Last Lecture

• Agenda:

- « The TripTych of Urban Planning
- \otimes The Process Behaviour Model as
 - A Basis for Urban Planning Project Management 100–101
- \otimes The Process Information Model as
 - A Basis for Urban Planning Data Management 102–103
- & Validation, Testing, Verification

\otimes Discussion

- What Have We Done?
- ∞ What Have Not Been Done 1
- ∞ What Can I Do in September 2017?
 - ∞ Further to Be Done
- © Closing Words

104

106

106

108

109

110

106 - 108

5. A Triptych of Urban Planning? 5.1. The Triptych of Software Engineering

- A major principle of ours for developing software is embodied in the **Triptych** method:
 - Before software can be developed we must understand its requirements.
 - Before requirements can be expressed we must understand the domain.

- So we proceed in three, more-or-less consecutive phases:
 - o
 domain engineering,
 - \otimes requirements engineering and
 - **« software design**.
- verifying (validating, proving, testing) properties of
 - \circledast the domain,
 - « the **requirements**,
 - \circledast the **domain-to-requirements** "translation",
 - \otimes the ${\bf software}$ and the
 - \circledast the <code>requirements-to-software</code> "translation".

5.2. The Triptych of Urban Planning!

- Before **urban plans** can be developed we must understand their **requirements**.
- Before requirements can be expressed we must understand the **domain**.

- We have outlined the **Triptych of Software Development**.
- What is the parallel **Triptych for Urban Planning**? I think it is this:

« The domain engineering of urban planning

- is to get to understand and thus describe The Urban Space
- before it is planned.
- This means the development of all *The Urban Space Information*:
- or proper geodetic information,
- ${\scriptstyle \textcircled{O}}$ proper meteorological information,
- or proper socio-economic information,
- ${\ensuremath{\scriptstyle \odot}}$ proper ecological information,
- or proper urban space laws,
- ∞ etcetera.

- The requirements engineering of urban planning is to get to understand the customers expectations.
 - This means the development of *The Urban Plan Requirements*:
 - [®] proper requirements for master plan,
 - proper requirements for zoning,
 - proper requirements for residential, office, shopping and recreational areas, ...
 - ∞ proper requirements for electric power, gas, ...
 - or proper requirements for wasfer management, ...

 ∞ etcetera

99

6. Urban Planning Management

- The description we have given of urban planning emphasizes an iterative nature of urban planning.
- Individual urban planning behaviours, such as we describe it, alternate between many, more-or-less consecutive actions:
 - sathering ("reading") information for urban planning functions;
 w actually applying urban planning functions;
 - possibly starting new, derived urban planning behaviours while collecting ("writing") function results.
- The base and derived urban plannings may thus involve hundreds of urban planning actions
 - their timely interaction (via oracles and repositories) and consistent "production" and "use" of information.

- The urban planning description makes precise these interactions, "productions" and "usages".
 - Thus the described urban planning development process model can serve as a basis for a computerised project management support system.
- \bullet Thus, from the description we can

∞ "refine" the requirements for such software,∞ and we can then code the software design.

This is a major project.

7. Data Management

- The description we have given of urban planning emphasizes also, one can say, separately, outlines major classes of information, i.e., data:
 - \otimes their iterated "production" and "use";
 - \otimes their "oracled" origin or
 - \otimes their "reposited" storage.
- These classes of information, and there are many,
 - \otimes need be formalised
 - \otimes and related.

 Thus the description may also serve as a basis for the « the development of requirements « and subsequent development of software for an Urban Planning Database System.

This is [also] a major project.

8. Validation & Verification 8.1. Validation of a Specification of a Product

- Validation of a specification of a product is a process and a document which
 - \otimes ensures that the document specifies the right product,
 - ∞ that is, that the customer gets what is expected,
 - \otimes and that the process leads to such a document.

8.2. Verification of a Specification of a Product

- Verification of a specification of a product is a process and a document which
 - \otimes ensures that the document specifies the product right,
 - ∞ that is, that the product is correct, ie., does not fail,
 - \otimes and that the process leads to such a specification (for us: software).

8.3. V&V of the Domain Description

- So we need to formalise first our understanding of what we mean by:
 - & geodetic,
 & social,
 & plan, and
 & economic,
 & ancillary
 & meteorology,
 & auxiliary,
 - information.
- Only then does it make sense to express what we mean by
 - « validating and » verifying

the model.

8.4. V&V of an Urban Planning Project

• Similarly!

9. Discussion 9.1. What Have We Done?

- Identification of Urban Planning Information Categories
- A Process Model for Urban Planning and its Formalisation
- Identification of Base- and Derived Urban Plannings
- Focus of an Iterative Nature of Urban Planning
- The Process Model as A Basis for Urban Planning Management
- The Information Categories as A Basis for Urban Planning Data Management

9.2. What Have We Not Done!

- We have not Formalised the Urban Planning Information Categories.
 - \otimes In Sect. ?? we make a first attempt!
- We have not described the Urban Planning Functions, at all!

9.3. What Can I Do in September 2017?

- Make more precise the Categories of Urban Planning Information¹¹
- Sketch initial Formalisations of some of these.
- \bullet An attempt is made as from Slides 113 on ...
- Validate or refute Aspects of the Urban Planning Process Model
- Make more precise some of the Urban Planning Functions
- Sketch initial Formalisations of some of these

^{••}Please: I wish to examine available example of all the eight kinds of urban planning information listed in the first • on Slide 105.

.

9.4. Further to Be Done

- Requirements for Urban Planning Project Management Software
- Requirements for Urban Planning Data Management Software

10. Closing Words

Thanks for inviting me to TongJi!

11. References

Springer Publishers:

QinHua University Press:

QinHua University Press:

12. An Attempt at a Formalisation of "The Urban Space" 12.1. Main Parts

- To the left, in the framed box, we **narrate** the story.
- To the right, in the framed box, we **formalise** it.
- One way of observing *the urban space* is presented:

```
65 We can speak of The Urban Space,<br/>TUS, in terms of itstype66 GeoDecy (i.e., geodetic features),65 TUS, GeoD, GeoT, Met, Soc, Eco, ...66 GeoTechniques,66 obs_GeoD: TUS \rightarrow GeoD67 GeoTechniques,67 obs_GeoT: TUS \rightarrow GeoT68 Meteorology,68 obs_Met: TUS \rightarrow Met69 Social features,69 obs_Soc: TUS \rightarrow Soc70 Economic features, etcetera.70 obs_Eco: TUS \rightarrow Eco
```

- The obs_P: $M \rightarrow P$ is the signature of a postulated (observer) function.
- From parts of type M it **observes** [sub-]parts of type P.

12.2. Attributes 12.2.1. Urban Space Attributes – Informal

- Attributes are also called *properties*, *qualities* or *indicators*.
- We list some urban space **attributes**:
 - « Geodetic:
 - ∞ land elevation (isometric lines etc.)
 - water: springs, creeks, rivers, lakes, oceans; dams, canals, ...
 road net: lanes, road, highways, freeways/toll-roads, tunnels, bridges, ...
 - « Geotechnical:
 - $\ensuremath{\scriptstyle \odot}$ top layer soil composition
 - ${\scriptstyle \varpi}$ lower layer soil etc. composition, by depth levels
 - ${\tt \varpi}$ ground water occurrence, by depth levels
 - ${\tt \varpi}$ gas, oil occurrence, by depth levels

- « Meteorological:
 - precipitation¹², for example, averaged by month (incl., perhaps, "hi/lo"),

and possibly also changes by year, past and future

 air humidity, by level, for example, averaged by month (incl., perhaps "hi/lo"),

and possibly also changes by year, past and future

- evaporation, by level , for example, averaged by month (incl., perhaps, "hi/lo"),
 - and possibly also changes by year, past and future

¹²Precipitation: the amount of rain, snow, hail, etc., that has fallen at a given place within a given period, usually expressed in inches or centimeters of water.

• Social and Citizen Economics:

\circledast income distribution,

currently, by year, ...

and possibly also changes by year, past and future

\circledast housing situation,

by housing category: apt., etc.; currently, by year, ... and possibly also changes by year, past and future

\otimes migration,

and possibly also changes by year, past and future

\circledast social welfare support,

by citizen category

and possibly also changes by year, past and future

\circledast health status,

by citizen category

and possibly also changes by year, past and future

\otimes etcetera.

• Industry and Business Economics:

∞....,

- ∞....,
- ∞....,

etcetera.

• Etcetera.

117

12.2.2. General on Attributes

- Parts (like TUS, GeoD, GeoT, ...) "possess" attributes.
- Attributes are intrisically associated with parts, that is, with a part type.
- All parts of a given type have the same attributes.
- We must distinguish between an *attribute name* and an *attribute value*.
 - \otimes Let ηA_1 , ηA_2 , ..., ηA_n be all the attribute names of parts of type P.
 - \otimes Then two different parts, p_i and p_j , of type P,
 - ∞ may have the same value, $\mathsf{attr}_\eta \mathsf{A}_k(\mathsf{p}_i)$ respectively $\mathsf{attr}_\eta \mathsf{A}_k(\mathsf{p}_j)$, for attribute A_k ,
 - or may have different values.
- If you try "remove" (whatever that would mean) an attribute
 - \otimes from a part, of a given type, say P,
 - \otimes then that 'part' is no longer of type $\mathsf{P}.$

12.2.3. Urban Space Attributes – Formal 12.2.3.1 General

- \bullet Informal attribute names were given on slides 114–117 in the \otimes itemized entries.
- We now treat attribute names and value abstractly.
- 71 Let $\eta A_1, \eta A_2, ..., \eta A_n$ be the (undoubtedly large) set of all attribute names of interest for some urban space.

72 And let $A_1, A_2, ..., A_n$ be type names for for corresponding attribute value sets.

73 The observation, from a part of type P , (which has attributes of name ηA) of values of type A is expressed by the attribute observer function $\mathsf{attr}_{-}\eta \mathsf{A}$.

type

 $\eta A_1, \eta A_2, ..., \eta A_n$ $A_1, A_2, ..., A_n$ value $\operatorname{attr}_{\eta} A_i: P \to A_i \quad [\text{ for } 1 \leq i \leq n]$

12.2.3.2 Structured Attributes

12.2.3.3 An Analysis of Structured Attributes

12.2.3.4 Structured Attribute Names

12.2.3.5 Structured Attribute Values

