
Towards a Formal Understanding of Urban Planning

Some Initial Thoughts

Dines Bjørner 1
, Otthein Herzog 2

, Siegfried ZhiQiang Wu 3

1 Techn.Univ. of Denmark and Fredsvej 11, DK-2840 Holte, Denmark
2 Jacobs University, Campus Ring 1, 28759 Bremen, Germany
3 CIUC - Tongji University, Siping Campus, Shanghai, China

E–Mail: bjorner@gmail.com, herzog@rundhof.de, ...

Version 2 January 3, 2018: 09:32 am CET

Abstract

1 We examine concepts of urban planning. Emphasis, in this research note, is on the information
(“data”) and functions (behaviours) of urban planning. We abstract from the details of information
(the “data”) that urban planning is based on and results in. We distinguish between two kinds
of urban planning behaviour: the master, ‘ab initio’, behaviour of determining “the general lay-
out of the land (!)”, and the derived, ‘follow-up’, behaviours focused on social and technological
infrastructures. Master urban planning applies to descriptions of “the land”: geographic, that is,
geodetic, cadastral, geotechnical, meteorological, socio-economic and rules & regulations. Examples
of derived urban plannings are such which are focused on humans and on social and technological
artifacts: industry zones, commercial (i.e., office and shopping) zones, residential zones, recreational
areas, health care, schools, etc. and transport, electricity, water, waste, etc. The overall aim of this
paper is to suggest a formal foundation for urban planning. We must emphasize that all that is
conceivable and describable in the domain can be described. We shall return to this remark, in this
report, again-and-again.

Editorial Notes:

• Section 1.4 on Page 8 is new. It was added Mon., Dec. 25, 2017.

• Section 1.5 on Page 8 is new. It was added Mon., Dec. 25, 2017.

• Section 1.6 on Page 9 is new. It was added Tue., Dec. 26, 2017.

• Section 6.3 on Page 28 is new. It was added Tue., Jan. 2, 2018.

Contents

1 Introduction 5

1.1 On Urban Planning . 5

1.1.1 Infrastructures . 5

1.1.2 Wikipedia: https://en.wikipedia.org/wiki/Urban planning . 6

1.1.3 Theories of Urban Planning . 6

Technical aspects . 6

Urban planners . 7

1.1.4 References . 7

1.2 A Triptych of Software Development . 7

1.3 On Formality . 8

1.4 On Describing Domains . 8

1.5 Reiterating Domain Modeling . 8

1.6 Partial, Precise, and Approximate Descriptions . 9

1.7 On Formal Notations . 9

1.8 On the Form of This Research Note . 9

2 An Urban Planning System 9

1This is Version 2 of the present document. Version 0 was issued 24 September 2017. Subsequent editions of Version
2 will appear, from day to day, during the winter of 2017/2018.

1

2 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

3 Formalisation of Urban Space and Planning Endurants 11

3.1 Some Auxiliary Concepts . 11
3.1.1 Points and Areas . 11
3.1.2 Time and Time Intervals . 11

3.2 Urban Space Endurants . 12
3.2.1 Main Part and Attributes . 12
3.2.2 Urban Space Attributes – Narratives and Formalisation . 12

General Form of Attribute Models . 13
Geodetic Attribute[s] . 13
Cadastral Attribute[s] . 13
Geotechnical Attribute[s] . 14
Meteorological Attribute[s] . 14
Socio-Economic Attribute[s] . 14
Law Attribute[s]: State, Province, Region, City and District Ordinances 15
Industry and Business Economics . 15
Etcetera . 15

3.2.3 Discussion . 15
3.3 Urban Planning Auxiliaries . 15
3.4 Urban Planning Requirements . 15
3.5 Urban Planning Endurants . 16

3.5.1 Urban Plans . 16
3.5.2 Urban Planning Ancillaries . 16

3.6 Assumptions About Urban Space and Planning Attributes . 16
3.6.1 Assumptions About Urban Space and Planning Attribute Values 16
3.6.2 Assumptions About Urban Space and Planning Data . 16

4 Requirements, Goals and Indicators 17

4.1 Example Graphics of Uran Plans . 17

5 Master Urban Planning 19

5.1 Urban Planning Information Categories . 19
5.1.1 “Input” . 19
5.1.2 “Output” . 20

5.2 The Iterative Nature of Urban Planning . 20
5.3 Initialisation . 21

5.3.1 Existing versus Evolving Plans . 21
5.4 A Simple Functional Form . 22
5.5 Oracles and Repositories . 22

5.5.1 The Master ’Input’ Oracle . 22
5.5.2 The Master Resumption Repository . 23

5.6 A Simple Behavioural Form . 24

6 Derived Urban Plannings 25

6.1 Preliminaries . 25
6.1.1 Derived Urban Plan Indices . 25
6.1.2 A “Reservoir” of Derived Urban Planning Indices . 26
6.1.3 A Derived Urban Planning Index Selector . 26
6.1.4 The Derived Urban Plan Generator . 26
6.1.5 The Revised Master Urban Planning Behaviour . 27

6.2 The Derived Urban Planning Functions . 27
6.3 The Derived Urban Planning “Oracle” Behaviour . 28
6.4 The Derived Urban Planning Behaviour . 29
6.5 The Derived Resumption Repository . 29

6.5.1 The Consolidated Derived Resumption Map . 29
6.5.2 The Consolidated Derived Resumption Repository Channel . 29
6.5.3 The Consolidated Derived Resumption Repository . 30
6.5.4 Initial Consolidated Derived Urban Plannings . 30
6.5.5 Initialisation of The Derived “Quintuplet” Oracle . 30

6.6 A Visual Rendition of Urban Planning Development . 30
6.7 Revised Selection of Derived Urban Plannings . 32
6.8 The Urban Planning System . 32

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 3

7 Further Work 32

7.1 Requirements to Urban Planning . 32

8 Conclusion 32

9 Bibliograhy 32

A A Document System 34

A.1 Introduction . 34
A.2 A Document Systems Description . 34
A.3 A System for Managing, Archiving and Handling Documents . 34
A.4 Principal Endurants . 34
A.5 Unique Identifiers . 35
A.6 Documents: A First View . 35

A.6.1 Document Identifiers . 35
A.6.2 Document Descriptors . 36
A.6.3 Document Annotations . 36
A.6.4 Document Contents: Text/Graphics . 36
A.6.5 Document Histories . 36
A.6.6 A Summary of Document Attributes . 36

A.7 Behaviours: An Informal, First View . 38
A.8 Channels, A First View . 39
A.9 An Informal Graphical System Rendition . 40
A.10 Behaviour Signatures . 40
A.11 Time . 41

A.11.1 Time and Time Intervals: Types and Functions . 41
A.11.2 A Time Behaviour and a Time Channel . 41
A.11.3 An Informal RSL Construct . 41

A.12 Behaviour “States” . 42
A.13 Inter-Behaviour Messages . 43

A.13.1 Management Messages with Respect to the Archive . 43
A.13.2 Management Messages with Respect to Handlers . 43
A.13.3 Document Access Rights . 44
A.13.4 Archive Messages with Respect to Management . 44
A.13.5 Archive Message with Respect to Documents . 44
A.13.6 Handler Messages with Respect to Documents . 44
A.13.7 Handler Messages with Respect to Management . 45
A.13.8 A Summary of Behaviour Interactions . 45

A.14 A General Discussion of Handler and Document Interactions . 45
A.15 Channels: A Final View . 46
A.16 An Informal Summary of Behaviours . 46

A.16.1 The Create Behaviour: Left Fig. 5 on Page 47 . 46
A.16.2 The Edit Behaviour: Right Fig. 5 on Page 47 . 47
A.16.3 The Read Behaviour: Left Fig. 6 on Page 48 . 47
A.16.4 The Copy Behaviour: Right Fig. 6 on Page 48 . 47
A.16.5 The Grant Behaviour: Left Fig. 7 on Page 49 . 48
A.16.6 The Shred Behaviour: Right Fig. 7 on Page 49 . 49

A.17 The Behaviour Actions . 49
A.17.1 Management Behaviour . 49

Management Create Behaviour: Left Fig. 5 on Page 47 . 50
Management Copy Behaviour: Right Fig. 6 on Page 48 . 51
Management Grant Behaviour: Left Fig. 7 on Page 49 . 52
Management Shred Behaviour: Right Fig. 7 on Page 49 . 52

A.17.2 Archive Behaviour . 53
The Archive Create Behaviour: Left Fig. 5 on Page 47 . 53
The Archive Copy Behaviour: Right Fig. 6 on Page 48 . 54
The Archive Shred Behaviour: Right Fig. 7 on Page 49 . 54

A.17.3 Handler Behaviours . 55
The Handler Create Behaviour: Left Fig. 5 on Page 47 . 55
The Handler Edit Behaviour: Right Fig. 5 on Page 47 . 55
The Handler Read Behaviour: Left Fig. 6 on Page 48 . 56

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

4 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

The Handler Copy Behaviour: Right Fig. 6 on Page 48 . 56
The Handler Grant Behaviour: Left Fig. 7 on Page 49 . 57

A.17.4 Document Behaviours . 57
The Document Edit Behaviour: Right Fig. 5 on Page 47 . 57
The Document Read Behaviour: Left Fig. 6 on Page 48 . 58
The Document Shred Behaviour: Right Fig. 7 on Page 49 . 58

A.18 Conclusion . 59

B RSL: The RAISE Specification Language – A Primer 60

B.1 Type Expressions . 60
B.1.1 Atomic Types . 60
B.1.2 Composite Types . 60

Concrete Composite Types . 60
Sorts and Observer Functions . 61

B.2 Type Definitions . 62
B.2.1 Concrete Types . 62
B.2.2 Subtypes . 62
B.2.3 Sorts — Abstract Types . 62

B.3 The RSL Predicate Calculus . 63
B.4 Propositional Expressions . 63

B.4.1 Simple Predicate Expressions . 63
B.4.2 Quantified Expressions . 63

B.5 Concrete RSL Types: Values and Operations . 63
B.5.1 Arithmetic . 63
B.5.2 Set Expressions . 64

Set Enumerations . 64
Set Comprehension . 64

B.5.3 Cartesian Expressions . 64
Cartesian Enumerations . 64

B.5.4 List Expressions . 64
List Enumerations . 64
List Comprehension . 64

B.5.5 Map Expressions . 65
Map Enumerations . 65
Map Comprehension . 65

B.5.6 Set Operations . 65
Set Operator Signatures . 65
Set Examples . 65
Informal Explication . 66
Set Operator Definitions . 66

B.5.7 Cartesian Operations . 67
B.5.8 List Operations . 67

List Operator Signatures . 67
List Operation Examples . 67
Informal Explication . 67
List Operator Definitions . 68

B.5.9 Map Operations . 69
Map Operator Signatures and Map Operation Examples . 69
Map Operation Explication . 69
Map Operation Redefinitions . 70

B.6 λ-Calculus + Functions . 70
B.6.1 The λ-Calculus Syntax . 70
B.6.2 Free and Bound Variables . 70
B.6.3 Substitution . 71
B.6.4 α-Renaming and β-Reduction . 71
B.6.5 Function Signatures . 71
B.6.6 Function Definitions . 71

B.7 Other Applicative Expressions . 72
B.7.1 Simple let Expressions . 72
B.7.2 Recursive let Expressions . 72
B.7.3 Predicative let Expressions . 73

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 5

B.7.4 Pattern and “Wild Card” let Expressions . 73
B.7.5 Conditionals . 73
B.7.6 Operator/Operand Expressions . 74

B.8 Imperative Constructs . 74
B.8.1 Statements and State Changes . 74
B.8.2 Variables and Assignment . 74
B.8.3 Statement Sequences and skip . 74
B.8.4 Imperative Conditionals . 75
B.8.5 Iterative Conditionals . 75
B.8.6 Iterative Sequencing . 75

B.9 Process Constructs . 75
B.9.1 Process Channels . 75
B.9.2 Process Composition . 75
B.9.3 Input/Output Events . 75
B.9.4 Process Definitions . 76

B.10 Simple RSL Specifications . 76

1 Introduction

“Urban planning is a technical and political process concerned with the development and use of land,
planning permission, protection and use of the environment, public welfare, and the design of the urban
environment, including air, water, and the infrastructure passing into and out of urban areas, such as
transportation, communications, and distribution networks.”2

In this research note we shall try to understand two of the aspects of the domain underlying
urban planning, (i) namely those of the “input” information to and “output” plans (etc.) from urban
planning, and (ii) that of some possible urban planning (development) functions and processes. We
are trying to understand and describe a domain, not requirements for IT for that domain and certainly
not the IT (incl. its software). And: We are certainly not constructing any general or any specific
urban plan !

The overall aim of this report is to suggest a formal foundation for urban planning. Another, sec-
ondary aim of this report is to suggest that a number of requirements must be satisfied before a fully
professional urban development project can be commenced (cf. Sect. 7.1).

1.1 On Urban Planning

We search for answers to the question: “What is Urban Planning ?”. First we identiffy “planning
areas”. Then we sketch element of a first domain model for Urban Planning.

Urban planning seems to be also be about infrastructure planning. So we examine these terms. First
the latter, then the former.

1.1.1 Infrastructures

The term ‘infrastructure’ has gained currency in the last 80 years.3. It is more frequently used in
socio-economic than in scientific, let alone computing science, contexts. According to the World Bank,
‘infrastructure’ is an umbrella term for many activities referred to as ‘social overhead capital’ by some
development economists, and encompasses activities that share technical and economic features (such
as economies of scale and spill-overs from users to non-users). We take a more technical view, and see
infrastructures as concerned with supporting other systems or activities. Software for infrastructures
is likely to be distributed and concerned in particular with supporting communication of data, people

2https://en.wikipedia.org/wiki/Urban planning
3Winston Churchill is quoted to have said, in the House of Commons, in 1936: . . . the young Labourite speaker, that

we just heard, obviously wishes to impress his constituency with the fact that he has attended Eton and Oxford when

he uses such modern terms as ‘infrastructure’ . . .

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

6 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

and/or materials. Hence issues of openness, timeliness, security, lack of corruption and resilience are
often important.

Examples of infrastructures, or, more precisely, infrastructure components, are:

• transport systems (roads, railways, air traf-
fic, canals/rivers/lake/ocean , etc.);

• water and sewage;

• telecommunications;

• postal service (physical letters, packages
etc.);

• power: electricity, gas, oil, wind (generation,
distribution); etc.

• the financial industry (banking, insurance,
securities, clearing, etc.);

• documents (creation, editing, formatting,
etc.);

• ministry of finance (taxation, budget, trea-
sury, etc.);

• health care (private physicians, clinics, hos-
pitals, pharmacies, etc.);

• education (kindergartens, pre-schools, pri-
mary schools, secondary schools, high
schools, colleges, universities);

• manufacturing industry;

• etcetera.

1.1.2 Wikipedia: https://en.wikipedia.org/wiki/Urban planning

“Urban planning is a technical and political process concerned with the development and use of land
planning permission, protection and use of the environment, public wellfare, and the design of the urban
environment, including air, water, and the infrastructure passing into and out of urban areas, such as
transportation, communications, and distribution networks [2].”

“Urban planning is also referred to as urban and regional planning, regional planning, town planning,
city planning, rural planning or some combination in various areas worldwide. It takes many forms and it
can share perspectives and practices with urban design [1].”

“Urban planning guides orderly development in urban, suburban and rural areas. Although predom-
inantly concerned with the planning of settlements and communities, urban planning is also responsible
for the planning and development of water use and resources, rural and agricultural land, parks
and conserving areas of natural environmental significance. Practitioners of urban planning are con-
cerned with research and analysis, strategic thinking, architecture, urban design, public consultation, policy
recommendations, implementation and management [3].”

“Urban planners work with the cognate fields of architecture, landscape architecture, civil engineering,
and public administration to achieve strategic, policy and sustainability goals. Early urban planners were
often members of these cognate fields. Today urban planning is a separate, independent professional
discipline. The discipline is the broader category that includes different sub-fields such as land-use planning,
zoning, economic development, environmental planning, and transportation planning [4].”

1.1.3 Theories of Urban Planning

“Planning theory is the body of scientific concepts, definitions, behavioral relationships, and assumptions
that define the body of knowledge of urban planning. There are eight procedural theories of planning
that remain the principal theories of planning procedure today: the rational-comprehensive approach, the
incremental approach, the transactive approach, the communicative approach, the advocacy approach, the
equity approach, the radical approach, and the humanist or phenomenological approach [5].”

Technical aspects Technical aspects of urban planning involve applying scientific, technical pro-
cesses, considerations and features that are involved in planning for land use, urban design, natural

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 7

resources, transportation, and infrastructure. Urban planning includes techniques such as: predict-
ing population growth, zoning, geographic mapping and analysis, analyzing park space, surveying
the water supply, identifying transportation patterns, recognizing food supply demands, allocating
healthcare and social services, and analyzing the impact of land use.

Urban planners An urban planner is a professional who works in the field of urban planning for the
purpose of optimizing the effectiveness of a community’s land use and infrastructure. They formulate
plans for the development and management of urban and suburban areas, typically analyzing land
use compatibility as well as economic, environmental and social trends. In developing the plan for
a community (whether commercial, residential, agricultural, natural or recreational), urban planners
must also consider a wide array of issues such as sustainability, air pollution, traffic congestion, crime,
land values, legislation and zoning codes.

The importance of the urban planner is increasing throughout the 21st century, as modern society
begins to face issues of increased population growth, climate change and unsustainable development.
An urban planner could be considered a green collar professional.[clarification needed]

1.1.4 References

1 ”What is Urban Planning” (retrieved April 24, 2015)
https://mcgill.ca/urbanplanning/planning

“Modern urban planning emerged as a profession in the early decades of the 20th century, largely as a
response to the appalling sanitary, social, and economic conditions of rapidly-growing industrial cities.
Initially the disciplines of architecture and civil engineering provided the nucleus of concerned professionals.
They were joined by public health specialists, economists, sociologists, lawyers, and geographers, as the
complexities of managing cities came to be more fully understood. Contemporary urban and regional
planning techniques for survey, analysis, design, and implementation developed from an interdisciplinary
synthesis of these fields. Today, urban planning can be described as a technical and political process
concerned with the welfare of people, control of the use of land, design of the urban environment including
transportation and communication networks, and protection and enhancement of the natural environment.”

2 Van Assche, K., Beunen, R., Duineveld, M., & de Jong, H. (2013). Co-evolutions of planning
and design: Risks and benefits of design perspectives in planning systems. Planning Theory,
12(2), 177-198.

3 Taylor, Nigel (2007). Urban Planning Theory since 1945, London, Sage.

4 https://www.planning.org/aboutplanning/whatisplanning.htm: ”What Is Planning?”.
www.planning.org. Retrieved 2015-09-28.

5 https://www.planetizen.com/node/73570/how-planners-use-planning-theory: How Planners Use
Planning Theory. Andrew Whittmore of the University of North Carolina Department of Urban
and Regional Planning identifies planning theory in everyday practice.

1.2 A Triptych of Software Development

Before hardware and software systems can be designed and coded we must have a reasonable grasp
of “its” requirements; before requirements can be prescribed we must have a reasonable grasp of “the
underlying” domain. To us, therefore, software engineering contains the three sub-disciplines:

• domain engineering,

• requirements engineering and

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

8 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

• software design.

By a domain description we understand a collection of pairs of narrative and commensurate formal
texts, where each pair describes either aspects of an endurant (i.e., a data) entity or aspects of a
perdurant (i.e., an action, event or behaviour) entity.

1.3 On Formality

We consider software programs to be formal, i.e., mathematical, quantities — rather than of so-
cial/psychological interest. We wish to be able to reason about software, whether programs, or pro-
gram specifications, or requirements prescriptions, or domain descriptions. Although we shall only
try to understand some facets of the domain of urban planning we shall eventually let such an under-
standing, in the form of a precise, formal, mathematical, although non-deterministic, i.e., “multiple
choice”, description be the basis for subsequent requirements prescriptions for software support, and,
again, eventually, “the real software itself”, that is, tools, for urban planners. We do so, so that we
can argue, eventually prove formally, that the software is correct with respect to the (i.e., its) formally
prescribed requirements, and that the software meets customer, i.e., domain users’ expectations – as
expressed in the formal domain description.

1.4 On Describing Domains

If we can describe some domain phenomenon in logical statements and if these can be transcribed
into some form of mathematical logic and set theory then we may have to describe it: narratively and
formally. That is, even though it may be humanly or even technologically very cumbersome or even
impossible to implement what is described we may find it necessary to describe it. As to when we have
to describe something – that is another matter !4 Let us give an example: The example is that of the
domain of documents. Documents may be created, edited, read, copied, referred to, and shredded. We
may talk, meaningfully, that is, rationally, logically, about the previous version of a document, and
hence we may be obliged to model document versions as from their first creation, who created, who
edited, who read, who copied, and who shredded (sic !) a document, including, perhaps, the location
and time of these operations, how they were edited, etc., etc. Let us take another example. As for the
meteorological properties of any specific geographic area, these properties, like temperature, humidity,
wind, etc., vary, in reality, continuously over time, from location to location, including altitude. In
modeling meteorological properties we may be well-served when modeling exactly their continuous,
however “sporadic” nature. To a first approximation we do not have to bother as to whether we can
actually “implement” the recording of such continuous, “sporadic” “behaviours”. In that sense the
domain analyser cum describer is expected to be like the physicists,5 certainly not like programmers.
That is: the domain analyser cum describer are not necessarily describing computable domains.

1.5 Reiterating Domain Modeling

Any domain description is an approximation. One cannot ever hope to have described all facets
of any domain. So, in setting out to analyse & describe a domain one is not trying to produce a
definitive, final, model; one is merely studying and recording (some) results of that study. One is
prepared to reiterate the study and produce alternative models. From such models one can develop
requirements, [4], for software that in one way or another support activities of the domain. If you are

4We may find occasions in this document to discuss this “other matter” !
5It is written above: that domain descriptions are based on mathematical logic and set theory. Yes, unfortunately !

To properly describe domains involving continuity we need “mix” logic with classical calculus: differential equations,
integrals, etc. And here we have nothing to say: the ability, in an informed ways, to blend mathematical logic and set
theoretic descriptions with differential equations, integrals, etc., is almost non-existent as of 2017/2018 !

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 9

to seriously develop software in this way, for example for the support of urban planners, then you must
be prepared to “restart” the process, to develop, from scratch, a domain model. You have a basis from
which to start, namely this report [9]. But do not try to simply modify it. Study [9] in depth, but
rethink that basis. A description, any description, can be improved. Perhaps the emphasis should be
refocused. For the example of software (incl. IT) support for the keeping, production, editing, etc., of
the very many documents that are needed during urban planning, you may, in addition to refocusing
the present report’s focus on the documents of the very many document categories that are presumed,
introduced and further elaborated upon in the present report, also study [5]. A principle guiding us
in the reformulation of a domain model to be the basis for a specific software product is that we must
strive to document all the assumptions about the context in which this software is to serve – otherwise
we cannot hope to achieve a product that meets its customers expectations.

1.6 Partial, Precise, and Approximate Descriptions

By a partial description we mean a description which covers only a fraction of the domain as a group
of people working in that domain, that is, professionals, would otherwise talk about. Descriptions are
here taken to describe behaviours: first “do this”, then “do that” ! By a precise description we mean
a description which in whatever behaviour it describes, partially or fully, does so precisely, that is,
it is precisely as described, no more, no less. By an approximate description we mean a description
which in whatever behavior it describes, partially or fully, even when precisely so, allows for a set of
interpretations. We shall then avail ourselves of two forms of ‘approximation’: internal non-determinism
and external non-determinism. By internal non-deterministic behaviour we shall mean a behaviour whose
“next step, next move” is “determined” by some “own flipping a coin”. By external non-deterministic
behaviour we shall mean a behaviour whose “next step, next move” is “determined” by some “outside
demon” ! In describing urban planning we shall allow for: partial descriptions: not all is described
and what has been selected for description has been so, perhaps rather arbitrarily, by us, i.e., me, and
both forms of ‘approximation’. We shall endeavour to indicate where and why we present only partial
descriptions, and deploy ‘approximation’.

1.7 On Formal Notations

To be able to prove formal correctness and meeting customer expectations we avail ourselves of some
formal notation. In this research note we use the RAISE [12] Specification Language, RSL, [11]. Other
formal notations, such as Alloy [14], Event B [1], VDM-SL [7, 8, 10] or Z [15] could be used. We choose
RSL since it, to our taste, nicely embodies Hoare’s concept of Communicating Sequential Processes,
CSP [13].

1.8 On the Form of This Research Note

The present form of this research note, as of January 3, 2018: 09:32 am, is that of recording a devel-
opment. The development is that of trying to come to grips with what urban planning is. We have
made the decision, from an early start, that urban planning “as a whole” is a collection of one master
and an evolving number of (initially zero) derived urban planning behaviours. Here we have made the
choice to model the various behaviours of a complex of urban planning functions.

2 An Urban Planning System

We think of urban planning to be “dividable” into master urban planning, master up beh, and derived
urban plannings, derived up behi, where sub-index i indicate that there may be several, i.e., i ∈
{d1, d2, ..., dn}, such derived urban plannings. We think of master urban planning to “convert” physical

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

10 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

B:

Derived Urban Planning

Derived Urban Planning

Derived Urban Planning

D1:

Dj:

Dk:

Di:

t0 t1 t3 t4 t5t2

time

Dl: Derived Urban Planning

...

Derived Urban Planning

Waste Management

Power Supply

Primary "Outputs": Industry, Shopping, Residential, Recreational

Master Urban Planning

Primary "Output": Zoning

Figure 1: An Urban Planning Development

(geographic, that is, geodetic, cadestral, geo-technical, meteorological, etc.) information about the
land area to be developed into amaster plan, that is, cartographic, cadestral and other such information
(zoning, etc.). And we think of derived urban planning to “convert” master plans into societal and/or
technological plans. Societal and technological urban planning concerns are typical such as industry
zones, commercial (i.e., office and shopping) zones, residential zones, recreational areas, health care,
schools, etc. and transport, electricity, water, waste, etc. Each urban planning behaviour, whether
‘master’ or ‘derived’, is seen as a sequence of the application of “the same” urban planning function,
i.e., an urban planning action – but possibly to different goals so that each application (of “the same”
urban planning action) resolves a sub-goal. Each urban planning action takes a number of information
arguments and yield information results. The master urban planning behaviour may start one or
more derived urban planning behaviours, der up behi, at the end of “completion” of a base urban
planning action. Let {d1, d2, ..., dn} index separate derived urban plannings, each concerned with a
distinct, i.e., reasonably delineated technological and/or societal urban planning concern. During
master urban planning actions may start any of these derived urban plannings once. Thus we think of
urban planning as a system of a single master urban planning process (i.e., behaviour), master up beh,
which “spawns” zero, one or more (but a definite number of) derived urban planning processes (i.e.,
behaviours), der up behi. Derived urban planning processes, der up behi, may themselves start other
derived urban planning processes, der up behj, der up behk, ..., der up behℓ. Figure 1 is intended to
illustrate the following: At time t0 a master urban planning is started. At time t1 the master urban
planning initiates a number of derived urban development, D1, ...,Di. At time t2 the master urban
planning initiates the Dj derived urban planning. At time t3 the derived urban planning Di initiates
two derived urban plannings, Dk and Dℓ. At time t4 the master urban planning ends. And at time
t5 all urban plannings have ended. Urban planning actions are provided with “input” in the form of
either geographic, geodetic, geo-technical, meteorological, etc., information, m geo:mTUS6, or auxiliary
information, m aux:mAUX, or requirements information, m req:mREQ. The auxiliary (“management”)
information is such as time and date, name (etc.) of information provider, “trustworthiness” of
information, etc. The requirements information serves to direct, to inform, the urban planners towards
what kind of urban plan is desired.

6The m value prefixes and the m type prefixes shall designate master urban planning entities.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 11

3 Formalisation of Urban Space and Planning Endurants

3.1 Some Auxiliary Concepts

3.1.1 Points and Areas

6 We shall assume a notion of the urban space, tus:TUS, from which we can observe the attribute:
an infinite, compact Euclidean set of points.

7 By a point we shall understand a further undefined atomic notion.

8 By an area we shall understand a concept, related to the urban space, that allows us to speak
of “a point being in an area” and “an area being equal to or properly within another area”.

9 To an[y] urban space we can associate an area; we may think of an area being an attribute of the
urban space.

type

6 TUS
value

6 attr Pts: TUS → Pt-infset
type

7 Pt
8 Area
value

9 attr Area: TUS → Area
8 is Pt in Area: Pt × (TUS|Area) → Bool

8 is Area within Area: Area × (TUS|Area) → Bool

3.1.2 Time and Time Intervals

10 Time is modeled as a continuous entity.

11 One can subtract two times and obtain a time interval.

12 Time intervals are likewise modeled as continuous entities.

13 One can add or subtract a time interval to, resp. from a time and obtain a time.

14 One can compare two times, or two time intervals.

15 One can add and subtract time intervals.

16 One can multiply time intervals with real numbers.

type

10 T
11 TI
value

11 sub: T × T → TI
13 add,sub: TI × T → T
13 <,≤,=,≥,>: ((T×T)|(TI×TI)) → Bool

15 add,sub: TI × TI → TI
16 mpy: TI × Real → TI

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

12 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

3.2 Urban Space Endurants

By an endurant we shall understand an entity that can be observed or conceived and described as a
“complete thing” at no matter which given snapshot of time. Were we to “freeze” time we would still
be able to observe the entire endurant.

By the urban space endurants we shall here mean the facts by means of which we can characterize
that which is subject to urban planning: the land, what is in and on it, its geodetics, its cadastre7, its
meteorology, its socio-economics, its rule of law, etc. As such we shall consider ‘the urban space’ to be a
part in the sense of [6]. And we shall consider the geodetic, cadastral, geotechnical, meteorological, “the
law” (i.e., state, province, city and district ordinances) and socio-economic properties as attributes.

Left: geodetic map, right: cadastral map.

3.2.1 Main Part and Attributes

One way of observing the urban space is presented: to the left, in the framed box, we narrate the
story; to the right, in the framed box, we formalise it.

17 The Urban Space (TUS) has the following

a Geodetic attributes,

b Cadastre attributes,

c Geotechnical attributes,

d Meteorological attributes,

e Law attributes,

f Socio-Economic attributes, etcetera.

type

17 TUS, GeoD, Cada, GeoT, Met, Law, SocEco, ...
value

17a attr GeoD: TUS → GeoD
17a attr Cada: TUS → Cada
17c attr GeoT: TUS → GeoT
17d attr Met: TUS → Met
17f attr SocEco: TUS → SocEco

The attr A: P → A is the signature of a postulated attribute (observer) function. From parts of type
P it observes attributes of type A. attr A are postulated functions. They express that we can always
observe attributes of type A of parts of type P.

3.2.2 Urban Space Attributes – Narratives and Formalisation

We describe attributes of the domain of urban spaces. As they are, in real life. Not as we may record
them or represent them (on paper or within the computer). We can “freely” model that reality as
we think it is. If we can talk about and describe it, then it is so ! For meteorological attributes
it means that we describe precipitation, evaporation, humidity and atmospheric pressure as these
physical phenomena “really” are: continuous over time ! Similar for all other attributes. Etcetera.

7Cadastre: A Cadastre is normally a parcel based, and up-to-date land information system containing a record of
interests in land (e.g. rights, restrictions and responsibilities). It usually includes a geometric description of land parcels
linked to other records describing the nature of the interests, the ownership or control of those interests, and often the
value of the parcel and its improvements. See http://www.fig.net/

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 13

General Form of Attribute Models

18 We choose to model the General Form of Attributes, such as geodetical, cadastral, geotechnical,
meteorological, socio-economic, legal, etcetera, as [continuous] functions from time to maps from
points or areas to the specific properties of the attributes.

19 The points or areas of the properties maps must be in, respectively within, the area of the urban
space whose attributes are being specified.

type

18 GFA = T → ((Pt|Area) →m Properties)
value

19 wf GFA: GFA × TUS → Bool

19 wf GFA(gfa,tus) ≡
19 let area = attr Area(tus) in
19 ∀ t:T • t ∈ D gfa ⇒
19 ∀ pt:Pt • pt ∈ dom gfa(t) ⇒ is Pt in Area(pt,area)
19 ∧ ∀ ar:Area • ar ∈ dom gfa(t) ⇒ is within Area(ar,area)
19 end

D is a hypothesized function which applies to continuous functions and yield their domain !

Geodetic Attribute[s]

20 Geodetic attributes map points to

a land elevation and what kind of land it is; and (or) to

b normal and current water depths and what kind of water it is.

21 Geodetic attributes also includes road nets and what kind of roads;

22 etcetera,

type

20 GeoD = T → (Pt →m ((Land|Water) × RoadNet × ...))
20a Land = Elevation × (Farmland|Urban|Forest|Wilderness|Meadow|Swamp|...)
20b Water = (NormDepth × CurrDepth) × (Spring|Creek|River|Lake|Dam|Sea|Ocean|...)
21 RoadNet = ...
22 ...

Cadastral Attribute[s] A cadastre is a public register showing details of ownership of the real prop-
erty in a district, including boundaries and tax assessments.

23 Cadastral maps shows the boundaries and ownership of land parcels. Some cadastral maps show
additional details, such as survey district names, unique identifying numbers for parcels, certifi-
cate of title numbers, positions of existing structures, section or lot numbers and their respective
areas, adjoining and adjacent street names, selected boundary dimensions and references to prior
maps.

24 Etcetera.

type

23 Cada = T → (Area →m (Owner × Value × ...))
24 ...

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

14 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

Geotechnical Attribute[s]

25 Geotechnical attributes map points to

a top and lower layer soil etc. composition, by depth levels,

b ground water occurrence, by depth levels,

c gas, oil occurrence, by depth levels,

d etcetera.

type

25 GeoT = (Pt →m Composition)
25a Composition = VerticalScaleUnit × Composite∗

25b Composite = (Soil|GroundWater|Sand|Gravel|Rock|...|Oil|Gas|...)
25c Soil,Sand,Gravel,Rock,...,Oil,Gas,... = [chemical analysis]
25d ...

Meteorological Attribute[s]

26 Meteorological information records, for points (of an area) precipitation, evaporation, humidity,
etc.;

a precipitation: the amount of rain, snow, hail, etc.; that has fallen at a given place and at
the time-stamped moment8, expressed, for example, in milimeters of water;

b evaporation: the amount of water evaporated (to the air);

c atmospheric pressure;

d air humidity;

e etcetera.

26 Met = T → (Pt →m (Precip × Evap × AtmPress × Humid × ...))
26a Precip = MMs [milimeters]
26b Evap = MMs [milimeters]
26c AtmPress = MB [milibar]
26d Humid = Percent
26e ...

Socio-Economic Attribute[s]

27 Socio-economic attributes include time-stamped area sub-attributes:

a income distribution;

b housing situation, by housing category: apt., etc.;

c migration (into, resp. out of the area);

d social welfare support, by citizen category;

e health status, by citizen category;

f etcetera.

8– that is within a given time-unit

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 15

type

27 SocEco = T → (Area →m (Inc×Hou×Mig×SoWe×Heal×...))
27a Inc = ...
27b Hou = ...
27c Mig = {|”in”,”out”|} →m ({|”male”,”female”|} →m (Agegroup × Skills × HealthSumm × ...))
27d SoWe = ...
27e CommHeal = ...
27f ...

Law Attribute[s]: State, Province, Region, City and District Ordinances

28 By the law we mean any state, province, region, city, district or other ‘area’ ordinance9.

29 ...

type

28 Law
value

28 attr Law: TUS → Law
type

28 Law = Area →m Ordinances
29 ...

Industry and Business Economics

to be written

Etcetera

to be written

3.2.3 Discussion

to be written

3.3 Urban Planning Auxiliaries

By urban planning auxiliaries we mean such information that are not of geodetic, cadestral, geotechnical,
meteorological, etc., nature, that is, are of the land, but are of urban planning project nature: project
plan, time & resource schedules, project staffing, project budget, project financing, et cetera.

3.4 Urban Planning Requirements

By urban planning requirements we mean such information as expresses what the goal of the urban
planning project is, i.e., deliverables, when and where; who provides what information; who consumes
which information; and project deliverable acceptance criteria for validation and correctness.

9Ordinance: a law set forth by a governmental authority; specifically a municipal regulation: for ex.: A city ordinance

forbids construction work to start before 8 a.m.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

16 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

3.5 Urban Planning Endurants

By an urban planning endurant we shall understand a tangible document that, as urban plans, can
either be formally related to urban space endurants, that is, geodetic, cadestral, geotechnic and me-
teorological documents, or, as urban planning ancillaries, can be related to urban planning auxiliary
documents.

3.5.1 Urban Plans

By an urban plan we mean a document which describes

more to come

3.5.2 Urban Planning Ancillaries

to be written

3.6 Assumptions About Urban Space and Planning Attributes

In this section we shall distinguish between assumptions about urban space and planning attributes as
these assumptions are concerned with the domain of urban planning. that to the actual, “real world”
phenomena of such things as geodesy, cadastre, geo-techniques, meteorology, etc.; and assumptions
about urban space and planning attributes as these assumptions are concerned with requirements
to the recording of the “real world” phenomena, that is to how the “values” of the phenomena are
recorded. Please observe that this report is exclusively about the former. That is, it is not about
requirements to the ‘data’ that may be input to, or output from actual urban planning projects, for
example in the form of software data ! We shall refer to the former as assumptions about urban space
and planning attribute values, and to the latter as assumptions about urban space and planning data.

3.6.1 Assumptions About Urban Space and Planning Attribute Values

The typical assumptions that we make about geodetical, geotechnical and meteorological phenomena
are that their values are continuous over time and space, viewed separately and taken together. From
this follows that other urban planning attributes derived from, or related to geodetical, geotechnical
and meteorological phenomena, are themselves, in some sense (to be defined for each kind of other
urban planning attribute) also “continuous”.

3.6.2 Assumptions About Urban Space and Planning Data

Urban space and planning data are data that are strongly related to urban space and planning attribute
values. But, being thought of a data, as values input to or resulting from urban planning, they
are discrete, not continuous. That is, the urban space and planning data are approximate, finite
representations of continuous phenomena. As such we must be able to formalise the postulated relations
between the continuous urban space and planning attribute values and the discrete urban space and
planning data and these relations must be such that we can likewise formalise a quality factor: “how
good, or bad, is the data representation with respect to the ‘real’ domain phenomena” ?

• • •

We leave our (hence short) discourse into the two concepts: assumptions about urban space and planning
attribute values, and assumptions about urban space and planning data, bearing in mind that we assume
“ideal” properties of the domain attribute values, while leaving assumptions about urban space and
planning data to further, more final treatment only when dealing with requirements to software for
urban planning.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 17

4 Requirements, Goals and Indicators

We refer to Sect. 3.6 on the facing page. The term ‘Requirements’ in the present section’s title refer
to

It is suggested that this section be co-authored by
Prof. Otthein Herzog1 and Prof. Siegfried ZhiQiang Wu2
1 Jacobs University, Campus Ring 1, 28759 Bremen, Germany
2 CIUC – Tongji University, Siping Campus, Shanghai, China

4.1 Example Graphics of Uran Plans

We show some uncommented graphics related to [“small”] urban plans.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

18 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 19

5 Master Urban Planning

We begin this section with abstractions of the, perhaps, two most important aspects of urban planning,
such as it may be seen by its individual practitioners: the information (being handled: the “input”, so-
to-speak, to urban planning functions) and the urban planning functions. In two sections, in-between
the information and the function sections (5.1 and 5.4), we very briefly discuss the iterative nature of
urban planning, Sect. 5.2 on the next page, and initial values, Sect. 5.3, of the various information
values.

5.1 Urban Planning Information Categories

5.1.1 “Input”

Among the arguments of urban planning are

30 information, mTSU10, about the urban space, the demo-geographic area subject to planning: its
geodetic “make-up”, its cadastral, geotechnical and meteorological properties, etc.;

31 related, but not geographic, information, mAUX[iliary]11;

32 and some requirements, mREQ[uirements].

type

30 mTSU
31 mAUX

10The m prefix of certain type names, like mTSU, mAUX, mREQ, shall designate the term ‘master’.
11Auxiliary: giving help or support.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

20 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

32 mREQ

5.1.2 “Output”

Among results of urban planning are

33 “the plan” (or “plans”), mPLA[ns],

34 and possibly some other ancillary12 documents, mANC[illerary].

type

33 mPLA
34 mANC

For this and the next sections we shall leave the mTUS, mAUX, and mREQ argument types and the
mPLA, and mANC result types further undefined.

5.2 The Iterative Nature of Urban Planning

We take it that urban planning proceeds in “cycles”:

35 In each cycle the master urban planning function, master up fct, is applied to an input argu-
ment triple, (m tus,m aux,m req):(mTUS×mAUX×mREQ):mTRI, of “fresh” geodetic/cadastral/-
geotechnical/meteorological (etc.), auxiliary and requirements information.

type

35 mTRI = mTUS × mAUX × mREQ

36 Each cycle, that is, each application of master up fct, results in a “most recent”, not necessarily
“final”, plan and ancillary information, (m pla,m anc):mPLA×mANC:mRES.

type

36 mRES = mPLA × mANC

37 But, to “drive” the urban planning process, master up beh, towards a “final”, that is, an ade-
quately satisfactory plan etc., the urban planning function, master up fct, need also be provided
with the previous iteration’s result — which we take to be a (“quintuplet”13, i.e., a) pair of an
(i.e., the “previous”) “input” triple and the previous result pair.

type

37 mQUI = mTRI × mRES

12Ancillary: providing necessary support to the main work
13We put double quotes around the term quintuplet to indicate that we do not really mean it to be a quintuplet, but,

as here, a pair of a triplet and a pair !

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 21

We shall refer to the input argument triple as ‘the triplet’, and to the “driver” quintuplet as a
resumption. The above decisions on triplet arguments and quintuplet resumptions, including the
latter’s “feedback” to a next iteration function invocation is motivated as follows. We think of each
invocation, i.e., step, of the urban planning function to “apply” itself to a small fragment of urban
planning. Each such “small” step is to result in useful contributions to the evolving urban plan. The
ancillary information emerging from each step informs about which aspects of urban planning was
pursued in that step: where, in the plans, the outcome of those analysis and plan development can
be seen. The reason for small step invocations are to allow ongoing reviews (not shown here), and to
pass on intermediary results to other urban planning developments, etc. The decision to “feed” back
“records” of the entire state of urban planning development is motivated by the need for these “small
step” invocations to analyse the ongoing, full state.

5.3 Initialisation

Urban planning proceeds in iterating from initial

38 urban space, auxiliary and requirements information, as well as

39 (usually “empty”) plans and ancillaries.

We extend the notion of initial values to

40 triplet arguments,

41 result pairs, and

42 “quintuplet” argument/result pairs.

towards such results (plans and ancillaries) that are deemed satisfactory.

value

38 m tus init:mTUS,
38 m aux init:mAUX,
38 m req init:mREQ
39 m pla init: mPLA,
39 m anc init:mANC
40 m tri init: mTRI = (m tus init,m aux init,m req init)
40 assert: m tri fit(m tri init,m tri init)
41 m res init: mRES = (m pla init,m anc init)
42 m qui init: mQUI = (m tri init,m res init)

We refer to Item 52 on Page 23 for an explanation of the m tri fit predicate.

5.3.1 Existing versus Evolving Plans

The quintuplet “feedback”, which includes a ‘plan’ component, secures that possibly pre-existing
plans are included, as initialised components of the plan results.14 The iterative nature of urban
planning thus allows for step-wise urban re-development, from existing “urban land-scapes” via mixed
“previous” and “future” land-scapes to the final urban development plan.

14We refer to Item 30 on Page 19.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

22 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

5.4 A Simple Functional Form

43 The master urban planning function, master up fct, thus applies to

• (i) a “most recent” triplet of urban space, auxiliary and requirements information, and to

• (ii) a “past quintuplet”, a resumption15, that is, pair of urban space, auxiliary and require-
ments information as well as a pair of a plan and ancillary information

and yields such a resumption “quintuplet” pair of a triplet and a pair.

To repeat:

44 The application of master up fct to such arguments, i.e., master up fct(m tus,m aux,m req)(m qui)
yields a “quintuplet” result, a resumption, m qui:((m tus′,m aux′,m req′),(m pla,m anc)).

We “explain” the relations between “input” arguments and “output” (as) results:

45 The “input” argument m tri is “carried forward”, m tri′ (=m tri), to be redeposited as part of
the result.

46 The main part of the result, (m pla,m anc), is related, Pmaster, to the input argument including
the previous “result”, the resumption.

43 master up fct: mTRI → mQUI → mQUI
44 master up fct(m tri)(m qui) as (m tri′,(m pla,m anc))
45 m tri = m tri′ ∧
46 Pmaster(m tri)(m qui)(m pla,m anc)

For the time being we shall leave the master urban planning function, master up fct, that is, Pmaster,
uninterpreted. Of course, “all the tricks of urban planning are ‘hidden’ in Pmaster”.

5.5 Oracles and Repositories

Oracles are simple behaviours that offer information to other behaviours. Repositories are simple
behaviours that store information from behaviours and offer stored information to behaviours.

5.5.1 The Master ’Input’ Oracle

An urban planning oracle, when so requested, will select some information – usually in some non-
deterministic fashion, and usually subject to some constraint – and present this information to the
requestor, i.e., an urban planning behaviour. In this section, i.e. Sect. 5.5.1, we shall deal with one
specific oracle, m tri beh: one that “assembles” triplets, m tri, of urban space, m tus:mTUS, auxiliary,
m aux:mAUX, and requirements, m req:mREQ, information to requesting behaviours. We introduce a
pair of specification components:

47 a channel, m tri ch, over which a master urban planning behaviour, master up beh, offers to
receive triplets, m tri:mTRI, from an oracle, m tri beh,

48 and an oracle, m tri beh, which “remembers” its most recently communicated triplet16.

15Resumption: like a repetition, a continuation
16The oracle is initialised with b tri beh(m geo init,m aux init,m req init).

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 23

channel

47 m tri ch:mTRI
value

48 m tri beh: mTRI → out m tri ch Unit

49 The oracle assembles (m tri′:mTRI), a master triplet which satisfies a predicatem tri fit(m tri,m tri′)
– see Item 52.

50 That triplet is offered, m tri ch ! m tri′, to the master urban behaviour –

51 whereupon the oracle resumes being the oracle, now, however, with the recently assembled
master triplet as its resumption.

48 m tri beh(m tri) ≡
49 let m tri′:mTRI • m tri fit(m tri,m tri′) in
50 m tri ch ! m tri′ ;
51 m tri beh(m tri′)
48 end

53 pre: m tri fit(m tri,m tri)

52 The fitness predicate, m tri fit(m tri,m tri′), checks whether a “newly” assembled master triplet,
m tri′, stands in some suitable17 relation P(m tri,m tri′) to a a similar (f.ex., “earlier”) master
triplet, m tri.

53 The fitness predicate holds for m tri fit(m tri,m tri).

52 m tri fit: mTRI × mTRI → Bool

52 m tri fit(m tri,m tri′) ≡ P(m tri,m tri′)

54 The oracle, m tri beh, is initialised with an initial triplet value m tri init, cf. formula Item 40 on
Page 21.

52 m tri beh(m tri init): assert: m tri fit(m tri init,m tri init)

5.5.2 The Master Resumption Repository

The “quintuplet” pair of an “input” triple and a result pair, m qui: (m tri:mTRI, (m pla:mPLA,
m anc:mANC)) is thought of as residing in a repository behaviour, m qui beh, which (m qui ch ?)
“receives” “quintuplets” from the urban planning behaviour, or “offers” (m qui ch !m qui) such to the
urban planning behaviour.

55 There is therefore a channel, m qui ch, between the urban planning behaviour and the “quintu-
plet” repository behaviour,

56 m qui beh.

57 It either

17– to be defined for each specific urban planning project

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

24 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

58 accepts or

59 offers quintuplets.

channel

55 m qui ch:mQUI
value

56 m qui beh: mQUI → in,out m qui ch Unit

56 m qui beh(m qui) ≡
58 m qui beh(m qui ch?)
57 ⌈⌉⌊⌋
59 m qui ch!(m qui) ; m qui beh(m qui)

5.6 A Simple Behavioural Form

Urban planning, however, is a time-consuming “affair”. So we model it as a behaviour.

60 The master up beh 018 behaviour takes no argument, hence the left signature element: Unit,
avails itself of the input channel for obtaining proper input, m tri, and m qui, for the master
urban function, master up fct, and output channel, for depositing a resumption, m qui′, and
(then) “goes on forever”, as indicated by the right signature element: Unit.

60 master up beh 0: Unit → in m tri ch in,out m qui ch Unit

61 The simple (version of the) master up beh 0 behaviour

62 obtains the master triplet, m tri, and the master resumption, m qui, information,

63 performs the master up fct planning function and

64 provides its result, a resumption, m qui′, to the master quintuplet repository,

65 whereupon it reverts to being master up beh 0.

value

61 master up beh 0() ≡
62 let (m tri,m qui) = (m tri ch?,m qui ch?) in

63 let m qui′ = master up fct(m tri)(m qui) in
64 m qui ch ! m qui′ end end ;
65 master up beh 0()

Themaster up beh 0 behaviour repeatedly “performs” urban planning, “from scratch”, as if new urban
space, auxiliary and requirements information was “new” in every re-planning — “ad infinitum” ! We
now revise master up beh 0 into master up beh 1 — a behaviour “almost” like master up beh 0, but
one which may terminate.

66 master up beh 1

67 first behaves like master up beh 0 (Items 62–64)

18As there will be several versions, from simple towards more elaborate, of the master up beh behaviour, we index
them.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 25

68 then checks whether the obtained master resumption is satisfactory, that is, is OK as an end-
result of master urban planning.

69 If so then master up beh 1 terminates,

70 else it resumes being master up beh 1.

value

60 master up beh 1: Unit → in m tri ch in,out m qui ch Unit

66 master up beh 1() ≡
62 let (m tri,m qui) = (m tri ch?,m qui ch?) in

63 let m qui′ = master up fct(m tri)(m qui) in
64 m qui ch ! m qui′ ;
68 if master qui satisfactory(m qui′)
69 then skip

70 else master up beh 1() end
66 end end

68 master qui satisfactory: mQUI → Bool

The m qui satisfactory predicate inquires the master quintuplet, m qui, as for its suitability as a final
candidate for an urban plan19.

6 Derived Urban Plannings

6.1 Preliminaries

It is a conjecture that urban planning can be “divided” into master urban planning and derived urban
plannings.

more to come

6.1.1 Derived Urban Plan Indices

We think of master urban planning function, modeled by master up fct, as being concerned with the
overall “division” of the urban space (i.e., geographical area, land and water) into zones for building,
recreation, and other (i.e., the master plan). Aggregations of these zones, one, more or all (usually
several), can then be further “[derive] planned” into zones:

• (d1) light, medium and heavy industry,

• (d2) public works,

• (d3) office,

• (d4) mixed shopping and residential,

• (d5) apartment bldg.,

• . . . , etc.,

• (dm−1) villa, and

• (dm) recreational.

Additional forms of derived plannings are:

19The m qui satisfactory argument, m qui, embodies not only that plan, but also the basis for its determination.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

26 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

• (dm+1) transport;

• (dm+2) electricity supply;

• (dm+3) water supply;

• (dm+4) waste management;

• (dm+5) health care;

• (dm+6) fire brigades;

• . . . , etc.,

• (dn) schools.

We refer to the di’s as derived urban plan indices.

71 We think of this variety of “derived” plannings as indexed such as hinted at above,

72 and dups as the set of all indices.

type

71 DP == {|d1,d2,...,dn|}
value

72 dups:DP-set = {d1,d2,...,dn}

6.1.2 A “Reservoir” of Derived Urban Planning Indices

73 To secure that at most one derived planning, di, is initiated we introduce a global variable,
dps var, initialised to an empty set of derived planning tokens and updated with the addition of
selected DP tokens.

variable

73 dps var:DP-set := {} comment dps var denotes a reference

6.1.3 A Derived Urban Planning Index Selector

74 A function, sel dps, selects zero, one or more “fresh” DP indices, that is, DP tokens that have
not been selected before.

value

74 sel dps: Unit → DP-set
74 sel dps() ≡
74 let dps:DP-set•dps⊆dups \ c dps var in
74 dps var := c dps var ∪ dps; dps end
comment

73 [c denotes a contents-taking operator]

We shall revise the above selector in Sect. 6.7 on Page 32.

6.1.4 The Derived Urban Plan Generator

75 We therefore edit the master up beh 1 behaviour slightly into the revised master up beh 2. In
master up beh 2 we insert, “in parallel” (‖) with the “resumption” of master up beh 2 (cf. Item 70
on the previous page), an internal non-deterministic choice behaviour, der up(). It specifies the
selection of zero, one of more DP tokens, and initiates corresponding derived planning behaviours,
der up behi(), as well as their corresponding “input” triplet oracles, d tri behi(). But only at most
once. These derived planning behaviours, der up behi, and “input” triplet oracles, der tri behi()
are like master up beh 1, respectively m tri beh, only now they are “tuned” to the specific derived
planning issues (i.e., i).

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 27

When behaviour and function invocations where the names of these behaviors or functions names
are prefixed with der , e.g., der name, and are indexed by some i, i.e., der namei, then we mean the
invocation of one specific i indexed behaviour or function from the indexed set of such, as defined by
their behaviour and function definitions, see below.

value

75 der up: Unit → Unit

75 der up() ≡ let dps = sel dps() in ‖{der up behi()‖d tri behi()|i:DP•i ∈ dps} end

We shall introduce the der up behi and d tri behi behaviours below.

6.1.5 The Revised Master Urban Planning Behaviour

We “take over”, i.e., “copy”, the basic structure and definition (“contents”) of the urban planning
function and behaviour from that of the master version. that is: master up beh 2().

76 We think of zero, one or more derived plannings (der up beh1, der up beh2, . . . , der up behn)
being initiated after some stage of master function, master up fct, has concluded.

value

66 master up beh 2() ≡
62 let (m tri,m qui) = (m tri ch?,m qui ch?) in

63 let m qui′ = master up fct(m tri)(m qui) in
64 m qui ch ! m qui′ ;
68 if master satisfactory(m qui′)
69 then skip

70’ else der up() ‖ master up beh 2() end
66 end end

6.2 The Derived Urban Planning Functions

An important form of information for each derived urban planning function is the resumption, i.e.,
the “quintuplet” information from the master urban behaviour: mQui.

77 The new forms of information are: the derived urban planning auxiliary, dAUXi, the derived
urban planning requirements information, dREQi, as well as the derived urban planning plans,
dPLAi, and their ancillary information, dANCi.

78 The primary arguments for the derived urban planning function, master up fct, is therefore a
“quintuplet”, d qui:dQUI, of a master triplet, m tri:mTRI, and the pair of the derived urban
planning auxiliary information, d auxi:dAUXi, and the derived urban planning requirements,
d reqi:dREQi.

The result of derived urban planning function, der up fcti, as for the master urban planning function,
master up fct,

79 is that of a “quintuplet”, also referred to as a resumption, dQUIi, of the primary arguments,
b tri:bTRI, and

80 the result, a pair of a derived plan, d plai, and derived ancillaries, d anci.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

28 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

81 As for the master urban planning function, master up fct, it has a secondary, derived “quintuplet”
argument (which, as for master up fct, helps “kick-start” urban planning). This second argument
is the result of a previous application of the der up fcti.

82 The derived urban planning function der up fcti signature is therefore that of a function from
a triplet of a most recent master “quintuplet”, derived urban planning auxiliary and derived
urban planning requirements information to functions from derived “quintuplet” arguments to
derived “quintuplet” results.

83 The triplet argument, d trii, and the first part of the result, also a triplet, d tri′i, are the same.

84 The derived urban planning function der up fcti is further characterised by a predicate, Pderi ,
which we leave further undefined.

type

77 dAUX1, dAUX2, ..., dAUXn

77 dREQ1, dREQ2, ..., dREQn

77 dPLA1, dPLA2, ..., dPLAn

77 dANC1, dANC2, ..., dANCn

78 dTRIi = mQUI×dAUXi×dREQi [i:DP•i∈dups]
80 dRESi = dPLAi × dANCi [i:DP•i∈dups]
79 dQUIi = dTRIi×dRESi [i:DP•i∈dups]
value

81 der up fcti: dTRIi → dQUIim → dQUIi i:DP
82 der up fcti(d trii)(d quii) as (d tri′i,d resi)
83 d trii = d tri′i ∧
84 Pderi(d tri′i,d resi)

84 Pderi : dTRIi × dRESi → Bool

6.3 The Derived Urban Planning “Oracle” Behaviour

85 We introduce the (indexed) type, dPAIRi, of a pair of indexed derived auxiliaries and indexed
derived requirements.

86 And we need an array channel that communicates the master quintuplet from the master quin-
tuplet repository to an indexed derived triplet behaviour.

The d tri behi oracle evolves around:

87 the most recent dpair ; it inputs master quintuplets over the master quintuplet repository to
derived triplet oracle channel; and it outputs a triplet, dTRIi, to the drived urban planning
behaviour.

88 The d tri behi behaviour “cycles” between forming (internal non-deterministically) a suitable, a
fit, “next” dpair which it combines,

89 mq dt ch[i]? offers to the derived urban planning behaviour

90 whereupon it resumes being an oracle.

91 We leave the definition of fitness of dpairs open.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 29

type

85 dPAIRi = dAUXi × dREQi [i:DP•i∈dups]
channel

86 {mq dt ch[i]|i:DP}:mQUI
value

87 d tri behi: dPAIRi → in mq dt ch[i] out d tri ch[i] Unit

87 d tri behi(d pairi) ≡
88 let d pair′i:dPAIRi • d fit pair(d pairi,d pair′i) in
89 d tri ch[i] ! (mq dt ch[i]?,d pair′i) ;
90 d tri behi(d pair′i) end

91 d fit pair: dPAIRi × dPAIRi → Bool

6.4 The Derived Urban Planning Behaviour

92 We think of zero, one or more derived plannings (der up behi1 , der up behi2 , . . . , der up behik)
being initiated after some stage of the der up fcti function has concluded.

value

66 der up behi() ≡
62 let (d trii,d quii) = (d tri ch[i]?,d qui ch[i]?) in

63 let d qui′ = der up fcti(d trii)(d quii) in
70 d qui ch[i] ! d qui′i ;
68 if der qui satisfactoryi(d qui′i)
66 then skip

67,92 else der up() ‖ der up behi() end

66 end end

68 der qui satisfactory: dQUI → Bool

6.5 The Derived Resumption Repository

6.5.1 The Consolidated Derived Resumption Map

93 The derived urban planning functions (and thus behaviours) operate, not on simple resumptions,
as do the master urban planning functions (and behaviours), but on the aggregation of all derived
functions’ (etc.) “quintuplets”, that is, an indexed set of “quintuplets” – modeled as a derived
resumptions map.

type

93 dQUIm = DP →m dQUIi

6.5.2 The Consolidated Derived Resumption Repository Channel

94 Communications between the individual derived urban planning behaviours and the consoli-
dated derived resumption repository are via an indexed set of channels communicating derived
resumptions maps.

channel

94 {d qui ch[i]:dQUIm|i:DP• i ∈ dups}

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

30 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

6.5.3 The Consolidated Derived Resumption Repository

95 The consolidated derived resumption repository behaviour either (⌈⌉⌊⌋) updates its state map with
received individual derived resumptions, or offers the entire such state maps to whichever derived
urban planning behaviour so requests.

value

95 d qui beh: dQUIm → in,out der qui ch[i] Unit i:DP
95 d qui beh(d qui m) ≡
95 (⌈⌉⌊⌋{d qui beh(d qui m†[i 7→d qui ch[i]?])|i:DP•i ∈ dup}
95 ⌈⌉⌊⌋
95 ⌈⌉⌊⌋{d qui ch[i]!d qui m|i:DP•i ∈ dup});
95 d qui beh(d qui m)

6.5.4 Initial Consolidated Derived Urban Plannings

value

init d qui1:dQUI1, ..., init d quin:dQUIn
init d qui m:dQUIm = [d1 7→ init d qui1, ..., dn 7→ init d quin]

6.5.5 Initialisation of The Derived “Quintuplet” Oracle

As for master oracle and repository behaviours we initialise the derived “quintuplet” oracle:

der qui beh(init d qui m)

6.6 A Visual Rendition of Urban Planning Development

The urban planning project domain, when operating at “full speed”, consists of the master urban plan-
ning behaviour (i.e., project), zero, one or more derived urban planning behaviours, each of the latter
initiated by either the master urban planning project or a derived urban planning project. See Fig. 2
on the facing page. The planning behaviours, both the master and the deriveds, invoke respective
urban planning functions, and these produce, such as we have modeled them, “quintuplets” of informa-
tion, which are deposited with respective “quintuplet” repository behaviours: the master “quintuplet”
repository behaviour, and the derived “quintuplet” repository behaviour — which maintains these
“quintuplets” for all (invoked and thus ongoing) derived urban planning projects. We kindly ask you
to review Fig. 2. All you have to grasp is the fact that there is one master urban planning project, with
its repository of master urban planning “quintuplets”, and between 0 and n derived urban planning
projects, with their shared (consolidated20), derived urban planning “quintuplets”, Then there are the
channels: the query (input) channels providing auxiliary and requirements information to both the one
master urban planning project and the n derived urban planning projects; and the query/repository
channels providing “quintuplet” aggregated information to the master urban planning project, as well
as “quintuplet” aggregated information to the derived urban planning projects. Finally there is the
“global” value representing the index set of derived urban planning indices, and the variable which
holds the index set of derived urban planning indices of ongoing derived urban planning projects.

20– into a map

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 31

:=

m_tri_ch

mq_dt_beh[dn]

mq_dt_beh[d1]

mq_dt_beh[d2]

d_tri_ch[d1] d_tri_ch[dn]

d_qui_ch[d2] d_qui_ch[dn]d_qui_ch[d1]

d_qui_beh

dups = {d1,d2,...,dn}

m_qui_beh

m
_q

u
i_

ch

d_tri_ch[d2]

dps_var

d_tri_beh_d1 d_tri_beh_dnd_tri_beh_d2

master_up_beh

der_up_beh_d1 der_up_beh_d2 der_up_beh_dn

m_tri_beh

Figure 2: An Urban Planning:
n+1 Planning Behaviours, 2 Repository Behaviours, n+1 Oracles,
a Variable, a Value and 3n+2 Channels

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

32 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

6.7 Revised Selection of Derived Urban Plannings

to be written

6.8 The Urban Planning System

96 Finally we can define an urban planning development as a system of concurrent behaviours:

• the master urban planning behaviour,

• the master “quintuplet” repository and

• the derived and consolidate “quintuplet” repository

value

96 up sys: Unit → Unit

96 up sys() ≡ master up beh() ‖ m qui beh(m qui init) ‖ d qui beh(init d qui m)

Recall that the derived urban planning behaviours as well as the derived triplet behaviours are started
by the master as well as the derived urban planning behaviours.

7 Further Work

7.1 Requirements to Urban Planning

In this section we list a few requirements that we think it wise to have fulfilled before a proper urban
planning development project can commence.

more to come

8 Conclusion

to be written

9 Bibliograhy

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B:
System and Software Engineering. Cambridge University Press, Cambridge, England, 1996 and
2009.

[2] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily
authored by Christian Krog Madsen.

[3] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture
Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages
1–30, Heidelberg, May 2008. Springer.

[4] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach
to Requirements Engineering. 2016. Extensive revision of [3].

[5] Dines Bjørner. What are Documents ? Research Note, July 2017. http://www.imm.dtu.dk/-
˜dibj/2017/docs/docs.pdf.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 33

[6] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Computing,
29(2):175–225, March 2017. DOI 10.1007/s00165-016-0385-z http://link.springer.com/article/-
10.1007/s00165-016-0385-z.

[7] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer, 1978.

[8] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, 1982.

[9] Dines Bjørner. Urban Planning Processes. Research Note, July 2017. http://www.imm.dtu.dk/-
˜dibj/2017/up/urban-planning.pdf.

[10] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in
Software Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2
2RU, UK, 1998. ISBN 0-521-62348-0.

[11] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Lan-
guage. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[12] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and
Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

[13] C.A.R. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Sci-
ence. Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/csp-
book.pdf (2004).

[14] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-
bridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[15] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall
International Series in Computer Science, 1996.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

34 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

A A Document System

A.1 Introduction

We analyse a notion of documents. Documents such as they occur in daily life. What can we say about
documents – regardless of whether we can actually provide compelling evidence for what we say ! That
is: we model documents, not as electronic entities — which they are becoming, more-and-more, but
as if they were manifest entities. When we, for example, say that “this document was recently edited
by such-and-such and the changes of that editing with respect to the text before is such-and-such”,
then we can, of course, always claim so, even if it may be difficult or even impossible to verify the
claim. It is a fact, although maybe not demonstrably so, that there was a version of any document
before an edit of that document. It is a fact that some handler did the editing. It is a fact that the
editing took place at (or in) exactly such-and-such a time (interval), etc. We model such facts.

A.2 A Document Systems Description

This research note unravels its analysis &21 description in stages.

A.3 A System for Managing, Archiving and Handling Documents

The title of this section: A System for Managing, Archiving and Handling Documents immediately
reveals the major concepts: That we are dealing with a system that manages, archives and han-

dles documents. So what do we mean by managing, archiving and handling documents, and by
documents ? We give an ultra short survey. The survey relies on your prior knowledge of what you
think documents are ! Management decides22 to direct handlers to work on documents. Man-

agement first directs the document archive to create documents. The document archive creates

documents, as requested by management, and informs management of the unique document

identifiers (by means of which handlers can handle these documents). Management then grants
its designated handler(s) access rights to documents, these access rights enable handlers to edit,

read and copy documents. The handlers’ editing and reading of documents is accomplished by
the handlers “working directly” with the documents (i.e., synchronising and communicating with
document behaviours). The handlers’ copying of documents is accomplished by the handlers
requesting management, in collaboration with the archive behaviour, to do so.

A.4 Principal Endurants

By an endurant we shall understand “an entity that can be observed or conceived and described as
a ”complete thing” at no matter which given snapshot of time.” Were we to ”freeze” time we would
still be able to observe the entire endurant. This characterisation of what we mean by an ‘endurant’ is
from [6, Manifest Domains: Analysis & Description]. We begin by identifying the principal endurants.

97 From document handling systems one can observe aggregates of handlers and documents.

We shall refer to ‘aggregates of handlers’ byM, for management, and to ‘aggregates of documents’
by A, for archive.

98 From aggregates of handlers (i.e., M) we can observe sets of handlers (i.e., H).

99 From aggregates of documents (i.e., A) we can observe sets of documents (i.e., D).

21We use the logogram & between two terms, A & B, when we mean to express one meaning.
22How these decisions come about is not shown in this research note – as it has nothing to do with the essence of

document handling, but, perhaps, with ‘management’.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 35

type

97 S, M, A
value

97 obs M: S → M
97 obs A: S → A
type

98 H, Hs = H-set
99 D, Ds = D-set
value

98 obs Hs: M → Hs
99 obs Ds: A → Ds

A.5 Unique Identifiers

The notion of unique identifiers is treated, at length, in [6, Manifest Domains: Analysis & Description].

100 We associate unique identifiers with aggregate, handler and document endurants.

101 These can be observed from respective parts23.

type

100 MI24, AI25, HI, DI
value

101 uid MI26: M → MI
101 uid AI27: A → AI
101 uid HI: H → HI
101 uid DI: D → DI

As reasoned in [6, Manifest Domains: Analysis & Description], the unique identifiers of endurant parts
are indeed unique: No two parts, whether composite, as are the aggregates, or atomic, as are handlers
and documents, can have the same unique identifiers.

A.6 Documents: A First View

A document is a written, drawn, presented, or memorialized representation of thought. The word
originates from the Latin documentum, which denotes a “teaching” or “lesson”.28 We shall, for this
research note, take a document in its written and/or drawn form. In this section we shall survey the
concept a documents.

A.6.1 Document Identifiers

Documents have unique identifiers. If two or more documents have the same document identifier then
they are the same, one (and not two or more) document(s).

23[6, Manifest Domains: Analysis & Description] explains how ‘parts’ are the discrete endurants with which we associate
the full complement of properties: unique identifiers, mereology and attributes.

24We shall not, in this research note, make use of the (one and only) management identifier.
25We shall not, in this research note, make use of the (one and only) archive identifier.
26Cf. Footnote 24: hence we shall not be using the uid MI observer.
27Cf. Footnote 25: hence we shall not be using the uid AI observer.
28From: https://en.wikipedia.org/wiki/Document

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

36 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

A.6.2 Document Descriptors

With documents we associate document descriptors. We do not here stipulate what document de-
scriptors are other than saying that when a document is created it is provided with a descriptor and
this descriptor “remains” with the document and never changes value. In other words, it is a static
attribute.29 We do, however, include, in document descriptors, that the document they describe was
initially based on a set of zero, one or more documents – identified by their unique identifiers.

A.6.3 Document Annotations

With documents we also associate document annotations. By a document annotation we mean a
programmable attribute, that is, an attribute which can be ‘augmented’ by document handlers. We
think of document annotations as “incremental”, that is, as “adding” notes “on top of” previous
notes. Thus we shall model document annotations as a repository: notes are added, i.e., annotations
are augmented, previous notes are not edited, and no notes are deleted. We suggest that notes be
time-stamped. The notes (of annotations) may be such which record handlers work on documents.
Examples could be: “January 3, 2018: 09:32 am: This is version V.”, “This document was released on
January 3, 2018: 09:32 am.”, “January 3, 2018: 09:32 am: Section X.Y.Z of version III was deleted.”,
“January 3, 2018: 09:32 am: References to documents doci and docj are inserted on Pages p and q,
respectively.” and “January 3, 2018: 09:32 am: Final release.”

A.6.4 Document Contents: Text/Graphics

The main idea of a document, to us, is the written (i.e., text) and/or drawn (i.e., graphics) contents.
We do not characterise any format for this contents. We may wish to insert, in the contents, references
to locations in the contents of other documents. But, for now, we shall not go into such details.
The main operations on documents, to us, are concerned with: their creation, editing, reading,

copying and shredding. The editing and reading operations are mainly concerned with document
annotations and text/graphics.

A.6.5 Document Histories

So documents are created, edited, read, copied and shreded. These operations are initiated by the
management (create), by the archive (create), and by handlers (edit, read, copy), and at specific
times.

A.6.6 A Summary of Document Attributes

102 As separate attributes of documents we have document descriptors, document annotations, doc-
ument contents and document histories.

103 Document annotations are lists of document notes.

104 Document histories are lists of time-stamped document operation designators.

105 A document operation designator is either a create, or an edit, or a read, or a copy, or a shred
designator.

106 A create designator identifies

29You may think of a document descriptor as giving the document a title; perhaps one or more authors; perhaps a
physical address (of, for example, these authors); an initial date; as expressing whether the document is a research, or
a technical report, or other; who is issuing the document (a public institution, a private firm, an individual citizen, or
other); etc.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 37

a a handler and a time (at which the create request first arose), and presents

b elements for constructing a document descriptor, one which

i besides some further undefined information

ii refers to a set of documents (i.e., embeds reference to their unique identifiers),

c a (first) document note, and

d an empty document contents.

107 An edit designator identifies a handler, a time, and specifies a pair of edit/undo functions.

108 A read designator identifies a handler.

109 A copy designator identifies a handler, a time, the document to be copied (by its unique identifier,
and a document note to be inserted in both the master and the copy document.

110 A shred designator identifies a handler.

111 An edit function takes a triple of a document annotation, a document note and document contents
and yields a pair of a document annotation and a document contents.

112 An undo function takes a pair of a document note and document contents and yields a triple of
a document annotation, a document note and a document contents.

113 Proper pairs of (edit,undo) functions satisfy some inverse relation.

There is, of course, no need, in any document history, to identify the identifier of that document.

type

102 DD, DA, DC, DH
value

102 attr DD: D → DD
102 attr DA: D → DA
102 attr DC: D → DC
102 attr DH: D → DH
type

103 DA = DN∗

104 DH = (TIME × DO)∗

105 DO == Crea | Edit | Read | Copy | Shre
106 Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|}
106(b)i Info = ...
value

106(b)ii embed DIs in DD: DI-set × Info → DD
axiom

106d ′′
empty_DC

′′ ∈ DC
type

107 Edit :: (HI × TIME) × (EDIT × UNDO)
108 Read :: (HI × TIME) × DI
109 Copy :: (HI × TIME) × DI × DN
110 Shre :: (HI × TIME) × DI
111 EDIT = (DA × DN × DC) → (DA × DC)
112 UNDO = (DA × DC) → (DA × DN × DC)
axiom

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

38 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

113 ∀ mkEdit(,(e,u)):Edit •

113 ∀ (da,dn,dc):(DA×DN×DC) •

113 u(e(da,dn,dc))=(da,dn,dc)

A.7 Behaviours: An Informal, First View

In [6, Manifest Domains: Analysis & Description] we show that we can associate behaviours with parts,
where parts are such discrete endurants for which we choose to model all its observable properties:
unique identifiers, mereology and attributes, and where behaviours are sequences of actions, events
and behaviours.

• The overall document handler system behaviour can be expressed in terms of the parallel com-
position of the behaviours

114 of the system core behaviour,

115 of the handler aggregate (the management) behaviour

116 and the document aggregate (the archive) behaviour,

with the (distributed) parallel composition of

117 all the behaviours of handlers and,

the (distributed) parallel composition of

118 at any one time, zero, one or more behaviours of documents.

• To express the latter

119 we need introduce two “global” values: an indefinite set of handler identifiers and an
indefinite set of document identifiers.

value

119 his:HI-set, dis:DI-set

114 sys(...)
115 ‖ mgtm(...)
116 ‖ arch(...)
117 ‖ ‖{hdlri(...)|i:HI•i∈his}
118 ‖ ‖{docui(dd)(da,dc,dh)|i:DI•i∈dis}

For now we leave undefined the arguments, (...) etc., of these behaviours. The arguments of the doc-
ument behaviour, (dd)(da,dc,dh), are the static, respectively the three programmable (i.e., dynamic)
attributes: document descriptor, document annotation, document contents and document history.
The above expressions, Items 115–118, do not define anything, they can be said to be “snapshots”
of a “behaviour state”. Initially there are no document behaviours, docui(dd)(da,dc,dh), Item 118.
Document behaviours are “started” by the archive behaviour (on behalf of the management and the
handler behaviours). Other than mentioning the system (core) behaviour we shall not model that
behaviour further.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 39

A.8 Channels, A First View

Channels are means for behaviours to synchronise and communicate values (such as unique identifiers,
mereologies and attributes).

120 The management behaviour, mgtm, need to (synchronise and) communicate with the archive
behaviour, arch, in order, for the management behaviour, to request the archive behaviour

• to create (ab initio or due to copying)

• or shred document behaviours, docuj ,

and for the archive behaviour

• to inform the management behaviour of the identity of the document(behaviour)s that it
has created.

channel

120 mgtm arch ch:MA

121 The management behaviour, mgtm, need to (synchronise and) communicate with all handler
behaviours, hdlri and they, in turn, to (synchronised) communicate with the handler management
behaviour, mgtm. The management behaviour need to do so in order

• to inform a handler behaviour that it is granted access rights to a specific document,
subsequently these access rights may be modified, including revoked.

channel

121 {mgtm hdlr ch[i]:MH|i:HI•i ∈ his}

122 The document archive behaviour, arch, need (synchronise and) communicate with all document
behaviours, docuj and they, in turn, to (synchronise and) communicate with the archive be-
haviour, arch.

channel

122 {arch docu ch[j]:AD|h:DI•j ∈ dis}

123 Handler behaviours, hdlri, need (synchronise and) communicate with all the document be-
haviours, docuj , with which it has operational allowance to so do so30, and document behaviours,
docuj , need (synchronise and) communicate with potentially all handler behaviours, hdlri, namely
those handler behaviours, hdlri with which they have (“earlier” synchronised and) communicated.

channel

123 {hdlr docu ch[i,j]:HD|i:HI,j:DI•i ∈ his∧j ∈ dis}

124 At present we leave undefined the type of messages that are communicated.

type

124 MA, MH, AD, HD

30The notion of operational allowance will be explained below.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

40 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

mgtm

arch

mgtm_arch_ch

{mgtm_hdlr_ch[i]|i:HI...}

{arch_docu_ch[h]|j:DI...}

{hdlr_docu_ch[i,j]|i:HI,j:DI...}

n_d

n_h

n_h*n_d

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

Figure 3: An Informal Snapshot of System Behaviours

A.9 An Informal Graphical System Rendition

Figure 3 is an informal rendition of the “state” of a number of behaviours: a single management
behaviour, a single archive behaviour, a fixed number, nh, of one or more handler behaviours, and a
variable, initially zero number of document behaviours, with a maximum of these being nd. The figure
also indicates, again rather informally, the channels between these behaviours: one channel between
the management and the archive behaviours; nh channels (nh is, again, informally indicated) between
the management behaviour and the nh handler behaviours; nd channels (nd is, again, informally
indicated) between the archive behaviour and the nd document behaviours; and nh × nd channels
(nd × nd is, again, informally indicated) between the nh handler behaviours and the nd document
behaviours

A.10 Behaviour Signatures

125 The mgtm behaviour (synchronises and) communicates with the archive behaviour and with all
of the handler behaviours, hdlri.

126 The archive behaviour (synchronises and) communicates with the mgtm behaviour and with all
of the document behaviours, docuj .

127 The signature of the generic handler behaviours, hdlri expresses that they [occasionally] receive
“orders” from management, and otherwise [regularly] interacts with document behaviours.

128 The signature of the generic document behaviours, docuj expresses that they [occasionally]
receive “orders” from the archive behaviour and that they [regularly] interacts with handler
behaviours.

value

125 mgtm: ... → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit

126 arch: ... → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit

127 hdlri: ... → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit

128 docuj: ... → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 41

A.11 Time

A.11.1 Time and Time Intervals: Types and Functions

129 We postulate a notion of time, one that covers both a calendar date (from before Christ up till
now and beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD,
HH:MM:SS).

130 And we postulate a notion of (signed) time interval — between two times (say: ±YY:MM:DD:HH:MM:SS).

131 Then we postulate some operations on time: Adding a time interval to a time obtaining a time;
subtracting one time from another time obtaining a time interval, multiplying a time interval
with a natural number; etc.

132 And we postulate some relations between times and between time intervals.

type

129 TIME
130 TIME INTERVAL
value

131 add: TIME INTERVAL × TIME → TIME
131 sub: TIME × TIME → TIME INTERVAL
131 mpy: TIM INTERVALE × Nat → TIME INTERVAL
132 <,≤,=,6=,≥,>: ((TIME×TIME)|(TIME INTERVAL×TIME INTERVAL)) → Bool

A.11.2 A Time Behaviour and a Time Channel

133 We postulate a[n “ongoing”] time behaviour: it either keeps being a time behaviour with un-
changed time, t, or – internally non-deterministically – chooses being a time behaviour with a
time interval incremented time, t+ti, or – internally non-deterministically – chooses to [first] of-
fer its time on a [global] channel, time ch, then resumes being a time behaviour with unchanged
time., t

134 The time interval increment, ti, is likewise internally non-deterministically chosen. We would
assume that the increment is “infinitesimally small”, but there is no need to specify so.

135 We also postulate a channel, time ch, on which the time behaviour offers time values to whoever
so requests.

value

133 time: TIME → time ch TIME Unit

133 time(t) ≡ (time(t) ⌈⌉ time(t+ti) ⌈⌉ time ch!t ; time(t))
134 ti:TIME INTERVAL ...
channel

135 time ch:TIME

A.11.3 An Informal RSL Construct

The formal-looking specifications of this report appear in the style of the RAISE [12] Specification
Language, RSL [11]. We shall be making use of an informal language construct:

• wait ti.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

42 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

wait is a keyword; ti designates a time interval. A typical use of the wait construct is:

• ... ptA ; wait ti; ptB ; ...

If at specification text point ptA we may assert that time is t, then at specification text point ptB we
can assert that time is t+ti.

A.12 Behaviour “States”

We recall that the endurant parts, Management, Archive, Handlers, and Documents, have properties
in the form of unique identifiers, mereologies and attributes. We shall not, in this research note, deal
with possible mereologies of these endurants. In this section we shall discuss the endurant attributes
of mgtm (management), arch (archive), hdlrs (handlers), and docus (documents). Together the values
of these properties, notably the attributes, constitute states – and, since we associate behaviours with
these endurants, we can refer to these states also a behaviour states. Some attributes are static, i.e.,
their value never changes. Other attributes are dynamic.31 Document handling systems are rather
conceptual, i.e., abstract in nature. The dynamic attributes, therefore, in this modeling “exercise”, are
constrained to just the programmable attributes. Programmable attributes are those whose value is
set by “their” behaviour. For a behaviour β we shall show the static attributes as one set of parameters
and the programmable attributes as another set of parameters.

value β: Static → Program → ... Unit

136 For the management endurant/behaviour we focus on one programmable attribute. The man-
agement behaviour needs keep track of all the handlers it is charged with, and for each of
these which zero, one or more documents they have been granted access to (cf. Sect. A.13.3 on
Page 44). Initially that management directory lists a number of handlers, by their identifiers,
but with no granted documents.

137 For the archive behaviour we similarly focus on one programmable attribute. The archive be-
haviour needs keep track of all the documents it has used (i.e., created), those that are avaliable
(and not yet used), and of those it has shredded. Initially all these three archive directory sets
are empty.

138 For the handler behaviour we similarly focus on one programmable attribute. The handler
behaviour needs keep track of all the documents it has been charged with and its access rights
to these.

139 Document attributes we mentioned above, cf. Items 102–105.

type

136 MDIR = HI →m (DI →m ANm-set)
137 ADIR = avail:DI-set × used:DI-set × gone:DI-set
138 HDIR = DI →m ANm-set

139 SDATR = DD, PDATR = DA × DC × DH
axiom

137 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used

We can now “complete” the behaviour signatures. We omit, for now, static attributes.

31We refer to Sect. 3.4 of [6], and in particular its subsection 3.4.4.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 43

value

125 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit

126 arch: ADIR → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit

127 hdlri: HDIR → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit

128 docuj: SDATR → PDATR → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

A.13 Inter-Behaviour Messages

Documents are not “fixed, innate” entities. They embody a “history”, they have a “past”. Somehow
or other they “carry a trace of all the ”things” that have happened/occurred to them. And, to us, these
things are the manipulations that management, via the archive and handlers perform on documents.

A.13.1 Management Messages with Respect to the Archive

140 Management create documents. It does so by requesting the archive behaviour to allocate a
document identifier and initialize the document “state” and start a document behaviour, with
initial information, cf. Item 106 on Page 36:

a the identity of the initial handler of the document to be created,

b the time at wich the request is being made,

c a document descriptor which embodies a (finite) set of zero or more (used) document
identifiers (dis),

d a document annotation note dn, and

e an initial, i.e., “empty” contents, "empty DC".

type

106. Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|} [cf. formula Item 106, Page 37]

141 The management behaviour passes on to the archive behaviour, requests that it accepts from
handlers behaviours, for the copying of document:

141 Copy :: DI × HI × TIME × DN [cf. Item 151 on Page 45]

142 Management schreds documents by informing the archive behaviour to do so.

type

142 Shred :: TIME × DI

A.13.2 Management Messages with Respect to Handlers

143 Upon receiving, from the archive behaviour, the “feedback” the identifier of the created document
(behaviour):

type

143. Create Reply :: NewDocID(di:DI)

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

44 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

144 the management behaviour decides to grant access rights, acrs:ACRS32, to a document handler,
hi:HI.

type

144 Gran :: HI × TIME × DI × ACRS

A.13.3 Document Access Rights

Implicit in the above is a notion of document access rights.

145 By document access rights we mean a set of action names.

146 By an action name we mean such tokens that indicate either of the document handler operations
indicate above.

type

145 ACRS = ANm-set

146 ANm = {|′′edit′′,′′read′′,′′copy′′|}

A.13.4 Archive Messages with Respect to Management

To create a document management provides the archive with some initial information. The archive
behaviour selects a document identifier that has not been used before.

147 The archive behaviour informs the management behaviour of the identifier of the created docu-
ment.

type

147 NewDocID :: DI

A.13.5 Archive Message with Respect to Documents

148 To shred a document the archive behaviour must access the designated document in order to
stop it. No “message”, other than a symbolic "stop", need be communicated to the document
behaviour.

type

148 Shred :: {|′′stop′′|}

A.13.6 Handler Messages with Respect to Documents

Handlers, generically referred to by hdlri, may perform the following operations on documents: edit,
read and copy. (Management, via the archive behaviour, creates and shreds documents.)

149 To perform an edit action handler hdlri must provide the following:

• the document identity – in the form of a (i:HI,j:DI) channel hdlr docu ch index value,

32For the concept of access rights see Sect. A.13.3.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 45

• the handler identity, i,

• the time of the edit request,

• and a pair of functions: one which performs the editing and one which un-does it !

type

149 Edit :: DI × HI × TIME × (EDIT × UNDO)

150 To perform a read action handler hdlri must provide the following information:

• the document identity – in the form of a di:DI channel hdlr docu ch index value,

• the handler identity and

• the time of the read request.

type

150 Read :: DI × HI × TIME

A.13.7 Handler Messages with Respect to Management

151 To perform a copy action, a handler, hdlri, must provide the following information to the
management behaviour, mgtm:

• the document identity,

• the handler identity – in the form of an hi:HI channel mgtm hdlr ch index value,

• the time of the copy request, and

• a document note (to be affixed both the master and the copy documents).

151 Copy :: DI × HI × TIME × DN [cf. Item 141 on Page 43]

How the handler, the management, the archive and the “named other” handlers then enact the
copying, etc., will be outlined later.

A.13.8 A Summary of Behaviour Interactions

Figure 4 on the next page summarises the sources, out, resp. !, and the targets, in, resp. ?, of the
messages covered in the previous sections.

A.14 A General Discussion of Handler and Document Interactions

We think of documents being manifest. Either a document is in paper form, or it is in electronic form.
In paper form we think of a document as being in only one – and exactly one – physical location. In
electronic form a document is also in only one – and exactly one – physical location. No two handlers
can access the same document at the same time or in overlapping time intervals. If your conventional
thinking makes you think that two or more handlers can, for example, read the same document “at
the same time”, then, in fact, they are reading either a master and a copy of that master, or they are
reading two copies of a common master.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

46 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

mkGrant

mkCopy

mkShred

mkEditComplete
mkReadCompletemkRead

mkEdit
mkShred
mkCopy

mkCreate mkNewDocID

Figure 4: A Summary of Behaviour Interactions

A.15 Channels: A Final View

We can now summarize the types of the various channel messages first referred to in Items 120, 121,
122 and 123.

type

120 MA = Create (Item 140 on Page 43) | Shred (Item 140d on Page 43) | NewDocID (Item 147 on Page 44)
121 MH = Grant (Item 140c on Page 43) | Copy (Item 151 on the preceding page) |
122 AD = Shred (Item 148 on Page 44)
123 HD = Edit (Item 149 on Page 44) | Read (Item 150 on the previous page) | Copy (Item 151 on the preceding page)

A.16 An Informal Summary of Behaviours

A.16.1 The Create Behaviour: Left Fig. 5 on the next page

152 [1] The management behaviour, at its own volition, initiates a create document behaviour. It
does so by offering a create document message to the archive behaviour.

a [1.1] That message contains a meaningful document descriptor,

b [1.2] an initial document annotation,

c [1.3] an “empty” document contents and

d [1.4] a single element document history.

(We refer to Sect. A.13.1 on Page 43, Items 140–140e.)

153 [2] The archive behaviour offers to accept that management message. It then selects an available
document identifier (here shown as k), henceforth marking k as used.

154 [3] The archive behaviour then “spawns off” document behaviour docuk – here shown by the
“dash–dotted” rounded edge square.

155 [4] The archive behaviour then offers the document identifier k message to the management
behaviour.

(We refer to Sect. A.13.4 on Page 44, Item 147.)

156 [5] The management behaviour then

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 47

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1[2]

[5] [6][1]

docu_k

hdlr_i

[3]

[4]

mkGrant

mkNewDocID CREATE

The dotted line means:
Initialising the document.

mkCreate

mgtm

arch

hdlr_1 hdlr_n_h

docu_n_d docu_1

hdlr_i

[2]
docu_j

[3][1]

mkReadCompletemkReadEDIT

Figure 5: Informal Snapshots of Create and Edit Document Behaviours

a [5.1] selects a handler, here shown as i, i.e., hdlri,

b [5.2] records that that handler is granted certain access rights to document k,

c [5.3] and offers that granting to handler behaviour i.

(We refer to Sect. A.13.2 on Page 43, Item 144 on Page 44.)

157 [6] Handler behaviour i records that it now has certain access rights to doccument i.

A.16.2 The Edit Behaviour: Right Fig. 5

1 Handler behaviour i, at its own volition, initiates an edit action on document j (where i has edit-
ing rights for document j). Handler i, optionally, provides document j with a(annotation) note.
While editing document j handler i also “selects” an appropriate pair of edit/undo functions for
document j.

2 Document behaviour j accepts the editing request, enacts the editing, optionally appends the
(annotation) note, and, with handler i, completes the editing, after some time interval ti.

3 Handler behaviour i completes its edit action.

A.16.3 The Read Behaviour: Left Fig. 6 on the next page

1 Handler behaviour i, at its own volition, initiates a read action on document j (where i has
reading rights for document j). Handler i, optionally, provides document j with a(annotation)
note.

2 Document behaviour j accepts the reading request, enacts the reading by providing the handler,
i, with the document contents, and optionally appends the (annotation) note, and, with handler
i, completes the reading, after some time interval ti.

3 Handler behaviour i completes its read action.

A.16.4 The Copy Behaviour: Right Fig. 6 on the following page

1 Handler behaviour i, at its own volition, initiates a copy action on document j (where i has
copying rights for document j). Handler i, optionally, provides master document j as well as
the copied document (yet to be identified) with respective (annotation) notes.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

48 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

mgtm

arch

hdlr_1 hdlr_n_h

docu_1

hdlr_i

docu_j

[2]

[1]

docu_k

[3]

READ mkRead mkReadComplete

[3]

arch

docu_j

[6]

docu_k

[7] [4]

[5]

[2]

[8]

hdlr_1
[1]

hdlr_i

mgtm [10][9] [11]

COPY

docu_1

hdlr_n_h

mkCopy

mkGrant

mkGrant

These dot−dashed lines

Initialising the document.
The dotted line mean:

mean: Obtaining the
document "data" !

mkCopy mkNewDocID

Figure 6: Informal Snapshots of Read and Copy Document Behaviours

2 The management behaviour offers to accept the handler message. As for the create action, the
management behaviour offers a combined copy and create document message to the archive
behaviour.

3 The archive behaviour selects an available document identifier (here shown as k), henceforth
marking k as used.

4 The archive behaviour then obtains, from the master document j its document descriptor, ddj ,
its document annotations, daj , its document contents, dcj , and its document history, dhj .

5 The archice behaviour informs the management behaviour of the identifier, k, of the (new)
document copy,

6 while assembling the attributes for that (new) document copy: its document descriptor, ddk,
its document annotations, dak, its document contents, dck, and its document history, dhk, from
these “similar” attributes of the master document j,

7 while then “spawning off” document behaviour docuk – here shown by the “dash–dotted”
rounded edge square.

8 The management behaviour accepts the identifier, k, of the (new) document copy, recording the
identities of the handlers and their access rights to k,

9 while informing these handlers (informally indicated by a “dangling” dash-dotted line) of their
grants,

10 while also informing the master copy of the copy identity (etcetera).

11 The handlers granted access to the copy record this fact.

A.16.5 The Grant Behaviour: Left Fig. 7 on the next page

This behaviour has its

1 Item [1] correspond, in essence, to Item [9] of the copy behaviour – see just above – and

2 Item [2] correspond, in essence, to Item [11] of the copy behaviour.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 49

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1

hdlr_i

[2][1]

docu_k

GRANT

mkGrant mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_1docu_k docu_j

[1]

[3]

SHRED

mkShred

mkShred

[2]

Figure 7: Informal Snapshots of Grant and Shred Document Behaviours

A.16.6 The Shred Behaviour: Right Fig. 7

1 The management, at its own volition, selects a document, j, to be shredded. It so informs the
archive behaviour.

2 The archive behaviour records that document j is to be no longer in use, but shredded, and
informs document j’s behaviour.

3 The document j behaviour accepts the shred message and stops (indicated by the dotted rounded
edge box).

A.17 The Behaviour Actions

To properly structure the definitions of the four kinds of (management, archive, handler and docu-
ment) behaviours we single each of these out “across” the six behaviour traces informally described in
Sects. A.16.1–A.16.6. The idea is that if behaviour β is involved in τ traces, τ1, τ2, ..., ττ , then behaviour
β shall be defined in terms of τ non-deterministic alternative behaviours named βτ1 , βτ2 , ..., βττ .

A.17.1 Management Behaviour

158 The management behaviour is involved in the following action traces:

a create Fig. 5 on Page 47 Left

b copy Fig. 6 on the facing page Right

c grant Fig. 7 Left

d shred Fig. 7 Right

value

158 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit

158 mgtm(mdir) ≡
158a mgtm create(mdir)
158b ⌈⌉ mgtm copy(mdir)
158c ⌈⌉ mgtm grant(mdir)
158d ⌈⌉ mgtm shred(mdir)

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

50 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

Management Create Behaviour: Left Fig. 5 on Page 47

159 The management create behaviour

160 initiates a create document behaviour (i.e., a request to the archive behaviour),

161 and then awaits its response.

value

159 mgtm create: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit

159 mgtm create(mdir) ≡
160 [1] let hi = mgtm create initiation(mdir) ; [Left Fig. 5 on Page 47]
161 [5] mgtm create awaits response(mdir)(hi) end [Left Fig. 5 on Page 47]

The management create initiation behaviour

162 selects a handler on behalf of which it requests the document creation,

163 assembles the elements of the create message:

• by embedding a set of zero or more document references, dis, with some information, info,
into a document descriptor, adding

• a document note, dn, and

• and initial, that is, empty document contents, "empty DC",

164 offers such a create document message to the archive behaviour, and

165 yields the identifier of the chosen handler.

value

160 mgtm create initiation: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
160 mgtm create initiation(mdir) ≡
162 let hi:HI • hi ∈ dom mdir,
163 [1.2−.4] (dis,info):(DI-set×Info),dn:DN • is meaningful(embed DIs in DD(dis,info))(mdir) in
164 [1.1] mgtm arch ch ! mkCreate(embed DIs in DD(ds,info),dn,′′empty_DC′′)
165 hi end

163 is meaningful: DD → MDIR → Bool [left further undefined]

The management create awaits response behaviour

166 starts by awaiting a reply from the archive behaviour with the identity, di, of the document
(that that behaviour has created).

167 It then selects suitable access rights,

168 with which it updates its handler/document directory

169 and offers to the chosen handler

170 whereupon it resumes, with the updated management directory, being the management be-
haviour.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 51

value

161 mgtm create awaits response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit

161 mgtm create awaits response(mdir) ≡
166 [5] let mkNewDocID(di) = mgtm arch ch ? in

167 [5.1] let acrs:ANm-set in

168 [5.2] let mdir′ = mdir † [hi 7→ [di 7→ acrs]] in
169 [5.3] mgtm hdlr ch[hi] ! mkGrant(di,acrs)
170 mgtm(mdir′) end end end

Management Copy Behaviour: Right Fig. 6 on Page 48

171 The management copy behaviour

172 accepts a copy document request from a handler behaviour (i.e., a request to the archive be-
haviour),

173 and then awaits a response from the archive behaviour;

174 after which it grants access rights to handlers to the document copy.

value

171 mgtm copy: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit

171 mgtm copy(mdir) ≡
172 [2] let hi = mgtm accept copy request(mdir) in
173 [8] let di = mgtm awaits copy response(mdir)(hi) in
174 [9] mgtm grant access rights(mdir)(di) end end

175 The management accept copy behaviour non-deterministically externally (⌈⌉⌊⌋) awaits a copy
request from a[ny] handler (i) behaviour –

176 with the request identifying the master document, j, to be copied.

177 The management accept copy behaviour forwards (!) this request to the archive behaviour –

178 while yielding the identity of the requesting handler.

175. mgtm accept copy request: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
175. mgtm accept copy request(mdir) ≡
176. let mkCopy(di,hi,t,dn) = ⌈⌉⌊⌋{mgtm hdlr ch[i]?|i:HI•i ∈ his} in

177. mgtm arch ch ! mkCopy(di,hi,t,dn) ;
177. hi end

The management awaits copy response behaviour

179 awaits a reply from the archive behaviour as to the identity of the newly created copy (di) of
master document j.

180 The management awaits copy response behaviour then informs the ‘copying-requesting’ handler,
hi, that the copying has been completed and the identity of the copy (di) –

181 while yielding the identity, di, of the newly created copy.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

52 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

158b. mgtm awaits copy response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} DI
158b. mgtm awaits copy response(mdir)(hi) ≡
179. [8] let mkNewDocID(di) = mgtm arch ch ? in

180. mgtm hdlr ch[hi] ! mkCopy(di) ;
181. di end

The management grants access rights behaviour

182 selects suitable access rights for a suitable number of selected handlers.

183 It then offers these to the selected handlers.

174. mgtm grant access rights: MDIR → DI → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit

174. mgtm grant access rights(mdir)(di) ≡
182. let diarm = [hi 7→acrs|hi:HI,arcs:ANm-set• hi ∈ dom mdir∧arcs⊆(diarm(hi))(di)] in
183. ‖ {mgtm hdlr ch[hi]!mkGrant(hi,time ch?,di,acrs) |
183. hi:HI,acrs:ANm-set•hi ∈ dom diarm∧acrs⊆(diarm(hi))(di)} end

Management Grant Behaviour: Left Fig. 7 on Page 49 The management grant behaviour

184 is a variant of the mgtm grant access rights function, Items 182–183.

185 The management behaviour selects a suitable subset of known handler identifiers, and

186 for these a suitable subset of document identifiers from which

187 it then constructs a map from handler identifiers to subsets of access rights.

188 With this the management behaviour then issues appropriate grants to the chosen handlers.

type

MDIR = HI →m (DI →m ANm-set)
value

184 mgtm grant: MDIR → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit

184 mgtm grant(mdir) ≡
185 let his ⊆ dom dir in
186 let dis ⊆ ∪{dom mdir(hi)|hi:HI•hi ∈ his} in

187 let diarm = [hi 7→acrs|hi:HI,di:DI,arcs:ANm-set• hi ∈ his∧di ∈ dis∧acrs⊆(diarm(hi))(di)] in
188 ‖{mgtm hdlr ch[hi]!mkGrant(di,acrs) |
188 hi:HI,di:DI,acrs:ANm-set•hi ∈ dom diarm∧di ∈ dis∧acrs⊆(diarm(hi))(di)}
184 end end end

Management Shred Behaviour: Right Fig. 7 on Page 49 The management shred behaviour

189 initiates a request to the archive behaviour.

190 First the management shred behaviour selects a document identifier (from its directory).

191 Then it communicates a shred document message to the archive behaviour;

192 then it notes the (to be shredded) document in its directory

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 53

193 whereupon the management shred behaviour resumes being the management behaviour.

value

189 mgtm shred: MDIR → out mgtm arch ch Unit

189 mgtm shred(mdir) ≡
190 let di:DI • is suitable(di)(mdir) in
191 [1] mgtm arch ch ! mkShred(time ch?,di) ;
192 let mdir′ = [hi 7→mdir(hi)\{di}|hi:HI•hi ∈ dom mdir] in
193 mgtm(mdir′) end end

A.17.2 Archive Behaviour

194 The archive behaviour is involved in the following action traces:

a create Fig. 5 on Page 47 Left

b copy Fig. 6 on Page 48 Right

c shred Fig. 7 on Page 49 Right

type

137 ADIR = avail:DI-set × used:DI-set × gone:DI-set
axiom

137 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used
value

194 arch: ADIR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit

194a arch(adir) ≡
194a arch create(adir)
194b ⌈⌉ arch copy(adir)
194c ⌈⌉ arch shred(adir)

The Archive Create Behaviour: Left Fig. 5 on Page 47 The archive create behaviour

195 accepts a request, from the management behaviour to create a document;

196 it then selects an available document identifier;

197 communicates this new document identifier to the management behaviour;

198 while initiating a new document behaviour, docudi, with the document descriptor, dd, the initial
document annotation being the singleton list of the note, an, and the initial document contents,
dc – all received from the management behaviour – and an initial document history of just one
entry: the date of creation, all

199 in parallel with resuming the archive behaviour with updated programmable attributes.

194a. arch create: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit

194a. arch create(avail,used,gone) ≡
195. [2] let mkCreate((hi,t),dd,an,dc) = mgmt arch ch ? in

196. let di:DI•di ∈ avail in
197. [4] mgmt arch ch ! mkNewDocID(di) ;
198. [3] docudi(dd)(〈an〉,dc,<(date of creation)>)
199. ‖ arch(avail\{di},used∪{di},gone)
194a. end end

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

54 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

The Archive Copy Behaviour: Right Fig. 6 on Page 48 The archive copy behaviour

200 accepts a copy document request from the management behaviour with the identity, j, of the
master document;

201 it communicates (the request to obtain all the attribute values of the master document, j) to
that document behaviour;

202 whereupon it awaits their communication (i.e., (dd,da,dc,dh));

203 (meanwhile) it obtains an available document identifier,

204 which it communicates to the management behaviour,

205 while initiating a new document behaviour, docudi, with the master document descriptor, dd, the
master document annotation, and the master document contents, dc, and the master document
history, dh (all received from the master document),

206 in parallel with resuming the archive behaviour with updated programmable attributes.

194b. arch copy: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit

194b. arch copy(avail,used,gone) ≡
200. [3] let mkDocID(j,hi) = mgtm arch ch ? in

201. arch docu ch[j] ! mkReqAttrs() ;
202. let mkAttrs(dd,da,dc,dh) = arch docu ch[j] ? in

203. let di:DI • di ∈ avail in
204. mgtm arch ch ! mkCopyDocID(di) ;
205. [6,7] docudi(augment(dd,′′copy′′,j,hi),augment(da,′′copy′′,hi),dc,augment(dh,(′′copy′′,date and time,j,hi)))
206. ‖ arch(avail\{di},used∪{di},gone)
194b. end end end

where we presently leave the [overloaded] augment functions undefined.

The Archive Shred Behaviour: Right Fig. 7 on Page 49 The archive shred behaviour

207 accepts a shred request from the management behaviour.

208 It communicates this request to the identified document behaviour.

209 And then resumes being the archive behaviour, noting however, that the shredded document
has been shredded.

194c. arch shred: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit

194c. arch shred(avail,used,gone) ≡
207. [2] let mkShred(j) = mgmt arch ch ? in

208. arch docu ch[j] ! mkShred() ;
209. arch(avail,used,gone∪{j})
194c. end

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 55

A.17.3 Handler Behaviours

210 The handler behaviour is involved in the following action traces:

a create Fig. 5 on Page 47 Left

b edit Fig. 5 on Page 47 Right

c read Fig. 6 on Page 48 Left

d copy Fig. 6 on Page 48 Right

e grant Fig. 7 on Page 49 Left

value

210 hdlrhi: HATTRS → in,out mgtm hdlr ch[hi],{hdlr docu ch[hi,di]|di:DI•di∈dis} Unit

210 hdlrhi(hattrs) ≡
210a hdlr createhi(hattrs)
210b ⌈⌉ hdlr edithi(hattrs)
210c ⌈⌉ hdlr readhi(hattrs)
210d ⌈⌉ hdlr copyhi(hattrs)
210e ⌈⌉ hdlr granthi(hattrs)

The Handler Create Behaviour: Left Fig. 5 on Page 47

211 The handler create behaviour offers to accept the granting of access rights, acrs, to document
di.

212 It according updates its programmable hattrs attribute;

213 and resumes being a handler behaviour with that update.

210a hdlr createhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit

210a hdlr createhi(hattrs,hhist) ≡
211 let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in

212 let hattrs′ = hattrs † [hi 7→ acrs] in
213 hdlr createhi(hattrs

′,augment(hhist,mkGrant(di,acrs))) end end

The Handler Edit Behaviour: Right Fig. 5 on Page 47

214 The handler behaviour, on its own volition, decides to edit a document, di, for which it has
editing rights.

215 The handler behaviour selects a suitable (...) pair of edit/undo functions and a suitable (anno-
tation) note.

216 It then communicates the desire to edit document di with (e,u) (at time t=time ch?).

217 Editing take some time, ti.

218 We can therefore assert that the time at which editing has completed is t+ti.

219 The handler behaviour accepts the edit completion message from the document handler.

220 The handler behaviour can therefore resume with an updated document history.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

56 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

210b hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit

210b hdlr edithi(hattrs,hhist) ≡
214 [1] let di:DI • di ∈ dom hattrs ∧ ′′

edit
′′ ∈ hattrs(di) in

215 [1] let (e,u):(EDIT×UNDO) • ... , n:AN • ... in
216 [1] hdlr docu ch[hi,di] ! mkEdit(hi,t=time ch?,e,u,n) ;
217 [2] let ti:TIME INTERVAL • ... in
218 [2] wait ti ; assert: time ch? = t+ti
219 [3] let mkEditComplete(ti′,...) = hdlr docu ch[hi,di] ? in assert ti′ ∼= ti
220 hdlrhi(hattrs,augment(hhist,(di,mkEdit(hi,t,ti,e,u))))
210b end end end end

The Handler Read Behaviour: Left Fig. 6 on Page 48

221 The handler behaviour, on its own volition, decides to read a document, di, for which it has
reading rights.

222 It then communicates the desire to read document di with at time t=time ch? – with an anno-
tation note (n).

223 Reading take some time, ti.

224 We can therefore assert that the time at which reading has completed is t+ti.

225 The handler behaviour accepts the read completion message from the document handler.

226 The handler behaviour can therefore resume with an updated document history.

210c hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit

210c hdlr edithi(hattrs,hhist) ≡
221 [1] let di:DI • di ∈ dom hattrs ∧ ′′

read
′′ ∈ hattrs(di), n:N • ... in

222 [1] hdlr docu ch[hi,di] ! mkRead(hi,t=time ch?,n) ;
223 [2] let ti:TIME INTERVAL • ... in
224 [2] wait ti ; assert: time ch? = t+ti
225 [3] let mkReadComplete(ti,...) = hdlr docu ch[hi,di] ? in

226 hdlrhi(hattrs,augment(hhist,(di,mkRead(di,t,ti))))
210c end end end

The Handler Copy Behaviour: Right Fig. 6 on Page 48

227 The handler [copy] behaviour, on its own volition, decides to copy a document, di, for which it
has copying rights.

228 It communicates this copy request to the management behaviour.

229 After a while the handler [copy] behaviour receives acknowledgement of a completed copying
from the management behaviour.

230 The handler [copy] behaviour records the request and acknowledgement in its, thus updated
whereupon the handler [copy] behaviour resumes being the handler behaviour.

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 57

210d hdlr copyhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit

210d hdlr copyhi(hattrs,hhist) ≡
227 [1] let di:DI • di ∈ dom hattrs ∧ ′′

copy
′′ ∈ hattrs(di) in

228 [1] mgtm hdlr ch[hi] ! mkCopy(di,hi,t=time ch?) ;
229 [10] let mkCopyComplete(di′,di) = mgtm hdlr ch[hi] ? in

230 [10] hdlrhi(hattrs,augment(hhist,time ch?,(mkCopy(di,hi,,t),mkCopyComplete(di′))))
210d end end

The Handler Grant Behaviour: Left Fig. 7 on Page 49

231 The handler [grant] behaviour offers to accept grant permissions from the management be-
haviour.

232 In response it updates its handler attribute while resuming being a handler behaviour.

210e hdlr granthi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit

210e hdlr granthi(hattrs,hhist) ≡
231 [2] let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in

232 [2] hdlrhi(hattrs†[di 7→acrs],augment(hhist,time ch?,mkGrant(di,acrs)))
210e end

A.17.4 Document Behaviours

233 The document behaviour is involved in the following action traces:

a edit Fig. 5 on Page 47 Right

b read Fig. 6 on Page 48 Left

c shred Fig. 7 on Page 49 Right

value

233 docudi: DD × (DA × DC × DH) → in,out arch docu ch[di], {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit

233 docudi(dattrs) ≡
233a docu editdi(dd)(da,dc,dh)
233b ⌈⌉ docu readdi(dd)(da,dc,dh)
233c ⌈⌉ docu shreddi(dd)(da,dc,dh)

The Document Edit Behaviour: Right Fig. 5 on Page 47

234 The document [edit] behaviour offers to accept edit requests from document handlers.

a The document contents is edited, over a time interval of ti, with respect to the handlers
edit function (e),

b the document annotations are augmented with respect to the handlers note (n), and

c the document history is augmented with the fact that an edit took place, at a certain time,
with a pair of edit/undo functions.

235 The edit (etc.) function(s) take some time, ti, to do.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

58 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

236 The handler behaviour is notified, mkEditComplete(...) of the completion of the edit, and

237 the document behaviour is then resumed with updated programmable attributes.

value

233a docu editdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit

233a docu editdi(dd)(da,dc,dh) ≡
234 [2] let mkEdit(hi,t,e,u,n) = ⌈⌉⌊⌋{hdlr docu ch[hi,di]?|hi:HI•hi∈his} in

234a [2] let dc′ = e(dc),
234b da′ = augment(da,((hi,t),(′′edit′′,e,u),n)),
234c dh′ = augment(dh,((hi,t),(′′edit′′,e,u))) in
235 let ti = time ch? − t in
236 hdlr docu ch[hi,di] ! mkEditComplete(ti,...) ;
237 docudi(dd)(da

′,dc′,dh′)
233a end end end

The Document Read Behaviour: Left Fig. 6 on Page 48

238 The The document [read] behaviour offers to receive a read request from a handler behaviour.

239 The reading takes some time to do.

240 The handler behaviour is advised on completion.

241 And the document behaviour is resumed with appropriate programmable attributes being up-
dated.

value

233b docu readdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit

233b docu readdi(dd)(da,dc,dh) ≡
238 [2] let mkRead(hi,t,n) = {hdlr docu ch[hi,di]?|hi:HI•hi∈his} in

239 [2] let ti:TIME INTERVAL • ... in
239 [2] wait ti ;
240 [2] hdlr docu ch[hi,di] ! mkReadComplete(ti,...) ;
241 [2] docudi(dd)(augment(da,n),dc,augment(dh,(hi,t,ti,′′read′′)))
233b end end

The Document Shred Behaviour: Right Fig. 7 on Page 49

242 The document [shred] behaviour offers to accept a document shred request from the archive
behaviour –

243 whereupon it stops !

value

233c docu shreddi: DD × (DA × DC × DH) → in,out arch docu ch[di] Unit

233c docu shreddi(dd)(da,dc,dh) ≡
242 [3] let mkShred(...) = arch docu ch[di] ? in

243 stop

233c [3] end

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 59

A.18 Conclusion

This completes a first draft version of this document. The date time is: January 3, 2018: 09:32 am.
Many things need to be done. First a careful checking of all types and functions: that all used names
have been defined. The internal non-deterministic choices in formula Items 158 on Page 49, 194 on
Page 53, 210 on Page 55 and 233 on Page 57, need be checked. I suspect there should, instead, be
som mix of both internal and external non-deterministic choices. Then a careful motivation for all the
other non-deterministic choices.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

60 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

B RSL: The RAISE Specification Language – A Primer

B.1 Type Expressions

Type expressions are expressions whose value are types, that is, possibly infinite sets of values (of
“that” type).

B.1.1 Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent
(sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers,
reals, characters, and texts.

type

[1] Bool true, false
[2] Int ... , −2, −2, 0, 1, 2, ...
[3] Nat 0, 1, 2, ...
[4] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5] Char ”a”, ”b”, ..., ”0”, ...
[6] Text ”abracadabra”

B.1.2 Composite Types

Composite types have composite values. That is, values which we consider to have proper constituent
(sub-)values, i.e., can be meaningfully “taken apart”. There are two ways of expressing composite
types: either explicitly, using concrete type expressions, or implicitly, using sorts (i.e., abstract types)
and observer functions.

Concrete Composite Types From these one can form type expressions: finite sets, infinite sets,
Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then the following are type expressions:

[7] A-set
[8] A-infset
[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B

[13] A → B

[14] A
∼

→ B
[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

The following the meaning of the atomic and the composite type expressions:

1 The Boolean type of truth values false and true.

2 The integer type on integers ..., –2, –1, 0, 1, 2,

3 The natural number type of positive integer values 0, 1, 2, ...

4 The real number type of real values, i.e., values whose numerals can be written as an integer,
followed by a period (“.”), followed by a natural number (the fraction).

5 The character type of character values ′′a′′, ′′bb′′, ...

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 61

6 The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

7 The set type of finite cardinality set values.

8 The set type of infinite and finite cardinality set values.

9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.

11 The list type of infinite and finite length list values.

12 The map type of finite definition set map values.

13 The function type of total function values.

14 The function type of partial function values.

15 In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the paren-
theses serve as simple delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list, or (A|B) →m
(C|D|(E→m F)), etc.

16 The postulated disjoint union of types A, B, . . . , and C.

17 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of
respective types. The distinct identifiers sel a, etc., designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective
types. The distinct identifiers sel a, etc., designate selector functions.

Sorts and Observer Functions

type

A, B, C, ..., D
value

obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three values — and these are of
type B, C, . . . , and D. A concrete type definition corresponding to the above presupposing material
of the next section

type

B, C, ..., D
A = B × C × ... × D

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

62 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

B.2 Type Definitions

B.2.1 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

type

A = Type expr

Some schematic type definitions are:

[19] Type name = Type expr /∗ without | s or subtypes ∗/
[20] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[21] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[22] Type name :: sel a:Type name a ... sel z:Type name z
[23] Type name = {| v:Type name′ • P(v) |}

where a form of [20]–[21] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the
use of the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

B.2.2 Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The
set of values b which have type B and which satisfy the predicate P, constitute the subtype A:

type

A = {| b:B • P(b) |}

B.2.3 Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

type

A, B, ..., C

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 63

B.3 The RSL Predicate Calculus

B.4 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or
chaos]). Then:

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives
(i.e., operators). They can be read as: not, and, or, if then (or implies), equal and not equal.

B.4.1 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or term
expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

are simple predicate expressions.

B.4.2 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate predicate
expressions in which x, y and z are free. Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least)
one y (value in type Y) such that the predicate Q(y) holds; and there exists a unique z (value in type
Z) such that the predicate R(z) holds.

B.5 Concrete RSL Types: Values and Operations

B.5.1 Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼

→Nat | Int×Int
∼

→Int | Real×Real
∼

→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

64 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

B.5.2 Set Expressions
Set Enumerations Let the below a’s denote values of type A, then the below designate simple set
enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension The expression, last line below, to the right of the ≡, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate. It is abstract in the
sense that it does not do so by following a concrete algorithm.

type

A, B
P = A → Bool

Q = A
∼

→ B
value

comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

B.5.3 Cartesian Expressions
Cartesian Enumerations Let e range over values of Cartesian types involving A, B, . . ., C, then the
below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

B.5.4 List Expressions
List Enumerations Let a range over values of type A, then the below expressions are simple list
enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses the set of
integers from the value of ei to and including the value of ej . If the latter is smaller than the former,
then the list is empty.

List Comprehension The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼

→ B
value

comprehend: Aω × P × Q
∼

→ Bω

comprehend(l,P,Q) ≡ 〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 65

B.5.5 Map Expressions
Map Enumerations Let (possibly indexed) u and v range over values of type T1 and T2, respectively,
then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u 7→v], ..., [u17→v1,u27→v2,...,un 7→vn] all ∈ M

Map Comprehension The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼

→ X

G = V
∼

→ Y
P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡ [F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

B.5.6 Set Operations
Set Operator Signatures

value

19 ∈: A × A-infset → Bool

20 6∈: A × A-infset → Bool

21 ∪: A-infset × A-infset → A-infset
22 ∪: (A-infset)-infset → A-infset
23 ∩: A-infset × A-infset → A-infset
24 ∩: (A-infset)-infset → A-infset
25 \: A-infset × A-infset → A-infset
26 ⊂: A-infset × A-infset → Bool

27 ⊆: A-infset × A-infset → Bool

28 =: A-infset × A-infset → Bool

29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼

→ Nat

Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,bb},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

66 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

∩{{a},{a,bb},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,bb}
{a,bb} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,bb}
card {} = 0, card {a,b,c} = 3

Informal Explication

19 ∈: The membership operator expresses that an element is a member of a set.

20 6∈: The nonmembership operator expresses that an element is not a member of a set.

21 ∪: The infix union operator. When applied to two sets, the operator gives the set whose members
are in either or both of the two operand sets.

22 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the
set whose members are in some of the operand sets.

23 ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose
members are in both of the two operand sets.

24 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives
the set whose members are in some of the operand sets.

25 \: The set complement (or set subtraction) operator. When applied to two sets, the operator
gives the set whose members are those of the left operand set which are not in the right operand
set.

26 ⊆: The proper subset operator expresses that all members of the left operand set are also in the
right operand set.

27 ⊂: The proper subset operator expresses that all members of the left operand set are also in the
right operand set, and that the two sets are not identical.

28 =: The equal operator expresses that the two operand sets are identical.

29 6=: The nonequal operator expresses that the two operand sets are not identical.

30 card: The cardinality operator gives the number of elements in a finite set.

Set Operator Definitions The operations can be defined as follows (≡ is the definition symbol):

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 67

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

B.5.7 Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

B.5.8 List Operations

List Operator Signatures

value

hd: Aω ∼

→ A

tl: Aω ∼

→ Aω

len: Aω ∼

→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼

→ A
̂: A∗ × Aω → Aω=: Aω × Aω → Bool6=: Aω × Aω → Bool

List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

68 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists,
this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements
larger than or equal to i, gives the ith element of the list.

• ̂: Concatenates two operand lists into one. The elements of the left operand list are followed
by the elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i 6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then

if q 6=〈〉
then let a:A,q′:Q • q=〈a〉̂q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 69

B.5.9 Map Operations

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼

→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a17→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a17→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→bb′,a′′7→bb′′] † [a′7→bb′′,a′′7→bb′] = [a 7→b,a′7→bb′′,a′′7→bb′]

∪: M × M → M [merge ∪]
[a 7→b,a′7→bb′,a′′7→bb′′] ∪ [a′′′7→bb′′′] = [a 7→b,a′7→bb′,a′′ 7→bb′′,a′′′7→bb′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→bb′,a′′7→bb′′]\{a} = [a′7→bb′,a′′7→bb′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→bb′,a′′7→bb′′]/{a′,a′′} = [a′ 7→bb′,a′′7→bb′′]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→bb′] ◦ [bb 7→c,bb′ 7→c′,bb′′7→c′′] = [a 7→c,a′7→c′]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an
override of the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of
the left operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of
the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

70 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

• ◦: Composition. When applied to two operand maps, it gives the map from definition set
elements of the left operand map, m1, to the range elements of the right operand map, m2, such
that if a is in the definition set of m1 and maps into b, and if b is in the definition set of m2 and
maps into c, then a, in the composition, maps into c.

Map Operation Redefinitions The map operations can also be defined as follows:

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

B.6 λ-Calculus + Functions

B.6.1 The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

B.6.2 Free and Bound Variables

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 71

B.6.3 Substitution

In RSL, the following rules for substitution apply:

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

B.6.4 α-Renaming and β-Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can
rename the formal parameter of a λ-function expression provided that no free variables of its
body M thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free variables
of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

B.6.5 Function Signatures

For sorts we may want to postulate some functions:

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: BB×C → A

B.6.6 Function Definitions

Functions can be defined explicitly:

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

72 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼

→ Result
g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼

→ Result
g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼

→ indicates that the function is partial and thus not defined for all arguments. Partial
functions should be assisted by preconditions stating the criteria for arguments to be meaningful to
the function.

B.7 Other Applicative Expressions

B.7.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

B.7.2 Recursive let Expressions

Recursive let expressions are written as:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 73

B.7.3 Predicative let Expressions

Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body
B(a).

B.7.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,bb〉̂ℓ = list in ... end

let [a 7→bb] ∪ m = map in ... end
let [a 7→b,] ∪ m = map in ... end

B.7.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

74 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

B.7.6 Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

B.8 Imperative Constructs

B.8.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative
constructs which, through stages of refinements, are turned into concrete and imperative constructs.
Imperative constructs are thus inevitable in RSL.

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

B.8.2 Variables and Assignment

0. variable v:Type := expression
1. v := expr

B.8.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or side-
effect.

2. skip
3. stm 1;stm 2;...;stm n

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

Towards a Formal Understanding of Urban Planning 75

B.8.4 Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

B.8.5 Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

B.8.6 Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

B.9 Process Constructs

B.9.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the
designated types (A and B).

B.9.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage
in input and/or output events, thereby communicating over declared channels. Let P() and Q stand
for process expressions, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes: either
external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes are forced
to communicate only with one another, until one of them terminates.

B.9.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively “writes”
an output.

Towards a Formal Understanding of Urban Planning Version 2 c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32

76 Dines Bjørner, Otthein Herzog and Siegfried ZhiQiang Wu

B.9.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express,
in their signature, via which channels they wish to engage in input and output events.

value

P: Unit → in c out k[i]
Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

B.10 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is
often done in RSL. An RSL specification is simply a sequence of one or more types, values (including
functions), variables, channels and axioms:

type

...
variable

...
channel

...
value

...
axiom

...

In practice a full specification repeats the above listings many times, once for each “module” (i.e.,
aspect, facet, view) of specification. Each of these modules may be “wrapped” into scheme, class or
object definitions.33

33For schemes, classes and objects we refer to [2, Chap. 10]

c© D.Bjørner, O.Herzog, S.Z.Wu 2017, TongJi, Shanghai January 3, 2018: 09:32 Version 2 Some Initial Thoughts

