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Abstract. A personal account is given of my scientific work since I re-
tired 10 years ago. This work centers around a new dimension to comput-
ing science: that of domain science & engineering. By a domain we shall
understand a rationally describable segment of a human assisted reality,
i.e., of the world, its physical parts, and living species. These are endurants
(“still”), existing in space, as well as perdurants (“alive”), existing also
in time. Emphasis is placed on “human-assistedness”, that is, that there
is at least one (man-made) artifact and that humans are a primary cause
for change of endurant states as well as perdurant behaviours. Section 8
brings my laudatio.

1 Introduction

I survey recent work in the area of domain science & engineering1.

A strict interpretation of the triptych of software engineering dogma
suggests that software development “ideally” proceeds in three phases:

– First a phase of domain engineering in which an analysis of the appli-
cation domain leads to a description of that domain.

– Then a phase of requirements engineering in which an analysis of the
domain description leads to a prescription of requirements to software
for that domain.

– And, finally, a phase of software design in which an analysis of the
requirements prescription leads to software for that domain.

1 It is appropriate, at this point, to state that my use of the term ‘domain’ is not related
to that of Domains and Processes such as in the Proceedings of 1st International

Symposium on Domain Theory, Shanghai, China, October 1999, eds.: Klaus Keimel,

Zhang Guo-Qiang, Liu Ying-Ming and Chen Yi-Chang. Springer Science + Business

Media, New York, 2001.
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We see domain science & engineering as a discipline that need not be jus-
tified as a precursor to requirements engineering. Just as physicists study
nature, irrespective of engineering, so we can study manifest domains irre-
spective of computing.

1.1 Recent Papers and Reports

Over the last decade I have iterated a number of investigations of aspects
of this triptych dogma. This has resulted in a number of papers (and
revised reports):

– Manifest Domains: Analysis & Description (2018, 2014) [29, 35]
– Domain Facets: Analysis & Description (2018. 2008) [31, 12]
– From Domains to Requirements (2018, 2008) [25, 8]
– Formal Models of Processes and Prompts (2014,2017) [23, 20]
– To Every Domain Mereology a CSP Expression (2017, 2009) [33, 10]
– Domains: Their Simulation, Monitoring and Control (2008) [24, 16]
– A Philosophy of Domain Science & Engineering (2018) [30]

[30], a report, is the most recent.

1.2 Recent Experiments

Applications of the domain science and engineering outlined in [29]–[8]
are exemplified in reports and papers on experimental domain analysis &
description. Examples are:

– Urban Planning [41],
– Documents [28],
– Credit Cards [22],
– Weather Information Systems [26],
– The Tokyo Stock Exchange [34],
– Pipelines [18],

– Road Transportation [19],

– Web/Transaction-based Software [14],

– “The Market” [4],

– Container [Shipping] Lines [7],

– Railway Systems [3, 37, 5, 51, 56].

1.3 My Emphasis on Software Systems

An emphasis in my work has been on research into and experiments with
application areas that required seemingly large scale software. Not on
tiny, beautiful, essential data structures and algorithms.

I first worked on the proper application of formal methods in software
engineering at the IBM Vienna Laboratory in the early 1970s. That was
to the formalisation of the semantics of IBMs leading programming lan-
guage then, PL/I , and to a systematic development of a compiler for that
language. The latter never transpired.
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Instead I got the chance to formulate the stages of development of a
compiler from a denotational semantics description to so-called “running
code” [2, 1977]. That led, from 1978 onward, to two MSc students and a
colleague and I working on a formal description of the CCITT Communi-
cations High Level Language, CHILL and its compiler [1, 46]. And that led,
in 1980, to five MSc students of ours producing a formal description of a
semantics for the US DoD Ada programming language, Ada [40]. And that
led to the formation of Dansk Datamatik Center [38] which embarked on
the CHILL and Ada compiler developments [42, 50]. To my knowledge that
project which was on time, at budget, and with a history of less that 3% cost
of original budget for subsequent error correction over the first 20 years of
use of that compiler was a first, large, successful example of the systematic
use of formal methods in large scale (42 man years) software development.

1.4 How Did We Get to Domain Science & Engineering ?

So that is how we came from the semantics of programming languages to
the semantics of human-centered, manifest application domain software
development. Programming language semantics has to do with the mean-
ing of abstract concepts such as programs, procedures, expressions, state-
ments, GOTOs, labels, etc. Domain semantics, for manifest domains, in
so far as we can narrate and formalize it, or them, must capture some
“meanings” of the manifest objects that we can touch and see, of the
actions we perform on them, and of the sentences by means of which we
talk about those phenomena in the domain.

1.5 Preliminaries

We need formulate a few characterisations.

Method & Methodology: By a method I understand a set of principles
for selecting and applying techniques and tools for constructing a manifest
or an abstract artifact.

By methodology I understand the study and knowledge of methods.

My contributions over the years have contributed to methods for software
design and, now, for the last many years, methods for domain analysis &
description.

In my many experiments with domain analysis & description, cf.
Sect. 5 on Page 22, I have found that I often let a so-called “streak of
creativity” enter my analysis & description – and, as a result I get stuck in
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my work. Then I recall, ah !, but there are these principles, techniques and
tools for analysis & description, and once I apply them, “strictly”, i.e.,
methodically, I am back on the track, and, in my view, a more beautiful
description emerges !

Computer & Computing Sciences: By computer science I understand the
study and knowledge about the things that can exist inside computing
devices.

By computing science I understand the study and knowledge about
how to construct the things that can exist inside computing devices. Com-
puting science is also often referred to as programming methodology. My
work is almost exclusively in the area of computing science.

A Triptych of Informatics: Before software can be designed we must
have a firm grasp on its/their requirements. Before requirements can be
prescribed we must have a firm grasp on their basis: the domain. We
therefore see informatics as consisting of

– domain science & engineering,

– requirements science & engineering, and

– programming methodology.

This paper contributes to the establishment of domain science & engi-
neering, while hinting that requirements science & engineering can benefit
from the relation between the two [25, 8]. How much of a domain must
we analyse & describe before we attempt the second and third phases of
the triptych ?. When this question is raised, after a talk of mine over the
subject, and by a colleague researcher & scientist I usually reply: As large
a domain as possible ! This reply is often met by this comment (from the
audience) Oh ! No, that is not reasonable ! To me that comment shows
either or both of: the questioner was not asking as a researcher/scientist,
but as an engineer. Yes, an engineer needs only analyse & describe up
to and slightly beyond the “border” of the domain-of-interest for a cur-
rent software development – but a researcher cum scientist is, of course,
interested not only in a possible requirements engineering phase beyond
domain engineering, but is also curious about the larger context of the
domain, in possibly establishing a proper domain theory, etc.
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1.6 The Papers

IM2HO I consider the first of the papers reviewed, [29], my most impor-
tant paper. It was conceived of last2, after publication of three of the other
papers [12, 8, 16]. Experimental evidence then necessitated extensive re-
visions to these other papers, resulting in [31, 25, 24].

1.7 Structure of This Paper

Section 2 reviews [29, Analysis & Description Prompts], and Sect. 3 reviews
related science and methodology papers. [31, Domain Facets] (Sect. 3.1),
[25, From Domains to Requirements] (Sect. 3.2), [23, An Analysis & De-
scription Process Model ] (Sect. 3.3), and [33, From Mereologies to Lambda-
Expressions] (Sect. 3.4), Finally, Sect. 4 briefly reviews [30, A Philosophy
Basis] work-in-progress.

2 Manifest Domains: Analysis & Description [29]

This work grew out of many years of search for principles, techniques and
tools for systematically analyzing and describing manifest domains. By
a manifest domain we shall understand a domain whose entities we can
observe and whose endurants we can touch !

2.1 A Domain Ontology

Parts, Components and Materials: The result became a calculus of anal-
ysis and description prompts3. These prompts are tools that the domain
analyser & describer uses. The domain analyser & describer is in the do-
main, sees it, can touch it, and then applies the prompts, in some orderly
fashion, to what is being observed. So, on one hand, there is the neces-
sarily informal domain, and, on the other hand, there are the seemingly
formal prompts and the “suggestions for something to be said”, i.e., writ-
ten down: narrated and formalised. Figure 1 on the next page suggests
a number of analysis and description prompts. The domain analyser &
describer is “positioned” at the top, the “root”. If what is observed can
be conceived and described then it is an entity . If it can be described as a
“complete thing” at no matter which given snapshot of time then it is an
endurant. If it is an entity but for which only a fragment exists if we look

2 Publication [13, 15] is a predecessor of [35] which is then a predecessor of [29].
3 Prompt, as a verb: to move or induce to action; to occasion or incite; inspire; to assist
(a person speaking) by ”suggesting something to be said”.
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at or touch them at any given snapshot in time, then it is a perdurant.
Endurants are either discrete or continuous. With discrete endurants we
can choose to associate, or to not associate mereologies4. If we do we shall
refer to them as parts, else we shall call them components. The continuous
endurants we shall also refer to as (gaseous or liquid) materials. Parts are

Phenomena of a Universe of Discourse

Entities

Endurants Perdurants

ActorsEvents

Channels Behaviours

Actions

Components

Mereologies

Attributes

Discrete

Structures

ArtifactsNaturals
Plants

Part−set

Unique Identification

CompositeAtomic Atomic

= Describable Indescribables

Physical
Living Species

Animals

Parts

Materials = Continuous Endurants

A Transcendental injection of endurant properties into perdurant values

Transcendensce

MS = M1|...|Mn
MS−set

CS=C1|...|Cm
CS−set

P

P−set

E1,...,En

E1,...,En

E

Humans

Fig. 1. Domain Ontology

either atomic or composite and all parts have unique identifiers, mereology
and attributes. Atomic parts may have one or more components and/or
one or more materials

If the observed part, p:P , is composite then we can observe the part
sorts, P1, P2, ..., Pm of p: observe part sorts(p) which yields the informal
and formal description:Narrative: ... Formal: type P1, P2, ..., Pm, value
obs Pi: P → Pi, repeated for all m part sorts Pis” !

Part sorts may have a concrete type: has concrete type(p) in which
case observe concrete part type(p) yields Narrative: ... Formal: type:

T = P -set, value obs T: P →K-set – whereK-set is one of the concrete
type forms, and where K is some sort.

Materials have types (i.e., are of sorts): Mi. Observing the (one) mate-
rial, of type M , of an endurant e of sort E is expressed as obs materials(e)

4 — ‘mereology’ will be explained next
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which yields some narrative and some formal description text: Narrative:

... Formal: type M value obs M: E → M . The narrative text (...) nar-
rates what the formal text expresses5.

Components, i.e., discrete endurants for whom we do not consider pos-
sible mereologies or attributes, can be observed from materials, m : M , or
are just observed of discrete endurants, e : E: obs components(em) which
yields the informal and formal description: Narrative: ... Formal: type:

C1, C2, ..., Cn value obs Ci: (E|M) → Ci repeated for all n component
sorts Cs” to the formal text !

• • •

The above is a pedagogic simplification. As shown in Fig. 1 on the facing
page there are not only parts. There are also living species: plants and
animals, including humans. And, because there are humans in the domains,
parts and materials are either natural or artifacts (man-made). Humans
create artifacts, usually with an intent. Humans have intents, and artifacts
“possess” intents. Intents are like attributes, see below.

• • •

We have just summarised the analysis and description aspects of en-
durants in extension (their “form”). We now summarise the analysis and
description aspects of endurants in intension (their “contents”). There are
three kinds of intensional qualities associated with parts, two with com-
ponents, and one with materials. Parts and components, by definition,
have unique identifiers; parts have mereologies, and all endurants have
attributes.

Unique identifiers: Unique identifiers are further undefined tokens that
uniquely identify parts and components. The description language ob-
server uid P , when applied to parts p:P yields the unique identifier, π:Π,
of p. The observe part sorts(p) invocation yields the description text: ...
[added to the narrative and] type Π1,Π2, ...,Πm; value uid Πi : Pi→Πi,
repeated for all m part sorts Pis and added to the formalisation.

Mereology: Mereology is the study and knowledge of parts and part rela-
tions. The mereology of a part is an expression over the unique identifiers

5 – not how it expresses it, as, here, in the RAISE [44] Specification Language, RSL
[43].
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of the (other) parts with which it is related, hence mereo P: P→E(Πj,-
...,Πk), E(Πj , ...,Πk) is a type expression. The observe part sorts(p) invo-
cation yields the description text: ... [added to the narrative and] value
mereo Pi : Pi→Ei(Πij , ...,Πik) [added to the formalisation]

Example: The mereologies, (i, o), of pipe units in a pipeline system thus
express, for each kind of pipe unit, whether it is a well, a linear pipe, a
fork, a join, a pump, a valve, or a sink, the identities of the zero, one
or two pipe units that it is “connected” to on the input, i, respectively
the output, o, side: for well (0, 1), for pipe (1, 1), for fork (1, 2), for join
(2, 1), for valve (1, 1), for pump (1, 1), for sink (1, 0) units

Attributes: Attributes are the remaining qualities of endurants. The anal-
ysis prompt obs attributes applied to an endurant yields a set of type
names, A1, A2, ..., At, of attributes. They imply the additional description
text: Narrative: ... Formal: type A1, A2, ..., At value attr Ai: E → Ai

repeated for all t attribute sorts Ais ! Examples: Typical attributes of
a person are Gender, Weight, Height, Birth date, etcetera. Dynamic and
static attributes of a pipe unit include current flow into the unit, per input,
if any, current flow out of the unit, per output, if any current leak from the
unit, guaranteed maximum flow into the unit, guaranteed maximum flow out
of the unit, guaranteed maximum leak from the unit, etcetera. Michael A.
Jackson [49] categorizes attributes as either static or dynamic, with dy-
namic attributes being either inert, reactive or active. The latter are then
either autonomous, biddable or programmable. This categorization has a
strong bearing on how these (f.ex., part) attributes are dealt with when
now interpreting parts as behaviours.

2.2 From Manifest Parts to Domain Behaviours

[35] then presents an interpretation, τ , which to manifest parts associate
behaviours. These are then specified as CSP [48] processes. This interpre-
tation amounts to a transcendental deduction !

The Transcendental Deduction Idea — by means of an example: The
term train can have the following “meanings”: The train, as an endurant,
parked at the railway station platform, i.e., as a composite part. The train,
as a perdurant, as it “speeds” down the railway track, i.e., as a behaviour.
The train, as an attribute,
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Atomic Parts: Atomic parts translate into their core behaviours: bpatom
core

.
The core behaviours are tail recursively defined, that is, are cyclic. bpatom

core
(...)

≡ (.... ; bpatom
core

(...)) where (...) indicate behaviour (i.e., function) arguments.

Composite Parts: A composite part, p, “translates”, τ , into the parallel
composition of a core behaviour: bpcomp

core
(...), for part p, with the parallel

composition of the translations, τ , for each of the parts, p1, p2, ..., pm, of p,
(τ(p1)‖τ(p2)‖...‖τ(pm)) that is: τ(p)≡bpcomp

core
(...)‖(τ(p1)‖τ(p2)‖...‖τ(pm))

Concrete Parts: The translation of concrete part set, t, types, t : T =
K − set, is τ(t)≡‖{τ(ki)|ki:K•ki∈t}.

Translation of Part Qualities (...): Part qualities, that is: unique identi-
fiers, mereologies and attributes, are translated into behaviour arguments
– of one kind or another, i.e., (...). Typically we can choose to index be-
haviour names, b by the unique identifier, id, of the part based on which
they were translated, i.e., bid. Mereology values are usually static, and can,
as thus, be treated like we treat static attributes (see next), or can be set
by their behaviour, and are then treated like we treat programmable at-
tributes (see next), i.e., (...). Static attributes become behaviour definition
(body) constant values. Inert, reactive and autonomous attributes become
references to channels, say ch dyn, such that when an inert, reactive and
autonomous attribute value is required it is expressed as ch dyn ?. Pro-
grammable and biddable attributes become arguments which are passed on
to the tail-recursive invocations of the behaviour, and possibly updated
as specified [with]in the body of the definition of the behaviour, i.e., (...).

2.3 Contributions of [29] – and Open Problems

For the first time we have, now, the beginnings of a calculus for developing
domain descriptions. In [13, 15] we speculate on laws that these analysis
& description prompts (i.e., their “meanings”) must satisfy. With this
calculus we can now systematically develop domain descriptions [41–56].
I am right now working on understanding issues of implicit/explicit se-
mantics6 Since December 2017 I have revised [35] extensively: simplified
it, extended it, clarified some issues, provided analysis & description tech-
niques for channels and arguments, et cetera. The revised paper is [29]7.

6 Cf. http://impex2017.loria.fr/
7 You can find it on the Internet: http://www.imm.dtu.dk/˜dibj/2018/tosem/Bjorner-
TOSEM.pdf.
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3 Related Papers

3.1 Domain Facets: Analysis & Description [31, 12]

Overview By a domain facet we shall understand one amongst a finite
set of generic ways of analyzing a domain: a view of the domain, such
that the different facets cover conceptually different views, and such that
these views together cover the domain.

[31] is an extensive revision of [12]. Both papers identify the following
facets: intrinsics, support technologies, rules & regulations, scripts, license
languages, management & organisation, and human behaviour. Recently I
have “discovered” what might be classified as a domain facet: classes of
attribute semantics: the diversity of attribute semantics resolving the issue
of so-called implicit and explicit semantics. I shall not cover this issue in
this talk.

Intrinsics: By domain intrinsics we shall understand those phenomena
and concepts of a domain which are basic to any of the other facets,
with such domain intrinsics initially covering at least one specific, hence
named, stakeholder view.

Support Technology: By a domain support technology we shall under-
stand ways and means of implementing certain observed phenomena or
certain conceived concepts.

Rules and Regulations: By a domain rule we shall understand some text
(in the domain) which prescribes how people or equipment are expected
to behave when dispatching their duties, respectively when performing
their functions.

By a domain regulation we shall understand some text (in the domain)
which prescribes what remedial actions are to be taken when it is decided
that a rule has not been followed according to its intention.

Scripts: By a domain script we shall understand the structured, almost,
if not outright, formally expressed, wording of a procedure on how to
proceed, one that possibly has legally binding power, that is, which may
be contested in a court of law.
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Management & Organisation: By domain management we shall under-
stand such people (such decisions) (i) who (which) determine, formulate
and thus set standards (cf. rules and regulations) concerning strategic,
tactical and operational decisions; (ii) who ensure that these decisions
are passed on to (lower) levels of management and to floor staff; (iii) who
make sure that such orders, as they were, are indeed carried out; (iv) who
handle undesirable deviations in the carrying out of these orders cum deci-
sions; and (v) who “backstops” complaints from lower management levels
and from “floor” staff.

By domain organisation we shall understand (vi) the structuring of man-
agement and non-management staff “overseeable” into clusters with “tight”
and “meaningful” relations; (vii) the allocation of strategic, tactical and
operational concerns to within management and non-management staff
clusters; and hence (viii) the “lines of command”: who does what, and
who reports to whom, administratively and functionally.

Human Behaviour: By domain human behaviour we shall understand
any of a quality spectrum of carrying out assigned work: (i) from careful,
diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work,
(iv) to outright criminal pursuit.

Contributions of [31, 12] – and Open Problems: [31] now covers tech-
niques and tools for analyzing domains into these facets and for their
modeling. The issue of license languages are particularly intriguing. The
delineations between the listed8 facets is necessarily not as precise as one
would wish: we are dealing with an imprecise world, that of (manifest)
domains. License languages are treated in [31].

3.2 From Domains to Requirements [25, 8]

Overview: [25] outlines a calculus of refinements and extensions which
applied to domain descriptions yield requirements prescriptions. As for
[35] the calculus is to be deployed by human users, i.e., requirements
engineers. Requirements are for a machine, that is, the hardware and
software to be developed from the requirements. A distinction is made
between domain, interface and machine requirements. I shall briefly cover
these in another order.

8 We have omitted a facet: license languages.
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Machine requirements: Machine requirements are such which can be ex-
pressed using only technical terms of the machine: performance and de-
pendability accessibility, availability, integrity, reliability, safety, security
and robustness). and development requirements development process,
maintenance, platform, management and documentation). Within main-
tenance requirements there are adaptive, corrective, perfective, preven-
tive, and extensional requirements. Within platform requirements there
are development, execution, maintenance, and demonstration require-
ments. Etcetera. [25] does not cover these. See instead [6, Sect. 19.6].

Domain Requirements: Domain requirements are such which can be ex-
pressed using only technical terms of the domain. The are the following
domain-to-requirements specification transformations: projection, instan-
tiation, determination, extension and fitting. I consider my work on these
domain requirements issues the most interesting.

1: Projection: By a domain projection we mean a subset of the domain
description, one which projects out all those endurants: parts, materials
and components, as well as perdurants: actions, events and behaviours
that the stake-holders do not wish represented or relied upon by the
machine.

2: Instantiation: By domain instantiation we mean a refinement of the par-
tial domain requirements prescription (resulting from the projection step)
in which the refinements aim at rendering the endurants: parts, materials
and components, as well as the perdurants: actions, events and behaviours
of the domain requirements prescription more concrete, more specific.

3: Determination: By domain determination we mean a refinement of the
partial domain requirements prescription, resulting from the instantiation
step, in which the refinements aim at rendering the endurants: parts,
materials and components, as well as the perdurants: functions, events
and behaviours of the partial domain requirements prescription less non-
determinate, more determinate.

4: Extension: By domain extension we understand the introduction of en-
durants and perdurants that were not feasible in the original domain, but
for which, with computing and communication, and with new, emerging
technologies, for example, sensors, actuators and satellites, there is the
possibility of feasible implementations, hence the requirements, that what
is introduced becomes part of the unfolding requirements prescription.
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5: Fitting: Often a domain being described “fits” onto, is “adjacent” to,
“interacts” in some areas with, another domain: transportation with lo-
gistics, health-care with insurance, banking with securities trading and/or
insurance, and so on. The issue of requirements fitting arises when two or
more software development projects are based on what appears to be the
same domain. The problem then is to harmonize the two or more software
development projects by harmonizing, if not too late, their requirements
developments.

Interface Requirements: Interface requirements are such which can be ex-
pressed only by using technical terms of both the domain and the machine.
Thus interface requirements are about that which is shared between the
domain and the machine: endurants that are represented in machine stor-
age as well as co-existing in the domain; actions and behaviours that are
performed while interacting with phenomena in the domain; etc.

Contributions of [25, 8]: [25] does not follow the “standard division”
of requirements engineering into systems and user requirements etcetera.
Instead [25] builds on domain descriptions and eventually gives a rather
different “division of requirements engineering labour” – manifested in
the domain, the interface and the machine requirements paradigms, and
these further into sub-paradigms, to wit: projection, instantiation, deter-
mination, extension and fitting. Some readers have objected to my use
of the term refinement for the domain-to-requirements transformations.

3.3 Formal Models of Processes and Prompts [23, 20]

Overview: [35] outlines a calculus of prompts, to be deployed by human
users, i.e., the domain analyzers & describers. That calculus builds on the
assumption that the domain engineers build, in their mind, i.e., conceptu-
ally, a syntactical structure of the domain description, although, what the
domain engineers can “see & touch” are semantic objects. A formal model
of the analysis and description prompt process and of the meanings of the
prompts therefore is split into a model for the process and a model of the
syntactic and semantics structures.

A Summary of Analysis and Description Prompts

The Analysis Prompts :
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[a] is entity

[b] is endurant

[c] is perdurant

[d] is discrete

[e] is continuous

[f] is part

[g] is component

[h] is material

[i] is atomic

[j] is composite

[k] has concrete type

[l] has mereology

[m] has components

[n] has material

[o] has parts

The Description Prompts :

[1] observe part sorts

[2] observe concrete type

[3] observe unique identifier

[4] observe mereology

[5] observe attributes

[6] observe component sorts

[7] observe part material sort

[8] observe material part sorts

A Glimpse of the Process Model

Process “Management”: Domain description involves the “generation”
and use of an indefinite number of type (sort) names, Nm. The global,
assignable variables αps and νps serve to hold the names of the sorts to be
analysed, respectively the names of the sorts for which unique identifiers,
mereologies and attributes have to be analysed and described.

type

Nm = PNm | MNm | KNm
variable

αps := [∆nm ] type Nm-set

νps := [∆nm ] type Nm-set

value

sel and remove Nm: Unit → Nm
sel and remove Nm() ≡

let nm:Nm • nm ∈ νps in
νps := νps \ {nm} ; nm end; pre: νps 6= {}

Some Process Functions: The analyse and describe endurants function is
the major function. It invokes a number of other analysis & description
functions. We illustrate two:

value

analyse and describe endurants: Unit → Unit

analyse and describe endurants() ≡
while ∼is empty(νps) do

let nm = sel and remove Nm() in
analyse and describe endurant sort(nm,ι:nm) end end ;

for all nm:PNm • nm ∈ αps do if has mereology(nm,ι:nm)
then observe mereology(nm,ι:nm) end end
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for all nm:Nm • nm ∈ αps do observe attributes(nm,ι:nm) end

analyse and describe endurant sort: NmVAL → Unit

analyse and describe endurant sort(nm,val) ≡
is part(nm,val) → analyse and describe part sorts(nm,val),
is material(nm,val) → observe material part sort(nm,val),
is component(nm,val) → observe component sort(nm,val)

A Glimpse of the Syntax and Semantics Models We suggest a syntax
and a semantics of domain descriptions.

The Syntactical Structure of Domains: First the syntax of domains – di-
vided into the syntax of endurants parts, materials and components.

TypDef = PTypes ∪ MTypes ∪ KTypes
PTypes = PNm →m PaTyp
MTypes = MNm →m MaTyp
KTypes = KNm →m KoTyp

ENDType = PaTyp | MaTyp | KoTyp
PaTyp == AtPaTyp | AbsCoPaTyp | ConCoPaTyp

AtPaTyp :: mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm))
AbsCoPaTyp :: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set)

axiom ∀ mkAbsCoPaTyp(pq,pns):AbsCoPaTyp • pns 6= {}
ConCoPaTyp :: mkConCoPaTyp(s qs:PQ,s p:PNm)

MaTyp :: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm))
KoTyp :: mkKoTyp(s qs:KQ)

Then the syntax of the internal qualities of endurants:

PQ = s ui:UI×s me:ME×s atrs:ATRS}
UI

ME == “nil”|mkUI(s ui:UI)|mkUIset(s uil:UI)|...
ATRS = ANm →m ATyp

ANm, ATyp
MQ = s atrs:ATRS
KQ = s uid:UI × s atrs:ATRS

The Semantical Values of Domains: Corresponding, homomorphically, to
these syntaxes are their semantics types:
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ENDVAL = PVAL | MVAL | KVAL
PVAL == AtPaVAL|AbsCoPVAL|ConCoPVAL

AtPaVAL :: mkAtPaVAL(s qval:PQVAL,
s omkvals:({|”nil”|}|MVAL|KVAL-set))

AbsCoPVAL :: mkAbsCoPaVAL(s qval:PQVAL,s pvals:(PNm→m PVAL))
axiom ∀ mkAbsCoPaVAL(pqs,ppm):AbsCoPVAL•ppm 6=[ ]

ConCoPVAL :: mkConCoPaVAL(s qval:PQVAL,s pvals:PVAL-set)
MVAL :: mkMaVAL(s qval:MQVAL,s pvals:PVAL-set)
KVAL :: mkKoVAL(s qval:KQVAL)

Qualities: Semantic Types

PQVAL = UIVAL×MEVAL×ATTRVALS
UIVAL

MEVAL == mkUIVAL(s ui:UIVAL)|mkUIVALset(s uis:UIVAL-set)|...
ATTRVALS = ANm→m AVAL
ANm, AVAL

MQVAL = ATTRVALS
KQVAL = UIVAL×ATTRVALS

From Syntax to Semantics and “Back Again ! ” We define mappings
from sort names to the possibly infinite set of values of the named type,
and from endurant values to the names of their sort.

type

Nm to ENDVALS =
(PNm→m PVAL-set)∪(MNm→m MVAL-set)∪(KNm→m KVAL-set)

ENDVAL to Nm =
(PVAL→m PNm )∪(MVAL→m MNm)∪(KVAL→m KNm)

value

typval: TypDef
∼
→ Nm to ENDVALS

typval(td) ≡ let ρ =
[ n 7→M(td(n))(ρ)|n:(PNm|MNm|KNm)•n ∈ dom td ] in ρ end

valtyp: Nm to ENDVALS
∼
→ ENDVAL to Nm

valtyp(ρ) ≡
[ v 7→n|n:(PNm|MNm|CNm),v:(PVAL|MVAL|KVAL)•

n ∈ dom ρ∧v ∈ ρ(n) ]

M: (PaTyp→ENV
∼
→PVAL-set)|

(MaTyp→ENV
∼
→MVAL-set)|

(KoTyp→ENV
∼
→KVAL-set)
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The environment, ρ, of typval is the least fix point of the recursive equa-
tion. The crucial function is M, in the definition of typval. Examples of
its definition, by part category, is given below.

value

ι nm:Nm ≡ iota(nm)
iota: Nm → TypDef → VAL
iota(nm)(td) ≡

let val:(PVAL|MVAL|KVAL)•val∈(typval(td))(nm)
in val end

Analysis Functions: We exemplify the semantics functions for three anal-
ysis prompts.

value

is endurant: Nm×VAL → TypDef
∼
→ Bool

is endurant( ,val)(td) ≡ val ∈ dom valtyp(typval(td));
pre: VAL is any value type

is discrete: NmVAL → TypDef
∼
→ Bool

is discrete( ,val)(td) ≡ (is PaTyp|is CoTyp)(td((valtyp(typval(td)))(val)))

is part: NmVAL → TypDef
∼
→ Bool

is part( ,val)(td) ≡ is PaTyp(td((valtyp(typval(td)))(val)))

Description Functions: We exemplify the semantics of one of the descrip-
tion prompts. The generated description RSL-text is enclosed within [ ”
... ” ].

variable

τ := [ ] Text-set
value

observe part sorts: Nm×VAL → TypDef → Unit

observe part sorts(nm,val)(td) ≡
let mkAbsCoPaTyp( ,{P1,P2,...,Pn})

= td((valtyp(typval(td)))(val)) in
τ := τ ⊕ [ ” type P1,P2,...,Pn;

value

obs part P1: nm→P1

obs part P2: nm→P2

...,
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obs part Pn: nm→Pn;
proof obligation

D; ” ]
‖ νps := νps ⊕ ([ ” P1,P2,...,Pn ” ] \ αps)
‖ αps := αps ⊕ [ ” P1,P2,...,Pn ” ]
end

pre: is AbsCoPaTyp(td((valtyp(typval(td)))(val)))

.

The M Function

1 The meaning of an atomic part type expression,

– mkAtPaTyp((ui,me,attrs),omkn) in

– mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm)),

– is the set of all atomic part values,
mkAtPaVAL((uiv,mev,attrvals),omkval) in

– mkAtPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),
s omkvals:({|”nil”|}|MVAL|KVAL-set)).

a uiv is a value in UIVAL of type ui,

b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d omkvals is a value in ({|”nil”|}|MVAL|KVAL-set):

i either ’’nil’’,
ii or one material value of type MNm,
iii or a possibly empty set of component values, each of type KNm.

1. M: mkAtPaTyp((UI×ME×(ANm→m ATyp))×({|”nil”|}|MVAL|KVAL-set))

1. →ENV
∼
→PVAL-set

1. M(mkAtPaTyp((ui,me,attrs),omkn))(ρ) ≡
1. { mkATPaVAL((uiv,mev,attrval),omkvals) |
1a. uiv:UIVAL•type of(uiv)=ui,
1b. mev:MEVAL•type of(mev)=me,
1c. attrval:(ANm→m AVAL)•type of(attrval)=attrs,
1d. omkvals: case omkn of

1(d)i. ”nil” → ”nil”,
1(d)ii. mkMNn( ) → mval:MVAL•type of(mval)=omkn,
1(d)iii. mkKNm( ) →
1(d)iii. kvals:KVAL-set•kvals⊆{kv|kv:KVAL•type of(kval)=omkn}
1d. end }
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Formula terms 1a–1(d)iii express that any applicable uiv is combined with
any applicable mev is combined with any applicable attrval is combined
with any applicable omkvals.

2 The meaning of an abstract composite part type expression,

– mkAbsCoPaTyp((ui,me,attrs),pns) in

– mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set), is the set of all abstract,
composite part values,

– mkAbsCoPaVAL((uiv,mev,attrvals),pvals) in

– mkAbsCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),

s pvals:(PNm→m PVAL)).

a uiv is a value in UIVAL of type ui: UI,

b mev is a value in MEVAL of type me: ME,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d pvals is a map of part values in (PNm→m PVAL), one for each name,
pn:PNm, in pns such that these part values are of the type defined
for pn.

2. M: mkAbsCoPaTyp((UI×ME×(ANm→m ATyp)),PNm-set)

2. → ENV
∼
→ PVAL-set

2. M(mkAbsCoPaTyp((ui,me,attrs),pns))(ρ) ≡
2. { mkAbsCoPaVAL((uiv,mev,attrvals),pvals) |
2a. uiv:UIVAL•type of(uiv)=ui
2b. mev:MEVAL•type of(mev)=me,
2c. attrvals:(ANm→m ATyp)•type of(attrsval)=attrs,
2d. pvals:(PNm→m PVAL) •

2d. pvals∈{[ pn 7→pval|pn:PNm,pval:PVAL•pn∈ pns∧pval∈ρ(pn) ]} }

Contributions of [23] The contributions of [23] are to suggest and carry
through a “formalisation” of the conceptual, syntactical and semantical
structures perceived by the domain engineer, to formalise the meaning of
the informal analysis & description prompts, and to formalise the possible
sets of sequences of valid prompts.

3.4 To Every Manifest Domain Mereology a CSP Expression [33]

Overview In [35] we have shown how parts can be endowed with mere-
ologies. Mereology, as was mentioned earlier, is the study and knowledge
of “part-hood”: of how parts are related parts to parts, and parts to “a
whole”. Mereology, as treated by us, originated with the Polish mathe-
matician/logician/philosopher Stanislaw Lešhniewski.
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An Axiom System for Mereology :

part of: P : P × P → Bool

proper part of: PP : P × P → Bool

overlap: O : P × P → Bool

underlap: U : P × P → Bool

over crossing: OX : P × P → Bool

under crossing: UX : P × P → Bool

proper overlap: PO : P × P → Bool

proper underlap: PU : P × P → Bool

Let P denote part-hood ; px is part of py, is then expressed as P(px, py).
9

(1) Part px is part of itself (reflexivity). (2) If a part px is part of py and,
vice versa, part py is part of px, then px = py (anti-symmetry). (3) If
a part px is part of py and part py is part of pz, then px is part of pz
(transitivity).

∀px : P • P(px, px) (1)

∀px, py : P • (P(px, py) ∧ P(py, px))⇒px = py (2)

∀px, py, pz : P • (P(px, py) ∧ P(py, pz))⇒P(pz, pz) (3)

We exemplify one of the mereology propositions: proper underlap, PU: px
and py are said to properly underlap if px and py under-cross and py and
px under-cross.

PU(px, py)
△
= UX(px, py) ∧ UX(py, px) (4)

A Model for the Axioms [33] now gives a model for parts: atomic and
composite, commensurate with [35] and [23], and their unique identifiers,
mereology and attributes and show that the model satisfies the axioms.

Contributions of [33] [33] thus contributes to a domain science, helping
to secure a firm foundation for domain engineering.

4 Domain Science & Engineering: A Philosophy Basis [30]

My most recent work is documented in [30]. It examines the question:

– What must inescapably be in any domain description ?

Another formulation is:

9 Our notation now is not RSL but a conventional first-order predicate logic notation.
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– Which are the necessary characteristics of each and every possible world
and our situation in it.

Recent works by the Danish philosopher Kai Sørlander [52–55] appears
to direct us towards an answer.

Here is how it is done, in brief. On the basis of possibility of truth10

Sørlander establishes the logical connectors and from them the existence
of a world with symmetry, asymmetry and transitivity. By a transcenden-
tal deduction Sørlander then reasons that space and time, inescapably, are
“in the world”11. Further logical reasoning and transcendental deductions
establishes the inescapability of Newton’s 1st, 2nd and 3rd Laws. And from
that kinematics, dynamics, and gravitational pull. And so forth. Thus the
worlds that can possibly be described must all satisfy the laws of physics.

This line of reasoning and deduction thus justifies the focus, in our
calculi, on natural parts, components and materials.

But Sørlander goes on and reasons and transcendentally deduce the
inescapable existence of living species: plants and animals, and, among
the latter, humans. Because of reasoned characteristics of humans we in-
escapably have artifacts: man-made parts components and materials. Hu-
mans construct artifacts with an intent, an attribute of both humans and
artifacts. These shared intents lead to a notion of intentional “pull”12 and
so forth.

This line of reasoning and deduction thus justifies the inclusion, in
our calculi, of living species and artifacts.

[30] is presently an approximately 90 page report. As such it is presently
a repository for a number of “texts” related to the issue of “what must
inescapably be in any domain description ?” It may be expected that a far
shorter paper may emerge.

10 Sørlander makes his logical reasoning and transcendental deductions on the basis of
the possibility of truth – where Immanuel Kant [45], according to Sørlander, builds
on the possibility of self-awareness, which is shown to lead to contradictions.

11 Kant assumes space and time.
12 We shall here give an example of intentional “pull”: humans create automobiles and

roads. An intention of automobiles is to drive on roads, and an intention of roads is
to have automobiles move along roads. We can thus speak of the traffic history of an
automobile as the time-stamped sequence of vehicle positions along roads, and of the
traffic history of a road as the time-stamped sequence of vehicle positions along that
road. Now, for the sum total of all automobiles and all roads the two consolidate
histories must be identical. It cannot be otherwise.
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5 The Experiments [41–56]

In order to test and tune the domain analysis & description method a
great number of experiments were carried out. In our opinion, when ap-
plied to manifest domains, they justify the calculi reported in [35] and
[23].

– Urban Planning [41],
– A Space of Swarms of Drones [27],
– Documents [28],
– Credit Cards [22],
– Weather Information Systems [26],
– The Tokyo Stock Exchange [34],

– Pipelines [18],
– Road Transportation [19],
– Web/Transaction-based Software [14],
– “The Market” [4],
– Container [Shipping] Lines [7],
– Railway Systems [3, 37, 5, 51, 56].

6 Summary

We have identified a discipline of domain science and engineering. Its first
“rendition” was applied to the semantics of programming languages and
the development of their compilers [46, CHILL] and [42, Ada]. Domain
science and engineering, as outlined here, is directed at a wider spectrum
of “languages”: the “meaning” of computer application domains and soft-
ware for these applications. Where physicists model facets of the world
emphasizing physical, dynamic phenomena in nature, primarily using dif-
ferential calculi, domain scientists cum engineers emphasize logical and
both discrete phenomena of man and human institutions primarily using
discrete mathematics.
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– It was in 1981, in Beijing, 36 years ago. At the Institute of Computing Technology.
On my first day of a three week visit. 30 lectures, 30 degrees Celsius. I liked it.

I was being received. All sat in soft cushioned armchairs along the walls.
I sat to the right of this wonderful man, Xu KongShi.
During our conversation I queried about a young researcher, Zhou ChaoChen.

Tony Hoare had told me to watch out for him.
So I did, with an invitation letter, right in my pocket, for him to visit my dept.
Asked Xu KongShi as to the whereabouts of Zhou?
And he smiled: right next to the right of you !

– That became the first day of a 36 year acquaintance. Almost half of our life-times !
Zhou came to visit us, 3 months every other winter. It was during the 1980s.
What a wonderful time, for me, for my colleagues and for our students.

One time I asked him to tutor a young MSc student. She performed brilliantly.
It was something about “the meeting calendar problem”. Even Zhou was impressed.

Perhaps he has forgotten it now. When I took him to the airport, some weeks later.
I told him that Ulla, that was her name, was a great granddaughter of Niels Bohr.

Zhou appreciated then that I only told him then.

– For the 1989 visit I had “stipulated” that Zhou bring his family.
Three months to Lyngby, three months to Oxford. And Zhou kindly agreed. All was
set to go.
But a certain incident early that June caused us all concern.
Yet, on July 1st that year the whole family arrived.

– Zhou wasn’t keen to return to China.

I speed-dialled Tony’s Oxford number.

“Tony on the line” was the reply

“Tony: Zhou is with me here, in my office in Lyngby.”

“Hello Zhou”

“Hello Tony”.

“Tony, I have just offered Zhou a three year appointment.”

Well I hadn’t, but there it was, and Zhou got listening.
“8 months a year here at Lyngby. 4 with you at Oxford.”
Tony’s reply: “Well, I had got it wrong, the other way around”.
“Let Zhou decide”, I replied, and Zhou said: “It is as Dines proposes.”

– Those became three great years, at Lyngby and at Oxford.

Zhang Yi Ping and children lodged in Oxford - Zhou commuting. Science progressing.

It was at a ProCoS meeting in Viborg.
E.V.Sørensen had given a talk on signal transitions of electric circuits.
The concept of ‘duration’ was mentioned.
Afterwards I saw Zhou, A.P. and Tony, in an adjacent room.
Discussing, standing at the white board, scribbling.

And “The Duration Calculus” was born.

– The following year I was asked to become Director of UNU-IIST.
On the flight home, in May 1991, from Japan, via a visit to Macau
I decided to ask Zhou to join me in Macau.

And a year later, things take time in international affairs, we began.
With Zhou in charge of theory and I of engineering, an institute was built.
After my five years followed Zhou’s five years.

Some of you, in this room, can look back at defining years at UNU-IIST.
I returned to Lyngby and eventually Zhou to Beijing.
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– The Duration Calculus took root.
Painstakingly a theory was cemented and applications realized.
The ProCoS project and UNU-IIST played an important rôle in this.
But at the core of all this was Zhou ChaoChen.

– Dear Zhou:
Thank you for your tremendous contributions to science.
Thank you for inspiring generations of scientists.
Thank you for hosting our daughter, Charlotte, the fall of 1986 – 31 years ago !
Thank you for putting our son, Nikolaj, on the road to science – also 31 years ago !
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Workshop on Handling IMPlicit and EXplicit Knowledge in Formal Fystem Develop-
ment, 17 November 2017, Xi’an, China

33. Bjørner, D.: To Every Manifest Domain a CSP Expression — A Rôle for Mereology in
Computer Science. Journal of Logical and Algebraic Methods in Programming (94),
91–108 (January 2018). https://doi.org/10.1016/j.jlamp.2017.09.005

34. Bjørner, D.: The Tokyo Stock Exchange Trading Rules. R&D Exper-
iment, Fredsvej 11, DK-2840 Holte, Denmark (January and February,
2010), Version 1. http://www2.imm.dtu.dk/ db/todai/tse-1.pdf, Version 2.
http://www2.imm.dtu.dk/ db/todai/tse-2.pdf

35. Bjørner, D.: Manifest Domains: Analysis & Description. Formal Aspects of Computing
29(2), 175–225 (Online: July 2016). https://doi.org/10.1007/s00165-016-0385-z

36. Bjørner, D., Eir, A.: Compositionality: Ontology and Mereology of Domains. Some
Clarifying Observations in the Context of Software Engineering in July 2008, eds. Mar-
tin Steffen, Dennis Dams and Ulrich Hannemann. In: Festschrift for Prof. Willem
Paul de Roever Concurrency, Compositionality, and Correctness. Lecture Notes in Com-
puter Science, vol. 5930, pp. 22–59. Springer, Heidelberg (July 2010)

37. Bjørner, D., George, C.W., Prehn, S.: Computing Systems for Railways — A Rôle
for Domain Engineering. Relations to Requirements Engineering and Software for



27

Control Applications. In: Integrated Design and Process Technology. Editors: Bernd
Kraemer and John C. Petterson. Society for Design and Process Science, P.O.Box
1299, Grand View, Texas 76050-1299, USA (24–28 June 2002), Extended version.
http://www2.imm.dtu.dk/ db/pasadena-25.pdf

38. Bjørner, D., Gram, C., Oest, O.N., Rystrømb, L.: Dansk Datamatik Center. In: Wan-
gler, B., Lundin, P. (eds.) History of Nordic Computing. Springer, Stockholm, Sweden
(18-20 October 2010)

39. Bjørner, D., Havelund, K.: 40 Years of Formal Methods — 10 Obstacles and 3 Pos-
sibilities. In: FM 2014, Singapore, May 14-16, 2014. Springer (2014), Distinguished
Lecture

40. Bjørner, D., Oest, O.N. (eds.): Towards a Formal Description of Ada, LNCS, vol. 98.
Springer (1980)

41. Bjørner, D.: Urban Planning Processes. Research Note (July 2017), http://www.imm.-
dtu.dk/˜dibj/2017/up/urban-planning.pdf

42. Clemmensen, G., Oest, O.: Formal specification and development of an Ada compiler –
a VDM case study. In: Proc. 7th International Conf. on Software Engineering, 26.-29.
March 1984, Orlando, Florida. pp. 430–440. IEEE (1984)

43. George, C.W., Haff, P., Havelund, K., Haxthausen, A.E., Milne, R., Nielsen, C.B.,
Prehn, S., Wagner, K.R.: The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead, England (1992)

44. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series, Prentice-Hall, Hemel
Hampstead, England (1995)

45. Guyer, P. (ed.): The Cambridge Companion to Kant. Cambridge Univ. Press, England
(1992)

46. Haff, P., Olsen, A.: Use of VDM within CCITT. In: VDM – A Formal Method at Work,
eds. Dines Bjørner, Cliff B. Jones, Micheal Mac an Airchinnigh and Erich J. Neuhold,
pp. 324–330. Springer, Lecture Notes in Computer Science, Vol. 252 (March 1987),
Proc. VDM-Europe Symposium 1987, Brussels, Belgium

47. Haff, P. (ed.): The Formal Definition of CHILL. ITU (Intl. Telecmm. Union), Geneva,
Switzerland (1981)

48. Hoare, C.: Communicating Sequential Processes. C.A.R. Hoare Series in Computer Sci-
ence, Prentice-Hall International (1985), published electronically: http://www.using-
csp.com/cspbook.pdf (2004)

49. Jackson, M.A.: Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press, Addison-Wesley, Reading, England (1995)

50. Oest, O.N.: VDM from research to practice (invited paper). In: IFIP Congress. pp.
527–534 (1986)
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