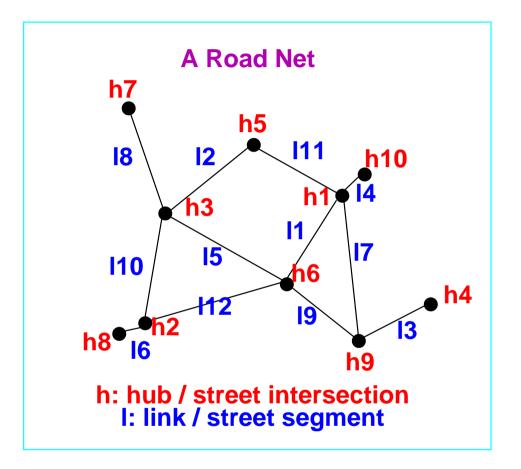
A Philosophy of Domain Science & Engineering An Interpretation of Kai Sørlander's Philosophy The Victor Ivannikov Memorial Event, May 3–4, 2018, Yerevan, Armenia

Dines Bjørner Fredsvej 11, DK-2840 Holte, Danmark E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/~db

April 22, 2018: 10:28 am

Dedicated to his well-being Prof., Dr. Hrant Marandjian


Vitya, we miss you

.

We begin with the first part of a brief example !

٠

1. The Example: Endurants

Figure 1: A Road Net

٠

1.1. External Qualities 1.1.1. Structures

1 There is the *universe of discourse*, UoD. It is structured into

2 a *road net*, RN, a structure, and

3 a *fleet of automobiles*, FA, a structure.

type

٠

```
1 UoD axiom \forall uod:UoD \cdot is_structure(uod).
```

```
2 RN axiom \forall rn:RN \cdot is_strucure(rn).
```

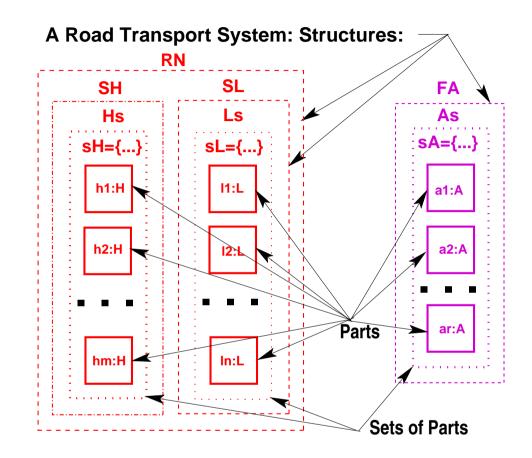
```
3 FA axiom \forall fa:FA \cdot is_structure(fa).
```

value

```
2 obs_RN: UoD \rightarrow RN
```

3 obs_FA: UoD \rightarrow FA

4 The road net consists of


a. a structure, SH, of hubs and

b. a structure, SL, of links.

5 The fleet of automobiles consists of

a. a set, As of automobiles.

```
type
4a. SH axiom \forall sh:SH · is_structure(sh)
4b. SL axiom \forall sl:SL · is_structure(sl)
5a. As = A-set
value
4a. obs_SH: RN \rightarrow SH
4b. obs_SL: RN \rightarrow SL
5a. obs_As: FA \rightarrow As
```


Figure 2: Endurant Structures and Parts

1.1.2. **Parts**

6 The structure of hubs is a set, sH, of atomic hubs, H.

7 The structure of links is a set, sL, of atomic links, L.

8 The structure of automobiles is a set, sA, of atomic automobiles, A.

```
type

6 H, sH = H-set axiom \forall h:H \cdot is_atomic(h)

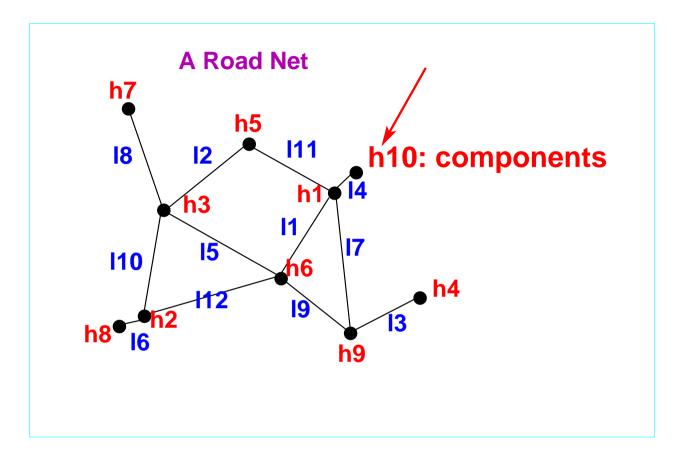
7 L, sL = L-set axiom \forall l:L \cdot is_atomic(l)

8 A, sA = A-set axiom \forall a:A \cdot is_atomic(a)

value

6 obs_sH: SH \rightarrow sH

7 obs_sL: SL \rightarrow sL
```


8 obs_sA: $SA \rightarrow sA$

•

1.1.3. Components

- To illustrate the concept of components
 - \otimes we describe timber yards, waste disposal areas, road material storage yards, automobile scrap yards, end the like
 - \otimes as special "cul de sac" hubs with components.
 - \otimes Here we describe road material storage yards.
- 9 Hubs may contain components, but only if the hub is connected to exactly one link.
- 10 These "cul-de-sac" hub components may be such things as Sand, Gravel, Cobble Stones, Asphalt, Cement or other.

٠

Figure 3: Hub Components

٠

value

9 has_components: $H \rightarrow Bool$

type

10 Sand, Gravel, CobbleStones, Asphalt, Cement, ...

```
10 KS = (Sand|Gravel|CobbleStones|Asphalt|Cement|...)-set
```

value

- $9 \quad obs_components_H: H \rightarrow KS$
- 9 pre: obs_components_H(h) \equiv card mereo(h) = 1

1.1.4. Materials

• To illustrate the concept of materials

 \otimes we describe waterways (river, canals, lakes, the open sea) along links

 \otimes as links with material of type water.

11 Links may contain material.

12 That material is water, W.

type

12 W

value

- 11 obs_material: $L \rightarrow W$
- 11 pre: obs_material(I) \equiv has_material(h)

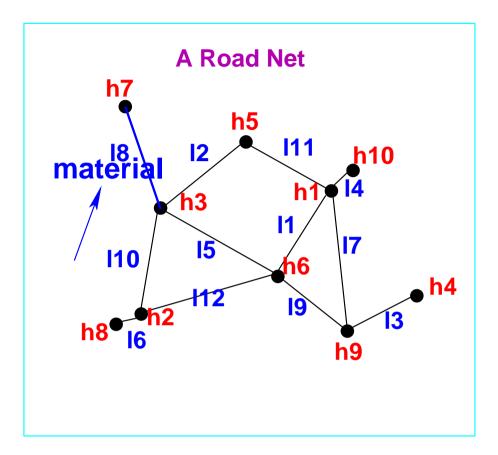


Figure 4: Link Materials

1.1.5. **States**

13 Let there be given a universe of discourse, rts, a state.

From that state we can calculate other states.

14 The set of all hubs, hs .	hls.
15 The set of all links, ls .	17 The set of all automobiles, as .
16 The set of all hubs and links,	18 The set of all parts, ps .

value

- 13 rts:UoD
- 14 hs:H-set
- 15 *ls*:L-set
- 16 hls:(H|L)-set
- 17 *as*:A-set

- $\equiv obs_sH(obs_SH(obs_RN(rts)))$
 - $\equiv obs_sL(obs_SL(obs_RN(rts)))$
- $\equiv hs \cup ls$
 - $\equiv \mathsf{obs_As}(\mathsf{obs_FV}(rts))$
- 18 ps:(H|L|BC|B|A)-set $\equiv hls \cup bcs \cup bs \cup as$

1.2. Internal Qualities 1.2.1. Unique Identifiers

- 19 We assign unique identifiers to all parts.
- 20 By a road identifier we shall mean a link or a hub identifier.
- 21 Unique identifiers uniquely identify all parts.
 - a. All hubs have distinct [unique] identifiers.
 - b. All links have distinct identifiers.
 - c. All automobiles have distinct identifiers.
 - d. All parts have distinct identifiers.
- type 19 H_UI, L_UI, A_UI 20 R_UI = H_UI | L_UI value

21a. uid_H: $H \rightarrow H_UI$ 21b. uid_L: $L \rightarrow L_UI$ 21c. uid_A: $A \rightarrow A_UI$

1.2.2. Mereologies

- Mereology is the study and knowledge of parts and part relations.
- The parts here are the hubs, the links and the automobiles.

22 The mereology of a hub is a pair:

- (i) the set of all automobile identifiers that may use the hub and
- (ii) the set of unique identifiers of the links that it is connected to.

```
type
```

```
22 H_Mer = A_UI-set \times L_UI-set
```

value

22 mereo_H: $H \rightarrow H_Mer$

23 The mereology of a link is a pair:

- (i) the set of identifiers all automobiles that may use the link,
- (ii) the set of identifiers of the two distinct hubs it is connected to.

type 23 $L_Mer = A_UI-set \times H_UI-set$ value

23 mereo_L: $L \rightarrow L_Mer$

24 The mereology of an automobile is:

• the set of the unique identifiers of all hubs and links on which they may travel.

```
type
24 A_Mer = (H_UI|L_UI)-set
value
```

24 mereo_A: $A \rightarrow A_Mer$

1.2.3. Attributes 1.2.3.1 Hubs:

We show just one attribute:

25 Hub traffic history.

- Since we can think rationally about it, it can be described.
- We model hub traffic history as an attribute:
- the recording, per unique automobile identifier,
- of the time ordered presence, **APos**,
- in the hub of these automobiles.

type

```
25 H_Traffic = A_UI \overrightarrow{m} (\mathcal{T} \times APos)*
```

axiom

25 \forall ht:H_Traffic,ui:A_UI · ui \in dom ht \Rightarrow time_ordered(ht(ui)) value

```
25 attr_H_Traffic: : \rightarrow H_Traffic
```

1.2.3.2 Links:

We show just one attribute:

26 Link traffic history:

- Since we can think rationally about it, it can be described.
- We model link traffic history as an attribute:
- the recording, per unique automobile identifier,
- \bullet of the time ordered positions, APos
- (along the link (from one hub to the next)), of these automobiles.

26 L_Traffic = A_UI
$$\overrightarrow{m}$$
 ($\mathcal{T} \times APos$)*

axiom

26 \forall lt:L_Traffic,ui:A_UI · ui \in dom lt \Rightarrow time_ordered(lt(ui)) value

26 attr_L_Traffic: : \rightarrow L_Traffic

1.2.3.3 Automobiles:

We show just a few attributes:

• We illustrate but a few attributes:

27 Automobiles have a time attribute,

28 Automobiles have dynamic positions on the road net:

a. either *at a hub* identified by some h_ui,

b. or **on a link**,

- some *fraction, frac:Fract* down an *identified link, I_ui*,
- from one of its *identified connecting hub*s, fh_ui,
- in the direction of the other *identified hub*, th_ui.
- c. Automobiles, like elephants, never forget: they remember their timed positions of the past,
- d. and the current position is the first element of this past!

```
type
27 T
28 APos == atHub \mid onLink
28a. atHub :: h ui:H UI
28b. onLink :: fh_ui:H_UI×I_ui:L_UI×frac:Fract×th_ui:H_UI
28b. Fract = Real
axiom
28b frac: Fract \cdot 0 < \text{frac} \ll 1
type
28c. A_Hist = (T \times APos)^*
value
27 attr T: A \rightarrow T
28 attr APos: A \rightarrow APos
28c. attr_A_Hist: A \rightarrow A_Hist
axiom
28d. \Box \forall a: A \cdot let (\_,apos) = hd(attr_A_Hist(a)) in apos = attr_APos(a) end
```

1.3. Summary

- We have illustrated the description of
 - *∞ external qualities* of a domain:
 - ∞ *structures*,
 - [®] parts: composite and atomic,
 - ${\scriptstyle \textcircled{\sc 0}}$ components and
 - ∞ materials; and
 - *∞ internal qualities* of that domain:
 - **•** unique identification,
 - ${\scriptstyle \textcircled{0}}$ mereology and
 - ∞ attributes.

End of first part of brief example !

•

2. What do we mean by Domain?

• By a *domain* we shall understand \otimes a logically describable segment of ⇒ a **human assisted** reality, i.e., of the world, • its natural parts as well as man-made artifacts: * endurants ("still"), existing in space, * as well as *perdurants* ("alive"), existing also in time, ∞ and where an emphasis is placed on *"human-assistedness"*, ∞ that is, that there is at least one man-made artifact ∞ and that *humans* are a primary cause for * change of endurant *states* * as well as perdurant *behaviours* "by means" of the man-made artifacts

- By a *domain* we shall understand
 - \otimes a logically describable segment of
 - \otimes a *human assisted* reality, i.e., of the world,
 - ∞ its *natural parts* as well as *man-made artifacts*:
 - * endurants ("still"), existing in space,
 - * as well as **perdurants** ("alive"), existing also in time,
 - « and where an emphasis is placed on *"human-assistedness"*,
 - ∞ that is, that there is **at least one man-made artifact**
 - ∞ and that humans are a primary cause for
 - * change of endurant *states*
 - * as well as perdurant *behaviours*
 - "by means" of the man-made artifacts

- By a *domain* we shall understand
 - \otimes a logically describable segment of
 - \otimes a $human\ assisted\ reality, i.e., of the world,$
 - its *natural parts* as well as *man-made artifacts*:
 - * endurants ("still"), existing in space,
 - * as well as *perdurants* ("alive"), existing also in time,
 - « and where an emphasis is placed on "human-assistedness",
 - that is, that there is at least one man-made artifact
 - ∞ and that *humans* are a primary cause for
 - * change of **endurant states**
 - * as well as **perdurant behaviours**
 - "by means" of the man-made artifacts

2.1. Examples of Domains

- railways,
- road transport,
- container shipping,
- health care,
- document systems,
- oil pipelines,

- e-market,
- weather information,
- credit card systems,
- urban planning,
- swarms of drones,
- et cetera, et cetera!

The paper:

• http://www.imm.dtu.dk/~dibj/2018/philosophy/filo.pdf gives references.

2.2. Domains – in Contrast to other "Fields"

• Thus **domain science & engineering** is different from **automation** and **cybernetics**:

∞ their emphasis is on basing computer applications∞ on mathematics and physics.

- Domain science & engineering, is also different from optimisation and operations research:

 * their emphasis is on mathematical models of resource scheduling,
 * but not the operational monitoring and control.
- **Domain science & engineering** is a new field

∞ as you might learn from this talk —
∞ all it takes is an open mind !

2.3. So what is the problem?

- Well, we wish to make sure that our domain analysis & description method rests on a secure foundation, that is,
 - (1) that **composition** of descriptions "is right",
 - (2) that **elements** of descriptions are **logically founded**, and
 - **(3)** that **the descriptions cannot be otherwise expressed**.
- For that, (1 2, 3), we turn to **philosophy**.
- Can it give us advice?
- But let us first look at (1) **compositions** and (2) **elements**!

3. A Preview of Description Composition and Elements 3.1. "Standard" Domains

• Figure 6 Slide 32 illustrates

 \otimes a **composition** of descriptions –

∞ the various "branches" of the diagram,

 \otimes and their elements –

 ∞ the nodes of the diagram.

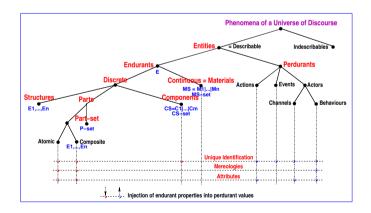
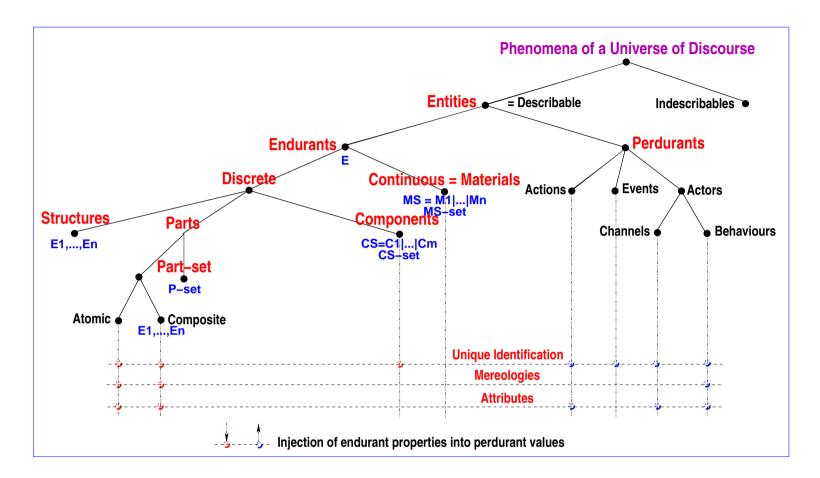



Figure 5: An Initial Upper Ontology for Domains

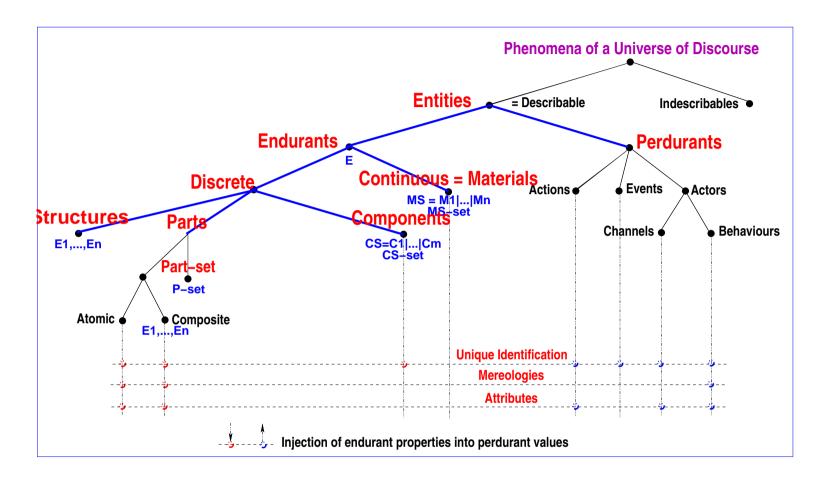
Figure 6: An Initial Upper Ontology for Domains

٠

• Figure 6 Slide 32 intends to show that

 \otimes domains consists of

 ∞ endurants (E_i) and ∞ perdurants;


 \otimes that endurants are either

• discrete or **• continuous**; and that

 \otimes discrete endurants are either

• structures, **•** parts, or **•** components;

- That is: that domains possibly contain all these kinds of elements.
- Let's review Fig. 6 Slide 32, now Fig. 7 Slide 34

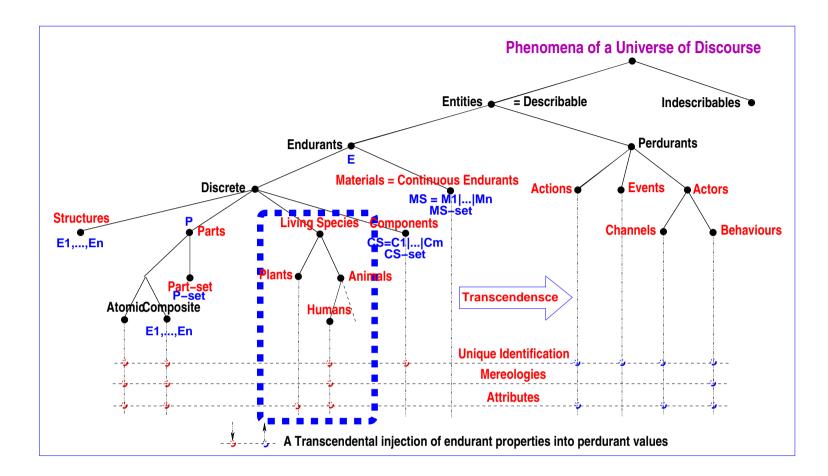


Figure 7: An Initial Upper Ontology for Domains

•

3.2. Influences from Studies of Philosophy, I

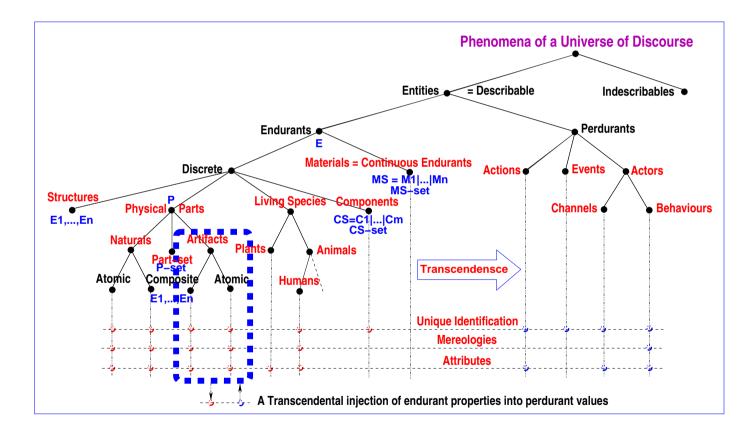

- Our *study of philosophy*
 - ∞ unmistakably mandates us to express
 ∞ (— something that all sensible people know —)
 ∞ but only rational, philosophical reasoning can mandate that
 - \circledast besides the discrete endurants of
 - structures, parts and components,
 - (already shown)
 - \otimes there are also **living species: plants** and **animals** !

Figure 8: An Upper Ontology for Domains with Living Species

3.3. Influences from Studies of Philosophy, II

• Humans (are animals) and humans create artifacts.

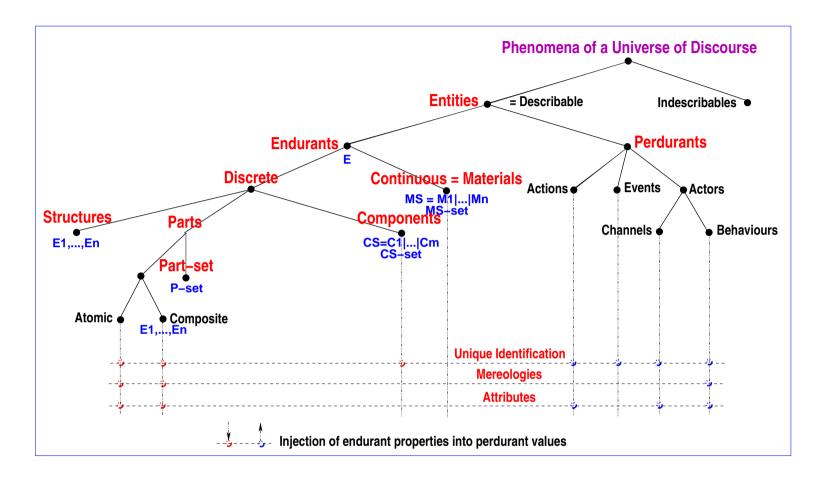
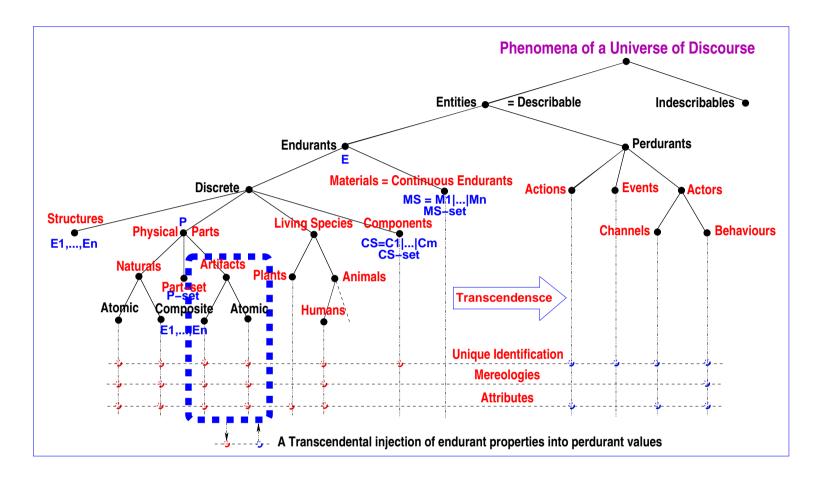


Figure 9: An Upper Ontology for Domains with **Artifacts**


3.4. A Quick Review!

• So you can see

- \otimes what we have "developed"
- \otimes I "flip" the three stages quickly:

Figure 10: An Initial Upper Ontology for Domains

Figure 11: An Upper Ontology for Domains with **Artifacts**

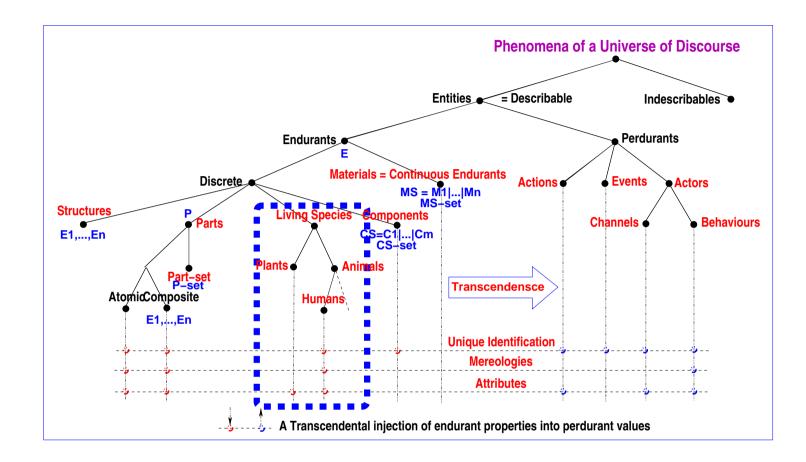


Figure 12: And an Upper Ontology for Domains with Living Species

3.5. Domain Science & Engineering is Different

 As you might now see, the concerns of domain science & engineering are different from those of

- \circledast automation and cybernetics,
- \circledast optimisation and operations research
- \ll the sciences & engineering of electricity,
- \circledast the sciences & engineering of electronics,
- \otimes the sciences & engineering of **chemistry**,
- \circledast the sciences & engineering of $\ensuremath{\mathsf{mechanics}},$
- \circledast the sciences & engineering of aerodynamics,
- \otimes et cetera

4. Endurant Qualities: External and Internal 4.1. External Qualities

• By *external qualities* of *endurants* we man

 \otimes whether they are *discrete* or *continuous* \otimes and, if discrete, whether they are

® structures, *® physical* parts *® components*;

- and if physical parts or artifacts whether they are
 ** atomic* or
 ** composite*.
- All of these external qualities
 - \otimes are observable
 - \otimes but can be justified from a point of view of Philosophy.

4.2. Internal Qualities

• Usually internal qualities are not observable.

4.2.1. Unique Identification

- \bullet We can (abstractly) speak of
 - \otimes discrete endurants
 - \otimes having unique identifies.
- From the point of view of philosophy
 - \otimes uniqueness of discrete endurants
 - \otimes follows from our ability to express
 - \otimes one predicate of one discrete endurant and
 - \otimes a therefrom different predicate of another discrete endurant.
- The two discrete endurants must therefore have distinct identification.

4.2.2. Mereology

- Mereology is the study and knowledge of parts and part relations.
 - Mereology, as a logical/philosophical discipline, can perhaps best be attributed to the Polish mathematician/logician Stanisław Leśniewski [1].

4.2.3. Attributes

- To recall: there are three sets of **internal qualities**:
 - \otimes unique part identifiers,
 - \otimes part mereology and
 - \otimes attributes.
- Unique part identifiers and part mereology are rather definite kinds of internal endurant qualities.
- Part attributes form a more "free-wheeling" sets of **internal qualities**.
- Possessing attributes types and values

 \$\$ form a main basis for expressing propositions about endurants
 \$\$ and are thus central to our study of domain science & engineering.

5. Preview: First Lessons of Philosophy for Domain Science & Engineering

- We show how the domain analysis & description calculi of [2]

 satisfy the Philosophy of Kai Sørlander ,
 but also that Sørlander's Philosophy mandates
 consistent extensions to the calculi
 in order to form a more complete "whole".
- Where discrete parts were just that, we must now distinguish between three kinds of parts:
 - (i) physical parts,
 - (ii) living species parts, and
 - \otimes (iii) **artifacts**.

5.1. Physical Parts

- (i) **Physical parts** are parts that are not made by man,
 - ∞ but are in *space* and *time*;
 - ∞ parts that are subject to the *laws* of physics as formulated by for example *Newton* and *Einstein*,

 - \otimes They are the parts we treated in [2].

5.2. Living Species

• (ii) The living species parts,

*** plants** and **animals**;

- ∞ still subject to the laws and principles of physics,

Animals additionally have

- **∞** sensory organs,
- **•** means of motion,
- **• instincts**,
- ∞ incentives and
- **•** feelings.

5.3. Humans

- - ∞ possessing language,
 - **•** learning skills,
 - ∞ being **consciousness**, and
 - making knowledge.

These aspects were somehow, by us, subsumed
in our analysis & description by partially
endowing *physical part*s with such properties.

5.4. Artifacts

• (iii) **Artifacts** are the parts made by humans. *∞ Artifacts* have a usual set of attributes ∞ of the kind *physical parts* can have; ∞ but in addition they have a *distinguished attribute*: • **attr_Intent** – expressed as a set of intents ∞ by the *humans* who constructed them according to some *purpose*. This more-or-less "standard" *property of intents* • determines a form of **counterpart** to the gravitational pull of physical parts ∞ namely, what we shall refer to as **intentional** "pull".

5.5. Influences from Studies of Philosophy, III 5.5.1. Transcendental Deductions

• A transcendental argument

- \otimes is a deductive philosophical argument
- ∞ which takes a manifest feature of experience as granted,
- \otimes and articulates which must be the case

 \otimes so that experience as such is possible.

• Transcendental deductions we introduced into philosophy by **Immanuel Kant** – around 1772.

5.5.2. An Example

- The **bus** standing there is an **endurant**.
- The **bus** "speeding down" its route is a **perdurant**.
- The **bus** as it is listed in the time-table is an **attribute**.
- \bullet When we claim
 - \otimes that the *endurant* (bus)
 - \otimes is the "same" as the *perdurant* (bus)
- then our "claim" is a *transcendental deduction* !

5.5.3. Another Example

• We speak of

syntax: f.ex.: of **programs** in a programming language, and of **semantics:** f.ex.: the **compiled code** of a (the) program.

• The latter can only by claimed so by a *transcendental deduction* !

- Thus all *abstract interpretations* of computer program texts:
 - static analysis,
 model checks,
 program verification,
 execution,
- are transcendental deductions !

End of Overview

Now to Philosophy itself!

٠

6. The Kai Sørlander Philosopy 6.1. Basic Issues

- We present an account of how the Kai Sørlander Philosopy is argued.
- The question is

☆ 'what are the necessary characteristics of
∞ each and every possible world
∞ and our situation in it'.

• To carry out his reasoning Sørlander establishes a number of criteria.

6.1.1. The Inescapable Meaning Assignment

The Inescapable Meaning Assignment

6.1.1.1 An Example: Stacks Meaning of Designations: Narrative

- 29 Stacks, s:S, have elements, e:E;
- 30 the empty_S operation takes no arguments and yields a result stack;
- 31 the is_empty_S operation takes an argument stack and yields a Boolean value result.
- 32 the **stack** operation takes two arguments: an element and a stack and yields a result stack.
- 33 the **unstack** operation takes an non-empty argument stack and yields a stack result.
- 34 the **top** operation takes an non-empty argument stack and yields an element result.

Consistency Relations: Narrative

35 an empty_S stack is_empty,

and a stack with at least one element is not;

36 unstacking an argument stack, stack(e,s), results in the stack s; and

37 inquiring as to the top of a non-empty argument stack, stack(e,s), yields e.

Meaning of Designations: Formal

type 29. E, S value 30. $empty_S: Unit \rightarrow S$

Consistency Relations: Formal

- 35. is_empty(empty_S()) = true
- 35. $is_empty(stack(e,s)) = false$

31. is_empty_S: $S \rightarrow Bool$ 32. stack: $E \times S \rightarrow S$ 33. unstack: $S \xrightarrow{\sim} S$ 34. top: $S \xrightarrow{\sim} E$

36. unstack(stack(e,s)) = s 37. top(stack(e,s)) = e

End of Example

1

2

• The next 4–5 "slides" may be "rough going"!

- That *the inescapable meaning assignment* is required in order to answer the question of how the world must necessarily be can be seen from the following
 - \otimes It makes it possible to distinguish between necessary and empirical propositions

Example 1 A Proposition which is Necessary:

- ∞ The link (i.e. the street segment)
- \otimes is 100 meters long

Example 2 A Proposition which is Empirical:

• The definition

∞ "the world is all that is the case;

« all that can be described in true propositions"

satisfies *the inescapable meaning assignment*.

- That which is described in **necessary** propositions is that which is common to [all] possible worlds.
- A concrete world is all that can be described in true **empirical** propositions

6.1.2. Primary Objects

- An empirical proposition
 - \otimes must refer to an independently existing thing and \otimes must predicate something about that thing.
- On that basis it is then possible to
 - \otimes deduce how those objects
 - \otimes that can be directly referred to in simple empirical propositions \otimes must necessarily be.
- Those things are referred to as **primary objects**.
- A deduction of the inevitable characteristics of a possible world is thus identical to a deduction of how primary objects must necessarily be.

6.1.3. Two Requirements to the Philosophical Basis

- Two demands have been put to the philosophical basis for our quest.
 - ∞ It must not contain empirical preconditions;
 - \otimes and the foundation must not consistently be refuted.
 - It must not consistently be false.
- The inescapable meaning assignment satisfies this basis.

6.1.4. The Possibility of Truth

- \bullet Where Kant builds on the contradictory dichotomy of

 - « Das Ding für uns,

that is, the possibility of *self-awareness*,

• Kai Sørlander builds on the *possibility of truth*:

 \otimes Since the possibility of truth cannot

- in a consistent manner be denied
- \circledast we can hence assume the **contradiction principle:**
- \otimes 'a proposition and its negation cannot both be true'.
- We assume that the contradiction principle is a *necessary truth*.

6.1.5. The Logical Connectives

• Sørlander now deduces the logical connectives:

- \otimes conjunction (`and' \wedge),
- \otimes *disjunction* ('or', \lor), and
- \Leftrightarrow *implication* (\Rightarrow or \supset).
- That is, they are not taken for granted:

 \otimes They can be deduced!

6.1.6. Necessity and Possibility

- A proposition is necessarily true,

 - \otimes then it must be true under all circumstances.
- A proposition is possibly true,
 - \circledast if its negation
 - ∞ is not *necessarily true*.

6.1.7. Empirical Propositions

• An *empirical proposition*

- \ll refers to an independently existing entities
- \otimes and predicates something that can be
- \otimes either true or false
- \otimes about the referenced entity.

6.2. The Logical Conditions for Describing Physical WorldsSo

which are the logical conditionsof descriptions of any world?

- In [3] and [4] Kai Sørlander,

 - *symmetry* and *asymmetry transitivity* and *intransitivity*, *space: direction, distance, ... time: before, after, ...*
- **states** and **causality**,
 - **∞ kinematics, dynamics**, ...
 - **Newton's laws**, et cetera.

- We shall summarise Sørlander's deductions.
- To remind the listener:
 - \otimes the issue is that of deducing how
 - \circledast the primary entities
 - \otimes must necessarily be.

6.2.1. Symmetry and Asymmetry

- There can be **different** *primary entities*.
 - \otimes Entity A is **different** from entity B
 - ∞ if A can be ascribed a predicate
 - ∞ in-commensurable with a predicate ascribed to B.
 - *∞ Different from* is a *symmetric predicate*.
 - \otimes If entity A is *identical* to entity B
 - ∞ then A cannot be ascribed a predicate
 - ∞ which is in-commensurable
 - ∞ with any predicate that can be ascribed to B;
 - and then B is identical to A.
 - « Equal to is a symmetric predicate.

6.2.2. Transitivity and Intransitivity

If A is identical to B and B is identical to C
\$\$ then A is identical to C
\$\$ with *identity* then being a *transitive relation*.
\$\$ The relation *different from* is not transitive
\$\$ it is an **transitive relation**.

6.2.3. **Space**

- The two relations *asymmetric* and *symmetric*,
 - by a transcendental deduction, can be given an interpretation:
 - \otimes The relation (spatial) direction is asymmetric; and
 - \otimes the relation (spatial) *distance* is symmetric.
 - \otimes From these relations are derived the relation in-between.
 - \otimes Direction, distance and in-between can,
 - ∞ by a transcendental argument,
 - ∞ be understood as spatial relations.
- Hence we must conclude that *primary entities exist in space*.
- Space is therefore an unavoidable characteristic of any possible world.
- From the direction and distance relations one can derive *Euclidean Geometry*.

6.2.4. **States**

- We must assume that primary entities may be ascribed predicates which are not logically required.
 - \otimes That is, they may be ascribed predicates
 - ∞ incompatible with predicates which they actually satisfy —
 - ∞ in order for it to be logically possible,
 - ∞ that one-and-the-same $primary\ entity$
 - ∞ can be ascribed incompatible predicates,
 - ∞ if any primary entity can exist in different states.
 - \otimes A *primary entity* may be
 - on in one state where it can be ascribed one predicate,
 on and in another state where it can be ascribed another
 on incompatible predicate.
- Any entity in every possible world may attain different states.

6.2.5. Time

- Two such different states must necessarily be ascribed different incompatible predicates.
 - \otimes But how can we ensure so ?
 - « Only if states stand in an asymmetric relation to one another.
 - \otimes This state relation is also transitive.
 - \otimes So that is an indispensable property of any world.
- So every possible world must exist in time.

6.2.6. Causality

States are related by the *time relation*s "before" and "after".

- These are asymmetric and transitive relations.
- But how can it be so?
- Propositions about primary entities at different times
 - ∞ must necessarily be logically independent of one another.
 - \otimes This follows from the possibility that a primary entity
 - \otimes necessarily be ascribed different,

incompatible predicates at different times.

- \otimes It is therefore logically **impossible**
 - ∞ from the primary entities alone to deduce
 - ∞ how a primary entity is at on time point
 - ∞ to how it is at another time point.

• How, therefore, can these predicates

supposedly of one and the same entity
at different time points
be about the same entity?

- There can be no logical implication about this!
- Transcendentally therefore there must be a *non-logical implicative*

∞ between propositions about
∞ properties of a primary entity
∞ at different times.

• Such an *non-logical implicative*

must depend on *empirical circumstances*subject to which the primary entity exists.

- There are no other circumstances.
- If the state on a primary entity changes

∞ then there must be changes in its "circumstances"

- \otimes whose consequences are that the primary entity changes state.

will imply primary entity state changes.

• We shall use the term **'cause'**

∞ for a preceding "circumstance"-change∞ that implies a state change of a primary entity.

 \bullet So now we can conclude

∞ that every change of state of a primary entity∞ must have a cause,

and

- This form of implication is called **causal implication**.
- And the principle of implication for **causal principle**.

So every possible world enjoys the *causal principle*.

- Kant's transcendental deduction is fundamentally built on the the *possibility of self-awareness*.
- Sørlander 's transcendental deduction is fundamentally built on the *possibility of truth*.
- In Kant's thinking the *causal principle* is a prerequisite for possibility of self-awareness.
- In this way Sørlander avoids Kant's *solipsism*, i.e.,
 - ∞ "that only one's own mind is sure to exist"

a solipsism that, however, flaws Kant's otherwise great thinking.

6.2.7. Rejection, also, of Hegel's Philosophy

• Just as we reject

Descartes, Spinoza's, Spinoza'

Philosophies – as leading to contradictions,

- so we must reject *Hegel's* Philosophy:
 - & We must reject Hegel's *thesis, antithesis, synthesis*.

 - \otimes By thus postulating that

∞ "it is an eternal truth that we cannot achieve eternal truths". Hegel's main contribution ends up in contradiction.

6.2.8. Kinematics

- So *primary entities* exist in *space* and *time*.
 - ∞ They must have *spatial extent* and *temporal extent*.
 - ∞ They must therefore be able to *change* their *spatial properties*.
 - \otimes Both as concerns form and location.

- « Change in velocity of a primary entity is called its *acceleration*.
- \otimes Acceleration involves either
 - ∞ change in velocity, or
 - ∞ change in direction of movement, or
 - ∞ both.
- So far Sørlander has reasoned us to fundamental concepts of kinematics.

6.2.9. **Dynamics**

- When we "add" causality" to kinematics we obtain *dynamics*.
 - ∞ We can do so, because primary entities are in time.
 - « Kinematics imply that that a primary entity changes when it goes from being at rest to moving.
 - ∞ Likewise when it goes from movement to rest. Et cetera.
 - « So a primary entity has same state of movement if it has same velocity and moves in the same direction.
 - « Primary entities change state of movement if they change velocity or direction.
- So, combining kinematics and the principle of causality,
 - \otimes we can deduce that
 - \otimes if a primary entity changes state of movement
 - \otimes then there must be a cause, and we call that cause a **force**.

6.2.10. Newton's Laws

Newton's First Law:

- Combining kinematics and the principle of causality,
 and the therefrom deduced concept of force,
 we can deduce that any change of movement
 is proportional¹ to the force.
 - This implies that a primary entity which
 is not under the influence of an external force
 will continue in the same state of movement.

• This is Newton's First Law.

¹Observe that we have "only" said: *proportional*, meaning also directly proportional, not whether it is logarithmically, or linearly, or polynomially, or exponentially, ..., so.

Newton's Second Law:

- That a certain, non-zero force implies change of movement,

 Imply that the primary entity
 - ∞ must excert a certain *resistance* to that change.
 - \otimes It must have what we shall call a certain *mass*.²
 - \otimes From this it follows that
 - the change in the state of movement of a primary entity.
 - ∞ not only is proportional to the excerted force,
 - ∞ but also inversely proportional³ to the mass of that entity.

• This is Newton's Second Law.

²*Mass* refers loosely to the amount of *matter* in an entity. This is in contrast to *weight* which refers to the *force* exerted on an entity by *gravity*. ³Cf. Footnote 1 [on the facing slide].

87

Newton's Third Law:

- In a possible world,
 - the forces that affect primary entities must come from "other" primary entities.
 - \otimes Primary entities are located in different volumes of space.
 - \otimes Their location may interfere with one another in the sense at least of "obstructing" their mutual movements –
 - \otimes leading to clashes.
- This is Newton's Third Law.

6.2.11. **Gravitation and Quantum Mechanics** Mutual Attraction:

- How can primary entities possibly be the *source* of *force*s that *influence* one another?
- How can primary entities at all have a *mass*⁴ such that it requires *force*s to change their *state of movement*?
- The answer must be that primary entities **excert** a **mutual influence** on one another –
- that is there is a *mutual attraction*.

Gravitation:

- This must be the case for all primary entities.
- This must mean that all primary entities
- \bullet can be characterised by
- a *universal mutual attraction*:
- a universal gravitation

Finite Propagation – A Gravitational Constant:

- Thus *mutual attraction* must *propagate* at a certain, finite, velocity.
- If that velocity was infinite, then it is everywhere and cannot therefore have its source in concretely existing primary entities.
- But having a finite velocity implies that there must be a *propagational speed limit*.
- It must be a *constant of nature*.

Gravitational "Pull":

- The nature of *gravitational "pull"* can be deduced, basically as follows:
 - \otimes Primary entities must basically consist of elements
 - \Leftrightarrow that attract one another, but which are stable,
 - \otimes and that is only possible if it is, in principle,
 - \circledast impossible to describe these elementary particles precisely.
 - \otimes If there is a fundamental limit to how these basic particles
- Hence there is a basis for stability despite mutual attraction.
 - There must be a foundational limit for how precise these descriptions can be —
 which implies that the elementary particle as a whole can be described statistically

Quantum Mechanics:

- The rest is physics:
 - w unification of quantum mechanics and Einstein's special relativity has been done;
 - « unification of gravitation with
 - Einstein's general theory of relativity has still to be done.

A Summary:

- Philosophy lends to physics its results
 & a necessity that physics cannot give them.
- Philosophy shows that every possible world is subject to a fixed propagation limit.
- Philosophy also shows that for a possible world to exist it must be built from elementary particles which cannot be individually described (with Newton's theory)

6.3. The Logical Conditions for Describing Living Species 6.3.1. Purpose, Life and Evolution Causality of Purpose:

- If there is to be *the possibility of language and meaning*,
 - \otimes **then** there must exist primary entities
 - ∞ which are
 - not entirely encapsulated within the physical conditions;
 - ∞ that they are stable and
 - ∞ can influence one another.
- \bullet This is only possible if such primary entities are
 - ⊗ subject to a *supplementary causality*
 - *∞ directed at the future*: a **causality of purpose**
- These primary entities are here called **living species**.

Living Species:

• What can be deduced about them?

- They must have some form they can be developed to reach
- « which they must be causally determined to maintain.
- - in an exchange of matter with an environment. ...
- It must be possible that living species occur in one of two forms: one form which is characterised by

development, form and exchange,

- and another form which, additionally, can be characterised by the ability to purposeful movements.
- The first we call **plant**s, the second we call **animal**s.

6.3.1.1 Animate Entities:

- For an animal to purposefully move around
 - there must be "additional conditions" for such self-movements
 to be in accordance with the principle of causality:
 - (i) they must have **sensory organ**s sensing among others the immediate purpose of its movement;
 - (ii) they must have **means of motion** so that it can move; and
 - (iii) they must have **instinct**s, **incentive**s and **feeling**s as causal conditions that what it senses can drive it to movements.
 - \circledast And all of this in accordance with the laws of physics.

6.3.1.2 Animal Structure:

- Animals, to possess these three kinds of "additional conditions",
 - w must be built from special units which have
 an inner relation to their function as a whole;
 - Their purposefulness must be built into their physical building units,
 - \ll that is, as we can now say, their **genomes**.
- Similar kinds of deduction can be carried out with respect to plants.
- Transcendentally one can deduce basic principles of evolution but not their details.

6.3.2. Consciousness, Learning and Language

- The existence of animals is a necessary condition for there being language and meaning in any world.

 - \otimes And this must presuppose
 - that animals can **learn** from their experience.
 - \otimes To learn implies that animals can feel pleasure and distaste.

Language:

- Animals with higher social interaction
 - ∞ uses **sign**s, eventually developing a **language**.
 - These languages adhere to the same system of defined concepts
 which are a prerequisite for any description of any world:
 namely the system
 that philosophy lays bare from a basis
 - ${\tt ∞}$ of transcendental deductions ${\rm and}$
 - ${\scriptstyle \textcircled{\sc o}}$ the principle of contradiction ${\rm and}$
 - **•** its implicit meaning theory.

6.3.3. Humans, Consciousness and Knowledge

• A human is an animal which has a language.

- Humans must be **conscious**
 - \otimes of having **knowledge** of its concrete situation,
 - \otimes and as such that person can have knowledge about what he feels
 - ∞ and eventually that person can know whether what he feels is true or false.
 - « Consequently *a human can describe his situation correctly*.

6.3.4. Responsibility

- In this way one can deduce that **humans**
 - \otimes can thus have **memory**
 - \otimes and hence can have **responsibility** ,
 - \otimes be **responsible** .
 - \otimes Further deductions lead us into ethics .

And here we end our Philosophy Discourse

7. The Example Continued: Intentional "Pull"

- We refer to the example of Sect. 1.
- The *human-assistedness* of our main example
 - \otimes is reflected in the automobile artifacts.
 - \otimes We do not describe, i.e. model, humans.
 - \otimes Instead we let automobiles subsume human character.
- The *artifacts* of our main example are those of
 - \otimes the road net and
 - \otimes the autombiles.
- 38 To automobiles we ascribe an *intent* of *transport*.
- 39 And to road hubs and links we ascribe an *intent* of *transport*.

- 40 Seen from the point of view of an automobile there is its own traffic history, A_Hist Item 28c. Slide 21, which is a (time ordered) sequence of timed automobile's positions;
- 41 seen from the point of view of a hub there is its own traffic history, H_Traffic Item 25 Slide 19, which is a (time ordered) sequence of timed maps from automobile identities into automobile positions; and
- 42 seen from the point of view of a link there is its own traffic history, L_Traffic Item 26 Slide 20, which is a (time ordered) sequence of timed maps from automobile identities into automobile positions.
 - The *intentional "pull"* of these manifestations is this:
- 43 The union, i.e. proper merge of all automobile traffic histories, AllATH, must now be identical to the same proper merge of all hub, AllHTH, and all link traffic histories, AllLTH.

type
28c., pp.21 A_Hist $= (\mathcal{T} imes APos)^*$
25, pp.19 H_Traffic = A_UI \overrightarrow{m} $(\mathcal{T} imes APos)^*$
26, pp.20 L_Traffic = A_UI \overrightarrow{m} $(\mathcal{T} \times APos)^*$
43 AllATH = $\mathcal{T} \xrightarrow{m}$ (AUI \xrightarrow{m} APos)
43 AIIHTH = $\mathcal{T} \xrightarrow{\mathcal{H}}$ (AUI $\xrightarrow{\mathcal{H}}$ APos)
43 AIILTH = $\mathcal{T} \xrightarrow{m}$ (AUI \xrightarrow{m} APos)
axiom
43 let $allA = proper_merge_into_AllATH({(a,attr_A_Hist(a)) a:A \in as}),$

43 $allH = proper_merge_into_AllHTH({attr_H_Traffic(h)|h:H·h \in hs}),$

- 43 all = proper_merge_into_AllLTH({attr_L_Traffic(I)|I:L·h $\in ls$ }) in
- 43 $allA = H_and_L_Traffic_merge(allH,allL)$ end
 - We leave the definition of the merge functions to the listener!

- We now discuss the concept of *intentional "pull"*.
- To each automobile we can, of course, associate its history of timed positions and
- to each hub and link, similarly their histories of timed automobile positions.
- These histories are facts !
- They are not something that is laboriously recorded, where such recordings may be imprecise or cumbersome⁵.
- The facts are there, so we can, but may not necessarily, talk about these histories as facts.
- It is in that sense that the purpose ('transport')

∞ for which man let automobiles, hubs and link be made
 ∞ with their 'transport' intent
 ∞ are subject to an *intentional "pull"*.

 It can be no other way: if automobiles "record" their history, then hubs and links must together "record" identically the same history !

⁵or thought technologically in-feasible – at least some decades ago!

We have tentatively proposed a concept of *intentional "pull*".
That proposal is in the form, I think, of
a transcendental deduction;
it has to be further studied.

8. Closing

- We have introduced two major and **new**, concepts:

 - (ii) philosophy

as a basis for determining major elements on a domain analysis & description method.

• We claim these, (i) and (ii), as **new** elements of computer science.

9. Acknowledgements

• I gratefully acknowledge:

Prof. Dr Arutyun Avetisyan, Moscow
Prof. Dr Yury Haykovich Shoukourian, Yerevan
Prof. Dr Vladimir Sahakyan, Yerevan
for their invitation and support.

Lunch with Viktor Petrovich, April 25, 2015, Dom Literatow

10. Bibliography 10.1. References

- Dines Bjørner. To Every Manifest Domain a CSP Expression A Rôle for Mereology in Computer Science. *Journal of Logical and Algebraic Methods in Programming*, (94):91–108, January 2018.
- [2] Dines Bjørner. Manifest Domains: Analysis & Description. *Formal Aspects of Computing*, 29(2):175–225, Online: July 2016, Journal: March 2017.
- [3] Kai Sørlander. Det Uomgængelige Filosofiske Deduktioner [The Inevitable Philosophical Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard · Rosinante, 1994. 168 pages.
- [4] Kai Sørlander. *Indføring i Filosofien [Introduction to The Philosophy]*. Informations Forlag, 2016. 233 pages.