Container Terminals An Initial Domain Analysis & Description Sketch

Dines Bjørner

Fredsvej 11, DK-2840 Holte and DTU, DK-2800 Kgs. Lyngby, Denmark. e-mail: bjorner@gmail.com, URL: www.imm.dtu.dk/~dibj

. November 6, 2018: 01:50 am

The ECNU November 2018 Course Project

Abstract

- \bullet We present a recording of stages and steps
- of a development of a domain analysis & description
- of an answer to he question:

2

• what, mathematically, is a container terminal?

$\sqrt{\text{Course Project I}} \sqrt{}$

• Front	1-2
• Some Pictures	8-35
• SECT	36-40
Main Behaviours	41-47
Course Project II	
• Parts	49-69
• Unique Identifiers	70-76
Mereology	84–100
Course Project III	
Attributes	102–118
• Perdurants – Overview	119-123
• Actions	124–160
• Events	49-168

An Initial Domain Analysis & Description Sketch

Abstract

- This is a report on an experiment.

 - \otimes it reflects how I view an answer to the question
 - what is a container terminal port?
 - \otimes mathematically speaking.

1. Introduction

TO BE WRITTEN

5

1.1. Survey of Literature on Container-related Matters

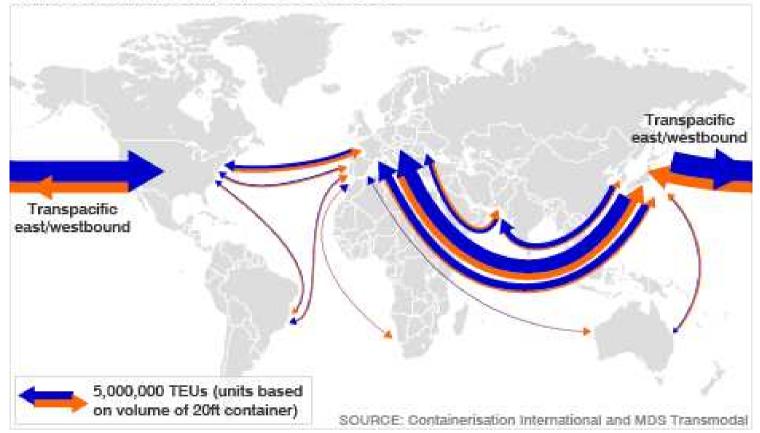
- [1, A Container Line Industry Domain, 2007]
- [2, A-Z Dictionary of Export, Trade and Shipping Terms]
- [3, Portworker Development Programme: PDP Units]
- [4, An interactive simulation model for the logistics planning of container operations in seaports,1996]
- [5, Stowage planning for container ships to reduce the number of shifts, 1998]
- [6, Container stowage planning: a methodology for generating computerised solutions, 2000]
- [7, Container ship stowage problem: complexity and connection to the coloring of circle graphs, 2000]

[©] Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

- [8, Container stowage pre-planning: using search to generate solutions, a case study, 2001]
- [9, A genetic algorithm with a compact solution encoding for the container ship stowage problem, 2002]
- [10, Multi-objective ... stowage and load planning for a container ship with container rehandle ..., 2004]
- [11, Container terminal operation and operations research a classification and literature review, 2004]
- [12, Online rules for container stacking, 2010]

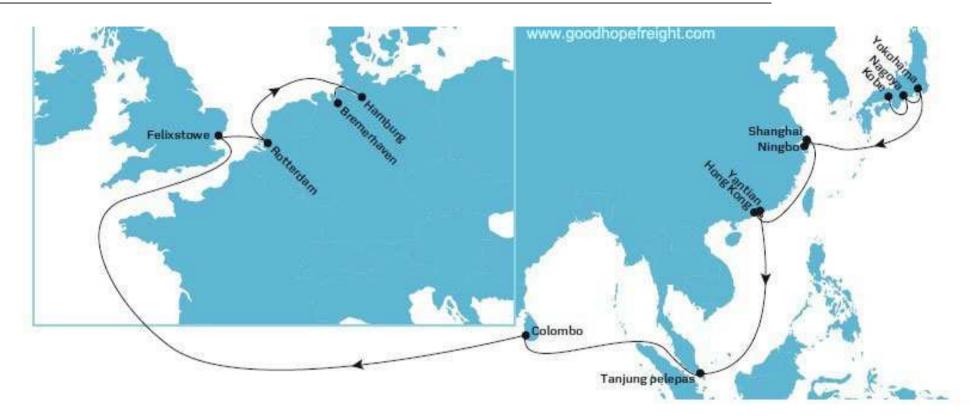
2. Some Pictures

2.1. Terminal Port Container Stowage Area


2.2. Container Stowage Area and Quay Cranes

An Initial Domain Analysis & Description Sketch

2.3. Container Vessel Routes


MAIN CONTAINER SHIPPING ROUTES 2008

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

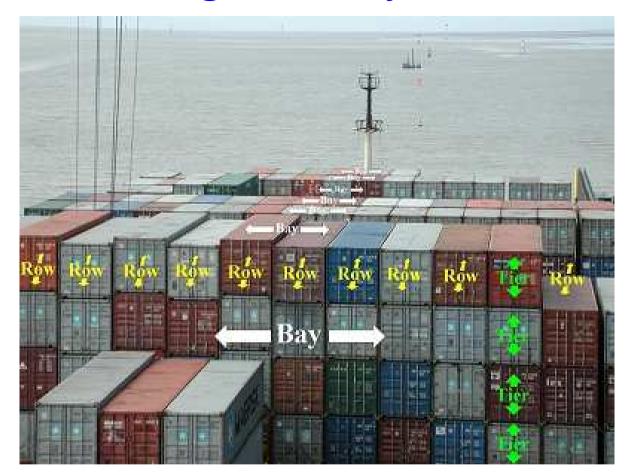
An Initial Domain Analysis & Description Sketch

2.4. Containers 2.4.1. 40 and 20 Feet Containers

2.4.2. Container Markings

2.5. Container Vessels

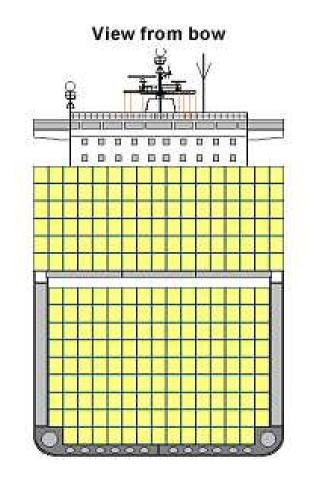
An Initial Domain Analysis & Description Sketch

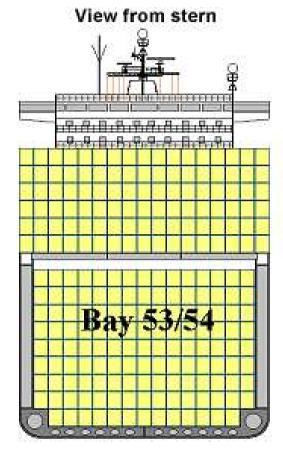


www.alarny.com - E8WD68

Quay cranes and vessel showing row of aft (rear) bay.

2.6. Container Stowage Area: Bays Rows, Stacks and Tier

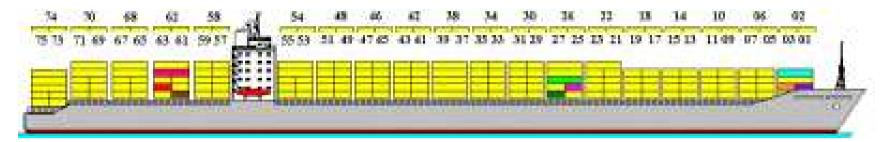

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am



Bay, Row, Tier Numbers.

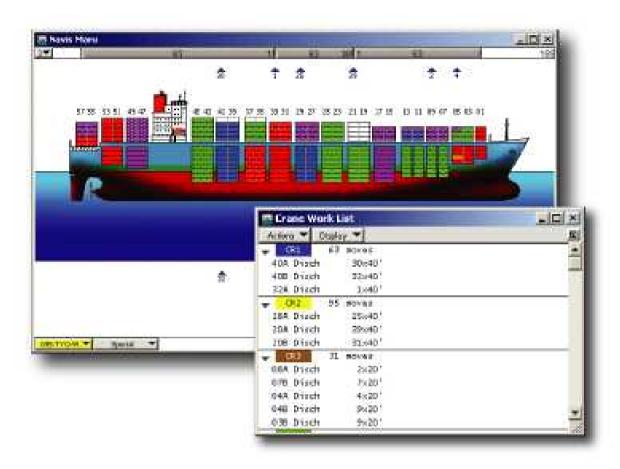
Row Numbers

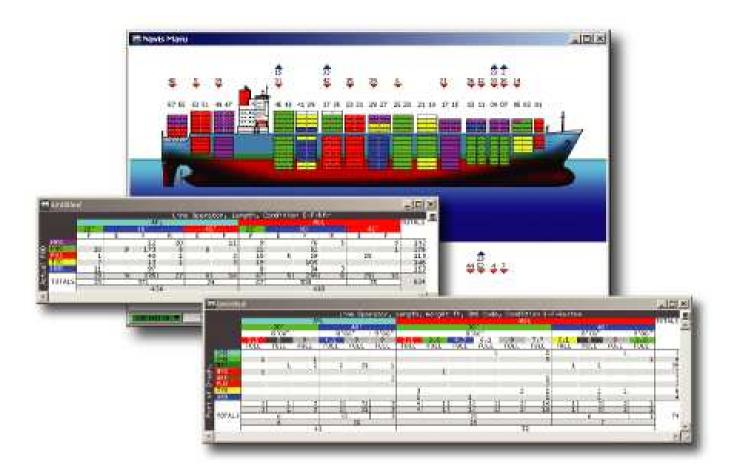
An Initial Domain Analysis & Description Sketch


© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

Cross section of a Bay.

Tier Numbers.


An Initial Domain Analysis & Description Sketch


Bay Numbering

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

2.7. Stowage Software

An Initial Domain Analysis & Description Sketch

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

2.8. Quay Cranes

An Initial Domain Analysis & Description Sketch

2.9. Container Stowage Area and Stack Cranes

An Initial Domain Analysis & Description Sketch

2.10. Container Stowage Area

An Initial Domain Analysis & Description Sketch

2.11. Quay Trucks

An Initial Domain Analysis & Description Sketch

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

2.12. Map of Shanghai and YangShan

3. **SECT**

- Shanghai East Container Terminal
 - \otimes is the joint venture terminal of

 - Shanghai International Port Group
 - ∞ in Wai Gao Qiao port area of Shanghai.
- No.1 Gangjian Road, Pudong New District, Shanghai, China

An Initial Domain Analysis & Description Sketch

© Dines Bjørner 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am


Container Terminals

4. Main Behaviours

- From consumer/origin to consumer/final destination:
 - container loads onto land truck;
 - ♦ land truck travels to terminal stack;
 - Container unloads by means of terminal stack crane from land truck onto terminal stack.
 - **Container moves** from **stack** to **vessel**:
 - terminal stack crane moves container from terminal stack to quay truck,
 - quay truck moves container from terminal stack to quay,
 - quay crane moves container to top of a vessel stack;
 - **Container moves** on **vessel** from **terminal** to **terminal**:
 - $\ensuremath{\mathfrak{O}}$ Either container is unloaded at a next terminal port to a stack and from there to a container truck
 - $\ensuremath{\mathfrak{O}}$ or: container is unloaded at a next terminal port to a stack and from there to a next container vessel.

4.1. A Diagram

Fig. 1: Container Terminal Ports, I A "from the side" snapshot of terminal port activities

An Initial Domain Analysis & Description Sketch

4.2. Terminology - a Caveat

Bay¹: contains indexed set of *rows* (of stacks of containers).

Container : smallest unit of central (i.e., huge) concern !

Container Stowage Area : An area of a vessel or a terminal where containers are stored, during voyage, respectively awaiting to be either brought out to shippers or onto vessels.

Crane :

Stack Crane : moves *containers* between *land* or *terminal trucks* and *terminal stacks*.

Quay Crane : moves *containers* between [*land* or] *terminal trucks* and *vessels*.

¹The terms introduced in this section are mine. They are most likely not the correct technical terms of the container shipping and stowage trade. I expect to revise this section, etc.

[©] Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

- Land : ... as you know it ...
- **Ocean** : ... as you know it ...
- **Shipper** : arranges shipment of containers with container lines
- **Quay** : area of terminal next to vessels (hence water).
- **Row** : contains indexed set of *stacks* (of containers).
- **Stack** : contains indexed set of *containers*.
 - We shall also, perhaps confusingly, use the term stack referring to the land-based bays of a terminal.
- **Terminal** : area of land and water between land and ocean equipped with container stowage area, and stack and quay cranes, etc.

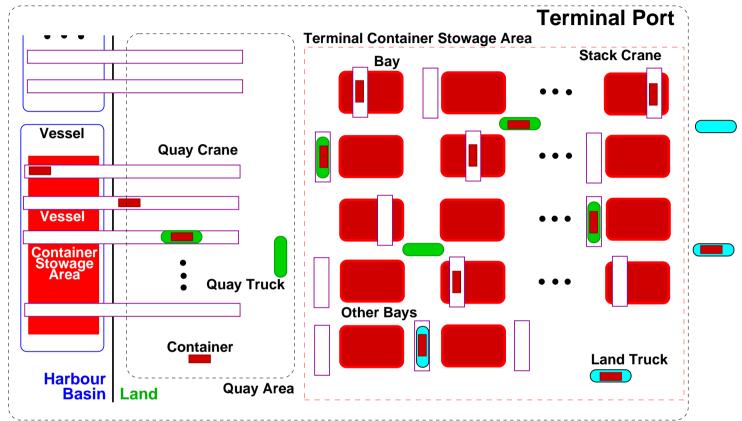
An Initial Domain Analysis & Description Sketch

Truck :

- **Land Truck** : privately operated truck transport *containers* between *shippers* and *stack cranes*.
- **Quay Truck** : terminal operated special truck transport *containers* between *stack cranes* and *quay cranes*.
- Tier : index of *container* in *stack*.
- **Vessel** : contains a *container stowage area*.

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

4.3. Assumptions


- Without loss of generality we can assume that

 - \otimes quay trucks may serve any (quay and stack) crane;
 - \otimes land trucks may serve more than one terminal;
 - \otimes et cetera.

Course Project II

• Parts	49-69
 Unique Identifiers 	70-76
 Mereology 	84-100

5. Endurants

Fig. 2: Container Terminal Ports, II A "from above" snapshot of terminal port activities

5.1. **Parts**

1 In the container line industry, CLI, we can observe

2 an indexed set

of two or more container *terminal* ports, TP;

3 an indexed set

of one or more container *vessels*, V; and

4 a non-empty, indexed set of land trucks, LT;

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

type 1 CLI 2 TPS, TPs = TP-set, TP 3 VS, Vs = V-set, V 4 LTS, LTs = LT-set, LT value 2 obs TPS: CLI \rightarrow TPS, obs TPs: (

2 obs_TPS: CLI
$$\rightarrow$$
 TPS, obs_TPs: CLI \rightarrow TPs

3 obs_VS: CLI
$$\rightarrow$$
 VS, obs_Vs: CLI \rightarrow Vs

4 obs_LTS: TP \rightarrow LTS, obs_LTs: LTS \rightarrow LTs

axiom

- 2 \forall cli:CLI·card obs_TPs(obs_TPS(cli)) \geq 2
- 3 \forall cli:CLI·card obs_Vs(obs_VS(cli)) ≥ 1
- 4 \forall Its:LTS·card obs_LTs(obs_LTS(cli)) ≥ 1

5.1.1. Terminal Ports

In a terminal port one can observe

5 a [composite] container stowage area, CSA;

6 a non-empty, indexed set of one or more quay cranes, QC;

7 a non-empty, indexed set of one or more terminal cranes, TC;

8 a non-empty, indexed set of quay trucks, QT;

9 a[n atomic] quay², Q^3 ; and

10 a[n atomic] terminal port monitoring and control center, MCC.

Pronunciation: key.

Thesaurus: berth, jetty, key, landing, levy, slip, wharf

 $^{^{2}}$ We can, without loss of generality, describe a terminal as having exactly one quay (!) – just as we, again without any loss of generality, describe it as having exactly one container stowage area.

 $^{^{3}}Quay$: a long structure, usually built of stone, where boats can be tied up to take on and off their goods.

[©] Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

type

```
5 CSA
6 QCS QCs = QC-set, QC
7 TCS, TCs = TC-set, TC
8 QTS, QTs = QT-set, QT
9 Q
10 MCC
value
   obs CSA: TP \rightarrow CSA
5
   obs_QCS: TP \rightarrow QCS, obs_QCs; QCS \rightarrow QCs
6
7 obs_TCS: TP \rightarrow TCS, obs_TCs: TCS \rightarrow TCs
8 obs_QTS: TP \rightarrow QTS, obs_QTs: QTS \rightarrow QTs
9 obs Q: TP \rightarrow Q
10 obs_MCC: TP \rightarrow MCC
axiom
6 \forall tss:TCS-card obs_TCs(tcs)\geq 1
7 \forall qs:QS•card obs_Qs(qs)\geq 1
```

- 8 $\forall qcs:QCS \cdot card obs_QCs(qcs) \ge 1$
- 10 \forall qts:QTS•card obs_QTs(qts) ≥ 1

5.1.2. **Quays**

- Although container terminal port quays
 - \otimes can be modelled as composite parts
 - \otimes we have chosen to describe them as atomic.
 - \diamond We shall subsequently endow the single terminal port quay with such attributes as quay segments, quay positions and berthing $^4.$

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

⁴Berth: Sufficient space for a vessel to maneuver; a space for a vessel to dock or anchor; (whether occupied by vessels or not). Berthing: To bring (a vessel) to a berth; to provide with a berth.

5.1.3. Container Stowage Areas: Bays, Rows and Stacks

- 11 From a container stowage area one can observe a non-empty indexed set of bays,
- 12 From a bay we can observe a non-empty indexed set of rows.
- 13 From a row we can observe a non-empty indexed set of stacks.
- 14 From a stack we can observe a possibly empty indexed set of containers.

type

11 BAYS,
$$BAYs = BAY-set$$
, BAY

12 ROWS,
$$ROWs = ROW-set$$
, ROW

14 CONS, CONs = CON-set, CON

value

- 11 obs_BAYS: CSA \rightarrow BAYS, obs_BAYs: BAYS \rightarrow BAYs
- 12 obs_ROWS: BAY \rightarrow ROWS, obs_ROWs: ROWS \rightarrow ROWs
- 13 obs_STKS: ROW \rightarrow STKS, obs_STKs: STKS \rightarrow STKs
- 14 obs_CONS: STK \rightarrow CONS, obs_CONs: CONS \rightarrow CONs

axiom

- 11 \forall bays:BAYs \cdot card bays > 0
- 12 \forall rows:ROWs \cdot **card** rows > 0
- 13 \forall stks:STKs \cdot card stks > 0

5.1.4. **Vessels**

From (or in) a vessel one can observe

15 [5] a container stowage area

16 and some other parts.

type

5 CSA 16 ... **value** 5 obs_CSA: $V \rightarrow CSA$ 16 ...

5.1.5. Functions Concerning Container Stowage Areas

17 One can calculate

18 the set of all container storage areas:

19 of all terminal ports together with those

20 of all container lines.

value

- 17 cont_stow_areas: $CLI \rightarrow CSA$ -set
- 18 $cont_stow_areas(cli) \equiv$
- 19 {obs_CSA(tp)|tp:TP·tp \in obs_TPs(obs_TPS(cli))}
- $20 \quad \cup \ \{\mathsf{obs_CSA}(\mathsf{cl}) | \mathsf{cl:CL} \cdot \mathsf{cl} \in \mathsf{obs_CLs}(\mathsf{obs_CLS}(\mathsf{cli})) \}$

One can calculate the containers of

21 a stack,

22 a row,

23 a bay, and

24 a container stowage area.

value

- 21 extr_cons_stack: STK \rightarrow CONs
- 21 extr_cons_stack(stk) = obs_CONs(obs_CONS(stk))
- 22 extr_cons_row: ROW \rightarrow CONs
- $22 \quad extr_cons_row(row) \equiv \{obs_CONs(obs_CONS(stk)) | stk:STK \cdot stk \in obs_STKs(obs_STKS(stk)) \}$
- 23 extr_cons_bay: BAY \rightarrow CONs
- 23 $extr_cons_bay(bay) \equiv \{obs_CONs(obs_CONS(row)) | row: ROW \cdot row \in obs_ROWs(obs_ROWS(bay))\}$
- 24 extr_cons_csa: CSA \rightarrow CONs
- 24 $extr_cons_csa(csa) \equiv \{obs_CONs(obs_CONS(bay)) | bay: BAY \cdot bay \in obs_BAYs(obs_BAYS(csa))\}$

5.1.6. Axioms Concerning Container Stowage Areas

25 All rows contain different, i.e. distinct containers.

- 26 All bays contain different, i.e. distinct containers.
- 27 All container stowage areas contain different, i.e. distinct containers.

value

60

25	∀ cli:CLI •
25	$\forall csa,csa':CSA \cdot \{csa,csa'\} \subseteq cont_stow_areas(cli) \cdot$
25	\forall row,row':ROW •
25	$\{row, row'\} \subseteq obs_ROWs(obs_ROWS(csa)) \cup obs_ROWs(obs_ROWS(csa')) \Rightarrow$
25	$extr_cons_row(row) \cap extr_cons_row(row') = \{\} \land$
26	\forall bay,bay':BAY \cdot
26	$bay,bay'\} \subseteq obs_ROWs(obs_ROWS(csa)) \cup obs_ROWs(obs_ROWS(csa')) \Rightarrow$
26	$extr_cons_bay(bay) \cap extr_cons_bay(bay') = \{\} \land $
27	$extr_cons_csa(csa) \cap extr_cons_csa(csa') = \{\}$

5.1.7. Stacks

• An aside:

- \otimes We shall use the term 'stack' in two senses:
 - $_{\odot}$ (i) as a component of container storage area bays; and
 - \circ (ii) to refer to the collection of stacks in a bay of a terminal container storage area.

28 Stacks are created empty, and hence stacks can be *empty.*

- 29 One can *push* a *container* onto a *stack* and obtain a *non-empty stack*.
- 30 One can *pop* a *container* from a *non-epmpty stack* and obtain a pair of a *container* and a possibly empty *stack*.

value

- 28 empty: () \rightarrow STK, is_empty: STK \rightarrow **Bool**
- 29 push: CON \times STK \rightarrow STK
- 30 pop: STK $\xrightarrow{\sim}$ (CON \times STK)

axiom

- 28 is_empty(empty()), ~is_empty(push(c,stk))
- 29 pop(push(c,stk)) = (c,stk)
- 30 **pre** pop(stk),pop(push(c.stk)): ~is_empty(stk)
- 30 pop(empty()) = chaos

5.2. Terminal Port Command Centers 5.2.1. Discussion

- We consider terminal port monitoring & control command centers to be atomic parts.
- The purpose of a terminal port command center is to monitor and control
 - the allocation and service (berthing) of any visiting vessel to quay positions and by quay cranes,
 - \otimes the allocation and services of vessels by quay cranes,
 - \otimes the allocation and services of quay cranes by quay trucks,
 - \otimes the allocation and services of quay trucks to quay cranes, containers and terminal stacks,
 - \otimes the allocation and services of land trucks to containers and terminal stacks,

- This implies that there are means for communication between a terminal command center and
 - ♦ vessels,
 - \otimes quay cranes,
 - \otimes stack cranes,

- \otimes land trucks,
- « containers.

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

5.2.2. Justification

- We shall justify the concept of terminal monitoring & control, i.e., command centers.
 - First we know that we are going, through a transcendental deduction, to model certain parts as behaviours.
 - These parts, we decide, after some analysis that we forego, to be
 - vessels,
 quay cranes,
 quay trucks,
 land trucks,
 and
 containers.

- Behaviours are usually like actors: they can instigate actions.
- But we decide, in our analysis, that some of these behaviours,
 - quay cranes,
 quay trucks,
 stack cranes and
 stacks,
 - are "passive" actors:
 - are behaviourally not endowedwith being able to initiate "own" actions.

- Instead, therefore, of all these behaviours,
 being able to communicate directly, pairwise,
 as loosely indicated by the figures of Pages 43 and 49,
 we model them to communicate via their terminal command centers.
- This is how we justify the introduction of the concept of terminal command centers.

- They are an abstraction.
 - - ∞ you could observe, not one, but, perhaps, a hierarchy
 - of terminal port offices, staffed by people,
 - [each office, each group of staff] with its set of duties:
 - * communicating (by radio-phone) with approaching [and departing] vessels;
 - * scheduling quay positions, quay cranes and quay trucks;
 - * managing the operation of cranes and trucks;
 - \ast and, on a large scale,
 - * calculating stowage: on vessels and in terminals.

Today, "an age of ubiquitous computing",
most of these offices and their staff are replaced by
electronics: sensors, actuators, communication and computing,
and with massive stowage data processing:
* where should containers be stowed

- * on board vessels and in terminals
- * so as to near-optimise all operations.

5.3. Unique Identifications

- 31 Vessels have unique identifiers, VI.
- 32 Quay cranes have unique identifiers.
- 33 Quay trucks have unique identifiers.
- 34 Stack cranes have unique identifiers.
- 35 Bays ("Stacks") of terminal container stowage areas have unique identifiers, TBI, a proper subset of BI.
- 36 Land trucks have unique identifiers, LTI.
- 37 Terminal port command centers have

unique identifiers, MCCI.

- 38 Containers have unique identifiers, CI.
- 39 Bays of container stowage areas have unique identifiers, BI.
- 40 Rows of a bay have unique identifiers, RI.
- 41 Stacks of a row have unique identifiers, SI.
- 42 The part unique identifier types are mutually disjoint.

type	value	
31 VI	31 uid_V: $V \rightarrow VI$	
32 QCI	32 uid_QC: QC \rightarrow QCI	
33 QTI	33 uid_QT: $QT \rightarrow QTI$	
34 SCI	34 uid_SC: SC \rightarrow SCI	
35 TBI	34 uid_TBI: $BAY \rightarrow TBI$	
36 LTI	35 uid_LT: $LT \rightarrow LTI$	
37 MCCI	37 uid_MCC: MCC \rightarrow MCCI	
38 CI	37 uid_CON: CON \rightarrow CI	
39 BI	34 uid_BAY: $BAY \rightarrow BI$	
40 RI	35 uid_ROW: ROW \rightarrow RI	
41 SI	36 uid_STK: STK \rightarrow SI	
axiom		

axiom

42 VI, QCI, QTI, SCI, TBI, LTI, MCCI, CI, RI and SI mutually disjoint 42 TBI \subset BI

5.3.1. Unique Identifiers: Distinctness of Parts

43 If two containers are different

then their unique identifiers must be different.

axiom

43 \forall con,con':CON \cdot con \neq con' \Rightarrow uid_CON(con) \neq uid_CON(con')

 \bullet The same distinctness criterion applies to

⊗ stacks,	« terminal ports,
♦ rows,	« cranes,
⊗ bays,	« vessels,
	⇔ etc.

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

5.3.2. Unique Identifiers: Two Useful Abbreviations Container positions within a container stowage area can be represented in two ways:

- 44 by a triple of a bay identifier, a row identifier and a stack identifier, and
- 45 by these three elements and a tier position (i.e., position within a stack).

```
44 BRS = BI \times RI \times SI
```

```
45 BRSP = BI \times RI \times SI \times Nat
```

axiom

45 \forall (bu,ri,si,n):BRSP \cdot n>0

5.3.3. Unique Identifiers: Some Useful Index Set Selection Functions

- 46 From a container stowage area once can observe all bay identifiers.
- 47 From a bay once can observe all row identifiers.
- 48 From a row once can observe all stack identifiers.
- 49 From a virtual container storage area, i.e., an icsa:iCSA, one can extract all the unique container identifiers.

value

- 46 xtr_Bls: CSA \rightarrow Bl-set
- 46 $xtr_Bls(csa) \equiv {uid_BAY(bay)|bay:BAY\cdot bay \in xtr_BAYs(csa)}$
- 46 xtr_Rls: BAY \rightarrow Rl-**set**
- 47 $xtr_Rls(bay) \equiv {uid_ROW(bay)|row:ROW \cdot row \in obs_ROWs(bay)}$
- 46 xtr_SIs: ROW \rightarrow SI-set
- 48 xtr_Sls(row) \equiv {uid_STK(row)|stk:STK·stk \in obs_STKs(row)}
- 49 xtr_Cls: iCSA \rightarrow Cl-set
- 49 $xtr_Cls(icsa) \equiv$
- 49 ... [to come] ...

An Initial Domain Analysis & Description Sketch

5.3.4. Unique Identifiers: Ordering of Bays, Rows and Stacks

- The bays of a container stowage area are usually ordered.
 - \otimes So are the rows of bays,
 - \otimes and stacks of rows.
- Ordering is here treated as *attributes* of
 - ∞ container stowage areas,

76

• We shall treat *attributes* further on.

5.4. States, Global Values and Constraints 5.4.1. States

50 We postulate a container line industry cli:CLI.

From that we observe, successively, all parts:

51 the set, cs:**C-set**, of all containers;

52 the set, tps: TPs, of all terminal ports;

53 the set, vs:Vs, of all vessels; and

54 the set, lts:LTs, of all land trucks.

value

50
$$cli:CLI$$

51 $cs:C-set = obs_Cs(obs_CS(cli))$
52 $tps:TP-set = obs_TPs(obs_TPS(cli))$
53 $vs:V-set = obs_Vs(obs_VS(cli))$

54 $lts:LTs = obs_LTs(obs_LTS(cli))$

An Initial Domain Analysis & Description Sketch

We can observe

55 csas:CSA-set, the set of all terminal port container stowage areas of all terminal ports;

56 *bays*:**BAY-set**, the terminal port bays of all terminals;

57 the set, *qcs*:**QC-set**, of all quay cranes of all terminals;

58 the set, qts:QT-set, of all quay trucks of all terminal ports; and

59 the set, *scs*:**SC-set**, of all terminal (i.e., stack) cranes of all terminal ports.

value

- 55 $csas:CSA-set = {obs_CSA(tp)|tp:TP·tp \in tps}$
- 55 $bays:BAY-set = {obs_BAY(csa)|csa:CSA·csa \in csas}$
- 57 $qcs:QC-set = \{obs_QCs(obs_QCS(tp))|tp:TP\cdottp \in tps\}$
- 58 $qts:QT-set = {obs_QTs(obs_QTS(tp))|tp:TP \cdot tp \in tps}$
- 59 $scs:SC-set = {obs_SCs(obs_SCS(tp))|tp:TP \cdot tp \in tps}$

5.4.2. Unique Identifiers

Given the generic parts outlined on Slide 77 we can similarly define generic sets of unique identifiers.

60 There is the set, c_uis , of all container identifiers;

61 the set, tp_uis , of all terminal port identifiers;

62 the set, *mcc_uis*, of all terminal port command center identifiers;

63 the set, v_uis , of all vessel identifiers;

64 the set, qc_uis , of quay crane identifiers of all terminal ports;

65 the set, qt_uis , of quay truck identifiers of all terminal ports;

66 the set, *sc_uis*, of stack crane identifiers of all terminal ports;

67 the set, stk_uis , of stack identifiers of all terminal ports;

68 the set, lt_uis , of all land truck identifiers; and

69 the set, uis, of all vessel, crane and truck identifiers.

value

- $c_uis:Cl-set = \{uid_C(c)|c:C\cdot c \in cs\}$
- tp_uis :TPI-set = {uid_TP(tp)|tp:TP·tp $\in tps$ }
- mcc_uis :TPI-set = {uid_MCC(obs_MCC(tp))|tp:TP·tp $\in tps$ }
- $v_u is: VI-set = \{uid_V(v) | v: V v \in vs\}$
- $qc_uis:QCI-set = {uid_QC(qc)|qc:QC·qc \in qcs}$
- $qt_uis:QTI-set = {uid_QT(qt)|qt:QT\cdot qt \in qts}$
- sc_uis :SCI-set = { $uid_SC(sc)|sc:SC \cdot sc \in scs$ }
- stk_uis :BI-set = {uid_BAY(stk)|stk:BAY·stk \in stks}
- $lt_uis:LTI-set = {uid_LL(It)|It:LT·It \in lts}$
- uis:(VI|QCI|QTI|SCI|BI|LTI)-set = $v_uis \cup qc_uis \cup qt_uis \cup sc_uis$

- 70 the map, *tpmcc_idm*, from terminal port identifiers into the identifiers of respective command centers;
- 71 the map, *mccqc_idsm*, from command center identifiers into the set of quay crane identifiers of respective ports;
- 72 the map, $mccqt_idsm$, from command center identifiers into the identifiers of quay trucks of respective ports;
- 73 the map, $mccsc_idsm$, from command center identifiers into the identifiers of quay trucks of respective ports; and
- 74 the map, $mccbays_idsm$, from command center identifiers
 - into the set of bay identifiers (i.e., "stacks") of respective ports;

An Initial Domain Analysis & Description Sketch

value

 $tpmcc_idm:(\mathsf{TI} \xrightarrow{m} \mathsf{MCCI}) = [\mathsf{uid}_\mathsf{TP}(\mathsf{tp}) \mapsto \mathsf{uid}_\mathsf{MCC}(\mathsf{obs}_\mathsf{MCC}(\mathsf{tp}))|\mathsf{tp}:\mathsf{TP}\cdot\mathsf{tp} \in tps]$ 70 71 $mccqc_idsm:(MCCI \rightarrow QCI-set)$ 71 $= [tpmcc_uim(uid_TP(tp)) \mapsto \{uid_QC(qc)\}$ $qc:QC \cdot qc \in obs_QCs(obs_QCS(tp)) \} | tp:TP \cdot tp \in tps |$ 71 $mccat_idsm:(MCC| \rightarrow QT|-set) =$ 72 $= [tpmcc_uim(uid_TP(tp)) \mapsto \{uid_QT(qt)\}$ 72 $qt:QT \cdot qt \in obs_QTs(obs_QTS(tp)) \} | tp:TP \cdot tp \in tps]$ 72 $mccsc_idsm:(MCCI \implies SCI-set)$ 73 73 $= [tpmcc_uim(uid_TP(tp)) \mapsto \{uid_SC(sc)\}$ 73 $sc:SC \cdot sc \in obs_SCs(obs_SCS(tp)) \} | tp:TP \cdot tp \in tps]$ 74 $mccbays_idsm:(MCCI \rightarrow BI-set)$ $= [tpmcc_uim(uid_TP(tp)) \mapsto \{uid_B(b)\}$ 74 $b:BAY \cdot b \in obs_BAYs(obs_BAYS(obs_CSA(tp))) \} | tp:TP \cdot tp \in tps]$ 74

82

5.4.3. Some Axioms on Uniqueness

TO BE WRITTEN

5.5. Mereology 5.5.1. Physical versus Conceptual Mereology

• We briefly discuss a distinction that was not made in [13]:

whether to base a mereology on *physical connections*or on *functional* or, as we shall call it, *conceptual relations*.

- We shall, for this domain model, choose the conceptual view.
 - The physical mereology view can be motivated, i.e. justified, from the figures on pages 43 and 49.
 - \otimes The conceptual view is chosen on the basis of the justification of the terminal command centers.
 - \otimes We shall model physical mereology as attributes.⁵

⁵Editorial note: Names of physical and of conceptual mereologies have to be "streamlined". As now, they are a "mess" !

[©] Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

5.5.2. Vessels 5.5.2.1 Physical Mereology:

75 Vessels are physically "connectable" to quay cranes of any terminal port.

type

75 Phys_V_Mer = QCI-set value

75 attr_Phys_V_Mer: $V \rightarrow Phys_V_mer$

C Dines Bjørner 2018, Fredsvej 11, DK–2840 Holte, Denmark – . November 6, 2018: 01:50 am

5.5.2.2 Conceptual Mereology:

76 Container vessels can potentially visit any container terminal port, hence have as [part of] their mereology, a set of terminal port command center identifiers.

type 76 V_Mer = MCCI-**set value** 76 mereo_V: $V \rightarrow V_Mer$ **axiom** 76 $\forall v: V \cdot v \in vs \Rightarrow mereo_V(v) \subseteq mcc_uis$

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

5.5.3. Quay Cranes 5.5.3.1 Physical Mereology:

- In modelling the physical mereology,
- though as an attribute, of quay cranes,
- we need the notion of quay positions.
- 77 Quay cranes are, at any time, positioned at one or more adjacent quay positions of an identified segment of such.

type

```
77 Phys_QC_Mereo = QPSId \times QP*
value
77 attr_Phys_QC: QC \rightarrow Phys_QC_Mereo
```

An Initial Domain Analysis & Description Sketch

- 78 The quay positions, **qcmereo** = (**qpsid,qpl**):**QCMereo**, must be proper quay positions of the terminal,
- 79 that is, the segment identifier, **qpsid**, must be one of the terminal,
- 80 and the list, **qpl**, must be contiguously contained within the so identifier segment.

```
axiom \forall tp:TP,

78 let q = obs\_Q(tp), qcs = obs\_QCs(obs\_QCS(tp)) in

79 \forall q:Q \cdot q \in qcs \Rightarrow

79 let (qpsid,qpl) = obs\_Mereo(q), qps = attr\_QPSs(q) in

79 qpsid \in dom qps

80 \land \exists i,j:Nat \cdot \{i,j\} \in inds qpl \land \langle (qps(qpsi))[k]|i \leq k \leq j \rangle = qpl

78 end end
```

```
© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am
```

5.5.3.2 Conceptual Mereology:

- The conceptual mereology is simpler.
- 81 Quay cranes are conceptually related to the command center of the terminal in which they are located.

type

81 $QC_Mer = MCCI$

value

81 mereo_QC: QC \rightarrow QC_Mer

5.5.4. Quay Trucks 5.5.4.1 Physical Mereology:

82 Quay trucks are physically "connectable" to quay and stack cranes.

```
type
82 Phys_QT_Mer = QCI-set × QCI-set
value
82 attr_Phys_QT_Mer: QT → Phys_QT_Mer
```

5.5.4.2 Conceptual Mereology:

83 Quay trucks are conceptually connected to the command center of the terminal port of which they are a part.

type 83 $QT_Mer = MCCI$ value 83 mereo_ $QT: QT \rightarrow QT_Mer$

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

Container Terminals

5.5.5. Stack Cranes 5.5.5.1 Physical Mereology:

- 84 Terminal stack cranes are positioned to serve one or more terminal area bays, one or more quay trucks and one or more land trucks.
- 85 The terminal stack crane positions are indeed positions of their terminal
- 86 and no two of them share bays.

type

```
84 Phys_SCmereo = s_bis:BI-set \times s_qtis:QTI-set \times s_ltis:LTI-set
```

axiom

```
84 \forall (bis,qtis,ltis):Phys_SCmereo•bis\neq{} \land qtis\neq{} \land ltis\neq{}
```

value

```
84 Phys_SCmereo: SC \rightarrow Phys_SCmereo
```

axiom

```
84 ∀ tp:TP •
```

```
84 let csa=obs_CSA(tp), bays=obs_BAYs(obs_BAYS(csa)), scs=obs_SCs(obs_SCS(tp)) in
```

```
85 \forall sc:SC•sc \in scs \Rightarrow Phys_SCmereo(sc) \subseteq xtr_Bls(csa)
```

```
86 \land \forall tp',tp'':TP \cdot \{tc',tc''\} \subseteq tcs \land tc' \neq tc''
```

```
86 \Rightarrow s_bis(Phys_SCmereo(tc')) \cap s_bis(Phys_SCmereo(tc''))={} end
```

5.5.5.2 Conceptual Mereology:

• The conceptual stack crane mereology is simple:

87 Each stack is conceptually related to the command center of the terminal at which it is located.

type $87 ext{ SC_Mer} = ext{MCCI}$ value $87 ext{ mereo_SC: SC} \rightarrow ext{ SC_Mer}$

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

Container Terminals

5.5.6. Container Stowage Areas 5.5.6.1 Bays, Rows and Stacks:

The following are some comments related to, but not defining a mereology for container stowage areas. 88 A bay of a container stowage area

a. has either a predecessor

b. or a successor,

- c. or both (and then distinct).
- d. No row cannot have neither a predecessor nor a successor.
- 89 A row of a bay has a predecessor and a successor, the first stack has no predecessor and the last stack has no successor.
- 90 A stack of a row has a predecessor and a successor, the first stack has no predecessor, and the last stack has no successor.

93

value

```
BAY_Mer: BAY \rightarrow ({|'nil'|}|BI) \times (BI|{|'nil'|})
88
     ROW_Mer: ROW \rightarrow ({|'nil'|}|RI) \times (RI|{|'nil'|})
89
     STK_Mer: STK \rightarrow ({|'nil'|}|SI) \times (SI|{|'nil'|})
90
axiom
     \forall csa:CSA · let bs = obs_BAYs(obs_BAYS(csa)) in
88
         \forall b:BAY \cdot b \in bs \Rightarrow
88
             let (nb,nb') = mereo\_BAY(b) in
88
88
             case (nb,nb') of
                   ('nil',bi) \rightarrow bi \in xtr\_Bls(csa),
88a.
88b.
                    (bi, 'nil') \rightarrow bi \in xtr_Bls(csa),
                    ('nil', 'nil') \rightarrow chaos,
88d.
                   (bi,bi') \rightarrow \{bi,bi'\} \subseteq xtr_Bls(csa) \land bi \neq bi'
88c.
88
             end end end
89
      as for rows
90
      as for stacks
```

5.5.7. Bay Mereology 5.5.7.1 Physical Vessel Bay Mereology:

91 A vessel bay is topologically related to the vessel on board of which it is placed and to the set of all quay cranes of all terminal ports.

type

91 Phys_VES_BAY_Mer = VI \times QCI-set

5.5.7.2 Conceptual Vessel Bay Mereology:

92 A vessel bay is conceptually related to the set of all command centers of all terminal ports.

type

92 $V_BAY_Mer = MCCI-set$

5.5.7.3 Physical Terminal Port Bay (cum Stack) Mereology:

93 A terminal bay (cum stack) is topologically related to the stack cranes of a given terminal port and all land trucks.

type 93 Phys_STK_Mer = SCI-set \times LTI-set

5.5.7.4 Conceptual Terminal Port Bay (cum Stack) Mereology:

94 A terminal port bay is conceptually related to the command center of its port.

type 94 $T_BAY_Mer = MCCI$

© Dines Bjørner. 2018, Fredsvej 11, DK-2840 Holte, Denmark - . November 6, 2018: 01:50 am

Container Terminals

5.5.8. Land Trucks 5.5.8.1 Physical Mereology:

95 Land trucks are physically "connectable" to stack cranes – of any port.

type
95 Phys_LT_Mer = SCI-set
value

95 attr_Phys_LT_Mer: LT \rightarrow Phys_LT_Mer

5.5.8.2 Conceptual Mereology:

96 Land trucks are conceptually connected to the command centers of any terminal port.

type 96 LT_Mer = MCCI-set value 96 mereo_LT: LT \rightarrow LT_Mer

An Initial Domain Analysis & Description Sketch

5.5.9. Command Center

- Command centers are basically conceptual quantities.
 - ♦ Hence we can expect the physical mereology

 \otimes to be the conceptual mereology.

- 97 . Command centers are physically and conceptually connected to
 - all vessels,
 - all cranes of the terminal port of the command center,
 - all quay trucks of the terminal port of the command center,
 - all stacks (i.e., bays) of the terminal port of the command center, and
 - all land trucks, and
 - all containers.

type

97 $MCC_Mer = VI-set \times QCI-set \times QTI-set \times SCI-set \times BI-set \times LTI-set \times CI-set$ value 97 mereo_MCC: $MCC \rightarrow MCC_Mer$

axiom

```
97 \forall tp:TP • tp \in tps •
        let qcs:QC-set \cdot qcs = obs_QCs(obs_QCS(tp)),
97
97
            qts:QT-set \cdot qts = obs_QTs(obs_QTS(tp)),
            scs:SC-set \cdot scs = obs_SCs(obs_SCS(tp)),
97
            bs:iBAY-set \cdot bs = obs\_Bs(obs\_BS(obs\_CSA(tp))) in
97
97
        let vis: VI_set • vis = {uid_VI(v) | v: V•v \in vs },
            qcis:QCI_set \cdot qcis = {uid_QCI(qc)|qc:QC \cdot qc \in qcs},
97
97
            qtis:QTI_set \cdot qcis = {uid_QTI(qc)|qt:QT \cdot qt \in qts},
            scis:SCI-set • scis = {uid_SCI(sc)|sc:SC•sc \in scs},
97
            bis:iBAY-set \cdot bis = {uid_BI(b)|b:iBAY \cdot b \in bs},
97
            |\text{tis:LTI-set} \cdot |\text{tis} = \{\text{uid}_{LTI}(|\text{t})||\text{t:LT} \cdot |\text{t} \in lts\},\
97
97
            cis:SCI-set \cdot cis = {uid_CI(c)|c:C \cdot c \in cs} in
97
        mereo_MCC(obs_MCC(tp)) = (vis, gcis, scis, sis, bis, ltis, cis) end end
```

5.5.10. Conceptual Mereology of Containers

- The physical mereology of any container is modelled as a container attribute.
- 98 The conceptual mereology is modelled by containers being connected to all terminal command centers.

type

```
98 C_Mer = MCCI-set

value

98 mereo_C: C \rightarrow C_Mer

axiom

98 \forall c:C \cdot mereo_C(c) = mcc_uis
```

Container Terminal