
Domain Science & Engineering

A Review of 10 Years Work

The NUS October 2018 Lectures

Dines Bjørner
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark

Fredsvej 11, DK-2840 Holte, Danmark

bjorner@gmail.com, www.imm.dtu.dk/~db

June 6, 2018: 11:25 am

Abstract

By a domain we shall understand a rationally describable segment of a human
assisted reality, i.e., of the world, its physical parts, and living species. These are
endurants (“still”), existing in space, as well as perdurants (“alive”), existing also
in time. Emphasis is placed on “human-assistedness”, that is, that there is at
least one (man-made) artifact and that humans are a primary cause for change of
endurant states as well as perdurant behaviours.

• Lecture 1: Domain Analysis & Description

⋄⋄ So that You know what I’ve been up to !

⋄⋄ A prelude also to Lectures 2–5.

⋄⋄ A basis for possible discussions with NUS colleagures.

• Lecture 2: Domain Facets

• Lecture 3: From Domains to Requirements

• Lecture 4: Formal Model of Prompts

• Lecture 5: A Basis in Philosophy

Contents

1 Introduction 3

1.1 Recent Papers and Reports . 3
1.2 Recent Experiments . 4
1.3 My Emphasis on Software Systems . 4

1

2 Dines Bjørner – Domain Science & Engineering

1.4 How Did We Get to Domain Science & Engineering ? 4
1.5 Preliminaries . 4

1.5.1 Method & Methodology: . 5

1.5.2 Computer & Computing Sciences: 5
1.5.3 A Triptych of Informatics: . 5

1.6 The Papers . 5
1.7 Structure of This Paper . 6

2 Manifest Domains: Analysis & Description [1, 2] 6

2.1 A Domain Ontology . 6
2.1.1 Parts, Components and Materials: 6
2.1.2 Unique identifiers: . 7
2.1.3 Mereology: . 8

2.1.4 Attributes: . 8
2.2 From Manifest Parts to Domain Behaviours 8

2.2.1 The Transcendental Deduction Idea — by means of an example: 8
2.2.2 Atomic Parts: . 9
2.2.3 Composite Parts: . 9
2.2.4 Concrete Parts: . 9
2.2.5 Translation of Part Qualities (...): 9

2.3 Contributions of [1] – and Open Problems 9

3 Related Papers 10

3.1 Domain Facets: Analysis & Description [3, 4] 10
3.1.1 Overview . 10
3.1.2 Intrinsics . 10
3.1.3 Support Technology . 10
3.1.4 Rules and Regulations . 10
3.1.5 Scripts . 10
3.1.6 Management & Organisation . 10
3.1.7 Human Behaviour: . 11

3.1.8 Contributions of [3, 4] – and Open Problems: 11
3.2 From Domains to Requirements [5, 6] 11

3.2.1 Overview: . 11
3.2.2 Contributions of [5, 6]: . 12

3.3 Formal Models of Processes and Prompts [7, 8] 13
3.3.1 Overview: . 13
3.3.2 A Summary of Analysis and Description Prompts 13
3.3.3 A Glimpse of the Process Model 13
3.3.4 A Glimpse of the Syntax and Semantics Models 14

3.3.5 From Syntax to Semantics and “Back Again ! ” 16
3.3.6 Contributions of [7] . 19

3.4 To Every Manifest Domain Mereology a CSP Expression [9] 19
3.4.1 Overview . 19

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 2 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 3

3.4.2 Contributions of [9] . 20

4 Domain Science & Engineering: A Philosophy Basis [10] 20

5 The Experiments [12–26] 21

6 Summary 21

7 Bibliography 21

7.1 Bibliographical Notes . 21

1 Introduction

I survey recent work in the area of domain science & engineering1.

The triptych dogma states that before software can be designed we must have a firm
grasp on its/their requirements; before requirements can be prescribed we must have a
firm grasp on their basis: the domain; and that we therefore see informatics as consisting
of

• domain science & engineering,

• requirements science & engineering, and

• programming methodology.

A strict interpretation of the triptych of software engineering dogma suggests that soft-
ware development “ideally” proceeds in three phases:

• First a phase of domain engineering in which an analysis of the application domain
leads to a description of that domain.

• Then a phase of requirements engineering in which an analysis of the domain
description leads to a prescription of requirements to software for that domain.

• And, finally, a phase of software design in which an analysis of the requirements
prescription leads to software for that domain.

We see domain science & engineering as a discipline that need not be justified as a precursor
to requirements engineering. Just as physicists study nature, irrespective of engineering, so
we can study manifest domains irrespective of computing.

1It is appropriate, at this point, to state that my use of the term ‘domain’ is not related to that of
Domains and Processes such as in the Proceedings of 1st International Symposium on Domain Theory,

Shanghai, China, October 1999, eds.: Klaus Keimel, Zhang Guo-Qiang, Liu Ying-Ming and Chen Yi-

Chang. Springer Science + Business Media, New York, 2001.

A Review of 10 Years Work 3 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

4 Dines Bjørner – Domain Science & Engineering

1.1 Recent Papers and Reports

Over the last decade I have iterated a number of investigations of aspects of this triptych
dogma. This has resulted in a number of documents:

• Manifest Domains: Analysis & Description (2018, 2014) [1, 2]

• Domain Facets: Analysis & Description (2018. 2008) [3, 4]

• From Domains to Requirements (2018, 2008) [5, 6]

• Formal Models of Processes and Prompts (2014,2017) [7, 8]

• To Every Domain Mereology a CSP Expression (2017, 2009) [9, 11]

• A Philosophy of Domain Science & Engineering (2018) [10]

1.2 Recent Experiments

Applications of the domain science and engineering outlined in [1]–[6] are exemplified in
reports and papers on experimental domain analysis & description. Examples are:

• Urban Planning [12],

• Documents [13],

• Credit Cards [14],

• Weather Information Systems [15],

• The Tokyo Stock Exchange [16],

• Pipelines [17],

• Road Transportation [18],

• Web/Transaction Software [19],

• “The Market” [20],

• Container [Shipping] Lines [21],

• Railway Systems [22, 23, 24, 25, 26].

1.3 My Emphasis on Software Systems

An emphasis in my work has been on research into and experiments with application areas that
required seemingly large scale software. Not on tiny, beautiful, essential data structures and
algorithms.

I first worked on the proper application of formal methods in software engineering at the
IBM Vienna Laboratory in the early 1970s. That was to the formalisation of the semantics of
IBMs leading programming language then, PL/I , and to a systematic development of a compiler
for that language. The latter never transpired.

Instead I got the chance to formulate the stages of development of a compiler from a denota-
tional semantics description to so-called “running code” [27, 1977]. That led, from 1978 onward,
to two MSc students and a colleague and I working on a formal description of the CCITT Com-
munications High Level Language, CHILL and its compiler [28, 29]. And that led, in 1980, to
five MSc students of ours producing a formal description of a semantics for the US DoD Ada
programming language, Ada [30]. And that led to the formation of Dansk Datamatik Center [31]
which embarked on the CHILL and Ada compiler developments [32, 33]. To my knowledge that
project which was on time, at budget, and with a history of less that 3% cost of original
budget for subsequent error correction over the first 20 years of use of that compiler was a
first, large, successful example of the systematic use of formal methods in a medium scale
(42 man years) software project.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 4 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 5

1.4 How Did We Get to Domain Science & Engineering ?

So that is how we came from the semantics of programming languages to the semantics of human-
centered, manifest application domain software development. Programming language semantics
has to do with the meaning of abstract concepts such as programs, procedures, expressions,
statements, GOTOs, labels, etc. Domain semantics, for manifest domains, in so far as we can
narrate and formalize it, or them, must capture some “meanings” of the manifest objects that
we can touch and see, of the actions we perform on them, and of the sentences by means of which
we talk about those phenomena in the domain.

1.5 Preliminaries

We need formulate a few characterisations.

1.5.1 Method & Methodology:

By a method I understand a set of principles for selecting and applying techniques and tools for
constructing a manifest or an abstract artifact.

By methodology I understand the study and knowledge of methods.
My contributions over the years have contributed to methods for software design and,

now, for the last many years, methods for domain analysis & description.

In my many experiments with domain analysis & description, cf. Sect. 5 on Page 21, I have
found that I often let a so-called “streak of creativity” enter my analysis & description – and,
as a result I get stuck in my work. Then I recall, ah !, but there are these principles, techniques
and tools for analysis & description, and once I apply them, “strictly”, i.e., methodically, I am
back on the track, and, in my view, a more beautiful description emerges !

1.5.2 Computer & Computing Sciences:

By computer science I understand the study and knowledge about the things that can exist
inside computing devices.

By computing science I understand the study and knowledge about how to construct the
things that can exist inside computing devices. Computing science is also often referred to as
programming methodology. My work is almost exclusively in computing science.

1.5.3 A Triptych of Informatics – Continued

This paper contributes to the establishment of domain science & engineering, while hinting that
requirements science & engineering can benefit from the relation between the two [5, 6]. How
much of a domain must we analyse & describe before we attempt the second and third phases
of the triptych ?. When this question is raised, after a talk of mine over the subject, and by a
colleague researcher & scientist I usually reply: As large a domain as possible ! This reply is
often met by this comment (from the audience) Oh ! No, that is not reasonable ! To me that
comment shows either or both of: the questioner was not asking as a researcher/scientist, but
as an engineer. Yes, an engineer needs only analyse & describe up to and slightly beyond the
“border” of the domain-of-interest for a current software development – but a researcher cum
scientist is, of course, interested not only in a possible requirements engineering phase beyond
domain engineering, but is also curious about the larger context of the domain, in possibly
establishing a proper domain theory, etc.

A Review of 10 Years Work 5 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

6 Dines Bjørner – Domain Science & Engineering

1.6 The Papers

IM2HO I consider the first of the papers reviewed, [1], my most important paper. It was
conceived of last2, after publication of three of the other papers [4, 6, 36]. Experimental evidence
then necessitated extensive revisions to these other papers, resulting in [3, 5, 37].

1.7 Structure of This Paper

Section 2 reviews [1, 2, Analysis & Description Prompts], and Sect. 3 reviews related science and
methodology papers. [3, Domain Facets] (Sect. 3.1), [5, From Domains to Requirements] (Sect. 3.2),
[7, An Analysis & Description Process Model] (Sect. 3.3), and [9, From Mereologies to Lambda-
Expressions] (Sect. 3.4), Finally, Sect. 4 briefly reviews [10, A Philosophy Basis] work-in-progress.

2 Manifest Domains: Analysis & Description [1, 2]

This work grew out of many years of search for principles, techniques and tools for systematically
analyzing and describing manifest domains. By a manifest domain we shall understand a domain
whose entities we can observe and whose endurants we can touch !

2.1 A Domain Ontology

2.1.1 Parts, Components and Materials:

The result became a calculus of analysis and description prompts3. These prompts are tools
that the domain analyser & describer uses. The domain analyser & describer is in the domain,
sees it, can touch it, and then applies the prompts, in some orderly fashion, to what is being
observed. So, on one hand, there is the necessarily informal domain, and, on the other hand, there
are the seemingly formal prompts and the “suggestions for something to be said”, i.e., written
down: narrated and formalised. Figure 1 on the next page suggests a number of analysis and
description prompts. The domain analyser & describer is “positioned” at the top, the “root”.
If what is observed can be conceived and described then it is an entity. If it can be described
as a “complete thing” at no matter which given snapshot of time then it is an endurant. If it is
an entity but for which only a fragment exists if we look at or touch them at any given snapshot
in time, then it is a perdurant. Endurants are either discrete or continuous. With discrete
endurants we can choose to associate, or to not associate mereologies4. If we do we shall refer
to them as parts, else we shall call them components. The continuous endurants we shall also
refer to as (gaseous or liquid) materials.

Parts are either atomic or composite and all parts have unique identifiers, mereology and
attributes. Atomic parts may have one or more components and/or one or more materials

If the observed part, p:P , is composite then we can observe the part sorts, P1, P2, ..., Pm

of p: observe part sorts(p) which yields the informal and formal description: Narrative: ...
Formal: type P1, P2, ..., Pm, value obs Pi: P → Pi, repeated for all m part sorts Pis” !

Part sorts may have a concrete type: has concrete type(p) in which case observe concrete-
part type(p) yields Narrative: ... Formal: type: T = P -set, value obs T: P → K-set –
where K-set is one of the concrete type forms, and where K is some sort.

2Publication [34, 35] is a predecessor of [2] which is then a predecessor of [1].
3Prompt, as a verb: to move or induce to action; to occasion or incite; inspire; to assist (a person speaking)

by ”suggesting something to be said”.
4— ‘mereology’ will be explained next

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 6 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 7

Phenomena of a Universe of Discourse

Entities

Endurants Perdurants

ActorsEvents

Channels Behaviours

Actions

Components

Mereologies

Attributes

Discrete

Structures

ArtifactsNaturals
Plants

Part−set

Unique Identification

CompositeAtomic Atomic

= Describable Indescribables

Physical
Living Species

Animals

Parts

Materials = Continuous Endurants

A Transcendental injection of endurant properties into perdurant values

Transcendensce

MS = M1|...|Mn
MS−set

CS=C1|...|Cm
CS−set

P

P−set

E1,...,En

E1,...,En

E

Humans

Figure 1: Domain Ontology

Materials have types (i.e., are of sorts): Mi. Observing the (one) material, of type M , of
an endurant e of sort E is expressed as obs materials(e) which yields some narrative and some
formal description text: Narrative: ... Formal: type M value obs M: E → M . The narrative
text (...) narrates what the formal text expresses5.

Components, i.e., discrete endurants for whom we do not consider possible mereologies or
attributes, can be observed from materials, m : M , or are just observed of discrete endurants,
e : E: obs components(em) which yields the informal and formal description: Narrative: ...
Formal: type: C1, C2, ..., Cn value obs Ci: (E|M) → Ci repeated for all n component sorts
Cs” to the formal text !

• • •

The above is a pedagogic simplification. As shown in Fig. 1 there are not only parts. There
are also living species: plants and animals, including humans. And, because there are humans
in the domains, parts and materials are either natural or artifacts (man-made). Humans create
artifacts, usually with an intent. Humans have intents, and artifacts “possess” intents. Intents
are like attributes, see below.

• • •

We have just summarised the analysis and description aspects of endurants in extension (their
“form”). We now summarise the analysis and description aspects of endurants in intension
(their “contents”). There are three kinds of intensional qualities associated with parts, two with

5– not how it expresses it, as, here, in the RAISE [38] Specification Language, RSL [39].

A Review of 10 Years Work 7 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

8 Dines Bjørner – Domain Science & Engineering

components, and one with materials. Parts and components, by definition, have unique identifiers;
parts have mereologies, and all endurants have attributes.

2.1.2 Unique identifiers:

Unique identifiers are further undefined tokens that uniquely identify parts and components.

The description language observer uid P, when applied to parts p:P yields the unique identifier,

π:Π, of p. The observe part sorts(p) invocation yields the description text: ... [added to the

narrative and] type Π1,Π2, ...,Πm; value uid Πi : Pi→Πi, repeated for all m part sorts Pis
and added to the formalisation.

2.1.3 Mereology:

Mereology is the study and knowledge of parts and part relations. The mereology of a
part is an expression over the unique identifiers of the (other) parts with which it
is related, hence mereo P: P→E(Πj , ...,Πk), E(Πj , ...,Πk) is a type expression. The
observe part sorts(p) invocation yields the description text: ... [added to the narrative
and] value mereo Pi : Pi→Ei(Πij , ...,Πik) [added to the formalisation]

Example: The mereologies, (i, o), of pipe units in a pipeline system thus express, for
each kind of pipe unit, whether it is a well, a linear pipe, a fork, a join, a pump, a
valve, or a sink, the identities of the zero, one or two pipe units that it is “connected”
to on the input, i, respectively the output, o, side: for well (0, 1), for pipe (1, 1), for
fork (1, 2), for join (2, 1), for valve (1, 1), for pump (1, 1), for sink (1, 0) units

2.1.4 Attributes:

Attributes are the remaining qualities of endurants. The analysis prompt obs attributes
applied to an endurant yields a set of type names, A1, A2, ..., At, of attributes. They
imply the additional description text: Narrative: ... Formal: type A1, A2, ..., At

value attr Ai: E → Ai repeated for all t attribute sorts Ais ! Examples: Typical
attributes of a person are Gender, Weight, Height, Birth date, etcetera. Dynamic and
static attributes of a pipe unit include current flow into the unit, per input, if any, current
flow out of the unit, per output, if any current leak from the unit, guaranteed maximum flow
into the unit, guaranteed maximum flow out of the unit, guaranteed maximum leak from the
unit et cetera. Michael A. Jackson [40] categorizes attributes as either static or dynamic,
with dynamic attributes being either inert, reactive or active. The latter are then either
autonomous, biddable or programmable. This categorization has a strong bearing on how
these (f.ex., part) attributes are dealt with when now interpreting parts as behaviours.

2.2 From Manifest Parts to Domain Behaviours

[2] then presents an interpretation, τ , which to manifest parts associate behaviours. These
are then specified as CSP [41] processes. This interpretation amounts to a transcendental
deduction !

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 8 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 9

2.2.1 The Transcendental Deduction Idea — by means of an example:

The term train can have the following “meanings”: The train, as an endurant, parked at
the railway station platform, i.e., as a composite part. The train, as a perdurant, as it
“speeds” down the railway track, i.e., as a behaviour. The train, as an attribute,

2.2.2 Atomic Parts:

Atomic parts translate into their core behaviours: bpatomcore . The core behaviours are tail
recursively defined, that is, are cyclic. bpatomcore (...) ≡ (.... ; bpatomcore (...)) where (...) indicate
behaviour (i.e., function) arguments.

2.2.3 Composite Parts:

A composite part, p, “translates”, τ , into the parallel composition of a core behaviour:
bpcomp
core (...), for part p, with the parallel composition of the translations, τ , for each of the
parts, p1, p2, ..., pm, of p, (τ(p1)‖τ(p2)‖...‖τ(pm)) that is: τ(p)≡bpcomp

core (...)‖(τ(p1)‖τ(p2)‖...‖τ(pm))

2.2.4 Concrete Parts:

The translation of concrete part set, t, types, t : T = K-set, is τ(t)≡‖{τ(ki)|ki:K•ki∈t}.

2.2.5 Translation of Part Qualities (...):

Part qualities, that is: unique identifiers, mereologies and attributes, are translated into
behaviour arguments – of one kind or another, i.e., (...). Typically we can choose to
index behaviour names, b by the unique identifier, id, of the part based on which they
were translated, i.e., bid. Mereology values are usually static, and can, as thus, be treated
like we treat static attributes (see next), or can be set by their behaviour, and are then
treated like we treat programmable attributes (see next), i.e., (...). Static attributes
become behaviour definition (body) constant values. Inert, reactive and autonomous at-
tributes become references to channels, say ch dyn, such that when an inert, reactive
and autonomous attribute value is required it is expressed as ch dyn ?. Programmable
and biddable attributes become arguments which are passed on to the tail-recursive in-
vocations of the behaviour, and possibly updated as specified [with]in the body of the
definition of the behaviour, i.e., (...).

2.3 Contributions of [1] – and Open Problems

For the first time we have, now, the beginnings of a calculus for developing domain
descriptions. In [34, 35] we speculate on laws that these analysis & description prompts
(i.e., their “meanings”) must satisfy. With this calculus we can now systematically
develop domain descriptions [12–26]. I am right now working on understanding issues of
implicit/explicit semantics6 Since December 2017 I have revised [2] extensively: simplified

6Cf. http://impex2017.loria.fr/

A Review of 10 Years Work 9 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

10 Dines Bjørner – Domain Science & Engineering

it, extended it, clarified some issues, provided analysis & description techniques for
channels and arguments, et cetera. The revised paper is [1]7.

3 Related Papers

3.1 Domain Facets: Analysis & Description [3, 4]

3.1.1 Overview

By a domain facet we shall understand one amongst a finite set of generic ways of ana-
lyzing a domain: a view of the domain, such that the different facets cover conceptually
different views, and such that these views together cover the domain.

[3] is an extensive revision of [4]. Both papers identify the following facets: intrinsics,
support technologies, rules & regulations, scripts, license languages, management & organi-
sation, and human behaviour. Recently I have “discovered” what might be classified as a
domain facet: classes of attribute semantics: the diversity of attribute semantics resolving
the issue of so-called implicit and explicit semantics. I shall not cover this issue in this
talk.

3.1.2 Intrinsics

By domain intrinsics we shall understand those phenomena and concepts of a domain
which are basic to any of the other facets, with such domain intrinsics initially covering
at least one specific, hence named, stakeholder view.

3.1.3 Support Technology

By a domain support technology we shall understand ways and means of implementing
certain observed phenomena or certain conceived concepts.

3.1.4 Rules and Regulations

By a domain rule we shall understand some text (in the domain) which prescribes how
people or equipment are expected to behave when dispatching their duties, respectively
when performing their functions.

By a domain regulation we shall understand some text (in the domain) which pre-
scribes what remedial actions are to be taken when it is decided that a rule has not been
followed according to its intention.

3.1.5 Scripts

By a domain script we shall understand the structured, almost, if not outright, formally
expressed, wording of a procedure on how to proceed, one that possibly has legally
binding power, that is, which may be contested in a court of law.

7You can find it on the Internet: http://www.imm.dtu.dk/˜dibj/2018/tosem/Bjorner-TOSEM.pdf.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 10 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 11

3.1.6 Management & Organisation

By domain management we shall understand such people (such decisions) (i) who (which)
determine, formulate and thus set standards (cf. rules and regulations) concerning strate-
gic, tactical and operational decisions; (ii) who ensure that these decisions are passed
on to (lower) levels of management and to floor staff; (iii) who make sure that such
orders, as they were, are indeed carried out; (iv) who handle undesirable deviations in
the carrying out of these orders cum decisions; and (v) who “backstops” complaints from
lower management levels and from “floor” staff.
By domain organisation we shall understand (vi) the structuring of management and non-
management staff “overseeable” into clusters with “tight” and “meaningful” relations;
(vii) the allocation of strategic, tactical and operational concerns to within management
and non-management staff clusters; and hence (viii) the “lines of command”: who does
what, and who reports to whom, administratively and functionally.

3.1.7 Human Behaviour:

By domain human behaviour we shall understand any of a quality spectrum of carrying
out assigned work: (i) from careful, diligent and accurate, via (ii) sloppy dispatch, and
(iii) delinquent work, (iv) to outright criminal pursuit.

3.1.8 Contributions of [3, 4] – and Open Problems:

[3] now covers techniques and tools for analyzing domains into these facets and for their
modeling. The issue of license languages are particularly intriguing. The delineations
between the listed8 facets is necessarily not as precise as one would wish: we are dealing
with an imprecise world, that of (manifest) domains. License languages are treated in
[3].

3.2 From Domains to Requirements [5, 6]

3.2.1 Overview:

[5] outlines a calculus of refinements and extensions which applied to domain descriptions
yield requirements prescriptions. As for [2] the calculus is to be deployed by human users,
i.e., requirements engineers. Requirements are for a machine, that is, the hardware and
software to be developed from the requirements. A distinction is made between domain,
interface and machine requirements. I shall briefly cover these in another order.

Machine requirements: Machine requirements are such which can be expressed using
only technical terms of the machine: performance and dependability accessibility, avail-
ability, integrity, reliability, safety, security and robustness). and development require-
ments development process, maintenance, platform, management and documentation).
Within maintenance requirements there are adaptive, corrective, perfective, preventive,

8We have omitted a facet: license languages.

A Review of 10 Years Work 11 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

12 Dines Bjørner – Domain Science & Engineering

and extensional requirements. Within platform requirements there are development,
execution, maintenance, and demonstration requirements. Etcetera. [5] does not cover
these. See instead [42, Sect. 19.6].

Domain Requirements: Domain requirements are such which can be expressed using
only technical terms of the domain. The are the following domain-to-requirements spec-
ification transformations: projection, instantiation, determination, extension and fitting. I
consider my work on the domain requirements issues the most interesting.

1: Projection: By a domain projection we mean a subset of the domain description, one
which projects out all those endurants: parts, materials and components, as well as per-
durants: actions, events and behaviours that the stake-holders do not wish represented
or relied upon by the machine.

2: Instantiation: By domain instantiation we mean a refinement of the partial domain
requirements prescription (resulting from the projection step) in which the refinements
aim at rendering the endurants: parts, materials and components, as well as the per-
durants: actions, events and behaviours of the domain requirements prescription more
concrete, more specific.

3: Determination: By domain determination we mean a refinement of the partial
domain requirements prescription, resulting from the instantiation step, in which the
refinements aim at rendering the endurants: parts, materials and components, as well
as the perdurants: functions, events and behaviours of the partial domain requirements
prescription less non-determinate, more determinate.

4: Extension: By domain extension we understand the introduction of endurants and
perdurants that were not feasible in the original domain, but for which, with computing and
communication, and with new, emerging technologies, for example, sensors, actuators
and satellites, there is the possibility of feasible implementations, hence the requirements,
that what is introduced becomes part of the unfolding requirements prescription.

5: Fitting: Often a domain being described “fits” onto, is “adjacent” to, “interacts” in
some areas with, another domain: transportation with logistics, health-care with insurance,
banking with securities trading and/or insurance, and so on. The issue of requirements
fitting arises when two or more software development projects are based on what appears
to be the same domain. The problem then is to harmonize the two or more software
development projects by harmonizing, if not too late, their requirements developments.

Interface Requirements: Interface requirements are such which can be expressed only
by using technical terms of both the domain and the machine. Thus interface require-
ments are about that which is shared between the domain and the machine: endurants
that are represented in machine storage as well as co-existing in the domain; actions and
behaviours that are performed while interacting with phenomena in the domain; etc.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 12 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 13

3.2.2 Contributions of [5, 6]:

[5] does not follow the “standard division” of requirements engineering into systems
and user requirements etcetera. Instead [5] builds on domain descriptions and eventu-
ally gives a rather different “division of requirements engineering labour” – manifested
in the domain, the interface and the machine requirements paradigms, and these fur-
ther into sub-paradigms, to wit: projection, instantiation, determination, extension and
fitting. Some readers have objected to my use of the term refinement for the domain-to-
requirements transformations.

3.3 Formal Models of Processes and Prompts [7, 8]

3.3.1 Overview:

[1] outlines a calculus of prompts, to be deployed by human users, i.e., the domain
analyzers & describers. That calculus builds on the assumption that the domain engineers
build, in their mind, i.e., conceptually, a syntactical structure of the domain description,
although, what the domain engineers can “see & touch” are semantic objects. A formal
model of the analysis and description prompt process and of the meanings of the prompts
therefore is split into a model for the process and a model of the syntactic and semantics
structures.

3.3.2 A Summary of Analysis and Description Prompts
The Analysis Prompts :

[a] is entity

[b] is endurant

[c] is perdurant

[d] is discrete

[e] is continuous

[f] is part

[g] is component

[h] is material

[i] is atomic

[j] is composite

[k] has concrete type

[l] has mereology

[m] has components

[n] has material

[o] has parts

The Description Prompts :

[1] observe part sorts

[2] observe concrete type

[3] observe unique identifier

[4] observe mereology

[5] observe attributes

[6] observe component sorts

[7] observe part material sort

[8] observe material part sorts

3.3.3 A Glimpse of the Process Model

Process “Management”: Domain description involves the “generation” and use of an
indefinite number of type (sort) names, Nm. The global, assignable variables αps and
νps serve to hold the names of the sorts to be analysed, respectively the names of the

A Review of 10 Years Work 13 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

14 Dines Bjørner – Domain Science & Engineering

sorts for which unique identifiers, mereologies and attributes have to be analysed and
described.

type

Nm = PNm | MNm | KNm
variable

αps := [∆nm] type Nm-set

νps := [∆nm] type Nm-set

value

sel and remove Nm: Unit → Nm
sel and remove Nm() ≡

let nm:Nm • nm ∈ νps in
νps := νps \ {nm} ; nm end; pre: νps 6= {}

Some Process Functions: The analyse and describe endurants function is the major
function. It invokes a number of other analysis & description functions. We illustrate
two:

value

analyse and describe endurants: Unit → Unit

analyse and describe endurants() ≡
while ∼is empty(νps) do

let nm = sel and remove Nm() in
analyse and describe endurant sort(nm,ι:nm) end end ;

for all nm:PNm • nm ∈ αps do if has mereology(nm,ι:nm)
then observe mereology(nm,ι:nm) end end

for all nm:Nm • nm ∈ αps do observe attributes(nm,ι:nm) end

analyse and describe endurant sort: NmVAL → Unit

analyse and describe endurant sort(nm,val) ≡
is part(nm,val) → analyse and describe part sorts(nm,val),
is material(nm,val) → observe material part sort(nm,val),
is component(nm,val) → observe component sort(nm,val)

3.3.4 A Glimpse of the Syntax and Semantics Models

We suggest a syntax and a semantics of domain descriptions.

The Syntactical Structure of Domains: First the syntax of domains – divided into
the syntax of endurants parts, materials and components.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 14 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 15

TypDef = PTypes ∪ MTypes ∪ KTypes
PTypes = PNm →m PaTyp
MTypes = MNm →m MaTyp
KTypes = KNm →m KoTyp

ENDType = PaTyp | MaTyp | KoTyp
PaTyp == AtPaTyp | AbsCoPaTyp | ConCoPaTyp

AtPaTyp :: mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm))
AbsCoPaTyp :: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set)

axiom ∀ mkAbsCoPaTyp(pq,pns):AbsCoPaTyp • pns 6= {}
ConCoPaTyp :: mkConCoPaTyp(s qs:PQ,s p:PNm)

MaTyp :: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm))
KoTyp :: mkKoTyp(s qs:KQ)

Then the syntax of the internal qualities of endurants:

PQ = s ui:UI×s me:ME×s atrs:ATRS}
UI

ME == “nil”|mkUI(s ui:UI)|mkUIset(s uil:UI)|...
ATRS = ANm →m ATyp

ANm, ATyp
MQ = s atrs:ATRS
KQ = s uid:UI × s atrs:ATRS

The Semantical Values of Domains: Corresponding, homomorphically, to these syn-
taxes are their semantics types:

ENDVAL = PVAL | MVAL | KVAL
PVAL == AtPaVAL|AbsCoPVAL|ConCoPVAL

AtPaVAL :: mkAtPaVAL(s qval:PQVAL,
s omkvals:({|”nil”|}|MVAL|KVAL-set))

AbsCoPVAL :: mkAbsCoPaVAL(s qval:PQVAL,s pvals:(PNm→m PVAL))
axiom ∀ mkAbsCoPaVAL(pqs,ppm):AbsCoPVAL•ppm 6=[]

ConCoPVAL :: mkConCoPaVAL(s qval:PQVAL,s pvals:PVAL-set)
MVAL :: mkMaVAL(s qval:MQVAL,s pvals:PVAL-set)
KVAL :: mkKoVAL(s qval:KQVAL)

Qualities: Semantic Types

PQVAL = UIVAL×MEVAL×ATTRVALS
UIVAL

MEVAL == mkUIVAL(s ui:UIVAL)|mkUIVALset(s uis:UIVAL-set)|...
ATTRVALS = ANm→m AVAL
ANm, AVAL

MQVAL = ATTRVALS
KQVAL = UIVAL×ATTRVALS

A Review of 10 Years Work 15 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

16 Dines Bjørner – Domain Science & Engineering

3.3.5 From Syntax to Semantics and “Back Again ! ”

We define mappings from sort names to the possibly infinite set of values of the named
type, and from endurant values to the names of their sort.

type

Nm to ENDVALS =
(PNm→m PVAL-set)∪(MNm→m MVAL-set)∪(KNm→m KVAL-set)

ENDVAL to Nm =
(PVAL→m PNm)∪(MVAL→m MNm)∪(KVAL→m KNm)

value

typval: TypDef
∼
→ Nm to ENDVALS

typval(td) ≡ let ρ =
[n 7→M(td(n))(ρ)|n:(PNm|MNm|KNm)•n ∈ dom td] in ρ end

valtyp: Nm to ENDVALS
∼
→ ENDVAL to Nm

valtyp(ρ) ≡
[v 7→n|n:(PNm|MNm|CNm),v:(PVAL|MVAL|KVAL)•

n ∈ dom ρ∧v ∈ ρ(n)]

M: (PaTyp→ENV
∼
→PVAL-set)|

(MaTyp→ENV
∼
→MVAL-set)|

(KoTyp→ENV
∼
→KVAL-set)

The environment, ρ, of typval is the least fix point of the recursive equation. The crucial
function is M, in the definition of typval. Examples of its definition, by part category, is
given below.

value

ι nm:Nm ≡ iota(nm)
iota: Nm → TypDef → VAL
iota(nm)(td) ≡

let val:(PVAL|MVAL|KVAL)•val∈(typval(td))(nm)
in val end

Analysis Functions: We exemplify the semantics functions for three analysis prompts.

value

is endurant: Nm×VAL → TypDef
∼
→ Bool

is endurant(,val)(td) ≡ val ∈ dom valtyp(typval(td));
pre: VAL is any value type

is discrete: NmVAL → TypDef
∼
→ Bool

is discrete(,val)(td) ≡ (is PaTyp|is CoTyp)(td((valtyp(typval(td)))(val)))

is part: NmVAL → TypDef
∼
→ Bool

is part(,val)(td) ≡ is PaTyp(td((valtyp(typval(td)))(val)))

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 16 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 17

Description Functions: We exemplify the semantics of one of the description prompts.
The generated description RSL-text is enclosed within [” ... ”].

variable

τ := [] Text-set
value

observe part sorts: Nm×VAL → TypDef → Unit

observe part sorts(nm,val)(td) ≡
let mkAbsCoPaTyp(,{P1,P2,...,Pn})

= td((valtyp(typval(td)))(val)) in
τ := τ ⊕ [” type P1,P2,...,Pn;

value

obs part P1: nm→P1

obs part P2: nm→P2

...,
obs part Pn: nm→Pn;

proof obligation
D; ”]

‖ νps := νps ⊕ ([” P1,P2,...,Pn ”] \ αps)
‖ αps := αps ⊕ [” P1,P2,...,Pn ”]
end

pre: is AbsCoPaTyp(td((valtyp(typval(td)))(val)))

.

The M Function

1 The meaning of an atomic part type expression,

• mkAtPaTyp((ui,me,attrs),omkn) in

• mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm)),

• is the set of all atomic part values,
mkAtPaVAL((uiv,mev,attrvals),omkval) in

• mkAtPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),
s omkvals:({|”nil”|}|MVAL|KVAL-set)).

a uiv is a value in UIVAL of type ui,

b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d omkvals is a value in ({|”nil”|}|MVAL|KVAL-set):

i either ’’nil’’,

ii or one material value of type MNm,

iii or a possibly empty set of component values, each of type KNm.

A Review of 10 Years Work 17 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

18 Dines Bjørner – Domain Science & Engineering

1. M: mkAtPaTyp((UI×ME×(ANm→m ATyp))×({|”nil”|}|MVAL|KVAL-set))

1. →ENV
∼
→PVAL-set

1. M(mkAtPaTyp((ui,me,attrs),omkn))(ρ) ≡
1. { mkATPaVAL((uiv,mev,attrval),omkvals) |
1a. uiv:UIVAL•type of(uiv)=ui,
1b. mev:MEVAL•type of(mev)=me,
1c. attrval:(ANm→m AVAL)•type of(attrval)=attrs,
1d. omkvals: case omkn of

1(d)i. ”nil” → ”nil”,
1(d)ii. mkMNn() → mval:MVAL•type of(mval)=omkn,
1(d)iii. mkKNm() →
1(d)iii. kvals:KVAL-set•kvals⊆{kv|kv:KVAL•type of(kval)=omkn}
1d. end }

Formula terms 1a–1(d)iii express that any applicable uiv is combined with any applicable
mev is combined with any applicable attrval is combined with any applicable omkvals.

2 The meaning of an abstract composite part type expression,

• mkAbsCoPaTyp((ui,me,attrs),pns) in

• mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set), is the set of all abstract, composite
part values,

• mkAbsCoPaVAL((uiv,mev,attrvals),pvals) in

• mkAbsCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),

s pvals:(PNm→m PVAL)).

a uiv is a value in UIVAL of type ui: UI,

b mev is a value in MEVAL of type me: ME,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d pvals is a map of part values in (PNm→m PVAL), one for each name, pn:PNm,
in pns such that these part values are of the type defined for pn.

2. M: mkAbsCoPaTyp((UI×ME×(ANm→m ATyp)),PNm-set)

2. → ENV
∼
→ PVAL-set

2. M(mkAbsCoPaTyp((ui,me,attrs),pns))(ρ) ≡
2. { mkAbsCoPaVAL((uiv,mev,attrvals),pvals) |
2a. uiv:UIVAL•type of(uiv)=ui
2b. mev:MEVAL•type of(mev)=me,
2c. attrvals:(ANm→m ATyp)•type of(attrsval)=attrs,
2d. pvals:(PNm→m PVAL) •

2d. pvals∈{[pn 7→pval|pn:PNm,pval:PVAL•pn∈ pns∧pval∈ρ(pn)]} }

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 18 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 19

3.3.6 Contributions of [7]

The contributions of [7] are to suggest and carry through a “formalisation” of the concep-
tual, syntactical and semantical structures perceived by the domain engineer, to formalise
the meaning of the informal analysis & description prompts, and to formalise the possible
sets of sequences of valid prompts.

3.4 To Every Manifest Domain Mereology a CSP Expression [9]

3.4.1 Overview

In [2] we have shown how parts can be endowed with mereologies. Mereology, as was
mentioned earlier, is the study and knowledge of “part-hood”: of how parts are related
parts to parts, and parts to “a whole”. Mereology, as treated by us, originated with the
Polish mathematician/logician/philosopher Stanislaw Lešhniewski.

An Axiom System for Mereology :

part of: P : P × P → Bool

proper part of: PP : P × P → Bool

overlap: O : P × P → Bool

underlap: U : P × P → Bool

over crossing: OX : P × P → Bool

under crossing: UX : P × P → Bool

proper overlap: PO : P × P → Bool

proper underlap: PU : P × P → Bool

Let P denote part-hood; px is part of py, is then expressed as P(px, py).
9 (1) Part px is

part of itself (reflexivity). (2) If a part px is part of py and, vice versa, part py is part
of px, then px = py (anti-symmetry). (3) If a part px is part of py and part py is part of
pz, then px is part of pz (transitivity).

∀px : P • P(px, px) (1)

∀px, py : P • (P(px, py) ∧ P(py, px))⇒px = py (2)

∀px, py, pz : P • (P(px, py) ∧ P(py, pz))⇒P(pz, pz) (3)

We exemplify one of the mereology propositions: proper underlap, PU: px and py are
said to properly underlap if px and py under-cross and py and px under-cross.

PU(px, py)
△
= UX(px, py) ∧ UX(py, px) (4)

A Model for the Axioms [9] now gives a model for parts: atomic and composite,
commensurate with [2] and [7], and their unique identifiers, mereology and attributes
and show that the model satisfies the axioms.

9Our notation now is not RSL but a conventional first-order predicate logic notation.

A Review of 10 Years Work 19 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

20 Dines Bjørner – Domain Science & Engineering

3.4.2 Contributions of [9]

[9] thus contributes to a domain science, helping to secure a firm foundation for domain
engineering.

4 Domain Science & Engineering: A Philosophy Basis [10]

My most recent work is documented in [10]. It examines the question:

• What must inescapably be in any domain description ?

Another formulation is:

• Which are the necessary characteristics of each and every possible world and our situ-
ation in it.

Recent works by the Danish philosopher Kai Sørlander [43, 44, 45, 46] appears to direct
us towards an answer.

Here is how it is done, in brief. On the basis of possibility of truth10 Sørlander es-
tablishes the logical connectors and from them the existence of a world with symmetry,
asymmetry and transitivity. By a transcendental deduction Sørlander then reasons that
space and time, inescapably, are “in the world”11. Further logical reasoning and tran-
scendental deductions establishes the inescapability of Newton’s 1st, 2nd and 3rd Laws.
And from that kinematics, dynamics, and gravitational pull. And so forth. Thus the
worlds that can possibly be described must all satisfy the laws of physics.

This line of reasoning and deduction thus justifies the focus, in our calculi, on natural
parts, components and materials.

But Sørlander goes on and reasons and transcendentally deduce the inescapable
existence of living species: plants and animals, and, among the latter, humans. Because
of reasoned characteristics of humans we inescapably have artifacts: man-made parts
components and materials. Humans construct artifacts with an intent, an attribute of
both humans and artifacts. These shared intents lead to a notion of intentional “pull”12

and so forth.
This line of reasoning and deduction thus justifies the inclusion, in our calculi, of

living species and artifacts.
[10] is presently an approximately 90 page report. As such it is presently a repository

for a number of “texts” related to the issue of “what must inescapably be in any domain
description ?” It may be expected that a far shorter paper may emerge.

10Sørlander makes his logical reasoning and transcendental deductions on the basis of the possibility
of truth – where Immanuel Kant [47], according to Sørlander, builds on the possibility of self-awareness,
which is shown to lead to contradictions.

11Kant assumes space and time.
12We shall here give an example of intentional “pull”: humans create automobiles and roads. An

intention of automobiles is to drive on roads, and an intention of roads is to have automobiles move
along roads. We can thus speak of the traffic history of an automobile as the time-stamped sequence of
vehicle positions along roads, and of the traffic history of a road as the time-stamped sequence of vehicle
positions along that road. Now, for the sum total of all automobiles and all roads the two consolidate
histories must be identical. It cannot be otherwise.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 20 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 21

5 The Experiments [12–26]

In order to test and tune the domain analysis & description method a great number of
experiments were carried out. In our opinion, when applied to manifest domains, they
justify the calculi reported in [2] and [7].

• Urban Planning [12],

• A Space of Swarms of Drones [48],

• Documents [13],

• Credit Cards [14],

• Weather Information Systems [15],

• The Tokyo Stock Exchange [16],

• Pipelines [17],

• Road Transportation [18],

• Web Transactions [19],

• “The Market” [20],

• Container [Shipping] Lines [21],

• Railway Systems [22, 23, 24, 25, 26].

6 Summary

We have identified a discipline of domain science and engineering. Its first “rendition”
was applied to the semantics of programming languages and the development of their
compilers [29, CHILL] and [32, Ada]. Domain science and engineering, as outlined here,
is directed at a wider spectrum of “languages”: the “meaning” of computer application
domains and software for these applications. Where physicists model facets of the world
emphasizing physical, dynamic phenomena in nature, primarily using differential calculi,
domain scientists cum engineers emphasize logical and both discrete phenomena of man
and human institutions primarily using discrete mathematics.

7 Bibliography

7.1 Bibliographical Notes

In the last ten years I have also worked on related topics:

• Domains: Their Simulation, Monitoring and Control, see [36], [37] 2008,

• Compositionality: Ontology and Mereology of Domains13, [49] 2008,

• Domain Science & Engineering, [34, 35] 2010,

• Computation for Humanity: Domain Science and Engineering, [50] 2012,

• 40 Years of Formal Methods — Obstacles and Possibilities14, [51] 2014,

• Domain Engineering – A Basis for Safety Critical Software, [52] 2014,

13with Asger Eir
14with Klaus Havelund

A Review of 10 Years Work 21 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

22 Dines Bjørner – Domain Science & Engineering

• Implicit and Explicit Semantics and the Domain Calculi, [53] 2017.

Work on these papers and on the many, extensive experiments has helped solidify the
basic domain analysis & description method.

References

[1] Dines Bjørner. A Domain Analysis & Description Method – Principles, Techniques and Modeling Lan-
guages. Research Note based on [2], Technical University of Denmark, Fredsvej 11, DK-2840 Holte,
Denmark, February 20 2018. http://www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf.

[2] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Computing, 29(2):175–
225, Online: July 2016.

[3] Dines Bjørner. Domain Facets: Analysis & Description. May 2018. Extensive revision of [4]. http://-
www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[4] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State
of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010.
Springer.

[5] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to
Requirements Engineering. Technical report, Technical University of Denmark, Fredsvej 11, DK-2840
Holte, Denmark, 2016. Extensive revision of [6].

[6] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture
Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30,
Heidelberg, May 2008. Springer.

[7] Dines Bjørner. Domain Analysis and Description – Formal Models of Processes and Prompts. Technical
report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, 2016. Extensive revision
of [8]. http://www.imm.dtu.dk/˜dibj/2016/process/process-p.pdf.

[8] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku
Iida, José Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software: A Festschrift
Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

[9] Dines Bjørner. To Every Manifest Domain a CSP Expression — A Rôle for Mereology in Computer
Science. Journal of Logical and Algebraic Methods in Programming, (94):91–108, January 2018.

[10] Dines Bjørner. A Philosophy of Domain Science & Engineering – An Interpretation of Kai Sørlander’s
Philosophy. Research Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark,
Spring 2018. http://www.imm.dtu.dk/˜dibj/2018/philosophy/filo.pdf.

[11] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R.
Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70,
London, UK, 2009. Springer.

[12] Dines Bjørner. Urban Planning Processes. Research Note, Technical University of Denmark, Fredsvej
11, DK-2840 Holte, Denmark, July 2017. http://www.imm.dtu.dk/˜dibj/2017/up/urban-planning.pdf.

[13] Dines Bjørner. What are Documents ? Research Note, Technical University of Denmark, Fredsvej 11,
DK-2840 Holte, Denmark, July 2017. http://www.imm.dtu.dk/˜dibj/2017/docs/docs.pdf.

[14] Dines Bjørner. A Credit Card System: Uppsala Draft. Technical Report: Experimental Re-
search, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November 2016.
http://www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf.

[15] Dines Bjørner. Weather Information Systems: Towards a Domain Description. Technical Report: Exper-
imental Research, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November
2016. http://www.imm.dtu.dk/˜dibj/2016/wis/wis-p.pdf.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 22 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 23

[16] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Technical Univer-
sity of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, January and February, 2010. Version
1. http://www2.imm.dtu.dk/ db/todai/tse-1.pdf, Version 2. http://www2.imm.dtu.dk/ db/todai/tse-
2.pdf.

[17] Dines Bjørner. Pipelines – a Domain Description. http://www.imm.dtu.dk/˜dibj/pipe-p.pdf. Exper-
imental Research Report 2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring
2013.

[18] Dines Bjørner. Road Transportation – a Domain Description. http://www.imm.dtu.dk/˜dibj/road-p.pdf.
Experimental Research Report 2013-4, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring
2013.

[19] Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas and Suggestions. Tech-
nical, Technical University of Vienna, August–October 2010. http://www.imm.dtu.dk/˜dibj/wfdftp.pdf.

[20] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Sys-
tems. In Practical Foundations of Business and System Specifications (Eds.: Haim Kilov and
Ken Baclawski), The Netherlands, December 2002. Kluwer Academic Press. Final draft version.
http://www2.imm.dtu.dk/ db/themarket.pdf.

[21] Dines Bjørner. A Container Line Industry Domain. Techn. report, Fredsvej 11, DK-2840 Holte, Denmark,
June 2007. Extensive Draft. http://www2.imm.dtu.dk/ db/container-paper.pdf.

[22] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC
Symposium on Control in Transportation Systems, pages 1–12, Technical University, Braunschweig, Ger-
many, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft
für Fahrzeug– und Verkehrstechnik. Invited talk.

[23] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for
Domain Engineering. Relations to Requirements Engineering and Software for Control Applications. In
Integrated Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box
1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science.
Extended version. http://www2.imm.dtu.dk/ db/pasadena-25.pdf.

[24] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software
Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK,
August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M.
Aoki. Final version. http://www2.imm.dtu.dk/ db/ifac-dynamics.pdf.

[25] Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing. In
FORMS’2003: Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan
Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany. Final version. http://www2.imm.dtu.dk/ db/martin.pdf.

[26] Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In
FORMS2003: Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan
Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany. Final version. http://www2.imm.dtu.dk/ db/albena.pdf.

[27] Dines Bjørner. Programming Languages: Formal Development of Interpreters and Compilers. In In-
ternational Computing Symposium 77 (eds. E. Morlet and D. Ribbens), pages 1–21. European ACM,
North-Holland Publ.Co., Amsterdam, 1977.

[28] Anon. C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red Book Fascicle VI.12. See
[54]. ITU (Intl. Telecmm. Union), Geneva, Switzerland, 1980 – 1985.

[29] P. Haff and A.V. Olsen. Use of VDM within CCITT. In VDM – A Formal Method at Work, eds. Dines
Bjørner, Cliff B. Jones, Micheal Mac an Airchinnigh and Erich J. Neuhold, pages 324–330. Springer,
Lecture Notes in Computer Science, Vol. 252, March 1987. Proc. VDM-Europe Symposium 1987,
Brussels, Belgium.

A Review of 10 Years Work 23 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

24 Dines Bjørner – Domain Science & Engineering

[30] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS.
Springer, 1980.

[31] Dines Bjørner, Chr. Gram, Ole N. Oest, and Leif Rystrømb. Dansk Datamatik Center. In Benkt
Wangler and Per Lundin, editors, History of Nordic Computing, Stockholm, Sweden, 18-20 October
2010. Springer.

[32] G.B. Clemmensen and O. Oest. Formal specification and development of an Ada compiler – a VDM case
study. In Proc. 7th International Conf. on Software Engineering, 26.-29. March 1984, Orlando, Florida,
pages 430–440. IEEE, 1984.

[33] Ole N. Oest. VDM from research to practice (invited paper). In IFIP Congress, pages 527–534, 1986.

[34] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Infor-
matics, Part I of II: The Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May 2010.

[35] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Infor-
matics Part II of II: The Science Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.

[36] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and
Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of His
70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer,
Heidelberg, Germany, January 2011.

[37] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and
Suggestions. Technical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark,
2016. Extensive revision of [36]. http://www.imm.dtu.dk/˜dibj/2016/demos/faoc-demo.pdf.

[38] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Stor-
bank Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1995.

[39] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix
Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[40] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and
prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[41] C.A.R. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-
Hall International, 1985. Published electronically: http://www.usingcsp.com/cspbook.pdf (2004).

[42] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006. See [55, 56].

[43] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deductions,
with a foreword by Georg Henrik von Wright]. Munksgaard · Rosinante, 1994. 168 pages.

[44] Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eternity]. Munksgaard · Rosinante,
1997. 200 pages.

[45] Kai Sørlander. Den Endegyldige Sandhed [The Final Truth]. Rosinante, 2002. 187 pages.

[46] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, 2016. 233
pages.

[47] P. Guyer, editor. The Cambridge Companion to Kant. Cambridge Univ. Press, England, 1992.

[48] Dines Bjørner. A Space of Swarms of Drones. Research Note, Technical University of Denmark, Fredsvej
11, DK-2840 Holte, Denmark, November–December 2017. http://www.imm.dtu.dk/˜dibj/2017/docs/-
docs.pdf.

[49] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying
Observations in the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams
and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality,
and Correctness, volume 5930 of Lecture Notes in Computer Science, pages 22–59, Heidelberg, July
2010. Springer.

c© D. Bjørner 2018, Fredsvej 11, 2840 Holte, Denmark.June 6, 2018: 11:25 24 Domain Science & Engineering

A Review of 10 Years Work – June 6, 2018 25

[50] Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chap-
ter 7, pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC [Francis
& Taylor], 2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[51] Dines Bjørner and Klaus Havelund. 40 Years of Formal Methods — 10 Obstacles and 3 Possibilities. In
FM 2014, Singapore, May 14-16, 2014. Springer, 2014. Distinguished Lecture.

[52] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014:
Australian System Safety Conference, Melbourne, 26–28 May, Technical University of Denmark, Fredsvej
11, DK-2840 Holte, Denmark, December 2014.

[53] Dines Bjørner. The Manifest Domain Analysis & Description Approach to Implicit and Explicit Semantics.
EPTCS: Electronic Proceedings in Theoretical Computer Science, Yasmine Ait-Majeur, Paul J. Gibson
and Dominique Méry, 2018. First International Workshop on Handling IMPlicit and EXplicit Knowledge
in Formal Fystem Development, 17 November 2017, Xi’an, China.

[54] P.L. Haff, editor. The Formal Definition of CHILL. ITU (Intl. Telecmm. Union), Geneva, Switzerland,
1981.

[55] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Qinghua
University Press, 2008.

[56] Dines Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

A Review of 10 Years Work 25 c© D. Bjørner 2018. Fredsvej 11, 2840 Holte, Denmark. June 6, 2018: 11:25

