Prerequisites

• Motivation: You must be interested in software as mathematical artifacts
• Discrete Mathematics: Sets, Cartesians, Algebra, ...
• Basic Knowledge of Logic: propositional and predicate logic
• A Smattering of Functional Programming:
 one of f.ex.: Coq, Curry, Erlang, F#, Haskell, LISP, [Standard] ML, Ruby, Scala, Scheme, ...

2 The Didactic Base

By a didactic base we shall understand the knowledge “spheres” within which we operate. Our didactic base for software development is outlined below. That base is also suggested as the didactic base for software engineering.

2.1 Method, Methodology and Formal Methods

• Method:
 – By a method we shall understand a set of principles for selecting and applying a number of analysis & synthesis techniques and tools in order to achieve a goal
 – where that goal here is to develop a software specification
 – whether that specification be a
 * a domain description,
 * a requirements prescription,
 * a software design and code,
 * or the first or last two, or all of these.

• Methodology:
 – By methodology we shall understand the study and knowledge of one or more methods.

• Formal Methods:
– By a formal method we shall understand a method several of whose techniques and tools can be explained mathematically, such as, e.g.,

* refinements,
* tests, model checks, theorem proofs,
* specification language syntax, semantics and proof systems.

The present course endows domain analysis & description with a formal method.

2.2 The Computer & Computing Sciences

2.2.1 Computer Science

• By computer science we shall understand the study and knowledge of the properties of the kind of phenomena that “goes on inside” computers.

2.2.2 Computing Science

• By computing science we shall understand the study and knowledge of how those phenomena (“inside” computers) can be constructed.

The present course is a computing science course.

2.3 The Triptych Dogma

• Before software can be designed & coded
• we must have a reasonable grasp of what is expected & required from that software,
• and before we can prescribe those expectations & requirements
• we must have a reasonable grasp of the domain, i.e., be able to describe it.

As a consequence we can claim that

• Software Systems Development can be “divided” into three phases:
 – Domain Science & Engineering
 – Requirements Engineering
 – Software Design

In this course we shall only consider domain analysis & description.

2.4 Informatics & IT

2.4.1 Informatics

• By informatics we shall understand a confluence of
 – mathematics: “pure” as well as “applied”,
 – computer & computing science, and
 – software.

To us informatics is a universe of quality: correct, fit-for-purpose and pleasing

2.4.2 IT: Information Technology

• By information technology we shall understand a confluence of
 – hardware
 – the natural science-based technologies that “go into making” hardware:

To us IT is a universe of quantity: faster, larger, cheaper, etc.

3 **Schedule**

3.1 **Day/Week/Month Overview – A Suggestion**

NOVEMBER 2018

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>13</td>
<td>*14+</td>
<td>15</td>
<td>*16</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>*21</td>
<td>22</td>
<td>*23</td>
</tr>
</tbody>
</table>

* Lecture and Project dates
+ Excursion to SECT, 12:00-16:30
 Wednesdays: Math.Bldg., Room 201
 Fridays: SanGuan Bldg., Room 231

3.2 **Office Hourse**

- The lecturer, **Dines Bjørner**, is available all weekday mornings:
 - On lecture / project session days in connection with lectures and project sessions
 - On other days, in the office, 9:00–12:00

4 **Course Project**

- It is proposed that the class analyse & describe
 a *generic container terminal port*, a la Shanghai’s YangShan port.

 - Topic is decided upon and participants on the first course day, 6.11
 - Two hour project sessions every course day, right after lecture
 - First project session is on first course day, 6.11
 - At that section lecturer explains problem and refers to subject literature,
 starts sketching a domain model and directs participants as their home work
 - In preparation for each project session participants work out paper descriptions
• Each, but the first, project session starts with lecturer and participants discussing participant homework based on distributed copies of these.

• The lecturer—in-between and subsequently—proceeds, jointly with participants, with further “white board” modelling and directs next homework assignments.

• Lecturer will, as a result of and in step with project session progress “formalise” current work and post this on the net.

A sketch description of an essence of container terminal ports should result from this course.

5 Literature

• [1, 3, Domains Analysis & Description]
• [4, 5, Domain Facets: Analysis & Description]
• [6, 7, Formal Models of Processes and Prompts]
• [8, 9, To Every Manifest Domain Mereology a CSP Expression]
• [10, 11, From Domain Descriptions to Requirements Prescriptions]
• [12, 13, Domains: Their Simulation, Monitoring and Control]
• [14, Domain Analysis & Description: Some Issues of Philosophy]
• [2, Domain Science & Engineering: A Compendium], a collection of [1, 4, 6, 8, 10, 12, 14]

Bibliography

