
15 June 2017: 10:43 am: Incomplete DRAFT — Version 1

What are Documents ?
A Research Note1

Version 1. Incomplete Draft

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

Abstract. We domain analyse and suggest a description of a domain of documents. We emphasize that the
model is one of several possible. Common to these models is that we model “all” we can say about documents
– irrespective of whether it can also be “implemented” ! The model(s) are not requirements prescriptions –
but we can develop such from our domain description.

Yiu may find that the model is overly detailed with respect to a number of “operations” and properties
of documents. We find that these operations must be part of the very basis of a document domain in order
to cope with documents such as they occur in, for example, public government, see Appendix sect. A, or in
urban planning, see Appendix Sect. B.

An appendix, C, summarises essentials of the RAISE [37] Specification Language, RSL [36].

Contents

1 Introduction
2 A Document Systems Description

2.1 A System for Managing, Archiving and Handling Documents 4
2.2 Principal Endurants 4
2.3 Unique Identifiers 4
2.4 Documents: A First View 5

2.4.1 Document Identifiers 5
2.4.2 Document Descriptors 5
2.4.3 Document Annotations 5
2.4.4 Document Contents: Text/Graphics 5
2.4.5 Document Histories 6
2.4.6 A Summary of Document Attributes 6

2.5 Behaviours: An Informal, First View 7
2.6 Channels, A First View 7
2.7 An Informal Graphical System Rendition 8
2.8 Behaviour Signatures 9
2.9 Time 9

2.9.1 Time and Time Intervals: Types and Functions 9
2.9.2 A Time Behaviour and a Time Channel 10
2.9.3 An Informal RSL Construct 10

2.10 Behaviour “States” 10

1 c© Dines Bjørner, 2017
Correspondence and offprint requests to: Dines Bjørner, Fredsvej 11, DK2840 Holte, Denmark

2 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

2.11 Inter-Behaviour Messages 11
2.11.1 Management Messages with Respect to the Archive 11
2.11.2 Management Messages with Respect to Handlers 12
2.11.3 Document Access Rights 12
2.11.4 Archive Messages with Respect to Management 12
2.11.5 Archive Message with Respect to Documents 12
2.11.6 Handler Messages with Respect to Documents 12
2.11.7 Handler Messages with Respect to Management 13
2.11.8 A Summary of Behaviour Interactions 13

2.12 A General Discussion of Handler and Document Interactions 13
2.13 Channels: A Final View 14
2.14 An Informal Summary of Behaviours 14

2.14.1 The Create Behaviour: Left Fig. 3 on Page 15 14
2.14.2 The Edit Behaviour: Right Fig. 3 on Page 15 14
2.14.3 The Read Behaviour: Left Fig. 4 on Page 15 14
2.14.4 The Copy Behaviour: Right Fig. 4 on Page 15 15
2.14.5 The Grant Behaviour: Left Fig. 5 on Page 16 16
2.14.6 The Shred Behaviour: Right Fig. 5 on Page 16 16

2.15 The Behaviour Actions 16
2.15.1 Management Behaviour 16

Management Create Behaviour: Left Fig. 3 on Page 15 17
Management Copy Behaviour: Right Fig. 4 on Page 15 17
Management Grant Behaviour: Left Fig. 5 on Page 16 18
Management Shred Behaviour: Right Fig. 5 on Page 16 19

2.15.2 Archive Behaviour 19
The Archive Create Behaviour: Left Fig. 3 on Page 15 19
The Archive Copy Behaviour: Right Fig. 4 on Page 15 20
The Archive Shred Behaviour: Right Fig. 5 on Page 16 20

2.15.3 Handler Behaviours 21
The Handler Create Behaviour: Left Fig. 3 on Page 15 21
The Handler Edit Behaviour: Right Fig. 3 on Page 15 21
The Handler Read Behaviour: Left Fig. 4 on Page 15 22
The Handler Copy Behaviour: Right Fig. 4 on Page 15 22
The Handler Grant Behaviour: Left Fig. 5 on Page 16 22

2.15.4 Document Behaviours 22
The Document Edit Behaviour: Right Fig. 3 on Page 15 23
The Document Read Behaviour: Left Fig. 4 on Page 15 23
The Document Shred Behaviour: Right Fig. 5 on Page 16 24

2.16 Conclusion 24
3 Bibliography

3.1 Bibliographical Notes 24
3.2 Domain Modeling Experiments 24
3.3 References 25

A Documents in Public Gornment
B Documents in Urban Planning
C RSL: The RAISE Specification Language – A Primer

C.1 Type Expressions 30
C.1.1 Atomic Types 30
C.1.2 Composite Types 30

Concrete Composite Types 30
Sorts and Observer Functions 31

C.2 Type Definitions 31
C.2.1 Concrete Types 31
C.2.2 Subtypes 32
C.2.3 Sorts — Abstract Types 32

C.3 The RSL Predicate Calculus 32
C.4 Propositional Expressions 32

C.4.1 Simple Predicate Expressions 32
C.4.2 Quantified Expressions 32

C.5 Concrete RSL Types: Values and Operations 33
C.5.1 Arithmetic 33
C.5.2 Set Expressions 33

Set Enumerations 33
Set Comprehension 33

C.5.3 Cartesian Expressions 33
Cartesian Enumerations 33

C.5.4 List Expressions 33

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 3

List Enumerations 33
List Comprehension 34

C.5.5 Map Expressions 34
Map Enumerations 34
Map Comprehension 34

C.5.6 Set Operations 34
Set Operator Signatures 34
Set Examples 35
Informal Explication 35
Set Operator Definitions 35

C.5.7 Cartesian Operations 36
C.5.8 List Operations 36

List Operator Signatures 36
List Operation Examples 36
Informal Explication 36
List Operator Definitions 37

C.5.9 Map Operations 37
Map Operator Signatures and Map Operation Examples 37
Map Operation Explication 38
Map Operation Redefinitions 38

C.6 λ-Calculus + Functions 39
C.6.1 The λ-Calculus Syntax 39
C.6.2 Free and Bound Variables 39
C.6.3 Substitution 39
C.6.4 α-Renaming and β-Reduction 39
C.6.5 Function Signatures 39
C.6.6 Function Definitions 40

C.7 Other Applicative Expressions 40
C.7.1 Simple let Expressions 40
C.7.2 Recursive let Expressions 40
C.7.3 Predicative let Expressions 41
C.7.4 Pattern and “Wild Card” let Expressions 41
C.7.5 Conditionals 41
C.7.6 Operator/Operand Expressions 41

C.8 Imperative Constructs 42
C.8.1 Statements and State Changes 42
C.8.2 Variables and Assignment 42
C.8.3 Statement Sequences and skip 42
C.8.4 Imperative Conditionals 42
C.8.5 Iterative Conditionals 42
C.8.6 Iterative Sequencing 43

C.9 Process Constructs 43
C.9.1 Process Channels 43
C.9.2 Process Composition 43
C.9.3 Input/Output Events 43
C.9.4 Process Definitions 43

C.10 Simple RSL Specifications 44

1. Introduction

We analyse a notion of documents. Documents such as they occur in daily life. What can we say about
documents – regardless of whether we can actually provide compelling evidence for what we say ! That is: we
model documents, not as electronic entities — which they are becoming, more-and-more, but as if they were
manifest entities. When we, for example, say that “this document was recently edited by such-and-such and
the changes of that editing with respect to the text before is such-and-such”, then we can, of course, always
claim so, even if it may be difficult or even impossible to verify the claim. It is a fact, although maybe not
demonstrably so, that there was a version of any document before an edit of that document. It is a fact that
some handler did the editing. It is a fact that the editing took place at (or in) exactly such-and-such a time
(interval), etc. We model such facts.

4 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

2. A Document Systems Description

This research note unravels its analysis &2 description in stages.

2.1. A System for Managing, Archiving and Handling Documents

The title of this section: A System for Managing, Archiving and Handling Documents immediately reveals
the major concepts: That we are dealing with a system that manages, archives and handles documents.
So what do we mean by managing, archiving and handling documents, and by documents ? We give an
ultra short survey. The survey relies on your prior knowledge of what you think documents are ! Manage-
ment decides3 to direct handlers to work on documents. Management first directs the document archive
to create documents. The document archive creates documents, as requested by management, and
informs management of the unique document identifiers (by means of which handlers can handle these
documents). Management then grants its designated handler(s) access rights to documents, these
access rights enable handlers to edit, read and copy documents. The handlers’ editing and reading of
documents is accomplished by the handlers “working directly” with the documents (i.e., synchronising
and communicating with document behaviours). The handlers’ copying of documents is accomplished
by the handlers requesting management, in collaboration with the archive behaviour, to do so.

2.2. Principal Endurants

By an endurant we shall understand “an entity that can be observed or conceived and described as a
”complete thing” at no matter which given snapshot of time.” Were we to ”freeze” time we would still be
able to observe the entire endurant. This characterisation of what we mean by an ‘endurant’ is from [26,
Manifest Domains: Analysis & Description].

We begin by identifying the principal endurants.

1 From document handling systems one can ob-
serve aggregates of handlers and documents.
We shall refer to ‘aggregates of handlers’ by M,
for management, and to ‘aggregates of docu-
ments’ by A, for archive.

2 From aggregates of handlers (i.e., M) we can ob-
serve sets of handlers (i.e., H).

3 From aggregates of documents (i.e., A) we can
observe sets of documents (i.e., D).

type

1 S, M, A
value
1 obs M: S → M
1 obs A: S → A
type
2 H, Hs = H-set
3 D, Ds = D-set
value
2 obs Hs: M → Hs
3 obs Ds: A → Ds

2.3. Unique Identifiers

The notion of unique identifiers is treated, at length, in [26, Manifest Domains: Analysis & Description].

4 We associate unique identifiers with aggregate,
handler and document endurants.

5 These can be observed from respective parts4.

type

4 MI5, AI6, HI, DI
value

5 uid MI7: M → MI
5 uid AI8: A → AI

2 We use the logogram & between two terms, A & B, when we mean to express one meaning.
3 How these decisions come about is not shown in this research note – as it has nothing to do with the essence of document
handling, but, perhaps, with ‘management’.
4 [26, Manifest Domains: Analysis & Description] explains how ‘parts’ are the discrete endurants with which we associate the
full complement of properties: unique identifiers, mereology and attributes.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 5

5 uid HI: H → HI 5 uid DI: D → DI

As reasoned in [26, Manifest Domains: Analysis & Description], the unique identifiers of endurant parts
are indeed unique: No two parts, whether composite, as are the aggregates, or atomic, as are handlers and
documents, can have the same unique identifiers.

2.4. Documents: A First View

A document is a written, drawn, presented, or memorialized representation of thought. The word originates
from the Latin documentum, which denotes a “teaching” or “lesson”.9 We shall, for this research note, take
a document in its written and/or drawn form. In this section we shall survey the concept a documents.

2.4.1. Document Identifiers

Documents have unique identifiers. If two or more documents have the same document identifier then they
are the same, one (and not two or more) document(s).

2.4.2. Document Descriptors

With documents we associate document descriptors. We do not here stipulate what document descriptors
are other than saying that when a document is created it is provided with a descriptor and this descriptor
“remains” with the document and never changes value. In other words, it is a static attribute.10 We do,
however, include, in document descriptors, that the document they describe was initially based on a set of
zero, one or more documents – identified by their unique identifiers.

2.4.3. Document Annotations

With documents we also associate document annotations. By a document annotation we mean a pro-
grammable attribute, that is, an attribute which can be ‘augmented’ by document handlers. We think
of document annotations as “incremental”, that is, as “adding” notes “on top of” previous notes. Thus we
shall model document annotations as a repository: notes are added, i.e., annotations are augmented, previ-
ous notes are not edited, and no notes are deleted. We suggest that notes be time-stamped. The notes (of
annotations) may be such which record handlers work on documents. Examples could be: “15 June 2017:
10:43 am: This is version V.”, “This document was released on 15 June 2017: 10:43 am.”, “15 June 2017:
10:43 am: Section X.Y.Z of version III was deleted.”, “15 June 2017: 10:43 am: References to documents doci
and docj are inserted on Pagesp and q, respectively.” and “15 June 2017: 10:43 am: Final release.”

2.4.4. Document Contents: Text/Graphics

The main idea of a document, to us, is the written (i.e., text) and/or drawn (i.e., graphics) contents. We do
not characterise any format for this contents. We may wish to insert, in the contents, references to locations
in the contents of other documents. But, for now, we shall not go into such details. The main operations on
documents, to us, are concerned with: their creation, editing, reading, copying and shredding. The
editing and reading operations are mainly concerned with document annotations and text/graphics.

5 We shall not, in this research note, make use of the (one and only) management identifier.
6 We shall not, in this research note, make use of the (one and only) archive identifier.
7 Cf. Footnote 5: hence we shall not be using the uid MI observer.
8 Cf. Footnote 6: hence we shall not be using the uid AI observer.
9 From: https://en.wikipedia.org/wiki/Document
10 You may think of a document descriptor as giving the document a title; perhaps one or more authors; perhaps a physical
address (of, for example, these authors); an initial date; as expressing whether the document is a research, or a technical report,
or other; who is issuing the document (a public institution, a private firm, an individual citizen, or other); etc.

6 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

2.4.5. Document Histories

So documents are created, edited, read, copied and shreded. These operations are initiated by the
management (create), by the archive (create), and by handlers (edit, read, copy), and at specific times.

2.4.6. A Summary of Document Attributes

6 As separate attributes of documents we have document descriptors, document annotations, document
contents and document histories.

7 Document annotations are lists of document notes.

8 Document histories are lists of time-stamped document operation designators.

9 A document operation designator is either a create, or an edit, or a read, or a copy, or a shred designator.

10 A create designator identifies

a a handler and a time (at which the create request first arose), and presents

b elements for constructing a document descriptor, one which

i besides some further undefined information

ii refers to a set of documents (i.e., embeds reference to their unique identifiers),

c a (first) document note, and

d an empty document contents.

11 An edit designator identifies a handler, a time, and specifies a pair of edit/undo functions.

12 A read designator identifies a handler.

13 A copy designator identifies a handler, a time, the document to be copied (by its unique identifier, and
a document note to be inserted in both the master and the copy document.

14 A shred designator identifies a handler.

15 An edit function takes a triple of a document annotation, a document note and document contents and
yields a pair of a document annotation and a document contents.

16 An undo function takes a pair of a document note and document contents and yields a triple of a document
annotation, a document note and a document contents.

17 Proper pairs of (edit,undo) functions satisfy some inverse relation.

There is, of course, no need, in any document history, to identify the identifier of that document.

type
6 DD, DA, DC, DH
value
6 attr DD: D → DD
6 attr DA: D → DA
6 attr DC: D → DC
6 attr DH: D → DH
type
7 DA = DN∗

8 DH = (TIME × DO)∗

9 DO == Crea | Edit | Read | Copy | Shre
10 Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|}
10bi Info = ...
value
10bii embed DIs in DD: DI-set × Info → DD
axiom
10d ′′

empty_DC
′′ ∈ DC

type
11 Edit :: (HI × TIME) × (EDIT × UNDO)
12 Read :: (HI × TIME) × DI

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 7

13 Copy :: (HI × TIME) × DI × DN
14 Shre :: (HI × TIME) × DI
15 EDIT = (DA × DN × DC) → (DA × DC)
16 UNDO = (DA × DC) → (DA × DN × DC)
axiom
17 ∀ mkEdit(,(e,u)):Edit •

17 ∀ (da,dn,dc):(DA×DN×DC) •

17 u(e(da,dn,dc))=(da,dn,dc)

2.5. Behaviours: An Informal, First View

In [26, Manifest Domains: Analysis & Description] we show that we can associate behaviours with parts,
where parts are such discrete endurants for which we choose to model all its observable properties: unique
identifiers, mereology and attributes, and where behaviours are sequences of actions, events and behaviours.

• The overall document handler system behaviour can be expressed in terms of the parallel composition of
the behaviours

18 of the system core behaviour,

19 of the handler aggregate (the management) behaviour

20 and the document aggregate (the archive) behaviour,

with the (distributed) parallel composition of

21 all the behaviours of handlers and,

the (distributed) parallel composition of

22 at any one time, zero, one or more behaviours of documents.

• To express the latter

23 we need introduce two “global” values: an indefinite set of handler identifiers and an indefinite set of
document identifiers.

value
23 his:HI-set, dis:DI-set

18 sys(...)
19 ‖ mgtm(...)
20 ‖ arch(...)
21 ‖ ‖{hdlri(...)|i:HI•i∈his}
22 ‖ ‖{docui(dd)(da,dc,dh)|i:DI•i∈dis}

For now we leave undefined the arguments, (...) etc., of these behaviours. The arguments of the document
behaviour, (dd)(da,dc,dh), are the static, respectively the three programmable (i.e., dynamic) attributes: doc-
ument descriptor, document annotation, document contents and document history. The above expressions,
Items 19–22, do not define anything, they can be said to be “snapshots” of a “behaviour state”. Initially
there are no document behaviours, docui(dd)(da,dc,dh), Item 22. Document behaviours are “started” by the
archive behaviour (on behalf of the management and the handler behaviours). Other than mentioning the
system (core) behaviour we shall not model that behaviour further.

2.6. Channels, A First View

Channels are means for behaviours to synchronise and communicate values (such as unique identifiers,
mereologies and attributes).

8 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

24 The management behaviour, mgtm, need to (synchronise and) communicate with the archive behaviour,
arch, in order, for the management behaviour, to request the archive behaviour

• to create (ab initio or due to copying)

• or shred document behaviours, docuj ,

and for the archive behaviour

• to inform the management behaviour of the identity of the document(behaviour)s that it has created.

channel
24 mgtm arch ch:MA

25 The management behaviour, mgtm, need to (synchronise and) communicate with all handler behaviours,
hdlri and they, in turn, to (synchronised) communicate with the handler management behaviour, mgtm.
The management behaviour need to do so in order

• to inform a handler behaviour that it is granted access rights to a specific document, subsequently
these access rights may be modified, including revoked.

channel
25 {mgtm hdlr ch[i]:MH|i:HI•i ∈ his}

26 The document archive behaviour, arch, need (synchronise and) communicate with all document be-
haviours, docuj and they, in turn, to (synchronise and) communicate with the archive behaviour, arch.

channel
26 {arch docu ch[j]:AD|h:DI•j ∈ dis}

27 Handler behaviours, hdlri, need (synchronise and) communicate with all the document behaviours, docuj ,
with which it has operational allowance to so do so11, and document behaviours, docuj, need (synchronise
and) communicate with potentially all handler behaviours, hdlri, namely those handler behaviours, hdlri
with which they have (“earlier” synchronised and) communicated.

channel
27 {hdlr docu ch[i,j]:HD|i:HI,j:DI•i ∈ his∧j ∈ dis}

28 At present we leave undefined the type of messages that are communicated.

type
28 MA, MH, AD, HD

2.7. An Informal Graphical System Rendition

Figure 1 on the next page is an informal rendition of the “state” of a number of behaviours: a single
management behaviour, a single archive behaviour, a fixed number, nh, of one or more handler behaviours,
and a variable, initially zero number of document behaviours, with a maximum of these being nd. The
figure also indicates, again rather informally, the channels between these behaviours: one channel between
the management and the archive behaviours; nh channels (nh is, again, informally indicated) between the
management behaviour and the nh handler behaviours; nd channels (nd is, again, informally indicated)
between the archive behaviour and the nd document behaviours; and nh × nd channels (nd × nd is, again,
informally indicated) between the nh handler behaviours and the nd document behaviours

11 The notion of operational allowance will be explained below.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 9

mgtm

arch

mgtm_arch_ch

{mgtm_hdlr_ch[i]|i:HI...}

{arch_docu_ch[h]|j:DI...}

{hdlr_docu_ch[i,j]|i:HI,j:DI...}

n_d

n_h

n_h*n_d

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

Fig. 1. An Informal Snapshot of System Behaviours

2.8. Behaviour Signatures

29 The mgtm behaviour (synchronises and) communicates with the archive behaviour and with all of the
handler behaviours, hdlri.

30 The archive behaviour (synchronises and) communicates with the mgtm behaviour and with all of the
document behaviours, docuj.

31 The signature of the generic handler behaviours, hdlri expresses that they [occasionally] receive “orders”
from management, and otherwise [regularly] interacts with document behaviours.

32 The signature of the generic document behaviours, docuj expresses that they [occasionally] receive “or-
ders” from the archive behaviour and that they [regularly] interacts with handler behaviours.

value
29 mgtm: ... → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
30 arch: ... → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
31 hdlri: ... → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
32 docuj : ... → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

2.9. Time

2.9.1. Time and Time Intervals: Types and Functions

33 We postulate a notion of time, one that covers both a calendar date (from before Christ up till now and
beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD, HH:MM:SS).

34 And we postulate a notion of (signed) time interval — between two times (say: ±YY:MM:DD:HH:MM:SS).

35 Then we postulate some operations on time: Adding a time interval to a time obtaining a time; subtracting
one time from another time obtaining a time interval, multiplying a time interval with a natural number;
etc.

36 And we postulate some relations between times and between time intervals.

type
33 TIME
34 TIME INTERVAL
value
35 add: TIME INTERVAL × TIME → TIME
35 sub: TIME × TIME → TIME INTERVAL
35 mpy: TIM INTERVALE × Nat → TIME INTERVAL
36 <,≤,=, 6=,≥,>: ((TIME×TIME)|(TIME INTERVAL×TIME INTERVAL)) → Bool

10 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

2.9.2. A Time Behaviour and a Time Channel

37 We postulate a[n “ongoing”] time behaviour: it either keeps being a time behaviour with unchanged time,
t, or – internally non-deterministically – chooses being a time behaviour with a time interval incremented
time, t+ti, or – internally non-deterministically – chooses to [first] offer its time on a [global] channel,
time ch, then resumes being a time behaviour with unchanged time., t

38 The time interval increment, ti, is likewise internally non-deterministically chosen. We would assume that
the increment is “infinitesimally small”, but there is no need to specify so.

39 We also postulate a channel, time ch, on which the time behaviour offers time values to whoever so
requests.

value
37 time: TIME → time ch TIME Unit
37 time(t) ≡ (time(t) ⌈⌉ time(t+ti) ⌈⌉ time ch!t ; time(t))
38 ti:TIME INTERVAL ...
channel
39 time ch:TIME

2.9.3. An Informal RSL Construct

The formal-looking specifications of this report appear in the style of the RAISE [37] Specification Language,
RSL [36]. We shall be making use of an informal language construct:

• wait ti.

wait is a keyword; ti designates a time interval. A typical use of the wait construct is:

• ... ptA ; wait ti; ptB ; ...

If at specification text point ptA we may assert that time is t, then at specification text point ptB we can
assert that time is t+ti.

2.10. Behaviour “States”

We recall that the endurant parts, Management, Archive, Handlers, and Documents, have properties in
the form of unique identifiers, mereologies and attributes. We shall not, in this research note, deal with
possible mereologies of these endurants. In this section we shall discuss the endurant attributes of mgtm
(management), arch (archive), hdlrs (handlers), and docus (documents). Together the values of these proper-
ties, notably the attributes, constitute states – and, since we associate behaviours with these endurants, we
can refer to these states also a behaviour states. Some attributes are static, i.e., their value never changes.
Other attributes are dynamic.12 Document handling systems are rather conceptual, i.e., abstract in nature.
The dynamic attributes, therefore, in this modeling “exercise”, are constrained to just the programmable
attributes. Programmable attributes are those whose value is set by “their” behaviour. For a behaviour β
we shall show the static attributes as one set of parameters and the programmable attributes as another set
of parameters.

value β: Static → Program → ... Unit

40 For the management endurant/behaviour we focus on one programmable attribute. The management
behaviour needs keep track of all the handlers it is charged with, and for each of these which zero, one or
more documents they have been granted access to (cf. Sect. 2.11.3 on Page 12). Initially that management
directory lists a number of handlers, by their identifiers, but with no granted documents.

12 We refer to Sect. 3.4 of [26], and in particular its subsection 3.4.4.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 11

41 For the archive behaviour we similarly focus on one programmable attribute. The archive behaviour needs
keep track of all the documents it has used (i.e., created), those that are avaliable (and not yet used),
and of those it has shredded. Initially all these three archive directory sets are empty.

42 For the handler behaviour we similarly focus on one programmable attribute. The handler behaviour
needs keep track of all the documents it has been charged with and its access rights to these.

43 Document attributes we mentioned above, cf. Items 6–9.

type
40 MDIR = HI →m (DI →m ANm-set)
41 ADIR = avail:DI-set × used:DI-set × gone:DI-set
42 HDIR = DI →m ANm-set
43 SDATR = DD, PDATR = DA × DC × DH
axiom
41 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used

We can now “complete” the behaviour signatures. We omit, for now, static attributes.

value
29 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[i]|i:HI•i ∈ his} Unit
30 arch: ADIR → in,out mgtm arch ch, {arch docu ch[j]|j:DI•j ∈ dis} Unit
31 hdlri: HDIR → in mgtm hdlr ch[i], in,out {hdlr docu ch[i,j]|j:DI•j∈dis} Unit
32 docuj : SDATR → PDATR → in mgtm arch ch, in,out {hdlr docu ch[i,j]|i:HI•i ∈ his} Unit

2.11. Inter-Behaviour Messages

Documents are not “fixed, innate” entities. They embody a “history”, they have a “past”. Somehow or other
they “carry a trace of all the ”things” that have happened/occurred to them. And, to us, these things are
the manipulations that management, via the archive and handlers perform on documents.

2.11.1. Management Messages with Respect to the Archive

44 Management create documents. It does so by requesting the archive behaviour to allocate a document
identifier and initialize the document “state” and start a document behaviour, with initial information,
cf. Item 10 on Page 6:

a the identity of the initial handler of the document to be created,

b the time at wich the request is being made,

c a document descriptor which embodies a (finite) set of zero or more (used) document identifiers (dis),

d a document annotation note dn, and

e an initial, i.e., “empty” contents, "empty DC".

type
10. Crea :: (HI × TIME) × (DI-set × Info) × DN × {|′′empty_DC′′|} [cf. formula Item 10, Page 6]

45 The management behaviour passes on to the archive behaviour, requests that it accepts from handlers
behaviours, for the copying of document:

45 Copy :: DI × HI × TIME × DN [cf. Item 55 on Page 13]

46 Management schreds documents by informing the archive behaviour to do so.

type
46 Shred :: TIME × DI

12 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

2.11.2. Management Messages with Respect to Handlers

47 Upon receiving, from the archive behaviour, the “feedback” the identifier of the created document (be-
haviour):

type
47. Create Reply :: NewDocID(di:DI)

48 the management behaviour decides to grant access rights, acrs:ACRS13, to a document handler, hi:HI.

type
48 Gran :: HI × TIME × DI × ACRS

2.11.3. Document Access Rights

Implicit in the above is a notion of document access rights.

49 By document access rights we mean a set of action names.

50 By an action name we mean such tokens that indicate either of the document handler operations indicate
above.

type
49 ACRS = ANm-set
50 ANm = {|′′edit′′,′′read′′,′′copy′′|}

2.11.4. Archive Messages with Respect to Management

To create a document management provides the archive with some initial information. The archive behaviour
selects a document identifier that has not been used before.

51 The archive behaviour informs the management behaviour of the identifier of the created document.

type
51 NewDocID :: DI

2.11.5. Archive Message with Respect to Documents

52 To shred a document the archive behaviour must access the designated document in order to stop it. No
“message”, other than a symbolic "stop", need be communicated to the document behaviour.

type
52 Shred :: {|′′stop′′|}

2.11.6. Handler Messages with Respect to Documents

Handlers, generically referred to by hdlri, may perform the following operations on documents: edit, read
and copy. (Management, via the archive behaviour, creates and shreds documents.)

53 To perform an edit action handler hdlri must provide the following:

• the document identity – in the form of a (i:HI,j:DI) channel hdlr docu ch index value,

• the handler identity, i,

• the time of the edit request,

• and a pair of functions: one which performs the editing and one which un-does it !

13 For the concept of access rights see Sect. 2.11.3.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 13

mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_2 docu_1docu_k

mkGrant

mkCopy

mkShred

mkEditComplete
mkReadCompletemkRead

mkEdit
mkShred
mkCopy
mkCreate mkNewDocID

Fig. 2. A Summary of Behaviour Interactions

type
53 Edit :: DI × HI × TIME × (EDIT × UNDO)

54 To perform a read action handler hdlri must provide the following information:

• the document identity – in the form of a di:DI channel hdlr docu ch index value,

• the handler identity and

• the time of the read request.

type
54 Read :: DI × HI × TIME

2.11.7. Handler Messages with Respect to Management

55 To perform a copy action, a handler, hdlri, must provide the following information to the management
behaviour, mgtm:

• the document identity,

• the handler identity – in the form of an hi:HI channel mgtm hdlr ch index value,

• the time of the copy request, and

• a document note (to be affixed both the master and the copy documents).

55 Copy :: DI × HI × TIME × DN [cf. Item 45 on Page 11]

How the handler, the management, the archive and the “named other” handlers then enact the copying,
etc., will be outlined later.

2.11.8. A Summary of Behaviour Interactions

Figure 2 summarises the sources, out, resp. !, and the targets, in, resp. ?, of the messages covered in the
previous sections.

2.12. A General Discussion of Handler and Document Interactions

We think of documents being manifest. Either a document is in paper form, or it is in electronic form. In
paper form we think of a document as being in only one – and exactly one – physical location. In electronic
form a document is also in only one – and exactly one – physical location. No two handlers can access the
same document at the same time or in overlapping time intervals. If your conventional thinking makes you
think that two or more handlers can, for example, read the same document “at the same time”, then, in

14 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

fact, they are reading either a master and a copy of that master, or they are reading two copies of a common
master.

2.13. Channels: A Final View

We can now summarize the types of the various channel messages first referred to in Items 24, 25, 26 and 27.

type
24 MA = Create (Item 44 on Page 11) | Shred (Item 44d on Page 11) | NewDocID (Item 51 on Page 12)
25 MH = Grant (Item 44c on Page 11) | Copy (Item 55 on the preceding page) |
26 AD = Shred (Item 52 on Page 12)
27 HD = Edit (Item 53 on Page 12) | Read (Item 54 on the previous page) | Copy (Item 55 on the preceding page)

2.14. An Informal Summary of Behaviours

2.14.1. The Create Behaviour: Left Fig. 3 on the next page

56 [1] The management behaviour, at its own volition, initiates a create document behaviour. It does so by
offering a create document message to the archive behaviour.

a [1.1] That message contains a meaningful document descriptor,

b [1.2] an initial document annotation,

c [1.3] an “empty” document contents and

d [1.4] a single element document history.

(We refer to Sect. 2.11.1 on Page 11, Items 44–??.)

57 [2] The archive behaviour offers to accept that management message. It then selects an available document
identifier (here shown as k), henceforth marking k as used.

58 [3] The archive behaviour then “spawns off” document behaviour docuk – here shown by the “dash–
dotted” rounded edge square.

59 [4] The archive behaviour then offers the document identifier k message to the management behaviour.
(We refer to Sect. 2.11.4 on Page 12, Item 51.)

60 [5] The management behaviour then

a [5.1] selects a handler, here shown as i, i.e., hdlri,

b [5.2] records that that handler is granted certain access rights to document k,

c [5.3] and offers that granting to handler behaviour i.

(We refer to Sect. 2.11.2 on Page 12, Item 48 on Page 12.)

61 [6] Handler behaviour i records that it now has certain access rights to doccument i.

2.14.2. The Edit Behaviour: Right Fig. 3 on the facing page

1 Handler behaviour i, at its own volition, initiates an edit action on document j (where i has editing
rights for document j). Handler i, optionally, provides document j with a(annotation) note. While editing
document j handler i also “selects” an appropriate pair of edit/undo functions for document j.

2 Document behaviour j accepts the editing request, enacts the editing, optionally appends the (annotation)
note, and, with handler i, completes the editing, after some time interval ti.

3 Handler behaviour i completes its edit action.

2.14.3. The Read Behaviour: Left Fig. 4 on the next page

1 Handler behaviour i, at its own volition, initiates a read action on document j (where i has reading rights
for document j). Handler i, optionally, provides document j with a(annotation) note.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 15

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1[2]

[5] [6][1]

docu_k

hdlr_i

[3]

[4]

mkGrant

mkNewDocID CREATE

The dotted line means:
Initialising the document.

mkCreate

mgtm

arch

hdlr_1 hdlr_n_h

docu_n_d docu_1

hdlr_i

[2]
docu_j

[3][1]

mkReadCompletemkReadEDIT

Fig. 3. Informal Snapshots of Create and Edit Document Behaviours

mgtm

arch

hdlr_1 hdlr_n_h

docu_1

hdlr_i

docu_j

[2]

[1]

docu_k

[3]

READ mkRead mkReadComplete

[3]

arch

docu_j

[6]

docu_k

[7] [4]

[5]

[2]

[8]

hdlr_1
[1]
hdlr_i

mgtm [10][9] [11]

COPY

docu_1

hdlr_n_h

mkCopy

mkGrant

mkGrant

These dot−dashed lines

Initialising the document.
The dotted line mean:

mean: Obtaining the
document "data" !

mkCopy mkNewDocID

Fig. 4. Informal Snapshots of Read and Copy Document Behaviours

2 Document behaviour j accepts the reading request, enacts the reading by providing the handler, i, with
the document contents, and optionally appends the (annotation) note, and, with handler i, completes
the reading, after some time interval ti.

3 Handler behaviour i completes its read action.

2.14.4. The Copy Behaviour: Right Fig. 4

1 Handler behaviour i, at its own volition, initiates a copy action on document j (where i has copying
rights for document j). Handler i, optionally, provides master document j as well as the copied document
(yet to be identified) with respective (annotation) notes.

2 The management behaviour offers to accept the handler message. As for the create action, the manage-
ment behaviour offers a combined copy and create document message to the archive behaviour.

3 The archive behaviour selects an available document identifier (here shown as k), henceforth marking k
as used.

4 The archive behaviour then obtains, from the master document j its document descriptor, ddj , its
document annotations, daj , its document contents, dcj , and its document history, dhj .

5 The archice behaviour informs the management behaviour of the identifier, k, of the (new) document
copy,

6 while assembling the attributes for that (new) document copy: its document descriptor, ddk, its document
annotations, dak, its document contents, dck, and its document history, dhk, from these “similar” at-
tributes of the master document j,

7 while then “spawning off” document behaviour docuk – here shown by the “dash–dotted” rounded edge
square.

8 The management behaviour accepts the identifier, k, of the (new) document copy, recording the identities
of the handlers and their access rights to k,

9 while informing these handlers (informally indicated by a “dangling” dash-dotted line) of their grants,

16 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

mgtm

arch

hdlr_1 hdlr_n_h

docu_2 docu_1

hdlr_i

[2][1]

docu_k

GRANT

mkGrant mgtm

arch

hdlr_1 hdlr_2 hdlr_n_h

docu_1docu_k docu_j

[1]

[3]

SHRED

mkShred

mkShred

[2]

Fig. 5. Informal Snapshots of Grant and Shred Document Behaviours

10 while also informing the master copy of the copy identity (etcetera).

11 The handlers granted access to the copy record this fact.

2.14.5. The Grant Behaviour: Left Fig. 5

This behaviour has its

1 Item [1] correspond, in essence, to Item [9] of the copy behaviour – see just above – and

2 Item [2] correspond, in essence, to Item [11] of the copy behaviour.

2.14.6. The Shred Behaviour: Right Fig. 5

1 The management, at its own volition, selects a document, j, to be shredded. It so informs the archive
behaviour.

2 The archive behaviour records that document j is to be no longer in use, but shredded, and informs
document j’s behaviour.

3 The document j behaviour accepts the shred message and stops (indicated by the dotted rounded edge
box).

2.15. The Behaviour Actions

To properly structure the definitions of the four kinds of (management, archive, handler and document)
behaviours we single each of these out “across” the six behaviour traces informally described in Sects. 2.14.1–
2.14.6. The idea is that if behaviour β is involved in τ traces, τ1, τ2, ..., ττ , then behaviour β shall be defined
in terms of τ non-deterministic alternative behaviours named βτ1 , βτ2 , ..., βττ .

2.15.1. Management Behaviour

62 The management behaviour is involved in the following action traces:

a create Fig. 3 on the previous page Left

b copy Fig. 4 on the preceding page Right

c grant Fig. 5 Left

d shred Fig. 5 Right

value
62 mgtm: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
62 mgtm(mdir) ≡
62a mgtm create(mdir)
62b ⌈⌉ mgtm copy(mdir)
62c ⌈⌉ mgtm grant(mdir)
62d ⌈⌉ mgtm shred(mdir)

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 17

Management Create Behaviour: Left Fig. 3 on Page 15

63 The management create behaviour

64 initiates a create document behaviour (i.e., a request to the archive behaviour),

65 and then awaits its response.

value
63 mgtm create: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
63 mgtm create(mdir) ≡
64 [1] let hi = mgtm create initiation(mdir) ; [Left Fig. 3 on Page 15]
65 [5] mgtm create awaits response(mdir)(hi) end [Left Fig. 3 on Page 15]

The management create initiation behaviour

66 selects a handler on behalf of which it requests the document creation,

67 assembles the elements of the create message:

• by embedding a set of zero or more document references, dis, with some information, info, into a
document descriptor, adding

• a document note, dn, and

• and initial, that is, empty document contents, "empty DC",

68 offers such a create document message to the archive behaviour, and

69 yields the identifier of the chosen handler.

value
64 mgtm create initiation: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
64 mgtm create initiation(mdir) ≡
66 let hi:HI • hi ∈ dom mdir,
67 [1.2−.4] (dis,info):(DI-set×Info),dn:DN • is meaningful(embed DIs in DD(dis,info))(mdir) in
68 [1.1] mgtm arch ch ! mkCreate(embed DIs in DD(ds,info),dn,′′empty_DC′′)
69 hi end

67 is meaningful: DD → MDIR → Bool [left further undefined]

The management create awaits response behaviour

70 starts by awaiting a reply from the archive behaviour with the identity, di, of the document (that that
behaviour has created).

71 It then selects suitable access rights,

72 with which it updates its handler/document directory

73 and offers to the chosen handler

74 whereupon it resumes, with the updated management directory, being the management behaviour.

value
65 mgtm create awaits response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
65 mgtm create awaits response(mdir) ≡
70 [5] let mkNewDocID(di) = mgtm arch ch ? in
71 [5.1] let acrs:ANm-set in
72 [5.2] let mdir′ = mdir † [hi 7→ [di 7→ acrs]] in
73 [5.3] mgtm hdlr ch[hi] ! mkGrant(di,acrs)
74 mgtm(mdir′) end end end

Management Copy Behaviour: Right Fig. 4 on Page 15

75 The management copy behaviour

76 accepts a copy document request from a handler behaviour (i.e., a request to the archive behaviour),

18 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

77 and then awaits a response from the archive behaviour;

78 after which it grants access rights to handlers to the document copy.

value
75 mgtm copy: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
75 mgtm copy(mdir) ≡
76 [2] let hi = mgtm accept copy request(mdir) in
77 [8] let di = mgtm awaits copy response(mdir)(hi) in
78 [9] mgtm grant access rights(mdir)(di) end end

79 The management accept copy behaviour non-deterministically externally (⌈⌉⌊⌋) awaits a copy request
from a[ny] handler (i) behaviour –

80 with the request identifying the master document, j, to be copied.

81 The management accept copy behaviour forwards (!) this request to the archive behaviour –

82 while yielding the identity of the requesting handler.

79. mgtm accept copy request: MDIR → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} HI
79. mgtm accept copy request(mdir) ≡
80. let mkCopy(di,hi,t,dn) = ⌈⌉⌊⌋{mgtm hdlr ch[i]?|i:HI•i ∈ his} in
81. mgtm arch ch ! mkCopy(di,hi,t,dn) ;
81. hi end

The management awaits copy response behaviour

83 awaits a reply from the archive behaviour as to the identity of the newly created copy (di) of master
document j.

84 The management awaits copy response behaviour then informs the ‘copying-requesting’ handler, hi, that
the copying has been completed and the identity of the copy (di) –

85 while yielding the identity, di, of the newly created copy.

62b. mgtm awaits copy response: MDIR → HI → in,out mgtm arch ch, {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} DI
62b. mgtm awaits copy response(mdir)(hi) ≡
83. [8] let mkNewDocID(di) = mgtm arch ch ? in
84. mgtm hdlr ch[hi] ! mkCopy(di) ;
85. di end

The management grants access rights behaviour

86 selects suitable access rights for a suitable number of selected handlers.

87 It then offers these to the selected handlers.

78. mgtm grant access rights: MDIR → DI → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
78. mgtm grant access rights(mdir)(di) ≡
86. let diarm = [hi 7→acrs|hi:HI,arcs:ANm-set• hi ∈ dom mdir∧arcs⊆(diarm(hi))(di)] in
87. ‖ {mgtm hdlr ch[hi]!mkGrant(hi,time ch?,di,acrs) |
87. hi:HI,acrs:ANm-set•hi ∈ dom diarm∧acrs⊆(diarm(hi))(di)} end

Management Grant Behaviour: Left Fig. 5 on Page 16 The management grant behaviour

88 is a variant of the mgtm grant access rights function, Items 86–87.

89 The management behaviour selects a suitable subset of known handler identifiers, and

90 for these a suitable subset of document identifiers from which

91 it then constructs a map from handler identifiers to subsets of access rights.

92 With this the management behaviour then issues appropriate grants to the chosen handlers.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 19

type
MDIR = HI →m (DI →m ANm-set)

value
88 mgtm grant: MDIR → in,out {mgtm hdlr ch[hi]|hi:HI•hi ∈ his} Unit
88 mgtm grant(mdir) ≡
89 let his ⊆ dom dir in
90 let dis ⊆ ∪{dom mdir(hi)|hi:HI•hi ∈ his} in
91 let diarm = [hi 7→acrs|hi:HI,di:DI,arcs:ANm-set• hi ∈ his∧di ∈ dis∧acrs⊆(diarm(hi))(di)] in
92 ‖{mgtm hdlr ch[hi]!mkGrant(di,acrs) |
92 hi:HI,di:DI,acrs:ANm-set•hi ∈ dom diarm∧di ∈ dis∧acrs⊆(diarm(hi))(di)}
88 end end end

Management Shred Behaviour: Right Fig. 5 on Page 16 The management shred behaviour

93 initiates a request to the archive behaviour.

94 First the management shred behaviour selects a document identifier (from its directory).

95 Then it communicates a shred document message to the archive behaviour;

96 then it notes the (to be shredded) document in its directory

97 whereupon the management shred behaviour resumes being the management behaviour.

value
93 mgtm shred: MDIR → out mgtm arch ch Unit
93 mgtm shred(mdir) ≡
94 let di:DI • is suitable(di)(mdir) in
95 [1] mgtm arch ch ! mkShred(time ch?,di) ;
96 let mdir′ = [hi 7→mdir(hi)\{di}|hi:HI•hi ∈ dom mdir] in
97 mgtm(mdir′) end end

2.15.2. Archive Behaviour

98 The archive behaviour is involved in the following action traces:

a create Fig. 3 on Page 15 Left

b copy Fig. 4 on Page 15 Right

c shred Fig. 5 on Page 16 Right

type
41 ADIR = avail:DI-set × used:DI-set × gone:DI-set
axiom
41 ∀ (avail,used,gone):ADIR • avail ∩ used = {} ∧ gone ⊆ used
value
98 arch: ADIR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98a arch(adir) ≡
98a arch create(adir)
98b ⌈⌉ arch copy(adir)
98c ⌈⌉ arch shred(adir)

The Archive Create Behaviour: Left Fig. 3 on Page 15 The archive create behaviour

99 accepts a request, from the management behaviour to create a document;

100 it then selects an available document identifier;

101 communicates this new document identifier to the management behaviour;

102 while initiating a new document behaviour, docudi, with the document descriptor, dd, the initial document
annotation being the singleton list of the note, an, and the initial document contents, dc – all received

20 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

from the management behaviour – and an initial document history of just one entry: the date of creation,
all

103 in parallel with resuming the archive behaviour with updated programmable attributes.

98a. arch create: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98a. arch create(avail,used,gone) ≡
99. [2] let mkCreate((hi,t),dd,an,dc) = mgmt arch ch ? in
100. let di:DI•di ∈ avail in
101. [4] mgmt arch ch ! mkNewDocID(di) ;
102. [3] docudi(dd)(〈an〉,dc,<(date of creation)>)
103. ‖ arch(avail\{di},used∪{di},gone)
98a. end end

The Archive Copy Behaviour: Right Fig. 4 on Page 15 The archive copy behaviour

104 accepts a copy document request from the management behaviour with the identity, j, of the master
document;

105 it communicates (the request to obtain all the attribute values of the master document, j) to that
document behaviour;

106 whereupon it awaits their communication (i.e., (dd,da,dc,dh));

107 (meanwhile) it obtains an available document identifier,

108 which it communicates to the management behaviour,

109 while initiating a new document behaviour, docudi, with the master document descriptor, dd, the master
document annotation, and the master document contents, dc, and the master document history, dh (all
received from the master document),

110 in parallel with resuming the archive behaviour with updated programmable attributes.

98b. arch copy: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98b. arch copy(avail,used,gone) ≡
104. [3] let mkDocID(j,hi) = mgtm arch ch ? in
105. arch docu ch[j] ! mkReqAttrs() ;
106. let mkAttrs(dd,da,dc,dh) = arch docu ch[j] ? in
107. let di:DI • di ∈ avail in
108. mgtm arch ch ! mkCopyDocID(di) ;
109. [6,7] docudi(augment(dd,′′copy′′,j,hi),augment(da,′′copy′′,hi),dc,augment(dh,(′′copy′′,date and time,j,hi)))
110. ‖ arch(avail\{di},used∪{di},gone)
98b. end end end

where we presently leave the [overloaded] augment functions undefined.

The Archive Shred Behaviour: Right Fig. 5 on Page 16 The archive shred behaviour

111 accepts a shred request from the management behaviour.

112 It communicates this request to the identified document behaviour.

113 And then resumes being the archive behaviour, noting however, that the shredded document has been
shredded.

98c. arch shred: AATTR → in,out mgmt arch ch, {arch docu ch[di]|di:DI•di ∈ dis} Unit
98c. arch shred(avail,used,gone) ≡
111. [2] let mkShred(j) = mgmt arch ch ? in
112. arch docu ch[j] ! mkShred() ;
113. arch(avail,used,gone∪{j})
98c. end

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 21

2.15.3. Handler Behaviours

114 The handler behaviour is involved in the following action traces:

a create Fig. 3 on Page 15 Left

b edit Fig. 3 on Page 15 Right

c read Fig. 4 on Page 15 Left

d copy Fig. 4 on Page 15 Right

e grant Fig. 5 on Page 16 Left

value
114 hdlrhi: HATTRS → in,out mgtm hdlr ch[hi],{hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
114 hdlrhi(hattrs) ≡
114a hdlr createhi(hattrs)
114b ⌈⌉ hdlr edithi(hattrs)
114c ⌈⌉ hdlr readhi(hattrs)
114d ⌈⌉ hdlr copyhi(hattrs)
114e ⌈⌉ hdlr granthi(hattrs)

The Handler Create Behaviour: Left Fig. 3 on Page 15

115 The handler create behaviour offers to accept the granting of access rights, acrs, to document di.

116 It according updates its programmable hattrs attribute;

117 and resumes being a handler behaviour with that update.

114a hdlr createhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
114a hdlr createhi(hattrs,hhist) ≡
115 let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
116 let hattrs′ = hattrs † [hi 7→ acrs] in
117 hdlr createhi(hattrs

′,augment(hhist,mkGrant(di,acrs))) end end

The Handler Edit Behaviour: Right Fig. 3 on Page 15

118 The handler behaviour, on its own volition, decides to edit a document, di, for which it has editing rights.

119 The handler behaviour selects a suitable (...) pair of edit/undo functions and a suitable (annotation)
note.

120 It then communicates the desire to edit document di with (e,u) (at time t=time ch?).

121 Editing take some time, ti.

122 We can therefore assert that the time at which editing has completed is t+ti.

123 The handler behaviour accepts the edit completion message from the document handler.

124 The handler behaviour can therefore resume with an updated document history.

114b hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
114b hdlr edithi(hattrs,hhist) ≡
118 [1] let di:DI • di ∈ dom hattrs ∧ ′′

edit
′′ ∈ hattrs(di) in

119 [1] let (e,u):(EDIT×UNDO) • ... , n:AN • ... in
120 [1] hdlr docu ch[hi,di] ! mkEdit(hi,t=time ch?,e,u,n) ;
121 [2] let ti:TIME INTERVAL • ... in
122 [2] wait ti ; assert: time ch? = t+ti
123 [3] let mkEditComplete(ti′,...) = hdlr docu ch[hi,di] ? in assert ti′ ∼= ti
124 hdlrhi(hattrs,augment(hhist,(di,mkEdit(hi,t,ti,e,u))))
114b end end end end

22 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

The Handler Read Behaviour: Left Fig. 4 on Page 15

125 The handler behaviour, on its own volition, decides to read a document, di, for which it has reading
rights.

126 It then communicates the desire to read document di with at time t=time ch? – with an annotation note
(n).

127 Reading take some time, ti.

128 We can therefore assert that the time at which reading has completed is t+ti.

129 The handler behaviour accepts the read completion message from the document handler.

130 The handler behaviour can therefore resume with an updated document history.

114c hdlr edithi: HATTRS × HHIST → in,out {hdlr docu ch[hi,di]|di:DI•di∈dis} Unit
114c hdlr edithi(hattrs,hhist) ≡
125 [1] let di:DI • di ∈ dom hattrs ∧ ′′

read
′′ ∈ hattrs(di), n:N • ... in

126 [1] hdlr docu ch[hi,di] ! mkRead(hi,t=time ch?,n) ;
127 [2] let ti:TIME INTERVAL • ... in
128 [2] wait ti ; assert: time ch? = t+ti
129 [3] let mkReadComplete(ti,...) = hdlr docu ch[hi,di] ? in
130 hdlrhi(hattrs,augment(hhist,(di,mkRead(di,t,ti))))
114c end end end

The Handler Copy Behaviour: Right Fig. 4 on Page 15

131 The handler [copy] behaviour, on its own volition, decides to copy a document, di, for which it has
copying rights.

132 It communicates this copy request to the management behaviour.

133 After a while the handler [copy] behaviour receives acknowledgement of a completed copying from the
management behaviour.

134 The handler [copy] behaviour records the request and acknowledgement in its, thus updated whereupon
the handler [copy] behaviour resumes being the handler behaviour.

114d hdlr copyhi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
114d hdlr copyhi(hattrs,hhist) ≡
131 [1] let di:DI • di ∈ dom hattrs ∧ ′′

copy
′′ ∈ hattrs(di) in

132 [1] mgtm hdlr ch[hi] ! mkCopy(di,hi,t=time ch?) ;
133 [10] let mkCopyComplete(di′,di) = mgtm hdlr ch[hi] ? in
134 [10] hdlrhi(hattrs,augment(hhist,time ch?,(mkCopy(di,hi,,t),mkCopyComplete(di′))))
114d end end

The Handler Grant Behaviour: Left Fig. 5 on Page 16

135 The handler [grant] behaviour offers to accept grant permissions from the management behaviour.

136 In response it updates its handler attribute while resuming being a handler behaviour.

114e hdlr granthi: HATTRS × HHIST → in,out mgtm hdlr ch[hi] Unit
114e hdlr granthi(hattrs,hhist) ≡
135 [2] let mkGrant(di,acrs) = mgtm hdlr ch[hi] ? in
136 [2] hdlrhi(hattrs†[di 7→acrs],augment(hhist,time ch?,mkGrant(di,acrs)))
114e end

2.15.4. Document Behaviours

137 The document behaviour is involved in the following action traces:

a edit Fig. 3 on Page 15 Right

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 23

b read Fig. 4 on Page 15 Left

c shred Fig. 5 on Page 16 Right

value
137 docudi: DD × (DA × DC × DH) → in,out arch docu ch[di], {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
137 docudi(dattrs) ≡
137a docu editdi(dd)(da,dc,dh)
137b ⌈⌉ docu readdi(dd)(da,dc,dh)
137c ⌈⌉ docu shreddi(dd)(da,dc,dh)

The Document Edit Behaviour: Right Fig. 3 on Page 15

138 The document [edit] behaviour offers to accept edit requests from document handlers.

a The document contents is edited, over a time interval of ti, with respect to the handlers edit function
(e),

b the document annotations are augmented with respect to the handlers note (n), and

c the document history is augmented with the fact that an edit took place, at a certain time, with a
pair of edit/undo functions.

139 The edit (etc.) function(s) take some time, ti, to do.

140 The handler behaviour is notified, mkEditComplete(...) of the completion of the edit, and

141 the document behaviour is then resumed with updated programmable attributes.

value
137a docu editdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
137a docu editdi(dd)(da,dc,dh) ≡
138 [2] let mkEdit(hi,t,e,u,n) = ⌈⌉⌊⌋{hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
138a [2] let dc′ = e(dc),
138b da′ = augment(da,((hi,t),(′′edit′′,e,u),n)),
138c dh′ = augment(dh,((hi,t),(′′edit′′,e,u))) in
139 let ti = time ch? − t in
140 hdlr docu ch[hi,di] ! mkEditComplete(ti,...) ;
141 docudi(dd)(da

′,dc′,dh′)
137a end end end

The Document Read Behaviour: Left Fig. 4 on Page 15

142 The The document [read] behaviour offers to receive a read request from a handler behaviour.

143 The reading takes some time to do.

144 The handler behaviour is advised on completion.

145 And the document behaviour is resumed with appropriate programmable attributes being updated.

value
137b docu readdi: DD × (DA × DC × DH) → in,out {hdlr docu ch[hi,di]|hi:HI•hi∈his} Unit
137b docu readdi(dd)(da,dc,dh) ≡
142 [2] let mkRead(hi,t,n) = {hdlr docu ch[hi,di]?|hi:HI•hi∈his} in
143 [2] let ti:TIME INTERVAL • ... in
143 [2] wait ti ;
144 [2] hdlr docu ch[hi,di] ! mkReadComplete(ti,...) ;
145 [2] docudi(dd)(augment(da,n),dc,augment(dh,(hi,t,ti,′′read′′)))
137b end end

24 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

The Document Shred Behaviour: Right Fig. 5 on Page 16

146 The document [shred] behaviour offers to accept a document shred request from the archive behaviour
–

147 whereupon it stops !

value
137c docu shreddi: DD × (DA × DC × DH) → in,out arch docu ch[di] Unit
137c docu shreddi(dd)(da,dc,dh) ≡
146 [3] let mkShred(...) = arch docu ch[di] ? in
147 stop
137c [3] end

2.16. Conclusion

This completes a first draft version of this document. The date time is: 15 June 2017: 10:43 am. Many things
need to be done. First a careful checking of all types and functions: that all used names have been defined.
The internal non-deterministic choices in formula Items 62 on Page 16, 98 on Page 19, 114 on Page 21
and 137 on Page 22, need be checked. I suspect there should, instead, be som mix of both internal and
external non-deterministic choices. Then a careful motivation for all the other non-deterministic choices.

3. Bibliography

3.1. Bibliographical Notes

I have thought about domain engineering for more than 20 years. But serious, focused writing only started
to appear since [7, Part IV] — with [4, 1] being exceptions: [9] suggests a number of domain science and
engineering research topics; [13] covers the concept of domain facets; [33] explores compositionality and Galois
connections. [10, 32] show how to systematically, but, of course, not automatically, “derive” requirements
prescriptions from domain descriptions; [15] takes the triptych software development as a basis for outlining
principles for believable software management; [11, 22] presents a model for Stanis law Leśniewski’s [35]
concept of mereology; [14, 16] present an extensive example and is otherwise a precursor for the present
paper; [17] presents, based on the TripTych view of software development as ideally proceeding from domain
description via requirements prescription to software design, concepts such as software demos and simulators;
[19] analyses the TripTych, especially its domain engineering approach, with respect to [38, 39, Maslow]’s
and [40, Peterson’s and Seligman’s]’s notions of humanity: how can computing relate to notions of humanity;
the first part of [23] is a precursor for [26] with the second part of [23] presenting a first formal model of the
elicitation process of analysis and description based on the prompts more definitively presented in [26]; and
with [24] focus on domain safety criticality. The published paper [26] now constitutes the base introduction
to domain science & engineering.

3.2. Domain Modeling Experiments

• Credit Card System14, [25] 2016. Result of my PhD lec-
tures at Uppsala, May 2016

• Weather Information Systems15 [27] Result of my PhD
lectures at Bergen, November 2016

• Documents16 [18] 2013.

• Transport Systems17 [21] 2010.

14 http://www.imm.dtu.dk/ dibj/2016/uppsala/accs.pdf
15 http://www.imm.dtu.dk/ dibj/2016/wis/wis-p.pdf
16 http://www.imm.dtu.dk/˜dibj/doc-p.pdf
17 http://www.imm.dtu.dk/˜dibj/comet/comet1.pdf

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 25

• The Tokyo Stock Exchange Trading Rules18

and19 [29] 2010.

• On Development of Web-based Software20 2010.

• What is Logistics ?21 [12] 2009.

• Pipelines – a Domain Description22

and23, [20] 2009.

• Platooning24,

• A Container Line Industry Domain25, [8] 2007

• Models of IT Security: Security Rules & Regulations26

[30] 2006.

• Markets27 [3]

• Railway Systems Descriptions: 1996–2003

⋄⋄ Dines Bjørner: Formal Software Techniques in Rail-
way Systems28 [2]

⋄⋄ Chris George, Dines Bjørner and Søren Prehn:
Scheduling and Rescheduling of Trains29, [34] 1996

⋄⋄ Dines Bjørner: A Railway Systems Domain30

An ”old” UNU-IIST report, 1997

⋄⋄ Dines Bjørner: Formal Software Techniques in Rail-
way Systems31, 2002

⋄⋄ Albena Strupchanska, Martin Penicka and Dines
Bjørner: Railway Staff Rostering32, 2003 [42]

⋄⋄ Dines Bjørner: Dynamics of Railway Nets33, 2003 [5]

⋄⋄ Martin Penicka, Albena Strupchanska and Dines
Bjørner: Train Maintenance Routing34, 2003 [41]

⋄⋄ Panagiotis Karras and Dines Bjørner: Train Com-
position and Decomposition: Domain and Require-
ments35, 2003

⋄⋄ Dines Bjørner: Dynamics of Railway Nets: On an
Interface between Automatic Control and Software
Engineering36 [5] 2003

3.3. References

[1] Dines Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In Li ShaoYang and
Michael Hinchley, editors, ICFEM’97: International Conference on Formal Engineering Methods, Los Alamitos,
November 12–14 1997. IEEE Computer Society. Final Version.

[2] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC Sympo-
sium on Control in Transportation Systems, pages 1–12, Technical University, Braunschweig, Germany, 13–15 June
2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik.
Invited talk.

[3] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In Practical
Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken Baclawski), The Netherlands,
December 2002. Kluwer Academic Press. Final draft version.

[4] Dines Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engineering ? In Verifi-
cation: Theory and Practice, volume 2772 of Lecture Notes in Computer Science, Heidelberg, October 7–11 2003.
Springer–Verlag. The Zohar Manna International Conference, Taormina, Sicily 29 June – 4 July 2003. .

[5] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software Engineering.
In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier
Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki. Final version.

[6] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily authored by Christian Krog
Madsen.

[7] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006.

[8] Dines Bjørner. A Container Line Industry Domain. Techn. report, Fredsvej 11, DK-2840 Holte, Denmark, June
2007. Extensive Draft.

18 http://www.imm.dtu.dk/˜dibj/todai/tse-1.pdf
19 http://www.imm.dtu.dk/˜dibj/todai/tse-2.pdf
20 http://www.imm.dtu.dk/˜dibj/wfdftp.pdf
21 http://www.imm.dtu.dk/˜dibj/logistics.pdf
22 http://www.imm.dtu.dk/˜dibj/pipeline.pdf
23 http://www.imm.dtu.dk/˜dibj/pipe-p.pdf
24 http://www.imm.dtu.dk/˜dibj/platoon-p.pdf
25 http://www.imm.dtu.dk/˜dibj/container-paper.pdf
26 http://www.imm.dtu.dk/˜dibj/it-security.pdf
27 http://www2.imm.dtu.dk/˜db/themarket.pdf
28 http://www2.compute.dtu.dk/˜dibj/rails.pdf
29 http://www.imm.dtu.dk/ dibj/amore/docs/scheduling.pdf
30 http://www.imm.dtu.dk/ dibj/UNU-IIST-railways.pdf
31 http://www.imm.dtu.dk/ dibj/amore/docs/dines-ifac.pdf
32 http://www.imm.dtu.dk/ dibj/amore/docs/albena-amore.pdf
33 http://www.imm.dtu.dk/ dibj/amore/docs/ifac-dynamics.pdf
34 http://www.imm.dtu.dk/ dibj/amore/docs/martin-amore.pdf
35 http://www.imm.dtu.dk/ dibj/amore/docs/panos-amore.pdf
36 http://www2.imm.dtu.dk/˜db/ifac-dynamics.pdf

26 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

[9] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, vol-
ume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September
2007. Springer.

[10] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in
Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May
2008. Springer.

[11] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare,
History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70, London, UK, 2009.
Springer.

[12] Dines Bjørner. What is Logistics ? A Domain Analysis. Techn. report, Incomplete Draft, Fredsvej 11, DK-2840
Holte, Denmark, June 2009.

[13] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the
Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.

[14] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics, Part I of II:
The Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May 2010.

[15] Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.
[16] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics Part II of II:

The Science Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.
[17] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions.

In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of His 70th Anniversary.,
Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January
2011.

[18] Dines Bjørner. Documents – a Domain Description37. Experimental Research Report 2013-3, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[19] Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chapter 7,
pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC [Francis & Taylor],
2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[20] Dines Bjørner. Pipelines – a Domain Description38. Experimental Research Report 2013-2, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[21] Dines Bjørner. Road Transportation – a Domain Description39. Experimental Research Report 2013-4, DTU
Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[22] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio Calosi
and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, October 2014.

[23] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida, José
Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software: A Festschrift Symposium in Honor
of Kokichi Futatsugi. Springer, May 2014.

[24] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014: Australian
System Safety Conference, Melbourne, 26–28 May, December 2014.

[25] Dines Bjørner. A Credit Card System: Uppsala Draft. Technical Report: Experimental Research, Fredsvej 11,
DK–2840 Holte, Denmark, November 2016. http://www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf.

[26] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Computing, ...(...):1–51, 2016. DOI
10.1007/s00165-016-0385-z http://link.springer.com/article/10.1007/s00165-016-0385-z.

[27] Dines Bjørner. Weather Information Systems: Towards a Domain Description. Technical Report: Experimental
Research, Fredsvej 11, DK–2840 Holte, Denmark, November 2016. http://www.imm.dtu.dk/˜dibj/2016/wis/wis-
p.pdf.

[28] Dines Bjørner. Urban Planning Processes. Research Note, July 2017. http://www.imm.dtu.dk/˜dibj/2017/up/-
urban-planning.pdf.

[29] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Fredsvej 11, DK-2840 Holte, Denmark,
January and February, 2010. Version 1, 78 pages: many auxiliary appendices, Version 2, 23 pages: omits many
appendices and corrects some errors..

[30] Dines Bjørner. [31] Chap. 9: Towards a Model of IT Security — – The ISO Information Security Code of Practice
– An Incomplete Rough Sketch Analysis, pages 223–282. JAIST Press, March 2009.

[31] Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. A JAIST Press Research
Monograph #4, 536 pages, March 2009.

[32] Dines Bjørner. The Rôle of Domain Engineering in Software Development. Why Current Requirements Engineering
Seems Flawed! In Perspectives of Systems Informatics, volume 5947 of Lecture Notes in Computer Science, pages
2–34, Heidelberg, Wednesday, January 27, 2010. Springer.

[33] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations
in the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams and Ulrich Hannemann.
In Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of
Lecture Notes in Computer Science, pages 22–59, Heidelberg, July 2010. Springer.

[34] Dines Bjørner, Chris W. George, and Søren Prehn. Scheduling and Rescheduling of Trains, chapter 8, pages 157–

37 http://www.imm.dtu.dk/˜dibj/doc-p.pdf
38 http://www.imm.dtu.dk/˜dibj/pipe-p.pdf
39 http://www.imm.dtu.dk/˜dibj/road-p.pdf

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 27

184. Industrial Strength Formal Methods in Practice, Eds.: Michael G. Hinchey and Jonathan P. Bowen. FACIT,
Springer–Verlag, London, England, 1999.

[35] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.
[36] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen,

Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

[37] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank
Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

[38] Abraham Maslow. A Theory of Human Motivation. Psychological Review, 50(4):370–96, 1943. http://psych-
classics.yorku.ca/Maslow/motivation.htm.

[39] Abraham Maslow. Motivation and Personality. Harper and Row Publishers, 3rd ed., 1954.
[40] Christopher Peterson and Martin E.P. Seligman. Character strengths and virtues: A handbook and classification.

Oxford University Press, 2004.
[41] Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing. In FORMS’2003:

Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan Hongrie, 15–16 May
2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany. Final
version.

[42] Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan Hongrie, 15–16 May
2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany. Final
version.

28 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

A. Documents in Public Gornment

Public government, in the spirit of Charles-Louis de Secondat, Baron de La Brède et de Montesquieu (or
just Montesquieu), has three branches:

• the legislative,

• the executive, and

• the judicial.

Our interpretation of these, with respect to documents, are as follows.

• The legislative branch produces laws, i.e., documents. To do so many preparatory documents are created,
edited, read, copied, etc. Committees, subcommittees, individual lawmakers and ministry law office staff
handles these documents. Parliament staff and legislators are granted limited or unlimited access rights
to these documents. Finally laws are put into effect, are amended, changed or abolished.
The legislative branch documents refer to legislative, executive and judicial branch documents.

• The executive branch produces guide lines, i.e., documents. Instructions on interpretation and imple-
mentation of laws; directives to ministry services on how to handle the laws; etcetera.
These executive branch documents refer to legislative, executive and judicial branch documents.

• The judicial branch produces documents. Police cite citizens and enterprises for breach of law. Citizens
and enterprise sue other citizens and/or enterprises. Attorneys on behalf of the governments, or citizens
or enterprises prepare statements. Court proceedings are recorded. Justices pass verdicts.
The judicial branch documents refer to legislative, executive and judicial branch documents.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 29

B. Documents in Urban Planning

A separate research note [28, Urban Planning Processes] analyses & describes a domain of urban planning.
There are the geographical documents:

• geodetic,

• geotechnic,

• meteorological,

• and other types of geographical documents.

In order to perform an informed urban planning further documents are needed:

• auxiliary documents which

• requirements documents which

Auxiliary documents presents such information that “fill in” details concerning current ownership of the land
area, current laws affecting this ownership, the use of the land, etcetera. Requirements documents express
expectations about the (base) urban plans that should result from the base urban planning. As a first result
of base urban planning we see the emergence of the following kinds of documents:

• base urban plans

• and ancillary notes.

The base urban plans deal with

• cadestral,

• cartograhic and

• zoning

issues. The ancillary notes deal with such things as insufficiencies in the base planss, things that ought be
improved in a next iteration base urban plannin, etc. The base plans and ancillerary notes, besides possible
re-iteration of base urban planning, lead on to “derived urban planning” for

• light, medium and heavy industry zones,

• mixed shopping and residential zones,

• apartment building zones,

• villa zones,

• recreational zones,

• etcetera.

After these “first generation” derived urban plans are well underway, a “second generation” derived urban
planning can start:

• transport infrastructure,

• water and waste resource management,

• electricity, natural gas, etc., infrastructure,

• etcetera.

And so forth. Literally “zillions upon zillions” of strongly and crucially interrelated documents accrue.
Urban planning evolves and revolves around documents.
Documents are the only “tangible” results or urban planning.40

40 Once urban plans have been agreed upon by all relevant authorities and individuals, then urban development (“build”) and,
finally, “operation” of the developed, new urban “landscape”. For development, the urban plans form one of the “tangible”
inputs. Others are of financial and human and other resource nature.

30 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

C. RSL: The RAISE Specification Language – A Primer

C.1. Type Expressions

Type expressions are expressions whose value are types, that is, possibly infinite sets of values (of “that”
type).

C.1.1. Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent (sub-
)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers, reals,
characters, and texts.

type
[1] Bool true, false
[2] Int ... , −2, −2, 0, 1, 2, ...
[3] Nat 0, 1, 2, ...
[4] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5] Char ”a”, ”b”, ..., ”0”, ...
[6] Text ”abracadabra”

C.1.2. Composite Types

Composite types have composite values. That is, values which we consider to have proper constituent (sub-
)values, i.e., can be meaningfully “taken apart”. There are two ways of expressing composite types: either
explicitly, using concrete type expressions, or implicitly, using sorts (i.e., abstract types) and observer func-
tions.

Concrete Composite Types From these one can form type expressions: finite sets, infinite sets, Cartesian
products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then the following are type expressions:

[7] A-set
[8] A-infset
[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B

[13] A → B

[14] A
∼

→ B
[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

The following the meaning of the atomic and the composite type expressions:

1 The Boolean type of truth values false and true.

2 The integer type on integers ..., –2, –1, 0, 1, 2,

3 The natural number type of positive integer values 0, 1, 2, ...

4 The real number type of real values, i.e., values whose numerals can be written as an integer, followed
by a period (“.”), followed by a natural number (the fraction).

5 The character type of character values ′′a′′, ′′bb′′, ...

6 The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

7 The set type of finite cardinality set values.

8 The set type of infinite and finite cardinality set values.

9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.

11 The list type of infinite and finite length list values.

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 31

12 The map type of finite definition set map values.

13 The function type of total function values.

14 The function type of partial function values.

15 In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the parentheses serve as
simple delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E→m F)), etc.

16 The postulated disjoint union of types A, B, . . . , and C.

17 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of respective
types. The distinct identifiers sel a, etc., designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective types.
The distinct identifiers sel a, etc., designate selector functions.

Sorts and Observer Functions

type
A, B, C, ..., D

value
obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three values — and these are of type
B, C, . . . , and D. A concrete type definition corresponding to the above presupposing material of the next
section

type
B, C, ..., D
A = B × C × ... × D

C.2. Type Definitions

C.2.1. Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

type
A = Type expr

Some schematic type definitions are:

[19] Type name = Type expr /∗ without | s or subtypes ∗/
[20] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[21] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[22] Type name :: sel a:Type name a ... sel z:Type name z
[23] Type name = {| v:Type name′ • P(v) |}

where a form of [20]–[21] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

32 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the use of
the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

C.2.2. Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The set of
values b which have type B and which satisfy the predicate P , constitute the subtype A:

type
A = {| b:B • P(b) |}

C.2.3. Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

type
A, B, ..., C

C.3. The RSL Predicate Calculus

C.4. Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos]).
Then:

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e.,
operators). They can be read as: not, and, or, if then (or implies), equal and not equal.

C.4.1. Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or term
expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

are simple predicate expressions.

C.4.2. Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate predicate
expressions in which x, y and z are free. Then:

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 33

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least) one y

(value in type Y) such that the predicate Q(y) holds; and there exists a unique z (value in type Z) such
that the predicate R(z) holds.

C.5. Concrete RSL Types: Values and Operations

C.5.1. Arithmetic

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼

→Nat | Int×Int
∼

→Int | Real×Real
∼

→Real
<,≤,=, 6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

C.5.2. Set Expressions

Set Enumerations Let the below a’s denote values of type A, then the below designate simple set enumer-
ations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension The expression, last line below, to the right of the ≡, expresses set comprehension. The
expression “builds” the set of values satisfying the given predicate. It is abstract in the sense that it does
not do so by following a concrete algorithm.

type
A, B
P = A → Bool

Q = A
∼

→ B
value

comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

C.5.3. Cartesian Expressions

Cartesian Enumerations Let e range over values of Cartesian types involving A, B, . . ., C, then the below
expressions are simple Cartesian enumerations:

type
A, B, ..., C
A × B × ... × C

value
(e1,e2,...,en)

C.5.4. List Expressions

List Enumerations Let a range over values of type A, then the below expressions are simple list enumerations:

34 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses the set of integers
from the value of ei to and including the value of ej . If the latter is smaller than the former, then the list is
empty.

List Comprehension The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼

→ B
value

comprehend: Aω × P × Q
∼

→ Bω

comprehend(l,P,Q) ≡ 〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

C.5.5. Map Expressions

Map Enumerations Let (possibly indexed) u and v range over values of type T 1 and T 2, respectively, then
the below expressions are simple map enumerations:

type
T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u 7→v], ..., [u1 7→v1,u2 7→v2,...,un 7→vn] all ∈ M

Map Comprehension The last line below expresses map comprehension:

type
U, V, X, Y
M = U →m V

F = U
∼

→ X

G = V
∼

→ Y
P = U → Bool

value
comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡ [F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

C.5.6. Set Operations

Set Operator Signatures

value
19 ∈: A × A-infset → Bool
20 6∈: A × A-infset → Bool
21 ∪: A-infset × A-infset → A-infset
22 ∪: (A-infset)-infset → A-infset
23 ∩: A-infset × A-infset → A-infset
24 ∩: (A-infset)-infset → A-infset
25 \: A-infset × A-infset → A-infset
26 ⊂: A-infset × A-infset → Bool
27 ⊆: A-infset × A-infset → Bool
28 =: A-infset × A-infset → Bool
29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼

→ Nat

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 35

Set Examples

examples
a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,bb},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,bb},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,bb}
{a,bb} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,bb}
card {} = 0, card {a,b,c} = 3

Informal Explication

19 ∈: The membership operator expresses that an element is a member of a set.

20 6∈: The nonmembership operator expresses that an element is not a member of a set.

21 ∪: The infix union operator. When applied to two sets, the operator gives the set whose members are in
either or both of the two operand sets.

22 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the set whose
members are in some of the operand sets.

23 ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose members
are in both of the two operand sets.

24 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives the set
whose members are in some of the operand sets.

25 \: The set complement (or set subtraction) operator. When applied to two sets, the operator gives the
set whose members are those of the left operand set which are not in the right operand set.

26 ⊆: The proper subset operator expresses that all members of the left operand set are also in the right
operand set.

27 ⊂: The proper subset operator expresses that all members of the left operand set are also in the right
operand set, and that the two sets are not identical.

28 =: The equal operator expresses that the two operand sets are identical.

29 6=: The nonequal operator expresses that the two operand sets are not identical.

30 card: The cardinality operator gives the number of elements in a finite set.

Set Operator Definitions The operations can be defined as follows (≡ is the definition symbol):

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

36 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

C.5.7. Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

C.5.8. List Operations

List Operator Signatures

value

hd: Aω ∼

→ A

tl: Aω ∼

→ Aω

len: Aω ∼

→ Nat
inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼

→ A
̂: A∗ × Aω → Aω=: Aω × Aω → Bool6=: Aω × Aω → Bool

List Operation Examples

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this set is
the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements larger
than or equal to i, gives the ith element of the list.

• ̂: Concatenates two operand lists into one. The elements of the left operand list are followed by the
elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 37

List Operator Definitions

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i 6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then
if q 6=〈〉

then let a:A,q′:Q • q=〈a〉̂q′ in a end
else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

C.5.9. Map Operations

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼

→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a2 7→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a2 7→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→bb′,a′′7→bb′′] † [a′7→bb′′,a′′7→bb′] = [a 7→b,a′7→bb′′,a′′ 7→bb′]

∪: M × M → M [merge ∪]
[a 7→b,a′7→bb′,a′′7→bb′′] ∪ [a′′′7→bb′′′] = [a 7→b,a′7→bb′,a′′7→bb′′,a′′′ 7→bb′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→bb′,a′′7→bb′′]\{a} = [a′7→bb′,a′′ 7→bb′′]

38 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

/: M × A-infset → M [restriction to]
[a 7→b,a′7→bb′,a′′7→bb′′]/{a′,a′′} = [a′7→bb′,a′′7→bb′′]

=, 6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→bb′] ◦ [bb 7→c,bb′7→c′,bb′′7→c′′] = [a 7→c,a′7→c′]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an override of
the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left
operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left
operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition set elements of
the left operand map, m1, to the range elements of the right operand map, m2, such that if a is in the
definition set of m1 and maps into b, and if b is in the definition set of m2 and maps into c, then a, in
the composition, maps into c.

Map Operation Redefinitions The map operations can also be defined as follows:

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 39

C.6. λ-Calculus + Functions

C.6.1. The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

C.6.2. Free and Bound Variables

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

C.6.3. Substitution

In RSL, the following rules for substitution apply:

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).

C.6.4. α-Renaming and β-Reduction

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can rename
the formal parameter of a λ-function expression provided that no free variables of its body M thereby
become bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided that no free variables of N
thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

C.6.5. Function Signatures

For sorts we may want to postulate some functions:

40 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

type
A, B, C

value
obs B: A → B,
obs C: A → C,
gen A: BB×C → A

C.6.6. Function Definitions

Functions can be defined explicitly:

value
f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼

→ Result
g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

value
f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼

→ Result
g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼

→ indicates that the function is partial and thus not defined for all arguments. Partial functions
should be assisted by preconditions stating the criteria for arguments to be meaningful to the function.

C.7. Other Applicative Expressions

C.7.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

C.7.2. Recursive let Expressions

Recursive let expressions are written as:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 41

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

C.7.3. Predicative let Expressions

Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body B(a).

C.7.4. Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,bb〉̂ℓ = list in ... end

let [a 7→bb] ∪ m = map in ... end
let [a 7→b,] ∪ m = map in ... end

C.7.5. Conditionals

Various kinds of conditional expressions are offered by RSL:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

C.7.6. Operator/Operand Expressions

〈Expr〉 ::=

42 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

C.8. Imperative Constructs

C.8.1. Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative constructs
which, through stages of refinements, are turned into concrete and imperative constructs. Imperative con-
structs are thus inevitable in RSL.

Unit
value

stmt: Unit → Unit
stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

C.8.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

C.8.3. Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or side-effect.

2. skip
3. stm 1;stm 2;...;stm n

C.8.4. Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

C.8.5. Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

c© Dines Bjørner 2017. A Research Note Version 1 Incomplete Draft 43

C.8.6. Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

C.9. Process Constructs

C.9.1. Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the designated
types (A and B).

C.9.2. Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage in
input and/or output events, thereby communicating over declared channels. Let P() and Q stand for process
expressions, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes: either external
(⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes are forced to communicate
only with one another, until one of them terminates.

C.9.3. Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively “writes” an
output.

C.9.4. Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express, in
their signature, via which channels they wish to engage in input and output events.

value
P: Unit → in c out k[i]
Unit
Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

44 c© Dines Bjørner 2017. What are Documents ? Version 1 Incomplete Draft

C.10. Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is often done in
RSL. An RSL specification is simply a sequence of one or more types, values (including functions), variables,
channels and axioms:

type
...

variable
...

channel
...

value
...

axiom
...

In practice a full specification repeats the above listings many times, once for each “module” (i.e., aspect,
facet, view) of specification. Each of these modules may be “wrapped” into scheme, class or object defini-
tions.41

41 For schemes, classes and objects we refer to [6, Chap. 10]

