11. An Attempt at a Formalisation of "The Urban Space" 11.1. Main Parts

- To the left, in the framed box, we **narrate** the story.
- To the right, in the framed box, we **formalise** it.
- One way of observing *the urban space* is presented:

 65 We can speak of The Urban Space, TUS, in terms of its 66 GeoDecy (i.e., geodetic features), 67 GeoTechniques, 68 Meteorology, 69 Social features, 	type 65 TUS, GeoD, GeoT, Met, Soc, Eco, value 66 obs_GeoD: TUS → GeoD 67 obs_GeoT: TUS → GeoT 68 obs_Met: TUS → Met 69 obs_Soc: TUS → Soc 70 obs_Eco: TUS → Eco
70 Economic features, etcetera.	

- The obs_P: $M \to P$ is the **signature** of a postulated *(observer) function.*
- From parts of type M it **observes** [sub-]parts of type P.

11.2. Attributes

11.2.1. Urban Space Attributes – Informal

- Attributes are also called *properties*, qualities or indicators.
- We list some urban space attributes:
 - - □ land elevation (isometric lines etc.)
 - water: springs, creeks, rivers, lakes, oceans; dams, canals, ...
 - road net: lanes, road, highways, freeways/toll-roads, tunnels, bridges, ...
 - **⊗** Geotechnical:
 - on top layer soil composition
 - o lower layer soil etc. composition, by depth levels
 - on ground water occurrence, by depth levels
 - ogas, oil occurrence, by depth levels

Meteorological:

- ∞ precipitation¹², for example, averaged by month (incl., perhaps, "hi/lo"), and possibly also changes by year, past and future
- ∞ air humidity, by level, for example, averaged by month (incl., perhaps "hi/lo"), and possibly also changes by year, past and future
- © evaporation, by level , for example, averaged by month (incl., perhaps, "hi/lo"), and possibly also changes by year, past and future

¹²Precipitation: the amount of rain, snow, hail, etc., that has fallen at a given place within a given period, usually expressed in inches or centimeters of water.

• Social and Citizen Economics:

- income distribution,
 currently, by year, ...
 and possibly also changes by year, past and future
- * housing situation,
 by housing category: apt., etc.; currently, by year, ...
 and possibly also changes by year, past and future
- migration,
 and possibly also changes by year, past and future
- social welfare support,by citizen categoryand possibly also changes by year, past and future
- health status,
 by citizen category
 and possibly also changes by year, past and future
 etcetera.

• Industry and Business Economics:

- ∞ ... ,∞ ... ,etcetera.
- Etcetera.

11.2.2. General on Attributes

- Parts (like TUS, GeoD, GeoT, ...) "possess" attributes.
- Attributes are intrisically associated with parts, that is, with a part type.
- All parts of a given type have the same attributes.
- We must distinguish between an attribute name and an attribute value.
 - \otimes Let ηA_1 , ηA_2 , ..., ηA_n be all the attribute names of parts of type P.
 - \otimes Then two different parts, p_i and p_j , of type P,
 - ∞ may have the same value, $\operatorname{attr}_{-\eta} A_k(p_i)$ respectively $\operatorname{attr}_{-\eta} A_k(p_j)$, for attribute A_k ,
 - o or may have different values.
- If you try "remove" (whatever that would mean) an attribute
 - some from a part, of a given type, say P,
 - ⋄ then that 'part' is no longer of type P.

11.2.3. Urban Space Attributes – Formal 11.2.3.1 General

- Informal attribute names were given on slides 112–115 in the \otimes itemized entries.
- We now treat attribute names and value abstractly.
- 71 Let $\eta A_1, \eta A_2, ..., \eta A_n$ be the (undoubtedly large) set of all attribute names of interest for some urban space.
- 72 And let $A_1, A_2, ..., A_n$ be type names for for corresponding attribute value sets.
- 73 The observation, from a part of type P, (which has attributes of name ηA) of values of type A is expressed by the attribute observer function $\operatorname{\mathsf{attr}}_{-}\eta \mathsf{A}$.

type

71 $\eta A_1, \eta A_2, ..., \eta A_n$

72 $A_1, A_2, ..., A_n$

value

73 $\operatorname{\mathsf{attr}}_{-}\eta \mathsf{A}_i \colon \mathsf{P} \to \mathsf{A}_i \quad [\text{for } 1 \leq \mathsf{i} \leq \mathsf{n}]$

11.2.3.2 Structured Attributes

11.2.3.3 An Analysis of Structured Attributes

11.2.3.4 Structured Attribute Names

11.2.3.5 Structured Attribute Values