
Domain Science & Engineering

A Review of 10 Years Work

Invited Talk at the ZCC Fest, 20 October 2017, Changsha, China

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

October 20, 2017: 01:12 am

1

2
1. Introduction

1. Introduction

• I survey recent work in the area of domain science & engineering .

• It is based on the triptych dogma:

⋄⋄ before software can be designed
we must understand its requirements,

⋄⋄ and before we can prescribe the requirements
we must understand the domain.

• Not the “whole world”, but “more than sufficient !”.1

1In our research into domain science & engineering
we insist on first modelling the domain.
Requirements engineering may then reveal whether
we have described all the pertinent properties, or ...

31. Introduction

• A strict, but not a necessary, interpretation of this dogma thus
suggests that software development “ideally” proceeds in three
phases:

⋄⋄ First a phase of domain engineering in which an analysis of
the application domain leads to a description of that domain.

⋄⋄ Then a phase of requirements engineering in which an
analysis of the domain description leads to a prescription of
requirements to software for that domain.

⋄⋄ And, finally, a phase of software design in which an analysis of
the requirements prescription leads to software for that domain.

4 1. Introduction 1.1. Recent Papers

1.1. Recent Papers
Over the last decade I have iterated a number of
investigations of aspects of the triptych dogma.
This has resulted in a number of papers (and revised reports):

•Manifest Domains: Analysis & Description [1] FAoC, March 2017

• Domain Facets: Analysis & Description [2, 3]

• Formal Models of Processes and Prompts [4, 5]

• To Every Manifest Mereology a CSP Expression [6] LAMP, early 2018

• From Domain Descriptions to Requirements Prescriptions [7, 8]

51. Introduction 1.2. Recent Experiments

1.2. Recent Experiments
Applications of the domain science and engineering outlined in [1]–[9]
are exemplified in reports and papers on experimental domain analysis
& description. Examples are:

• Urban Planning [10],

• Documents [11],

• Credit Cards [12],

•Weather Systems [13],

• The Tokyo Stock Exchange [14],

• Pipelines [15],

• Road Transportation [16],

•Web–based Software [17],

• “The Market” [18],

• Container Lines [19] and

• Railways [20, 21, 22, 23, 24].

6
1. Introduction 1.3. My Emphasis on Software Systems

1.3. My Emphasis on Software Systems

• An emphasis in my work has been on

⋄⋄ research into and experiments with application areas

⋄⋄ that required seemingly large scale software.

⋄⋄ Not on tiny, beautiful, essential data structures and algorithms.

• I first worked on the proper application of formal methods in
software engineering

• at the IBM Vienna Laboratory in the early 1970s.

• That was to the formalisation of the semantics of IBMs leading
programming language then, PL/I,

• and to a systematic development of a compiler for that language.

• The latter never transpired.

71. Introduction 1.3. My Emphasis on Software Systems

• Instead I got the chance to formulate the stages of development of a
compiler from a denotational semantics description to so-called
“running code” [25, 1977].

• That led, from 1978 onwards, to two MSc students and a colleague
and I working on a formal description of the CCITT
Communications High Level Language, CHILL and its compiler
[26, 27].

• And that led, in 1980, to five MSc students of ours producing a
formal description of a semantics for the US DoD Ada
programming language [28].

• And that led to the formation of Dansk Datamatik Center [29]
which embarked on the CHILL and Ada compiler developments
[30, 31].

8 1. Introduction 1.3. My Emphasis on Software Systems

• To my knowledge that project

⋄⋄ which was on time, at budget, and

⋄⋄ with a history of less that 3% cost of original budget

⋄⋄ for subsequent error correction
over the first 20 years of use of that compiler

⋄⋄ was a first, large, successful example

⋄⋄ of the systematic use of formal methods

⋄⋄ in large scale (42 man years) software development.

91. Introduction 1.4. How Did We Get to Domain Science & Engineering ?

1.4. How Did We Get to Domain Science & Engineering ?

• So that is how we came

⋄⋄ from the semantics of programming languages

⋄⋄ to the semantics of human-centered, manifest application domain
software development.

• Programming language semantics

⋄⋄ has to do with the meaning of abstract concepts

⋄⋄ such as programs, procedures, expressions, statements, GOTOs,
labels, etc.

10 1. Introduction 1.4. How Did We Get to Domain Science & Engineering ?

• Domain semantics, for manifest domains,

⋄⋄ in so far as we can narrate and formalize it, or them,

⋄⋄ must capture some “meanings”
of the manifest objects that we can touch and see,

⋄⋄ of the actions we perform on them,

⋄⋄ and of the sentences by means of which
we talk about those phenomena in the domain.

111. Introduction 1.5. Method & Methodology

1.5. Method & Methodology

• By a method I understand

⋄⋄ a set of principles

⋄⋄ for selecting and applying

⋄⋄ techniques and tools

for constructing a manifest or an abstract artifact.

• By methodology I understand the study and knowledge of
methods.

• My contributions over the years have contributed

⋄⋄ to methods for software design

⋄⋄ and, now, for the last many years,

methods for domain analysis & description.

12
1. Introduction 1.6. Computer & Computing Sciences

1.6. Computer & Computing Sciences

• By computer science I understand

⋄⋄ the study and knowledge about the things

⋄⋄ that can exist inside computing devices.

• By computing science I understand

⋄⋄ the study and knowledge about how to construct the things

⋄⋄ that can exist inside computing devices.

Computing science is also often referred to
as programming methodology.

• My work is almost exclusively in the area of computing science.

13
2. The Papers

2. The Papers

• IM2HO I consider the first of the papers reviewed, [1],
my most important paper.

⋄⋄ It was conceived of last2,

⋄⋄ after publication of three of the other papers [3, 8, 9].

⋄⋄ Experimental evidence then necessitated extensive revisions to
these other papers, resulting in [2, 7, 34].

• In the following I will review [1].

• I will then – one to two slides – briefly summarize

⋄⋄ [2] and [7]
(they are methodology-, cum domain engineering-, oriented), and

⋄⋄ [4, 6] (which are domain science-oriented).

2Publication [32, 33] is a predecessor of [1].

14 3. Manifest Domains: Analysis & Description [1]

3. Manifest Domains: Analysis & Description [1]

• This work grew out of many years of search

⋄⋄ for principles, techniques and tools for

⋄⋄ systematically analyzing and describing manifest domains.

• By a manifest domain we shall understand a domain
whose entities we can observe
and whose endurants we can touch !

15
3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology

3.1. A Domain Ontology
3.1.1. Parts, Components and Materials

• The result became a calculus of analysis and description prompts3.

⋄⋄ These prompts are tools
that the domain analyser & describer uses.

⋄⋄ The domain analyser & describer is in the domain,
sees it, can touch it, and then applies the prompts,
in some orderly fashion, to what is being observed.

◦◦ So, on one hand, there is the necessarily informal domain, and,

◦◦ on the other hand, there are the seemingly formal prompts

◦◦ and the “suggestions for something to be said”, i.e., written
down: narrated and formalised.

3Prompt, as a verb: to move or induce to action; to occasion or incite; inspire; to assist (a person

speaking) by ”suggesting something to be said”.

16
3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

=

attribute categories

attributes

Describable Non−describable

Event Behaviour

Signature Definition

is_endurant

is_entity

is_material
is_continuous

is_discrete

is_atomic

static

reactive

autonomous
biddable

programmable

obs_uid

unique id
entifi

ers

has_materials −> obs_materials

obs_mere
ology

−>

has_mere
ology

Action Channel

endurants: contents

en
du

ra
nt

s:
 fo

rm

analysis prompts

description prompts

is an abbreviation for ‘observe’

is_part

is_perdurant

An Ontology for Manifest Domains "a thing"

attribute categories

obs_

is_composite
−>

−>

obs_part_type−>
has_concrete_type

obs_material

is_component
obs_comp_sorts

−> implies

−>has_components

obs_part_
sorts

obs_comp_sorts

dynamic

obs_attributes

activeinert

17
3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• The figure suggests a number of analysis and description
prompts.

⋄⋄ The domain analyser & describer is “positioned” at the top.

⋄⋄ If what is observed can be conceived and described
then it is an entity.

⋄⋄ If it can be described as a “complete thing”
at no matter which given snapshot of time
then it is an endurant.

⋄⋄ If it is an entity but for which only a fragment exists
if we look at or touch them at any given snapshot in time,
then it is a perdurant.

18 3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• Endurants are either discrete or continuous.

•With discrete endurants we can choose to associate, or to not
associate mereologies4.

⋄⋄ If we do we shall refer to as parts,

⋄⋄ else we shall call them components.

• The continuous endurants we shall also refer to as
(gaseous or liquid) materials.

4— ‘mereology’ will be explained next

193. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

•Materials have types (i.e., are of sorts): Mi.

⋄⋄ Observing the (one) material, of type M ,
of an endurant e of sort E

⋄⋄ is expressed as obs material(e)

⋄⋄ which yields some narrative and some formal description text:

⋄⋄ Narrative:

◦◦ ...

⋄⋄ Formal:

◦◦ type

∗ M

◦◦ value

∗ obs M: E → M

• The narrative text (...) narrates what the formal text expresses5.
5– not how it expresses it, as, here, in the RAISE [35] Specification Language, RSL [36].

20 3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• Parts are either atomic or composite and all parts have

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ attributes.

• Atomic parts may have one or more materials

⋄⋄ in which case we may observe these materials: obs materials(p)

⋄⋄ which yields the informal and formal description:

213. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

•Narrative:

⋄⋄ ...

• Formal:

⋄⋄ type

◦◦ M1,M2, ...,Mn

⋄⋄ value

◦◦ obs Mi: P → Mi

repeated for all n Mis !

22

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• If the observed part, p:P , is composite

⋄⋄ then we can observe the part sorts, P1, P2, ..., Pm of p:

⋄⋄ observe part sorts(p) which yields the informal and formal
description:

•Narrative:

⋄⋄ ...

• Formal:

⋄⋄ type

◦◦ P1, P2, ..., Pm,

⋄⋄ value

◦◦ obs Pi: P → Pi,

repeated for all m part sorts Pis” !

23

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• Part sorts may have a concrete type: has concrete type(p)

• in which case observe concrete part type(p) yields

•Narrative:

⋄⋄ ...

• Formal:

⋄⋄ type:

◦◦ T = P − set,

⋄⋄ value

◦◦ obs T: P → K−set

where K−set is one of the concrete type forms,
and where K is some sort.

24

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• Components, i.e., discrete endurants for whom we do not consider
possible mereologies,

⋄⋄ can be observed from materials, m : M ,
or are just observed of discrete endurants, e : E:

⋄⋄ obs comp sorts(em) which yields
the informal and formal description:

•Narrative:

⋄⋄ ...

• Formal:

⋄⋄ type:

◦◦ C1, C2, ..., Cn

⋄⋄ value

◦◦ obs Ci: (E|M) → Ci

repeated for all n component sorts Cs” to the formal text !

25

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.1. Parts, Components and Materials

• • •

•We have just summarised the analysis and description aspects of
endurants in extension (their “form”).

•We now summarise the analysis and description aspects of
endurants in intension (their “contents”).

• There are three kinds of intensional qualities associated with parts,
two with components, and one with materials.

⋄⋄ Parts and components, by definition, have unique identifiers ;

⋄⋄ parts have mereologies,

⋄⋄ and all endurants have attributes.

26
3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.2. Unique identifiers

3.1.2. Unique identifiers

• Unique identifiers are further undefined tokens that uniquely
identify parts and components.

• The description language observer uid P, when applied to parts
p:P yields the unique identifier, π:Π, of p.

• So the observe part sorts(p) invocation also yields the
description text:

• ... [added to the narrative and]

• type

⋄⋄ Π1,Π2, ...,Πm;

• value

⋄⋄ uid Πi : Pi→Πi,

repeated for all m part sorts Pis and added to the formalisation.

27

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.3. Mereology

3.1.3. Mereology

•Mereology is the study and knowledge of parts and part relations.

⋄⋄ The mereology of a part is an expression over the unique
identifiers of the (other) parts with which it is related,

⋄⋄ hence mereo P: P→E(Πj, ...,Πk) where E(Πj, ...,Πk) is a type
expression.

⋄⋄ So the observe part sorts(p) invocation also yields the
description text:

• ... [added to the narrative and]

• value

⋄⋄ mereo Pi : Pi→Ei(Πij , ...,Πik
) [added to the formalisation]

28

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.3. Mereology

•Example:

⋄⋄ The mereologies, (i, o), of pipe units in a pipeline system

⋄⋄ thus express, for each kind of pipe unit,

whether it is

◦◦ a well,

◦◦ a linear pipe,
◦◦ a fork,
◦◦ a join,

◦◦ a pump,

◦◦ a valve, or

◦◦ a sink,

⋄⋄ the identities of the zero, one or two pipe units that it is
“connected” to on the input, i, respectively the output, o, side:

◦◦ for well (0, 1),

◦◦ for pipe (1, 1),

◦◦ for fork (1, 2),

◦◦ for join (2, 1),

◦◦ for valve (1, 1),

◦◦ for pump (1, 1),

◦◦ for sink (1, 0)

units

29
3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.4. Attributes

3.1.4. Attributes

⋄⋄ Attributes are the remaining qualities of endurants.

◦◦ The analysis prompt obs attributes applied to an endurant
yields a set of type names, A1, A2, ..., At, of attributes.

◦◦ They imply the additional description text:

⋄⋄ Narrative:

◦◦ ...

⋄⋄ Formal:

◦◦ type

∗ A1, A2, ..., At

◦◦ value

∗ attr Ai: E → Ai

repeated for all t attribute sorts Ais !

30

3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.4. Attributes

⋄⋄ Examples:

◦◦ Typical attributes of a person are

∗ Gender,
∗ Weight,

∗ Height,

∗ Birth date,

etcetera.

◦◦ Dynamic and static attributes of a pipe unit include

∗ current flow into the unit, per input, if any,

∗ current flow out of the unit, per output, if any

∗ current leak from the unit,

∗ guaranteed maximum flow into the unit,

∗ guaranteed maximum flow out of the unit,

∗ guaranteed maximum leak from the unit,

etcetera.

31
3. Manifest Domains: Analysis & Description [1] 3.1. A Domain Ontology 3.1.4. Attributes

•Michael A. Jackson [37] categorizes attributes as either

⋄⋄ static or

⋄⋄ dynamic,

• with dynamic attributes being either

⋄⋄ inert,

⋄⋄ reactive or

⋄⋄ active.

• The latter are then either

⋄⋄ autonomous,

⋄⋄ biddable or

⋄⋄ programmable.

• This categorization has a strong bearing on how these (f.ex., part)
attributes are dealt with when now interpreting parts as behaviours.

32 3. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours

3.2. From Manifest Parts to Domain Behaviours

• [1] then presents an interpretation, τ , which to manifest parts
associate behaviours.

• These are then specified as CSP [38] processes.

333. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours 3.2.1. The Idea — by means of an example

3.2.1. The Idea — by means of an example

• The term train can have the following “meanings”:

⋄⋄ The train, as an endurant,
parked at the railway station platform,
i.e., as a composite part.

⋄⋄ The train, as a perdurant,
as it “speeds” down the railway track,
i.e., as a behaviour.

⋄⋄ The train, as an attribute,

34 3. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours 3.2.2. Atomic Parts

3.2.2. Atomic Parts

• Atomic parts translates into their core behaviours:

⋄⋄ bpatomcore .

• The core behaviours are tail recursively defined, that is, are cyclic.

⋄⋄ bpatomcore (...) ≡ (.... ; bpatomcore (...))

⋄⋄ where (...) indicate behaviour (i.e., function) arguments.

353. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours 3.2.3. Composite Parts

3.2.3. Composite Parts

• A composite part, p, “translates”, τ , into the parallel composition
of a core behaviour:

⋄⋄ b
pcomp
core (...), for part p,

⋄⋄ with the parallel composition of the translations, τ , for each of
the parts, p1, p2, ..., pm, of p, (τ (p1)‖τ (p2)‖...‖τ (pm))

⋄⋄ that is:

⋄⋄ τ (p)≡b
pcomp
core (...)‖(τ (p1)‖τ (p2)‖...‖τ (pm))

36 3. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours 3.2.4. Concrete Parts

3.2.4. Concrete Parts

• The translation of concrete part set, t, types, t : T = K−set, is

⋄⋄ τ (t)≡‖{τ (ki)|ki:K •ki∈t}.

373. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours 3.2.5. Translation of Part Qualities (...)

3.2.5. Translation of Part Qualities (...)

• Part qualities, that is: unique identifiers, mereologies and attributes,
are translated into behaviour arguments – of one kind or another,
i.e., (...).

⋄⋄ Typically we can choose to index behaviour names, b by the
unique identifier, id, of the part based on which they were
translated, i.e., bid.

⋄⋄ Mereology values are usually static, and can, as thus, be treated
like we treat static attributes (see next), or can be set by their
behaviour, and are then treated like we treat programmable
attributes (see next), i.e., (...).

38 3. Manifest Domains: Analysis & Description [1] 3.2. From Manifest Parts to Domain Behaviours 3.2.5. Translation of Part Qualities (...)

⋄⋄ Static attributes become behaviour definition (body) constant
values.

⋄⋄ Inert, reactive and autonomous attributes become references to
channels, say ch dyn, such that when an inert, reactive and
autonomous attribute value is required it is expressed as ch dyn ?.

⋄⋄ Programmable and biddable attributes become arguments which
are passed on to the tail-recursive invocations of the behaviour,
and possibly updated as specified [with]in the body of the
definition of the behaviour, i.e., (...).

393. Manifest Domains: Analysis & Description [1] 3.3. Contributions of [1] – and Open Problems

3.3. Contributions of [1] – and Open Problems

• For the first time we have, now, the beginnings of a calculus
for developing domain descriptions.

⋄⋄ In [32, 33] we speculate on laws
that these analysis & description prompts
(i.e., their “meanings”) must satisfy.

⋄⋄ With this calculus we can now systematically
develop domain descriptions [10–24].

⋄⋄ I am right now working on understanding issues of
implicit/explicit semantics6

6Cf. http://impex2017.loria.fr/

40 4. “The Other Papers”

4. “The Other Papers”
4.1. Domain Facets: Analysis & Description [2, 3]

4.1.1. Overview

• By a domain facet we shall understand

⋄⋄ one amongst a finite set of generic ways

⋄⋄ of analyzing a domain:

⋄⋄ a view of the domain,

⋄⋄ such that the different facets cover conceptually different views,

⋄⋄ and such that these views together cover the domain.

• [2] is an extensive revision of [3].

414. “The Other Papers” 4.1. Domain Facets: Analysis & Description [2, 3] 4.1.1. Overview

• Both papers identify the following facets:

⋄⋄ intrinsics,

⋄⋄ support technologies,

⋄⋄ rules & regulations,

⋄⋄ scripts,

⋄⋄ license languages,

⋄⋄ management & organisation, and

⋄⋄ human behaviour.

42
4. “The Other Papers” 4.1. Domain Facets: Analysis & Description [2, 3] 4.1.1. Overview

• Recently I have “discovered” what might be classified as a domain
facet: classes of attribute semantics:

⋄⋄ the diversity of attribute semantics

⋄⋄ resolving the issue of so-called

⋄⋄ implicit and explicit semantics.

⋄⋄ I shall not cover this issue in this talk.

43
4. “The Other Papers” 4.1. Domain Facets: Analysis & Description [2, 3] 4.1.2. Contributions of [2, 3] – and Open Problems

4.1.2. Contributions of [2, 3] – and Open Problems

• [2] now covers techniques and tools

⋄⋄ for analyzing domains into these facets

⋄⋄ and for their modeling.

• The issue of license languages are particularly intriguing.

• The delineations between the listed7 facets

⋄⋄ is necessarily not as precise as one would wish:

⋄⋄ we are dealing with an imprecise world,
that of (manifest) domains.

7We have omitted a facet: license languages.

44 4. “The Other Papers” 4.2. From Domain Descriptions to Requirements Prescriptions [7, 8]

4.2. From Domain Descriptions to Requirements Prescriptions [7, 8]
4.2.1. Overview

• [7] outlines a calculus of refinements and extensions which applied
to domain descriptions yield requirements prescriptions.

⋄⋄ As for [1] the calculus is to be deployed by human users, i.e.,
requirements engineers.

⋄⋄ Requirements are for a machine, that is, the hardware and
software to be developed from the requirements.

⋄⋄ A distinction is made between domain, interface and machine
requirements.

• I shall briefly cover these in another order.

454. “The Other Papers” 4.2. From Domain Descriptions to Requirements Prescriptions [7, 8] 4.2.1. Overview 4.2.1.1. Machine requirements

4.2.1.1 Machine requirements
•Machine requirements are such which can be expressed using only
technical terms of the machine:
⋄⋄ performance and dependability

◦◦ accessibility,

◦◦ availability,

◦◦ integrity,

◦◦ reliability,

◦◦ safety,

◦◦ security and

◦◦ robustness).

and

⋄⋄ development requirements

◦◦ development process,

◦◦ maintenance,

◦◦ platform,

◦◦ management and

◦◦ documentation).

⋄⋄ Within maintenance requirements there are

◦◦ adaptive,

◦◦ corrective,

◦◦ perfective,

◦◦ preventive,

◦◦ and extensional

requirements.

⋄⋄ Within platform requirements there are

◦◦ development,

◦◦ execution,

◦◦ maintenance,

◦◦ and demonstration

requirements.

⋄⋄ Etcetera.

• [7] does not cover these. See instead [39, Sect. 19.6].

46
4. “The Other Papers” 4.2. From Domain Descriptions to Requirements Prescriptions [7, 8] 4.2.1. Overview 4.2.1.2. Domain Requirements

4.2.1.2 Domain Requirements

• Domain requirements are such which can be expressed using only
technical terms of the domain.

⋄⋄ The are the following domain-to-requirements specification
transformations:

◦◦ projection,

◦◦ instantiation,

◦◦ determination,

◦◦ extension and

◦◦ fitting.

⋄⋄ I consider my work on these donain requirements issues
the most interesting.

474. “The Other Papers” 4.2. From Domain Descriptions to Requirements Prescriptions [7, 8] 4.2.1. Overview 4.2.1.3. Interface Requirements

4.2.1.3 Interface Requirements

• Interface requirements are such which can be expressed only by
using technical terms of both the domain and the machine.

⋄⋄ Thus interface requirements are about that which is shared
between the domain and the machine:

◦◦ endurants that are represented in machine storage as well as
co-existing in the domain;

◦◦ actions and behaviours that are performed while interacting
with phenomena in the domain;

etc.

48
4. “The Other Papers” 4.2. From Domain Descriptions to Requirements Prescriptions [7, 8] 4.2.2. Contributions of [7, 8]

4.2.2. Contributions of [7, 8]

• [7] does not follow the “standard division” of requirements
engineering into systems and user requirements etcetera.

⋄⋄ Instead [7] builds on domain descriptions and eventually gives a
rather different “division of requirements engineering labour” –
manifested in

◦◦ the domain,

◦◦ the interface and

◦◦ the machine requirements

paradigms,

⋄⋄ and these further into sub-paradigms, to wit:

◦◦ projection,
◦◦ instantiation,
◦◦ determination,

◦◦ extension and

◦◦ fitting.

49
4. “The Other Papers” 4.3. Formal Models of Processes and Prompts [4, 5]

4.3. Formal Models of Processes and Prompts [4, 5]
4.3.1. Overview

• [1] outlines a calculus of prompts, to be deployed by human users,
i.e., the domain analyzers & describers.

⋄⋄ That calculus builds on the assumption that the domain engineers

⋄⋄ build, in their mind, i.e., conceptually,

⋄⋄ a syntactical structure of the domain description,

⋄⋄ although, what the domain engineers can “see & touch”

⋄⋄ are semantical objects.

50 4. “The Other Papers” 4.3. Formal Models of Processes and Prompts [4, 5] 4.3.1. Overview

• A formal model

⋄⋄ of the analysis and description prompt process

⋄⋄ and of the meanings of the prompts

⋄⋄ therefore is split into

◦◦ a model for the process and

◦◦ a model of the syntactic and semantics structures.

514. “The Other Papers” 4.3. Formal Models of Processes and Prompts [4, 5] 4.3.2. Contributions of [4]

4.3.2. Contributions of [4]

• The contributions of [4] are

⋄⋄ to suggest and carry through a “formalisation” of
the conceptual, syntactical and semantical
structures perceived by the domain engineer,

⋄⋄ to formalise the meaning of the informal
analysis & description prompts, and

⋄⋄ to formalise the possible sets of sequences of valid prompts.

52 4. “The Other Papers” 4.4. To Every Manifest Domain Mereology a CSP Expression [6]

4.4. To Every Manifest Domain Mereology a CSP Expression [6]
4.4.1. Overview

• In [1] we have shown how parts can be endowed with mereologies.

⋄⋄ Mereology, as was mentioned earlier,
is the study and knowledge of “parthood”:
of how parts are related

◦◦ parts to parts, and

◦◦ parts to “a whole”.

⋄⋄ Mereology, as treated by us, originated with the
Polish mathematician/logician/philosopher
Stanislaw Lešhniewski.

53
4. “The Other Papers” 4.4. To Every Manifest Domain Mereology a CSP Expression [6] 4.4.1. Overview 4.4.1.1. An Axiom System for Mereology

4.4.1.1 An Axiom System for Mereology

part of: P : P × P → Bool

proper part of: PP : P × P → Bool

overlap: O : P × P → Bool

underlap: U : P × P → Bool

over crossing: OX : P × P → Bool

under crossing: UX : P × P → Bool

proper overlap: PO : P × P → Bool

proper underlap: PU : P × P → Bool

54

4. “The Other Papers” 4.4. To Every Manifest Domain Mereology a CSP Expression [6] 4.4.1. Overview 4.4.1.1. An Axiom System for Mereology

• Let P denote part-hood; px is part of py, is then expressed as

P(px, py).
8

⋄⋄ (1) Part px is part of itself (reflexivity).

⋄⋄ (2) If a part px is part of py and, vice versa, part py is part of px,
then px = py (anti-symmetry).

⋄⋄ (3) If a part px is part of py and part py is part of pz, then px is
part of pz (transitivity).

∀px : P • P(px, px) (1)

∀px, py : P • (P(px, py) ∧ P(py, px))⇒px = py (2)

∀px, py, pz : P • (P(px, py) ∧ P(py, pz))⇒P(pz, pz) (3)

8Our notation now is not RSL but a conventional first-order predicate logic notation.

554. “The Other Papers” 4.4. To Every Manifest Domain Mereology a CSP Expression [6] 4.4.1. Overview 4.4.1.1. An Axiom System for Mereology

• ...

• Proper Underlap, PU,

⋄⋄ px and py are said to properly underlap if

⋄⋄ px and py under-cross and

⋄⋄ py and px under-cross.

PU(px, py)
△
= UX(px, py) ∧ UX(py, px) (4)

56 4. “The Other Papers” 4.4. To Every Manifest Domain Mereology a CSP Expression [6] 4.4.1. Overview 4.4.1.2. A Model for the Axioms

4.4.1.2 A Model for the Axioms

• [6] now gives a model for

⋄⋄ parts: atomic and composite,

⋄⋄ commensurate with [1] and [4], and

⋄⋄ their unique identifiers, mereology and attributes

and show that the model satisfies the axioms.

4.4.2. Contributions of [6]

• [6] thus contributes

⋄⋄ to a domain science,

⋄⋄ helping to secure a firm foundation for domain engineering.

575. The Experiments [10–24]

5. The Experiments [10–24]

• In order to test and tune the domain analysis & description method

⋄⋄ a great number of experiments were carried out.

⋄⋄ In our opinion, when apllied to manifest domains, they justify
the calculi reported in [1] and [4].

58 5. The Experiments [10–24]

• Urban Planning [10],

• Documents [11],

• Credit Cards [12],

•Weather Systems [13],

• The Tokyo Stock Exchange [14],

• Pipelines [15],

• Road Transportation [16],

•Web–based Software [17],

• “The Market” [18],

• Container Lines [19] and

• Railways [20, 21, 22, 23, 24].

596. Summary

6. Summary

•We have identified a discipline of domain science and
engingineering.

⋄⋄ Its first “rendition” was applied to th semantics of programming
languages and the development of their compilers [27, CHILL]
and [30, Ada].

⋄⋄ Domain science and engineering, as outlined here,

◦◦ is directed at a wider spectrum of “languages”:

◦◦ the “meaning” of computer application domains

◦◦ and software for these applications.

60 6. Summary

•Where physicists model facets of the world emphasizing
physical, dynamic phenomena in nature,
primarily using differential calculi,

• domain scientists cum engineers emphasize
logical and both discrete phenomena of man and human institutions
primarily using discrete mathematics.

7. Laudatio

• At dinner, tonigh, I shall give a dinner speech.

• It is not about Zhou Chaochen’s scientific life.

• But it is a laudatio

⋄⋄ expressed in deep love

⋄⋄ for a wonderful man

⋄⋄ and our lives together.

• Zhou and Wang Ji: Thanks for my being here.

61

62 8. References

8. References

[1] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Computing,

29(2):175–225, March 2017. DOI 10.1007/s00165-016-0385-z

http://link.springer.com/article/10.1007/s00165-016-0385-z.

[2] Dines Bjørner. Domain Facets: Analysis & Description. 2016. Extensive revision of [3].

http://www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[3] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods:

State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London,

UK, 2010. Springer.

[4] Dines Bjørner. Domain Analysis and Description – Formal Models of Processes and Prompts.

2016. Extensive revision of [5]. http://www.imm.dtu.dk/˜dibj/2016/process/process-p.pdf.

[5] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In

Shusaku Iida, José Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software: A

Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

[6] Dines Bjørner. To Every Manifest Domain a CSP Expression — A Rôle for Mereology in Computer

Science. Journal of Logical and Algebraic Methods in Programming, Accepted for publication.

2018. http://www.imm.dtu.dk/˜dibj/2016/mereo/mereo.pdf.

[7] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach

to Requirements Engineering. 2016. Extensive revision of [8].

63

[8] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture

Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages

1–30, Heidelberg, May 2008. Springer.

[9] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and

Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of

His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183.

Springer, Heidelberg, Germany, January 2011.

[10] Dines Bjørner. Urban Planning Processes. Research Note, July 2017.

http://www.imm.dtu.dk/˜dibj/2017/up/urban-planning.pdf.

[11] Dines Bjørner. What are Documents ? Research Note, July 2017.

http://www.imm.dtu.dk/˜dibj/2017/docs/docs.pdf.

[12] Dines Bjørner. A Credit Card System: Uppsala Draft. Technical Report: Experimental Research,

Fredsvej 11, DK–2840 Holte, Denmark, November 2016.

http://www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf.

[13] Dines Bjørner. Weather Information Systems: Towards a Domain Description. Technical Report:

Experimental Research, Fredsvej 11, DK–2840 Holte, Denmark, November 2016.

http://www.imm.dtu.dk/˜dibj/2016/wis/wis-p.pdf.

[14] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Fredsvej 11,

DK-2840 Holte, Denmark, January and February, 2010. Version 1, 78 pages: many auxiliary

appendices. http://www2.imm.dtu.dk/ db/todai/tse-1.pdf, Version 2, 23 pages: omits many

appendices and corrects some errors.. http://www2.imm.dtu.dk/ db/todai/tse-2.pdf.

64

[15] Dines Bjørner. Pipelines – a Domain Description. http://www.imm.dtu.dk/˜dibj/pipe-p.pdf.

Experimental Research Report 2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark,

Spring 2013.

[16] Dines Bjørner. Road Transportation – a Domain Description.

http://www.imm.dtu.dk/˜dibj/road-p.pdf. Experimental Research Report 2013-4, DTU Compute

and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[17] Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas and Suggestions.

Technical, Technical University of Vienna, August–October 2010.

http://www.imm.dtu.dk/˜dibj/wfdftp.pdf.

[18] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In

Practical Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken

Baclawski), The Netherlands, December 2002. Kluwer Academic Press. Final draft version.

http://www2.imm.dtu.dk/ db/themarket.pdf.

[19] Dines Bjørner. A Container Line Industry Domain. Techn. report, Fredsvej 11, DK-2840 Holte,

Denmark, June 2007. Extensive Draft. http://www2.imm.dtu.dk/ db/container-paper.pdf.

[20] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th

IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical University,

Braunschweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und

Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

[21] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for

Domain Engineering. Relations to Requirements Engineering and Software for Control Applications.

65

In Integrated Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson,

P.O.Box 1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and

Process Science. Extended version. http://www2.imm.dtu.dk/ db/pasadena-25.pdf.

[22] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and

Software Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems,

Oxford, UK, August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S.

Tsugawa and M. Aoki. Final version. http://www2.imm.dtu.dk/ db/ifac-dynamics.pdf.

[23] Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing. In

FORMS’2003: Symposium on Formal Methods for Railway Operation and Control Systems.

L’Harmattan Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors:

G. Tarnai and E. Schnieder, Germany. Final version. http://www2.imm.dtu.dk/ db/martin.pdf.

[24] Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In

FORMS2003: Symposium on Formal Methods for Railway Operation and Control Systems.

L’Harmattan Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors:

G. Tarnai and E. Schnieder, Germany. Final version. http://www2.imm.dtu.dk/ db/albena.pdf.

[25] Dines Bjørner. Programming Languages: Formal Development of Interpreters and Compilers. In

International Computing Symposium 77 (eds. E. Morlet and D. Ribbens), pages 1–21. European

ACM, North-Holland Publ.Co., Amsterdam, 1977.

[26] Anon. C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red Book Fascicle

VI.12. See [40]. ITU (Intl. Telecmm. Union), Geneva, Switzerland, 1980 – 1985.

66

[27] P. Haff and A.V. Olsen. Use of VDM within CCITT. In VDM – A Formal Method at Work, eds.

Dines Bjørner, Cliff B. Jones, Micheal Mac an Airchinnigh and Erich J. Neuhold, pages 324–330.

Springer, Lecture Notes in Computer Science, Vol. 252, March 1987. Proc. VDM-Europe

Symposium 1987, Brussels, Belgium.

[28] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS.

Springer, 1980.

[29] Dines Bjørner, Chr. Gram, Ole N. Oest, and Leif Rystrømb. Dansk Datamatik Center. In Benkt

Wangler and Per Lundin, editors, History of Nordic Computing, Stockholm, Sweden, 18-20

October 2010. Springer.

[30] G.B. Clemmensen and O. Oest. Formal specification and development of an Ada compiler – a

VDM case study. In Proc. 7th International Conf. on Software Engineering, 26.-29. March 1984,

Orlando, Florida, pages 430–440. IEEE, 1984.

[31] Ole N. Oest. VDM from research to practice (invited paper). In IFIP Congress, pages 527–534,

1986.

[32] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics, Part I of II: The

Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May 2010.

[33] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics Part II of II: The Science

Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.

[34] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and

Suggestions. Technical report, Fredsvej 11, DK–2840 Holte, Denmark, 2016. Extensive revision of

[9]. http://www.imm.dtu.dk/˜dibj/2016/demos/faoc-demo.pdf.

67

[35] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and

Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series.

Prentice-Hall, Hemel Hampstead, England, 1995.

[36] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,

Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language.

The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[37] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and

prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[38] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in

Computer Science. Prentice-Hall International, 1985. Published electronically:

http://www.usingcsp.com/cspbook.pdf (2004).

[39] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts

in Theoretical Computer Science, the EATCS Series. Springer, 2006. See [41, 42].

[40] P.L. Haff, editor. The Formal Definition of CHILL. ITU (Intl. Telecmm. Union), Geneva,

Switzerland, 1981.

[41] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.

Qinghua University Press, 2008.

[42] Dines Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software

Design. Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

68

Contents

1. Introduction . 2
1.1. Recent Papers . 4
1.2. Recent Experiments . 5
1.3. My Emphasis on Software Systems . 6
1.4. How Did We Get to Domain Science & Engineering ? . 9
1.5. Method & Methodology . 11
1.6. Computer & Computing Sciences . 12

2. The Papers . 13
3. Manifest Domains: Analysis & Description [1] . 14

3.1. A Domain Ontology . 15
3.1.1. Parts, Components and Materials . 15
3.1.2. Unique identifiers . 26
3.1.3. Mereology . 27
3.1.4. Attributes . 29

3.2. From Manifest Parts to Domain Behaviours . 32
3.2.1. The Idea — by means of an example . 33
3.2.2. Atomic Parts . 34
3.2.3. Composite Parts . 35
3.2.4. Concrete Parts . 36
3.2.5. Translation of Part Qualities (...) . 37

3.3. Contributions of [1] – and Open Problems . 39
4. “The Other Papers” . 40

4.1. Domain Facets: Analysis & Description [2, 3] . 40
4.1.1. Overview . 40
4.1.2. Contributions of [2, 3] – and Open Problems . 43

4.2. From Domain Descriptions to Requirements Prescriptions [7, 8] . 44
4.2.1. Overview . 44
4.2.2. Contributions of [7, 8] . 48

4.3. Formal Models of Processes and Prompts [4, 5] . 49
4.3.1. Overview . 49
4.3.2. Contributions of [4] . 51

4.4. To Every Manifest Domain Mereology a CSP Expression [6] . 52
4.4.1. Overview . 52

P Part-hood . 54
4.4.2. Contributions of [6] . 56

5. The Experiments [10–24] . 57
6. Summary . 59
7. Laudatio . 60
8. References . 62

