
1

Manifest Domains

Analysis & Description

Dines Bjørner

TongJi University, Shanghai

September 2017

Compiled: August 12, 2017: 19:23

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

2 1. Summary

1. Summary

• We show that manifest domains,

⋄⋄ an understanding of which are
⋄⋄ a prerequisite for software requirements prescriptions,

can be precisely described:

⋄⋄ narrated and
⋄⋄ formalised.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

3
1. Summary

• We show that such manifest domains
can be understood as a collection of

⋄⋄ endurant, that is, basically spatial entities:
◦◦ parts,
◦◦ components and
◦◦materials,
and

⋄⋄ perdurant, that is, basically temporal entities:
◦◦ actions,
◦◦ events and [We shall skip treatment of events.]
◦◦ behaviours.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

4
1. Summary

• We show that parts can be modeled in terms of

⋄⋄ external qualities whether:
◦◦ atomic or
◦◦ composite

parts,

• having internal qualities:

⋄⋄ unique identifications,
⋄⋄mereologies, which model relations between parts, and
⋄⋄ attributes.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

5
1. Summary

• We show that the manifest domain analysis endeavour can be sup-
ported by a calculus of manifest domain analysis prompts:

⋄⋄ is entity,
⋄⋄ is endurant,
⋄⋄ is perdurant,
⋄⋄ is part,
⋄⋄ is component,
⋄⋄ is material,
⋄⋄ is atomic,

⋄⋄ is composite,

⋄⋄ has components,

⋄⋄ has materials,

⋄⋄ has concrete type,

⋄⋄ attribute names,

⋄⋄ is stationary, etcetera;

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

6
1. Summary

• and show how the manifest domain description endeavour can be
supported by a calculus of manifest domain description prompts:

⋄⋄ observe part sorts,
⋄⋄ observe part type,
⋄⋄ observe components,
⋄⋄ observe materials,
⋄⋄ observe unique identifier,
⋄⋄ observe mereology,
⋄⋄ observe attributes.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

7
1. Summary

• We show how to model attributes, essentially following Michael
Jackson, [Jac95]:

⋄⋄ The attribute model introduces the attribute analysis prompts
◦◦ is static attribute,
◦◦ is dynamic attribute,
◦◦ is inert attribute,
◦◦ is reactive attribute,
◦◦ is active attribute,
◦◦ is autonomous attribute,
◦◦ is biddable attribute and
◦◦ is programmable attribute.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

8 1. Summary

• We show how to model essential aspects of perdurants in terms of
their signatures based on the concepts of endurants.

• And we show how one can “compile”

⋄⋄ descriptions of endurant parts into
⋄⋄ descriptions of perdurant behaviours.

• We do not show prompt calculi for perdurants.

• The above contributions express a method

⋄⋄ with principles, techniques and tools
⋄⋄ for constructing domain descriptions.

• It is important to realise that we do not wish to nor claim that the
method can describe all that it is interesting to know about domains.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

91. Introduction

1. Introduction

• The broader subject of this paper is that of software development.

• The narrower subject is that of manifest domain engineering.

• We shall see software development
in the context of the TripTych approach (next section).

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

10 1. Introduction

• The contribution of these lectures are twofold:

⋄⋄ the propagation of manifest domain engineering
◦◦ as a first phase of the development of
◦◦ a large class of software —
and
◦◦ a set of principles, techniques and tools
◦◦ for the engineering of the analysis & descriptions
◦◦ of manifest domains.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

11
1. Introduction

• These principles, techniques and tools
are embodied in a set of analysis and description prompts.

⋄⋄ We claim that this embodiment
⋄⋄ — in the form of prompts —
⋄⋄ is novel.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

12
1. Introduction 1.1. The TripTych Approach to Software Engineering

1.1. The TripTych Approach to Software Engineering

• We suggest a TripTych view of software engineering:

⋄⋄ before hardware and software systems can be designed and coded
⋄⋄ we must have a reasonable grasp of “its” requirements;
⋄⋄ before requirements can be prescribed
⋄⋄ we must have a reasonable grasp of “the underlying” domain.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

131. Introduction 1.1. The TripTych Approach to Software Engineering

• To us, therefore, software engineering contains the three sub-disciplines:

⋄⋄ domain engineering,
⋄⋄ requirements engineering and
⋄⋄ software design.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

14 1. Introduction 1.1. The TripTych Approach to Software Engineering

• This seminar contributes, we claim, to a methodology
for domain analysis &1 domain description.

• Reference [Bjø16c]

⋄⋄ show how to “refine” domain descriptions
into requirements prescriptions,

and reference [Bjø16b]

⋄⋄ indicates more general relations between domain descriptions
and
◦◦ domain demos,
◦◦ domain simulators and
◦◦ more general domain specific software.

1When, as here, we write A & B we mean A & B to be one subject.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

151. Introduction 1.1. The TripTych Approach to Software Engineering

• The concept of systems engineering arises naturally in the TripTych
approach.

⋄⋄ First: domains can be claimed to be systems.
⋄⋄ Secondly: requirements are usually not restricted to software, but

encompasses all the human and technological “assists” that must
be considered.

⋄⋄ Other than that we do not wish to consider domain analysis &
description principles, techniques and tools specific to “systems
engineering”.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

16 1. Introduction 1.2. Method and Methodology

1.2. Method and Methodology

1.2.1. Method

• By a method we shall understand

⋄⋄ a “structured” set of principles
⋄⋄ for selecting and applying
⋄⋄ a number of techniques and tools

⋄⋄ for analysing problems and synthesizing solutions
⋄⋄ for a given domain 2

2Definitions and examples are delimited by symbols.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

171. Introduction 1.2. Method and Methodology 1.2.1. Method

• The ‘structuring’ amounts,

⋄⋄ in this treatise on domain analysis & description,
⋄⋄ to the techniques and tools being related to a set of
⋄⋄ domain analysis & description “prompts”,
⋄⋄ “issued by the method”,
⋄⋄ prompting the domain engineer,
⋄⋄ hence carried out by the domain analyser & describer3 —
⋄⋄ conditional upon the result of other prompts.

3We shall thus use the termdomain engineer to cover both the analyser & the describer.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

18 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

1.2.2. Discussion

• There may be other ‘definitions’ of the term ‘method’.

• The above is the one that will be adhered to in this seminar.

• The main idea is that

⋄⋄ there is a clear understanding of what we mean by, as here,
◦◦ a software development method,
◦◦ in particular a domain analysis & description method.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

191. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• The main principles of the TripTych
domain analysis and description approach are those of

⋄⋄ abstraction and both
◦◦ narrative and
◦◦ formal

⋄⋄ modeling.
⋄⋄ This means that evolving domain descriptions

◦◦ necessarily limit themselves to a subset of the domain
◦◦ focusing on what is considered relevant, that is,
◦◦ abstract “away” some domain phenomena.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

20 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• The main techniques of the TripTych
domain analysis and description approach are

⋄⋄ besides those techniques which are in general associated with for-
mal descriptions,

⋄⋄ focus on the techniques that relate to the deployment of
of the individual prompts.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

211. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• And the main tools of the TripTych
domain analysis and description approach are

⋄⋄ the analysis and description prompts and the
⋄⋄ description language, here the Raise Specification Language RSL.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

22 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• A main contribution of this seminar is therefore

⋄⋄ that of “painstakingly” elucidating the
◦◦ principles,
◦◦ techniques and
◦◦ tools
of the domain analysis & description method.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

231. Introduction 1.2. Method and Methodology 1.2.3. Methodology

1.2.3. Methodology

• By methodology we shall understand

⋄⋄ the study and knowledge
⋄⋄ about one or more methods4

4Please note our distinction between method and methodology. We often find the two, to us, separate terms used interchangeably.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

24
1. Introduction 1.3. Computer and Computing Science

1.3. Computer and Computing Science

• By computer science we shall understand

⋄⋄ the study and knowledge of
◦◦ the conceptual phenomena
◦◦ that “exists” inside computers

⋄⋄ and, in a wider context than just computers and computing,
◦◦ of the theories “behind” their
◦◦ formal description languages

• Computer science is often also referred to as
theoretical computer science.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

251. Introduction 1.3. Computer and Computing Science

• By computing science we shall understand

⋄⋄ the study and knowledge of
◦◦ how to construct
◦◦ and describe
those phenomena

• Another term for computing science is programming methodology.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

26 1. Introduction 1.3. Computer and Computing Science

• These lectures are about computing science.

⋄⋄ They are concerned with the construction of domain descriptions.
⋄⋄ They put forward a calculus for analysing and describing domains.
⋄⋄ They do not theorize about this calculus.
⋄⋄ There are no theorems about this calculus and hence no proofs.
⋄⋄ We leave that to another study and paper.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

271. Introduction 1.4. What Is a Manifest Domain ?

1.4. What Is a Manifest Domain ?

• By ‘domain’ we mean the same as ‘problem domain’ [JHJ07].

• We offer a number of complementary delineations of
what we mean by a manifest domain.

• But first some examples, “by name” !

Example 1 Names of Manifest Domains:
Examples of suggestive names of manifest domains are:

• air traffic,

• banks,
• container lines,

• documents,

• hospitals,

• pipelines,
• railways and

• road nets

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

28
1. Introduction 1.4. What Is a Manifest Domain ?

• A manifest domain is a

⋄⋄ human- and
⋄⋄ artifact-assisted
⋄⋄ arrangement of

◦◦ endurant, that is spatially “stable”, and
◦◦ perdurant, that is temporally “fleeting”
entities.

⋄⋄ Endurant entities are

◦◦ either parts ◦◦ or components ◦◦ or materials.

⋄⋄ Perdurant entities are

◦◦ either actions ◦◦ or events ◦◦ or behaviours

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

29
1. Introduction 1.4. What Is a Manifest Domain ?

Example 2 Manifest Domain Endurants:
Examples of (names of) endurants are

•Air traffic: aircraft, airport, air lane.

•Banks: client, passbook.
•Container lines: container, container vessel, terminal port.

•Documents: document, document collection.
•Hospitals: patient, medical staff, ward, bed, medical journal.

•Pipelines: well, pump, pipe, valve, sink, oil.
•Railways: simple rail unit, point, crossover, line, track, station.

•Road nets: link (street segment), hub (street intersection)

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

30 1. Introduction 1.4. What Is a Manifest Domain ?

Example 3 Manifest Domain Perdurants:
Examples of (names of) perdurants are

•Air traffic: start (ascend) an aircraft, change aircraft course.
•Banks: open, deposit into, withdraw from, close (an account).

•Container lines: move container off or on board a vessel.
•Documents: open, edit, copy, shred.

•Hospitals: admit, diagnose, treat (patients).
•Pipelines: start pump, stop pump, open valve, close valve.

•Railways: switch rail point, start train.
•Road nets: set a hub signal, sense a vehicle

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

311. Introduction 1.4. What Is a Manifest Domain ?

Example 4 Endurant Entity Qualities:
Examples of (names of) endurant qualities:
•Pipeline:

⋄⋄ unique identity of a pipeline unit,
⋄⋄ mereology (connectedness) of a pipeline unit,
⋄⋄ length of a pipe,
⋄⋄ (pumping) height of a pump,
⋄⋄ open/close status of a valve.

•Road net:

⋄⋄ unique identity of a road unit (hub or link),
⋄⋄ road unit mereology:

◦◦ identity of neighbouring hubs of a link,
◦◦ identity of links emanating from a hub,

⋄⋄ and state of hub (traversal) signal

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

32 1. Introduction 1.4. What Is a Manifest Domain ?

Example 5 Perdurant Entity Qualities:
Examples of (names of) perdurant qualities:

•Pipeline:
⋄⋄ the signature of an open (or close) valve action,
⋄⋄ the signature of a start (or stop) pump action,
⋄⋄ etc.

•Road net:

⋄⋄ the signature of an insert (or remove) link action,
⋄⋄ the signature of an insert (or remove) hub action,
⋄⋄ the signature of a vehicle behaviour,
⋄⋄ etc.

We shall in the rest of this paper just write
‘domain’ instead of ‘manifest domain’.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

33
1. Introduction 1.5. What Is a Domain Description ?

1.5. What Is a Domain Description ?

• By a domain description we understand

⋄⋄ a collection of pairs of
⋄⋄ narrative and

commensurate
⋄⋄ formal

texts, where each pair describes

⋄⋄ either aspects of an endurant entity
⋄⋄ or aspects of a perdurant entity

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

34 1. Introduction 1.5. What Is a Domain Description ?

• What does it mean that some text describes a domain entity ?

• For a text to be a description text it must be possible

⋄⋄ to either, if it is a narrative,
◦◦ to reason, informally, that the designated entity
◦◦ is described to have some properties
◦◦ that the reader of the text can observe
◦◦ that the described entities also have;

⋄⋄ or, if it is a formalisation
◦◦ to prove, mathematically,
◦◦ that the formal text
◦◦ denotes the postulated properties

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

351. Introduction 1.5. What Is a Domain Description ?

• By a domain description we shall thus understand a text
which describes

⋄⋄ the entities of the domain:
◦◦ whether endurant or perdurant,
◦◦ and when endurant whether

∗ discrete or continuous,
∗ atomic or composite;

◦◦ or when perdurant whether
∗ actions,
∗ events or
∗ behaviours.

⋄⋄ as well as the qualities of these entities.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

36 1. Introduction 1.5. What Is a Domain Description ?

• So the task of the domain analyser cum describer is clear:

⋄⋄ There is a domain: right in front of our very eyes,
⋄⋄ and it is expected that that domain be described.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

371. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.1 Practicalities of Domain Analysis & Description.

• How does one go about analysing & describing a domain ?

⋄⋄ Well, for the first,
◦◦ one has to designate one or more domain analysers cum
◦◦ domain describers,
◦◦ i.e., trained domain scientists cum domain engineers.

⋄⋄ How does one get hold of a domain engineer ?
◦◦ One takes a software engineer and educates and trains that

person in
∗ domain science &

∗ domain engineering.
◦◦ A derivative purpose of this seminar is to

unveil aspects of domain science & domain engineering.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

38 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• The education and training consists in bringing forth

⋄⋄ a number of scientific and engineering issues

◦◦ of domain analysis and ◦◦ of domain description.

⋄⋄ Among the engineering issues are such as:
◦◦ what do I do when confronted

∗ with the task of domain analysis ? and
∗ with the task of description ? and

◦◦ when, where and how do I
∗ select and apply

∗ which techniques and which tools ?

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

391. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• Finally, there is the issue of

⋄⋄ how do I, as a domain describer, choose appropriate
◦◦ abstractions and
◦◦ models ?

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

40
1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.2 The Four Domain Analysis & Description “Players”.

• We can say that there are four ‘players’ at work here.

⋄⋄ (i) the domain,
⋄⋄ (ii) the domain analyser & describer,
⋄⋄ (iii) the domain analysis & description method, and
⋄⋄ (iv) the evolving domain analysis & description (document).

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

411. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• The domain is there.

⋄⋄ The domain analyser & describer cannot change the domain.
⋄⋄ Analysing & describing the domain does not change it5.
⋄⋄ During the analysis & description process

◦◦ the domain can be considered inert.
◦◦ (It changes with the installation of such software
◦◦ as has been developed from the
◦◦ requirements developed from the
◦◦ domain description.)

⋄⋄ In the physical sense the domain will usually contain
◦◦ entities that are static (i.e., constant), and
◦◦ entities that are dynamic (i.e., variable).

5Observing domains, such as we are trying to encircle the concept of domain, is not like observing
the physical world at the level of subatomic particles. The experimental physicists’ instruments of
observation change what is being observed.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

42 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• The domain analyser & domain describer is a human,

⋄⋄ preferably a scientist/engineer6,
⋄⋄ well-educated and trained in domain science & engineering.
⋄⋄ The domain analyser & describer

◦◦ observes the domain,
◦◦ analyses it according to a method and
◦◦ thereby produces a domain description.

6At the present time domain analysis appears to be partly an artistic, partly a scientific endeavour.
Until such a time when domain analysis & description principles, techniques and tools have matured
it will remain so.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

431. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• As a concept the method is here considered “fixed”.

⋄⋄ By ‘fixed’ we mean that its principles, techniques and tools do not
change during a domain analysis & description.

⋄⋄ The domain analyser & describer
◦◦ may very well apply these principles, techniques and tools
◦◦ more-or-less haphazardly,
◦◦ flaunting the method,
◦◦ but the method remains invariant.

⋄⋄ The method, however, may vary
◦◦ from one domain analysis & description (project)
◦◦ to another domain analysis & description (project).

⋄⋄ Domain analysers & describers do become
wiser from a project to the next.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

44 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• Finally there is the evolving domain analysis & description.

⋄⋄ That description is a text, usually both informal and formal.
⋄⋄ Applying a domain description prompt to the domain

◦◦ yields an additional domain description text
◦◦ which is added to the thus evolving domain description.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

451. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

⋄⋄ One may speculate of the rôle of the “input” domain description.
◦◦ Does it change ?
◦◦ Does it help determine the additional domain description text ?
◦◦ Etcetera.

⋄⋄ Without loss of generality we can assume
◦◦ that the “input” domain description is changed and
◦◦ that it helps determine the added text.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

46 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• Analysis & description is a trial-and-error, iterative process.

⋄⋄ During a sequence of analyses,
⋄⋄ that is, analysis prompts,
⋄⋄ the analyser “discovers”
⋄⋄ either more pleasing abstractions
⋄⋄ or that earlier analyses or descriptions were wrong,
⋄⋄ or that an entity either need be abstracted or made less abstract.
⋄⋄ So they are corrected.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

471. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.3 An Interactive Domain Analysis & Description Dialogue.

• We see domain analysis & description

⋄⋄ as a process involving the above-mentioned four ‘players’,
⋄⋄ that is, as a dialogue
⋄⋄ between the domain analyser & describer and the domain,
⋄⋄ where the dialogue is guided by the method
⋄⋄ and the result is the description.

• We see the method as a ‘player’ which issues prompts:

⋄⋄ alternating between:
⋄⋄ “analyse this” (analysis prompts) and
⋄⋄ “describe that” (synthesis or, rather, description prompts).

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

48 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.4 Prompts

• In this seminar we shall suggest

⋄⋄ a number of domain analysis prompts and
⋄⋄ a number of domain description prompts.

• The domain analysis prompts

⋄⋄ (schematically: analyse named condition(e))
⋄⋄ directs the analyser to inquire
⋄⋄ as to the truth of whatever the prompt “names”
⋄⋄ at wherever part (component or material), e, in the domain

the prompt so designates.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

491. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

• Based on the truth value of an analysed entity the domain analyser
may then be prompted to describe that part (or material).

• The domain description prompts

⋄⋄ (schematically: observe type or quality(e))
⋄⋄ directs the (analyser cum) describer to formulate
⋄⋄ both an informal and a formal description
⋄⋄ of the type or qualities of the entity

designated by the prompt.

• The prompts form languages,
and there are thus two languages at play here.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

50 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.5 A Domain Analysis & Description Language.

• The ‘Domain Analysis & Description Language’
thus consists of a number of meta-functions, the prompts.

⋄⋄ The meta-functions have names (say is endurant) and types,
⋄⋄ but have no formal definition.
⋄⋄ They are not computable.
⋄⋄ They are “performed”

by the domain analysers & describers.
⋄⋄ These meta-functions are

◦◦ systematically introduced and
◦◦ informally explained
in Sects. 2–4.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

51
1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.6 The Domain Description Language.

• The ‘Domain Description Language’ is RSL [GHH+92], the RAISE

Specification Language [GHH+95].
• With suitable, simple adjustments it could also be either of

⋄⋄ Alloy [Jac06],
⋄⋄ Event B [Abr09],
⋄⋄ VDM-SL [BJ78, BJ82, FL98],
⋄⋄ Z [WD96] or
⋄⋄ CafeOBJ [FNT00] or
⋄⋄ Magnolia (!?).

• We have chosen RSL because of its simple provision for
⋄⋄ defining sorts,
⋄⋄ expressing axioms, and
⋄⋄ postulating observers over sorts.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

52 1. Introduction 1.6. Towards a Methodology of Manifest Domain Analysis & Description

1.6.0.7 Domain Descriptions: Narration & Formalisation

• Descriptions

⋄⋄ must be readable and
⋄⋄ must be mathematically precise.7

• For that reason we decompose domain description fragments into
clearly identified “pairs” of

⋄⋄ narrative texts and
⋄⋄ formal texts.

7One must insist on formalised domain descriptions in order to be able to verify that domain de-
scriptions satisfy a number of properties not explicitly formulated as well as in order to verify that
requirements prescriptions satisfy domain descriptions.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

53
1. Introduction 1.7. One Domain – Many Models ?

1.7. One Domain – Many Models ?

• Will two or more domain engineers cum scientists
arrive at “the same domain description” ?

• No, almost certainly not !

• What do we mean by “the same domain description” ?

⋄⋄ To each proper description we can associate
a mathematical meaning, its semantics.

⋄⋄ Not only is it very unlikely that the syntactic form of the
domain descriptions are the same or even “marginally similar”.

⋄⋄ But it is also very unlikely that the two (or more) semantics are the
same;

⋄⋄ that is, that all properties that can be
proved for one domain model can be proved also for the other.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

54 1. Introduction 1.7. One Domain – Many Models ?

• Why will different domain models emerge ?

⋄⋄ Two different domain describers will, undoubtedly,
⋄⋄ when analysing and describing independently,
⋄⋄ focus on different aspects of the domain.

◦◦ One describer may focus attention on certain phenomena,
◦◦ different from those chosen by another describer.
◦◦ One describer may choose some abstractions
◦◦ where another may choose more concrete presentations.
◦◦ Etcetera.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

55
1. Introduction 1.7. One Domain – Many Models ?

• We can thus expect that a set of domain description developments
lead to a set of distinct models.

⋄⋄ As these domain descriptions
◦◦ are communicated amongst domain engineers cum scientists
◦◦ we can expect that iterated domain description developments
◦◦ within this group of developers
◦◦ will lead to fewer and more similar models.

⋄⋄ Just like physicists,
◦◦ over the centuries of research,
◦◦ have arrived at a few models of nature,
◦◦ we can expect there to develop some consensus models of “stan-

dard” domains.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

56
1. Introduction 1.7. One Domain – Many Models ?

• We expect, that sometime in future, software engineers,

⋄⋄ when commencing software development
for a “standard domain”, that is,

⋄⋄ one for which there exists one or more “standard models”,
⋄⋄ will start with the development of a domain description
⋄⋄ based on “one of the standard models” —
⋄⋄ just like control engineers of automatic control
⋄⋄ “repeat” an essence of a domain model for a control problem.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

571. Introduction 1.7. One Domain – Many Models ?

Example 6 One Domain – Three Models:

• In this paper we shall bring many examples from
a domain containing automobiles.

⋄⋄ (i) One domain model may focus on roads and vehicles, with roads
being modeled in terms of atomic hubs (road intersections) and
atomic links (road sections between immediately neighbouring hubs),
and with automobiles being modeled in terms of atomic vehicles.

⋄⋄ (ii) Another domain model considers hubs of the former model as
being composite, consisting, in addition to the “bare” hub, also of
a signaling part — with automobiles remaining atomic vehicles,

⋄⋄ (iii) A third model focuses on vehicles, now as composite parts
consisting of composite and atomic sub-parts such as they are rel-
evant in the assembly-line manufacturing of cars8

8The road nets of the first two models can be considered a zeroth model.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

58 1. Introduction 1.8. Structure of Seminar

1.8. Structure of Seminar

• Sections 2.–4. are the main sections of this seminar.

⋄⋄ They cover the analysis and description of
⋄⋄ endurants and perdurants.

• Section 2. introduce the concepts of

⋄⋄ entities,
⋄⋄ endurant entities and
⋄⋄ perdurant entities.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

591. Introduction 1.8. Structure of Seminar

• Section 3. introduces

⋄⋄ the external qualities of
◦◦ parts,
◦◦ components and
◦◦ materials,
and
◦◦ the internal qualities of

∗ unique part identifiers,
∗ part mereologies and
∗ part attributes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

60
1. Introduction 1.8. Structure of Seminar

• Section 4. complements Sect. 3.

⋄⋄ It covers analysis and description of perdurants.
⋄⋄ We consider the “compilation”, Sect. , of part descriptions, i.e., en-

durants, into behaviour descriptions to be a separate contribution.

• Section 5. concludes the seminar.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

61
2. Entities

2. Entities
2.1. General

Definition 1 Entity:

• By an entity we shall understand a phenomenon, i.e., something

⋄⋄ that can be observed, i.e., be
◦◦ seen or touched
by humans,

⋄⋄ or that can be conceived
◦◦ as an abstraction

◦◦ of an entity.
⋄⋄ We further demand that an entity can be objectively described

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

62 2. Entities 2.1. General

Analysis Prompt 1 is entity:

• The domain analyser analyses “things” (θ)
into either entities or non-entities.

• The method can thus be said to provide the domain analysis prompt:

⋄⋄ is entity — where is entity(θ) holds if θ is an entity 9

• is entity is said to be a prerequisite prompt for all other prompts.

9Analysis prompt definitions and description prompt definitions and schemes are delimited by .

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

632. Entities 2.1. General

Whither Entities:

• The “demands” that entities

⋄⋄ be observable and objectively describable

raises some philosophical questions.

• Can sentiments, like feelings, emotions or “hunches”
be objectively described ?

• This lecturer thinks not.

• And, if so, can they be other than artistically described ?

• It seems that

⋄⋄ psychologically and
⋄⋄ aesthetically

“phenomena” appears to lie beyond objective description.

• We shall leave these speculations for later.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

64 2. Entities 2.2. Endurants and Perdurants

2.2. Endurants and Perdurants

Definition 2 Endurant:

• By an endurant we shall understand an entity

⋄⋄ that can be observed or conceived and described
⋄⋄ as a “complete thing”
⋄⋄ at no matter which given snapshot of time.

Were we to “freeze” time

⋄⋄ we would still be able to observe the entire endurant

• That is, endurants “reside” in space.

• Endurants are, in the words of Whitehead (1920), continuants.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

652. Entities 2.2. Endurants and Perdurants

Example 7 Traffic System Endurants:
Examples of traffic system endurants are:

• traffic system,

• road nets,

• fleets of vehicles,

• sets of hubs,

• sets of links,

• hubs,

• links and

• vehicles

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

66
2. Entities 2.2. Endurants and Perdurants

Definition 3 Perdurant:

• By a perdurant we shall understand an entity

⋄⋄ for which only a fragment exists
if we look at or touch them
at any given snapshot in time, that is,

⋄⋄ were we to freeze time we would only see or touch
a fragment of the perdurant

• That is, perdurants “reside” in space and time.

• Perdurants are, in the words of Whitehead(1920), occurrents.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

672. Entities 2.2. Endurants and Perdurants

Example 8 Traffic System Perdurants:
Examples of road net perdurants are:

• insertion and removal of hubs or links (actions),

• disappearance of links (events),

• vehicles entering or leaving the road net (actions),

• vehicles crashing (events) and

• road traffic (behaviour)

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

68 2. Entities 2.2. Endurants and Perdurants

Analysis Prompt 2 is endurant:

• The domain analyser analyses an entity, φ , into an endurant as prompted
by the domain analysis prompt:

⋄⋄ is endurant — φ is an endurant if is endurant(φ) holds.

• is entity is a prerequisite prompt for is endurant

Analysis Prompt 3 is perdurant:

• The domain analyser analyses an entity φ into perdurants as prompted
by the domain analysis prompt:

⋄⋄ is perdurant — φ is a perdurant if is perdurant(φ) holds.

• is entity is a prerequisite prompt for is perdurant

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

692. Entities 2.2. Endurants and Perdurants

• In the words of Whitehead(1920)

⋄⋄ an endurant has stable qualities that enable its various appearances
at different times to be recognised as the same individual;

⋄⋄ a perdurant is in a state of flux that prevents it from being recog-
nised by a stable set of qualities.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

70 2. Entities 2.2. Endurants and Perdurants

Necessity and Possibility:

• It is indeed possible to make the endurant/perdurant distinction.

• But is it necessary ?

• We shall argue that it is ‘by necessity’ that we make this distinction.

⋄⋄ Space and time are fundamental notions.
⋄⋄ They cannot be dispensed with.
⋄⋄ So, to describe manifest domains

without resort to space and time
is not reasonable.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

71
2. Entities 2.3. Discrete and Continuous Endurants

2.3. Discrete and Continuous Endurants

Definition 4 Discrete Endurant:

• By a discrete endurant we shall understand
an endurant which is

⋄⋄ separate,
⋄⋄ individual or
⋄⋄ distinct

in form or concept

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

72 2. Entities 2.3. Discrete and Continuous Endurants

Example 9 Discrete Endurants:

• Examples of discrete endurants are

⋄⋄ a road net,
⋄⋄ a link,

⋄⋄ a hub,
⋄⋄ a vehicle,

⋄⋄ a traffic signal,
⋄⋄ etcetera

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

73
2. Entities 2.3. Discrete and Continuous Endurants

Definition 5 Continuous Endurant:

• By a continuous endurant we shall understand
an endurant which is

⋄⋄ prolonged, without interruption,
⋄⋄ in an unbroken series or pattern

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

74 2. Entities 2.3. Discrete and Continuous Endurants

Example 10 Continuous Endurants:

• Examples of continuous endurants are

⋄⋄ water,
⋄⋄ oil,

⋄⋄ gas,

⋄⋄ sand,
⋄⋄ grain,
⋄⋄ etcetera

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

75
2. Entities 2.3. Discrete and Continuous Endurants

• Continuity shall here not be understood in the sense of mathematics.

⋄⋄ Our definition of ‘continuity’ focused on
◦◦ prolonged,
◦◦ without interruption,
◦◦ in an unbroken series or
◦◦ pattern.

⋄⋄ In that sense
materials and components
shall be seen as ‘continuous’,

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

76 2. Entities 2.3. Discrete and Continuous Endurants

Analysis Prompt 4 is discrete:

• The domain analyser analyses endurants e into discrete entities as
prompted by the domain analysis prompt:

⋄⋄ is discrete — e is discrete if is discrete(e) holds

Analysis Prompt 5 is continuous:

• The domain analyser analyses endurants e into continuous entities
as prompted by the domain analysis prompt:

⋄⋄ is continuous — e is continuous if is continuous(e) holds

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

772. Entities 2.4. An Upper Ontology Diagram of Domains

2.4. An Upper Ontology Diagram of Domains

• Figure 1 on the following slide shows a so-called upper ontology for
manifest domains.

⋄⋄ So far we have covered only a fraction of this ontology, as noted.
⋄⋄ By ontologies we shall here understand
⋄⋄ “formal representations of a set of concepts within a domain and
the relationships between those concepts”.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

78 2. Entities 2.4. An Upper Ontology Diagram of Domains

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is an abbreviation for ‘observe’

Analysis Prompts

Description Prompts

obs_

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Figure 1: An Upper Ontology for Domains – We’ve just covered the red-dashed concepts

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

79

Lecture 2 80–167

⋄⋄ Lecture 1: Summary. Introduction. Upper Ontology 2–78
⋄⋄ Lecture 2: Parts: Structures 80–167

Unique Identifiers, Mereologies and Attributes (i)

⋄⋄ Lecture 3: Attributes (ii), Components and Materials 169–247
Perdurants (I): States, Actions, Behaviours (I)

⋄⋄ Lecture 4: Perdurants (II): Behaviours (II) 248–300
Closing

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

80 3. Endurants

3. Endurants
A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is an abbreviation for ‘observe’

Analysis Prompts

Description Prompts

obs_

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Figure 2: An Upper Ontology for Domains: Parts – We’re now going to cover these red-dashed concepts

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

81
3. Endurants

• This section brings a comprehensive treatment of the analysis and
description of endurants.

3.1. Parts, Components and Materials
3.1.1. General

Definition 6 Part:

• By a part we shall understand

⋄⋄ a discrete endurant
⋄⋄ which the domain engineer chooses
⋄⋄ to endow with internal qualities such as

◦◦ unique identification,
◦◦ mereology, and
◦◦ one or more attributes

We shall soon define the terms
‘unique identification’, ‘mereology’, and ‘attributes’.
Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

82 3. Endurants 3.1. Parts, Components and Materials 3.1.1. General

Example 11 Parts: Example

• 7 on Slide 65 illustrated

⋄⋄ traffic systems,
⋄⋄ road nets,
⋄⋄ fleets of vehicles,
⋄⋄ set of hubs,

⋄⋄ set of links,
⋄⋄ hubs and
⋄⋄ links

parts,

and examples

• 15 on Slide 96 and

• 16 on Slide 98

shall illustrate parts

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

833. Endurants 3.1. Parts, Components and Materials 3.1.1. General

Definition 7 Component:

• By a component we shall understand

⋄⋄ a discrete endurant
⋄⋄ which we, the domain analyser cum describer chooses
⋄⋄ to not endow with internal qualities

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

84 3. Endurants 3.1. Parts, Components and Materials 3.1.1. General

Example 12 Components:

• Examples of components are:

⋄⋄ chairs, tables, sofas and book cases in a living room,
⋄⋄ letters, newspapers, and small packages in a mail box,
⋄⋄ machine assembly units on a conveyor belt,
⋄⋄ boxes in containers of a container vessel,
⋄⋄ etcetera

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

85
3. Endurants 3.1. Parts, Components and Materials 3.1.1. General

”At the Discretion of the Domain Engineer”:

• We emphasise the following analysis and description aspects:

⋄⋄ (a) The domain is full of observable phenomena.
◦◦ It is the decision of the domain analyser cum describer
◦◦ whether to analyse and describe some such phenomena,
◦◦ that is, whether to include them in a domain model.

⋄⋄ (b) The borderline between an endurant
◦◦ being (considered) discrete or
◦◦ being (considered) continuous
◦◦ is fuzzy.
◦◦ It is the decision of the domain analyser cum describer
◦◦ whether to model an endurant as discrete or continuous.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

86
3. Endurants 3.1. Parts, Components and Materials 3.1.1. General

⋄⋄ (c) The borderline between a discrete endurant
◦◦ being (considered) a part or
◦◦ being (considered) a component
◦◦ is fuzzy.
◦◦ It is the decision of the domain analyser cum describer
◦◦ whether to model a discrete endurant as a part or as a component.

⋄⋄ (d) We shall later show how to “compile” parts into processes.
◦◦ A factor, therefore, in determining whether
◦◦ to model a discrete endurant as a part or as a component
◦◦ is whether we may consider a discrete endurant as also repre-

senting a process.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

873. Endurants 3.1. Parts, Components and Materials 3.1.1. General

Definition 8 Material:

• By a material we shall understand a continuous endurant

Example 13 Materials: Examples of material endurants are:

• air of an air conditioning system,

• grain of a silo,

• gravel of a barge,

• oil (or gas) of a pipeline,

• sewage of a waste disposal system, and

• water of a hydro-electric power plant.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

88 3. Endurants 3.1. Parts, Components and Materials 3.1.1. General

Example 14 Parts Containing Materials:

• Pipeline units are here considered discrete, i.e., parts.

• Pipeline units serve to convey material

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

893. Endurants 3.1. Parts, Components and Materials 3.1.2. Part, Component and Material Analysis Prompts

3.1.2. Part, Component and Material Analysis Prompts

Analysis Prompt 6 is part:

• The domain analyser analyse endurants, e, into part entities as prompted
by the domain analysis prompt:

⋄⋄ is part — e is a part if is part(e) holds

• We remind the reader that the outcome of is part(e)

• is very much dependent on the domain engineer’s intention

• with the domain description, cf. Slide 85.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

90 3. Endurants 3.1. Parts, Components and Materials 3.1.2. Part, Component and Material Analysis Prompts

Analysis Prompt 7 is component:

• The domain analyser analyse endurants e into component entities as
prompted by the domain analysis prompt:

⋄⋄ is component — e is a component if is component(e) holds

• We remind the reader that the outcome of is component(e)

• is very much dependent on the domain engineer’s intention

• with the domain description, cf. Slide 85.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

913. Endurants 3.1. Parts, Components and Materials 3.1.2. Part, Component and Material Analysis Prompts

Analysis Prompt 8 is material:

• The domain analyser analyse endurants e into material entities as
prompted by the domain analysis prompt:

⋄⋄ is material — e is a material if is material(e) holds

• We remind the reader that the outcome of is material(e)

• is very much dependent on the domain engineer’s intention

• with the domain description, cf. Slide 85.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

92 3. Endurants 3.1. Parts, Components and Materials 3.1.3. Part, Component and Material Qualities

3.1.3. Part, Component and Material Qualities

• To us

⋄⋄ parts have unique identifiers, mereology and attributes;
⋄⋄ components have unique identifiers and attributes;
⋄⋄ materials have attributes

• [The above “restrictions” are pragmatic.]

• [Other “divisions” of “labour” could be formulated.]

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

933. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

3.1.4. Atomic and Composite Parts

• A distinguishing quality

⋄⋄ of parts
⋄⋄ is whether they are

◦◦ atomic or
◦◦ composite.

• Please note that we shall,

⋄⋄ in the following,
⋄⋄ examine the concept of parts
⋄⋄ in quite some detail.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

94 3. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

• That is,

⋄⋄ parts become the domain endurants of main interest,
⋄⋄ whereas components and materials become of secondary interest.

• This is a choice.

⋄⋄ The choice is based on pragmatics.
⋄⋄ It is still the domain analyser cum describers’ choice

◦◦ whether to consider a discrete endurant
◦◦ a part
◦◦ or a component.

⋄⋄ If the domain engineer wishes to investigate
◦◦ the details of a discrete endurant
◦◦ then the domain engineer choose to model
◦◦ the discrete endurant as a part
◦◦ otherwise as a component.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

953. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

Definition 9 Atomic Part:

•Atomic parts are those which,

⋄⋄ in a given context,
⋄⋄ are deemed to not consist of

meaningful, separately observable proper sub-parts

• A sub-part is a part

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

96 3. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

Example 15 Atomic Parts:
Examples of atomic parts of the above mentioned domains are:

• aircraft10 (of air traffic),

• demand/deposit accounts (of banks),

• containers (of container lines),

• documents (of document systems),

• hubs, links and vehicles (of road traffic),

• patients, medical staff and beds (of hospitals),

• pipes, valves and pumps (of pipeline systems), and

• rail units and locomotives (of railway systems)

10Aircraft from the point of view of airport management are atomic. From the point of view of aircraft manufacturers they are composite.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

973. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

Definition 10 Composite Part:

•Composite parts are those which,

⋄⋄ in a given context,
⋄⋄ are deemed to indeed consist of

meaningful, separately observable proper sub-parts

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

98 3. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

Example 16 Composite Parts:
Examples of composite parts of the above mentioned domains are:

• airports and air lanes (of air traffic),

• banks (of a financial service industry),

• container vessels (of container lines),

• dossiers of documents (of document systems),

• routes (of road nets),

• medical wards (of hospitals),

• pipelines (of pipeline systems), and

• trains, rail lines and train stations (of railway systems).

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

993. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

Analysis Prompt 9 is atomic:

• The domain analyser analyses a discrete endurant, i.e., a part p into
an atomic endurant:

⋄⋄ is atomic(p): p is an atomic endurant if is atomic(p) holds

Analysis Prompt 10 is composite:

• The domain analyser analyses a discrete endurant, i.e., a part p into
a composite endurant:

⋄⋄ is composite(p): p is a composite endurant if is composite(p)
holds

• is discrete is a prerequisite prompt is discrete of both is atomic

and is composite.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

100 3. Endurants 3.1. Parts, Components and Materials 3.1.4. Atomic and Composite Parts

Whither Atomic or Composite:

• If we are analysing & describing vehicles
in the context of a road net, cf. the Traffic System Example Slide 65,

⋄⋄ then we have chosen to abstract vehicles
⋄⋄ as atomic;

• if, on the other hand, we are analysing & describing vehicles
in the context of an automobile maintenance garage

⋄⋄ then we might very well choose to abstract vehicles
⋄⋄ as composite —
⋄⋄ the sub-parts being the object of diagnosis
⋄⋄ by the auto mechanics.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1013. Endurants 3.1. Parts, Components and Materials 3.1.5. On Observing Part Sorts and Types

3.1.5. On Observing Part Sorts and Types

• We use the term ‘sort’

⋄⋄ when we wish to speak of an abstract type,
⋄⋄ that is, a type for which we do not wish to express a model11.
⋄⋄ We shall use the term ‘type’ to cover both

◦◦ abstract types and ◦◦ concrete types.

11for example, in terms of the concrete types:

◦◦ sets,
◦◦ Cartesians,

◦◦ lists,
◦◦ maps,

or other.
Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

102
3. Endurants 3.1. Parts, Components and Materials 3.1.6. On Discovering Part Sorts

3.1.6. On Discovering Part Sorts

• We “equate” a formal concept with a type (i.e., a sort).

⋄⋄ Thus, to us, a part sort is a set of all those entities
⋄⋄ which all have exactly the same qualities.

• Our aim now

⋄⋄ is to present the basic principles that let
⋄⋄ the domain analyser decide on part sorts.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1033. Endurants 3.1. Parts, Components and Materials 3.1.6. On Discovering Part Sorts

• We observe parts one-by-one.

• (α) Our analysis of parts concludes when we have

⋄⋄ “lifted” our examination of a particular part instance

⋄⋄ to the conclusion that it is of a given sort,

⋄⋄ that is, reflects a formal concept.

• Thus there is, in this analysis, a “eureka”,

⋄⋄ a step where we shift focus
⋄⋄ from the concrete to the abstract,
⋄⋄ from observing specific part instances
⋄⋄ to postulating a sort:

◦◦ from one to the many.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

104 3. Endurants 3.1. Parts, Components and Materials 3.1.6. On Discovering Part Sorts

Analysis Prompt 11 observe parts:

• The domain analysis prompt:

⋄⋄ observe parts(p)

• directs the domain analyser to observe the sub-parts of p

Let us say the sub-parts of p are: {p1,p2,. . . ,pm}.
• (β) The analyser analyses, for each of these parts, pik,

⋄⋄ which formal concept, i.e., sort, it belongs to;

⋄⋄ let us say that it is of sort Pk;

⋄⋄ thus the sub-parts of p are of sorts {P1,P2,. . . ,Pm}.
• Some Pk may be atomic sorts, some may be composite sorts.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1053. Endurants 3.1. Parts, Components and Materials 3.1.6. On Discovering Part Sorts

• The domain analyser continues to examine a finite number of other
composite parts: {p j, pℓ, . . . , pn}.

⋄⋄ It is then “discovered”, that is, decided, that they all consists of the
same number of sub-parts
◦◦ {pi1,pi2,. . . ,pim},
◦◦ {p j1,p j2,. . . ,p jm},
◦◦ {pℓ1,pℓ2,. . . ,pℓm},
◦◦ ...,
◦◦ {pn1,pn2,. . . ,pnm},
of the same, respective, part sorts.

• (γ) It is therefore concluded, that is, decided,
that {pi, p j,pℓ,. . . ,pn} are all of the same part sort P
with observable part sub-sorts {P1,P2,. . . ,Pm}.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

106 3. Endurants 3.1. Parts, Components and Materials 3.1.6. On Discovering Part Sorts

• Above we have type-font-highlighted three sentences: (α,β ,γ).

• When you analyse what they “prescribe” you will see that they entail
a “depth-first search” for part sorts.

⋄⋄ The β sentence says it rather directly:
⋄⋄ “The analyser analyses, for each of these parts, pk, which formal

concept, i.e., part sort it belongs to.”
⋄⋄ To do this analysis in a proper way, the analyser must

(“recursively”) analyse the parts “down” to their atomicity,
⋄⋄ and from the atomic parts decide on their part sort,
⋄⋄ and work (“recurse”) their way “back”,
⋄⋄ through possibly intermediate composite parts,
⋄⋄ to the pks.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1073. Endurants 3.1. Parts, Components and Materials 3.1.6. On Discovering Part Sorts

• Of course, when the analyser starts by examining atomic parts

⋄⋄ then the analysis “recursion” is not necessary;
⋄⋄ as it is never necessary when the analyser proceeds “bottom-up”:
⋄⋄ analysing only such composite parts whose sub-parts have already

been analysed

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

108 3. Endurants 3.1. Parts, Components and Materials 3.1.7. Part Sort Observer Functions

3.1.7. Part Sort Observer Functions

• The above analysis amounts to the analyser

⋄⋄ first “applying” the domain analysis prompt
⋄⋄ is composite(p) to a discrete endurant,
⋄⋄ where we now assume that the obtained truth value is true.
⋄⋄ Let us assume that parts p:P consists of sub-parts of sorts
{P1,P2,. . . ,Pm}.

⋄⋄ Since we cannot automatically guarantee that our domain descrip-
tions secure that
◦◦ P and each Pi (1≤i≤m)
◦◦ denotes disjoint sets of entities
we must prove it.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1093. Endurants 3.1. Parts, Components and Materials 3.1.7. Part Sort Observer Functions

Domain Description Prompt 1 observe part sorts :

• If is composite(p) holds, then the analyser “applies” the domain
description prompt

⋄⋄ observe part sorts(p)

resulting in the analyser writing down the part sorts and part sort
observers
domain description text
according to the following schema:

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

110 3. Endurants 3.1. Parts, Components and Materials 3.1.7. Part Sort Observer Functions

1. observe part sorts schema

Narration:
[s] ... narrative text on sorts ...

[o] ... narrative text on sort observers ...

[i] ... narrative text on sort recognisers ...

[p] ... narrative text on proof obligations ...

Formalisation:
type
[s] P,

[s] Pi [1≤i≤m] comment: Pi [1≤i≤m] abbreviates P1, P2, ..., Pm

value
[o] obs part Pi: P → Pi [1≤i≤m]

[i] is Pi: (P1|P2|...|Pm) → Bool [1≤i≤m]

proof obligation [Disjointness of part sorts]

[p] ∀ p:(P1|P2|...|Pm) •

[p]
∧ {is Pi(p) ≡

∧ {∼is P j(p) | j ∈ {1..m} \ {i}} | i ∈ {1..m}}

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1113. Endurants 3.1. Parts, Components and Materials 3.1.7. Part Sort Observer Functions

Example 17 Composite and Atomic Part Sorts of Transporta-
tion:

• The following example illustrates the multiple use of the
observe part sorts function:

⋄⋄ first to δ :∆, a specific transport domain, Item 1,
⋄⋄ then to an n : N, the net of that domain, Item 2, and
⋄⋄ then to an f : F , the fleet of that domain, Item 3.

1 A transportation domain is composed from a net, a fleet (of vehicles)
and a monitor.

2 A transportation net is composed from a collection of hubs and a
collection of links.

3 A fleet is a collection of vehicles.

• The monitor is considered an atomic part.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

112 3. Endurants 3.1. Parts, Components and Materials 3.1.7. Part Sort Observer Functions

type
1. ∆, N, F, M
value
1. obs part N: ∆ → N,
1. obs part F: ∆ → F,
1. obs part M: ∆ → M
type
2. HS, LS
value
2. obs part HS: N → HS,
2. obs part LS: N → LS
type
3. VS
value
3. obs part VS: F → VS

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1133. Endurants 3.1. Parts, Components and Materials 3.1.7. Part Sort Observer Functions

• A proof obligation has to be discharged,
⋄⋄ one that shows disjointedness of sorts N, F and M.
⋄⋄ An informal sketch is:

◦◦ entities of sort N are composite and consists of two parts:
◦◦ aggregations of hubs, HS, and aggregations of links, LS.
◦◦ Entities of sort F consists of an aggregation, VS, of vehicles.
◦◦ So already that makes N and F disjoint.
◦◦M is an atomic entity — where N and F are both composite.
◦◦ Hence the three sorts N, F and M are disjoint

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

114 3. Endurants 3.1. Parts, Components and Materials 3.1.8. On Discovering Concrete Part Types

3.1.8. On Discovering Concrete Part Types

Analysis Prompt 12 has concrete type:

• The domain analyser

⋄⋄ may decide that it is expedient, i.e., pragmatically sound,
⋄⋄ to render a part sort, P, whether atomic or composite, as a con-

crete type, T.
⋄⋄ That decision is prompted by the holding of the domain analysis
prompt:
◦◦ has concrete type(p).

⋄⋄ is discrete is a prerequisite prompt of has concrete type

• The reader is reminded that

⋄⋄ the decision as to whether an abstract type is (also) to be described concretely

⋄⋄ is entirely at the discretion of the domain engineer.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1153. Endurants 3.1. Parts, Components and Materials 3.1.8. On Discovering Concrete Part Types

Domain Description Prompt 2 observe part type :

• Then the domain analyser applies the domain description prompt:

⋄⋄ observe part type(p)12

• to parts p:P which then yield the part type and part type observers
domain description text
according to the following schema:

12has concrete type is a prerequisite prompt of observe part type.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

116 3. Endurants 3.1. Parts, Components and Materials 3.1.8. On Discovering Concrete Part Types

2. observe part type schema

Narration:
[t1] ... narrative text on sorts and types Si ...
[t2] ... narrative text on types T ...
[o] ... narrative text on type observers ...

Formalisation:
type
[t1] S1, S2, ..., Sm, ..., Sn,
[t2] T = E (S1,S2,...,Sn)
value
[o] obs part T: P → T

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1173. Endurants 3.1. Parts, Components and Materials 3.1.8. On Discovering Concrete Part Types

• The type name,

⋄⋄ T, of the concrete type,
⋄⋄ as well as those of the auxiliary types, S1,S2,...,Sm,
⋄⋄ are chosen by the domain describer:

◦◦ they may have already been chosen
◦◦ for other sort–to–type descriptions,
◦◦ or they may be new.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

118 3. Endurants 3.1. Parts, Components and Materials 3.1.8. On Discovering Concrete Part Types

Example 18 Concrete Part Types of Transportation:
We continue Example 17 on Slide 111:
4 A collection of hubs is a set of hubs and

a collection of links is a set of links.
5 Hubs and links are, until further analysis, part sorts.
6 A collection of vehicles is a set of vehicles.
7 Vehicles are, until further analysis, part sorts.

type
4. Hs = H-set, Ls = L-set
5. H, L
6. Vs = V-set
7. V
value
4. obs part Hs: HS → Hs, obs part Ls: LS → Ls
6. obs part Vs: VS → Vs

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1193. Endurants 3.1. Parts, Components and Materials 3.1.9. Forms of Part Types

3.1.9. Forms of Part Types

• Usually it is wise to restrict the part type definitions, Ti = Ei(Q,R,...,S),
to simple type expressions.

⋄⋄ T=A-set or
⋄⋄ T=A∗ or

⋄⋄ T=ID→
m A or

⋄⋄ T=At|Bt|...|Ct

where
⋄⋄ ID is a sort of unique identifiers,
⋄⋄ T=At|Bt|...|Ct defines the disjoint types

◦◦ At==mkAt(s:As),
◦◦ Bt==mkBt(s:Bs), ...,
◦◦ Ct==mkCt(s:Cs),
and where

⋄⋄ A, As, Bs, ..., Cs are sorts.
⋄⋄ Instead of At==mkAt(a:As), etc., we may write At::As etc.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

120 3. Endurants 3.1. Parts, Components and Materials 3.1.10. Part Sort and Type Derivation Chains

3.1.10. Part Sort and Type Derivation Chains

• Let P be a composite sort.

• Let P1, P2, . . . , Pm be the part sorts “discovered” by means of ob-
serve part sorts(p) where p:P.

• We say that P1, P2, . . . , Pm are (immediately) derived from P.

• If Pk is derived from P j and P j is derived from Pi, then, by transitiv-
ity, Pk is derived from Pi.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1213. Endurants 3.1. Parts, Components and Materials 3.1.10. Part Sort and Type Derivation Chains 3.1.10.1. No Recursive Derivations

3.1.10.1 No Recursive Derivations

• We “mandate” that

⋄⋄ if Pk is derived from P j

⋄⋄ then there
◦◦ can be no P derived from P j

◦◦ such that P is P j,
◦◦ that is, P j cannot be derived from P j.

• That is, we do not allow recursive domain sorts.

• It is not a question, actually of allowing recursive domain sorts.

⋄⋄ It is, we claim to have observed,
⋄⋄ in very many domain modeling experiments,
⋄⋄ that there are no recursive domain sorts !

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

122
3. Endurants 3.1. Parts, Components and Materials 3.1.11. Names of Part Sorts and Types

3.1.11. Names of Part Sorts and Types

• The domain analysis and domain description text prompts

⋄⋄ observe part sorts,
⋄⋄ observe material sorts and

⋄⋄ observe part type

— as well as the

⋄⋄ attribute names,
⋄⋄ observe material sorts,
⋄⋄ observe unique identifi-

er,
⋄⋄ observe mereology and
⋄⋄ observe attributes

prompts introduced below — “yield” type names.
⋄⋄ That is, it is as if there is

◦◦ a reservoir of an indefinite-size set of such names
◦◦ from which these names are “pulled”,
◦◦ and once obtained are never “pulled” again.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1233. Endurants 3.1. Parts, Components and Materials 3.1.11. Names of Part Sorts and Types

• There may be domains for which two distinct part sorts may be com-
posed from identical part sorts.

• In this case the domain analyser indicates so by prescribing a part
sort already introduced.

Example 19 Container Line Sorts:

• Our example is that of a container line

⋄⋄ with container vessels and
⋄⋄ container terminal ports.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

124 3. Endurants 3.1. Parts, Components and Materials 3.1.11. Names of Part Sorts and Types

8 A container line contains a number of container vessels
and a number of container terminal ports,
as well as other parts.

9 A container vessel contains a container stowage area, etc.

10 A container terminal port contains a container stowage area, etc.

11 A container stowage areas contains a set of uniquely identified con-
tainer bays.

12 A container bay contains a set of uniquely identified container rows.

13 A container row contains a set of uniquely identified container stacks.

14 A container stack contains a stack, i.e., a first-in, last-out sequence
of containers.

15 Containers are further undefined.

• After a some slight editing we get:

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1253. Endurants 3.1. Parts, Components and Materials 3.1.11. Names of Part Sorts and Types

type
CL

VS, VI, V, Vs = VI→m V,

PS, PI, P, Ps = PI→m P

value
obs part VS: CL → VS

obs part Vs: VS → Vs

obs part PS: CL → PS

obs part Ps: CTPS → CTPs

type
CSA

value
obs part CSA: V → CSA

obs part CSA: P → CSA

type
BAYS, BI, BAY, Bays=BI→m BAY

ROWS, RI, ROW, Rows=RI→m ROW

STKS, SI, STK, Stks=SI→m STK

C

value
obs part BAYS: CSA → BAYS,

obs part Bays: BAYS → Bays

obs part ROWS: BAY → ROWS,

obs part Rows: ROWS → Rows

obs part STKS: ROW → STKS,

obs part Stks: STKS → Stks

obs part Stk: STK → C∗

• Note that observe part sorts(v:V) and observe part sorts(p:P)
both yield CSA

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

126 3. Endurants 3.1. Parts, Components and Materials 3.1.12. More On Part Sorts and Types

3.1.12. More On Part Sorts and Types

• The above “experimental example” motivates the below.

⋄⋄ We can always assume that composite parts p:P abstractly consists
of a definite number of sub-parts.
◦◦ Example 20. We comment on Example 17, Page 111: Parts of

type ∆ and N are composed from three, respectively two abstract
sub-parts of distinct types

⋄⋄ Some of the parts, say piz of {pi1,pi2,. . . ,pim}, of p:P, may them-
selves be composite.
◦◦ Example 21. We comment on Example 17: Parts of type N, F,
HS, LS and VS are all composite

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1273. Endurants 3.1. Parts, Components and Materials 3.1.12. More On Part Sorts and Types

⋄⋄ There are, pragmatically speaking, two cases for such composi-
tionality.
◦◦ Either the part, piz, of type tiz, is is composed from a definite

number of abstract or concrete sub-parts of distinct types.
∗ Example 22. We comment on Example 17: Parts of type N are

composed from three sub-parts
◦◦ Or it is composed from an indefinite number of sub-parts of the

same sort.
∗ Example 23. We comment on Example 17: Parts of type HS,
LS and VS are composed from an indefinite numbers of hubs,
links and vehicles, respectively

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

128 3. Endurants 3.1. Parts, Components and Materials 3.1.12. More On Part Sorts and Types

Example 24 Pipeline Parts:

16 A pipeline consists of an indefinite number of pipeline units.

17 A pipeline units is either a well, or a pipe, or a pump, or a valve, or a
fork, or a join, or a sink.

18 All these unit sorts are atomic and disjoint.

type
16. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
16. Well, Pipe, Pump, Valv, Fork, Join, Sink
value
16. obs part Us: PL → U-set
type
17. U == We | Pi | Pu | Va | Fo | Jo | Si
18. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1293. Endurants 3.2. External and Internal Qualities of Parts

3.2. External and Internal Qualities of Parts

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is an abbreviation for ‘observe’

Analysis Prompts

Description Prompts

obs_

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Figure 3: An Upper Ontology for Domains — Internal Qualities

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

130
3. Endurants 3.2. External and Internal Qualities of Parts

• By an external part quality we shall understand the

⋄⋄ is atomic,
⋄⋄ is composite,

⋄⋄ is discrete and
⋄⋄ is continuous

qualities

• By an internal part quality we shall understand the part qualities
to be outlined in the next sections:

⋄⋄ unique ids, ⋄⋄ mereology and ⋄⋄ attributes

• By part qualities we mean the sum total of

⋄⋄ external endurant and ⋄⋄ internal endurant

qualities

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1313. Endurants 3.3. Three Categories of Internal Qualities

3.3. Three Categories of Internal Qualities

• We suggest that the internal qualities of parts be analysed into three
categories:

⋄⋄ (i) a category of unique part identifiers,
⋄⋄ (ii) a category of mereological quantities and
⋄⋄ (iii) a category of general attributes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

132 3. Endurants 3.3. Three Categories of Internal Qualities

• Part mereologies are about sharing qualities between parts.

⋄⋄ Some such sharing expresses
spatio-topological properties of how parts are organised.

⋄⋄ Other part sharing aspects express
relations (like equality) of part attributes.

⋄⋄ We base our modeling of mereologies on the notion of
unique part identifiers.

⋄⋄ Hence we cover internal qualities in the order (i–ii–iii).

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1333. Endurants 3.4. Unique Part Identifiers

3.4. Unique Part Identifiers

• We introduce a notion of unique identification of parts.

• We assume

⋄⋄ (i) that all parts, p, of any domain P, have unique identifiers,
⋄⋄ (ii) that unique identifiers (of parts p:P) are abstract values

(of the unique identifier sort PI of parts p:P),
⋄⋄ (iii) such that distinct part sorts, Pi and P j,

have distinctly named unique identifier sorts, say PIi and PI j,
⋄⋄ (iv) that all πi:PIi and π j:PI j are distinct, and
⋄⋄ (v) that the observer function uid P applied to p

yields the unique identifier, say π:PI, of p.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

134 3. Endurants 3.4. Unique Part Identifiers

Representation of Unique Identifiers:

• Unique identifiers are abstractions.

⋄⋄ When we endow two parts (say of the same sort)
with distinct unique identifiers

⋄⋄ then we are simply saying that these two parts are distinct.
⋄⋄ We are not assuming anything about

how these identifiers otherwise come about.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

135
3. Endurants 3.4. Unique Part Identifiers

Domain Description Prompt 3 observe unique identifier :

• We can therefore apply the domain description prompt:

⋄⋄ observe unique identifier

• to parts p:P

⋄⋄ resulting in the analyser writing down
⋄⋄ the unique identifier type and observer

domain description text
according to the following schema:

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

136 3. Endurants 3.4. Unique Part Identifiers

3. observe unique identifier schema

Narration:
[s] ... narrative text on unique identifier sort PI ...
[u] ... narrative text on unique identifier observer uid P ...
[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:
type
[s] PI
value
[u] uid P: P → PI
axiom
[a] U

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1373. Endurants 3.4. Unique Part Identifiers

Example 25 Unique Transportation Net Part Identifiers:
We continue Example 17 on Slide 111.
19 Links and hubs have unique identifiers
20 and unique identifier observers.
type
19. LI, HI
value
20. uid LI: L → LI
20. uid HI: H → HI
axiom [Well−formedness of Links, L, and Hubs, H]
19. ∀ l,l′:L • uid LI(l)=uid LI(l′) ⇒ l=l′,
19. ∀ h,h′:H • uid HI(h)=uid HI(h′) ⇒ h=h′

• Axiom 19, although expressed for links and hubs of road nets, applies in general:

⋄⋄ Two parts with the same unique part identifiers
⋄⋄ are indeed one and the same part.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

138 3. Endurants 3.5. Mereology

3.5. Mereology

•Mereology is the study and knowledge of parts and part relations.

⋄⋄ Mereology, as a logical/philosophical discipline,
can perhaps best be attributed to the
Polish mathematician/logician
Stanisław Leśniewski [CV99, Bjø14a].

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1393. Endurants 3.5. Mereology 3.5.1. Part Relations

3.5.1. Part Relations

• Which are the relations that can be relevant for part-hood ?

• We give some examples.

⋄⋄ Two otherwise distinct parts may share attribute values.

Example 26 Shared Timetable Mereology (I):
◦◦ Two or more distinct public transport busses

∗ may “run” according to the (identically) same,
∗ thus “shared”, bus time table

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

140 3. Endurants 3.5. Mereology 3.5.1. Part Relations

⋄⋄ Two otherwise distinct parts may be said to, for example, be topo-
logically “adjacent” or one “embedded” within the other.

Example 27 Topological Connectedness Mereology:
◦◦ (i) two rail units may be connected (i.e., adjacent);
◦◦ (ii) a road link may be connected to two road hubs;
◦◦ (iii) a road hub may be connected to zero or more road links;
◦◦ (iv) distinct vehicles of a road net may be monitored

by one and the same road pricing sub-system

• The above examples are in no way indicative
of the “space” of part relations that may be relevant for part-hood.

• The domain analyser is expected to do a bit of
experimental research in order to discover
necessary, sufficient and pleasing “mereology-hoods” !

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1413. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

3.5.2. Part Mereology: Types and Functions

Analysis Prompt 13 has mereology:

• To discover necessary, sufficient and pleasing “mereology-hoods”
the analyser can be said to endow a truth value, true,
to the domain analysis prompt:

⋄⋄ has mereology

• When the domain analyser decides that

⋄⋄ some parts are related in a specifically enunciated mereology,
⋄⋄ the analyser has to decide on suitable

◦◦mereology types and
◦◦mereology observers (i.e., part relations).

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

142 3. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

• We can define a mereology type as a type E xpression over unique
[part] identifier types.

⋄⋄ We generalise to unique [part] identifiers over
a definite collection of part sorts, P1, P2, ..., Pn,

⋄⋄ where the parts p1:P1, p2:P2, ..., pn:Pn
are not necessarily (immediate) sub-parts of some part p:P.

type
PI1, PI2, ..., PIn
MT = E (PI1, PI2, ..., PIn),

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1433. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

Domain Description Prompt 4 observe mereology :

• If has mereology(p) holds for parts p of type P,

⋄⋄ then the analyser can apply the domain description prompt:
◦◦ observe mereology

⋄⋄ to parts of that type
⋄⋄ and write down the mereology types and observer

domain description text
according to the following schema:

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

144 3. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

4. observe mereology schema

Narration:
[t] ... narrative text on mereology type ...
[m] ... narrative text on mereology observer ...
[a] ... narrative text on mereology type constraints ...

Formalisation:
type
[t] MT13= E (PI1,PI2,...,PIm)
value
[m] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies]
[a] A (MT)

13MT will be used several times in Sect. .

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1453. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

⋄⋄ Here E (PI1,PI2,...,PIm) is a type expression
over possibly all unique identifier types
of the domain description,

⋄⋄ and A (MT) is a predicate
over possibly all unique identifier types of the domain description.

⋄⋄ To write down the concrete type definition for MT
requires a bit of analysis and thinking.

⋄⋄ has mereology is a
prerequisite prompt for observe mereology

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

146 3. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

Example 28 Road Net Part Mereologies:
We continue Example 17 on Slide 111 and Example 25 on Slide 137.

21 Links are connected to exactly two distinct hubs.

22 Hubs are connected to zero or more links.

23 For a given net the link and hub identifiers
of the mereology of hubs and links
must be those of links and hubs, respectively, of the net.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1473. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

type
21. LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
22. HM = LI-set
value
21. obs mereo L: L → LM

22. obs mereo H: H → HM

axiom [Well−formedness of Road Nets, N]

23. ∀ n:N,l:L,h:H•

23. l ∈ obs part Ls(obs part LS(n))

23. ∧ h ∈ obs part Hs(obs part HS(n))

23. ⇒ obs mereo L(l) ⊆ ∪{uid H(h) | h ∈ obs part Hs(obs part HS(n))}
23. ∧ obs mereo H(h) ⊆ ∪{uid H(l) | l ∈ obs part Ls(obs part LS(n))}

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

148 3. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

Example 29 Pipeline Parts Mereology:

• We continue Example 24 on Slide 128.

• Pipeline units serve to conduct fluid or gaseous material.

• The flow of these occur in only one direction: from so-called input
to so-called output.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1493. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

24 Wells have exactly one connection to an output unit.

25 Pipes, pumps and valves have exactly one connection from an input
unit and one connection to an output unit.

26 Forks have exactly one connection from an input unit and exactly
two connections to distinct output units.

27 Joins have exactly two connections from distinct input units and one
connection to an output unit.

28 Sinks have exactly one connection from an input unit.

29 Thus we model the mereology of a pipeline unit as a pair of disjoint
sets of unique pipeline unit identifiers.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

150 3. Endurants 3.5. Mereology 3.5.2. Part Mereology: Types and Functions

type
29. UM′=(UI-set×UI-set)
29. UM={|(iuis,ouis):UM′

•iuis ∩ ouis={}|}
value
29. obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0)]
∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒

let (iuis,ouis)=obs mereo U(u) in
case (card iuis,card ouis) of

24. (0,1) → is We(u),
25. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
26. (1,2) → is Fo(u),
27. (2,1) → is Jo(u),
28. (1,0) → is Si(u), → false

end end

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1513. Endurants 3.5. Mereology 3.5.3. Formulation of Mereologies

3.5.3. Formulation of Mereologies

• The observe mereology domain descriptor, Slide 144,

⋄⋄ may give the impression that the mereo type MT can be described
⋄⋄ “at the point of issue” of the observe mereology prompt.
⋄⋄ Since the MT type expression may depend on any part sort
⋄⋄ the mereo type MT can, for some domains,
⋄⋄ “first” be described when all part sorts have been dealt with.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

152 3. Endurants 3.6. Part Attributes

3.6. Part Attributes

• To recall: there are three sets of internal qualities:

⋄⋄ unique part identifiers,
⋄⋄ part mereology and
⋄⋄ attributes.

• Unique part identifiers and part mereology
are rather definite kinds of internal endurant qualities.

• Part attributes form more “free-wheeling” sets of internal qualities.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1533. Endurants 3.6. Part Attributes 3.6.1. Inseparability of Attributes from Parts

3.6.1. Inseparability of Attributes from Parts

• Parts are

⋄⋄ typically recognised because of their spatial form
⋄⋄ and are otherwise characterised by their intangible,

but measurable attributes.

• We learned from our exposition of formal concept analysis that

⋄⋄ a formal concept, that is, a type, consists of all the entities
⋄⋄ which all have the same qualities.

• Thus removing a quality from an entity makes no sense:

⋄⋄ the entity of that type
⋄⋄ either becomes an entity of another type
⋄⋄ or ceases to exist (i.e., becomes a non-entity) !

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

154 3. Endurants 3.6. Part Attributes 3.6.2. Attribute Quality and Attribute Value

3.6.2. Attribute Quality and Attribute Value

• We distinguish between

⋄⋄ an attribute, as a logical proposition, and
⋄⋄ an attribute value, as a value in some value space.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1553. Endurants 3.6. Part Attributes 3.6.2. Attribute Quality and Attribute Value

Example 30 Attribute Propositions and Other Values:

• A particular street segment (i.e., a link), say ℓ,

⋄⋄ satisfies the proposition (attribute) has length, and
⋄⋄ may then have value length 90 meter for that attribute.

• A particular road transport domain, δ ,

⋄⋄ has three immediate sub-parts: net, n, fleet, f , and monitor m;
⋄⋄ typically nets has net name and has net owner proposition at-

tributes
⋄⋄ with, for example, US Interstate Highway System respectively
US Department of Transportation as values for those attributes

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

156
3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions

3.6.3. Endurant Attributes: Types and Functions

• Let us recall that attributes cover qualities
other than unique identifiers and mereology.

• Let us then consider that parts have one or more attributes.

⋄⋄ These attributes are qualities
⋄⋄ which help characterise “what it means” to be a part.

• Note that we expect every part to have at least one attribute.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1573. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions

Example 31 Atomic Part Attributes:

• Examples of attributes of atomic parts such as a human are:

⋄⋄ name,
⋄⋄ gender,
⋄⋄ birth-date,

⋄⋄ birth-place,
⋄⋄ nationality,
⋄⋄ height,

⋄⋄ weight,
⋄⋄ eye colour,
⋄⋄ hair colour,

etc.

• Examples of attributes of transport net links are:

⋄⋄ length,
⋄⋄ location,

⋄⋄ 1 or 2-way link,
⋄⋄ link condition,

etc.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

158
3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions

Example 32 Composite Part Attributes:

• Examples of attributes of composite parts such as a road net are:

⋄⋄ owner,

⋄⋄ public or private net,
⋄⋄ free-way or toll road,
⋄⋄ a map of the net,

etc.

• Examples of attributes of a group of people could be: statistic distri-
butions of

⋄⋄ gender,
⋄⋄ age,
⋄⋄ income,

⋄⋄ education,
⋄⋄ nationality,
⋄⋄ religion,

etc.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

159
3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions

• We now assume that all parts have attributes.

• The question is now, in general, how many and, particularly, which.

Analysis Prompt 14 attribute names:

• The domain analysis prompt attribute names

⋄⋄ when applied to a part p
⋄⋄ yields the set of names of its attribute types:

⋄⋄ attribute names(p): {ηA1,ηA2, ...,ηAn}.

• η is a type operator. Applied to a type A it yields is name14

14Normally, in non-formula texts, type A is referred to by ηA. In formulas A denote a type, that is, a
set of entities. Hence, when we wish to emphasize that we speak of the name of that type we use ηA.
But often we omit the distinction

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

160 3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions

• We cannot automatically, that is, syntactically,
guarantee that our domain descriptions secure that

⋄⋄ the various attribute types
⋄⋄ for an emerging part sort
⋄⋄ denote disjoint sets of values.

Therefore we must prove it.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1613. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

3.6.3.1 The Attribute Value Observer

• The “built-in” description language operator

⋄⋄ attr A

• applies to parts, p:P, where ηA∈attribute names(p).

• It yields the value of attribute A of p.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

162 3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

Domain Description Prompt 5 observe attributes :

• The domain analyser experiments, thinks and reflects
about part attributes.

• That process is initated by the domain description prompt:

⋄⋄ observe attributes.

• The result of that domain description prompt is
that the domain analyser cum describer writes down
the attribute (sorts or) types and observers
domain description text
according to the following schema:

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1633. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

5. observe attributes schema

Narration:
[t] ... narrative text on attribute sorts ...

[o] ... narrative text on attribute sort observers ...

[i] ... narrative text on attribute sort recognisers ...

[p] ... narrative text on attribute sort proof obligations ...

Formalisation:
type
[t] Ai [1≤i≤n]
value
[o] attr Ai:P→Ai [1≤i≤n]
[i] is Ai:(A1|A2|...|An)→Bool [1≤i≤n]
proof obligation [Disjointness of Attribute Types]

[p] ∀ δ :∆
[p] let P be any part sort in [the ∆ domain description]

[p] let a:(A1|A2|...|An) in is Ai(a) 6= is A j(a) end end [i 6= j, 1≤i, j≤n]

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

164 3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

• The type (or rather sort) definitions: A1, A2, ..., An, inform us that
the domain analyser has decided to focus on the distinctly named A1,
A2, ..., An attributes.

• And the value clauses

⋄⋄ attr A1:P→A1,

⋄⋄ attr A2:P→A2,

⋄⋄ ...,

⋄⋄ attr An:P→An

are then “automatically” given:

⋄⋄ if a part, p:P, has an attribute Ai

⋄⋄ then there is postulated, “by definition” [eureka]
an attribute observer function attr Ai:P→Ai etcetera

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

165
3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

• The fact that, for example, A1, A2, ..., An, are attributes of p:P, means
that the propositions

⋄⋄ has attribute A1(p),
has attribute A2(p),
..., and
has attribute An(p)

holds.

• Thus the observer functions attr A1, attr A2, ..., attr An

⋄⋄ can be applied to p in P

⋄⋄ and yield attribute values a1:A1, a2:A2, ..., an:An respectively.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

166 3. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

Example 33 Road Hub Attributes: After some analysis a domain
analyser may arrive at some interesting hub attributes:

30 hub state:
from which links (by reference) can one reach which links (by
reference),

31 hub state space:
the set of all potential hub states that a hub may attain,

32 such that

a. the links referred to in the state are links of the hub mereology
b. and the state is in the state space.

33 Etcetera — i.e., there are other attributes not mentioned here.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1673. Endurants 3.6. Part Attributes 3.6.3. Endurant Attributes: Types and Functions 3.6.3.1. The Attribute Value Observer

type
30 HΣ = (LI×LI)-set
31 HΩ = HΣ-set
value
30 attr HΣ:H→HΣ
31 attr HΩ:H→HΩ
axiom [Well−formedness of Hub States, HΣ]
32 ∀ h:H • let hσ = attr HΣ(h) in
32a. {li,li′|li,li′:LI•(li,li′)∈ hσ}⊆obs mereo H(h)
32b. ∧ hσ ∈ attr HΩ(h)
32 end

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

168

Lecture 3 169–247

⋄⋄ Lecture 1: Summary. Introduction. Upper Ontology 2–78
⋄⋄ Lecture 2: Parts: Structures 80–167

Unique Identifiers, Mereologies and Attributes (i)

⋄⋄ Lecture 3: Attributes (ii), Components and Materials 169–247
Perdurants (I): States, Actions, Behaviours (I)

⋄⋄ Lecture 4: Perdurants (II): Behaviours (II) 248–300
Closing

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1693. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

3.6.4. Attribute Categories
A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is_part

unique identifiers

obs_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts is_component

obs_uid

is_continuous

=is_material

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Signature Definition

Channels

has_materials

static

reactive

biddable

active

autonomous programmable

attribute categories

Analysis Prompts
Description Prompts

is an abbreviation for ‘observe’obs_
attributes

obs_attributes
has_mereology

obs_mereology

dynamic

active

Figure 4: An Upper Ontology for Domains: Attribute Categories

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

170 3. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

• One can suggest a hierarchy of part attribute categories:

⋄⋄ static or
⋄⋄ dynamic values — and within the dynamic value category:

◦◦ inert values or
◦◦ reactive values or
◦◦ active values — and within the dynamic active value category:

∗ autonomous values or
∗ biddable values or
∗ programmable values.

• We now review these attribute value types.
The review is based on [Jac95, M.A. Jackson].

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1713. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

Part attributes are either constant or varying, i.e., static or dynamic
attributes.

• By a static attribute, a:A, is static attribute(a),
we shall understand an attribute whose values

⋄⋄ are constants,
⋄⋄ i.e., cannot change.

• By a dynamic attribute, a:A, is dynamic attribute(a),
we shall understand an attribute whose values

⋄⋄ are variable,
⋄⋄ i.e., can change.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

172 3. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

Dynamic attributes are either inert, reactive or active attributes.

• By an inert attribute, a:A, is inert attribute(a),
we shall understand a dynamic attribute whose values

⋄⋄ only change as the result of external stimuli where
⋄⋄ these stimuli prescribe properties of these new values.

• By a reactive attribute, a:A, is reactive attribute(a),
we shall understand a dynamic attribute whose values,

⋄⋄ if they vary, change value in response to
⋄⋄ the change of other attribute values.

• By an active attribute, a:A, is active attribute(a),
we shall understand a dynamic attribute whose values

⋄⋄ change (also) of its own volition.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1733. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

Active attributes are either autonomous, biddable or programmable
attributes.

• By an autonomous attribute, a:A, is autonomous attribute(a),
we shall understand a dynamic active attribute

⋄⋄ whose values change value only “on their own volition”.15

• By a biddable attribute, a:A, is biddable attribute(a), (of a
part) we shall understand a dynamic active attribute whose values

⋄⋄ are prescribed
⋄⋄ but may fail to be observed as such.

• By a programmable attribute, a:A, is programmable attri-

bute(a), we shall understand a dynamic active attribute whose values

⋄⋄ can be prescribed.

15The values of an autonomous attributes are a “law onto themselves and their surroundings”.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

174 3. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

Example 34 Static and Dynamic Attributes:
• Link lengths can be considered static.

• Buses (i.e., vehicles) have a timetable attribute which is inert,
i.e., can change, only when the bus company decides so.

• The weather can be considered autonomous.

• Pipeline valve units include the two attributes of valve opening (open,
close) and internal flow (measured, say gallons per second).
⋄⋄ The valve opening attribute is of the biddable attribute category.
⋄⋄ The flow attribute is reactive

(flow changes with valve opening/closing).
• Hub states (red, yellow, green) can be considered biddable:

one can “try” set the signals but the electro-mechanics may fail.
• Bus companies program their own timetables, i.e., bus company

timetables are programmable — are computers

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1753. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

• External Attributes: By an external attribute we shall under-
stand

⋄⋄ a dynamic attribute
⋄⋄ which is not a biddable or a programmable attribute

• The idea of external attributes is this:

⋄⋄ They are the attributes whose values are set by factors
“outside” the part of which they are an attribute.

⋄⋄ In contrast, the programmable (and biddable) attributes
have their values determininistically (non-deterministically)
set by the part [behaviour] of which they are an attribute.

•Controllable Attributes: By a controllable attribute we shall
understand

⋄⋄ either a biddable or a programmable attribute

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

176 3. Endurants 3.6. Part Attributes 3.6.4. Attribute Categories

• Figure 5 captures an attribute value ontology.

dynamic

active

endurant

static

biddable programmable
external attributes

reactiveinert

autonomous

controllable attributes

Figure 5: Attribute Value Ontology

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1773. Endurants 3.6. Part Attributes 3.6.5. Access to Attribute Values

3.6.5. Access to Attribute Values

• In an action, event or a behaviour description

⋄⋄ static values of parts, p, (say of type A)
⋄⋄ can be “copied”, attr A(p),
⋄⋄ and still retain their (static) value.

• But, for action, event or behaviour descriptions,

⋄⋄ external dynamic values of parts, p,
⋄⋄ cannot be “copied”, but attr A(p) must be “performed”
⋄⋄ every time they are needed.

• That is:

⋄⋄ static values require at most one domain access,
⋄⋄ whereas external attribute values require repeated domain accesses.

• We shall return to the issue of attribute value access in Sect. 1.3.8.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

178
3. Endurants 3.6. Part Attributes 3.6.6. Event Values

3.6.6. Event Values

• Among the external attribute values we observe a new kind of value:
the event values.

⋄⋄ We may optionally ascribe ordinarily typed, say A, values, a:A,
with event attributes.

⋄⋄ By an event attribute we shall understand
◦◦ an attribute whose values are

∗ either ”nil” ([f]or “absent”),
∗ or are some more definite value (a:A)

⋄⋄ Event values occur instantaneously.
◦◦ They can be thought of as the raising of a signal
◦◦ followed immediately by the lowering of that signal.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1793. Endurants 3.6. Part Attributes 3.6.6. Event Values

Example 35 Event Attributes:

• (i) The passing of a vehicle past a tollgate is an event.

⋄⋄ It occurs at a usually unpredictable time.
⋄⋄ It otherwise “carries” no specific value.

• (ii) The identification of a vehicle by a tollgate sensor is an event.

⋄⋄ It occurs at a usually unpredictable time.
⋄⋄ It specifically “carries” a vehicle identifier value

• Event attributes are not to be confused with event perdurants.

• External attributes are either event attributes or are not.

• More on access to event attribute values in Sect. 4.7.4 [as from Slide 244].

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

180 3. Endurants 3.6. Part Attributes 3.6.7. Shared Attributes

3.6.7. Shared Attributes

• Normally part attributes of different part sorts are distinctly named.

• If, however, observe attributes(pik:Pi) and observe attribu-

tes(p jℓ:P j),

⋄⋄ for any two distinct part sorts, Pi and P j, of a domain,
⋄⋄ “discovers” identically named attributes, say A,
⋄⋄ then we say that parts pi:Pi and p j:P j share attribute A.

⋄⋄ that is, that a:attr A(pi) (and a′:attr A(p j))
is a shared attribute

⋄⋄ (with a=a′ always (�) holding).

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1813. Endurants 3.6. Part Attributes 3.6.7. Shared Attributes

Attribute Naming:

• Thus the domain describer has to exert great care when naming at-
tribute types.

⋄⋄ If Pi and P j are two distinct types of a domain,
⋄⋄ then if and only if an attribute of Pi

is to be shared with an attribute of P j

⋄⋄ that attribute must be identically named
in the description of Pi and P j and

⋄⋄ otherwise the attribute names of Pi and P j

must be distinct.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

182
3. Endurants 3.6. Part Attributes 3.6.7. Shared Attributes

Example 36. Shared Attributes. Examples of shared attributes:

• Bus timetable attributes have the same value
as the fleet timetable attribute.

• A link incident upon or emanating from a hub
shares the connection between that link and the hub as an attribute.

• Two pipeline units16, pi with unique identifier πi,
and p j with unique identifier π j, that are connected,
such that an outlet marked π j of pi

“feeds into” inlet marked πi of p j,
are said to share the connection (modeled by, e.g., {(πi,π j)})

16See Example 29on Slide 148
c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1833. Endurants 3.6. Part Attributes 3.6.7. Shared Attributes

Example 37 Shared Timetables:

• The fleet and vehicles of Example 17 on Slide 111 and Example 18
on Slide 118 is that of a bus company.

34 From the fleet and from the vehicles we observe unique identifiers.

35 Every bus mereology records the same one unique fleet identifier.

36 The fleet mereology records the set of all unique bus identifiers.

37 A bus timetable is a shared fleet and bus attribute.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

184
3. Endurants 3.6. Part Attributes 3.6.7. Shared Attributes

type
34. FI, VI, BT
value
34. uid F: F → FI
34. uid V: V → VI
35. obs mereo F: F → VI-set
36. obs mereo V: V → FI
37. attr BT: (F|V) → BT
axiom

� ∀ f:F ⇒
∀ v:V • v ∈ obs part Vs(obs part VC(f)) • attr BT(f) = attr BT(v)

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1853. Endurants 3.6. Part Attributes 3.6.7. Shared Attributes

• The simple identical attribute name-sharing first outlined above may
be generalised.

⋄⋄ If Pi and P j are two distinct types of a domain,
⋄⋄ then if an attribute, A, of Pi

is to be shared with an attribute, B, of P j,
⋄⋄ attribute B must be expressed in terms of A.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

186 3. Endurants 3.7. Components

3.7. Components

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is an abbreviation for ‘observe’

Analysis Prompts

Description Prompts

obs_

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Figure 6: An Upper Ontology for Domains — Components and Materials

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1873. Endurants 3.7. Components

• Components are

⋄⋄ discrete endurants
⋄⋄ which the domain analyser & describer has chosen to not endow
⋄⋄ with mereology

⋄⋄ but with unique identifiers and attributes.

• We associate components with atomic parts,

⋄⋄ such that an atomic part may or may not have components,
⋄⋄ and if they potentially have components,
⋄⋄ they are all of the same sort
⋄⋄ and there may be a finite set of zero, one or more such components.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

188 3. Endurants 3.7. Components

Example 38 Parts and Components:

• We observe components as associated with atomic parts:

⋄⋄ The contents, that is, the collection of zero, one or more boxes, of
a container are the components of the container part.

⋄⋄ Conveyor belts transport machine assembly units and these are
thus considered the components of the conveyor belt

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1893. Endurants 3.7. Components

• We now complement the observe part sorts (of earlier).

• We assume, without loss of generality, that only atomic parts may
contain components.

• Let p:P be some atomic part.

Analysis Prompt 15 has components:

• The domain analysis prompt:

⋄⋄ has components(p)

• yields true if atomic part p may contain zero, one or more compo-
nents otherwise false

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

190 3. Endurants 3.7. Components

• Let us assume that parts p:P embody components of sort K.

Domain Description Prompt 6 observe component sort :

• The domain description prompt:

⋄⋄ observe component sort P(p)

⋄⋄ yields the component sorts and component sort observer
domain description text
according to the following schema –

⋄⋄ whether or not the actual part p contains any components:

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1913. Endurants 3.7. Components

6. observe component sort P schema

Narration:
[s] ... narrative text on component sort ...
[o] ... narrative text on component observer ...

Formalisation:
type
[s] K
value
[o] obs comp K: P → K-set

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

192 3. Endurants 3.7. Components

Example 39 Container Components:
We continue Example 19 on Slide 123.

38 When we apply obs component sorts C to any container c:C
we obtain

a. a type clause stating the sort of the various components, ck:CK,
of a container, and

b. the component observer function signature.

type
38a. CK

value
38b. obs comp CKs: C → CK-set

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1933. Endurants 3.7. Components

• We have presented one way of tackling the issue of describing com-
ponents.

⋄⋄ There are other ways.
⋄⋄ We leave those ‘other ways’ to the reader.

• We are not going to suggest techniques and tools for analysing,
let alone ascribing qualities to components.

⋄⋄ We suggest that conventional
abstract modeling techniques
and tools be applied.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

194 3. Endurants 3.8. Materials

3.8. Materials

• Continuous endurants (i.e., materials) are entities, m, which satisfy:

⋄⋄ is material(m) ≡ is endurant(m)∧is continuous(m)

Example 40 Parts and Materials:

• We observe materials as associated with atomic parts:

⋄⋄ Thus liquid or gaseous materials are observed in pipeline units

• We shall in this seminar not cover
the case of parts being immersed in materials.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1953. Endurants 3.8. Materials

• We assume, without loss of generality,
that only atomic parts may contain materials.

• Let p:P be some atomic part.

Analysis Prompt 16 has materials:

• The domain analysis prompt:

⋄⋄ has materials(p)

• yields true if the atomic part p:P
potentially may contain materials
otherwise false

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

196 3. Endurants 3.8. Materials

• Let us assume that parts p:P embody materials of sorts
{M1,M2,. . . ,Mn}.

• Since we cannot automatically guarantee that
our domain descriptions secure that

⋄⋄ each Mi ([1≤i≤n])
⋄⋄ denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 7 observe material sorts P :

• The domain description prompt:

⋄⋄ observe material sorts P(e)

yields the material sort and material sort observer
domain description text
according to the following schema
whether or not part p actually contains materials:

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1973. Endurants 3.8. Materials

7. observe material sorts P schema

Narration:
[s] ... narrative text on material sort ...
[o] ... narrative text on material sort observer ...

Formalisation:
type
[s] M
value
[o] obs mat M: P → M

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

198 3. Endurants 3.8. Materials

Example 41 Pipeline Material: We continue Example 24 on Slide 128
and Example 29 on Slide 148.

39 When we apply obs material sorts U to any unit u:U we obtain

a. a type clause stating the material sort LoG
for some further undefined liquid or gaseous material, and

b. a material observer function signature.

type
39a. LoG

value
39b. obs mat LoG: U → LoG

has materials(u) is a prerequisite for obs mat LoG(u)

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

1993. Endurants 3.8. Materials 3.8.1. Materials-related Part Attributes

3.8.1. Materials-related Part Attributes

• It seems that the “interplay” between parts and materials

⋄⋄ is an area where domain analysis
⋄⋄ in the sense of this paper
⋄⋄ is relevant.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

200
3. Endurants 3.8. Materials 3.8.1. Materials-related Part Attributes

Example 42 Pipeline Material Flow:
We continue Examples 24, 29 and 41.

• Let us postulate a[n attribute] sort Flow.

• We now wish to examine the flow of liquid (or gaseous) material in
pipeline units.

• We use two types

40 type F, L.

• Productive flow, F, and wasteful leak, L,
is measured, for example, in terms of volume of material per second.

• We then postulate the following unit attributes

⋄⋄ “measured” at the point of in- or out-flow
⋄⋄ or in the interior of a unit.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

201
3. Endurants 3.8. Materials 3.8.1. Materials-related Part Attributes

41 current flow of material into a unit input connector,

42 maximum flow of material into a unit input connector
while maintaining laminar flow,

43 current flow of material out of a unit output connector,

44 maximum flow of material out of a unit output connector
while maintaining laminar flow,

45 current leak of material at a unit input connector,

46 maximum guaranteed leak of material at a unit input connector,

47 current leak of material at a unit input connector,

48 maximum guaranteed leak of material at a unit input connector,

49 current leak of material from “within” a unit, and

50 maximum guaranteed leak of material from “within” a unit.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

202 3. Endurants 3.8. Materials 3.8.1. Materials-related Part Attributes

type
40. F, L
value
41. attr cur iF: U → UI → F
42. attr max iF: U → UI → F
43. attr cur oF: U → UI → F
44. attr max oF: U → UI → F

45. attr cur iL: U → UI → L
46. attr max iL: U → UI → L
47. attr cur oL: U → UI → L
48. attr max oL: U → UI → L
49. attr cur L: U → L
50. attr max L: U → L

• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes may be considered either reactive or bid-
dable attributes

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

203
3. Endurants 3.8. Materials 3.8.2. Laws of Material Flows and Leaks

3.8.2. Laws of Material Flows and Leaks

• It may be difficult or costly, or both,

⋄⋄ to ascertain flows and leaks in materials-based domains.
⋄⋄ But one can certainly speak of these concepts.
⋄⋄ This casts new light on domain modeling.
⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks
◦◦ in requirements modeling

⋄⋄ where one has to show implement-ability.

• Modeling flows and leaks is important to the modeling of materials-
based domains.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

204
3. Endurants 3.8. Materials 3.8.2. Laws of Material Flows and Leaks

Example 43 Pipelines: Intra Unit Flow and Leak Law:

51 For every unit of a pipeline system, except the well and the sink units,
the following law apply.

52 The flows into a unit equal

a. the leak at the inputs
b. plus the leak within the unit
c. plus the flows out of the unit
d. plus the leaks at the outputs.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2053. Endurants 3.8. Materials 3.8.2. Laws of Material Flows and Leaks

axiom [Well−formedness of Pipeline Systems, PLS (1)]
51. ∀ pls:PLS,b:B\We\Si,u:U •

51. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
51. let (iuis,ouis) = obs mereo U(u) in
52. sum cur iF(u)(iuis) =
52a.. sum cur iL(u)(iuis)
52b.. ⊕ attr cur L(u)
52c.. ⊕ sum cur oF(u)(ouis)
52d.. ⊕ sum cur oL(u)(ouis)
51. end

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

206 3. Endurants 3.8. Materials 3.8.2. Laws of Material Flows and Leaks

53 The sum cur iF (cf. Item 52) sums current input flows over all input connectors.

54 The sum cur iL (cf. Item 52a.) sums current input leaks over all input connectors.

55 The sum cur oF (cf. Item 52c.) sums current output flows over all output connectors.

56 The sum cur oL (cf. Item 52d.) sums current output leaks over all output connectors.

53. sum cur iF: U → UI-set →F
53. sum cur iF(u)(iuis) ≡ ⊕ {attr cur iF(u)(ui)|ui:UI•ui ∈ iuis}
54. sum cur iL: U → UI-set → L
54. sum cur iL(u)(iuis) ≡ ⊕ {attr cur iL(u)(ui)|ui:UI•ui ∈ iuis}
55. sum cur oF: U → UI-set → F
55. sum cur oF(u)(ouis) ≡ ⊕ {attr cur iF(u)(ui)|ui:UI•ui ∈ ouis}
56. sum cur oL: U → UI-set → L
56. sum cur oL(u)(ouis) ≡ ⊕ {attr cur iL(u)(ui)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2073. Endurants 3.8. Materials 3.8.2. Laws of Material Flows and Leaks

Example 44 Pipelines: Inter Unit Flow and Leak Law:

57 For every pair of connected units of a pipeline system the following law apply:

a. the flow out of a unit directed at another unit minus the leak at that output connector
b. equals the flow into that other unit at the connector from the given unit plus the leak at that

connector.

axiom [Well−formedness of Pipeline Systems, PLS (2)]

57. ∀ pls:PLS,b,b′:B,u,u′:U•

57. {b,b′}⊆obs part Bs(pls)∧b6=b′∧u′=obs part U(b′)
57. ∧ let (iuis,ouis)=obs mereo U(u),(iuis′,ouis′)=obs mereo U(u′),
57. ui=uid U(u),ui′=uid U(u′) in
57. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
57a.. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
57b.. = attr cur iF(u)(ui) + attr leak iF(u)(ui)

57. end
57. comment: b′ precedes b

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

208
3. Endurants 3.8. Materials 3.8.2. Laws of Material Flows and Leaks

• From the above two laws one can prove the theorem:
⋄⋄ what is pumped from the wells equals
⋄⋄ what is leaked from the systems plus what is output to the sinks.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2093. Endurants 3.9. “No Junk, No Confusion”

3.9. “No Junk, No Confusion”

• Domain descriptions are, as we have already shown, formulated,

⋄⋄ both informally ⋄⋄ and formally,

by means of abstract types,

⋄⋄ that is, by sorts
⋄⋄ for which no concrete models are usually given.

• Sorts are made to denote

⋄⋄ possibly empty, ⋄⋄ possibly infinite, ⋄⋄ rarely singleton,

⋄⋄ sets of entities on the basis of the qualities defined for these sorts,
whether external or internal.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

210
3. Endurants 3.9. “No Junk, No Confusion”

• By junk we shall understand

⋄⋄ that the domain description
⋄⋄ unintentionally denotes undesired entities.

• By confusion we shall understand

⋄⋄ that the domain description
⋄⋄ unintentionally have two or more identifications
⋄⋄ of the same entity or type.

• The question is

⋄⋄ can we formulate a [formal] domain description
⋄⋄ such that it does not denote junk or confusion ?

• The short answer to this is no !

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

211
3. Endurants 3.9. “No Junk, No Confusion”

• So, since one naturally wishes “no junk, no confusion”
what does one do ?

• The answer to that is

⋄⋄ one proceeds with great care !
• To avoid junk we have stated a number of sort well-formedness axioms, for example:17

⋄⋄ Slide 137 for wf links and hubs,
⋄⋄ Slide 144 for wf road net mereologies,
⋄⋄ Slide 147 for wf pipeline mereologies,
⋄⋄ Slide 167 for wf hub states,
⋄⋄ Slide 205 for wf pipeline systems,
⋄⋄ Slide 207 for wf pipeline systems,

• To avoid confusion we have stated a number of proof obligations:

⋄⋄ Slide 110 for Disjointness of Part Sorts and
⋄⋄ Slide 163 for Disjointness of Attribute Types.

17Let wf abbreviate well-formed.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

212 3. Endurants 3.10. Discussion of Endurants

3.10. Discussion of Endurants

• In Sect. 4.2.2 a “depth-first” search for part sorts was hinted at, but
only in the sequence of examples, as given.

• That sequence of examples essentially expressed

⋄⋄ that we discover domains epistemologically18

⋄⋄ but understand them ontologically.19

• The Danish philosopher Søren Kirkegaard (1813–1855) expressed it
this way:

⋄⋄ Life is lived forwards,
⋄⋄ but is understood backwards.

18Epistemology: the theory of knowledge, especially with regard to its
methods, validity, and scope. Epistemology is the investigation of what
distinguishes justified belief from opinion.

19Ontology: the branch of metaphysics dealing with the nature of be-
ing.
c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

213
3. Endurants 3.10. Discussion of Endurants

• The presentation of the of the domain analysis prompts and the
domain description prompts results in domain descriptions which
are ontological.

• The “depth-first” search recognizes the epistemological nature of
bringing about understanding.

• This “depth-first” search

⋄⋄ that ends with the analysis of atomic part sorts
⋄⋄ can be guided, i.e., hastened (shortened),
⋄⋄ by postulating composite sorts
⋄⋄ that “correspond” to vernacular nouns:
⋄⋄ everyday nouns that stand for classes of endurants.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

214
4. Perdurants

4. Perdurants
A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Signature Definition

is an abbreviation for ‘observe’obs_
Description Prompts

Analysis Prompts

Channels

Figure 7: An Upper Ontology for Domains — Perdurants

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

215
4. Perdurants

• As regards perdurants, we shall not present

⋄⋄ a set of domain analysis prompts and
⋄⋄ a set of domain description prompts
⋄⋄ leading to description language, i.e., RSL texts
⋄⋄ describing perdurant entities.

• The reason for giving this albeit cursory overview of perdurants

⋄⋄ is that we can justify our detailed study of endurants,
◦◦ their part and sub parts,
◦◦ their unique identifiers, mereology and attributes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

216 4. Perdurants

• This justification is manifested

⋄⋄ (i) in expressing the types of signatures,
⋄⋄ (ii) in basing behaviours on parts,
⋄⋄ (iii) in basing the for need for
CSP-oriented inter-behaviour communications
on shared part attributes,

⋄⋄ (iv) in indexing behaviours as are parts, i.e., on unique identifiers,

and

⋄⋄ (v) in directing inter-behaviour communications across channel ar-
rays indexed as per the mereology of the part behaviours.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2174. Perdurants

• These are all notions related to endurants
and are now justified by their use in describing perdurants.

• Perdurants can perhaps best be explained in terms of

⋄⋄ a notion of state and
⋄⋄ a notion of time.

• We shall, in this seminar, not detail notions of time.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

218 4. Perdurants 4.1. States

4.1. States

Definition 11 State: By a state we shall understand

• any collection of parts

• each of which has

• at least one dynamic attribute

• or has components or has materials

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2194. Perdurants 4.1. States

Example 45 States:

• A road hub can be a state,
cf. Hub State, HΣ, Example 33 on Slide 166.

• A road net can be a state – since its hubs can be.

• Container stowage areas, CSA, Example 19 on Slide 123,
of container vessels and container terminal ports
can be states as containers can be removed from
and put on top of container stacks.

• Pipeline pipes can be states as they potentially carry material.

• Conveyor belts can be states as they may carry components

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

220 4. Perdurants 4.2. Actions, Events and Behaviours

4.2. Actions, Events and Behaviours

• To us perdurants are further, pragmatically, analysed into

⋄⋄ actions,
⋄⋄ events, and
⋄⋄ behaviours.

• We shall define these terms below.

• Common to all of them is that they potentially change a state.

• Actions and events are here considered atomic perdurants.

• For behaviours we distinguish between

⋄⋄ discrete and
⋄⋄ continuous

behaviours.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

221
4. Perdurants 4.2. Actions, Events and Behaviours 4.2.1. Time Considerations

4.2.1. Time Considerations

• We shall, without loss of generality, assume

⋄⋄ that actions and events are atomic
⋄⋄ and that behaviours are composite.

• Atomic perdurants may “occur” during some time interval,

⋄⋄ but we omit consideration of and concern
for what actually goes on during such an interval.

• Composite perdurants can be analysed into “constituent”

⋄⋄ actions,
⋄⋄ events and
⋄⋄ “sub-behaviours”.

• We shall also omit consideration of temporal properties of behaviours.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

222 4. Perdurants 4.2. Actions, Events and Behaviours 4.2.1. Time Considerations

⋄⋄ Instead we shall refer to two seminal monographs:
◦◦ Specifying Systems [Leslie Lamport, 2002] and
◦◦Duration Calculus: A Formal Approach to Real-Time Systems

[Zhou ChaoChen and Michael Reichhardt Hansen, 2004]
(and [Bjø06, Chapter 15]).

• For a seminal book on “time in computing” we refer to the eclectic
[FMMR12, Mandrioli et al., 2012].

• And for seminal book on time at the epistemology level we refer to
[van91, J. van Benthem, 1991].

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2234. Perdurants 4.2. Actions, Events and Behaviours 4.2.2. Actors

4.2.2. Actors
Definition 12 Actor: By an actor we shall understand
• something that is capable of initiating and/or carrying out

⋄⋄ actions,
⋄⋄ events or
⋄⋄ behaviours

• We shall, in principle, associate an actor with each part.
⋄⋄ These actors will be described as behaviours.
⋄⋄ These behaviours evolve around a state.
⋄⋄ The state is

◦◦ the set of qualities,
in particular the dynamic attributes,
of the associated parts

◦◦ and/or any possible components or materials of the parts.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

224 4. Perdurants 4.2. Actions, Events and Behaviours 4.2.2. Actors

Example 46 Actors: We refer to the road transport and the pipeline
systems examples of earlier.

• The fleet, each vehicle and the road management of the Transporta-
tion System of Example 17 on Slide 111 can be considered an actor;

• so can the net and its links and hubs.

• The pipeline monitor and each pipeline unit of the Pipeline System,
Example 24 on Slide 128 and Examples 24 on Slide 128 and 29 on
Slide 148 will be considered actors

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

225
4. Perdurants 4.2. Actions, Events and Behaviours 4.2.3. Parts, Attributes and Behaviours

4.2.3. Parts, Attributes and Behaviours

• Example 46 on the facing slide focused on what shall soon become
a major relation within domains:

⋄⋄ that of parts being also considered actors,
⋄⋄ or more specifically, being also considered to be behaviours.

Example 47 Parts, Attributes and Behaviours:

• Consider the term ‘train’.

• It has several possible “meanings”.

⋄⋄ the train as a part, viz., as standing on a platform;
⋄⋄ the train as listed in a timetable (an attribute of a transport system

part),
⋄⋄ the train as a behaviour: speeding down the rail track

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

226 4. Perdurants 4.3. Discrete Actions

4.3. Discrete Actions

Definition 13 Discrete Action:
By a discrete action [WS12, Wilson and Shpall] we shall understand

• a foreseeable thing

• which deliberately

• potentially changes a well-formed state, in one step,

• usually into another, still well-formed state,

• and for which an actor can be made responsible

• An action is what happens when a function invocation changes, or
potentially changes a state.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2274. Perdurants 4.3. Discrete Actions

Example 48 Road Net Actions:

• Examples of Road Net actions initiated by the net actor are:

⋄⋄ insertion of hubs,
⋄⋄ insertion of links,
⋄⋄ removal of hubs,

⋄⋄ removal of links,
⋄⋄ setting of hub states.

• Examples of Traffic System actions initiated by vehicle actors are:

⋄⋄moving a vehicle along a link,
⋄⋄ stopping a vehicle,
⋄⋄ starting a vehicle,

⋄⋄ entering a hub and
⋄⋄ leaving a hub

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

228
4. Perdurants 4.4. Discrete Events

4.4. Discrete Events

• In the Bergen lectures I shall skip treatment of events.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2294. Perdurants 4.5. Discrete Behaviours

4.5. Discrete Behaviours

Definition 14 Discrete Behaviour:
By a discrete behaviour we shall understand

• a set of sequences of potentially interacting sets of discrete

⋄⋄ actions,
⋄⋄ events and
⋄⋄ behaviours

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

230
4. Perdurants 4.5. Discrete Behaviours

Example 49 Behaviours:

• (i) Road Nets: A sequence of hub and link insertions and removals,
link disappearances, etc.

• (ii) Road Traffic: A sequence of movements of vehicles along links,
entering, circling and leaving hubs, crashing of vehicles, etc.

• (iii) Pipelines: A sequence of pipeline pump and valve openings and
closings, and failures to do so (events), etc.

• (iv) Container Vessels and Ports: Concurrent sequences of move-
ments (by cranes) of containers from vessel to port (unloading), with
sequences of movements (by cranes) from port to vessel (loading),
with dropping of containers by cranes, etcetera

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2314. Perdurants 4.5. Discrete Behaviours 4.5.1. Channels and Communication

4.5.1. Channels and Communication

• Behaviours

⋄⋄ sometimes synchronise
⋄⋄ and usually communicate.

• We use the CSP [Hoa85] notation (adopted by RSL) to introduce and
model behaviour communication.

⋄⋄ Communication is abstracted as
◦◦ the sending (ch !m) and
◦◦ receipt (ch ?)
◦◦ of messages, m:M,
◦◦ over channels, ch.

type M
channel ch:M

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

232 4. Perdurants 4.5. Discrete Behaviours 4.5.1. Channels and Communication

⋄⋄ Communication
◦◦ between (unique identifier) indexed behaviours
◦◦ have their channels modeled as similarly indexed channels:

out: ch[idx]!m
in: ch[idx]?
channel {ch[ide]:M|ide:IDE}

where IDE typically is some type expression
over unique identitifer types.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2334. Perdurants 4.5. Discrete Behaviours 4.5.2. Relations Between Attribute Sharing and Channels

4.5.2. Relations Between Attribute Sharing and Channels

• We shall now interpret

⋄⋄ the syntactic notion of attribute sharing with
⋄⋄ the semantic notion of channels.

• This is in line with the above-hinted interpretation of

⋄⋄ parts with behaviours, and, as we shall soon see,
⋄⋄ part attributes with behaviour states.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

234 4. Perdurants 4.5. Discrete Behaviours 4.5.2. Relations Between Attribute Sharing and Channels

• Thus, for every pair of parts, pik:Pi and p jℓ:P j, of distinct sorts, Pi and
P j which share attribute values in A

⋄⋄ we are going to associate a channel.
◦◦ If there is only one pair of parts, pik:Pi and p jℓ:P j, of these sorts,

then we associate just a simple channel, say attr A chPi,Pj, with
the shared attribute.

channel attr A chPi,Pj:A.

◦◦ If there is only one part, pi:Pi, but a definite set of parts p jk:P j,
with shared attributes, then we associate a vector of channels
with the shared attribute.
∗ Let {p j1, p j2, ..., p jn} be all the parts of the domain sort Pj.
∗ Then uids : {πp j1,πp j2, ...,πp jn} is the set of their unique iden-

tifiers.
∗ Now a schematic channel array declaration can be suggested:

channel {attr A ch[{π i,π j}]:A|π i=uid Pi(pi)∧π j ∈ uids}.
c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2354. Perdurants 4.5. Discrete Behaviours 4.5.2. Relations Between Attribute Sharing and Channels

Example 50 Bus System Channels:

• We extend Examples 17 on Slide 111.

• We consider the fleet and the vehicles to be behaviours.

58 We assume some transportation system, δ . From that system we
observe

59 the fleet and

60 the vehicles.

61 The fleet to vehicle channel array is indexed by the 2-element sets of
the unique fleet identifier and the unique vehicle identifiers. We con-
sider bus timetables to be the only message communicated between
the fleet and the vehicle behaviours.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

236
4. Perdurants 4.5. Discrete Behaviours 4.5.2. Relations Between Attribute Sharing and Channels

value
58. δ :∆,
59. f:F = obs part F(δ),
60. vs:V-set = obs part Vs(obs part VC((obs part F(δ))))

channel
61. {attr BT ch[{uid F(f),uid V(v)}]|v:V•v ∈ vs}:BT

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2374. Perdurants 4.6. Continuous Behaviours

4.6. Continuous Behaviours

• By a continuous behaviour we shall understand

⋄⋄ a continuous time

⋄⋄ sequence of state changes.

• We shall not go into what may cause these state changes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

238 4. Perdurants 4.6. Continuous Behaviours

Example 51 Flow in Pipelines:

• We refer to Examples 29, 41, 42, 43 and 44.

• Let us assume that oil is the (only) material of the pipeline units.

• Let us assume that there is a sufficient volume of oil in the pipeline
units leading up to a pump.

• Let us assume that the pipeline units leading from the pump (espe-
cially valves and pumps) are all open for oil flow.

• Whether or not that oil is flowing, if the pump is pumping (with a
sufficient head) then there will be oil flowing from the pump outlet
into adjacent pipeline units

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2394. Perdurants 4.6. Continuous Behaviours

• To describe the flow of material (say in pipelines) requires knowl-
edge about a number of material attributes — not all of which have
been covered in the above-mentioned examples.

• To express flows one resorts to the mathematics of fluid-dynamics
using such second order differential equations as first derived by
Bernoulli (1700–1782) and Navier–Stokes (1785–1836 and 1819–
1903).

• There is, as yet, no notation that can serve to integrate formal de-
scriptions (like those of Alloy, B, The B Method,RSL,VDM or Z)
with first, let alone second order differential equations. But some
progress has been made [LWZ13, ZWZ13] since [WYZ94].

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

240 4. Perdurants 4.7. Attribute Value Access

4.7. Attribute Value Access

• We distinguish between four kinds of attributes:

⋄⋄ the static attributes which are those whose values are fixed,
i.e., does not change,

⋄⋄ the programmable attributes or biddable attributes,
i.e., the controllable attributes,
which are those dynamic values are exclusively set by part pro-
cesses, and

⋄⋄ the remaining dynamic attributes
which here, technically speaking,
are seen as separate external processess.

⋄⋄ The event attributes are those external attributes
whose value occur for an instant of time.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

241
4. Perdurants 4.7. Attribute Value Access 4.7.1. Access to Static Attribute Values

4.7.1. Access to Static Attribute Values

• The static attributes can be “copied”, attr A(p),
and retain their values.

4.7.2. Access to External Attribute Values

• By the external attributes, to repeat,

⋄⋄ we shall understand the
◦◦ inert, the
◦◦ autonomous and the
◦◦ reactive

attributes

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

242
4. Perdurants 4.7. Attribute Value Access 4.7.2. Access to External Attribute Values

62 Let ξA be the set of names, ηA, of all external attributes.

63 Each external attribute, A, is seen as an individual behaviour,
each “accessible” by means of unique channel, attr A ch.

64 External attribute values are then the value, a, of,
i.e., accessed by, the input, attr A ch ?.

62. value ξA = {ηA|A is any external attribute name}
63. channel {attr A ch:A | ηA ∈ ξA}
64. value a = attr A ch ?

• We shall omit the η prefix in actual descriptions.

• The choice of representing external attribute values as CSP processes20

is a technical one.

20— not to be confused with domain behaviours

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

243
4. Perdurants 4.7. Attribute Value Access 4.7.3. Access to Controllable Attribute Values

4.7.3. Access to Controllable Attribute Values

• The controllable attributes are treated as function arguments.

• This is a technical choice. It is motivated as follows.

⋄⋄ We find that
◦◦ these values are a function of other part attribute values,

including at least one controllable attribute value, and
◦◦ that the values

are set (i.e., updated) by part behaviours.
⋄⋄ That is, to each part, whether atomic or composite,

we associate a behaviour.
⋄⋄ That behaviour is (to be) described as we describe functions.
⋄⋄ These functions (normally) “go on forever”.
⋄⋄ Therefore these functions are described basically by a “tail” recursive definition:

value f: Arg → Arg; f(a) ≡ (... let a′ = F (...)(a) in f(a′) end)

⋄⋄ where F is some expression based on values defined within
the function definition body of f and on f’s “input” argument a, and

⋄⋄ where a can be seen as a controllable attribute.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

244 4. Perdurants 4.7. Attribute Value Access 4.7.4. Access to Event Values

4.7.4. Access to Event Values

• Event values reflect a stage change in a part behaviour.

⋄⋄ We therefore model events as messages
⋄⋄ communicated over a channel, attr A ch,
⋄⋄ that is, attr A ch ! a,
⋄⋄ where A is the event attribute, i.e., message type.
⋄⋄ Thus fulfillment of attr A ch ? expresses

◦◦ both that the event has taken place
◦◦ and its value, if relevant.

⋄⋄ Example 55 on Slide 278 illustrates the concept of event attributes
and event values.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

245
4. Perdurants 4.8. Perdurant Signatures and Definitions

4.8. Perdurant Signatures and Definitions

• We shall treat perdurants as function invocations.

• In our cursory overview of perdurants

⋄⋄ we shall focus on one perdurant quality:
⋄⋄ function signatures.

Definition 15 Function Signature:
By a function signature we shall understand

• a function name and

• a function type expression

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

246 4. Perdurants 4.8. Perdurant Signatures and Definitions

Definition 16 Function Type Expression:
By a function type expression we shall understand

• a pair of type expressions.

• separated by a function type constructor

⋄⋄ either → (total function)
⋄⋄ or ∼→ (partial function)

• The type expressions are

⋄⋄ part or

⋄⋄ material or

⋄⋄ component

⋄⋄ sort or type, or

⋄⋄ attribute type

names,

• but may, occasionally be expressions
over respective type names involving

-set,

×,

∗,

→
m and

|
type constructors.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

247

Lecture 4 248–300

⋄⋄ Lecture 1: Summary. Introduction. Upper Ontology 2–78
⋄⋄ Lecture 2: Parts: Structures 80–167

Unique Identifiers, Mereologies and Attributes (i)

⋄⋄ Lecture 3: Attributes (ii), Components and Materials 169–247
Perdurants (I): States, Actions, Behaviours (I)

⋄⋄ Lecture 4: Perdurants (II): Behaviours (II) 248–300
Closing

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

248 4. Perdurants 4.9. Action Signatures and Definitions

4.9. Action Signatures and Definitions

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content
en

du
ra

nt
 s

tr
uc

tu
re

: f
or

m

Signature Definition

is an abbreviation for ‘observe’obs_
Description Prompts

Analysis Prompts

Channels

Figure 8: An Upper Ontology for Domains — Perdurants: Signatures, Definitions,

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2494. Perdurants 4.9. Action Signatures and Definitions

• Actors usually provide their initiated actions with arguments, say of
type VAL.

⋄⋄ Hence the schematic function (action) signature and schematic
definition:
action: VAL → Σ ∼→ Σ
action(v)(σ) as σ ′

pre: P(v,σ)
post: Q(v,σ ,σ ′)

⋄⋄ expresses that a selection of the domain,
⋄⋄ as provided by the Σ type expression,
⋄⋄ is acted upon and possibly changed.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

250 4. Perdurants 4.9. Action Signatures and Definitions

• The partial function type operator ∼→
⋄⋄ shall indicate that action(v)(σ)

⋄⋄ may not be defined for the argument, i.e., initial state σ
⋄⋄ and/or the argument v:VAL,
⋄⋄ hence the precondition P(v,σ).

• The post condition Q(v,σ ,σ ′) characterises the “after” state, σ ′:Σ,
with respect to the “before” state, σ :Σ, and possible arguments (v:VAL).

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2514. Perdurants 4.9. Action Signatures and Definitions

Example 52 Insert Hub Action Formalisation: We formalise as-
pects of the above-mentioned hub action:

65 Insertion of a hub requires

66 that no hub exists in the net with the unique identifier of the inserted
hub,

67 and then results in an updated net with that hub.

value
65. insert H: H → N

∼→ N
65. insert H(h)(n) as n′

66. pre: ∼∃ h′:H•h′ ∈ obs part Hs(obs part HS(n))•uid H(h)=uid H(h′)
67. post: obs part Hs(obs part HS(n′))=obs part Hs(obs part HS(n))

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

252 4. Perdurants 4.9. Action Signatures and Definitions

• Which could be the argument values, v:VAL, of actions ?

⋄⋄ Well, there can basically be only the following kinds of argument
values:
◦◦ parts, components and materials, respectively
◦◦ unique part identifiers, mereologies and attribute values.

⋄⋄ It basically has to be so
◦◦ since there are no other kinds of values in domains.

⋄⋄ There can be exceptions to the above
◦◦ (Booleans,
◦◦ natural numbers),
but they are rare !

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2534. Perdurants 4.9. Action Signatures and Definitions

•Perdurant (action) analysis thus proceeds as follows:

⋄⋄ identifying relevant actions,
⋄⋄ assigning names to these,
⋄⋄ delineating the “smallest” relevant state21,
⋄⋄ ascribing signatures to action functions, and
⋄⋄ determining

◦◦ action pre-conditions and
◦◦ action post-conditions.

⋄⋄ Of these, ascribing signatures is the most crucial:
◦◦ In the process of determining the action signature
◦◦ one oftentimes discovers
◦◦ that part or component or material attributes have been left (“so

far”) “undiscovered”.
21By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain

analyser cum describer should strive for identifying the smallest state.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

254 4. Perdurants 4.9. Action Signatures and Definitions

• Example 52 showed example of a signature with only a part argu-
ment.

• Example 53 shows examples of signatures
whose arguments are

⋄⋄ parts and unique identifiers, or
⋄⋄ parts, unique identifiers and attribute values.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2554. Perdurants 4.9. Action Signatures and Definitions

Example 53 Some Function Signatures:

• Inserting a link between two identified hubs in a net:

value insert L: L × (HI × HI) → N
∼→ N

• Removing a hub and removing a link:

value remove H: HI → N
∼→ N

remove L: LI → N
∼→ N

• Changing a hub state.

value change HΣ: HI × HΣ → N
∼→ N

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

256 4. Perdurants 4.10. Event Signatures and Definitions

4.10. Event Signatures and Definitions

• In the Bergen lectures we drop treatment of Events.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2574. Perdurants 4.11. Discrete Behaviour Signatures and Definitions

4.11. Discrete Behaviour Signatures and Definitions

4.11.1. Behaviour Signatures

• The behaviour functions are now called processes.

• That a behaviour function is a never-ending function, i.e., a process,
is “revealed” in the function signature by the “trailing” Unit:

behaviour: ... → ... Unit

• That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

• That a process accepts channel, viz.: ch, inputs, including accesses
an external attribute A, is “revealed” in the function signature as fol-
lows:

behaviour: ... → in ch ... , resp. in attr A ch

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

258 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.1. Behaviour Signatures

• That a process offers channel, viz.: ch, outputs is “revealed” in the
function signature as follows:

behaviour: ... → out ch ...

• That a process accepts other arguments is “revealed” in the function
signature as follows:

behaviour: ARG → ...

• where ARG can be any type expression:

T, T→T, T→T→T, etcetera

where T is any type expression.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2594. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.1. Behaviour Signatures 4.11.1.1. Part Behaviours:

4.11.1.1 Part Behaviours:

• We can, without loss of generality, associate with each part a be-
haviour;

⋄⋄ parts which share attributes
⋄⋄ (and are therefore referred to in some parts’ mereology),
⋄⋄ can communicate (their “sharing”) via channels.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

260 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.1. Behaviour Signatures 4.11.1.1. Part Behaviours:

• Processes are named, and part process names have indexes, namely
the unique part identifier: π:Π.

⋄⋄ The p be the part and let partπ be the name of the process associ-
ated with part p.

⋄⋄ The process named partπ shall have the process name partπ mean
the following.
◦◦ Let partπ(args)≡B be the definition of process partπ .
◦◦ Occurrences of π in the definition body B shall be considered

bound to the π of the process name partπ .
◦◦ Thus, if the process named parti has π bound to i both in the

process name partπ and in the body B.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2614. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.1. Behaviour Signatures 4.11.1.1. Part Behaviours:

• The process evolves around a state, or, rather, a set of values:

⋄⋄ its possibly changing mereology, mt:MT22,
⋄⋄ the possible components and materials of the part, and
⋄⋄ the attributes of the part.

22For MT see footnote 13 on Slide 144.
Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

262 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.1. Behaviour Signatures 4.11.1.1. Part Behaviours:

• A behaviour signature is therefore:

behπ :Π: me:MT × sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me)

where

⋄⋄ (i) π:Π is the unique identifier of part p, i.e., π=uid P(p),
⋄⋄ (ii) me:ME is the mereology of part p, me = obs mereo P(p),
⋄⋄ (iii) sa:SA lists the static attribute values of the part,
⋄⋄ (iv) ca:CA lists the controllable and attribute values of the part,
⋄⋄ (v) ichns(ea:EA) refer to the external attribute input channels, and

where
⋄⋄ (vi) iochs(me) are the input/output channels serving the attributes

shared between the part p and the parts designated in its mereology
me, cf. Sect. .

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2634. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.1. Behaviour Signatures 4.11.1.1. Part Behaviours:

• We focus, for a little while, on the expression of

⋄⋄ sa:SA, ⋄⋄ ea:EA and ⋄⋄ ca:CA,

• that is, on the concrete types of SA, EA and CA.

⋄⋄ SA (p): sa:SA lists the static value types, (svT1, ...,svTs),
where s is the number of static attributes of parts p:P.

⋄⋄ EA (p): ea:EA lists the external attribute value channels of parts
p:P in the behaviour signature and as input channels, ichns, see 9
lines above.

⋄⋄ CA (p): ca:CA lists the controllable value expression types of parts
p:P.
◦◦ A controllable attribute value expression is an expression

involving one or more attribute value expressions of the type of
the biddable or programmable attribute

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

264 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

4.11.2. Behaviour Definitions

• Let P be a composite sort defined in terms of sub-sorts P1, P2, . . . ,
Pn.

⋄⋄ The process definition compiled from p:P, is composed from
◦◦ a process description, M cPuid P(p), relying on and handling the

unique identifier, mereology and attributes of part p
◦◦ operating in parallel with processes p1, p2, . . . , pn where

∗ p1 is compiled from p1:P1,
∗ p2 is compiled from p2:P2,
∗ ..., and
∗ pn is compiled from pn:Pn.

• The domain description “compilation” schematic below “formalises”
the above.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

265
4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Process Schema I: Abstract is composite(p)

value
compile process: P → RSL-Text
compile process(p) ≡

M Puid P(p)(obs mereo P(p),SA (p))(CA (p))
‖ compile process(obs part P1(p))
‖ compile process(obs part P2(p))
‖ ...
‖ compile process(obs part Pn(p))

• The text macros: SA and CA were informally explained above.

• Part sorts P1, P2, ..., Pn are obtained from the observe part sorts

prompt, Slide 110.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

266 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• Let P be a composite sort defined in terms of the concrete type Q-set.
⋄⋄ The process definition compiled from p:P, is composed from

◦◦ a process, M P, relying on and handling the unique identifier,
mereology and attributes of process p as defined by P

◦◦ operating in parallel with processes q:obs part Qs(p).

• The domain description “compilation” schematic below “formalises”
the above.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

267
4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Process Schema II: Concrete is composite(p)

type
Qs = Q-set

value
qs:Q-set = obs part Qs(p)
compile process: P → RSL-Text
compile process(p) ≡

M Puid P(p)(obs mereo P(p),SA (p))(CA (p))
‖ ‖{compile process(q)|q:Q•q ∈ qs}

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

268 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Process Schema III: is atomic(p)

value
compile process: P → RSL-Text
compile process(p) ≡

M Puid P(p)(obs mereo P(p),SA (p))(CA (p))

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2694. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Example 54 Bus Timetable Coordination:

• We refer to Examples 17 on Slide 111, 18 on Slide 118 and 50 on
Slide 235.

68 δ is the transportation system; f is the fleet part of that system; vs is
the set of vehicles of the fleet; bt is the shared bus timetable of the
fleet and the vehicles.

69 The fleet process is compiled as per Process Schema II (Slide 267).

• The definitions of the fleet and vehicle processes

⋄⋄ are simplified
⋄⋄ so as to emphasize the master/slave, programmable/inert
⋄⋄ relations between these processes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

270 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

type
∆, F, VS [Example 17 on Slide 111]
V, Vs=V-set [Example 18 on Slide 118]
FI, VI, BT

value
68. δ :∆,
68. f:F = obs part F(δ),
68. fi:FI = uid F(f)
68. vs:V-set = obs part Vs(obs part VS(f))

axiom
68. ∀ v:V•v ∈ vs ⇒ � attr BT(f) = attr BT(v)

value
69. fleet f i: BT → out attr BT ch Unit
69. fleet f i(bt) ≡ M Ff i(bt) ‖ ‖ {vehicleuid V (v)()|v:V•v ∈ vs}
69. vehiclevi: Unit → in attr BT ch Unit
69. vehiclevi ≡ MVvi(attr BT ch) ; vehiclevi()

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2714. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• The fleet process

⋄⋄ MF

• is a “never-ending” processes:

value
M Ff i: BT → out attr BT ch Unit
M Ff i(bt) ≡ let bt′ = F f i(bt) in M Ff i(bt

′) end

• Function F f i is a simple action.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

272 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• The expression of actual synchronisation and communication be-
tween the fleet and the vehicle processes

• is contained in F f i.

value
F f i: bt:BT → out attr BT ch BT
F f i(bt) ≡ (let bt′ = f f i(bt)(...) in bt′ end) ⌈⌉ (attr BT ch ! bt ; bt)
f f i: BT → ... → BT

• The auxiliary function f f i “embodies” the programmable nature of
the timetable attribute

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

273
4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• Please note a master part’s programmable attribute can be reflected
in two ways:

⋄⋄ as a programmable attribute and
⋄⋄ as an output channel to the behaviour specification of slave parts.

• This is illustrated, in Example 54 where

⋄⋄ the fleet behaviour has programmable attribute BT

⋄⋄ and output channel attr BT ch to vehicle behaviours.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

274 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Process Schema IV: Core Process (I)
• The core processes can be understood as never ending, “tail recur-

sively defined” processes:

M Pπ :Π: me:MT×sa:SA → ca:CA →
in ichns(ea:EA) in,out iochs(me) Unit

M Pπ :Π(me,sa)(ca) ≡
let (me′,ca′) = Fπ :Π(me,sa)(ca) in
M Pπ :Π(me

′,sa)(ca′) end

Fπ :Π: me:MT×sa:SA → CA →
in ichns(ea:EA) in,out iochs(me) → MT×CA

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2754. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

•Fπ

⋄⋄ potentially communicates with all those part processes (of the whole
domain)

⋄⋄ with which it shares attributes, that is, has connectors.
⋄⋄ Fπ is expected to contain input/output clauses referencing the chan-

nels of the in ... out ... part of their signatures.
⋄⋄ These clauses enable the sharing of attributes.
⋄⋄ Fπ also contains expressions, attr A ch ?, to external attributes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

276 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• We present a rough sketch of Fπ.

• The Fπ action non-deterministically internal choice chooses between

⋄⋄ either [1,2,3,4]
◦◦ [1] accepting input from
◦◦ [4] a “offering” part process,
◦◦ [2] optionally offering a reply, and
◦◦ [3] finally delivering an updated state;

⋄⋄ or [5,6,7,8]
◦◦ [5] finding a suitable “order” (val)
◦◦ [8] to a “inquiring” behaviour (π ′),
◦◦ [6] offering that value (on channel ch[π ′]
◦◦ [7] and then delivering an updated state;

⋄⋄ or [9] doing own work resulting in an updated state.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2774. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Process Schema V: Core Process (II)

value
Fπ : me:MT × sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) MT×CA

Fπ(me,sa)(ca) ≡
[1] ⌈⌉⌊⌋ { let val = ch[π ′] ? in
[2] (ch[π ′] ! in reply(val)(me,sa)(ca) ⌈⌉ skip) ;

[3] in update(val)(me,sa)(ca) end
[4] | π ′: Π • π ′ ∈ E (π ,me)}
[5] ⌈⌉ ⌈⌉⌊⌋ { let val = await reply(π ′)(me,sa)(ca) in
[6] ch[π ′] ! val ;
[7] out update(val)(me,sa)(ca) end
[8] | π ′: Π • π ′ ∈ E (π ,me)}
[9] ⌈⌉ (me,own work(sa)(ca))

channels ch[π ′] are defined in in ichns(ea:EA) in,out iochs(me)
in reply: VAL → SA×EA → CA → in ichns(ea:EA) in,out iochs(me) VAL

in update: VAL → MT×SA → CA → in,out iochs(me) MT×CA

await reply: Π → MT×SA → CA → in,out iochs(me) VAL

out update: VAL → MT×SA → CA → in,out iochs(me) MT×CA

own work: SA×EA → CA → in,out iochs(me) CA

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

278 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

Example 55 Tollgates: Part and Behaviour:

• Figure 9 abstracts essential features of a tollgate.

exit sensor
entry sensor

toll barrier

Vehicle linklink link link

Vehicle Identification

Figure 9: A tollgate

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

279
4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

70 A tollgate is a composite part.
It consists of

71 an entry sensor (ES),
a vehicle identity sensor (IS),
a barrier (B), and
an exit sensor (XS).

72 The sensors function as follows:

a. When a vehicle first starts passing the entry sensor
then it sends an appropriate (event) message to the tollgate.

b. When a vehicle’s identity is recognised by the identity sensor
then it sends an appropriate (event) message to the tollgate.

c. When a vehicle ends passing the exit sensor
then it sends an appropriate (event) message to the tollgate.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

280 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

73 We therefore model these sensors as shared dynamic event attributes.

a. For the sensors these are master attributes.
b. For the tollgate they are slave attributes.
c. In all three cases they are therefore modeled as channels.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2814. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

74 A vehicle passing the gate

a. first “triggers” the entry sensor (”Enter”),
b. which results in the lowering (”Lower”) of the barrier,
c. then the vehicle identity sensor (”vi:VI”),
d. with the tollgate “mysteriously”23 handling that identity, and, si-

multaneously
e. raising (”Raise”) the barrier, and
f. finally the output sensor (”Exit”) is triggered as the vehicle leaves

the tollgate,
g. and the barrier is lowered.

75 whereupon the tollgate resumes being a tollgate.

76 TGI is the type unique tollgate identifiers.

23... that is, passes vi on to the road pricing monitor — where we omit showing relevant channels.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

282 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• Instead of one tollgate we may think of a number of tollgates:

⋄⋄ Each with their unique identifier — together with a finite set of
two or more such identifiers, tgis:TGI-set.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2834. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

type
70. TG

71. ES, IS, B, XS

74a.. En = {|”Enter”|}
74b.. Ba = {|”Lower”,”Raise”|}
74c.. Id = VI

74e.. Ex = {|”Exit”|}
76. TGI

value
71. obs part ES: TG → ES

71. obs part IS: TG → IS

71. obs part B: TG → B

71. obs part XS: TG → XS

76. uid TGI: TG → TGI

74a.. attr Enter: TG|ES → {|”Enter”|}
74c.. attr Identity: TG|IS → VI

74e.. attr Exit: TG|XS → {|”Exit”|}
channel

74. {attr En ch[tgi]|tgi:TGI•tgi∈tgis}: En
74. {attr Id ch[tgi]|tgi:TGI•tgi∈tgis}: VI
74. {attr Ba ch[tgi]|tgi:TGI•tgi∈tgis}: BA
74. {attr Ex ch[tgi]|tgi:TGI•tgi∈tgis}: Ex
value
74. gatetgi:TGI: Unit →
74. in attr En ch[tgi],attr Id ch[tgi],attr Ex ch[tgi]

74. out attr Ba ch[tgi] Unit
74. gatetgi:TGI() ≡
74a.. attr En ch[tgi] ? ;

74b.. attr Ba ch[tgi] ! ”Lower” ;

74c.. let vi = attr Id ch[tgi] ? in
74d.. (handle(vi) ‖
74e.. attr Ba ch[tgi] ! ”Raise”) ;

74f.. attr Ex ch[tgi] ? ;

74g.. attr Ba[tgi] ! ”Lower” ;

75. gatetgi:TGI() end

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

284 4. Perdurants 4.11. Discrete Behaviour Signatures and Definitions 4.11.2. Behaviour Definitions

• The enter, identity and exit events are

⋄⋄ slave attributes of the tollgate part and
⋄⋄ master attributes of respectively

◦◦ the entry sensor,
◦◦ the vehicle identity sensor, and
◦◦ the exit sensor sub-parts.

• We do not define the behaviours of these sub-parts.

⋄⋄ We only assume that they each issue appropriate
⋄⋄ attr A ch ! output messages
⋄⋄ where A is either Enter, Identity, or Exit and where event values
en:Enter and ex:Exit are ignored

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2854. Perdurants 4.12. Concurrency: Communication and Synchronisation

4.12. Concurrency: Communication and Synchronisation

• Process Schemas I, II and IV (Slides 265, 267 and 274), reveal

⋄⋄ that two or more parts, which temporally coexist
(i.e., at the same time),

⋄⋄ imply a notion of concurrency.
⋄⋄ Process Schema IV,

through the RSL/CSP language expressions ch ! v and ch ?,
⋄⋄ indicates the notions of communication and synchronisation.
⋄⋄ Other than this

we shall not cover these crucial notion related to parallelism.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

286 4. Perdurants 4.13. Summary and Discussion of Perdurants

4.13. Summary and Discussion of Perdurants

• The most significant contribution of this section has been to show
that

⋄⋄ for every domain description
⋄⋄ there exists a normal form behaviour —
⋄⋄ here expressed in terms of a CSP process expression.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2874. Perdurants 4.13. Summary and Discussion of Perdurants 4.13.1. Summary

4.13.1. Summary

• We have proposed to analyse perdurant entities
into actions, events and behaviours —
all based on notions of state and time.

• We have suggested modeling and abstracting these notions
in terms of functions with signatures and pre-/post-conditions.

• We have shown how to model behaviours
in terms of CSP (communicating sequential processes).

• It is in modeling function signatures and behaviours
that we justify the endurant entity notions of
parts, unique identifiers, mereology and shared attributes.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

288 4. Perdurants 4.13. Summary and Discussion of Perdurants 4.13.2. Discussion

4.13.2. Discussion

• The analysis of perdurants into actions, events and behaviours
represents a choice.

• We suggest skeptical readers to come forward with other choices.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2895. Closing

5. Closing

• In Sect. we emphasised that in order to develop software the design-
ers must have a reasonable grasp of the “underlying” domain.

• That means that when we design software, its requirements, to us,
must be based on such a “grasp”, that is, that the domain description
must cover that “underlying” domain.

• We are not claiming that the domain descriptions (for software de-
velopment) must cover more than the “underlying” domain.

• But what that “underlying” domain then is, is an open question which
we do not speculate on in this paper.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

290 5. Closing

• Domain descriptions are not “cast in stone !”

⋄⋄ It is to be expected that domains are
◦◦ researched
◦◦ and their descriptions are developed
as research projects — typically in universities.

⋄⋄ It is also to be expected
◦◦ that several domain descriptions coexist “simultaneously”,
◦◦ that they may converge,
◦◦ that some whither away, are rejected, and
◦◦ that new descriptions are developed “on top of”,

that is, on the basis of existing ones, which they replace,
◦◦ descriptions that enlarge on, or restrict previous descriptions.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2915. Closing

⋄⋄ It is finally to be expected that
◦◦ when requirements are to be “derived” from a domain descrip-

tion, see, for example, [Bjø16d],
◦◦ that the requirements cum domain engineers
◦◦ redevelop a projected domain description

◦◦ having some existing domain descriptions “at hand”.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

292 5. Closing 5.1. Analysis & Description Calculi for Other Domains

5.1. Analysis & Description Calculi for Other Domains

• The analysis and description calculus of this paper appears suitable
for manifest domains.

• For other domains other calculi may be necessary.

⋄⋄ There is the introvert, composite domain(s) of systems software:
◦◦ operating systems, compilers, database management systems,

Internet-related software, etcetera.
◦◦ The classical computer science and software engineering

disciplines related to these components of systems software
appears to have provided the necessary
analysis and description “calculi.”

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2935. Closing 5.1. Analysis & Description Calculi for Other Domains

⋄⋄ There is the domain of financial systems software
◦◦ accounting & bookkeeping,
◦◦ banking systems,
◦◦ insurance,
◦◦ financial instruments handling (stocks, etc.),
◦◦ etcetera.

• Etcetera.

• For each domain characterisable by a distinct set of analysis & de-
scription calculus prompts such calculi must be identified.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

294 5. Closing 5.2. On Domain Description Languages

5.2. On Domain Description Languages

• We have in this seminar expressed the domain descriptions in the
RAISE [GHH+95] specification language RSL [GHH+92].

• With what is thought of as minor changes, one can reformulate these
domain description texts in either of

⋄⋄ Alloy [Jac06] or
⋄⋄ The B-Method [Abr09] or
⋄⋄ VDM [BJ78, BJ82, FL98] or
⋄⋄ Z [WD96].

• One could also express domain descriptions algebraically, for exam-
ple in CafeOBJ [FN97, FGO12].

⋄⋄ The analysis and the description prompts remain the same.
⋄⋄ The description prompts now lead to Alloy, B-Method, VDM,

Z or CafeOBJ texts.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

295
5. Closing 5.2. On Domain Description Languages

• We did not go into much detail with respect to perdurants.
⋄⋄ For all the very many domain descriptions, covered elsewhere, RSL

(with its CSP sub-language) suffices.
⋄⋄ It is favoured here because of its integrated CSP sub-language which

both facilitates
◦◦ the ‘compilation’ of part descriptions into “the dynamics” of

parts in terms of CSP processes, and
◦◦ the modeling of external attributes in terms of CSP process input

channels.
⋄⋄ But there are cases, not documented in this seminar, where, [BGH+in],

we have conjoined our RSL domain descriptions with descriptions
in
◦◦ Petri Nets [Rei10] or
◦◦ MSC [IT99] or
◦◦ StateCharts [Har87].

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

296 5. Closing 5.3. Open Problems

5.3. Open Problems

• The present paper has outlined a great number of

⋄⋄ principles,
⋄⋄ techniques and
⋄⋄ tools

of domain analysis & description.

• They give rise, now, to the investigation of further

⋄⋄ principles,
⋄⋄ techniques and
⋄⋄ tools

as well as underlying theories.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2975. Closing 5.3. Open Problems

• We list some of these “to do” items:

⋄⋄ (1) a mathematical model of prompts;
⋄⋄ (2) a sharpened definition of “what is a domain”;
⋄⋄ (3) laws of description prompts;
⋄⋄ (4) an understanding of domain facets [Bjø16a];
⋄⋄ (5) a prompt calculus for perdurants;
⋄⋄ (6) commensurate discrete and continuous models [WYZ94, ZWZ13];
⋄⋄ (7) a study of the interplay between parts, materials and compo-

nents;
⋄⋄ (8) a closer study of external attributes and their variety of access

forms and of biddable attributes; and
⋄⋄ (9) specific domain theories; etcetera.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

298 5. Closing 5.4. Tony Hoare’s Summary on ‘Domain Modeling’

5.4. Tony Hoare’s Summary on ‘Domain Modeling’

• In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps
conceived as stubborn insistence, on domain engineering,

• Tony Hoare summed up his reaction to domain engineering as fol-
lows, and I quote24:

“There are many unique contributions that can be made by domain
modeling.
1 The models describe all aspects of the real world that are relevant for

any good software design in the area. They describe possible places
to define the system boundary for any particular project.

2 They make explicit the preconditions about the real world that have
to be made in any embedded software design, especially one that is
going to be formally proved.

24E-Mail to Dines Bjørner, July 19, 2006

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

2995. Closing 5.4. Tony Hoare’s Summary on ‘Domain Modeling’

3 They describe the whole range of possible designs for the software,
and the whole range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements, which
is wholly independent of the technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier
or later in any design project, and identify those that are independent
and those that conflict. Late discovery of feature interactions can be
avoided.”

• All of these issues are covered, to some extent, in [Bjø06, Part IV].

• Tony Hoare’s list pertains to a wider range that just the Manifest
Domains treated in this paper.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

300 5. Closing 5.5. Beauty Is Our Business

5.5. Beauty Is Our Business

It’s life that matters, nothing but life –
the process of discovering, the everlasting and perpetual process,

not the discovery itself, at all.25

• I find that quote appropriate in the following, albeit rather mundane,
sense:

⋄⋄ It is the process of analysing and describing a domain
⋄⋄ that exhilarates me:
⋄⋄ that causes me to feel very happy and excited.

• There is beauty [E.W. Dijkstra] not only in the result but also in the
process.

25Fyodor Dostoyevsky, The Idiot, 1868, Part 3, Sect. V

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

3016. Bibliography

6. Bibliography
6.1. Bibliographical Notes

6.1.1. Published Papers

• Web page www.imm.dtu.dk/˜dibj/domains/ lists the published
papers and reports mentioned below.

• I have thought about domain engineering for more than 25 years.
• But serious, focused writing only started to appear since [Bjø06, Part

IV] — with [Bjø03, Bjø97] being exceptions:
⋄⋄ [Bjø07, 2007] suggests a number of domain science and engineer-

ing research topics;
⋄⋄ [Bjø10a, 2008] covers the concept of domain facets;
⋄⋄ [BE10, 2008] explores compositionality and Galois connections.
⋄⋄ [Bjø08, Bjø10c, 2008,2009] show how to systematically, but, of

course, not automatically, “derive” requirements prescriptions from
domain descriptions;

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

302 6. Bibliography 6.1. Bibliographical Notes 6.1.1. Published Papers

⋄⋄ [Bjø11a, 2008] takes the triptych software development as a basis
for outlining principles for believable software management;

⋄⋄ [Bjø09, Bjø14a, 2009,2013] presents a model for Stanisław Leśniewski’s
[CV99] concept of mereology;

⋄⋄ [Bjø10b, Bjø11b] present an extensive example and is otherwise a
precursor for the present paper;

⋄⋄ [Bjø11c, 2010] presents, based on the TripTych view of soft-
ware development as ideally proceeding from domain description
via requirements prescription to software design, concepts such as
software demos and simulators;

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

3036. Bibliography 6.1. Bibliographical Notes 6.1.1. Published Papers

⋄⋄ [Bjø13, 2012] analyses the TripTych, especially its domain engi-
neering approach, with respect to Maslow’s 26 and Peterson’s and
Seligman’s 27 notions of humanity: how can computing relate to
notions of humanity;

⋄⋄ the first part of [Bjø14b, 2014] is a precursor for the present paper
with its second part presenting a first formal model of the elicita-
tion process of analysis and description based on the prompts more
definitively presented in the current paper; and

⋄⋄ [Bjø14c, 2014] focus on domain safety criticality.

The present paper basically replaces the domain analysis and descrip-
tion section of all of the above reference — including [Bjø06, Part IV,
2006].

26Theory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third Edition, Harper and Row Publishers, 1954.
27Character strengths and virtues: A handbook and classification. Oxford University Press, 2004

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

304 6. Bibliography 6.1. Bibliographical Notes 6.1.2. Reports

6.1.2. Reports
We list a number of reports all of which document descriptions of domains. These descriptions

were carried out in order to research and develop the domain analysis and description concepts now
summarised in the present paper. These reports ought now be revised, some slightly, others less so, so
as to follow all of the prescriptions of the current paper. Except where a URL is given in full, please
prefix the web reference with: http://www2.compute.dtu.dk/~dibj/.

1 A Railway Systems Domain: racosy/domains.ps (2003)

2 Models of IT Security. Security Rules & Regulations: it-security.pdf (2006)

3 A Container Line Industry Domain: container-paper.pdf (2007)

4 The “Market”: Consumers, Retailers, Wholesalers, Producers: themarket.pdf (2007)

5 What is Logistics ?: logistics.pdf (2009)

6 A Domain Model of Oil Pipelines: pipeline.pdf (2009)

7 Transport Systems: comet/comet1.pdf (2010)

8 The Tokyo Stock Exchange: todai/tse-1.pdf and todai/tse-2.pdf (2010)

9 On Development of Web-based Software. A Divertimento: wfdftp.pdf (2010)

10 Documents (incomplete draft): doc-p.pdf (2013)

11 A Credit Card System: /2016/uppsala/accs.pdf (2016)

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

305
6. Bibliography 6.2. References

6.2. References
[Abr09] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge, England, 1996 and 2009.

[BE10] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations in the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams and Ulrich
Hannemann. In Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture Notes in Computer Science, pages 22–59, Heidelberg, July 2010. Springer.

[BGH+in] Dines Bjørner, Chris W. George, Anne Eliabeth Haxthausen, Christian Krog Madsen, Steffen Holmslykke, and Martin Pěnička. ”UML”–ising Formal Techniques. In INT 2004: Third International Workshop on
Integration of Specification Techniques for Applications in Engineering, volume 3147 of Lecture Notes in Computer Science, pages 423–450. Springer–Verlag, 28 March 2004, ETAPS, Barcelona, Spain. Final Version.

[BJ78] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61 of LNCS. Springer, 1978.

[BJ82] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-Hall, 1982.

[Bjø97] Dines Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In Li ShaoYang and Michael Hinchley, editors, ICFEM’97: International Conference on Formal Engineering Methods, Los
Alamitos, November 12–14 1997. IEEE Computer Society. Final Version.

[Bjø03] Dines Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engineering ? In Verification: Theory and Practice, volume 2772 of Lecture Notes in Computer Science, Heidelberg, October
7–11 2003. Springer–Verlag. The Zohar Manna International Conference, Taormina, Sicily 29 June – 4 July 2003. .

[Bjø06] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

[Bjø07] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17,
Heidelberg, September 2007. Springer.

[Bjø08] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg,
May 2008. Springer.

[Bjø09] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70, London,
UK, 2009. Springer.

[Bjø10a] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010.
Springer.

[Bjø10b] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics, Part I of II: The Engineering Part . Kibernetika i sistemny analiz, (4):100–116, May
2010.

[Bjø10c] Dines Bjørner. The Rôle of Domain Engineering in Software Development. Why Current Requirements Engineering Seems Flawed! In Perspectives of Systems Informatics, volume 5947 of Lecture Notes in Computer
Science, pages 2–34, Heidelberg, Wednesday, January 27, 2010. Springer.

[Bjø11a] Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.

[Bjø11b] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics Part II of II: The Science Part . Kibernetika i sistemny analiz, (2):100–120, May 2011.

[Bjø11c] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of His 70th
Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January 2011.

[Bjø13] Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chapter 7, pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC [Francis &
Taylor], 2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[Bjø14a] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, October 2014.

[Bjø14b] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida, José Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software: A Festschrift Symposium
in Honor of Kokichi Futatsugi. Springer, May 2014.

[Bjø14c] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014: Australian System Safety Conference, Melbourne, 26–28 May, December 2014.

[Bjø16a] Dines Bjørner. Domain Facets: Analysis & Description. Submitted for consideration to Formal Aspects of Computing, 2016. http://www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[Bjø16b] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. Experimental Research, Fredsvej 11, DK–2840 Holte, Denmark, 2016. http://www.imm.dtu.dk/˜di-
bj/2016/demos/faoc-demo.pdf.

Manifest Domains c©Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23

306

[Bjø16c] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to Requirements Engineering. 2016.

[Bjø16d] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to Requirements Engineering. 2016.

[CV99] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.

[FGO12] Kokichi Futatsugi, Daniel Gâlinâ, and Kazuhiro Ogata. Principles of proof scores in CafeOBJ. Theor. Comput. Science, 464:90–112, 2012.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in Software Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN
0-521-62348-0.

[FMMR12] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Modeling Time in Computing. Monographs in Theoretical Computer Science. Springer, 2012.

[FN97] Kokichi Futatsugi and Ataru Nakagawa. An overview of CAFE specification environment - an algebraic approach for creating, verifying, and maintaining formal specifications over networks. In Proc. of 1st International
Conference on Formal Engineering Methods (ICFEM ’97), November 12-14, 1997, Hiroshima, JAPAN, pages 170–182. IEEE, 1997.

[FNT00] K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic Formal Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The Netherlands, 2000. Elsevier.
Proceedings from an April 1998 Symposium, Numazu, Japan.

[GHH+92] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[GHH+95] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1995.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231–274, 1987.

[Hoa85] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/cspbook.pdf
(2004).

[IT99] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996, 1999.

[Jac95] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[JHJ07] Cliff B. Jones, Ian Hayes, and Michael A. Jackson. Deriving Specfications for Systems That Are Connected to the Physical World. In Cliff Jones, Zhiming Liu, and James Woodcock, editors, Formal Methods and
Hybrid Real-Time Systems: Essays in Honour of Dines Bjørner and Zhou Chaochen on the Occasion of Their 70th Birthdays, volume 4700 of Lecture Notes in Computer Science, pages 364–390. Springer, 2007.

[LWZ13] Zhiming Liu, J. C. P. Woodcock, and Huibiao Zhu, editors. Unifying Theories of Programming and Formal Engineering Methods - International Training School on Software Engineering, Held at ICTAC 2013,
Shanghai, China, August 26-30, 2013, Advanced Lectures, volume 8050 of Lecture Notes in Computer Science. Springer, 2013.

[Rei10] Wolfang Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der Informatik. Vieweg+Teubner, 1st edition, 15 June 2010. 248 pages; ISBN 978-3-8348-1290-2.

[van91] Johan van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Epistemology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer Academic Publishers, P.O.Box
17, NL 3300 AA Dordrecht, The Netherlands, second edition, 1983, 1991.

[WD96] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall International Series in Computer Science, 1996.

[WS12] George Wilson and Samuel Shpall. Action. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Summer 2012 edition, 2012.

[WYZ94] Ji Wang, XinYao Yu, and Chao Chen Zhou. Hybrid Refinement. Research Report 20, UNU/IIST, P.O.Box 3058, Macau, 1. April 1994.

[ZWZ13] Naijun Zhan, Shuling Wang, and Hengjun Zhao. Formal modelling, analysis and verification of hybrid systems. In ICTAC Training School on Software Engineering, pages 207–281, 2013. http://dx.doi.org/10.1007/978-
3-642-39721-9 5, DBLP, http://dblp.uni-trier.de.

c© Dines Bjørner. 2016, Fredsvej 11, DK–2840 Holte, Denmark – August 12, 2017: 19:23 Analysis and Description

