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Abstract

The domain analysis & description calculi introduced in [1] is shown to alleviate the issue
of implicit semantics [2]. The claim is made that domain descriptions, whether informal,
or as also here, formal, amount to an explicit semantics for what is otherwise implicit
if not described ! I claim that [1] provides an answer to the claim in both [2, 3] that
“The contexts of the systems in these cases are treated as second-class citizens . . . ”,
respectively “In general, modeling languages are not equipped with resources, concepts
or entities handling explicitly domain engineering features and characteristics (domain
knowledge) in which the modeled systems evolve”.

Caveat !

When I wrote this paper I was unaware of [3, Yamine Ait-Ameur and Dominique Méry,
Making explicit domain knowledge in formal system development, Science of Computer Pro-
gramming, 121, 120–127]. I was first made aware of and given this paper Nov. 14, 2017. I
apologize.
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1 Introduction

1.1 On the Issues of Implicit and Explicit Semantics

In [2] the issues of implicit and explicit semantics are analysed. It appears, from [2], that
when an issue of software requirements or of the context, or, as we shall call it, the domain,
is not prescribed or described to the extent that is relied upon in the software design, then
it is referred to as an issue of implicit semantics. Once prescribed, respectively described,
that issue becomes one of explicit semantics. In this paper we offer a calculus for analysing
& describing domains (i.e., contexts), a calculus that allows you to systematically and
formally describe domains.

1.2 A Triptych of Software Engineering

The dogma is:

• before software can be designed we must understand its requirements;

• and before we can prescribe the requirements we must understand the domain, that is,
describe the domain.
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A strict, but not a necessary, interpretation of this dogma thus suggests that software
development “ideally” proceeds in three phases:

• First a phase of domain engineering in which an analysis of the application domain
leads to a description of that domain.1

• Then a phase of requirements engineering in which an analysis of the domain descrip-
tion leads to a prescription of requirements to software for that domain.

• And, finally, a phase of software design in which an analysis of the requirements pre-
scription leads to software for that domain.

Proof of program, i.e., software code, correctness can be expressed as:

• D,S |= R

which we read as: proofs that Software is correct with respect to Requirements implies
references to the Domain.

1.3 Contexts [2] ≡ Domains [1]

Often the domain is referred to as the context. We treat contexts, i.e., domain descriptions
as first class citizens [2, Abstract, Page 1, lines 9–10]. By emphasizing the formalisation of
domain descriptions we thus focus on the explicit semantics. Our approach, [1], summarised
in Sect. 2 of this paper, thus represents a formal approach to the description of contexts (i.e.,
domains) [2, Abstract, Page 1, line 12]. By a domain, i.e., a context, description, we shall
here understand an explicit semantics of what is usually not specified and, when not so,
referred to as implicit semantics2.

1.4 Semantics

I use the term ‘semantics’ rather than the term ‘knowledge’. The reason is this: The entities
are what we can meaningfully speak about. That is, the names of the endurants and perdurants,
of their being atomic or composite, discrete or continuous, parts, components or materials, their
unique identifications, mereologies and attributes, and the types, values and use of operations
over these, form the language spoken by practitioners in the domain. It is this language its
base syntactic quantities and semantic domains we structure and ascribe a semantics.

1.5 Method & Methodology

By a method I understand a set of principles for selecting and applying techniques and tools
for constructing a manifest or an abstract artifact. By methodology I understand the study
and knowledge of methods. My work is almost exclusively in the area of methods and
methodology.

1This phase is often misunderstood. On one hand we expect domain stakeholders, e,g,, bank associations
and university economics departments, to establish “a family” of bank domain descriptions: taught when traing
and educating new employees, resp. students. Together this ’family’ covers as much as is known about banking.
On the other hand we expect each new bank application (software) development to “carve” out a “sufficiently
large” description of the domain it is to focus on. Please replace the term bank with an apppropriate term for
the domain for which You are to develop software.

2“The contexts . . . are treated as second-class citizens: in general, the modelling is implicit and usually
distributed between the requirements model and the system model.” [2, Abstract, Page 1, lines 9–12].
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1.6 Computer & Computing Sciences

By computer science I understand the study and knowledge about the things that can exist
inside computing devices.

By computing science I understand the study and knowledge about how to construct the
things that can exist inside computing devices. Computing science is also often referred to as
programming methodology. My work is almost exclusively in the area of computing science.

2 The Analysis & Description Prompts

We present a calculus of analysis and description prompts3. The presentation here is a very
short, 12 pages, version of [1, Sects. 2–4, 31 pages]. These prompts are tools that the domain
analyser & describer uses. The domain analyser & describer is in the domain, sees it, can
touch it, and then applies the prompts, in some orderly fashion, to what is being observed.
So, on one hand, there is the necessarily informal domain, and, on the other hand, there are
the seemingly formal prompts and the “suggestions for something to be said”, i.e., written
down: narrated and formalised. See Fig. 1. The figure suggests a number of analysis and
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Figure 1: An Ontology for Manifest Domains

3Prompt, as a verb: to move or induce to action; to occasion or incite; inspire; to assist (a person speaking) by
”suggesting something to be said”.
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description prompts. The domain analyser & describer is “positioned” at the top, the “root”.
If what is observed can be conceived and described then it is an entity. If it can be described
as a “complete thing” at no matter which given snapshot of time then it is an endurant. If
it is an entity but for which only a fragment exists if we look at or touch them at any given
snapshot in time, then it is a perdurant.

2.1 Endurants: Parts, Components and Materials

Endurants are either discrete or continuous. With discrete endurants we can choose to
associate, or to not associate mereologies4. If we do we shall refer to them as parts, else we
shall call them components. With continuous endurants we do not associate mereologies. The
continuous endurants we shall also refer to as (gaseous or liquid) materials. Parts are either
atomic or composite and all parts have unique identifiers, mereology and attributes. If the
observed part, p:P , is composite then we can observe the part sorts and values, P1, P2, ..., Pm

respectively p1, p2, ..., pm of p. “Applying” observe part sorts to p yields an informal (i.e., a
narrative) and a formal description:

Schema: Composite Parts

• Narrative:

⋄⋄ ...

• Formal:

⋄⋄ type

◦◦ P1, P2, ..., Pm,

⋄⋄ value

◦◦ obs Pi: P → Pi,

repeated for all m part sorts Pis” !

Aircraft Example 1: The Pragmatics

The pragmatics5 of this ongoing example is this: We are dealing with ordinary passenger
aircraft. We are focusing on that tiny area of concern that focus on passengers being
informed of the progress of the flight, once in the air: where is the aircraft: its current
position somewhere above the earth; its current speed and direction and possible acceleration
(or deceleration); We do not bother about what time it is – etc. We abstract from the
concrete presentation of this information.

Aircraft Example 2: Parts

1 An aircraft is composed from several parts of which we focus on

a a position part,

4— ‘mereology’ will be explained next
5Pragmatics is here used in the sense outlined in [4, Chapter 7, Pages 145–148].
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b a travel dynamics part, and

c a display part.

type

1 AC, PP, TD, DP
value

1a obs PP: AC → PP
1b obs TD: AC → TD
1c obs DP: AC → DP

We have just summarised the analysis and description aspects of endurants in extension (their
“form”). We now summarise the analysis and description aspects of endurants in intension
(their “contents”). There are three kinds of intensional qualities associated with parts, two
with components, and one with materials. Parts and components, by definition, have unique
identifiers; parts have mereologies, and all endurants have attributes.

2.2 Internal Qualities

2.2.1 Unique Identifiers

Unique identifiers are further undefined tokens that uniquely identify parts and components.
The description language observer uid P, when applied to parts p:P yields the unique iden-
tifier, π:Π, of p. So the observe part sorts(p) invocation also yields the description text:

Schema: Unique Identifiers

• ... [added to the narrative and]

• type

⋄⋄ Π1,Π2, ...,Πm;

• value

⋄⋄ uid Πi : Pi→Πi,

repeated for all m part sorts Pis and added to the formalisation.

Aircraft Example 3: Unique Identifiers

2 position, travel dynamic and display parts have unique identifiers.

type

2 PPI, TDI, DPI
value

2 uid PP: PP → PPI
2 uid TD: TD → TDI

c© D.Bjørner 2017, Fredsvej 11, 2840 Holtes, Denmark.November 16, 2017: 00:23 6 The Manifest Domain Analysis & Description Approach
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2 uid DP: DP → DPI

2.2.2 Mereology

Mereology is the study and knowledge of parts and part relations. The mereology of a part is
an expression over the unique identifiers of the (other) parts with which it is related, hence
mereo P: P→E(Πj , ...,Πk) where E(Πj , ...,Πk) is a type expression. So the observe part sorts(p)
invocation also yields the description text:

Schema: Mereology

• ... [added to the narrative and]

• value

⋄⋄ mereo Pi : Pi→Ei(Πij , ...,Πik ) [added to the formalisation]

Aircraft Example 4: Mereology
We shall omit treatment of aircraft mereologies.

3 The position part is related to the display part.

4 The travel dynamics part is related to the display part.

5 The display part is related to both the position and the travel dynamics parts.

value

3 mereo PP: PP → DPI
4 mereo TD: TP → DPI
4 mereo DP: DP → PPI×TDI

2.2.3 Attributes

Attributes are the remaining qualities of endurants. The analysis prompt obs attributes
applied to an endurant yields a set of type names, A1, A2, ..., At, of attributes. They imply
the additional description text:

Schema: Attributes

• Narrative:

⋄⋄ ...

• Formal:

⋄⋄ type

◦◦ A1, A2, ..., At

to Implicit and Explicit Semantics 7 c© D.Bjørner 2017. Fredsvej 11, 2840 Holtes, Denmark. November 16, 2017: 00:23
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⋄⋄ value

◦◦ attr Ai: E → Ai

repeated for all t attribute sorts Ais !

Aircraft Example 5: Position Attributes

6 Position parts have longitude, latitude and altitude attributes.

type

6 LO, LA, AL
value

6 attr LO: PP → LO
6 attr LA: PP → LA
6 attr AL: PP → AL

These quantities: longitude, latitude and altitude are “actual” quantities, they mean what
they express, they are not recordings or displays of these quantities; to express those we
introduce separate types.

Aircraft Example 6: Travel Dynamics Attributes

7 Travel dynamics parts have velocity6 and acceleration7 .

type

7 VEL, ACC
value

7 attr VEL: TD → VEL
7 attr ACC: TD → ACC

These quantities: velocity and acceleration, are “actual” quantities, they mean what they
express, they are not recordings or displays of these quantities; to express those we introduce
separate types.

1

Aircraft Example 7: Quantity Recordings

8 On one hand there are the actual location and dynamics quantities (i.e., values),

9 on the other hand there are their recodings,

10 and there are conversion functions from actual to recorded values.

type

8 LO, LA, AL, VEL, ACC

6Velocity is a vector of speed and orientation (i.e., direction)
7Acceleration is a vector of change of speed per time unit and orientation.

c© D.Bjørner 2017, Fredsvej 11, 2840 Holtes, Denmark.November 16, 2017: 00:23 8 The Manifest Domain Analysis & Description Approach
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9 rLO, rLA, rAL, rVEL, rACC
value

10 a2rLO: LO → rLO, a2rLA: LA → rLA, a2rAL: AL → rAL
10 a2rVEL: VEL → rVEL, a2rACC: ACC → rACC

There are, of course, no functions that convert recordings to actual values !

Aircraft Example 8: Display Attributes

11 Display parts have display modified longitude, latitude and altitude, and velocity
and acceleration attributes – with functions that convert between these, recorded and
displayed, attributes.

type

11 dLO, dLA, dAL
11 dVEL, dACC
value

11 attr dLO: DP → dLO
11 attr dLA: DP → dLA
11 attr dAL: DP → dAL
11 attr dVEL: DP → dVEL

11 attr dACC: DP → dACC
11 r2dLO,d2rLO: rLO ↔ dLO
11 r2dLA,d2rLA: rLA ↔ dLA
11 r2dAL,d2rAL: rAL ↔ dAL
11 r2dVEL,d2rVEL: rVEL ↔ dVEL
11 r2dACC,d2rACC: rACC ↔ dACC
axiom

∀ rlo:rLO • d2rLO(r2dLO(rlo))=rlo etcetera !

2.2.4 Attribute Categories

Michael A. Jackson [5] categorizes and defines attributes as either static or dynamic, with
dynamic attributes being either inert, reactive or active. The latter are then either autonomous,
biddable or programmable. This categorization has a strong bearing on how these (f.ex., part)
attributes are dealt with when now interpreting parts as behaviours.

Aircraft Example 9: Attribute Categories

12 Longitude, latitude, altitude, velocity and acceleration are all reactive attributes – they
change in response to the bidding of aircraft attributes that we have not covered8.

13 Their display modified forms are all programmable attributes.

attribute categories
12 reactive: LO,LA,AL,VEL,ACC
13 programmable: dLO,dLA,dAL,dVEL,dACC

8– for example: thrust, weight, lift, drag, rudder position, and aileron position – plus dozens of other –
attributes

to Implicit and Explicit Semantics 9 c© D.Bjørner 2017. Fredsvej 11, 2840 Holtes, Denmark. November 16, 2017: 00:23
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2.3 Description Axioms and Proof Obligations

In [1] we show that the description prompts may result in axioms or proof obligations. We
refer to [1] for details. Here we shall, but show one example of an axiom.

Aircraft Example 10: An Axiom

14 The displayed attributes must at any time be displayings of the corresponding recorded
position and travel dynamics attributes.

axiom

14 � ∀ ac:AC •

14 let (pp,td,di) = (obs PP(ac),obs TD(ac),obs DP(ac)) in
14 let (lo,la,at) = (attr LO(pp),attr LA(pp),attr AT(pp)),
14 (vel,acc,dir) = (attr VEL(td),obs ACC(td)),
14 (dlo,dla,dat) = (attr dLO(di),attr dLA(di),attr dAT(di)),
14 (dvel,dacc) = (attr dVEL(di),obs dACC(di)) in
14 (dlo,dla,dat) = (r2dLO(a2rLO(lo)),r2dLA(a2rLA(la)),r2dAL(a2rAL(at)))
14 ∧ (dvel,dacc) = (r2dVEL(a2rVEL(vel)),r2dACC(a2rACC(acc)))
14 end end

2.4 From Manifest Parts (Endurants) to Domain Behaviours (Perdurants)

[1] then presents a compiler which to manifest parts associate behaviours. These are then
specified as CSP [6] processes.

2.4.1 The Idea — by means of an example

The term aircraft can have the following “meanings”: the aircraft, as an endurant, parked at
the airport gate, i.e., as a composite part; the aircraft, as a perdurant, as it flies through the
skies, i.e., as a behaviour; and the aircraft, as an attribute, of an airline timetable.

Aircraft Example 11: An Informal Story
An aircraft has the following behaviours: the position behaviour; it observes the aircraft
location attributes: longitude, latitude and altitude, record and communicate these, as a
triple, to the display behaviour; the travel dynamics behaviour; it observes the aircraft travel
dynamics attributes velocity and acceleration, record and communicate these, as a triple,
to the display behaviour; and the display behaviour receives two tuplets of attribute value
recordings from respective position and travel dynamics behaviours and display these recorded
attribute values: longitude, latitude, altitude, velocity and acceleration in some form.

c© D.Bjørner 2017, Fredsvej 11, 2840 Holtes, Denmark.November 16, 2017: 00:23 10 The Manifest Domain Analysis & Description Approach



11

travel dynamics

position
po_fi_ch

td_di_ch
aircraftdisplay

a
tt

r_
L

O
_

c
h

a
tt

r_
L

A
_

c
h

a
tt

r_
A

L
_

c
h

a
tt

r_
A

C
C

_
c

h

a
tt

r_
V

E
L

_
c

h

The six actual position and travel dynamics attribute values longitude, latitude, altitude, veloc-
ity and acceleration are recorded, by appropriate instruments. In the above figure this is in-
dicated by input channels attr LO ch, attr LA ch, attr AL ch, attr VEL ch and attr ACC ch.

2.4.2 Channels and Communication

Behaviours sometimes synchronise and usually communicate. We use the CSP [6] notation
(adopted by RSL) to model behaviour communication. Communication is abstracted as the
sending, ch !m, and receipt, ch ?, of messages, m:M, over channels, ch.

type M
channel ch:M

Aircraft Example 12: Channels
For this example we focus only on communications from the position and travel dynamics
behaviours to the display behaviour.

15 The messages sent from the position behaviour to the display behaviour are triplets of
recorded longitude, latitude and altitude values.

16 The messages sent from the travel dynamics behaviour to the display behaviour are
duplets of of recorded velocity and acceleration values.

17 There is a channel, po di ch, that allows communication of messages from the position
behaviour to the display behaviour.

18 There is a channel, td di ch, that allows communication of messages from the travel
dynamics behaviour to the display behaviour.

19 For each of the reactive attributes there is a corresponding channel.

type

to Implicit and Explicit Semantics 11 c© D.Bjørner 2017. Fredsvej 11, 2840 Holtes, Denmark. November 16, 2017: 00:23
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15 PM = rLO × rLA × rAL
16 TDM = rVEL × rACC
channel

17 po di ch:PM
18 td di ch:TDM
19 attr LO ch:LO, attr LA ch:LA, attr AL ch:AL
19 attr VEL ch:VEL, attr ACC ch:ACC

2.4.3 Behaviour Signatures

We shall only cover behaviour signatures when expressed in RSL/CSP [7]. The behaviour
functions are now called processes. That a behaviour function is a never-ending function, i.e.,
a process, is “revealed” in the function signature by the “trailing” Unit:

behaviour: ... → ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

That a process accepts channel, viz.: ch, inputs, including accesses an external attribute
A, is “revealed” in the function signature as follows:

behaviour: ... → in ch ... , resp. in attr A ch

That a process offers channel, viz.: ch, outputs is “revealed” in the function signature as
follows:

behaviour: ... → out ch ...

That a process accepts other arguments is “revealed” in the function signature as follows:

behaviour: ARG → ...

where ARG can be any type expression:

T, T→T, T→T→T, etcetera

where T is any type expression.

2.4.4 Translation of Part Qualities

Part qualities, that is: unique identifiers, mereologies and attributes, are translated into be-
haviour arguments – of one kind or another, i.e., (...). Typically we can choose to index
behaviour names, b by the unique identifier, id, of the part based on which they were trans-
lated, i.e., bid. Mereology values are usually static, and can, as thus, be treated like we treat
static attributes (see next), or can be set by their behaviour, and are then treated like we
treat programmable attributes (see next), i.e., (...). Static attributes become behaviour def-
inition (body) constant values. Inert, reactive and autonomous attributes become references
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to channels, say ch dyn, such that when an inert, reactive and autonomous attribute value is
required it is expressed as ch dyn ?. Programmable and biddable attributes become arguments
which are passed on to the tail-recursive invocations of the behaviour, and possibly updated
as specified [with]in the body of the definition of the behaviour, i.e., (...).

2.4.5 Part Behaviour Signatures

We can, without loss of generality, associate with each part a behaviour; parts which share
attributes (and are therefore referred to in some parts’ mereology), can communicate (their
“sharing”) via channels. A behaviour signature is therefore:

behπ:Π: me:MT×sa:SA→ca:CA→in ichns(ea:EA) in,out iochs(me) Unit

where (i) π:Π is the unique identifier of part p, i.e., π=uid P(p), (ii) me:ME is the mereology
of part p, me = obs mereo P(p), (iii) sa:SA lists the static attribute values of the part, (iv)
ca:CA lists the biddable and programmable attribute values of the part, (v) ichns(ea:EA)
refer to the external attribute input channels, and where (vi) iochs(me) are the input/output
channels serving the attributes shared between the part p and the parts designated in its
mereology me.

Aircraft Example 13: Part Behaviour Signatures, I/II
We omit the signature of the aircraft behaviour.

20 The signature of the position behaviour lists its unique identifier, mereology, no static
and no controllable attributes, but its three reactive attributes (as input channels)
and its (output) channel to the display behaviour.

21 The signature of the travel dynamics behaviour lists its unique identifier, mereology,
no static and no controllable attributes, but its three reactive attributes (as input
channels) and its (output) channel to the display behaviour..

22 The signature of the display behaviour lists its unique identifier, its mereology, no
static attribute, but the programmable display attributes, assembled in a pair of a
triplet and duplet, and its two input channels from the position, respectively the travel
dynamics behaviours.

Aircraft Example 14: Part Behaviour Signatures, I/II

type

22 DA = (dLA×dLO×dAL)×(dVEL×dACC)
value

20 position: PI × DPI →
20 in attr LO ch,attr LA ch,attr AL ch, out po di ch Unit

21 travel dynamics: TDI × DPI →
21 in attr VEL ch,attr ACC ch,attr DIR ch, out td di ch Unit

22 display: DI × (PPI×TDI) → DA → in po di ch, td di ch Unit
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2.4.6 Behaviour Compilations

Composite Behaviours Let P be a composite sort defined in terms of sub-sorts P1, P2,
. . . , Pn. The process definition compiled from p:P, is composed from a process description,
McPuid P (p), relying on and handling the unique identifier, mereology and attributes of
part p operating in parallel with processes p1, p2, . . . , pn where p1 is compiled from p1:P1,
p2 is compiled from p2:P2, ..., and pn is compiled from pn:Pn. The domain description
“compilation” schematic below “formalises” the above.

Process Schema: Abstract is composite(p)

value

compile process: P → RSL-Text
compile process(p) ≡

MPuid P (p)(obs mereo P(p),SA(p))(CA(p))

‖ compile process(obs part P1(p))
‖ compile process(obs part P2(p))
‖ ...

‖ compile process(obs part Pn(p))

The text macros: SA and CA were informally explained above. Part sorts P1, P2, ..., Pn are
obtained from the observe part sorts prompt.

Aircraft Example 15: Aircraft Behaviour, I/II

23 Compiling a composite aircraft part results in the parallel composition

a the compilation of the atomic position part,

b the compilation of the atomic travel dynamics part, and

c the compilation of the atomic display part.

We omit compiling the aircraft core behaviour.

24 Compilation of atomic parts entail no further compilations.

Aircraft Example 15: Aircraft Behaviour, II/II

value

23 compile(ac) ≡
23a compile(obs PP(p))
23b ‖ compile(obs TD(p))
23c ‖ compile(obs DI(p))

Atomic Behaviours
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Process Schema: is atomic(p)

value

compile process: P → RSL-Text
compile process(p) ≡

MPuid P (p)(obs mereo P(p),SA(p))(CA(p))

Aircraft Example 16: Atomic Behaviours

25 We initialise the display behaviour with a further undefined value.

value

23a compile(obs PP(p))≡
23a position(uid PP(p),mereo PP(p))
23b compile(obs TD(p)) ≡
23b travel dynamics(uid TD(p),mereo TD(p))
25 init DA:DA = ...

23c compile(obs DI(p)) ≡
23c display(.uid DI(p),mereo DI(p))(init DA)

In the above we have already subsumed the atomic behaviour definitions, see next, and directly
inserted the F definitions.

2.4.7 Atomic Behaviour Definitions

Process Schema IV: Atomic Core Processes

value

MPπ:Π: me:MT×sa:SA → ca:CA →
in ichns(ea:EA) in,out iochs(me) Unit

MPπ:Π(me,sa)(ca) ≡
let (me′,ca′) = Fπ:Π(me,sa)(ca) in
MPπ:Π(me′,sa)(ca′) end

Fπ:Π: me:MT×sa:SA → CA →
in ichns(ea:EA) in,out iochs(me) → MT×CA

Aircraft Example 17: Position Behaviour Definition

26 The position behaviour offers to receive the longitude, latitude and the altitude attribute
values

27 and to offer them to the display behaviour,
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28 whereupon it resumes being the position behaviour.

value

20 position(pπ,dπ) ≡
26 let (lo,la,al) = (attr LO ch?,attr LA ch?,attr AL ch?) in

27 po di ch ! (a2rLO(lo),a2rLA(la),a2rAL(al)) ;
28 position(pπ,dπ) end

Aircraft Example 18: Travel Dynamics Behaviour Definition

29 The travel dynamics behaviour offers to receive the recorded velocity and the accelera-
tion attribute values

30 and to offer these to the display behaviour,

31 whereupon it resumes being the travel dynamics behaviour.

value

21 travel dynamics(tdπ,dπ) ≡
29 let (vel,acc)=(attr VEL ch?,attr ACC ch?) in

30 td di ch ! (a2rVEL(vel),a2rACC(acc)) ;
31 travel dynamics(tdπ,dπ) end

Aircraft Example 19: Display Behaviour Definition

32 The display behaviour offers to receive the reactive attribute tuplets from the position
and the travel dynamics behaviours while

33 resuming to be that behaviour albeit now with these as their updated display.

34 The conversion functions are extensions of the ones introduced earlier.

value

22 display(dπ,(dπ,tdπ))(d pos,d tdy) ≡
32 let (pos d′,tdy d′) = (po di ch?,td di ch?) in

33 display(dπ,(dπ,tdπ))(conv(pos d′),conv(c tdy d′)) end
type

34 dMPD = dLO × dLA × dAL
34 dMTD = dVEL × dACC
value

34 conv: MPD → dMPD
34 conv(rlo,rla,ral) ≡ (r2dLO(rlo),r2dLA(rla),r2dAL(ral))
34 conv: MTD → dMTD
34 conv(rvel,racc) ≡ (r2dVEL(rvel),r2dACC(racc))

c© D.Bjørner 2017, Fredsvej 11, 2840 Holtes, Denmark.November 16, 2017: 00:23 16 The Manifest Domain Analysis & Description Approach



17

2.5 A Proof Obligation

We refer, again, to [1] for more on proof obligations.

Aircraft Example 20: A Proof Obligation
The perdurant descriptions of Items 15–34 is a model of the axiom expressed in Item 14.

3 Calculations in Classical Domains: Some Simple Observations

This section covers three loosely related topics: Sect. 3.1 muses over properties of some
attribute values. Then, Sect. 3.2 we recall some facts about types, scales and values of mea-
surable units in physics. The previous leads us, in Sect. 3.3 to consider further detailing the
concept of attributes such as we have covered it in Sect. 2.2.3, Pages and in [1]. The reason
for covering these topics is that most attribute values are represented in “final” programs as
numbers of one kind or another and that type checking in most software is with respect to
these numbers.

3.1 Some Observations on Some Attribute Values

Let us, seemingly randomly, examine some simple, e.g., arithmetic, operations in classical
domains. By time is often meant absolute time. So a time could be November 16, 2017:
00:23 am. One can not add two times. One can speak of a time being earlier, or before
another time. October 23, 2017: 10:01 am is earlier, ≤, than November 16, 2017: 00:23 am.
One can speak of the time interval between October 23, 2016: 8:01 am and October 24, 2017:
10:05 am being 1 year, 1 day, 2 hours and 4 minutes, that is: October 24, 2017: 10:05 am ⊖
October 23, 2016: 8:01 am = 1 year, 1 day, 2 hours and 4 minutes One can add a time interval
to a time and obtain a time. One can multiply a time interval with a real9 We can formalize
the above:

type

T = Month×Day×Year×Hour×Minute×Sec...
TI = Days×Hours×Minutes×Seconds×...

Month = {|1,2,3,4,5,6,7,8,9,10,11,12|}
Day = {|1,2,3,4,...,28,29,30,31|}
Hour,Hours = {|0,1,2,3,...,21,22,23|}
Minute,Minutes = {|0,1,2,3,....,56,57,58,59|}
Second,Seconds = {|0,1,2,3,....,56,57,58,59|}
...

Days = Nat

value

<,≤,=,≥,>: T × T → Boole

−: T × T → TI pre t−t′: t′≤t
<,≤,=,≥,>: TI × TI → Bool

−,+: TI × TI → TI

∗: TI × Real → TI

/: TI × TI → Real

One can not add temperatures – makes no sense in physics ! But one can take the mean value
of two (or more) temperatures. One can subtract temperatures obtaining positive or negative
temperature intervals. One can take the mean of any number of temperature, but would

9The time interval could, e.g., be converted into seconds, then the integer number standing for seconds
can be multiplied by r and the result be converted “back” into years, days, hours, minutes and seconds —
whatever it takes !
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probably be well advised to have these represent regular sampling, or at least time-stamped.
One can also define rate of change of temperature.

type

Temp, MeanTemp, Degrees, TempIntv = Degrees
value

mean: Temp-set × Nat → MeanTemp
−: Temp × Temp → TempIntv

type

TST = (Temp × T)-set
value

avg: TST → MeanTemp
type

TimeUnit = {|”year”,”month”,”day””,hour”,...|}
RoTC = TempIntv × TimeUnit

Etcetera. We leave it to the reader to speculate on which operations one can perform on a
persons’ attributes: height, weight, birth date, name, etc. And similarly for other domains.
It is time to “lift” these observations. After the examples above we should inquire as to which
kind of units we may operate upon. For the sake of our later exposition it is enough that we
look in some detail at the “universe” of physics.

3.2 Physics Attributes

3.2.1 SI: The International System of Quantities

In physics we operate on values of attributes of manifest, i.e., physical phenomena. The type
of some of these attributes are recorded in well known tables, cf. Tables 1–3.

Table 1 shows the base units of physics.

Base quantity Name Type

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Table 1: Base Units

Table 2 on the facing page shows the units of physics derived from the base units.

Table 3 on page 20 shows further units of physics derived from the base units.

Table 4 on page 20 shows standard prefixes for SI units of measure.

Table 5 on page 21 shows fractions of SI units of measure.

These “pictures” are meant as an eye opener, a “teaser”.
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Name Type Derived Quantity Derived Type

radian rad angle m/m
steradian sr solid angle m2×m−2

Hertz Hz frequency s−1

newton N force, weight kg×m×s−2

pascal Pa pressure, stress N/m2

joule J energy, work, heat N×m
watt W power, radiant flux J/s
coulomb C electric charge s×A
volt V voltage, electromotive force W/A (kg×m2×s−3×A−1)
farad F capacitance C/V (kg−1×m−2×s4×A2)
ohm Ω electrical resistance V/A (kg×m2×s3×A2)
siemens S electrical conductance A/V (kg1×m2×s3×A2

weber Wb magnetic flux V×s (kg×m2×s−2×A−1)
tesla T magnetic flux density Wb/m2 (kg×s2×A−1)
henry H inductance Wb/A (kg×m2×s−2×A2)
degree Celsius oC temperature relative to 273.15 K K
lumen lm luminous flux cd×sr (cd)
lux lx illuminance lm/m2 (m2×cd)

Table 2: Derived Units

And these formulas likewise !

Carnot Engine Bernoulli Flow

The point in bringing this material is that when modelling, i.e., describing domains we

to Implicit and Explicit Semantics 19 c© D.Bjørner 2017. Fredsvej 11, 2840 Holtes, Denmark. November 16, 2017: 00:23



20

Name Explanation Derived Type

area square meter m2

volume cubic meter m3

speed, velocity meter per second m/s
acceleration meter per second squared m/s2

wave number reciprocal meter m-1
mass density kilogram per cubic meter kg/m3

specific volume cubic meter per kilogram m3/kg
current density ampere per square meter A/m2

magnetic field strength ampere per meter A/m
amount-of-substance concentration mole per cubic meter mol/m3
luminance candela per square meter cd/m2

mass fraction kilogram per kilogram kg/kg = 1

Table 3: Further Units

Prefix name deca hecto kilo mega giga tera peta exa zetta yotta
Prefix symbol da h k M G T P E Z Y
Factor 100 101 102 103 106 109 1012 1015 1018 1021 1024

Table 4: Standard Prefixes for SI Units of Measure

must be extremely careful in not falling into the trap of modelling physics, etc., types as we
do in programming !

3.2.2 What Are We to Learn from this Exposition ?

We see from the previous section , Sect. 3.2, that physics units can be highly “structured”10.
What Are We to Learn from this Exposition ? I think it is this: It is customary, in programs
of languages from Algol 60 via Pascal to Java, to assign float or double11 types, as
in Java, to [constants or] variables that for example represent values of physics. So rather
completely different types of physics units are all cast into a same, simple-minded, “number” type.
No chance, really, for any meaningful type checking.

3.3 Attribute Types, Scales and Values: Some Thoughts

This section further elaborates on the treatment of attributes given in Sect. 2.2.3, Pages 7–9.
The elaboration is only sketched. It need be studied, in detail.

The elaboration is this: The attr A observer function, for a part p of sort P, such as defined
in Sect. 2.2.3 (Page 8)yields values of type A. In the revised understanding of attributesthe
attr A observer is now to yield both the type, AT, and the value, AV, of attribute A:

type

AT, AV
value

attr A: P → AT × AV

10For example, Newton: kg×m×s−2, Volt = kg×m2
×s−3

×A−1, etc.
11representing single-, resp. double-precision 32-bit IEEE 754 floating point values
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Prefix name deci centi milli micro nano pico femto atto zepto yocto
Prefix symbol d c m µ n p f a z y
Factor 100 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−18 10−21 10−24

Table 5: Fractions

You may think of A being defined by AT × AV.

The revision is further that a domain analysis & description of the operations over at-
tributes values, θ:

θ: Ai×Aj×...×Ak → V

be carefully checked – such as hinted at in Sect. 3.1 on page 17.

Whether such operator-checks be researched and documented “once-and-for-all” for given
“standard” domains, by domain scientists, or per domain model, by domain engineers, in con-
nection with specific software development projects is left for you to decide ! These operator-
checks, if not pursued, results in implicit semantics, and if pursued, results in explicit seman-
tics.

4 Conclusion

4.1 What Have We Achieved ?

We have suggested that the issue of implicit semantics [2] be resolved by providing a carefully
analysed and described domain model [1] prior to requirements capture and software design, a
both informally annotated and formally specified model that goes beyond [1] in its treatment
of attributes in that these are now endowed with types [and possibly scales (or fractions)]
and that each specific domain model analyses and formalises the constraints that operations
upon attribute values are carefully analysed, statically.

4.2 Domain Descriptions as Basis for Requirements Prescriptions

This paper covers but one aspect of software development.

• [8] covers additional facets of domain analysis & description.

• [9] offers a systematic approach to requirements engineering based on domain de-
scriptions. It is this approach that justifies our claim that domain modelling “alle-
viate the issue of implicit semantics.”

• [10] presents an operational/denotational semantics of the manifest domain analysis &
description calculus of [1].

• [11]12 shows that to every manifest mereology there corresponds a CSP expression.

• [12] muses over issues of software simulators, demos, monitors and controllers.

12Accepted for publication in Journal of Logical and Algebraic Methods in Programming, 2018.
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4.3 What Next ?

Well, there is a lot of fascinating research to be done now. Studying analysis & description
techniques for attribute types, values and constraints. And for engineering their support.

4.4 Thanks

to J. Paul Gibson and Dominique Méry for inviting me, to J. Paul Gibson for organising
my flights, hotel and registration, and to Dominique Méry for his patience in waiting for my
written contribution.
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[3] Yamine Ait-Ameur and Dominique Méry. Making explicit domain knowledge in formal system devel-
opment. Science of Computer Programming, (121):120–127, 2016.

[4] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily
authored by Christian Krog Madsen.

[5] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and
prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[6] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/-
cspbook.pdf (2004).

c© D.Bjørner 2017, Fredsvej 11, 2840 Holtes, Denmark.November 16, 2017: 00:23 22 The Manifest Domain Analysis & Description Approach



23

[7] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix
Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practi-
tioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[8] Dines Bjørner. Domain Facets: Analysis & Description. 2016. Extensive revision of [28]. http://-
www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[9] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to
Requirements Engineering. 2016. Extensive revision of [29].

[10] Dines Bjørner. Domain Analysis and Description – Formal Models of Processes and Prompts. 2016.
Extensive revision of [30]. http://www.imm.dtu.dk/˜dibj/2016/process/process-p.pdf.

[11] Dines Bjørner. To Every Manifest Domain a CSP Expression — A Rôle for Mereology in Computer
Science. Journal of Logical and Algebraic Methods in Programming, Accepted for publication. 2018.
http://www.imm.dtu.dk/˜dibj/2016/mereo/mereo.pdf.

[12] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and
Suggestions. Technical report, Fredsvej 11, DK–2840 Holte, Denmark, 2016. Extensive revision of
[31]. http://www.imm.dtu.dk/˜dibj/2016/demos/faoc-demo.pdf.

[13] Dines Bjørner. Urban Planning Processes. Research Note, July 2017. http://www.imm.dtu.dk/˜dibj/-
2017/up/urban-planning.pdf.

[14] Dines Bjørner. What are Documents ? Research Note, July 2017. http://www.imm.dtu.dk/˜dibj/-
2017/docs/docs.pdf.

[15] Dines Bjørner. A Credit Card System: Uppsala Draft. Technical Report: Ex-
perimental Research, Fredsvej 11, DK–2840 Holte, Denmark, November 2016.
http://www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf.

[16] Dines Bjørner. Weather Information Systems: Towards a Domain Description. Techni-
cal Report: Experimental Research, Fredsvej 11, DK–2840 Holte, Denmark, November 2016.
http://www.imm.dtu.dk/˜dibj/2016/wis/wis-p.pdf.

[17] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Fredsvej 11, DK-
2840 Holte, Denmark, January and February, 2010. Version 1, 78 pages: many auxiliary appendices.
http://www2.imm.dtu.dk/ db/todai/tse-1.pdf, Version 2, 23 pages: omits many appendices and cor-
rects some errors.. http://www2.imm.dtu.dk/ db/todai/tse-2.pdf.

[18] Dines Bjørner. Pipelines – a Domain Description. http://www.imm.dtu.dk/˜dibj/pipe-p.pdf. Exper-
imental Research Report 2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring
2013.

[19] Dines Bjørner. Road Transportation – a Domain Description. http://www.imm.dtu.dk/˜dibj/road-
p.pdf. Experimental Research Report 2013-4, DTU Compute and Fredsvej 11, DK-2840 Holte, Den-
mark, Spring 2013.

[20] Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas
and Suggestions. Technical, Technical University of Vienna, August–October 2010.
http://www.imm.dtu.dk/˜dibj/wfdftp.pdf.

[21] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Sys-
tems. In Practical Foundations of Business and System Specifications (Eds.: Haim Kilov and
Ken Baclawski), The Netherlands, December 2002. Kluwer Academic Press. Final draft version.
http://www2.imm.dtu.dk/ db/themarket.pdf.

[22] Dines Bjørner. A Container Line Industry Domain. Techn. report, Fredsvej 11, DK-2840 Holte,
Denmark, June 2007. Extensive Draft. http://www2.imm.dtu.dk/ db/container-paper.pdf.

to Implicit and Explicit Semantics 23 c© D.Bjørner 2017. Fredsvej 11, 2840 Holtes, Denmark. November 16, 2017: 00:23



24

[23] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor,
9th IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical University, Braun-
schweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-
Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

[24] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for
Domain Engineering. Relations to Requirements Engineering and Software for Control Applications. In
Integrated Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box
1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Science.
Extended version. http://www2.imm.dtu.dk/ db/pasadena-25.pdf.

[25] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software
Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK,
August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and
M. Aoki. Final version. http://www2.imm.dtu.dk/ db/ifac-dynamics.pdf.
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