
Domain Analysis & Description

Principles, Techniques and Modelling Languages

DINES BJØRNER*,National University of Singapore, Singapore 117417 and Technical University of Denmark, Denmark

We present a method for analysing and describing domains.

By a domain we shall understand a rationally describable segment of a human assisted reality, i.e., of the world, its

physical parts, natural [“God-given”] and artifactual [“man-made”], and living species: plants and animals including,

notably, humans. These are endurants (“still”), existing in space, as well as perdurants (“alive”), existing also in time.

Emphasis is placed on “human-assistedness”, that is, that there is at least one (man-made) artifact and, therefore, that

humans are a primary cause for change of endurant states as well as perdurant behaviours.

By a method we shall mean a set of principles of analysis and for selecting and applying a number of techniques and

tools in the construction of some artifact, say a domain description. We shall present a method for constructing domain models1.

Among the tools we shall only be concerned with modelling, that is, analysis and synthesis languages.

Domain science & engineering marks a new area of computing science. Just as we are formalising the syntax and semantics

of programming languages, so we are formalising the syntax and semantics of human-assisted domains. Just as physicists

are studying mother nature, endowing it with mathematical models, so we, computing scientists, are studying these domains,

endowing them with mathematical models, A difference between the endeavours of physicists and ours lies in the models:

the physics models are based on classical mathematics, differential equations and integrals, etc.,; our models are based on

mathematical logic set theory, and algebra.

ACM Reference Format:

Dines Bjørner. 2018. Domain Analysis & Description: Principles, Techniques and Modelling Languages. 1, 1 (November 2018),

61 pages including 5 page Appendix. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

1.1 Foreword

Dear reader!̇ You are about to embark on a journey. The paper in front of you is long ! But it is not the number of pages, 53, or

duration of your studying the paper that I am referring to. It is the mind that should be prepared for a journey. It is a journey

into a new realm. A realm where we confront the computer & computing scientists with a new universe: a universe in which we

build a bridge between the informal world, that we live in, the context for eventual, formal software, and that formal software.

The bridge involves a novel construction, new in computing science: a transcendental deduction. We are going to present

you, we immodestly claim, with a new way of looking at the “origins” of software, the domain in which it is to serve. We

shall show a method, a set of principles and techniques and a set of languages, some formal, some “almost” formal, and the

informal language of usual computing science papers for a systematic to rigorous way of analysing & describing domains. We

immodestly claim that such a method has not existed before.

*Fredsvej 11, DK 2840 Holte, Denmark; bjorner@gmail.com, www.imm.dtu.dk/˜dibj
1We shall use the terms ‘model’ and ‘description’ (or ‘prescription’ or ‘specification’) interchangeably.

Dines Bjørner, School of Computing, National University of Singapore, Singapore 117417, DTU Compute, Technical University of Denmark, DK 2800 Kgs.

Lyngby, Denmark, bjorner@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2018-11-16 02:18. Page 1 of 1–61. Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Dines Bjørner

1.2 An Engineering and a Science Viewpoint

1.2.1 A Triptych of Software Development It seems reasonable to expect that before software can be designed we must

have a reasonable grasp of its requirements; before requirements can be expressed we must have a reasonable grasp of the

underlying domain. It therefore seems reasonable to structure software development into: domain engineering, in which

“the underlying” domain is analysed and described 2; requirements engineering, in which requirements are analysed and

prescribed – such as we suggest it [1, 2] – based on a domain description3; and software design, in which the software is

rigorously “derived” from a requirements prescription4 . Our interest, in this paper, lies sôlely in domain analysis & description.

1.2.2 Domain Science & Engineering: The present paper outlines a methodology for an aspect of software development.

Domain analysis & description can be pursued in isolation, for example, without any consideration of any other aspect of

software development. As such domain analysis & description represents an aspect of domain science & engineering. Other

aspects are covered in: [3, Domain Facets], [2, Requirements Engineering], [4, An Analysis & Description Process Model], [5,

From Mereologies to Lambda-Expressions] and in [6, A Philosophy Basis]. This work is over-viewed in [7, Domain Science &

Engineering – A Review of 10 Years Work]. They are all facets of an emerging domain science & engineering. We consider

the present paper to outline the basis for this science and engineering.

1.3 Some Issues: Metaphysics, Epistemology, Mereology and Ontology

But there is an even more fundamental issue “at play” here. It is that of philosophy. Let us briefly review some aspects of

philosophy.

Metaphysics is a branch of philosophy that explores fundamental questions, including the nature of concepts like being,

existence, and reality 5

Traditional metaphysics seeks to answer, in a “suitably abstract and fully general manner”, the questions: What is there ?

and And what is it like ? 6. Topics of metaphysical investigation include existence, objects and their properties, space and time,

cause and effect, and possibility.

Epistemology is the branch of philosophy concerned with the theory of knowledge7

Epistemology studies the nature of knowledge, justification, and the rationality of belief. Much of the debate in epistemology

centers on four areas: (1) the philosophical analysis of the nature of knowledge and how it relates to such concepts as truth,

belief, and justification, (2) various problems of skepticism, (3) the sources and scope of knowledge and justified belief, and (4)

the criteria for knowledge and justification. A central branch of epistemology is ontology.8

Ontology: An ontology encompasses a representation, formal naming, and definition of the categories, properties, and

relations of the entities that substantiate one, many, or all domains.9. An upper ontology (also known as a top-level ontology or

foundation ontology) is an ontology which consists of very general terms (such as entity, endurant, attribute) that are common

across all domains10

Mereology (from the Greek µερoς ‘part’) is the theory of part-hood relations: of the relations of part to whole and the

relations of part to part within a whole [8]11

Accordingly two parts, px and py, (of a same “whole”) are are either “adjacent”, or are “embedded within”, one within the

other, as loosely indicated in Fig. 1 on the facing page. ‘Adjacent’ parts are direct parts of a same third part, pz, i.e., px and

py are “embedded within” pz; or one (px) or the other (py) or both (px and py) are parts of a same third part, p′z “embedded

2including the statement and possible proofs of properties of that which is denoted by the domain description
3including the statement and possible proofs of properties of that which is denoted by the requirements prescription with respect also to the domain description
4including the statement and possible proofs of properties of that which is specified by the software design with respect to both the requirements prescription and

the domain description
5 is used to signal the end of a characterisation, a definition, or an example.
6https://en.wikipedia.org/wiki/Metaphysics
7https://en.wikipedia.org/wiki/Epistemology
8https://en.wikipedia.org/wiki/Metaphysics
9https://en.wikipeda.org/wiki/On-tology (information science)
10https://en.wikipedia.org/wiki/Upper ontology
11https://plato.stanford.edu/entries/mereology

2018-11-16 02:18. Page 2 of 1–61.

Domain Analysis & Description 3

Embedded WithinAdjacent

p

p

p

p

x
y

z z

px

yp

Fig. 1. Immediately ‘Adjacent’ and ‘Embedded Within’ Parts

within” pz; et cetera; as loosely indicated in Fig. 2, or one is “embedded within” the other — etc. as loosely indicated in Fig. 2.

Parts, whether ‘adjacent’ or ‘embedded within’, can share properties. For adjacent parts this sharing seems, in the literature, to

Embedded WithinAdjacent

p

p p

x

z z
p

y

zp’
p y

p
x

zp"

Embedded WithinAdjacent

p

p p

x

z z
p

y

p yzp’

px

p"z

Fig. 2. Transitively ‘Adjacent’ and ‘Embedded Within’ Parts

be diagrammatically expressed by letting the part rectangles “intersect”. Usually properties are not spatial hence ‘intersection’

seems confusing. We refer to Fig. 3. Instead of depicting parts sharing properties as in Fig. 3[L]eft, where shaded, dashed

[L]

p p
z z

px

yp

p
x

p
y

Embedded SharingAdjacent and Sharing
,

Embedded WithinAdjacent

p

p

p

p

x
y

z z

px

yp

[R]

Fig. 3. Two models, [L,R], of parts sharing properties

rounded-edge rectangles stands for ‘sharing’, we shall (eventually) show parts sharing properties as in Fig. 3[R]ight where

•—• connections connect those parts.

We refer to [5, From Mereologies to Lambda-Expressions].

Mereology is basically the contribution [9, 10] of the Polish philosopher, logician and mathematician Stanisław Leśniewski

(1886–1939).

1.3.1 Kai Sørlander’s Philosophy: We shall base some of our modelling decisions of Kai Sørlander’s Philosophy [11–14].

A main contribution of Kai Sørlander is, on the philosophical basis of the possibility of truth (in contrast to Kant’s possibility of

self-awareness), to rationally and transcendentally deduce the absolutely necessary conditions for describing any world.

These conditions presume a principle of contradiction and lead to the ability to reason using logical connectives and to

handle asymmetry, symmetry and transitivity. Transcendental deductions then lead to space and time, not as priory assumptions,

as with Kant, but derived facts of any world. From this basis Kai Sørlander then, by further transcendental deductions, arrive at

kinematics, dynamics and the bases for Newton’s Laws. And so forth.

We build on Sørlander’s basis to argue that the domain analysis & description calculi are necessary and sufficient and that a

number of relations between domain entities can be understood transcendentally and as “variants” of laws of physics, biology,

etc. !

2018-11-16 02:18. Page 3 of 1–61.

4 Dines Bjørner

1.4 The Precursor

The present paper is based on a revision of the published [15]. The revision considerably simplifies and considerably extends

the domain analysis & description calculi of [15]. The major revision that prompts this complete rewrite is due to a serious

study of Kai Sørlander’s Philosophy. As a result we extend [15]’s ontology of endurants: describable phenomena that exists in

space, to not only cover those of physical phenomena, but also those of living species, notably humans, and, as a result of

that, our understanding of discrete endurants is refined into those of natural parts and artifacts. A new contribution is that

of intentional “pull” akin to the gravitational pull of physics. Both this paper and [15] are the result of extensive “non-toy”

example case studies, see the example: Universes of Discourse – on Page 6. The last half of these were carried out in the years

since [15] was first submitted (i.e., 2014). The present paper omits the extensive introduction and closing of [15, Sects. 1 and

5]. Most notably, however, is a clarified view on the transition from parts to behaviours, a transcendental deduction from

domain space to domain time.

1.5 What is this Paper About ?

We present a method for analysing &12 describing domains.

Definition 1. Domain: By a domain we shall understand a rationally describable segment of a human assisted reality,

i.e., of the world, its physical parts, natural [“God-given”] and artifactual [“man-made”], and living species: plants and

animals including, predominantly, humans. These are endurants (“still”), existing in space, as well as perdurants (“alive”),

existing also in time. Emphasis is placed on “human-assistedness”, that is, that there is at least one (man-made) artifact and

that humans are a primary cause for change of endurant states as well as perdurant behaviours

Definition 2. Domain Description: By a domain description we shall understand a combination of narration and formal-

isation of a domain. A formal specification is a collection of sort, or type definitions, function and behaviour definitions,

together with axioms and proof obligations constraining the definitions. A specification narrative is a natural language

text which in terse statements introduces the names of (in this case, the domain), and, in cases, also the definitions, of

sorts (types), functions, behaviours and axioms; not anthropomorphically, but by emphasizing their properties

Domain descriptions are (to be) void of any reference to future, contemplated software, let alone IT systems, that may support

entities of the domain. As such domain models13 can be studied separately, for their own sake, for example as a basis for

investigating possible domain theories, or can, subsequently, form the basis for requirements engineering with a view towards

development of (‘future’) software, etc. Our aim is to provide a method for the precise analysis and the formal description of

domains.

1.6 Structure of this Paper

Sections 2–8 form the core of this paper. Section 2 introduces the first concepts of domain phenomena: endurants and perdurants.

Their characterisation, in the form of “definitions”, cannot be mathematically precise, as is usual in computer science papers.

Section 3 analyses the so-called external qualities of endurants into natural parts, structures, components, materials, living

species and artifacts. In doing so it covers the external quality analysis prompts. Section 4 covers the external quality description

prompts. Section 5 analyses the so-called internal qualities of endurants into unique identification, mereology and attributes.

In doing so it covers both the internal quality analysis prompts and the internal quality description prompts. Sections 3–5 has

covered what this paper has to say about endurants. Section 6 “bridges” Sects. 3–5 and Sect. 8 by introducing the concept of

transcendental deduction. These deductions allow us to “transform” endurants into perdurants: “passive” entities into “active”

ones. The essence of Sects. 6–8 is to “translate” endurant parts into perdurant behaviours. Section 8 – although “only” half as

12By A&B we mean one topic, the confluence of topics A and B.
13We use the terms ‘domain descriptions’ and ‘domain models’ interchangeably.

2018-11-16 02:18. Page 4 of 1–61.

Domain Analysis & Description 5

long as the three sections on endurants – covers the analysis & description method for perdurants. We shall model perdurants,

notably behaviours, in the form of CSP [16]. Hence we introduce the CSP notions of channels and channel input/output.

Section 8 then “derives” the types of the behaviour arguments from the internal endurant qualities. Section 9 summarises the

achievements and discusses open issues. Section 9.2 on Page 48 summarises the four languages used in this paper.

Framed texts either delineate major figures, so-called observer and behaviour schemes.

One major example, that of the domain analysis & description of a road transport system, intersperses the methodology

presentation as 24 examples. Appendix Sect. A completes that road transport system example. Section A.2 of that appendix

presents an index to the definition of example sorts, types, mereologies, observer functions, constant values, channels and

behaviours.

2 ENTITIES: ENDURANTS AND PERDURANTS

2.1 A Generic Domain Ontology – A Synopsis

Figure 4 shows an upper ontology for domains such a defined in Defn. 1 on the facing page.

Kai Sørlander’s Philosophy justifies our organising the entities of any describable domain, for example14, as follows: We

shall review Fig. 4 by means of a top-down, left-traversal of the tree (whose root is at the top). There are describable phenomena

and there are phenomena that we cannot describe. The former we shall call entities. The entities are either endurants, “still”

entities – existing in space, or perdurants, “alive” entities – existing also in time. Endurants are either discrete or continuous –

Phenomena of a Universe of Discourse

PartsPhysical

Actions Events

Behaviours

Indescribables

Transcendense

Endurants Perdurants

Channels

Actors

Entities

Structures

Plants Animals

Humans

= Describables

SpeciesLiving

Continuous Endurants = MaterialsDiscrete Endurants

Natural Parts

E1,...,Es

E

MS−setMS = M1|...|Mm,

E

A
to

m
ic

C
o

m
p

o
si

te

Artifacts

C
o

m
p

o
n

en
ts

C
o

n
cr

et
e

T
yp

e

transcendental injection of endurants into perdurants

C
S

−s
et

C
S

=C
1|

...
|C

c

C
o

m
p

o
si

te

A
to

m
ic

Unique Identification
Mereologies

Attributes

E

E
1,

...
,E

p

Fig. 4. An Upper Ontology for Domains

14We could organise the ontology differently: entities are either naturals, artifacts or living species, et cetera. If an upper node (•) satisfies a predicate P then all

descendant nodes do likewise.

2018-11-16 02:18. Page 5 of 1–61.

6 Dines Bjørner

in which latter case we call them materials15. Discrete endurants are physical parts, living species, or are structures. Physical

parts are either naturals, artifacts, i.e. man-made. Natural and mand-made parts are either atomic or composite. We additionally

analyse artifacts into either components16 , or sets of identically typed parts. That additional analysis could also be expressed

for natural parts but as we presently find no use for that we omit such further analysis. Living Species are either plants or

animals. Among animals we have the humans. Structures consist of one or more endurants. Structures and components really

are parts, but for pragmatic reasons we choose to not model them as [full fledged] parts. The categorisation into structures,

natural parts, artifactual parts, plants, animals, and components is thus partly based in Sørlander’s Philosophy, partly pragmatic.

The distinction between endurants and perdurants, are necessitated by Sørlander as being in space, respectively in space and

time; discrete and continuous are motivated by arguments of natural sciences; structures and components are purely pragmatic;

plants and animals, including humans, are necessitated by Kai Sørlander’s Philosophy. The distinction between natural, physical

parts, and artifacts is not necessary in Sørlander’s Philosophy, but, we claim, necessary, philosophically, in order to perform the

intentional “pull”, a transcendental deduction.

On Pragmatics: We have used the term ‘pragmatic’ a few times. On one hand there is philosophy’s need for absolute

clarity. On the other hand, when applying the natural part, artifactual part, and living species, concepts in practice, there

can be a need for “loosening” up. As for example: a structure really is a part, whether natural or man-made. As we shall

later see, parts are transcendentally to be understood as behaviours. We know that modelling imperative when we model

a domain, but we may not wish to model a discrete endurant as a behaviour so we decide, pragmatically, to model it as a

structure.

Our reference, here, to Kai Sørlander’s Philosophy, is very terse. We refer to a detailed research report: A Philosophy of

Domain Science & Engineering17 for carefully reasoned arguments. That report is under continued revision: It reviews the

domain analysis & description method; translates many of Sørlander’s arguments and relates, in detail, the “options” of the

domain analysis & description approach to Sørlander’s Philosophy.

2.2 Universes of Discourse

By a universe of discourse we shall understand the same as the domain of interest, that is, the domain to be analysed &

described

Example 1: Universes of Discourse
We refer to a number of Internet accessible experimental reports18 of descriptions of the following domains:

• railways [17–19],

• container shipping [20],

• stock exchange [21],

• oil pipelines [22],

• “The Market” [23],

• Web systems [24],

• weather information [25],

• credit card systems [26],

• document systems [27],

• urban planning [28],

• swarms of drones [29],

• container terminals [30]

It may be a “large” domain, that is, consist of many, as we shall see, endurants and perdurants, of many parts, components

and materials, of many humans and artifacts, and of manyactors, actions, events and behaviours.

Or it may be a “small” domain, that is, consist of a few such entities.

The choice of “boundaries”, that is, of how much or little to include, and of how much or little to exclude is entirely the

choice of the domain engineer cum scientist: the choice is crucial, and is not always obvious. The choice delineates an interface ,

15Please observe that materials were either natural or artifactual, but that we do not “bother” in this paper. You may wish to slightly change the ontology diagram

to reflect a distinction.
16Whether a discrete endurant as we shall soon see, is treated as a part or a component is a matter of pragmatics. Again cf. Footnote 15.
17http://www.imm.dtu.dk/˜dibj/2018/philosophy/filo.pdf

2018-11-16 02:18. Page 6 of 1–61.

Domain Analysis & Description 7

that is, that which is within the boundary, i.e., is in the domain, and that which is without, i.e., outside the domain, i.e., is the

context of the domain, that is, the external domain interfaces. Experience helps set reasonable boundaries.

There are two “situations”: Either a domain analysis & description endeavour is pursued in order to prepare for a subsequent

development of requirements modelling , in which case one tends to choose a “narrow” domain, that is, one that “fits”,

includes, but not much more, the domain of interest for the requirements. Or a domain analysis & description endeavour is

pursued in order to research a domain. Either one that can form the basis for subsequent engineering studies aimed, eventually

at requirements development; in this case “wider” boundaries may be sought. Or one that experimentally “throws a larger net”,

that is, seeks a “large” domain so as to explore interfaces between what is thought of as internal system interfaces.

Where, then, to start the domain analysis & description ? Either one can start “bottom-up”, that is, with atomic entities:

endurants or perdurants, one-by-one, and work one’s way “out”, to include composite entities, again endurants or perdurants,

to finally reach some satisfaction: Eureka, a goal has been reached. Or one can start “top-down”, that is, “casting a wide net”.

The choice is yours. Our presentation, however, is “top down”: most general domain aspects first.

Example 2: Universe of Discourse
The universe of discourse is road transport systems. We analyse & describe not the class of all road transport systems but a representative subclass, UoD, is

structured into such notions as a road net, RN, of hubs, H, (intersections) and links, L, (street segments between intersections); a fleet of vehicles, FV, structured

into companies, BC, of buses, B, and pools, PA, of private automobiles, A (et cetera); et cetera. See Fig. 5 on Page 16.

2.3 Entities

Characterisation 1. Entity: By an entity we shall understand a phenomenon, i.e., something that can be observed, i.e., be

seen or touched by humans, or that can be conceived as an abstraction of an entity; alternatively, a phenomenon is an entity, if

it exists, it is “being”, it is that which makes a “thing” what it is: essence, essential nature [31, Vol. I, pg. 665]

Analysis Prompt 1. is entity: The domain analyser analyses “things” (θ) into entities or non-entities. The method can

thus be said to provide the domain analysis prompt:

• is entity – where is entity(θ) holds if θ is an entity19

is entity is said to be a prerequisite prompt for all other prompts.

The entities that we are concerned with are those with which Kai Sørlander’s Philosophy is likewise concerned. They are the

ones that are unavoidable in any any description of any possible world. And then, which are those entities ? In both [11] and

[14] Kai Sørlander rationally deduces that these entities must be in space and time, must satisfy laws of physics – like those

of Newton and Einstein, but among them are also living species: plants and animals and hence humans. The living species,

besides still being in space and time, and satisfying laws of physics, must satisfy further properties – which we shall outline in

Sects. 3.4 on Page 12 and 5.3.2 on Page 27.

2.4 Endurants and Perdurants

The concepts of endurants and perdurants are not present in, that is, are not essential to Sørlander’s Philosophy. Since our

departure point is that of computing science where, eventually, conventional computing performs operations on, i.e. processes

data, we shall, however, introduce these two notions: endurant and perdurant. The former, in a rough sense, “corresponds” to

data; the latter, similarly, to processes.

Characterisation 2. Endurant: By an endurant we shall understand an entity that can be observed, or conceived and de-

scribed, as a “complete thing” at no matter which given snapshot of time; alternatively an entity is endurant if it is capable of

enduring, that is persist, “hold out” [31, Vol. I, pg. 656]. Were we to “freeze” time we would still be able to observe the entire

endurant

19Analysis prompt definitions and description prompt definitions and schemes are delimited by

2018-11-16 02:18. Page 7 of 1–61.

8 Dines Bjørner

Example 3: Endurants
Geography Endurants: The geography of an area, like some island, or a country, consists of its geography – “the lay of the land”, the geodetics of this land, the

meteorology of it, et cetera. Railway System Endurants: Example railway system endurants are: a railway system, its net, its individual tracks, switch points,

trains, their individual locomotives, et cetera.

Analysis Prompt 2. is endurant: The domain analyser analyses an entity, φ , into an endurant as prompted by the domain

analysis prompt:

• is endurant – φ is an endurant if is endurant(φ) holds.

is entity is a prerequisite prompt for is endurant

Characterisation 3. Perdurant: By a perdurant we shall understand an entity for which only a fragment exists if we look at

or touch them at any given snapshot in time. Were we to freeze time we would only see or touch a fragment of the perdurant,

alternatively an entity is perdurant if it endures continuously, over time, persists, lasting [31, Vol. II, pg. 1552]

Example 4: Perdurants
Geography: Example geography perdurants are: the continuous changing of the weather (meteorology); the erosion of coast lines; the rising of some land and

the “sinking” of other land areas; volcano eruptions; earth quakes; et cetera. Railway Systems: Example railway system perdurants are: the ride of a train from

one railway station to another; and the stop of a train at a railway station from some arrival time to some departure time.

Analysis Prompt 3. is perdurant: The domain analyser analyses an entity e into perdurants as prompted by the domain

analysis prompt:

• is perdurant – e is a perdurant if is perdurant(e) holds.

is entity is a prerequisite prompt for is perdurant

3 ENDURANTS: ANALYSIS OF EXTERNAL QUALITIES

3.1 Discrete and Continuous Endurants

Characterisation 4. Discrete Endurant: By a discrete endurant we shall understand an endurant which is separate,

individual or distinct in form or concept

To simplify matters we shall allow separate elements of a discrete endurant to be continuous !

Example 5: Discrete Endurants
The individual endurants of the above example of railway system endurants were all discrete. Here are examples of discrete endurants of pipeline systems. A

pipeline and its individual units: pipes, valves, pumps, forks, etc.

Analysis Prompt 4. is discrete: The domain analyser analyses endurants e into discrete entities as prompted by the

domain analysis prompt:

• is discrete – e is discrete if is discrete(e) holds

Characterisation 5. Continuous Endurant: By a continuous endurant we shall understand an endurant which is pro-

longed, without interruption, in an unbroken series or pattern

We shall prefer to refer to continuous endurants as materials and otherwise cover materials in Sect. 3.6 on Page 13.

Example 6: Materials
Examples of materials are: water, oil, gas, compressed air, etc. A container, which we consider a discrete endurant, may contain a material, like a gas pipeline

unit may contain gas.

2018-11-16 02:18. Page 8 of 1–61.

Domain Analysis & Description 9

Analysis Prompt 5. is continuous: The domain analyser analyses endurants e into continuous entities as prompted by the

domain analysis prompt:

• is continuous – e is continuous if is continuous(e) holds

Continuity shall here not be understood in the sense of mathematics. Our definition of ‘continuity’ focused on prolonged,

without interruption, in an unbroken series or pattern. In that sense materials shall be seen as ‘continuous’. The mathematical

notion of ‘continuity’ is an abstract one. The endurant notion of ‘continuity’ is physical one.

3.2 Discrete Endurants

We analyse discrete endurants into physical parts, living species and structures. Physical parts and living species can be identi-

fied as separate entities – following Kai Sørlander’s Philosophy. To model discrete endurants as structures represent a pragmatic

choice which relieves the domain describer from transcendentally considering structures as behaviours.

3.2.1 Physical Parts

Characterisation 6. Physical Parts: By a physical part we shall understand a discrete endurant existing in time and subject

to laws of physics, including the causality principle and gravitational pull 20

Analysis Prompt 6. is physical part: The domain analyser analyses “things” (η) into physical part. The method can

thus be said to provide the domain analysis prompt:

• is physical part – where is physical part(η) holds if η is a physical part

Section 3.3 continues our treatment of physical parts.

3.2.2 Living Species

Definition 3. Living Species, I: By a living species we shall understand a discrete endurant existing in space and time, subject

to laws of physics, and additionally subject to causality of purpose.21 [Defn. 9 on Page 12 elaborates further on this point]

Analysis Prompt 7. is living species: The domain analyser analyses “things” (e) into living species. The method can

thus be said to provide the domain analysis prompt:

• is living species – where is living species(e) holds if e is a living species

Living species have a form they can develop to reach; they are causally determined to maintain this form; and they do so by

exchanging matter with an environment. We refer to [6] for details. Section 3.4 continues our treatment of living species.

3.2.3 Structures

Definition 4. Structure: By a structure we shall understand a discrete endurant which the domain engineer chooses to

describe as consisting of one or more endurants, whether discrete or continuous, but to not endow with internal qualities:

unique identifiers, mereology or attributes

Structures are “conceptual endurants”. A structure “gathers” one or more endurants under “one umbrella”, often simplifying a

presentation of some elements of a domain description. Sometimes, in our domain modelling, we choose to model an endurant

as a structure, sometimes as a physical part ; it all depends on what we wish to focus on in our domain model. As such structures

20This characterisation is the result of our study of relations between philosophy and computing science, notably influenced by Kai Sørlander’s Philosophy. We

refer to our research report [6, www.imm.dtu.dk/˜dibj/2018/philosophy/filo.pdf].
21See Footnote 20.

2018-11-16 02:18. Page 9 of 1–61.

10 Dines Bjørner

are “compounds” where we are interested only in the (external and internal) qualities of the elements of the compound, but not

in the qualities of the structure itself.

Example 7: Structures
A transport system is modelled as structured into a road net structure and an automobile structure. The road net structure is then structured as a pair: a structure

of hubs and a structure of links. These latter structures are then modelled as set of hubs, respectively links.

Example 8: Structures – Contd.
We could have modelled the road net structure as a composite part with unique identity, mereology and attributes which could then serve to model a road net

authority. We could have modelled the automobile structure as a composite part with unique identity, mereology and attributes which could then serve to

model a department of vehicles.

The concept of structure is new. Whether to analyse & describe a discrete endurant into a structure or a physical part is a matter

of choice. If we choose to analyse a discrete endurant into a physical part then it is because we are interested in endowing the

part with qualities, the unique identifiers, mereology and one or more attributes. If we choose to analyse a discrete endurant

into a structure then it is because we are not interested in endowing the endurant with qualities. When we choose that an

endurant sort should be modelled as a part sort with unique identification, mereology and proper attributes, then it is because

we eventually shall consider the part sort as being the basis for transcendentally deduced behaviours.

Analysis Prompt 8. is structure: The domain analyser analyse endurants, e, into structure entities as prompted by the

domain analysis prompt:

• is structure e is a structure if is structure(e) holds

We shall now treat the external qualities of discrete endurants: physical parts (Sect. 3.3) and living species (Sect. 3.4). After

that we cover components (Sect. 3.5), materials (Sect. 3.6) and artifacts (physical man-made parts, Sect. 3.3.2) . We remind the

reader that in this section, i.e. Sect. 3, we cover only the analysis calculus for external qualities; the description calculus for

external qualities is treated in Sect. 4. The analysis and description calculi for internal qualities is covered in Sect. 5.

3.3 Physical Parts

Physical parts are either natural parts, or components, or sets of parts of the same type, or are artifacts i.e. man-made parts. The

categorisation of physical parts into these four is pragmatic. Physical parts follow from Kai Sørlander’s Philosophy. Natural

parts are what Sørlander’s Philosophy is initially about. Artifacts follow from humans acting according to their purpose in

making “physical parts”. Components is a simplification of natural and man-made parts. Set of parts is a simplification of

composite natural and composite man-made parts as will be made clear in Sect. 4.2.

3.3.1 Natural Parts

Characterisation 7. Natural Parts: Natural parts are in space and time; are subject to the laws of physics, and also subject

to the principle of causality and gravitational pull

The above is a factual characterisation of natural parts. The below is our definition – such as we shall model natural parts.

Definition 5. Natural Part: By a natural part we shall understand a physical part which the domain engineer chooses to

endow with all three internal qualities: unique identification, mereology, and one or more attributes

3.3.2 Artifacts

Characterisation 8. Man-made Parts: Artifacts: Artifacts are man-made either discrete or continuous endurants. In this

section we shall only consider discrete endurants. Man-made continuous endurants are not treated separately but are “lumped”

with [natural] materials. Artifacts are are in space and time; are subject to the laws of physics, and also subject to the principle

of causality and gravitational pull

2018-11-16 02:18. Page 10 of 1–61.

Domain Analysis & Description 11

The above is a factual characterisation of discrete artifacts. The below is our definition – such as we shall model discrete artifacts.

Definition 6. Artifact: By an artifact we shall understand a man-made physical part which, like for natural parts, the domain

engineer chooses to endow with all three internal qualities: unique identification, mereology, and one or more attributes

We shall assume, cf. Sect. 5.3 [Attributes], that artifacts all come with an attribute of kind intent, that is, a set of purposes for

which the artifact was constructed, and for which it is intended to serve. We continue our treatment of artifacts in Sect. 3.7

below.

3.3.3 Parts We revert to our treatment of parts.

Example 9: Parts
The geography examples (of Page 8) of are all natural parts. The railway system examples (of Page 8) are all artifacts

Except for the intent attribute of artifacts, we shall, in the following, treat natural and artifactual parts on par, i.e., just as

physical parts.

Analysis Prompt 9. is part: The domain analyser analyse endurants, e, into part entities as prompted by the domain

analysis prompt:

• is part e is a part if is part(e) holds

3.3.4 Atomic and Composite Parts: A distinguishing quality of natural and artifactual parts is whether they are atomic or

composite. Please note that we shall, in the following, examine the concept of parts in quite some detail. That is, parts become

the domain endurants of main interest, whereas components, structures and materials become of secondary interest. This is a

choice. The choice is based on pragmatics. It is still the domain analyser cum describers’ choice whether to consider a discrete

endurant a part or a component, or a structure. If the domain engineer wishes to investigate the details of a discrete endurant

then the domain engineer choose to model22 the discrete endurant as a part otherwise as a component.

3.3.5 Atomic Parts

Definition 7. Atomic Part: Atomic parts are those which, in a given context, are deemed to not consist of meaningful,

separately observable proper sub-parts. A sub-part is a part

Analysis Prompt 10. is atomic: The domain analyser analyses a discrete endurant, i.e., a part p into an atomic endurant:

• is atomic: p is an atomic endurant if is atomic(p) holds

Example 10: Atomic Road Net Parts
From one point of view all of the following can be considered atomic parts: hubs, links23, and automobiles.

24

3.3.6 Composite Parts

Definition 8. Composite Part: Composite parts are those which, in a given context, are deemed to indeed consist of

meaningful, separately observable proper sub-parts

Analysis Prompt 11. is composite: The domain analyser analyses a discrete endurant, i.e., a part p into a composite

endurant:

22We use the term to model interchangeably with the composite term to analyse & describe; similarly a model is used interchangeably with an analysis &
description.
24Hub ≡ street intersection; link ≡ street segments with no intervening hubs.

2018-11-16 02:18. Page 11 of 1–61.

12 Dines Bjørner

• is composite: p is a composite endurant if is composite(p) holds

is discrete is a prerequisite prompt of both is atomic and is composite.

Example 11: Composite Automobile Parts
From another point of view all of the following can be considered composites parts: an automobile, consisting of, for example, the following composite parts:

the engine train, the chassis, the car body, the doors and the wheels. These can again be considered composite parts.

3.4 Living Species

We refer to Sect. 3.2.2 for our first characterisation (Page 9) of the concept of living species25: a discrete endurant existing in

time, subject to laws of physics, and additionally subject to causality of purpose26

Definition 9. Living Species, II: Living species must have some form they can be developed to reach ; which they must be

causally determined to maintain. This development and maintenance must further in an exchange of matter with an environment.

It must be possible that living species occur in one of two forms: one form which is characterised by development, form and

exchange; another form which, additionally, can be characterised by the ability to purposeful movement The first we call

plants, the second we call animals

Analysis Prompt 12. is living species: The domain analyser analyse discrete endurants, ℓ, into living species entities

as prompted by the domain analysis prompt:

• is living species – where is living speciesℓ holds if ℓ is a living species

3.4.1 Plants We start with some examples.

Example 12: Plants
Although we have not yet come across domains for which the need to model the living species of plants were needed, we give some examples anyway: grass,

tulip, rhododendron, oak tree.

Analysis Prompt 13. is plant: The domain analyser analyses “things” (ℓ) into a plant. The method can thus be said to

provide the domain analysis prompt:

• is plant – where is plant(ℓ) holds if ℓ is a plant

The predicate is living species(ℓ) is a prerequisite for is plant(ℓ).

3.4.2 Animals

Definition 10. Animal: We refer to the initial definition of living species above – while ephasizing the following traits: (i) form

animals can be developed to reach ; (ii) causally determined to maintain. (iii) development and maintenance in an exchange of

matter with an environment, and (iv) ability to purposeful movement

Analysis Prompt 14. is animal: The domain analyser analyses “things” (ℓ) into an animal. The method can thus be said

to provide the domain analysis prompt:

• is animal – where is animal(ℓ) holds if ℓ is an animal

The predicate is living species(ℓ) is a prerequisite for is animal(ℓ).

Example 13: Animals
Although we have not yet come across domains for which the need to model the living species of animals, in general, were needed, we give some examples

anyway: dolphin, goose cow dog, lion, fly.

We have not decided, for this paper, whether to model animals singly or as sets27 of such.

25See analysis prompt 7 on Page 9.
26See Footnote 20 on Page 9.
27 school of dolphins, flock of geese, herd of cattle, pack of dogs, pride of lions, swarm of flies,

2018-11-16 02:18. Page 12 of 1–61.

Domain Analysis & Description 13

3.4.3 Humans

Definition 11. Human: A human (a person) is an animal, cf. Definition 10, with the additional properties of having language,

being conscious of having knowledge (of its own situation), and responsibility

Analysis Prompt 15. is human: The domain analyser analyses “things” (ℓ) into a human. The method can thus be said to

provide the domain analysis prompt:

• is human – where is human(ℓ) holds if ℓ is a human

The predicate is animal(ℓ) is a prerequisite for is human(ℓ).

We refer to [6, Sects. 10.4–10.5] for a specific treatment of living species, animals and humans, and to [6] in general for the

philosophy background for rationalising the treatment of living species, animals and humans.

We have not, in our many experimental domain modelling efforts had occasion to model humans; or rather: we have modelled,

for example, automobiles as possessing human qualities, i.e., “subsuming humans”. We have found, in these experimental

domain modelling efforts that we often confer anthropomorphic qualities on artifacts28, that is, that these artifacts have human

characeristics. You, the reader are reminded that when some programmers try to explain their programs they do so using such

phrases as and here the program does ... so-and-so !

3.5 Components

Definition 12. Component: By a component we shall understand a discrete endurant which we, the domain analyser cum

describer chooses to not endow with mereology

Components are discrete endurants. Usually they come in sets. That is, sets of sets of components of different sorts (cf. Sect. 4.4

on Page 18). A discrete endurant can (itself) “be” a set of components. But physical parts may contain (has components)

components: natural parts may contain natural components, artifacts may contain natural and artifactual components. We leave

it to the reader to provide analysis predicates for natural and artifactual “componentry”.

Example 14: Components
A natural part, say a land area may contain gravel pits of sand, clay pits tar pits and other “pits”. An artifact, say a postal letter box may contain letters, small

parcels, newspapers and advertisement brochures.

Analysis Prompt 16. has components: The domain analyser analyses discrete endurants e into component entities as

prompted by the domain analysis prompt:

• has components(p) holds if part p potentially may contain components

We refer to Sect. 4.4 on Page 18 for further treatment of the concept of components.

3.6 Continuous Endurants ≡ Materials

Definition 13. Material: By a material we shall understand a continuous endurant

Materials are continuous endurants. Usually they come in sets. That is, sets of of materials of different sorts (cf. Sect. 4.5 on

Page 19). So an endurant can (itself) “be” a set of materials. But physical parts may contain (has materials) materials: natural

parts may contain natural materials, artifacts may contain natural and artifactual materials. We leave it to the reader to provide

analysis predicates for natural and artifactual “materials”.

Example 15: Natural and Man-made Materials
A natural part, say a land area, may contain lakes, rivers, irrigation dams and border seas.

An artifact, say an automobile, usually contains gasoline, lubrication oil, engine cooler liquid and window screen washer water.

28Cf. Sect. 3.7 below.

2018-11-16 02:18. Page 13 of 1–61.

14 Dines Bjørner

Analysis Prompt 17. has materials: The domain analysis prompt:

• has materials(p) yields true if part p:P potentially may contain materials otherwise false

We refer to Sect. 4.5 on Page 19 for further treatment of the concept of materials. We shall define the terms unique identification,

mereology and attributes in Sects. 5.1–5.3.

3.7 Artifacts

Definition 14. Artifacts: By artifacts we shall understand a man-made physical part or a man-made material

Example 16: More Artifacts
From the shipping industry: ship, container vessels, container, container stack, container terminal port, harbour.

Analysis Prompt 18. is artifact: The domain analyser analyses “things” (p) into artifacts. The method can thus be said

to provide the domain analysis prompt:

• is artifact – where is artifact(p) holds if p is an artifact

3.8 States

Definition 15. State: By a state we shall understand any number of physical parts and/or materials each possessing as we

shall later introduce them at least one dynamic attribute. There is no need to introduce time at this point

Example 17: Artifactual States
The following endurants are examples of states (including being elements of state compounds): pipe units (pipes, valves, pumps, etc.) of pipe-lines; hubs and

links of road nets (i.e., street intersections and street segments); automobiles (of transport systems).

The notion of state becomes relevant in Sect. 8. We shall there exemplify states further: example Constants and States [Indexed

States] Page 35.

4 ENDURANTS: THE DESCRIPTION CALCULUS

4.1 Parts: Natural or Man-made

The observer functions of this section applies to both natural parts and man-made parts (i.e., artifacts).

4.1.1 On Discovering Endurant Sorts Our aim now is to present the basic principles that let the domain analyser decide

on part sorts. We observe parts one-by-one.

(α) Our analysis of parts concludes when we have “lifted” our examination of a particular part instance to the

conclusion that it is of a given sort29, that is, reflects a formal concept.

Thus there is, in this analysis, a “eureka”, a step where we shift focus from the concrete to the abstract, from observing specific

part instances to postulating a sort: from one to the many. If p is a part of sort P, then we express that as: p:P.

Analysis Prompt 19. observe endurant sorts: The domain analysis prompt:

• observe endurant sorts

directs the domain analyser to observe the sub-endurants of an endurant e and to suggest their sorts. Let observe endurant sorts(e)

= {e1:E1,e2:E2, . . . ,em:Em}

29We use the term ’sort’ for abstract types, i.e., for the type of values whose concrete form we are not describing.

The term ‘sort’ is commonly used in algebraic semantics [32].

2018-11-16 02:18. Page 14 of 1–61.

Domain Analysis & Description 15

(β) The analyser analyses, for each of these endurants, ei, which formal concept, i.e., sort, it belongs to; let us

say that it is of sort Ek; thus the sub-parts of p are of sorts {E1,E2, . . . ,Em}. Some Ek may be natural parts, other

artifacts (man-made parts) or structures, and yet others may be components or materials. And parts may be either

atomic or composite.

The domain analyser continues to examine a finite number of other composite parts: {p j, pℓ, . . . , pn}. It is then “discovered”,

that is, decided, that they all consists of the same number of sub-parts {ei1 ,ei2 ,. . . ,eim}, {e j1 ,e j2 ,. . . ,e jm}, {eℓ1
,eℓ2

,. . . ,eℓm
}, ...,

{en1
,en2

,. . . ,enm
}, of the same, respective, endurant sorts.

(γ) It is therefore concluded, that is, decided, that {ei,e j,eℓ,. . . ,en} are all of the same endurant sort P with

observable part sub-sorts {E1,E2,. . . ,Em}.

Above we have type-font-highlighted three sentences: (α,β ,γ). When you analyse what they “prescribe” you will see that they

entail a “depth-first search” for part sorts. The β sentence says it rather directly: “The analyser analyses, for each of these parts,

pk, which formal concept, i.e., part sort it belongs to.” To do this analysis in a proper way, the analyser must (“recursively”)

analyse structures into sub-structures, parts, components and materials, and parts “down” to their atomicity. Components and

materials are considered “atomic”, i.e., to not contain further analysable endurants. For the structures, parts (whether natural or

man-made), components and materials of the structure the analyser cum describer decides on their sort, and work (“recurse”)

their way “back”, through possibly intermediate endurants, to the pks. Of course, when the analyser starts by examining atomic

parts, components and materials, then their endurant structure and part analysis “recursion” is not necessary.

4.1.2 Endurant Sort Observer Functions: The above analysis amounts to the analyser first “applying” the domain anal-

ysis prompt is composite(e) to a discrete endurant, e, where we now assume that the obtained truth value is true. Let us

assume that endurants e:E consist of sub-endurants of sorts {E1,E2,. . . ,Em}. Since we cannot automatically guarantee that our

domain descriptions secure that E and each Ei (1≤i≤m) denotes disjoint sets of entities we must prove it.

Domain Description Prompt 1. observe endurant sorts : If is composite(p) holds, then the analyser “applies” the

domain description prompt

• observe endurant sorts(p)

resulting in the analyser writing down the endurant sorts and endurant sort observers domain description text according to the

following schema:

1. observe endurant sorts Observer Schema

Narration:

[s] ... narrative text on sorts ...

[o] ... narrative text on sort observers ...

[p] ... narrative text on proof obligations ...

Formalisation:

type

[s] E,

[s] Ei i:[1..m] comment: Ei i:[1..m] abbreviates E1, E2, ..., Em

value

[o] obs Ei: E → Ei i:[1..m]

proof obligation [Disjointness of endurant sorts]

[p] PO : ∀ e:(E1|E2|...|Em) •
∧

{is Ei(e) ≡
∧

{∼is E j(e)|j:[1..m] \ {i}}|i:[1..m]}

The is E j(e) is defined by Ei i:[1..m]. is composite is a prerequisite prompt of observe endurant sorts. That is, the

composite may satisfy is natural or is artifact

2018-11-16 02:18. Page 15 of 1–61.

16 Dines Bjørner

Note: The above schema as well as the following schemes introduce, i.e., define in terms of a function signature, a number of

functions whose names begin with bold-faced obs ..., uid ..., mereo ..., attr ... et cetera. These observer functions are one of

the bases of domain descriptions.

We do not here state techniques for discharging proof obligations.30

Example 18: Composite Endurant Sorts

1 There is the universe of discourse, UoD.

It is structured into

2 a road net, RN, and

3 a fleet of vehicles, FV.

Both are structures.

type

1 UoD axiom ∀ uod:UoD • is structure(uod).

2 RN axiom ∀ rn:RN • is structure(rn).

3 FV axiom ∀ fv:FV • is structure(fv).

value

2 obs RN: UoD → RN

3 obs FV: UoD → FV

Note: A proper description has two texts, a narrative and a formalisation each is itemised and items are pairwise numbered.

sLsH

A Road Transport System: Structures and Parts
RN

SH SL

FV

SBC

sA
PABCs

h1:H

h2:H

hm:H

l1:L

ln:L

l2:L

b11:B

b1p:B

bs1:B

bsq:B

a1:A

a2:A

ar:A

bs2:Bb12:B

bc1:sBC bc_s:sBC

Fig. 5. A Road Transport System

Example 19: Structures

4 The road net consists of

a a structure, SH, of hubs and

b a structure, SL, of links.

5 The fleet of vehicles consists of

a a structure, SBC, of bus companies, and

b a structure, PA, a pool of automobiles.

type

4a SH axiom ∀ sh:SH • is structure(sh)

4b SL axiom ∀ sl:SL • is structure(sl)

5a SBC axiom ∀ sbc:SBC • is structure(bc)

5b PA axiom ∀ pa:PA • is structure(pa)

value

4a obs SH: RN → SH

4b obs SL: RN → SL

5a obs BC: FV → BC

5b obs PA: FV → PA

30 – such techniques are given in standard texts on formal specification languages.

2018-11-16 02:18. Page 16 of 1–61.

Domain Analysis & Description 17

4.2 Concrete Part Types

Sometimes it is expedient to ascribe concrete types to sorts.

Analysis Prompt 20. has concrete type: The domain analyser may decide that it is expedient, i.e., pragmatically sound,

to render a part sort, P, whether atomic or composite, as a concrete type, T. That decision is prompted by the holding of the

domain analysis prompt:

• has concrete type.

is discrete is a prerequisite prompt of has concrete type

The reader is reminded that the decision as to whether an abstract type is (also) to be described concretely is entirely at the

discretion of the domain engineer.

Domain Description Prompt 2. observe part type : Then the domain analyser applies the domain description prompt:

• observe part type(p)31

to parts p:P which then yield the part type and part type observers domain description text according to the following schema:

2. observe part type Observer Schema

Narration:

[t1] ... narrative text on sorts and types Si ...

[t2] ... narrative text on types T ...

[o] ... narrative text on type observers ...

Formalisation:

type

[t1] S1, S2, ..., Sm, ..., Sn,

[t2] T = E (S1,S2,...,Sn)

value

[o] obs T: P → T

Here S1,S2,...,Sm,...,Sn may be any types, including part sorts, where 0≤m≤n≥1, where m is the number of new (atomic or

composite) sorts, and where n−m is the number of concrete types (like Bool, Int, Nat) or sorts already analysed & described.

and E (S1,S2,...,Sn) is a type expression Usually it is wise to restrict the part type definitions, Ti = Ei(Q,R,...,S), to simple

type expressions.32 The type name, T, of the concrete type, as well as those of the auxiliary types, S1,S2,...,Sm , are chosen by

the domain describer: they may have already been chosen for other sort–to–type descriptions, or they may be new.

Example 20: Concrete Part Types

6 The structure of hubs is a set, sH, of atomic hubs, H.

7 The structure of links is a set, sL, of atomic links, L.

8 The structure of buses is a set, sBC, of composite bus companies, BC.

9 The composite bus companies, BC, are sets of buses, sB.

10 The structure of private automobiles is a set, sA, of atomic automo-

biles, A.

6 H, sH = H-set axiom ∀ h:H • is atomic(h)

7 L, sL = L-set axiom ∀ l:L • is atomic(l)

8 BC, BCs = BC-set axiom ∀ bc:BC • is composite(bc)

9 B, Bs = B-set axiom ∀ b:B • is atomic(b)

10 A, sA = A-set axiom ∀ a:A • is atomic(a)

value

6 obs sH: SH → sH

7 obs sL: SL → sL

8 obs sBC: SBC → BCs

9 obs Bs: BCs → Bs

10 obs sA: SA → sA

31has concrete type is a prerequisite prompt of observe part type.
32 T=A-set or T=A∗ or T=ID→m A or T=At |Bt |...|Ct where ID is a sort of unique identifiers, T=At |Bt |...|Ct defines the disjoint types At==mkAt (s:As),
Bt==mkBt (s:Bs), ..., Ct==mkCt (s:Cs), and where A, As, Bs, ..., Cs are sorts. Instead of At==mkAt (a:As), etc., we may write At ::As etc.

2018-11-16 02:18. Page 17 of 1–61.

18 Dines Bjørner

4.3 On Endurant Sorts

4.3.1 Derivation Chains Let E be a composite sort. Let E1, E2, . . . , Em be the part sorts “discovered” by means of obser-

ve endurant sorts(e) where e:E. We say that E1, E2, . . . , Em are (immediately) derived from E. If Ek is derived from E j

and E j is derived from Ei, then, by transitivity, Ek is derived from Ei.

4.3.2 No Recursive Derivations: We “mandate” that if Ek is derived from E j then there E j is different from Ek and there

can be no Ek derived from E j, that is, Ek cannot be derived from Ek. That is, we do not “provide for” recursive domain sorts.

It is not a question, actually of allowing recursive domain sorts. It is, we claim to have observed, in very many analysis &

description experiments, that there are no recursive domain sorts !33

4.3.3 Names of Part Sorts and Types: The domain analysis & description text prompts observe endurant sorts,

as well as the below-defined observe part type, observe component sorts and observe material sorts, – as well

as the further below defined attribute names, observe material sorts, observe unique identifier, observe me-

reology and observe attributes prompts introduced below – “yield” type names. That is, it is as if there is a reservoir of

an indefinite-size set of such names from which these names are “pulled”, and once obtained are never “pulled” again. There

may be domains for which two distinct part sorts may be composed from identical part sorts. In this case the domain analyser

indicates so by prescribing a part sort already introduced.

4.4 Components

We refer to Sect. 3.5 on Page 13 for our initial treatment of ‘components’.

Domain Description Prompt 3. observe component sorts : The domain description prompt:

• observe component sorts(p)

yields the component sorts and component sort observer domain description text according to the following schema – whether or

not the actual part p contains any components:

3. observe component sorts Observer Schema

Narration:

[s] ... narrative text on component sorts ...

[o] ... narrative text on component observers ...

[p] ... narrative text on component sort proof obligations ...

Formalisation:

type

[s] K1, K2, ..., Kn

[s] K = K1| K2 | ... | Kn

[s] KS = K-set

value

[o] obs components P: P → KS

Proof Obligation: [Disjointness of Component Sorts]

[p] PO: ∀ ki:(K1|K2|...|Kn) •
∧

is Ki(ki) ≡
∧
{∼is K j(k j)|j:[1..n] \ {i}} i:[1..n]

The is K j(e) is defined by Ki, i:[1..n].

33Some readers may object, but we insist ! If trees are brought forward as an example of a recursively definable domain, then we argue: Yes, trees can be recursively

defined, but it is not recursive. Trees can, as well, be defined as a variant of graphs, and you wouldn’t claim, would you, that graphs are recursive ?

2018-11-16 02:18. Page 18 of 1–61.

Domain Analysis & Description 19

Example 21: Components

To illustrate the concept of components we describe timber yards, waste dis-

posal areas, road material storage yards, automobile scrap yards, end the like

as special “cul de sac” hubs with components. Here we describe road material

storage yards.

11 Hubs may contain components, but only if the hub is connected to

exactly one link.

12 These “cul-de-sac” hub components may be such things as Sand,

Gravel, Cobble Stones, Asphalt, Cement or other.

value

11 has components: H → Bool

type

12 Sand, Gravel, Stones, Asphalt, Cement, ...

12 KS = (Sand|Gravel|Stones|Asphalt|Cement|...)-set

value

11 obs components H: H → KS

11 pre: obs components H(h) ≡ card mereo(h) = 1

We have presented one way of tackling the issue of describing components. There are other ways. We leave those ‘other ways’

to the reader. We are not going to suggest techniques and tools for analysing, let alone ascribing qualities to components. We

suggest that conventional abstract modelling techniques and tools be applied.

4.5 Materials

We refer to Sect. 3.6 on Page 13 for our initial treatment of ‘materials’. Continuous endurants (i.e., materials) are entities, m,

which satisfy:

• is material(e) ≡ is continuous(e)

If is material(e) holds then we can apply the domain description prompt : observe material sorts(e).

Domain Description Prompt 4. observe material sorts : The domain description prompt:

• observe material sorts(e)

yields the material sorts and material sort observers’ domain description text according to the following schema whether or not part

p actually contains materials:

4. observe material sorts Observer Schema

Narration:

[s] ... narrative text on material sorts ...

[o] ... narrative text on material sort observers ...

[p] ... narrative text on material sort proof obligations ...

Formalisation:

type

[s] M1, M2, ..., Mn

[s] M = M1 | M2 | ... | Mn

[s] MS = M-set

value

[o] obs Mi: P → M, [i:1..n]

proof obligation [Disjointness of Material Sorts]

[p] PO: ∀ mi:M •
∧

{is Mi(mi) ≡
∧
{∼is M j(m j)|j ∈ {1..m} \ {i}}|i:[1..n]}

The is M j(e) is defined by Mi, i:[1..n].

Let us assume that parts p:P embody materials of sorts {M1,M2,. . . ,Mn}. Since we cannot automatically guarantee that our

domain descriptions secure that each Mi ([1≤i≤n]) denotes disjoint sets of entities we must prove it

2018-11-16 02:18. Page 19 of 1–61.

20 Dines Bjørner

Example 22: Materials

To illustrate the concept of materials we describe waterways (river, canals,

lakes, the open sea) along links as links with material of type water.

13 Links may contain material.

14 That material is water, W.

type

14 W

value

13 obs material: L → W

13 pre: obs material(l) ≡ has material(h)

5 ENDURANTS: ANALYSIS & DESCRIPTION OF INTERNAL QUALITIES

We remind the reader that internal qualities cover unique Identifiers (Sect. 5.1), mereology (Sect. 5.2) and attributes (Sect. 5.3).

5.1 Unique Identifiers

We introduce a notion of unique identification of parts and components. We assume (i) that all parts and components, p, of any

domain P, have unique identifiers, (ii) that unique identifiers (of parts and components p:P) are abstract values (of the unique

identifier sort PI of parts p:P), (iii) such that distinct part or component sorts, Pi and P j , have distinctly named unique identifier

sorts, say PIi and PI j , (iv) that all πi:PIi and π j:PI j are distinct, and (v) that the observer function uid P applied to p yields the

unique identifier, π:PI, of p. The description language function type name applies to unique identifiers, p ui:P UI, and yield

the name of the type, P, of the parts having unique identifiers of type P UI.

Representation of Unique Identifiers: Unique identifiers are abstractions. When we endow two parts (say of the same sort)

with distinct unique identifiers then we are simply saying that these two parts are distinct. We are not assuming anything about

how these identifiers otherwise come about.

Domain Description Prompt 5. observe unique identifier : We can therefore apply the domain description prompt:

• observe unique identifier

to parts p:P resulting in the analyser writing down the unique identifier type and observer domain description text according to

the following schema:

5. observe unique identifier Observer Schema

Narration:

[s] ... narrative text on unique identifier sort PI ...

[u] ... narrative text on unique identifier observer uid P ...

[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s] PI

value

[u] uid P: P → PI

axiom [Disjointness of Domain Identifier Types]

[a] A : U (PI,PI i,PI j,...,PI k)

2018-11-16 02:18. Page 20 of 1–61.

Domain Analysis & Description 21

Example 23: Unique Identifiers

15 We assign unique identifiers to all parts.

16 By a road identifier we shall mean a link or a hub identifier.

17 By a vehicle identifier we shall mean a bus or an automobile identifier.

18 Unique identifiers uniquely identify all parts.

a All hubs have distinct [unique] identifiers.

b All links have distinct identifiers.

c All bus companies have distinct identifiers.

d All buses of all bus companies have distinct identifiers.

e All automobiles have distinct identifiers.

f All parts have distinct identifiers.

type

15 H UI, L UI, BC UI, B UI, A UI

16 R UI = H UI | L UI

17 V UI = B UI | A UI

value

18a uid H: H → H UI

18b uid L: H → L UI

18c uid BC: H → BC UI

18d uid B: H → B UI

18e uid A: H → A UI

Appendix Sect. A.1.1 on Page 56 presents some auxiliary functions related to

unique identifiers

We ascribe, in principle, unique identifiers to all parts whether natural or artifactual, and to all components. We find, from our

many experiments, cf. the Universes of Discourse example, Page 6, that we really focus on those domain entities which are

artifactual endurants and their behavioural “counterparts”.

5.2 Mereology

Mereology is the study and knowledge of parts and part relations. Mereology, as a logical/philosophical discipline, can perhaps

best be attributed to the Polish mathematician/logician Stanisław Leśniewski [8, 33].

5.2.1 Part Relations: Which are the relations that can be relevant for part-hood ? We give some examples. (i) Two otherwise

distinct parts may “share” values. 34 By ‘sharing’ values we shall, as a generic example, mean that two parts of different sorts

has the same attributes but that one ‘defines’ the attribute, like, for example ‘programming’ its values, cf. Defn.8 Page25,

whereas the other ‘uses’ these values, like, for example considering them ‘inert’, cf. Defn.3 Page25. (ii) Two otherwise distinct

parts may be said to, for example, be topologically “adjacent” or one “embedded” within the other. These examples are in no

way indicative of the “space” of part relations that may be relevant for part-hood. The domain analyser is expected to do a bit

of experimental research in order to discover necessary, sufficient and pleasing “mereology-hoods” !

5.2.2 Part Mereology: Types and Functions

Analysis Prompt 21. has mereology: To discover necessary, sufficient and pleasing “mereology-hoods” the analyser can

be said to endow a truth value, true, to the domain analysis prompt:

• has mereology

When the domain analyser decides that some parts are related in a specifically enunciated mereology, the analyser has to decide

on suitable mereology types and mereology observers (i.e., part relations).

19 We may, to illustration, define a mereology type of a part p:P as a triplet type expression over set of unique [part]

identifiers.

20 There is the identification of all those part types Pi1 ,Pi2 , ...,Pim where at least one of whose properties "is of interest"

to parts p:P.

21 There is the identification of all those part types Pio1
,Pio2

, ...,Pion
where at least one of whose properties "is of interest"

to parts p:P and vice-versa.

22 There is the identification of all those part types Po1
,Po2

, ...,Poo
for whom properties of p:P "is of interest" to parts

of types Po1
,Po2

, ...,Poo
.

34For the concept of attribute value see Sect. 5.3.1 on Page 24.

2018-11-16 02:18. Page 21 of 1–61.

22 Dines Bjørner

23 The the mereology triplet sets of unique identifiers are disjoint and are all unique identifiers of the universe of discourse.

The three part mereology is just a suggestion. As it is formulated here we mean the three ‘sets’ to be disjoint. Other forms of

expressing a mereology should be considered for the particular domain and for the particular parts of that domain. We leave out

further characterisation of the seemingly vague notion "is of interest".

type

20 iPI = iPI1 | iPI2 | ... | iPIm

21 ioPI = ioPI1 | ioPI2 | ... | ioPIn

22 oPI = oPI1 | oPI2 | ... | oPIo

19 MT = iPI-set × ioPI-set × oPI-set

axiom

23 ∀ (iset,ioset,oset):MT •

23 card iset + card ioset + card oset = card ∪{iset,ioset,oset}

23 ∪{iset,ioset,oset} ⊆ unique identifiers(uod)

value

23 unique identifiers: P → UI-set

23 unique identifiers(p) ≡ ...

Domain Description Prompt 6. observe mereology : If has mereology(p) holds for parts p of type P, then the analyser

can apply the domain description prompt:

• observe mereology

to parts of that type and write down the mereology types and observer domain description text according to the following schema:

6. observe mereology Observer Schema

Narration:

[t] ... narrative text on mereology type ...

[m] ... narrative text on mereology observer ...

[a] ... narrative text on mereology type constraints ...

Formalisation:

type

[t] MT35

value

[m] mereo P: P → MT

axiom [Well−formedness of Domain Mereologies]

[a] A : A (MT)

A (MT) is a predicate over possibly all unique identifier types of the domain description. To write down the concrete type

definition for MT requires a bit of analysis and thinking. has mereology is a prerequisite prompt for observe mereology

35The mereology descriptor, MT will be referred to in the sequel.

2018-11-16 02:18. Page 22 of 1–61.

Domain Analysis & Description 23

Example 24: Mereology

24 The mereology of hubs is a pair: (i) the set of all bus and automobile

identifiers36 , and (ii) the set of unique identifiers of the links that it is

connected to and the set of all unique identifiers of all vehicle (buses

and private automobiles).37.

25 The mereology of links is a pair: (i) the set of all bus and automobile

identifiers, and (ii) the set of the two distinct hubs they are connected

to.

26 The mereology of of a bus company is a set the unique identifiers of

the buses operated by that company.

27 The mereology of a bus is a pair: (i) the set of the one single unique

identifier of the bus company it is operating for, and (ii) the unique

identifiers of all links and hubs38.

28 The mereology of an automobiles is the set of the unique identifiers of

all links and hubs39.

type

24 H Mer = V UI-set×L UI-set

24 axiom ∀ (vuis,luis):H Mer • luis⊆luis ∧ vuis=vuis

25 L Mer = V UI-set×H UI-set

25 axiom ∀ (vuis,huis):L Mer •

25 vuis=vuis ∧ huis⊆huis ∧ cardhuis=2

26 BC Mer = B UI-set

26 axiom ∀ buis:H Mer • buis = buis

27 B Mer = BC UI×R UI-set

27 axiom ∀ (bc ui,ruis):H Mer•bc ui∈bcuis∧ruis=ruis

28 A Mer = R UI-set

28 axiom ∀ ruis:A Mer • ruis=ruis

value

24 mereo H: H → H Mer

25 mereo L: L → L Mer

26 mereo BC: BC → BC Mer

27 mereo B: B → B Mer

28 mereo A: A → A Mer

We can express some additional axioms, in this case for relations between hubs and links:

29 If hub, h, and link, l, are in the same road net,

30 and if hub h connects to link l then link l connects to hub h.

axiom

29 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls ⇒

let (,luis)=mereo H(h), (,huis)=mereo L(l)

30 in uid L(l)∈luis⇒uid H(h)∈huis end

More mereology axioms need be expressed – but we leave, to the reader, to narrate and formalise those

5.2.3 Formulation of Mereologies: The observe mereology domain descriptor, Page 22, may give the impression that

the mereo type MT can be described “at the point of issue” of the observe mereology prompt. Since the MT type expression

may, in general, depend on any part sort the mereo type MT can, for some domains, “first” be described when all part sorts

have been dealt with. In [34] we present a model of one form of evaluation of the TripTych analysis and description prompts,

see also Sect. 9.2.5 on Page 50.

5.2.4 Some Modelling Observations: It is, in principle, possible to find examples of mereologies of natural parts: rivers:

their confluence, lakes and oceans; and geography: mountain ranges, flat lands, etc. But in our experimental case studies,

cf. Example on Page 6, we have found no really interesting such cases. All our experimental case studies appears to focus on

the mereology of artifacts. And, finally, in modelling humans, we find that their mereology encompass all other humans and all

artifacts ! Humans cannot be tamed to refrain from interacting with everyone and everything.

Some domain models may emphasize physical mereologies based on spatial relations, others may emphasize conceptual

mereologies based on logical “connections”.

5.3 Attributes

To recall: there are three sets of internal qualities: unique part identifiers, part mereology and attributes. Unique part

identifiers and part mereology are rather definite kinds of internal endurant qualities. Part attributes form more “free-wheeling”

sets of internal qualities.

5.3.1 Technical Issues: We divide Sect. 5.3 into two subsections: technical issues, the present one, and modelling issues,

Sect. 5.3.2.

2018-11-16 02:18. Page 23 of 1–61.

24 Dines Bjørner

Inseparability of Attributes from Parts and Materials: Parts and materials are typically recognised because of their spatial

form and are otherwise characterised by their intangible, but measurable attributes. That is, whereas endurants, whether discrete

(as are parts and components) or continuous (as are materials), are physical, tangible, in the sense of being spatial [or being

abstractions, i.e., concepts, of spatial endurants], attributes are intangible: cannot normally be touched40 , or seen41, but can be

objectively measured42 . Thus, in our quest for describing domains where humans play an active rôle, we rule out subjective “at-

tributes”: feelings, sentiments, moods. Thus we shall abstain, in our domain science also from matters of aesthetics. We equate

all endurants which, besides possible type of unique identifiers (i.e., excepting materials) and possible type of mereologies

(i.e.,, excepting components and materials), have the same types of attributes, with one sort. Thus removing a quality from an

endurant makes no sense: the endurant of that type either becomes an endurant of another type or ceases to exist (i.e., becomes

a non-entity) !

Attribute Quality and Attribute Value: We distinguish between an attribute (as a logical proposition, of a name, i.e.) type,

and an attribute value, as a value in some value space.

Analysis Prompt 22. attribute types: One can calculate the set of attribute types of parts and materials with the follow-

ing domain analysis prompt:

• attribute types

Thus for a part p we may have attribute types(p) = {A1,A2, ...,Am}.

Whether by attribute types(p) we mean the names of the types {A1, A2, ..., Am} for example {ηA1, ηA2, ..., ηAm} where

η is some meta-function which applies to a type and yields its name, or or we mean the [full] types themselves, i.e., some

possibly infinite, suitably structured set of values (of that type), we shall here leave open !

Attribute Types and Functions: Let us recall that attributes cover qualities other than unique identifiers and mereology. Let us

then consider that parts and materials have one or more attributes. These attributes are qualities which help characterise “what

it means” to be a part or a material. Note that we expect every part and material to have at least one attribute. The question is

now, in general, how many and, particularly, which.

Domain Description Prompt 7. observe attributes : The domain analyser experiments, thinks and reflects about part

attributes. That process is initiated by the domain description prompt:

• observe attributes.

The result of that domain description prompt is that the domain analyser cum describer writes down the attribute (sorts or) types

and observers domain description text according to the following schema:

7. observe attributes Observer Schema

Narration:

[t] ... narrative text on attribute sorts ...

[o] ... narrative text on attribute sort observers ...

[p] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[t] Ai [1≤i≤n]

value

[o] attr Ai: P→Ai i:[1..n]

proof obligation [Disjointness of Attribute Types]

40One can see the red colour of a wall, but one touches the wall.
41One cannot see electric current, and one may touch an electric wire, but only if it conducts high voltage can one know that it is indeed an electric wire.
42That is, we restrict our domain analysis with respect to attributes to such quantities which are observable, say by mechanical, electrical or chemical instruments.

Once objective measurements can be made of human feelings, beauty, and other, we may wish to include these “attributes” in our domain descriptions.

2018-11-16 02:18. Page 24 of 1–61.

Domain Analysis & Description 25

[p] PO: let P be any part sort in [the domain description]

[p] let a:(A1|A2|...|An) in is Ai(a) 6= is A j(a) end end [i6=i, i,j:[1..n]]

The is A j(e) is defined by Ai, i:[1..n].

The type (or rather sort) definitions: A1, A2, ..., An, inform us that the domain analyser has decided to focus on the distinctly

named A1, A2, ..., An attributes.43 And the value clauses attr A1:P→A1, attr A2:P→A2, ..., attr An:P→An are then “automati-

cally” given: if a part, p:P, has an attribute Ai then there is postulated, “by definition” [eureka] an attribute observer function

attr Ai:P→Ai etcetera

We cannot automatically, that is, syntactically, guarantee that our domain descriptions secure that the various attribute types

for a part sort denote disjoint sets of values. Therefore we must prove it.

Attribute Categories: Michael A. Jackson [35] has suggested a hierarchy of attribute categories: static or dynamic values –

and within the dynamic value category: inert values or reactive values or active values – and within the dynamic active value

category: autonomous values or biddable values or programmable values. We now review these attribute value types. The review

is based on [35, M.A. Jackson]. Part attributes are either constant or varying, i.e., static or dynamic attributes.

Attribute Category: 1. By a static attribute, a:A, is static attribute(a), we shall understand an attribute whose values

are constants, i.e., cannot change.

Attribute Category: 2. By a dynamic attribute, a:A, is dynamic attribute(a), we shall understand an attribute whose

values are variable, i.e., can change. Dynamic attributes are either inert, reactive or active attributes.

Attribute Category: 3. By an inert attribute, a:A, is inert attribute(a), we shall understand a dynamic attribute whose

values only change as the result of external stimuli where these stimuli prescribe new values.

Attribute Category: 4. By a reactive attribute, a:A, is reactive attribute(a), we shall understand dynamic attributes

whose value, if they vary, change in response to external stimuli, where these stimuli come from outside the domain of interest.

Attribute Category: 5. By an active attribute, a:A, is active attribute(a), we shall understand a dynamic attribute

whose values change (also) of its own volition. Active attributes are either autonomous, biddable or programmable attributes.

Attribute Category: 6. By an autonomous attribute, a:A, is autonomous attribute(a), we shall understand a dynamic

active attribute whose values change value only “on their own volition”. The values of an autonomous attributes are a “law onto

themselves and their surroundings”.

Attribute Category: 7. By a biddable attribute, a:A, is biddable attribute(a) we shall understand a dynamic active

attribute whose values are prescribed but may fail to be observed as such.

Attribute Category: 8. By a programmable attribute, a:A, is programmable attribute(a), we shall understand a

dynamic active attribute whose values can be prescribed.

Figure 6 on the next page captures an attribute value ontology.

43The attribute type names are not like type names of, for example, a programming language. Instead they are chosen by the domain analyser to reflect on domain

phenomena.

2018-11-16 02:18. Page 25 of 1–61.

26 Dines Bjørner

dynamic

active

endurant

static

biddable programmable

reactiveinert

autonomous

controllable attributes
monitorable attributes

Fig. 6. Attribute Value Ontology

Example 25: Attributes

We treat part attributes, sort by sort. Hubs: We show just a few attributes:

31 There is a hub state. It is a set of pairs, (l f ,lt) of link identifiers, where

these link identifiers are in the mereology of the hub. The meaning

of the hub state, in which, e.g., (l f ,lt) is an element, is that the hub

is open, “green”, for traffic f rom link l f to link lt . If a hub state is

empty then the hub is closed, i.e., “red” for traffic from any connected

links to any other connected links.

32 There is a hub state space. It is a set of hub states. The meaning of the

hub state space is that its states are all those the hub can attain. The

current hub state must be in its state space.

33 Since we can think rationally about it, it can be described, hence it can

model, as an attribute of hubs a history of its traffic: the recording, per

unique bus and automobile identifier, of the time ordered presence in

the hub of these vehicles.

34 The link identifiers of hub states must be in the set, luis, of the road

net’s link identifiers.

type

31 HΣ = (L UI×L UI)-set [programmable, Df.8 Pg.25]

axiom

31 ∀ h:H • obs HΣ(h) ∈ obs HΩ(h)

type

32 HΩ = HΣ-set [static, Df.1 Pg.25]

33 H Traffic [programmable, Df.8 Pg.25]

33 H Traffic = (A UI|B UI) →m (T × VPos)∗

axiom

33 ∀ ht:H Traffic,ui:(A UI|B UI)•ui ∈ dom ht

33 ⇒ time ordered(ht(ui))

value

31 attr HΣ: H → HΣ

32 attr HΩ: H → HΩ

33 attr H Traffic: : → H Traffic

axiom

34 ∀ h:H • h ∈ hs ⇒

34 let hσ = attr HΣ(h) in

34 ∀ (luii,liuii
′):(L UI×L UI) • (luii,luii

′) ∈ hσ

34 ⇒ {luii
,l′uii

} ⊆ luis end

value

33 time ordered: T ∗ → Bool

33 time ordered(tvpl) ≡ ...

Attributes for remaining sorts are shown in Appendix Sect. A.1.2 on Page 57.

Calculating Attributes:

35 Given a part p we can meta-linguistically44 calculate names for its static attributes.

36 Given a part p we can meta-linguistically calculate names for its controllable attributes.

37 And given a part p we can meta-linguistically calculate name for its monitorable attributes attributes.

38 These three sets make up all the attributes of part p.

The type names nSA1, ..., nMAm designate sets of names.

value

35 stat attr typs: P → nSA-set

36 ctrl attr typs: P → nCA-set

37 mon attr typs: P → nMA-set

axiom

38 ∀ p:P •

44By using the term meta-linguistically here we shall indicate that we go outside what is computable – and thus appeal to the reader’s forbearance.

2018-11-16 02:18. Page 26 of 1–61.

Domain Analysis & Description 27

38 let stat nms = stat attr typs(p),

38 ctrl nms = ctrl attr typs(p),

38 moni−nms = mon attr typs(p) in

38 card stat nms + card ctrl nms + card moni nms

38 = card(stat nms ∪ ctrl nms ∪ moni nms) end

The above formulas are indicative, like mathematical formulas, they are not computable.

39 Given a part p we can meta-linguistically calculate its static attribute values.

40 Given a part p we can meta-linguistically calculate its controllable, i.e., the biddable and programmable attribute values.

The type names sa1, ..., cac refer to the types denoted by the corresponding types name nsa1, ..., ncac.

value

39 stat attr vals: P → SA1×SA2×...×SAs

39 stat attr vals(p) ≡ let {nsa1,nsa2,...,nsas}

39 = stat attr typs(p) in (attr sa1(p),attr sa2(p),...,attr sas(p)) end

40 ctrl attr vals: P → CA1×CA2×...×CAc

40 ctrl attr vals(p) ≡ let {nca1,nca2,...,ncac}

40 = ctrl attr typs(p) in (attr ca1(p),attr ca2(p),...,attr cac(p)) end

The “ordering” of type values, (attr sa1(p),...,attr sas(p)), respectively (attr ca1(p),...,attr cac(p)), is arbitrary.

5.3.2 Basic Principles for Ascribing Attributes: Section 5.3.1 dealt with technical issues of expressing attributes. This

section will indicate some modelling principles.

Natural Parts: are in space and time – and are subject to laws of physics. So basic attributes focus on physical (including

chemical) properties. These attributes cover the full spectrum of attribute categories outlined in Sect. 5.3.1.

Materials: are in space and time – and are subject to laws of physics. So basic attributes focus on physical, especially chemical

properties. These attributes cover the full spectrum of attribute categories outlined in Sect. 5.3.1.

The next paragraphs, living species, animate entities and humans, reflect Sørlander’s Philosophy [14, pp 14–182].

•••

Causality of Purpose: If there is to be the possibility of language and meaning then there must exist primary entities which

are not entirely encapsulated within the physical conditions; that they are stable and can influence one another. This is only

possible if such primary entities are subject to a supplementary causality directed at the future: a causality of purpose.

Living Species: These primary entities are here called living species. What can be deduced about them ? Living species are

also in space and time – and are subject to laws of physics. Additionally living species plants and animals are characterised

by causality of purpose: they have some form they can be developed to reach; and which they must be causally determined to

maintain; this development and maintenance must further in an exchange of matter with an environment. It must be possible

that living species occur in one of two forms: one form which is characterised by development, form and exchange, and another

form which, additionally, can be characterised by the ability to purposeful movements. The first we call plants, the second we

call animal s.

Animate Entities: For an animal to purposefully move around there must be “additional conditions” for such self-movements

to be in accordance with the principle of causality: they must have sensory organs sensing among others the immediate purpose

of its movement; they must have means of motion so that it can move; and they must have instincts, incentives and feelings as

causal conditions that what it senses can drive it to movements. And all of this in accordance with the laws of physics.

Animals: To possess these three kinds of “additional conditions”, must be built from special units which have an inner relation

to their function as a whole; Their purposefulness must be built into their physical building units, that is, as we can now say,

2018-11-16 02:18. Page 27 of 1–61.

28 Dines Bjørner

their genomes. That is, animals are built from genomes which give them the inner determination to such building blocks for

instincts, incentives and feelings. Similar kinds of deduction can be carried out with respect to plants. Transcendentally one

can deduce basic principles of evolution but not its details.

Humans: Consciousness and Learning: The existence of animals is a necessary condition for there being language and meaning

in any world. That there can be language means that animals are capable of developing language. And this must presuppose

that animals can learn from their experience. To learn implies that animals can feel pleasure and distaste and can learn. One

can therefore deduce that animals must possess such building blocks whose inner determination is a basis for learning and

consciousness.

Language: Animals with higher social interaction uses signs, eventually developing a language. These languages adhere to the

same system of defined concepts which are a prerequisite for any description of any world: namely the system that philosophy

lays bare from a basis of transcendental deductions and the principle of contradiction and its implicit meaning theory. A human

is an animal which has a language.

Knowledge: Humans must be conscious of having knowledge of its concrete situation, and as such that human can have

knowledge about what he feels and eventually that human can know whether what he feels is true or false. Consequently a

human can describe his situation correctly.

Responsibility: In this way one can deduce that humans can thus have memory and hence can have responsibility, be respon-

sible. Further deductions lead us into ethics.

We shall not develop the theme of living species: plants and animals, thus excluding, most notably humans, much further in this

paper. We claim that the present paper, due to its foundation in Kai Sørlander’s Philosophy, provides a firm foundation withing

which we, or others, can further develop this theme: analysis & description of living species.

Intentionality: Intentionality is a philosophical concept and is defined by the Stanford Encyclopedia of Philosophy45

as “the power of minds to be about, to represent, or to stand for, things, properties and states of affairs.”

Definition 16. Intentional Pull: Two or more artifactual parts of different sorts, but with overlapping sets of intents may

excert an intentional “pull” on one another

This intentional “pull” may take many forms. Let px : X and py : Y be two parts of different sorts (X ,Y), and with common

intent, ι . Manifestations of these, their common intent must somehow be subject to constraints, and these must be expressed

predicatively.

Example 26: Intentional Pull
We illustrate the concept of intentional “pull”:

41 automobiles include the intent of ’transport’,

42 and so do hubs and links.

41 attr Intent: A → (’transport’|...)-set

42 attr Intent: H → (’transport’|...)-set

42 attr Intent: L → (’transport’|...)-set

Manifestations of ’transport’ is reflected in automobiles having the automobile position attribute, APos, Item 125 Pg. 58, hubs having the hub traffic attribute,

H Traffic, Item 33 Pg. 26, and in links having the link traffic attribute, L Traffic, Item 116 Pg. 57.

45Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (https://seop.illc.uva.nl/entries/intentionality/)October

15, 2014, retrieved April 3, 2018.

2018-11-16 02:18. Page 28 of 1–61.

Domain Analysis & Description 29

43 Seen from the point of view of an automobile there is its own traffic

history, A Hist, which is a (time ordered) sequence of timed automo-

bile’s positions;

44 seen from the point of view of a hub there is its own traffic history,

H Traffic Item 33 Pg. 26, which is a (time ordered) sequence of timed

maps from automobile identities into automobile positions; and

45 seen from the point of view of a link there is its own traffic history,

L Traffic Item 116 Pg. 57, which is a (time ordered) sequence of timed

maps from automobile identities into automobile positions.

The intentional “pull” of these manifestations is this:

46 The union, i.e. proper merge of all automobile traffic histories, Al-

lATH, must now be identical to the same proper merge of all hub,

AllHTH, and all link traffic histories, AllLTH.

type

43 A Hi = (T × APos)∗

33 H Trf = A UI →m (T × APos)∗

116 L Trf = A UI→m (T ×APos)∗

46 AllATH=T →m (AUI→m APos)

46 AllHTH=T →m (AUI→m APos)

46 AllLTH=T →m (AUI→m APos)

axiom

46 let allA=mrg AllATH({(a,attr A Hi(a))|a:A•a ∈ as}),

46 allH=mrg AllHTH({attr H Trf(h)|h:H•h ∈ hs}),

46 allL=mrg AllLTH({attr L Trf(l)|l:L•h ∈ ls}) in

46 allA = mrg HLT(allH,allL) end

We leave the definition of the four merge functions to the reader !

Discussion: We endow each automobile with its history of timed positions and each hub and link with their histories of timed automobile positions. These

histories are facts ! They are not something that is laboriously recorded, where such recordings may be imprecise or cumbersome46. The facts are there, so we

can (but may not necessarily) talk about these histories as facts. It is in that sense that the purpose (‘transport’) for which man let automobiles, hubs and link

be made with their ‘transport’ intent are subject to an intentional “pull”. It can be no other way: if automobiles “record” their history, then hubs and

links must together “record” identically the same history !.

Artifacts: Humans create artifacts – for a reason, to serve a purpose, that is, with intent. Artifacts are like parts. They satisfy

the laws of physics – and serve a purpose, fulfill an intent.

Assignment of Attributes: So what can we deduce from the above, a little more than two pages ?

The attributes of natural parts and natural materials are generally of such concrete types – expressible as some real with

a dimension47 of the International System of Units: https://physics.nist.gov/cuu/Units/units.html. Attribute

values usually enter differential equations and integrals, that is, classical calculus.

The attributes of humans, besides those of parts, significantly includes one of a usually non-empty set of intents. In directing

the creation of artifacts humans create these with an intent.

Example 27: Intentional Pull
These are examples of human intents: they create roads and automobiles with the intent of transport. they create houses with the intents of living, offices,

production, etc., and they create pipelines with the intent of oil or gas transport

Human attribute values usually enter into modal logic expressions.

Artifacts, including Man-made Materials: Artifacts, besides those of parts, significantly includes a usually singleton set of

intents.

Example 28: Intents
Roads and automobiles possess the intent of transport; houses possess either one of the intents of living, offices, production; and pipelines possess the intent of

oil or gas transport.

Artifact attribute values usually enter into mathematical logic expressions.

We leave it to the reader to formulate attribute assignment principles for plants and non-human animals.

5.4 Some Axioms and Proof Obligations

To remind you, an axiom – in the context of domain analysis & description – means a logical expression, usually a predicate,

that constrains the types and values, including unique identifiers and mereologies of domain models. Axioms, together with the

sort, including type definitions, and the unique identifier, mereology and attribute observer functions, define the domain value

spaces. We refer to axioms in Item [a] of domain description prompts of unique identifiers: 5 on Page 20 and of mereologies: 6

on Page 22.

47Basic units are meter, kilogram, second, Ampere, Kelvin, mole, and candela. Some derived units are: Newton: kg×m×s−2, Weber: kg×m2 × s−2 ×A−1, etc.

2018-11-16 02:18. Page 29 of 1–61.

30 Dines Bjørner

Another reminder: a proof obligation – in the context of domain analysis & description – means a logical expression that

predicates relations between the types and values, including unique identifiers, mereologies and attributes of domain models,

where these predicates must be shown, i.e., proved, to hold. Proof obligations supplement axioms. We refer to proof obligations

in Item [p] of domain description prompts about endurant sorts: 1 on Page 15, about components sorts: 3 on Page 18, about

materials sorts: 4 on Page 19, and about attribute types: 7 on Page 25.

The difference between expressing axioms and expressing proof obligations is this:

• We use axioms when our formula cannot otherwise express it simply, but when physical or other properties of the

domain48 dictates property consistency.

• We use proof obligations where necssary constraints are not necessarily physically impossible.

• Proof obligations finally arise in the transition from endurants to perdurants where endurant axioms become properties

that must be proved to hold.

When considering endurants we interpret these as stable, i.e., that although they may have, for example, programmable at-

tributes, when we observe them, we observe them at any one moment, but we do not consider them over a time. That is what we

turn to next: perdurants. When considering a part with, for example, a programmable attribute, at two different instances of time

we expect the particular programmable attribute to enjoy any expressed well-formedness properties. We shall, in Sect. 8, see

how these programmable attributes re-occur as explicit behaviour parameters, “programmed” to possibly new values passed on

to recursive invocations of the same behaviour. If well-formedness axioms were expressed for the part on which the behaviour

is based, then a proof obligation arises, one that must show that new values of the programmed attribute satisfies the part at-

tribute axiom. This is, but one relation between axioms and proof obligations. We refer to remarks made in the bullet (•) named

Biddable Access Page 41.

5.5 Discussion of Endurants

Domain descriptions are, as we have already shown, formulated, both informally and formally, by means of abstract types,

that is, by sorts for which no concrete models are usually given. Sorts are made to denote possibly empty, possibly infinite,

rarely singleton, sets of entities on the basis of the qualities defined for these sorts, whether external or internal. By junk we

shall understand that the domain description unintentionally denotes undesired entities. By confusion we shall understand that

the domain description unintentionally have two or more identifications of the same entity or type. The question is can we

formulate a [formal] domain description such that it does not denote junk or confusion ? The short answer to this is no ! So,

since one naturally wishes “no junk, no confusion” what does one do ? The answer to that is one proceeds with great care !

6 A TRANSCENDENTAL DEDUCTION

6.1 An Explanation

It should be clear to the reader that in domain analysis & description we are reflecting on a number of philosophical issues. First

and foremost on those of epistemology, especially ontology. In this section on a sub-field of epistemology, namely that of a

number of issues of transcendental nature, we refer to [36, Oxford Companion to Philosophy, pp 878–880] [37, The Cambridge

Dictionary of Philosophy, pp 807–810] [38, The Blackwell Dictionary of Philosophy, pp 54–55 (1998)].

Definition 17. Transcendental: By transcendental we shall understand the philosophical notion: the a priori or intuitive

basis of knowledge, independent of experience

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but also determines rational thought.

Definition 18. Transcendental Deduction:

48– examples of such properties are: (i) topologies of the domain makes certain compositions of parts physically impossible, and (ii) conservation laws of the

domain usually dictates that endurants cannot suddenly arise out of nothing.

2018-11-16 02:18. Page 30 of 1–61.

Domain Analysis & Description 31

By a transcendental deduction we shall understand the philosophical notion: a transcendental ”conversion” of one

kind of knowledge into a seemingly different kind of knowledge

Example 29: Some Transcendental Deductions
We give some intuitive examples of transcendental deductions. They are from the “domain” of programming languages. There is the syntax of a programming

language, and there are the programs that supposedly adhere to this syntax. Given that, the following are now transcendental deductions. The software tool, a

syntax checker, that takes a program and checks whether it satisfies the syntax, including the statically decidable context conditions, i.e., the statics semantics –

that tool is one of several forms of transcendental deductions; The software tools, an automatic theorem prover49 and a model checker, for example SPIN [46],

that takes a program and some theorem, respectively a Promela statement, and proves, respectively checks, the program correct with respect the theorem, or

the statement. A compiler and an interpreter for any programming language. Yes, indeed, any abstract interpretation [47, 48] reflects a transcendental deduction:

First these examples show that there are many transcendental deductions. Secondly they show that there is no single-most preferred transcendental deduction.

A transcendental deduction, crudely speaking, is just any “concept” that can be “linked” to another, not by logical necessity, but

by logical (and philosophical) possibility !

Definition 19. Transcendentality: By transcendentality we shall here mean the philosophical notion: the state or condi-

tion of being transcendental

Example 30: Transcendentality

We can speak of a bus in at least three senses:

(i) The bus as it is being "maintained, serviced, refueled";

(ii) the bus as it "speeds" down its route; and

(iii) the bus as it "appears" (listed) in a bus time table.

The three senses are:

(i) as an endurant (here a part),

(ii) as a perdurant (as we shall see a behaviour), and

(iii) as an attribute50

The above example, we claim, reflects transcendentality as follows:

(i) We have knowledge of an endurant (i.e., a part) being an endurant.

(ii) We are then to assume that the perdurant referred to in (ii) is an aspect of the endurant mentioned in (i) – where perdurants

are to be assumed to represent a different kind of knowledge.

(iii) And, finally, we are to further assume that the attribute mentioned in (iii) is somehow related to both (i) and (ii) – where

at least this attribute is to be assumed to represent yet a different kind of knowledge.

In other words: two (i–ii) kinds of different knowledge; that they relate must indeed be based on a priori knowledge. Someone

claims that they relate ! The two statements (i–ii) are claimed to relate transcendentally.51

6.2 Classical Transcendental Deductions

We present a few of the transcendental deductions of [14, Kai Sørlander: Introduction to The Philosophy, 2016]

6.2.1 Space: [14, pp 154]“The two relations asymmetric and symmetric, by a transcendental deduction, can be given an inter-

pretation: The relation (spatial) direction is asymmetric; and the relation (spatial) distance is symmetric. Direction and

distance can be understood as spatial relations. From these relations are derived the relation in-between. Hence we must

conclude that primary entities exist in space. Space is therefore an unavoidable characteristic of any possible world”

6.2.2 Time: [14, pp 159]“Two different states must necessarily be ascribed different incompatible predicates. But how can we

ensure so ? Only if states stand in an asymmetric relation to one another. This state relation is also transitive. So that is an

indispensable property of any world. By a transcendental deduction we say that primary entities exist in time. So every possible

world must exist in time”

51– the attribute statement was “thrown” in “for good measure”, i.e., to highlight the issue !

2018-11-16 02:18. Page 31 of 1–61.

32 Dines Bjørner

6.3 Some Special Notation

The transcendentality that we are referring to is one in which we “translate” endurant descriptions of parts and their unique

identifiers, mereologies and attributes into descriptions of perdurants, i.e., transcendental interpretations of parts as behaviours,

part mereologies as channels, and part attributes as attribute value accesses. The translations referred to above, compile endurant

descriptions into RSL+Text. We shall therefore first explain some aspects of this translation.

Where in the function definition bodies we enclose some RSL+Text, e.g., rsl+ text, in ≪|≫| s, i.e., ≪| rsl+ text ≫| we

mean that text. Where in the function definition bodies we write ≪| rsl+ text ≫| function expression we mean that rsl+ text

concatenated to the RSL+Text emanating from function expression. Where in the function definition bodies we write ≪|≫|

function expression we mean just rsl+ text emanating from function expression. That is: ≪|≫| function expression ≡ func-

tion expression and ≪|≫| ≪|≫| ≡ ≪|≫| . Where in the function definition bodies we write { ≪| f (x) ≫| | x:RSL+Text} we mean

the “expansion” of the RSL+Text f (x), in arbitrary, linear text order, for appropriate RSL+Texts x.

7 SPACE AND TIME

This section is a necessary prelude to our treatment of perdurants.

Following Kai Sørlander’s Philosophy we must accept that space and time are rationally potentially mandated in any domain

description. It is, however not always necessary to model space and time. We can talk about space and time; and when we do,

we must model them.

7.1 Space

7.1.1 General: Mathematicians and physicists model space in, for example, the form of Hausdorf (or topological) space52;

or a metric space which is a set for which distances between all members of the set are defined; Those distances, taken together,

are called a metric on the set; a metric on a space induces topological properties like open and closed sets, which lead to the

study of more abstract topological spaces; or Euclidean space, due to Euclid of Alexandria .

7.1.2 Space Motivated Philosophically

Characterisation 9. Indefinite Space: We motivate the concept of indefinite space as follows: [14, pp 154]“The two relations

asymmetric and symmetric, by a transcendental deduction, can be given an interpretation: The relation (spatial) direction

is asymmetric; and the relation (spatial) distance is symmetric. Direction and distance can be understood as spatial

relations. From these relations are derived the relation in-between. Hence we must conclude that primary entities exist in

space. Space is therefore an unavoidable characteristic of any possible world”

From the direction and distance relations one can derive Euclidean Geometry.

Characterisation 10. Definite Space: By a definite space we shall understand a space with a definite metric

There is but just one space. It is all around us, from the inner earth to the farthest galaxy. It is not manifest. We can not observe

it as we observe a road or a human.

7.1.3 Space Types The Spatial Value:

47 There is an abstract notion of (definite) SPACE(s) of further unanalysable points; and

48 there is a notion of POINT in SPACE.

type

47 SPACE

48 POINT

52Armstrong, M. A. (1983) [1979]. Basic Topology. Undergraduate Texts in Mathematics. Springer. ISBN 0-387-90839-0.

2018-11-16 02:18. Page 32 of 1–61.

Domain Analysis & Description 33

Space is not an attribute of endurants. Space is just there. So we do not define an observer, observe space. For us, bound

to model mostly artifactual worlds on this earth there is but one space. Although SPACE, as a type, could be thought of as

defining more than one space we shall consider these isomorphic !

7.1.4 Spatial Observers

49 A point observer, observe POINT, is a function which applies to physical endurants, e, and yield a point, ℓ : POINT.

value

49 observe POINT: E → POINT

7.2 Time

7.2.1 General Concepts of time53 continue to fascinate thinkers [49–59]. J.M.E. McTaggart (1908, [50, 51, 59]) discussed

theories of time around the notions of “A-series”: with concepts like “past”, “present” and “future”, and “B-series”: has terms

like “precede”, “simultaneous” and “follow”. Johan van Benthem [49]

TO BE WRITTEN

Wayne D. Blizard [60, 1980] relates abstracted entities to spatial points and time. A recent computer programming-oriented

treatment is given in [61, Mandrioli et al., 2013].

7.2.2 Time Motivated Philosophically

Characterisation 11. Indefinite Time: We motivate the abstract notion of time as follows. [14, pp 159]“Two different states

must necessarily be ascribed different incompatible predicates. But how can we ensure so ? Only if states stand in an asym-

metric relation to one another. This state relation is also transitive. So that is an indispensable property of any world. By a

transcendental deduction we say that primary entities exist in time. So every possible world must exist in time”

Characterisation 12. Definite Time: By a definite time we shall understand an abstract representation of time such as for

example year, month, day, hour, minute, second, et cetera

Example 31: Temporal Notions of Endurants
By temporal notions of endurants we mean time properties of endurants, usually modelled as attributes. Examples are: (i) the time stamped link traffic, cf. Item 116

on Page 57 and (ii) the time stamped hub traffic, cf. Item 33 on Page 26.

7.2.3 Time Values We shall not be concerned with any representation of time. That is, we leave it to the domain analyser

cum describer to choose an own representation [61]. Similarly we shall not be concerned with any representation of time

intervals.54

50 So there is an abstract type Time,

51 and an abstract type TI: TimeInterval.

52 There is no Time origin, but there is a “zero” TIme in-

terval.

53 One can add (subtract) a time interval to (from) a time

and obtain a time.

54 One can add and subtract two time intervals and ob-

tain a time interval – with subtraction respecting that

the subtrahend is smaller than or equal to the minuend.

55 One can subtract a time from another time obtaining a

time interval respecting that the subtrahend is smaller

than or equal to the minuend.

53Time: (i) a moving image of eternity; (ii) the number of the movement in respect of the before and the after; (iii) the life of the soul in movement as it passes from

one stage of act or experience to another; (iv) a present of things past: memory, a present of things present: sight, and a present of things future: expectations.[37,
(i) Plato, (ii) Aristotle, (iii) Plotinus, (iv) Augustine].
54– but point out, that although a definite time interval may be referred to by number of years, number of days (less than 365), number of hours (less than 24),

number of minutes (less than 60)number of seconds (less than 60), et cetera, this is not a time, but a time interval.

2018-11-16 02:18. Page 33 of 1–61.

34 Dines Bjørner

56 One can multiply a time interval with a real and obtain

a time interval.

57 One can compare two times and two time intervals.

type

50 T

51 TI

value

52 0:TI

53 +,−: T × TI → T

54 +,−: TI × TI
∼
→ TI

55 −: T × T → TI

56 ∗: TI × Real → TI

57 <,≤,=,6=,≥,>: T × T → Bool

57 <,≤,=,6=,≥,>: TI × TI → Bool

axiom

53 ∀ t:T • t+0 = t

7.2.4 Temporal Observers

58 We define the signature of the meta-physical time observer.

type

58 T

value

58 record TIME: Unit → T

The time recorder applies to nothing and yields a time.

7.2.5 Models of Time: Modern models of time, by mathematicians and physicists evolve around spacetime55 We shall not

be concerned with this notion of time. Models of time related to computing differs from those of mathematicians and physicists

in focusing on divergence and convergence, zero (Zenon) time and interleaving time [62] are relevant in studies of real-time,

typically distributed computing systems. We shall also not be concerned with this notion of time.

7.2.6 Spatial and Temporal Modelling: It is not always that we are compelled to endow our domain descriptions with

those of spatial and/or temporal properties. In our experimental domain descriptions, for example, [20, 21, 23, 25–29], we have

either found no need to model space and/or time, or we model them explicitly, using slightly different types and observers than

presented above.

7.3 Whither Attributes ?

Are space and time attributes of endurants ? Of course not ! Space and time surround us. Every endurant is in the one-and-only

space we know of. Every endurant is “somewhere” in that space. We represent that ‘somewhere’ by a point in space. Every

endurant point can be recorded. And every endurant point can be time-stamped.

8 PERDURANTS

Perdurants are understood in terms of a notion of time and a notion of state . We covered the notion of time in Sect. 7.2 on the

previous page, and state in Sect. 3.8 on Page 14.

55The concept of Spacetime was first “announced” by Hermann Minkowski, 1907–08 – based on work by Henri Poincaré, 1905–06, https://en.wikisource.-

org/wiki/Translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies

2018-11-16 02:18. Page 34 of 1–61.

Domain Analysis & Description 35

8.1 States, Actors, Actions, Events and Behaviours: A Preview

Example 32: Constants and States
Constants: .

59 Let there be given a universe of discourse, rts. It is an example of a

state.

From that state we can calculate other states.

60 The set of all hubs, hs.

61 The set of all links, ls.

62 The set of all hubs and links, hls.

63 The set of all bus companies, bcs.

64 The set of all buses, bs.

65 The map from the unique bus company identifiers, see Item 18c Pg. 21,

to the set of all the identifies bus company’s buses, bcuibs.

66 The set of all private automobiles, as.

67 The set of all parts, ps.

value

59 rts:UoD [59]

60 hs:H-set ≡:H-set ≡ obs sH(obs SH(obs RN(rts)))

61 ls:L-set ≡:L-set ≡ obs sL(obs SL(obs RN(rts)))

62 hls:(H|L)-set ≡ hs∪ls

63 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

64 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}

65 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

Indexed States: .

We shall

68 index bus companies,

69 index buses, and

70 index automobiles

using the unique identifiers of these parts.

type

68 BCui

69 Bui

70 Aui

value

68 ibcs:BCui-set ≡

68 { bcui | bc:BC,bc:BCui :BCui
• bc∈bcs∧ui=uid BC(bc) }

69 ibs:Bui-set ≡

69 { bui | b:B,b:Bui:Bui
• b∈bs∧ui=uid B(b) }

70 ias:Aui-set ≡

70 { aui | a:A,a:Aui:Aui
• a∈as∧ui=uid A(a) }

8.1.1 Actors, Actions, Events, Behaviours and Channels To us perdurants are further, pragmatically, analysed into

actions, events, and behaviours. We shall define these terms below. Common to all of them is that they potentially change a

state. Actions and events are here considered atomic perdurants. For behaviours we distinguish between discrete and continuous

behaviours.

8.1.2 Time Considerations We shall, without loss of generality, assume that actions and events are atomic and that be-

haviours are composite. Atomic perdurants may “occur” during some time interval, but we omit consideration of and concern

for what actually goes on during such an interval. Composite perdurants can be analysed into “constituent” actions, events and

“sub-behaviours”. We shall also omit consideration of temporal properties of behaviours. Instead we shall refer to two seminal

monographs: Specifying Systems [63, Leslie Lamport] and Duration Calculus: A Formal Approach to Real-Time Systems

[64, Zhou ChaoChen and Michael Reichhardt Hansen] (and [65, Chapter 15]). For a seminal book on “time in computing” we

refer to the eclectic [61, Mandrioli et al., 2012]. And for seminal book on time at the epistemology level we refer to [49, J. van

Benthem, 1991].

8.1.3 Actors

Definition 20. Actor: By an actor we shall understand something that is capable of initiating and/or carrying out actions,

events or behaviours

The notion of “carrying out” will be made clear in this overall section. We shall, in principle, associate an actor with each

part56. These actors will be described as behaviours. These behaviours evolve around a state. The state is the set of qualities, in

particular the dynamic attributes, of the associated parts and/or any possible components or materials of the parts.

56This is an example of a transcendental deduction.

2018-11-16 02:18. Page 35 of 1–61.

36 Dines Bjørner

8.1.4 Discrete Actions

Definition 21. Discrete Action: By a discrete action [66, Wilson and Shpall] we shall understand a foreseeable thing which

deliberately and potentially changes a well-formed state, in one step, usually into another, still well-formed state, for which an

actor can be made responsible

An action is what happens when a function invocation changes, or potentially changes a state.

8.1.5 Discrete Events

Definition 22. Event: By an event we shall understand some unforeseen thing, that is, some ‘not-planned-for’ “action”, one

which surreptitiously, non-deterministically changes a well-formed state into another, but usually not a well-formed state, and

for which no particular domain actor can be made responsible

Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a time or time interval .

The notion of event continues to puzzle philosophers [67–76]. We note, in particular, [70, 72, 73].

8.1.6 Discrete Behaviours

Definition 23. Discrete Behaviour: By a discrete behaviour we shall understand a set of sequences of potentially interact-

ing sets of discrete actions, events and behaviours

Discrete behaviours now become the focal point of our investigation. To every part we associate, by transcendental deduction,

a behaviour. We shall express these behaviours as CSP processes [16]. For those behaviours we must therefore establish their

means of communication via channels; their signatures; and their definitions – as translated from endurant parts.

Example 33: Behaviours

In the figure of the Channels example of Page 37 we “symbolically”, i.e., the “...”, show the following parts: each individual hub, each individual link, each

individual bus company, each individual bus, and each individual automobile – and all of these. The idea is that those are the parts for which we shall define

behaviours. That figure, however, and in contrast to Fig. 5 on Page 16, shows the composite parts as not containing their atomic parts, but as if they were “free-

standing, atomic” parts. That shall visualise the transcendental interpretation as atomic part behaviours not being somehow embedded in composite behaviours,

but operating concurrently, in parallel

8.2 Channels and Communication

We choose to exploit the CSP [16] subset of RSL since CSP is a suitable vehicle for expressing suitably abstract synchronisation

and communication between behaviours.

The mereology of domain parts induces channel declarations.

CSP channels are loss-free. That is: two CSP processes, of which one offers and the other offers to accept a message do so

synchronously and without forgetting that message. If you model actual, so-called “real-life” communication via queues or

allowing “channels” to forget, then you must model that explicitly in CSP. We refer to [16, 77, 78].

8.2.1 The CSP Story: CSP processes (models of domain behaviours), Pi,Pj, ...,Pk can proceed in parallel:

P i ‖ P j ‖ ... ‖ P k

Behaviours sometimes synchronise and usually communicate. Synchronisation and communication is abstracted as the sending

(ch !m) and receipt (ch ?) of messages, m:M, over channels, ch.

2018-11-16 02:18. Page 36 of 1–61.

Domain Analysis & Description 37

type M

channel ch:M

Communication between (unique identifier) indexed behaviours have their channels modeled as similarly indexed channels:

out: ch[idx]!m

in: ch[idx]?

channel {ch[ide]:M|ide:IDE}

where IDE typically is some type expression over unique identifier types.

The expression

P i ⌈⌉ P j ⌈⌉ ... ⌈⌉ P k

can be understood as a choice: either P i, or P j, or ... or P k is non-deterministically internally chosen with no stipluation as

to why !

The expression

P i ⌈⌉⌊⌋ P j ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ P k

can be understood as a choice: either P i, or P j, or ... or P k is deterministically externally chosen on the basis that the one

chosen offers to participate in either an input, ch ?, or an output, ch !msg, event. If more than one P i offers a communication

then one is arbitrarily chosen. If no P i offers a communication the behaviour halts till some P j offers a communication.

Example 34: Channels

a2:A

a1:Ab11:B

b12:B

b1j:B

bp1:B

bpq:B ar:A

bp2:B

bcp:BCbc1:BC

h1:H

h2:H

hm:H ln:L

l2:L

l1:L

. . .

hl_ch[*,*]:HL_Msg

v_r_ch[*,*]:V_R_Msg bc
_b

_c
h[

*,
*]

:B
C

_B
_M

sg

We shall argue for hub-to-link channels based on the mereologies of those parts.

Hub parts may be topologically connected to any number, 0 or more, link parts.

Only instantiated road nets knows which. Hence there must be channels be-

tween any hub behaviour and any link behaviour. Vice versa: link parts will be

connected to exactly two hub parts. Hence there must be channels from any

link behaviour to two hub behaviours. See the figure above.

Channel Message Types: .

We ascribe types to the messages offered on channels.

71 Hubs and links communicate, both ways, with one another, over chan-

nels, hl ch, whose indexes are determined by their mereologies.

72 Hubs send one kind of messages, links another.

73 Bus companies offer timed bus time tables to buses, one way.

74 Buses and automobiles offer their current, timed positions to the road

element, hub or link they are on, one way.

type

72 H L Msg, L H Msg

71 HL Msg = H L Msg | L F Msg

73 BC B Msg = T × BusTimTbl

74 V R Msg = T × (BPos|APos)

Channel Declarations: .

75 This justifies the channel declaration which is calculated to be:

channel

75 { hl ch[h ui,l ui]:H L Msg

75 | h ui:H UI,l ui:L UI•i ∈ huis∧j ∈ lhuim(h ui) }

75 ∪

75 { hl ch[h ui,l ui]:L H Msg

75 | h ui:H UI,l ui:L UI•l ui ∈ luis∧i ∈ lhuim(l ui) }

2018-11-16 02:18. Page 37 of 1–61.

38 Dines Bjørner

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus companies need communicate to all its buses, but not the buses of

other bus companies. Buses of a bus company need communicate to their bus company, but not to other bus companies.

76 This justifies the channel declaration which is calculated to be:

channel

76 { bc b ch[bc ui,b ui] | bc ui:BC UI, b ui:B UI

76 • bc ui ∈ bcuis ∧ b ui ∈ buis }: BC B Msg

76 { bc b ch[bc ui,b ui] | bc ui:BC UI,b ui:B UI

76 • bc ui ∈ bcuis∧j ∈ buis }: BC B MSG

76 { bc b ch[bc ui,b ui] | bc ui:BC UI,b ui:B UI

76 • bc ui ∈ bcuis∧j ∈ buis }: BC B MSG

We shall argue for vehicle to road element channels based on the mereologies of those parts. Buses and automobiles need communicate to all hubs and all links.

77 This justifies the channel declaration which is calculated to be:

channel

77 { v r ch[v ui,r ui] | v ui:V UI,r ui:R UI

77 • v ui∈ vuis∧r ui∈ ruis }: V R Msg

The channel calculations are described on Pages 41–42

8.2.2 From Mereologies to Channel Declarations: The fact that a part, p of sort P with unique identifier pi, has a

mereology, for example the set of unique identifiers {qa,qb, ...,qd} identifying parts {qa,qb, ...,qd} of sort Q, may mean that

parts p and {qa,qb, ...,qd} may wish to exchange – for example, attribute – values, one way (from p to the qs) or the other

(vice versa) or in both directions. Figure 7 shows two dotted rectangle box diagrams. The left fragment of the figure intends to

m:j

m:i m:i m:i m:i

m:{j...l}

u:i

u:j u:j u:k u:l

u:i
p:P

q1:Q q2:Q qn:Qq:Q

p:P

1:1 Constallation 1:n Constallation

Parts

..... m:i m:i

.....

.....
m:i m:i

m:j

1:1 Constallation 1:n Constallation

m:{j...l}

Behaviours & Channels

u:i u:i

u:j u:j u:k u:l

ch_PQ[i,j]
ch_PQ[i,k]

ch_PQ[i,l]

ch
_P

Q
[i,

j]
=

ch
_P

Q

ch_PQ

{ch_PQ[i,x]|x:{j,k,...,l}} = {ch_PQ[x]|x:{j,k,...,l}}

Fig. 7. Two Part and Channel Constallations. u:p unique id. p; m:p mereology p

show a 1:1 Constallation of a single p:P box and a single q:Q part, respectively, indicating, within these parts, their unique

identifiers and mereologies. The right fragment of the figure intends to show a 1:n Constallation of a single p:P box and a

set of q:Q parts, now with arrowed lines connecting the p part with the q parts. These lines are intended to show channels. We

show them with two way arrows. We could instead have chosen one way arrows, in one or the other direction. The directions

are intended to show a direction of value transfer. We have given the same channel names to all examples, ch PQ. We have

ascribed channel message types MPQ to all channels.57 Figure 8 shows an arrangement similar to that of Fig. 7, but for an m:n

Constallation.

The channel declarations corresponding to Figs. 7 and 8 are:

channel

[1] ch PQ[i,j]:MPQ

[2] { ch PQ[i,x]:MPQ | x:{j,k,...,l} }

[3] { ch PQ[p,q]:MPQ | p:{x,y,...,z}, q:{j,k,...,l} }

Since there is only one index i and j for channel [1], its declaration can be reduced. Similarly there is only one i for declaration

[2]:

57Of course, these names and types would have to be distinct for any one domain description.

2018-11-16 02:18. Page 38 of 1–61.

Domain Analysis & Description 39

m:{j...l} m:{j...l} m:{j...l}

m:{x...z} m:{x...z} m:{x...z}

Parts

.

.....u:x u:y u:z

u:j u:k u:l

m:{j...l} m:{j...l} m:{j...l}

m:{x...z} m:{x...z} m:{x...z}

...
...

..... ...

...

...

Behaviours and Channels

.

u:x u:y u:z

u:j u:k u:l

{ch_PQ[p,q]|p:{x,y,...,z},q:{j,k,...,l}}

Fig. 8. Multiple Part and Channel Arrangements: u:p unique id. p; m:p mereology p

channel

[1] ch PQ:MPQ

[2] { ch PQ[x]:MPQ | x:{j,k,...,l} }

78 The following description identities holds:

78 { ch PQ[x]:MPQ | x:{j,k,...,l} } ≡ ch PQ[j],ch PQ[k],...,ch PQ[l],

78 { ch PQ[p,q]:MPQ | p:{x,y,...,z}, q:{j,k,...,l} } ≡

78 ch PQ[x,j],ch PQ[x,k],...,ch PQ[x,l],

78 ch PQ[y,j],ch PQ[y,k],...,ch PQ[y,l],

78 ...,

78 ch PQ[z,j],ch PQ[z,k],...,ch PQ[z,l]

We can sketch a diagram similar to Figs. 7 on the preceding page and 8 for the case of composite parts.

8.2.3 Continuous Behaviours: By a continuous behaviour we shall understand a continuous time sequence of state

changes. We shall not go into what may cause these state changes. And we shall not go into continuous behaviours in this paper.

8.3 Perdurant Signatures

We shall treat perdurants as function invocations. In our cursory overview of perdurants we shall focus on one perdurant quality:

function signatures.

Definition 24. Function Signature: By a function signature we shall understand a function name and a function type

expression

Definition 25. Function Type Expression: By a function type expression we shall understand a pair of type expressions.

separated by a function type constructor either → (for total function) or
∼
→ (for partial function)

The type expressions are part sort or type, or material sort or type, or component sort or type, or attribute type names, but may,

occasionally be expressions over respective type names involving -set, ×, ∗, →m and | type constructors.

8.3.1 Action Signatures and Definitions: Actors usually provide their initiated actions with arguments, say of type VAL.

Hence the schematic function (action) signature and schematic definition:

action: VAL → Σ
∼
→ Σ

action(v)(σ) as σ ′

pre: P(v,σ)

post: Q(v,σ ,σ ′)

2018-11-16 02:18. Page 39 of 1–61.

40 Dines Bjørner

expresses that a selection of the domain, as provided by the Σ type expression, is acted upon and possibly changed. The partial

function type operator
∼
→ shall indicate that action(v)(σ) may not be defined for the argument, i.e., initial state σ and/or the

argument v:VAL, hence the precondition P(v,σ). The post condition Q(v,σ ,σ ′) characterises the “after” state, σ ′:Σ, with

respect to the “before” state, σ :Σ, and possible arguments (v:VAL). Which could be the argument values, v:VAL, of actions ?

Well, there can basically be only the following kinds of argument values: parts, components and materials, respectively unique

part identifiers, mereologies and attribute values.

Perdurant (action) analysis thus proceeds as follows: identifying relevant actions, assigning names to these, delineating

the “smallest” relevant state58, ascribing signatures to action functions, and determining action pre-conditions and action post-

conditions. Of these, ascribing signatures is the most crucial: In the process of determining the action signature one oftentimes

discovers that part or component or material attributes have been left (“so far”) “undiscovered”.

8.3.2 Event Signatures and Definitions: Events are usually characterised by the absence of known actors and the absence

of explicit “external” arguments. Hence the schematic function (event) signature:

value

event: Σ × Σ
∼
→ Bool

event(σ ,σ ′) as tf

pre: P(σ)

post: tf = Q(σ ,σ ′)

The event signature expresses that a selection of the domain as provided by the Σ type expression is “acted” upon, by unknown

actors, and possibly changed. The partial function type operator
∼
→ shall indicate that event(σ ,σ ′) may not be defined for some

states σ . The resulting state may, or may not, satisfy axioms and well-formedness conditions over Σ – as expressed by the post

condition Q(σ ,σ ′). Events may thus cause well-formedness of states to fail. Subsequent actions, once actors discover such

“disturbing events”, are therefore expected to remedy that situation, that is, to restore well-formedness. We shall not illustrate

this point.

8.3.3 Discrete Behaviour Signatures Signatures: We shall only cover behaviour signatures when expressed in RSL/CSP

[79]. The behaviour functions are now called processes. That a behaviour function is a never-ending function, i.e., a process, is

“revealed” by the “trailing” Unit:

behaviour: ... → ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

That a process accepts channel, viz.: ch, inputs, is “revealed” as follows:

behaviour: ... → in ch ...

That a process offers channel, viz.: ch, outputs is “revealed” as follows:

behaviour: ... → out ch ...

That a process accepts other arguments is “revealed” as follows:

behaviour: ARG → ...

where ARG can be any type expression:

T, T→T, T→T→T, etcetera

where T is any type expression.

58By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain analyser cum describer should strive for identifying the smallest

state.

2018-11-16 02:18. Page 40 of 1–61.

Domain Analysis & Description 41

8.3.4 Attribute Access: We shall only be concerned with part attributes. And we shall here consider them in the context

of part behaviours. Part behaviour definitions embody part attributes. In this section we shall suggest how behaviours embody

part attributes.

• Static attributes designate constants, cf. Defn. 1 Pg. 25. As such they can be “compiled” into behaviour definitions.

We choose, instead to list them, in behaviour signatures, as arguments.

• Inert attributes designate values provided by external stimuli, cf. Defn. 3 Pg. 25, that is, must be obtained by channel

input: attr Inert A ch ?.

• Reactive attributes are functions of other attribute values, cf. Defn. 4 Pg. 25.

• Autonomous attributes must be input, cf. Defn. 6 Pg. 25, like inert attributes: attr Autonomous A ch ?.

• Programmable attribute values are calculated by their behaviours, cf. Defn. 8 Pg. 25. We list them as behaviour argu-

ments. The behaviour definitions may then specify new values. These are provided in the position of the programmable

attribute arguments in tail recursive invocations of these behaviours.

• Biddable attributes are like programmable attributes, but when provided in possibly tail recursive invocations of their

behaviour the calculated biddable attribute value is modified, usually by some perturbation59 of the calculated value – to

reflect that although they are prescribed they may fail to be observed as such, cf. Defn. 7 Pg. 25.

8.3.5 Calculating In/Output Channel Signatures: Given a part p we can calculate the RSL+Text that designates the

input channels on which part p behaviour obtains monitorable attribute values. For each monitorable attribute, A, the text ≪|

attr A ch≫| is to be “generated”. One or more such channel declaration contributions is to be preceded by the text ≪| in ≫|. If

there are no monitorable attributes then no text is t be yielded.

79 The function calc i o chn refs apply to parts and yield RSL+Text.

a From p we calculate its unique identifier value, its mereology value, and its monitorable attribute values.

b If there the mereology is not void and/or the are monitorable values then a (Currying60) right pointing arrow, →, is

inserted.61

c If there is an input mereology and/or there are monitorable values then the keyword in is inserted

in front of the monitorable attribute values and input mereology.

d Similarly for the input/output mereology;

e and for the output mereology.

value

79 calc i o chn refs: P → RSL+Text

79 calc i o chn refs(p) ≡ ;

79a let ui = uid P(p), (ics,iocs,ocs) = mereo (p), atrvs = obs attrib values P(p) in

79b if ics ∪ iocs ∪ ocs ∪ atrvs 6= {} then ≪| → ≫| end ;

79c if ics ∪ atrvs 6={} then ≪| in≫| calc attr chn refs(ui,atrvs), calc chn refs(ui,ichs) end ;

79d if iocs6={} then ≪| in,out≫| calc chn refs(ui,iochs) end ;

79e if ocs6={} then ≪| out≫| calc chn refs(ui,ochs) end end

80 The function calc attr chn refs

a apply to a set, mas, of monitorable attribute types and yield RSL+Text.

b If achs is empty no text is generated. Otherwise a channel declaration attr A ch is generated for each attribute type

whose name, A, which is obtained by applying η to an observed attribute value, ηa.

80a calc attr chn refs: UI × A-set → RSL+Text

59– in the sense of https://en.wikipedia.org/wiki/Perturbation function
60https://en.wikipedia.org/wiki/Currying
61We refer to the three parts of the mereology value as the input, the input/output and the output mereology (values).

2018-11-16 02:18. Page 41 of 1–61.

42 Dines Bjørner

80b calc attr chn refs(ui,mas) ≡ { ≪| attr ηa ch[ui] ≫| | a:A•a ∈ mas }

81 The function calc chn refs

a apply to a pair, (ui,uis) of a unique part identifier and a set of unique part identifiers and yield RSL+Text.

b If uis is empty no text is generated. Otherwise an array channel declaration is generated.

81a calc chn refs: P UI × Q UI-set → RSL+Text

81b calc chn refs(pui,quis) ≡ { ≪| η(pui,qui) ch[pui,qui] ≫| | qui:Q UI•qui ∈ quis }

82 The function calc all chn dcls

a apply to a pair, (pui,quis) of a unique part identifier and a set of unique part identifiers and yield RSL+Text.

b If quis is empty no text is generated. Otherwise an array channel declaration

• { ≪| η(pui,qui) ch[pui,qui]:η(pui,qui)M ≫| | qui:Q UI•qui ∈ quis }

is generated.

82a calc all chn dcls: P UI × Q UI-set → RSL+Text

82a calc all chn dcls(pui,quis) ≡ { ≪| η(pui,qui) ch[pui,qui]:η(pui,qui)M ≫| | qui:Q UI•qui ∈ quis }

The η(pui,qui) invocation serves to prefix-name both the channel, η(pui,qui) ch[pui,qui], and the channel message type,

η(pui,qui)M.

83 The overloaded η operator is here applied to a pair of unique identifiers.

83 η: (UI → RSL+Text)|((X UI×Y UI) → RSL+Text)

83 η(x ui,y ui) ≡ (≪|(η x uiη y ui≫|))

Repeating these channel calculations over distinct parts p1,p2,...,pn of the same part type P will yield “similar” behaviour

signature channel references:

{PQ ch[p1ui
,qui]|p1ui

:P UI,qui:Q UI•qui ∈ quis}

{PQ ch[p2ui
,qui]|p2ui

:P UI,qui:Q UI•qui ∈ quis}

...

{PQ ch[pnui
,qui]|pnui

:P UI,qui:Q UI•qui ∈ quis}

These distinct single channel references can be assembled into one:

{ PQ ch[pui,qui] | pui:P UI,qui:Q UI : −pui ∈ puis,qui ∈ quis }

where puis = { p1ui
,p2ui

,...,pnui
}

As an example we have already calculated the array channels for Fig. 8 Pg. 39– cf. the left, the Parts, of that figure – cf.

Items [1–3] Pages 38–39.The identities Item 78 Pg. 39 apply.

8.4 Discrete Behaviour Definitions

We associate with each part, p:P, a behaviour name M P. Behaviours have as first argument their unique part identifier: uid P(p).

Behaviours evolves around a state, or, rather, a set of values: its possibly changing mereology, mt:MT and the attributes of the

part.62 A behaviour signature is therefore:

M P: ui:UI×me:MT×stat attr typs(p) → ctrl attr typs(p) → calc i o chn refs(p) Unit

where (i) ui:UI is the unique identifier value and type of part p; (ii) me:MT is the value and type mereology of part p, me =

mereo P(p); (iii) stat attr typs(p): static attribute types of part p:P; (iv) ctrl attr typs(p): controllable attribute types of part

p:P; (v) calc i o chn refs(p) calculates references to the input, the input/output and the output channels serving the attributes

shared between part p and the parts designated in its mereology me. Let P be a composite sort defined in terms of endurant63

62We leave out consideration of possible components and materials of the part.
63– structures or composite

2018-11-16 02:18. Page 42 of 1–61.

Domain Analysis & Description 43

sub-sorts E1, E2, . . . , En. The behaviour description translated from p:P, is composed from a behaviour description, M P,

relying on and handling the unique identifier, mereology and attributes of part p to be translated with behaviour descriptions

β1,β2, . . . ,βn where β1 is translated from e1:E1, β2 is translated from e2:E2, ..., and βn is translated from en:En. The domain

description translation schematic below “formalises” the above.

Abstract is composite(p) Behaviour Schema

value

TranslateP: P → RSL+Text

TranslateP(p) ≡

let ui = uid P(p), me = mereo P(p),

sa = stat attr vals(p), ca = ctrl attr vals(p),

MT = mereo type(p), ST = stat attr typs(p), CT = ctrl attr typs(p),

IOR = calc i o chn refs(p), IOD = calc all ch dcls(p) in

≪| channel

IOD

value

M P: P UI × MT × ST CT IOR Unit

M P(ui,me,sta)(pa) ≡ BP(ui,me,sta)ca

,≫| TranslateP1
(obs endurant sorts E1(p))

≪|,≫| TranslateP2
(obs endurant sorts E2(p))

≪|,≫| ...

≪|,≫| TranslatePn
(obs endurant sorts En(p))

end

Expression BP(ui,me,sta,pa) stands for the behaviour definition body in which the names ui, me, sta, pa are bound to the

behaviour definition head, i.e., the left hand side of the ≡. Endurant sorts E1, E2, ..., En are obtained from the observe en-

durant sorts prompt, Page 15. We informally explain the TranslatePi
function. It takes endurants and produces RSL+Text.

Resulting texts are bracketed: ≪| rsl text≫|.

Example 35: Signatures
We first decide on names of behaviours. In Sect. 8.4, Pages 42–45, we gave schematic names to behaviours of the form M P . We now assign mnemonic names:

from part names to names of transcendentally interpreted behaviours and then we assign signatures to these behaviours.

. .

84 hubhui
:

a there is the usual “triplet” of arguments: unique identifier, mereol-

ogy and static attributes;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first those

allowing communication between hub and link behaviours,

d and then those allowing communication between hub and vehicle

(bus and automobile) behaviours.

value

84 hubhui
:

84a h ui:H UI×(vuis,luis,):H Mer×HΩ

84b → (HΣ×H Traffic)

84c → in,out { h l ch[h ui,l ui] | l ui:L UI•l ui ∈ luis }

84d { ba r ch[h ui,v ui] | v ui:V UI•v ui∈vuis } Unit

84a pre: vuis = vuis ∧ luis = luis

. .

2018-11-16 02:18. Page 43 of 1–61.

44 Dines Bjørner

85 linklui
:

a there is the usual “triplet” of arguments: unique identifier, mereol-

ogy and static attributes;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first those

allowing communication between hub and link behaviours,

d and then those allowing communication between link and vehicle

(bus and automobile) behaviours.

value

85 linklui
:

85a l ui:L UI×(vuis,huis,):L Mer×LΩ

85b → (LΣ×L Traffic)

85c → in,out { h l ch[h ui,l ui] | h ui:H UI:h ui ∈ huis }

85d { ba r ch[l ui,v ui] | v ui:(B UI|A UI)•v ui∈vuis } Unit

85a pre: vuis = vuis ∧ huis = huis

. .

86 bus companybcui
:

a there is here just a “doublet” of arguments: unique identifier and

mereology;

b then there is the one programmable attribute;

c and finally there are the input/output channel references: first the

input time channel,

d then the input/output allowing communication between the bus

company and buses.

value

86 bus companybcui
:

86a bc ui:BC UI×(, ,buis):BC Mer

86b → BusTimTbl

86c → in attr T ch

86d in,out {bc b ch[bc ui,b ui]|b ui:B UI•b ui∈buis} Unit

86a pre: buis = buis ∧ huis = huis

. .

87 busbui
:

a there is here just a “doublet” of arguments: unique identifier and

mereology;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first the

input time channel, and the input/output allowing communication

between the bus company and buses,

d and the input/output allowing communication between the bus and

the hub and link behaviours.

value

87 busbui
:

87a b ui:B UI×(bc ui, ,ruis):B Mer

87b → (LN × BTT × BPOS)

87c → in attr T ch in,out bc b ch[bc ui,b ui],

87d {ba r ch[r ui,b ui]|r ui:(H UI|L UI)•ui∈vuis} Unit

87a pre: ruis = ruis ∧ bc ui ∈ bcuis

. .

88 automobileaui
:

a there is the usual “triplet” of arguments: unique identifier, mereol-

ogy and static attributes;

b then there is the one programmable attribute;

c and finally there are the input/output channel references: first the

input time channel,

d then the input/output allowing communication between the auto-

mobile and the hub and link behaviours.

value

88 automobileaui
:

88a a ui:A UI×(, ,ruis):A Mer×rn:RegNo

88b → apos:APos

88c → in attr T ch

88d in,out {ba r ch[a ui,r ui]|r ui:(H UI|L UI)•r ui∈ruis} Unit

88a pre: ruis = ruis ∧ a ui ∈ auis

For the case that an endurant is a structure there is only its elements to compile; otherwise Schema 2 is as Schema 1.

Abstract is structure(e) Behaviour Schema

value

TranslateE(e) ≡

TranslateE1
(obs endurant sorts E1(e))

≪|,≫| TranslateE2
(obs endurant sorts E2(e))

≪|,≫| ...

≪|,≫| TranslateEn
(obs endurant sorts En(e))

Let P be a composite sort defined in terms of the concrete type Q-set. The process definition compiled from p:P, is composed

from a process, M P, relying on and handling the unique identifier, mereology and attributes of process p as defined by P

2018-11-16 02:18. Page 44 of 1–61.

Domain Analysis & Description 45

operating in parallel with processes q:obs Qs(p). The domain description “compilation” schematic below “formalises” the

above.

Concrete is composite(p) Behaviour Schema

type

Qs = Q-set

value

qs:Q-set = obs Qs(p)

TranslateP(p) ≡

let ui = uid P(p), me = mereo P(p),

sa = stat attr vals(p), ca = ctrl attr vals(p)

ST = stat attr typs(p), CT = ctrl attr typs(p),

IOR = calc i o chn refs(p), IOD = calc all ch dcls(p) in

≪| channel

IOD

value

M P: P UI×MT×ST CT IOR Unit

M P(ui,me,sa)ca ≡ BP(ui,me,sa)ca ≫|

{ ≪| ,≫| TranslateQ(q)|q:Q•q ∈ qs }

end

Atomic is atomic(p) Behaviour Schema

value

TranslateP(p) ≡

let ui = uid P(p), me = mereo P(p),

sa = stat attr vals(p), ca = ctrl attr vals(p),

ST = stat attr typs(p), CT = ctrl attr typs(p),

IOR = calc i o chn refs(p), IOD = calc all chs(p) in

≪| channel

IOD

value

MP: P UI×MT×ST PT IOR Unit

MP(ui,me,sa)ca ≡ BP(ui,me,sa)ca ≫|

end

The core processes can be understood as never ending, “tail recursively defined” processes:

Core Behaviour Schema

BP: uid:P UI×me:MT×sa:SA → ct:CT → in in chns(p) in,out in out chns(me) Unit

BP(p)(ui,me,sa)(ca) ≡ let (me′,ca′) = FP(ui,me,sa)ca in M P(ui,me′,sa)ca′ end

FP: P UI×MT×ST → CT→ in out chns(me) → MT×CT

2018-11-16 02:18. Page 45 of 1–61.

46 Dines Bjørner

We refer to [15, Process Schema V: Core Process (II), Page 40] for possible forms of FP.

Example 36: Automobile Behaviour (at a hub)
We define the behaviours in a different order than the treatment of their signatures. We “split” definition of the automobile behaviour into the behaviour of

automobiles when positioned at a hub, and into the behaviour automobiles when positioned at on a link. In both cases the behaviours include the “idling” of

the automobile, i.e., its “not moving”, standing still.

89 We abstract automobile behaviour at a Hub (hui).

90 The vehicle remains at that hub, “idling”,

91 informing the hub behaviour,

92 or, internally non-deterministically,

a moves onto a link, tli, whose “next” hub, identified by th ui, is

obtained from the mereology of the link identified by tl ui;

b informs the hub it is leaving and the link it is entering of its initial

link position,

c whereupon the vehicle resumes the vehicle behaviour positioned at

the very beginning (0) of that link,

93 or, again internally non-deterministically,

94 the vehicle “disappears — off the radar” !

89 automobileaui
(a ui,({},(ruis,vuis),{}),rn)

89 (apos:atH(fl ui,h ui,tl ui)) ≡

90 (ba r ch[a ui,h ui] ! (attr T ch?,atH(fl ui,h ui,tl ui));

91 automobileaui
(a ui,({},(ruis,vuis),{}),rn)(apos))

92 ⌈⌉

92a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in

92a assert: fh ui=h ui ∧ ruis=ruis′

89 let onl = (tl ui,h ui,0,th ui) in

92b (ba r ch[a ui,h ui] ! (attr T ch?,onL(onl)) ‖

92b ba r ch[a ui,tl ui] ! (attr T ch?,onL(onl))) ;

92c automobileaui
(a ui,({},(ruis,vuis),{}),rn)

92c (onL(onl)) end end)

93 ⌈⌉

94 stop

Appendix A.1.2 presents the definition of the remaining automobile, the hub, link, bus company and bus behaviours.

8.5 Running Systems

It is one thing to define the behaviours corresponding to all parts, whether composite or atomic. It is another thing to specify an

initial configuration of behaviours, that is, those behaviours which “start” the overall system behaviour. The choice as to which

parts, i.e., behaviours, are to represent an initial, i.e., a start system behaviour, cannot be “formalised”, it really depends on the

“deeper purpose” of the system. In other words: requires careful analysis and is beyond the scope of the present paper.

Example 37: Initial System, I/II

Initial States: We recall the hub, link, bus company, bus and the auto-

mobile states first mentioned in Sect. 3.8 Page 14.

value

60 hs:H-set ≡ ≡ obs sH(obs SH(obs RN(rts)))

61 ls:L-set ≡ ≡ obs sL(obs SL(obs RN(rts)))

63 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

64 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}

66 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

Starting Initial Behaviours: We are reaching the end of this domain

modelling example. Behind us there are narratives and formalisations 1

Pg. 16 – 139 Pg. 60. Based on these we now express the signature and

the body of the definition of a “system build and execute” function.

95 The system to be initialised is

a the parallel composition (‖) of

b the distributed parallel composition (‖{...|...}) of

c all the hub behaviours,

d all the link behaviours,

e all the bus company behaviours,

f all the bus behaviours, and

g all the automobile behaviours.

value

95 initial system: Unit → Unit

95 initial system() ≡

95c ‖ { hubhui
(h ui,me,hω)(htrf,hσ)

95c | h:H•h ∈ hs,

95c h ui:H UI•h ui=uid H(h),

95c me:HMetL•me=mereo H(h),

95c hω:HΩ•hω=attr HΩ(h),

95c htrf:H Traffic•htrf=attr H Traffic H(h),

95c hσ :HΣ•hσ=attr HΣ(h)∧hσ ∈ hω

95c }

95a ‖

95d ‖ { linklui
(l ui,me,lω)(ltrf,lσ)

95d l:L•l ∈ ls,

95d l ui:L UI•l ui=uid L(l),

95d me:LMet•me=mereo L(l),

95d lω:LΩ•lω=attr LΩ(l),

95d ltrf:L Traffic•ltrf=attr L Traffic H(l),

95d lσ :LΣ•lσ=attr LΣ(l)∧lσ ∈ lω

95d }

2018-11-16 02:18. Page 46 of 1–61.

Domain Analysis & Description 47

Example 37: Initial System, II/II

95a ‖

95e ‖ { bus companybcui
(bcui,me)(btt)

95e bc:BC•bc ∈ bcs,

95e bc ui:BC UI•bc ui=uid BC(bc),

95e me:BCMet•me=mereo BC(bc),

95e btt:BusTimTbl•btt=attr BusTimTbl(bc)

95e }

95a ‖

95f ‖ { busbui
(b ui,me)(ln,btt,bpos)

95f b:B•b ∈ bs,

95f b ui:B UI•b ui=uid B(b),

95f me:BMet•me=mereo B(b),

95f ln:LN:pln=attr LN(b),

95f btt:BusTimTbl•btt=attr BusTimTbl(b),

95f bpos:BPos•bpos=attr BPos(b)

95f }

95a ‖

95g ‖ { automobileaui
(a ui,me,rn)(apos)

95g a:A•a ∈ as,

95g a ui:A UI•a ui=uid A(a),

95g me:AMet•me=mereo A(a),

95g rn:RegNo•rno=attr RegNo(a),

95g apos:APos•apos=attr APos(a)

95g }

8.6 Concurrency: Communication and Synchronisation

Process Schemas I, II, III and V (Pages 43, 44, 45 and 45), reveal that two or more parts, which temporally coexist (i.e., at

the same time), imply a notion of concurrency . Process Schema IV, Page 45, through the RSL/CSP language expressions ch ! v

and ch ?, indicates the notions of communication and synchronisation . Other than this we shall not cover these crucial notion

related to parallelism .

8.7 Summary and Discussion of Perdurants

The most significant contribution of Sect. 8 has been to show that for every domain description there exists a normal form

behaviour — here expressed in terms of a CSP process expression.

8.7.1 Summary We have proposed to analyse perdurant entities into actions, events and behaviours – all based on notions of

state and time. We have suggested modelling and abstracting these notions in terms of functions with signatures and pre-/post-

conditions. We have shown how to model behaviours in terms of CSP (communicating sequential processes). It is in modelling

function signatures and behaviours that we justify the endurant entity notions of parts, unique identifiers, mereology and shared

attributes.

8.7.2 Discussion The analysis of perdurants into actions, events and behaviours represents a choice. We suggest skeptical

readers to come forward with other choices.

9 CLOSING

Domain models abstract some reality. They do not pretend to capture all of it.

9.1 What Have We Achieved ?

A step-wise method, its principles, techniques, and a series of languages for the rigorous development of domain models

has been presented. A seemingly large number of domain concepts has been established: entities, endurants and perdurants,

discrete and continuous endurants, structure, part, component and material endurants, living species, plants, animals, humans

and artifacts, unique identifiers, mereology and attributes.

It is shown how CSP channels can be calculated from endurant mereologies, and how the form of behaviour arguments can

be calculated from respective attribute categorisations.

2018-11-16 02:18. Page 47 of 1–61.

48 Dines Bjørner

The domain concepts outlined above form a domain ontology that applies to a wide variety of domains.

The Transcendental Deduction: A concept of transcendental deduction has been introduced. It is used to justify the inter-

pretation of endurant parts as perdurant behaviours – à la CSP. The interpretation of endurant parts as perdurant behaviours

represents a transcendental deduction – and must, somehow, be rationally justified. the justification is here seen as exactly that:

a transcendental deduction. We claim that when, as an example, programmers, in thinking about or in explaining their code,

anthropomorphically64 , say that “the program does so and so” they ‘perform’ and transcendental deduction. We refer to the

forthcoming [6, Philosophical Issues in Domain Modeling].

• This concept should be studied further: Transcendental Deduction in Computing Science.

Living Species: The concept of living species has been introduced, but it has not been “sufficiently” studied, that is, we have,

in Sect. 5.3.2 on Page 27, hinted at a number of ‘living species’ notions: causality of purpose et cetera, but no hints has been

given as to the kind of attributes that living species, especially humans give rise to.

• This concept should be studied further: Attributes of Living Species in Computing Science.

Intentional “Pull”: A new concept of intentional “pull” has been introduced. It applies, in the form of attributes, to humans

and artifacts. It “corresponds”, in a way, to gravitational pull ; that concept invites further study. The pair of gravitational pull

and intentional “pull” appears to lie behind the determination of the mereologies of parts; that possibility invites further study.

• This concept should be studied further: Intentional “Pull” in Computing Science.

What Can Be Described ? When you read the texts that explain when phenomena can be considered entities, entities can be

considered endurants or perdurants, endurants can be considered discrete or continuous, discrete endurants can be considered

structures, parts or components, et cetera, then you probably, expecting to read a technical/scientific paper, realise that those

explanations are not precise in the sense of such papers.

Many of our definitions are taken from [31, The Oxford Shorter English Dictionary] and from the Internet based [80, The

Stanford Encyclopedia of Philosophy].

In technical/scientific papers definitions are expected to be precise, but can be that only if the definer has set up, beforehand,

or the reported work is based on a precise, in our case mathematical framework. That can not be done here. There is no, a

priori given, model of the domains we are interested in. This raises the more general question, such as we see it: “which are the

absolutely necessary and unavoidable bases for describing the world ?” This is a question of philosophy. We shall not develop

the reasoning here.

Some other issues are to be further studied. (i) When to use physical mereologies and when to apply conceptual mereologies,

cf. final paragraph of Sect. 5.2.4 on Page 23. (ii) How do we know that the categorisation into unique identification, mereology

and attributes embodies all internal qualities; could there be a fourth, etc. ? (iii) Is intent an attribute, or does it “belong” to

a fourth internal quality category, or a fifth ? (iv) It seems that most of what we first thought off as natural parts really are

materials: geographic land masses, etc. – subject, still, to the laws of physics: geo-physics.

• We refer to the forthcoming study [6, Philosophical Issues in Domain Modeling] based on [11–14].

The Contribution: In summary we have shown that the domain analysis & description calculi form a sound, consistent and

complete approach to domain modelling, and that this approach takes its “resting point” in Kai Sørlander’s Philosophy.

9.2 The Four Languages of Domain Analysis & Description

Usually mathematics, in many of its shades and forms are deployed in describing properties of nature, as when pursuing physics,

Usually the formal specification languages of computer & computing science have a precise semantics and a consistent proof

system. To have these properties those languages must deal with computable objects . Domains are not computable.

So we revert, in a sense, to mathematics as our specification language. Instead of the usual, i.e., the classical style of mathe-

matics, we “couch” the mathematics in a style close to RSL [79, 81]. We shall refer to this language as RSL+. Main features of

RSL+ evolves in this paper, mainly in Sect. 8.3.3.

64Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities.

2018-11-16 02:18. Page 48 of 1–61.

Domain Analysis & Description 49

Here we shall make it clear that we need three languages: (i) an analysis language, (ii) a description language, i.e., RSL+,

and (iii) the language of explaining domain analysis & description, (iv) in modelling “the fourth” language, the domain, its

syntax and some abstract semantics.

9.2.1 The Analysis Language: Use of the analysis language is not written down. It consists of a number of single, usually

is or has , prefixed domain analysis prompt and domain description prompt names. The domain analysis prompts are:

The Analysis Prompts

a. is entity, 7

b. is endurant, 8

c. is perdurant, 8

d. is discrete, 8

e. is continuous, 8

f. is physical part, 9

g. is living species, 9

h. is structure, 10

i. is part, 11

j. is atomic, 11

k. is composite, 11

l. is living species, 12

m. is plant, 12

n. is animal, 12

o. is human, 12

p. has components, 13

q. has materials, 13

r. is artifact, 14

s. observe endurant sorts, 14

t. has concrete type, 16

u. has mereology, 23

v. attribute types, 26

They apply to phenomena in the domain, that is, to “the world out there” ! Except for observe endurants and attribute

types these queries result in truth values; observe endurants results in the domain scientist cum engineer noting down,

in memory or in typed form, suggestive names [of endurant sorts]; and attribute types results in suggestive names [of

attribute types]. The truth-valued queries directs, as we shall see, the domain scientist cum engineer to either further analysis

or to “issue” some domain description prompts. The ‘name’-valued queries help the human analyser to formulate the result of

domain description prompts:

The Description Prompts

[1] observe endurant sorts, 15

[2] observe part type, 17

[3] observe component sorts, 18

[4] observe material sorts, 19

[5] observe unique identifier, 22

[6] observe mereology, 24

[7] observe attributes, 26

Again they apply to phenomena in the domain, that is, to “the world out there” ! In this case they result in RSL+Text !

9.2.2 The Description Language: The description language is RSL+. It is a basically applicative subset of RSL [79, 81],

that is: no assignable variables. Also we omit RSL’s elaborate scheme, class, object notions.

The Description Language Primitives

• Structures, Parts, Components and Materials:

− obs E, dfn. 1, [o] pg. 15

− obs T: P, dfn. 2, [t2] pg. 17

• Part and Component Unique Identifiers:

− uid P, dfn. 5, [u] pg. 20

• Part Mereologies:

− mereo P, dfn. 6, [m] pg. 22

• Part and Material Attributes:

− attr Ai, dfn. 7, [a] pg. 24

We refer, generally, to all these functions as observer functions. They are defined by the analyser cum describer when “applying”

description prompts. That is, they should be considered user-defined. In our examples we use the non-bold-faced observer

function names.

2018-11-16 02:18. Page 49 of 1–61.

50 Dines Bjørner

9.2.3 The Language of Explaining Domain Analysis & Description: In explaining the analysis & description prompts

we use a natural language which contains terms and phrases typical of the technical language of computer & computing science ,

and the language of philosophy , more specifically epistemology and ontology . The reason for the former should be obvious.

The reason for the latter is given as follows: We are, on one hand, dealing with real, actual segments of domains characterised

by their basis in nature, in economics, in technologies, etc., that is, in informal “worlds”, and, on the other hand, we aim at a

formal understanding of those “worlds”. There is, in other words, the task of explaining how we observe those “worlds”, and

that is what brings us close to some issues well-discussed in philosophy .

9.2.4 The Language of Domains: We consider a domain through the semiotic looking glass of its syntax and its semantics;

we shall not consider here its possible pragmatics. By “its syntax” we shall mean the form and “contents”, i.e., the external and

internal qualities of the endurants of the domain, i.e., those entities that endure. By “its semantics” we shall, by a transcendental

deduction , mean the perdurants: the actions, the events, and the behaviours that center on the the endurants and that otherwise

characterise the domain.

9.2.5 An Analysis & Description Process: It will transpire that the domain analysis & description process can be infor-

mally modeled as follows:

Program Schema: A Domain Analysis & Description Process

type

V = Part VAL | Komp VAL | Mat VAL

variable

new:V-set := {uod:UoD} ,

gen:V-set := {} ,

txt:Text := {}

value

discover sorts: Unit → Unit

discover sorts() ≡

while new 6= {} do

let v:V • v ∈ new in

new := new \ {v} ‖ gen := gen ∪ {v} ;

is part(v) →

(is atomic(v) → skip ,

is composite(v) →

let {e1:E1,e:E2,...,en:En} = observe endurants(v) in

new := new ∪ {e1,e,...,en} ; txt := txt ∪ observe endurant sorts(e) end ,

has concrete type(v) →

let {s1,s2,...,sm} = new sort values(v) in

new := new ∪ {s1,s2,...,sm} ; txt := txt ∪ observe part type(v) end) ,

has components(v) → let {k1:K1,k2:K2,...,kn:Kn} = observe components(v) in

new := new ∪ {k1,k2,...,kn} ; txt := txt ∪ observe component sorts(v) end ,

has materials(v) → txt := txt ∪ observe material sorts(v) ,

is structure(v) → ... EXERCISE FOR THE READER !

end

end

discover uids: Unit → Unit

discover uids() ≡

for ∀ v:(PVAL|KVAL) • v ∈ gen

do txt := txt ∪ observe unique identifier(v) end

discover mereologies: Unit → Unit

discover mereologies() ≡

for ∀ v:PVAL • v ∈ gen

do txt := txt ∪ observe mereology(v) end

discover attributes: Unit → Unit

discover attributes() ≡

for ∀ v:(PVAL|MVAL) • v ∈ gen

do txt := txt ∪ observe attributes(v) end

2018-11-16 02:18. Page 50 of 1–61.

Domain Analysis & Description 51

analysis+description: Unit → Unit

analysis+description() ≡

discover sorts(); discover uids(); discover mereologies(); discover attributes()

Possibly duplicate texts “disappear” in txt – the output text.

9.3 Relation to Other Formal Specification Languages

In this contribution we have based the analysis and description calculi and the specification texts emanating as domain descrip-

tions on RSL [79]. There are other formal specification languages:

• Alloy [82],

• B (etc.) [83],

• CafeObj [84],

• CASL [85],

• VDM [86–88],

• Z [89],

to mention a few. Two conditions appears to apply for any of these other formal specification languages to become a basis for

analysis and description calculi similar to the ones put forward in the current paper: (i) it must be possible, as in RSL, to define

and express sorts, i.e., further undefined types, and (ii) it must be possible, as with RSL’s “built-in” CSP [16], in some form or

another, to define and express concurrency. Insofar as these and other formal languages can satisfy these two conditions, they

can certainly also be the basis for domain analysis & description.

We do not consider Coq [90–92]65, CSP [16], The Duration Calculus [64] nor TLA+ [63] as candidates for expressing

full-fledged domain descriptions. Some of these formal specification languages, like Coq, are very specifically oriented towards

proofs (of properties of specifications). Some, like The Duration Calculus and CSP, go very well in hand with other formal

specification languages like VDM. RAISE66 and Z. It seems, common to these languages, that, taken taken in isolation, they

can be successfully used for the development and proofs of properties of algorithms and code for, for example safety-critical

and embedded systems.

But our choice (of not considering) is not a “hard nailed” one !

Also less formal, usually computable, languages, like Scala [https://www.scala-lang.org/] or Python [https:/-

www.python.org/], can, if they satisfy criteria (i-ii), serve similarly.

We refer, for a more general discussion – of issues related to the choice of other formal language being the basis for domain

analysis & description – to [93, 40 Years of Formal Methods — 10 Obstacles and 3 Possibilities] for a general discussion

that touches upon the issue of formal, or near-formal, specification languages.

9.4 Two Frequently Asked Questions

How much of a DOMAIN must or should we ANALYSE & DESCRIBE ? When this question is raised, after a talk of mine over

the subject, and by a colleague researcher & scientist I usually reply: As large a domain as possible ! This reply is often met by

this comment (from the audience) Oh ! No, that is not reasonable ! To me that comment shows either or both of: the questioner

was not asking as a researcher/scientist, but as an engineer. Yes, an engineer needs only analyse & describe up to and slightly

beyond the “border” of the domain-of-interest for a current software development – but a researcher cum scientist is, of course,

interested not only in a possible requirements engineering phase beyond domain engineering, but is also curious about the larger

context of the domain, in possibly establishing a proper domain theory, etc.

How, then, should a domain engineer pursue DOMAIN MODELLING ? My answer assumes a “state-of-affairs” of domain

science & engineering in which domain modelling is an established subject, i.e., where the domain analysis & description topic,

i.e., its methodology, is taught, where there are “text-book” examples from relevant fields – that the domain engineers can rely

on, and in whose terminology they can communicate with one another; that is, there is an acknowledged body of knowledge.

65http://doi.org/10.5281/zenodo.1028037
66A variant of CSP is thus “embedded” in RSL

2018-11-16 02:18. Page 51 of 1–61.

52 Dines Bjørner

My answer is therefore: the domain engineer, referring to the relevant body of knowledge, develops a domain model that covers

the domain and the context on which the software is to function, just, perhaps covering a little bit more of the context, than

possibly necessary — just to be sure. Until such a “state-of-affairs” is reached the domain model developer has to act both as a

domain scientist and as a domain engineer, researching and developing models for rather larger domains than perhaps necessary

while contributing also to the domain science & engineering body of knowledge.

9.5 On How to Pursue Domain Science & Engineering

We set up a dogma and discuss a ramification. One thing is the doctrine, the method for domain analysis & description outlined

in this paper. Another thing is its practice. I find myself, when experimentally pursuing the modelling of domains, as, for

example, reported in [17–20, 22, 25, 27–30, 94–97], that I am often not following the doctrine ! That is: (i) in not

first, carefully, exploring parts, components and materials, the external properties, (ii) in not then, again carefully settling issues

of unique identifiers, (iii) then, carefully, the issues of mereology, (iv) followed by careful consideration of attributes, then

the transcendental deduction of behaviours from parts; (v) carefully establishing channels: (v.i) their message types, and (v.ii)

declarations, (vi) followed by the careful consideration of behaviour signatures, systematically, one for each transcendentally

deduced part, (vii) then the careful definition of each of all the deduced behaviours, and, finally, (iix) the definition of the overall

system initialisation. No, instead I faulter, get diverted into exploring “this & that” in the domain exploration. And I get stuck.

When despairing I realise that I must “slavically” follow the doctrine. When reverting to the strict adherence of the doctrine, I

find that I, very quickly, find my way, and the domain modelling get’s unstuck ! I remarked this situation to a dear friend and

colleague. His remark stressed what was going on: the creative engineer took possession, the exploring, sometimes sceptic

scientist entered the picture, the well-trained engineer lost ground in the realm of imagination. But perhaps, in the

interest of innovation etc. it is necessary to be creative and sceptic and loose ground – for a while ! I knew that, but had

sort-of-forgotten it ! I thank Ole N. Oest for this observation.

The lesson is: waver between adhering to the method and being innovative, curious – a dreamer !

9.6 Related Work

The present paper is but one in a series on the topic of domain science & engineering. With this paper the author expects to

have laid a foundation. With the many experimental case studies, referenced in Example Universes of Discourse Page 6, the

author seriously think that reasonably convincing arguments are given for this domain science & engineering. We comment

on some previous publications: [3, 98] explores additional views on analysing & describing domains, in terms of domain

facets: intrinsics, support technologies, rules & regulations, scripts, management & organisation, and human behaviour. [5, 99]

explores relations between Stanisław Leśhnieiski’s mereology and ours. [1, 2] shows how to rigorously transform domain

descriptions into software system requirements prescriptions. [100] explores relations between the present domain analysis &

description approach and issues of safety critical software design. [101] discusses various interpretations of domain models: as

bases for demos, simulators, real system monitors and real system monitor & controllers. [102] is a compendium of reports

around the management and engineering of software development based in domain analysis & description. These reports were

the result of a year at JAIST: Japan Institute of Science & Technology, Ishikawa, Japan.

9.7 Tony Hoare’s Summary on ‘Domain Modelling’

In a 2006 e-mail, in response, undoubtedly to my steadfast – perhaps conceived as stubborn – insistence, on domain engineering,

Tony Hoare summed up his reaction to domain engineering as follows, and I quote67:

“There are many unique contributions that can be made by domain modelling.

1 The models describe all aspects of the real world that are relevant for any good software design in the area.

They describe possible places to define the system boundary for any particular project.

67E-Mail to Dines Bjørner, July 19, 2006

2018-11-16 02:18. Page 52 of 1–61.

Domain Analysis & Description 53

2 They make explicit the preconditions about the real world that have to be made in any embedded software design,

especially one that is going to be formally proved.

3 They describe the whole range of possible designs for the software,

and the whole range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements,

which is wholly independent of the technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier or later in any design project,

and identify those that are independent and those that conflict.

Late discovery of feature interactions can be avoided.”

All of these issues were covered in [65, Part IV].

ACKNOWLEDGEMENTS

I thank the three reviewers for their many fine observations and suggestions.

I also thank colleagues in Austria, China, Germany, France, Norway, Singapore, Sweden and the United States: Yamine Ait

Ameur, Dominique Méry, Andreas Harmfeldt, Magne Haveraaen, Klaus Havelund, Otthein Herzog, Steve McKeever

Jens Knoop, Hans Langmaack, Chin Wei Ngan, Yang Shao Fa and Zhu HuiBiao. I appreciate very much their comments on

recent papers and their acting as sounding boards for the case studies that lead to a number of clarifications, simplifications and

solidifications of the domain analysis & description method of [15] now reported in the present paper. I thank Wang ShuLin

for incisive questions – answers to which are found, in particular, in Sect. 5.4 of this paper. And I thank Ole N. Oest for some

remarks that lead to my remarks in Sect.˙ 9.5 on Page 52.

REFERENCES

[1] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano,

Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer. URL: http://www.imm.dtu.dk/~dibj/montanari.pdf.

[2] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to Requirements Engineering. Tech-

nical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, 2016. Extensive revision of [1] URL:

http://www2.compute.dtu.dk/~dibj/2015/faoc-req/faoc-req.pdf.

[3] Dines Bjørner. Domain Facets: Analysis & Description. Technical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, May

2018. Extensive revision of [98]. URL: http://www.imm.dtu.dk/~dibj/2016/facets/faoc-facets.pdf.

[4] Dines Bjørner. Domain Analysis and Description – Formal Models of Processes and Prompts. Technical report, Technical University of Denmark, Fredsvej

11, DK-2840 Holte, Denmark, 2016. Extensive revision of [34]. URL: http://www.imm.dtu.dk/~dibj/2016/process/process-p.pdf.

[5] Dines Bjørner. To Every Manifest Domain a CSP Expression — A Rôle for Mereology in Computer Science. Journal of Logical and Algebraic Methods in

Programming, (94):91–108, January 2018. URL: http://www2.compute.dtu.dk/~dibj/2016/mereo/mereo.pdf.

[6] Dines Bjørner. A Philosophy of Domain Science & Engineering – An Interpretation of Kai Sørlander’s Philosophy. Research Note, Te chnical University of

Denmark, Fredsvej 11, DK-2840 Holte, Denmark, Spring 2018. URL: http://www.imm.dtu.dk/~dibj/2018/philosophy/filo.pdf.

[7] Dines Bjørner. Domain Science & Engineering – A Review of 10 Years Work and a Laudatio. In NaiJun Zhan and Cliff B. Jones, editors, Symposium on

Real-Time and Hybrid Systems – A Festschrift Symposium in Honour of Zhou ChaoChen, LNCS 11180, pp. 6184. Springer Nature Switzerland AG URL:

http://www.imm.dtu.dk/~dibj/2017/zcc/ZhouBjorner2017.pdf, June 2018.

[8] Roberto Casati and Achille C. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.

[9] E.C. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The Netherlands, 1962.

[10] J.T.J. Srzednicki and Z. Stachniak, editors. Leśniewksi’s Lecture Notes in Logic. Dordrecht, 1988.

[11] Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deductions, with a foreword by Georg Henrik von Wright].

Munksgaard · Rosinante, 1994. 168 pages.

[12] Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eternity]. Munksgaard · Rosinante, 1997. 200 pages.

[13] Kai Sørlander. Den Endegyldige Sandhed [The Final Truth]. Rosinante, 2002. 187 pages.

[14] Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, 2016. 233 pages.

[15] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Computing, 29(2):175–225, Online: July 2016. URL:

https://doi.org/10.1007/s00165-016-0385-z (doi: 10.1007/s00165-016-0385-z).

[16] C.A.R. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-Hall International, 1985. Published electronically:

http://www.usingcsp.com/cspbook.pdf (2004).

[17] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC Symposium on Control in Transportation

Systems, pages 1–12, Technical University, Braunschweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik,

VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

2018-11-16 02:18. Page 53 of 1–61.

54 Dines Bjørner

[18] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for Domain Engineering. Relations to Re-

quirements Engineering and Software for Control Applications. In Integrated Design and Process Technology. Editors: Bernd Kraemer and

John C. Petterson, P.O.Box 1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science. URL:

http://www2.imm.dtu.dk/~dibj/pasadena-25.pdf.

[19] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software Engineering. In CTS2003: 10th IFAC Symposium on

Control in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki.

URL: http://www2.imm.dtu.dk/~dibj/ifac-dynamics.pdf.

[20] Dines Bjørner. A Container Line Industry Domain. Techn. report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, June 2007.

URL: http://www2.imm.dtu.dk/~db/container-paper.pdf.

[21] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Techn. Univ. of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, 2010.

URL: http://www2.imm.dtu.dk/~db/todai/tse-1.pdf, http://www2.imm.dtu.dk/~db/todai/tse-2.pdf.

[22] Dines Bjørner. Pipelines – a Domain. Experimental Research Report 2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

URL: http://www2.imm.dtu.dk/~dibj/pipe-p.pdf.

[23] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In Practical Foundations of Business

and System Specifications (Eds.: Haim Kilov and Ken Baclawski), The Netherlands, December 2002. Kluwer Academic Press. URL:

http://www2.imm.dtu.dk/~dibj/themarket.pdf.

[24] Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas and Suggestions. Technical, Technical University of Vienna, August–

October 2010. URL: http://www.imm.dtu.dk/~dibj/wfdftp.pdf.

[25] Dines Bjørner. Weather Information Systems: Towards a Domain Description. Technical Report: Experimental Research, Technical University of Denmark,

Fredsvej 11, DK-2840 Holte, Denmark, November 2016. URL: http://www.imm.dtu.dk/~dibj/2016/wis/wis-p.pdf.

[26] Dines Bjørner. A Credit Card System: Uppsala Draft. Technical Report: Experimental Research, Technical University of Denmark, Fredsvej 11, DK-2840

Holte, Denmark, November 2016. URL: http://www.imm.dtu.dk/~dibj/2016/credit/accs.pdf.

[27] Dines Bjørner. What are Documents ? Research Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, July 2017. URL:

http://www.imm.dtu.dk/~dibj/2017/docs/docs.pdf.

[28] Dines Bjørner. Urban Planning Processes. Research Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, July 2017. URL:

http://www.imm.dtu.dk/~dibj/2017/up/urban-planning.pdf.

[29] Dines Bjørner. A Space of Swarms of Drones. Research Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, December 2017.

URL: http://www.imm.dtu.dk/~dibj/2017/swarms/swarm-paper.pdf.

[30] Dines Bjørner. Container Terminals. Technical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, September 2018. An

incomplete draft report; currently 60+ pages. URL: http://www.imm.dtu.dk/~dibj/2018/yangshan/maersk-pa.pdf.

[31] W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary on Historical Principles. Clarendon Press, Oxford, England,

1973, 1987. Two vols.

[32] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Semantcs and Formal Software Development. Monographs in Theoretical Computer

Science. Springer, Heidelberg, 2012.

[33] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio Calosi and Pierluigi Graziani). Springer,

Amsterdam, The Netherlands, October 2014.

[34] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida and José Meseguer and Kazuhiro

Ogata, editor, Specification, Algebra, and Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May 2014. URL:

http://www.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf.

[35] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices. ACM Press. Addison-Wesley, Reading,

England, 1995.

[36] Ted Honderich. The Oxford Companion to Philosophy. Oxford University Press, Walton St., Oxford OX2 6DP, England, 1995.

[37] Rober Audi. The Cambridge Dictionary of Philosophy. Cambridge University Press, The Pitt Building, Trumpington Street, Cambridge CB2 1RP, England,

1995.

[38] Nicholas Bunnin and E.P. Tsui-James, editors. The Blackwell Companion to Philosophy. Blackwell Companions to Philosophy. Blackwell Publishers, 108

Cowley Road, Oxford OX4 1JF, UK, 1996.

[39] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, June 2000.

[40] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

[41] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. EATCS Series:

Texts in Theoretical Computer Science. Springer, 2004.

[42] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL, A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in

Computer Science. Springer-Verlag, 2002.

[43] Nikolaj Bjørner, Anca Browne, Michael Colon, Bernd Finkbeiner, Zohar Manna, Henny Sipma, and Tomas Uribe. Verifying Temporal Properties of Reactive

Systems: A STeP Tutorial. Formal Methods in System Design, 16:227–270, 2000.

[44] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,

September 1999.

[45] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. Higher-order Program Verification as Satisfiability Modulo Theories with Algebraic Data-types.

In Higher-Order Program Analysis, June 2013. http://hopa.cs.rhul.ac.uk/files/proceedings.html.

[46] Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley, Reading, Massachusetts, 2003.

[47] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints.

In 4th POPL: Principles of Programming and Languages, pages 238–252. ACM Press, 1977.

2018-11-16 02:18. Page 54 of 1–61.

Domain Analysis & Description 55

[48] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Laurent Mauborgne Jerome Feret, Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer for

large safety-critical software. In Programming Language Design and Implementation, pages 196–207, 2003 .

[49] Johan van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Epistemology, Logic, Methhodology, and Philosophy of Science (Editor:

Jaakko Hintika). Kluwer Academic Publishers, P.O.Box 17, NL 3300 AA Dordrecht, The Netherlands, second edition, 1983, 1991.

[50] David John Farmer. Being in time: The nature of time in light of McTaggart’s paradox. University Press of America, Lanham, Maryland, 1990. 223 pages.

[51] J. M. E. McTaggart. The Unreality of Time. Mind, 18(68):457–84, October 1908. New Series. See also: [52].

[52] Robin Le Poidevin and Murray MacBeath, editors. The Philosophy of Time. Oxford University Press, 1993.

[53] Arthur Prior. Changes in Events and Changes in Things, chapter in [52]. Oxford University Press, 1993.

[54] Arthur N. Prior. Logic and the Basis of Ethics. Clarendon Press, Oxford, UK, 1949.

[55] Arthur N. Prior. Formal Logic. Clarendon Press, Oxford, UK, 1955.

[56] Arthur N. Prior. Time and Modality. Oxford University Press, Oxford, UK, 1957.

[57] Arthur N. Prior. Past, Present and Future. Clarendon Press, Oxford, UK, 1967.

[58] Arthur N. Prior. Papers on Time and Tense. Clarendon Press, Oxford, UK, 1968.

[59] Gerald Rochelle. Behind time: The incoherence of time and McTaggart’s atemporal replacement. Avebury series in philosophy. Ashgate, Brookfield, Vt.,

USA, 1998. vii + 221 pages.

[60] Wayne D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic Logic, 55(1):74–89, March 1990.

[61] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Modeling Time in Computing. Monographs in Theoretical Computer Science. Springer,

2012.

[62] Wang Yi. A Calculus of Real Time Systems. PhD thesis, Department of Computer Sciences, Chalmers University of Technology, Göteborg, Sweden, 1991.

[63] Leslie Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA, 2002.

[64] Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal Approach to Real–time Systems. Monographs in Theoretical Computer Science. An

EATCS Series. Springer–Verlag, 2004.

[65] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer Science, the EATCS Series.

Springer, 2006.

[66] George Wilson and Samuel Shpall. Action. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Summer 2012 edition, 2012.

[67] F. Dretske. Can Events Move? Mind, 76(479-492), 1967. Reprinted in [74, 1996], pp. 415-428.

[68] A. Quinton. Objects and Events. Mind, 88:197–214, 1979.

[69] D.H. Mellor. Things and Causes in Spacetime. British Journal for the Philosophy of Science, 31:282–288, 1980.

[70] Donald Davidson. Essays on Actions and Events. Oxford University Press, 1980.

[71] P.M.S. Hacker. Events and Objects in Space and Time. Mind, 91:1–19, 1982. reprinted in [74], pp. 429-447.

[72] Alain Badiou. Being and Event. Continuum, 2005. (Lêtre et l’événements, Edition du Seuil, 1988).

[73] Jaegwon Kim. Supervenience and Mind. Cambridge University Press, 1993.

[74] Roberto Casati and Achille C. Varzi, editors. Events. Ashgate Publishing Group – Dartmouth Publishing Co. Ltd., Wey Court East, Union Road, Farnham,

Surrey, GU9 7PT, United Kingdom, 23 March 1996.

[75] Chia-Yi Tony Pi. Mereology in Event Semantics. Phd, McGill University, Montreal, Canada, August 1999.

[76] Roberto Casati and Achille Varzi. Events. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2010 edition, 2010.

[77] A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer Science. Prentice-Hall, 1997. URL: http://www.comlab.ox.-

ac.uk/people/bill.roscoe/publications/68b.pdf.

[78] Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series in Computer Science. John Wiley & Sons, Ltd., Baffins Lane,

Chichester, West Sussex PO19 1UD, England, January 2000.

[79] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The

RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[80] Edward N. Zalta. The Stanford Encyclopedia of Philosophy. 2016. Principal Editor: https://plato.stanford.edu/.

[81] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006. .

[82] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[83] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System and Software Engineering. Cambridge University

Press, Cambridge, England, 1996 and 2009.

[84] K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic Formal Method, Sara Burgerhartstraat 25, P.O. Box 211,

NL–1000 AE Amsterdam, The Netherlands, 2000. Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

[85] CoFI (The Common Framework Initiative). CASL Reference Manual, volume 2960 of Lecture Notes in Computer Science (IFIP Series). Springer–Verlag,

2004.

[86] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61 of LNCS. Springer, 1978.

[87] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-Hall, 1982.

[88] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in Software Development. Cambridge University Press, The

Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[89] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall International Series in Computer Science, 1996.

[90] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0.

[91] G. Huet, G. Kahn, and Ch. Paulin-Mohring. The Coq Proof Assistant - A tutorial - Version 7.1, October 2001. http://coq.inria.fr.

[92] Christine Paulin-Mohring. Modelisation of timed automata in Coq. In N. Kobayashi and B. Pierce, editors, Theoretical Aspects of Computer Software

(TACS’2001), volume 2215 of Lecture Notes in Computer Science, pages 298–315. Springer-Verlag, 2001.

2018-11-16 02:18. Page 55 of 1–61.

56 Dines Bjørner

[93] Dines Bjørner and Klaus Havelund. 40 Years of Formal Methods — 10 Obstacles and 3 Possibilities. In FM 2014, Singapore, May 14-16, 2014. Springer,

2014. Distinguished Lecture. URL: http://www.imm.dtu.dk/~dibj/2014/fm14-paper.pdf.

[94] Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing. In FORMS’2003: Symposium on Formal Methods for

Railway Operation and Control Systems. L’Harmattan Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and

E. Schnieder, Germany. URL: http://www2.imm.dtu.dk/~dibj/martin.pdf.

[95] Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In FORMS2003: Symposium on Formal Methods for Railway

Operation and Control Systems. L’Harmattan Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.

Schnieder, Germany. URL: http://www2.imm.dtu.dk/~dibj/albena.pdf.

[96] Dines Bjørner. Road Transportation – a Domain Description. Experimental Research Report 2013-4, DTU Compute and Fredsvej 11, DK-2840 Holte,

Denmark, Spring 2013. URL: http://www2.imm.dtu.dk/~dibj/road-p.pdf.

[97] Dines Bjørner. Software Systems Engineering — From Domain Analysis to Requirements Capture: An Air Traffic Control Example. In 2nd Asia-Pacific

Software Engineering Conference (APSEC ’95). IEEE Computer Society, 6–9 December 1995. Brisbane, Queensland, Australia.

[98] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the Art and New Directions, Eds. Paul Boca and

Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.

[99] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare, History of Computing (eds. Cliff B. Jones,

A.W. Roscoe and Kenneth R. Wood), pages 47–70, London, UK, 2009. Springer. URL: http://www2.imm.dtu.dk/~dibj/bjorner-hoare75-p.pdf.

[100] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014: Australian System Safety Con-

ference, Melbourne, 26–28 May. , Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, December 2014. URL:

http://www.imm.dtu.dk/~dibj/2014/assc-april-bw.pdf.

[101] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. Technical report, Technical University

of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, 2016. Extensive revision of [103]. URL: http://www.imm.dtu.dk/~dibj/2016/demos/faoc--

demo.pdf.

[102] Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. A JAIST Press Research Monograph # 4, 536 pages, March

2009.

[103] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. In Rainbow of Computer Science, Festschrift

for Hermann Maurer on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer,

Heidelberg, Germany, January 2011. URL: http://www2.imm.dtu.dk/~dibj/maurer-bjorner.pdf.

A APPENDIX

A.1 Miscellaneous Example Concepts

A.1.1 Unique Identifier Concepts We define a few concepts related to unique identification.

Extract Parts from Their Unique Identifiers: .

96 From the unique identifier of a part we can retrieve, ℘, the part having

that identifier.

type

96 P = H | L | BC | B | A

value

96 ℘: H UI→H | L UI→L | BC UI→BC | B UI→B | A UI→A

96 ℘(ui) ≡ let p:(H|L|BC|B|A)•p∈ps∧uid P(p)=ui in p end

Unique Identifier Constants .

We can calculate:

97 the set, huis, of unique hub identifiers;

98 the set, luis, of unique link identifiers;

99 the map, hluim, from unique hub identifiers to the set of unique link

iidentifiers of the links connected to the zero, one or more identified

hubs,

100 the map, lhuim, from unique link identifiers to the set of unique hub

iidentifiers of the two hubs connected to the identified link;

101 the set, ruis, of all unique hub and link, i.e., road identifiers;

102 the set, bcuis, of unique bus company identifiers;

103 the set, buis, of unique bus identifiers;

104 the set, auis, of unique private automobile identifiers;

105 the set, vuis, of unique bus and automobile, i.e., vehicle identifiers;

106 the map, bcbuim, from unique bus company identifiers to the set of its

unique bus identifiers; and

107 the (bijective) map, bbcuibm, from unique bus identifiers to their unique

bus company identifiers.

97 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}

98 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}

101 ruis:R UI-set ≡ huis∪luis

99 hluim:(H UI→m L UI-set) ≡

99 [h ui 7→luis|h ui:H UI,luis:L UI-set•h ui∈huis

99 ∧(,luis,)=mereo H(η(h ui))] [cf. Item 24]

100 lhuim:(L+UI→m H UI-set) ≡

100 [l ui 7→huis [cf. Item 25]

100 | h ui:L UI,huis:H UI-set • l ui∈luis

100 ∧ (,huis,)=mereo L(η(l ui))]

102 bcuis:BC UI-set ≡ {uid BC(bc)|bc:BC•bc ∈ bcs}

103 buis:B UI-set ≡ ∪{uid B(b)|b:B•b ∈ bs}

104 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}

105 vuis:V UI-set ≡ buis ∪ auis

106 bcbuim:(BC UI→m B UI-set) ≡

106 [bc ui 7→ buis

106 | bc ui:BC UI, bc:BC •

106 bc∈bcs ∧ bc ui=uid BC(bc)

2018-11-16 02:18. Page 56 of 1–61.

Domain Analysis & Description 57

106 ∧ (, ,buis)=mereo BC(bc)]

107 bbcuibm:(B UI→m BC UI) ≡

107 [b ui 7→ bc ui

107 | b ui:B UI,bc ui:BC ui •

107 bc ui=dombcbuim∧b ui∈bcbuim(bc ui)]

Uniqueness of Part Identifiers: .

We refer to Sect. 5.4 Pg. 29. We must express the following axioms:

108 All hub identifiers are distinct.

109 All link identifiers are distinct.

110 All bus company identifiers are distinct.

111 All bus identifiers are distinct.

112 All private automobile identifiers are distinct.

113 All part identifiers are distinct.

108 card hs = card huis

109 card ls = card luis

110 card bcs = card bcuis

111 card bs = card buis

112 card as = card auis

113 card {huis∪luis∪bcuis∪buis∪auis}

113 = card huis+card luis+card bcuis+card buis+card auis

A.1.2 Further Transport System Attributes Links: We show just a few attributes. .

114 There is a link state. It is a set of pairs, (h f ,ht), of distinct hub identi-

fiers, where these hub identifiers are in the mereology of the link. The

meaning of a link state in which (h f ,ht) is an element is that the link is

open, “green”, for traffic f rom hub h f to hub ht . Link states can have

either 0, 1 or 2 elements.

115 There is a link state space. It is a set of link states. The meaning of

the link state space is that its states are all those the which the link can

attain. The current link state must be in its state space. If a link state

space is empty then the link is (permanently) closed. If it has one ele-

ment then it is a one-way link. If a one-way link, l, is imminent on a

hub whose mereology designates that link, then the link is a “trap”, i.e.,

a “blind cul-de-sac”.

116 Since we can think rationally about it, it can be described, hence it

can model, as an attribute of links a history of its traffic: the recording,

per unique bus and automobile identifier, of the time ordered positions

along the link (from one hub to the next) of these vehicles.

117 The hub identifiers of link states must be in the set, huis, of the road

net’s hub identifiers.

type

114 LΣ = H UI-set [programmable, Df.8 Pg.25]

axiom

114 ∀ lσ :LΣ•card lσ=2

114 ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

type

115 LΩ = LΣ-set [static, Df.1 Pg.25]

116 L Traffic [programmable, Df.8Pg.25]

116 L Traffic = (A UI|B UI) →m (T ×(H UI×Frac×H UI))∗

116 Frac = Real, axiom frac:Fract • 0<frac<1

value

114 attr LΣ: L → LΣ

115 attr LΩ: L → LΩ

116 attr L Traffic: : → L Traffic

axiom

116 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht

116 ⇒ time ordered(ht(ui))

117 ∀ l:L • l ∈ ls ⇒

117 let lσ = attr LΣ(l) in

117 ∀ (huii,huii
′):(H UI×K UI) •

117 (huii,huii
′) ∈ lσ ⇒ {huii

,h′uii
} ⊆ huis end

Bus Companies: .

Bus companies operate a number of lines that service passenger transport along routes of the road net. Each line being serviced by a number of buses.

118 Bus companies have a physical, i.e., “real, actual” time attribute.

119 Bus companies create, maintain, revise and distribute [to the public (not

modeled here), and to buses] bus time tables, not further defined.

type

118 T [inert, Df.3 Pg.25]

119 BusTimTbl [programmable, Df.8 Pg.25]

value

118 attr T: BC → T

119 attr BusTimTbl: BC → BusTimTbl

There are two notions of time at play here: the inert “real” or “actual” time as an inert attribute provided by some outside “agent”; and the calendar, hour, minute

and second time designation occurring in some textual form in, e.g., time tables..

Buses: We show just a few attributes: .

118 Buses have a time attribute.

120 Buses run routes, according to their line number, ln:LN, in the

121 bus time table, btt:BusTimTbl obtained from their bus company, and

and keep, as inert attributes, their segment of that time table.

122 Buses occupy positions on the road net:

a either at a hub identified by some h ui,

b or on a link, some fraction, f:Fract, down an identified link, l ui,

from one of its identified connecting hubs, fh ui, in the direction of

the other identified hub, th ui.

123 Et cetera.

type

118 T [inert, Df.3 Pg.25]

2018-11-16 02:18. Page 57 of 1–61.

58 Dines Bjørner

120 LN [programmable, Df.8 Pg.25]

121 BusTimTbl [inert, Df.3 Pg.25]

122 BPos == atHub | onLink [programmable, Df.8 Pg.25]

122a atHub :: h ui:H UI

122b onLink :: fh ui:H UI×l ui:L UI×frac:Fract×th ui:H UI

122b Fract = Real, axiom frac:Fract • 0<frac<1

123 ...

value

118 attr T: B → T

121 attr BusTimTbl: B → BusTimTbl

122 attr BPos: B → BPos

Private Automobiles: We show just a few attributes: .

We illustrate but a few attributes:

118 Automobiles have a time attribute.

124 Automobiles have static number plate registration numbers.

125 Automobiles have dynamic positions on the road net:

[122a] either at a hub identified by some h ui,

[122b] or on a link, some fraction, frac:Fract down an identified link,

l ui, from one of its identified connecting hubs, fh ui, in the direc-

tion of the other identified hub, th ui.

type

118 T [inert, Df.3 Pg.25]

124 RegNo [static, Df.1Pg.25]

125 APos == atHub | onLink [programmable, Df.8 Pg.25]

122a atHub :: h ui:H UI

122b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI

122b Fract = Real, axiom frac:Fract • 0<frac<1

value

118 attr T: A → T

124 attr RegNo: A → RegNo

125 attr APos: A → APos

Obvious attributes that are not illustrated are those of velocity and acceleration,

forward or backward movement, turning right, left or going straight, etc. The

acceleration, deceleration, even velocity, or turning right, turning left, moving

straight, or forward or backward are seen as command actions. As such they de-

note actions by the automobile — such as pressing the accelerator, or lifting

accelerator pressure or braking, or turning the wheel in one direction or another,

etc. As actions they have a kind of counterpart in the velocity, the acceleration,

etc. attributes.

A.1.3 Discussion: Observe that bus companies each have their own distinct bus time table, and that these are modeled as programmable, Item 118 on the

previous page, Page 57. Observe then that buses each have their own distinct bus time table, and that these are model-led as inert, Item 121 on the preceding page,

Page 57. In Items 135–136b Pg. 59 we shall see how the buses communicate with their respective bus companies in order for the buses to obtain the programmed

bus time tables “in lieu” of their inert one ! In Items 33 Pg. 26 and 116 Pg. 57, we illustrated an aspect of domain analysis & description that may seem, and at least

some decades ago would have seemed, strange: namely that if we can think, hence speak, about it, then we can model it “as a fact” in the domain. The case in point

is that we include among hub and link attributes their histories of the timed whereabouts of buses and automobiles.68

Automobile Behaviour (on a link) .

126 We abstract automobile behaviour on a Link.

a Internally non-deterministically, either

i the automobile remains, “idling”, i.e., not moving, on the link,

ii however, first informing the link of its position,

b or

i if if the automobile’s position on the link has not yet reached the

hub, then

A then the automobile moves an arbitrary small, positive Real-

valued increment along the link

B informing the hub of this,

C while resuming being an automobile ate the new position, or

ii else,

A while obtaining a “next link” from the mereology of the hub

(where that next link could very well be the same as the link

the vehicle is about to leave),

B the vehicle informs both the link and the imminent hub that it

is now at that hub, identified by th ui,

C whereupon the vehicle resumes the vehicle behaviour posi-

tioned at that hub;

c or

d the vehicle “disappears — off the radar” !

126 automobileaui
(a ui,({},ruis,{}),rno)

126 (vp:onL(fh ui,l ui,f,th ui)) ≡

126(a)ii (ba r ch[thui,aui]!atH(lui,thui,nxt lui) ;

126(a)i automobileaui
(a ui,({},ruis,{}),rno)(vp))

126b ⌈⌉

126(b)i (if not yet at hub(f)

126(b)i then

126(b)iA (let incr = increment(f) in

89 let onl = (tl ui,h ui,incr,th ui) in

126(b)iB ba−r ch[l ui,a ui] ! onL(onl) ;

126(b)iC automobileaui
(a ui,({},ruis,{}),rno)

126(b)iC (onL(onl))

126(b)i end end)

126(b)ii else

126(b)iiA (let nxt lui:L UI•nxt lui ∈ mereo H(℘(th ui)) in

126(b)iiB ba r ch[thui,aui]!atH(l ui,th ui,nxt lui) ;

126(b)iiC automobileaui
(a ui,({},ruis,{}),rno)

126(b)iiC (atH(l ui,th ui,nxt lui)) end)

126(b)i end)

126c ⌈⌉

126d stop

126(b)iA increment: Fract → Fract

Hub Behaviour .

68In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so strange: We now know, at least in principle, of technologies

that can record approximations to the hub and link traffic attributes.

2018-11-16 02:18. Page 58 of 1–61.

Domain Analysis & Description 59

We model the hub behaviour vis-a-vis vehicles: buses and automobiles.

127 The hub behaviour

a non-deterministically, externally offers

b to accept timed vehicle positions —

c which will be at the hub, from some vehicle, v ui.

d The timed vehicle hub position is appended to the front of that vehi-

cle’s entry in the hub’s traffic table;

e whereupon the hub proceeds as a hub behaviour with the updated

hub traffic table.

f The hub behaviour offers to accept from any vehicle.

g A post condition expresses what is really a proof obligation: that

the hub traffic, ht′ satisfies the axiom of the endurant hub traffic

attribute Item 33 Pg. 26.

value

127 hubhui
(h ui,(,(luis,vuis)),hω)(hσ ,ht) ≡

127a ⌈⌉⌊⌋

127b { let m = ba r ch[h ui,v ui] ? in

127c assert: m=(,atHub(,h ui,))

127d let ht′ = ht † [h ui 7→ 〈m〉̂ht(h ui)] in

127e hubhui
(h ui,(,(luis,vuis)),(hω))(hσ ,ht′)

127f | v ui:V UI•v ui∈vuis end end }

127g post: ∀ v ui:V UI•v ui ∈ dom ht′⇒time ordered(ht′(v ui))

Link Behaviour .

128 The link behaviour non-deterministically, externally offers

129 to accept timed vehicle positions —

130 which will be on the link, from some vehicle, v ui.

131 The timed vehicle link position is appended to the front of that vehicle’s

entry in the link’s traffic table;

132 whereupon the link proceeds as a link behaviour with the updated link

traffic table.

133 The link behaviour offers to accept from any vehicle.

134 A post condition expresses what is really a proof obligation: that the

link traffic, lt′ satisfies the axiom of the endurant link traffic attribute

Item 116 Pg. 57.

128 linklui
(l ui,(,(huis,vuis),),lω)(lσ ,lt) ≡

128 ⌈⌉⌊⌋

129 { let m = ba r ch[l ui,v ui] ? in

130 assert: m=(,onLink(,l ui, ,))

131 let lt′ = lt † [l ui 7→ 〈m〉 l̂t(l ui)] in

132 linklui
(l ui,(huis,vuis),hω)(hσ ,lt′)

133 | v ui:V UI•v ui∈vuis end end }

134 post: ∀ v ui:V UI•v ui ∈ dom lt′⇒time ordered(lt′(v ui))

Bus Company Behaviour .

We model bus companies very rudimentary. Bus companies keep a fleet of buses. Bus companies create, maintain, distribute bus time tables. Bus companies

deploy their buses to honor obligations of their bus time tables. We shall basically only model the distribution of bus time tables to buses. We shall not cover other

aspects of bus company management, etc.

135 Bus companies non-deterministically, internally, chooses among

a updating their bus time tables

b whereupon they resume being bus companies, albeit with a new bus

time table;

136 “interleaved” with

a offering the current time-stamped bus time table to buses which offer

willingness to received them

b whereupon they resume being bus companies with unchanged bus

time table.

86 bus companybcui
(bcui,(,buis,))(btt) ≡

135a (let btt′ = update(btt,...) in

135b bus companybcui
(bcui,(,buis,))(btt′) end)

136 ⌈⌉

136a (⌈⌉⌊⌋ {bc b ch[bc ui,b ui] ! btt | b ui:B UI•b ui∈buis

136b bus companybcui
(bcui,(,buis,))(attr T ch?,btt) })

We model the interface between buses and their owning companies — as well as the interface between buses and the road net, the latter by almost “carbon-copying”

all elements of the automobile behaviour(s).

137 The bus behaviour chooses to either

a accept a (latest) time-stamped buss time table from its bus company

–

b where after it resumes being the bus behaviour now with the updated

bus time table.

138 or, non-deterministically, internally,

a based on the bus position

i if it is at a hub then it behaves as prescribed in the case of auto-

mobiles at a hub,

ii else, it is on a link, and then it behaves as prescribed in the case

of automobiles on a link.

137 busbui
(b ui,(,(bc ui,ruis),))(ln,btt,bpos) ≡

137a (let btt′ = b bc ch[b ui,bc ui] ? in

137b busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt′,bpos) end)

138 ⌈⌉

138a (case bpos of

138(a)i atH(fl ui,h ui,tl ui) →

138(a)i atH busbui
(b ui,(,(bc ui,ruis),))(ln,btt,bpos),

138(a)ii aonL(fh ui,l ui,f,th ui) →

138(a)ii onL busbui
(b ui,(,(bc ui,ruis),))(ln,btt,bpos)

138a end)

Bus Behaviour at a Hub .

2018-11-16 02:18. Page 59 of 1–61.

60 Dines Bjørner

The atH busbui
behaviour definition is a simple transcription of

the automobileaui
(atH) behaviour definition: mereology expressions be-

ing changed from to , programmed attributes being changed from

atH(fl ui,h ui,tl ui) to (ln,btt,atH(fl ui,h ui,tl ui)), channel references a ui

being replaced by b ui, and behaviour invocations renamed from automobileaui

to busbui
. So formula lines 90–126d below presents “nothing new” !

138(a)i atH busbui
(b ui,(,(bc ui,ruis),))

138(a)i (ln,btt,atH(fl ui,h ui,tl ui)) ≡

90 (ba r ch[b ui,h ui] ! (attr T ch?,atH(fl ui,h ui,tl ui));

91 busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt,bpos))

137a ⌈⌉

92a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in

92a assert: fh ui=h ui ∧ ruis=ruis′

89 let onl = (tl ui,h ui,0,th ui) in

92b (ba r ch[b ui,h ui] ! (attr T ch?,onL(onl)) ‖

92b ba r ch[b ui,tl ui] ! (attr T ch?,onL(onl))) ;

92c busbui
(b ui,({},(bc ui,ruis),{}))

92c (ln,btt,onL(onl)) end end)

126c ⌈⌉

126d stop

Bus Behaviour on a Link .

The onL busbui
behaviour definition is a similar simple transcription of the

automobileaui
(onL) behaviour definition. So formula lines 90–126d below

presents “nothing new” !

139 – this is the “almost last formula line” !

138(a)ii onL busbui
(b ui,(,(bc ui,ruis),))

138(a)ii (ln,btt,bpos:onL(fh ui,l ui,f,th ui)) ≡

90 (ba r ch[b ui,h ui] ! (attr T ch?,bpos);

91 busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt,bpos))

137a ⌈⌉

126(b)i (if not yet at hub(f)

126(b)i then

126(b)iA (let incr = increment(f) in

89 let onl = (tl ui,h ui,incr,th ui) in

126(b)iB ba−r ch[l ui,b ui] ! onL(onl) ;

126(b)iC busbui
(b ui,({},(bc ui,ruis),{}))

126(b)iC (ln,btt,onL(onl))

126(b)i end end)

126(b)ii else

126(b)iiA (let nl ui:L UI•nxt lui∈mereo H(℘(th ui)) in

126(b)iiB ba r ch[thui,b ui]!atH(l ui,th ui,nxt lui) ;

126(b)iiC busbui
(b ui,({},(bc ui,ruis),{}))

126(b)iiC (ln,btt,atH(l ui,h ui,nxt lui))

126(b)iiA end)end)

126c ⌈⌉

139 stop

A.2 Example Index

Sorts .

Part Sorts

A 10, 17

B 9, 17

BC 8, 17

BC 9, 17

FV 3, 16

H 6, 17

L 7, 17

PA 5b, 16

RN 2, 16

sA 10, 17

SBC 5a, 16

sBC 8, 17

SH 4a, 16

sH 6, 17

SL 4b, 16

sL 7, 17

UoD 1, 16

Types .

Attribute Types

A: A Hi 43, 30

A: APos==atHub|onLink [programmable] 125,

57

A: RegNo [static] 118, 57

A: T [inert] 118, 57

B: BPos [programmable] 122a, 57

B: BusTimTbl [programmable] 121, 57

B: LN [programmable] 120, 57

B: T [inert] 122a, 57

BC: BusTimTbl [programmable] 119, 57

BC: T [inert] 118, 57

H: HΩ [static] 32, 28

H: HΣ [programmable] 31, 28

H: H Traffic [programmable] 33, 28

H: H Trf [programmable] 33, 30

L: LΩ [static] 114, 56

L: LΣ [programmable] 114, 56

L: L Traffic [programmable] 116, 56

L: L Trf [programmable] 116, 30

Mereology Types

A Mer=R UI-set 28, 25

B Mer=BC UI×R UI-set 27, 25

BC Mer=B UI-set 26, 25

H Mer=V UI-set×L UI-set 24, 25

L Mer=V UI-set×H UI-set 25, 25

Types

A: atHub::H UI 122a, 57

A: Frac=Real 122b, 57

A: onLink::H UI×L UI×Fract×H UI122b, 57

B: atHub::H UI 122a, 57

B: Fract=Real 122b, 57

B: onLink::H UI×L UI×Fract×H UI122b, 57

Unique Identifier Types

A UI 17, 23

B UI 17, 23

BC UI 17, 23

H UI 15, 23

H UI 16, 23

L UI 16, 23

L UI 17, 23

R UI 16, 23

R UI=H UI|L UI 16, 23

V UI 17, 23

V UI=B UI|A UI 17, 23

Functions .

2018-11-16 02:18. Page 60 of 1–61.

Domain Analysis & Description 61

Extract Functions

℘ 96, 55

Observe Attributes

A: attr APos 125, 57

A: attr Intent 41, 30

A: attr RegNo 124, 57

A: attr T 118, 57

B: attr BPos 122, 57

B: attr BusTimTbl 121, 57

B: attr T 118, 57

BC: attr BusTimTbl 119, 57

BC: attr T 118, 57

H: attr HΩ 32, 28

H: attr HΣ 31, 28

H: attr H Traffic 33, 28

H: attr Intent 41, 30

L: attr Intent 41, 30

L: attr LΣ 114, 56

L: attr L Traffic 116, 56

Observe Mereology

mereo A 28, 25

mereo B 27, 25

mereo BC 26, 25

mereo H 24, 25

mereo L 25, 25

Observe Part Sorts

obs BC 5a, 16

obs FV 3, 16

obs Ms 9, 17

obs PA 5b, 16

obs RN 2, 16

obs sA 10, 17

obs sBC 8, 17

obs SH 4a, 16

obs sH 6, 17

obs SL 4b, 16

obs sL 7, 17

Observe Unique Identifiers

uid A 18e, 23

uid B 18d, 23

uid BC 18c, 23

uid H 18a, 23

uid L 18b, 23

Other Functions

time ordered 33, 28

System Initialisation Function

initial system: Unit → Unit 95, 46

Values .

Part Constants

as 66, 34

bcs 63, 34

bs 64, 34

hls 62, 34

hs 60, 34

ls 61, 34

ps 67, 34

Unique Id. Constants

auis 104, 56

buis 103, 56

bbcuibm 107, 56

bcuis 102, 56

bcbuim 106, 56

huis 97, 56

hluim 99, 56

luis 98, 56

lhuim 100, 56

ruis 101, 56

vuis 105, 56

Channels .

Channel Message Types

BC B Msg=(T×BusTimTbl) 72, 37

H L Msg 71, 37

HL Msg=H L Msg|L F Msg 71, 37

L H Msg 71, 37

V R Msg=(T×(BPos|APos)) 73, 37

Channels

bc b ch[i,j]:BC B Msg 76, 37

hl ch[i,j]:HL Msg 75, 37

v r ch[i,j]:V R Msg 77, 37

Behaviours .

automobileaui
88, 44

bus companybcui
86, 43

busbui
87, 43

hubhui
84, 43

linklui
85, 43

2018-11-16 02:18. Page 61 of 1–61.

62 Dines Bjørner

Contents

Abstract 1

1 INTRODUCTION 1

1.1 Foreword 1

1.2 An Engineering and a Science Viewpoint 2

1.2.1 A Triptych of Software Development 2

1.2.2 Domain Science & Engineering: 2

1.3 Some Issues: Metaphysics, Epistemology, Mereology and Ontology 2

1.3.1 Kai Sørlander’s Philosophy: 3

1.4 The Precursor 4

1.5 What is this Paper About ? 4

1.6 Structure of this Paper 4

2 ENTITIES: ENDURANTS AND PERDURANTS 5

2.1 A Generic Domain Ontology – A Synopsis 5

2.2 Universes of Discourse 6

2.3 Entities 7

2.4 Endurants and Perdurants 7

3 ENDURANTS: ANALYSIS OF EXTERNAL QUALITIES 8

3.1 Discrete and Continuous Endurants 8

3.2 Discrete Endurants 9

3.2.1 Physical Parts 9

3.2.2 Living Species 9

3.2.3 Structures 9

3.3 Physical Parts 10

3.3.1 Natural Parts 10

3.3.2 Artifacts 10

3.3.3 Parts 11

3.3.4 Atomic and Composite Parts: 11

3.3.5 Atomic Parts 11

3.3.6 Composite Parts 11

3.4 Living Species 12

3.4.1 Plants 12

3.4.2 Animals 12

3.4.3 Humans 13

3.5 Components 13

3.6 Continuous Endurants ≡ Materials 13

3.7 Artifacts 14

3.8 States 14

4 ENDURANTS: THE DESCRIPTION CALCULUS 14

4.1 Parts: Natural or Man-made 14

4.1.1 On Discovering Endurant Sorts 14

4.1.2 Endurant Sort Observer Functions: 15

4.2 Concrete Part Types 17

4.3 On Endurant Sorts 18

4.3.1 Derivation Chains 18

4.3.2 No Recursive Derivations: 18

4.3.3 Names of Part Sorts and Types: 18

4.4 Components 18

4.5 Materials 19

5 ENDURANTS: ANALYSIS & DESCRIPTION OF INTERNAL QUALITIES 20

5.1 Unique Identifiers 20

5.2 Mereology 21

5.2.1 Part Relations: 21

5.2.2 Part Mereology: Types and Functions 21

5.2.3 Formulation of Mereologies: 23

5.2.4 Some Modelling Observations: 23

5.3 Attributes 23

5.3.1 Technical Issues: 23

5.3.2 Basic Principles for Ascribing Attributes: 27

5.4 Some Axioms and Proof Obligations 29

2018-11-16 02:18. Page 62 of 1–61.

Domain Analysis & Description 63

5.5 Discussion of Endurants 30

6 A TRANSCENDENTAL DEDUCTION 30

6.1 An Explanation 30

6.2 Classical Transcendental Deductions 31

6.2.1 Space: 31

6.2.2 Time: 31

6.3 Some Special Notation 32

7 SPACE AND TIME 32

7.1 Space 32

7.1.1 General: 32

7.1.2 Space Motivated Philosophically 32

7.1.3 Space Types 32

7.1.4 Spatial Observers 33

7.2 Time 33

7.2.1 General 33

7.2.2 Time Motivated Philosophically 33

7.2.3 Time Values 33

7.2.4 Temporal Observers 34

7.2.5 Models of Time: 34

7.2.6 Spatial and Temporal Modelling: 34

7.3 Whither Attributes ? 34

8 PERDURANTS 34

8.1 States, Actors, Actions, Events and Behaviours: A Preview 35

8.1.1 Actors, Actions, Events, Behaviours and Channels 35

8.1.2 Time Considerations 35

8.1.3 Actors 35

8.1.4 Discrete Actions 36

8.1.5 Discrete Events 36

8.1.6 Discrete Behaviours 36

8.2 Channels and Communication 36

8.2.1 The CSP Story: 36

8.2.2 From Mereologies to Channel Declarations: 38

8.2.3 Continuous Behaviours: 39

8.3 Perdurant Signatures 39

8.3.1 Action Signatures and Definitions: 39

8.3.2 Event Signatures and Definitions: 40

8.3.3 Discrete Behaviour Signatures 40

8.3.4 Attribute Access: 41

8.3.5 Calculating In/Output Channel Signatures: 41

8.4 Discrete Behaviour Definitions 42

8.5 Running Systems 46

8.6 Concurrency: Communication and Synchronisation 47

8.7 Summary and Discussion of Perdurants 47

8.7.1 Summary 47

8.7.2 Discussion 47

9 CLOSING 47

9.1 What Have We Achieved ? 47

9.2 The Four Languages of Domain Analysis & Description 48

9.2.1 The Analysis Language: 49

9.2.2 The Description Language: 49

9.2.3 The Language of Explaining Domain Analysis & Description: 50

9.2.4 The Language of Domains: 50

9.2.5 An Analysis & Description Process: 50

9.3 Relation to Other Formal Specification Languages 51

9.4 Two Frequently Asked Questions 51

9.5 On How to Pursue Domain Science & Engineering 52

9.6 Related Work 52

9.7 Tony Hoare’s Summary on ‘Domain Modelling’ 52

References 53

A APPENDIX 56

A.1 Miscellaneous Example Concepts 56

2018-11-16 02:18. Page 63 of 1–61.

64 Dines Bjørner

A.1.1 Unique Identifier Concepts 56

A.1.2 Further Transport System Attributes 57

A.1.3 Discussion: 58

A.2 Example Index 60

Contents 62

2018-11-16 02:18. Page 64 of 1–61.

