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Preface

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain,

so we must describe it.

General

The thesis of this collection of papers is that domain engineering is a viable, yes, we would claim, necessary

initial phase of software development. I mean this rather seriously: How can one think of implementing

software, preferably satisfying some requirements, without demonstrating that one understands the do-
main ? So in this collection of papers I shall explain what domain engineering is, some of the science that

goes with it, and how one can ’derive” requirements prescriptions (for computing systems) from domain

descriptions. But there is an altogether different reason, also, for presenting these papers: Software houses

may not take up the challenge to develop software that satisfies customers expectations, that is, reflects the

domain such as these customers know it, and software that is correct with respect to requirements, with

proofs of correctness often having to refer to the domain. But computing scientists are shown, in these

papers, that domain science and engineering is a field full of interesting problems to be researched. We

consider domain descriptions, requirements prescriptions and software design specifications to be mathe-

matical quantities.

A Brief Guide

I have collected six papers in this document:

• Chapter 1: [49, Manifest Domains: Analysis & Description] Pages 3–52

• Chapter 2: [53, Domain Facets: Analysis & Description] Pages 53–79

• Chapter 3: [52, Formal Models of Processes and Prompts] Pages 81–112

• Chapter 4: [50, To Every Manifest Domain Mereology a CSP Expression] Pages 113–132

• Chapter 5: [54, From Domain Descriptions to Requirements Prescriptions] Pages 135–176

• Chapter 6: [48, Domains: Their Simulation, Monitoring and Control] Pages 179–187

We urge the reader to study the Contents listing and from there to learn that there is a Bibliography
common to all six chapters, two example appendices, An RSL Primer, a set of indexes into definitions,

concepts, examples, analysis and description prompts, and an index of RSL Symbols.

Dines Bjørner. December 5, 2016: 07:21 am

Fredsvej 11, DK–2840 Holte, Denmark
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Manifest Domains: Analysis & Description

Summary

We show1 that manifest domains, an understanding of which are a prerequisite for software
requirements prescriptions, can be precisely described: narrated and formalised. We show that
such manifest domains can be understood as a collection of endurant, that is, basically spatial
entities: parts, components and materials, and perdurant, that is, basically temporal entities:
actions, events and behaviours. We show that parts can be modeled in terms of external
qualities whether: atomic or composite parts, having internal qualities: unique identifications,
mereologies, which model relations between parts, and attributes. We show that the mani-
fest domain analysis endeavour can be supported by a calculus of manifest domain analysis
prompts: is entity, is endurant, is perdurant, is part, is component, is material,
is atomic, is composite, is stationary, etcetera; and show how the manifest domain de-
scription endeavour can be supported by a calculus of manifest domain description prompts: ob-
serve part sorts, observe part type, observe components, observe materials, ob-
serve unique identifier, observe mereology, observe attributes. We show how to
model attributes, essentially following Michael Jackson, [115], but with a twist: The attribute
model introduces the attribute analysis prompts is static attribute, is dynamic attri-

bute, is inert attribute, is reactive attribute, is active attribute, is auto-

nomous attribute, is biddable attribute and is programmable attribute. The twist
suggests ways of modeling “access” to the values of these kinds of attributes: the static
attributes by simply “copying” them, once, the reactive and programmable attributes by “car-
rying” them as function parameters whose values are kept always updated, and the remaining,
the external attributes, by inquiring, when needed, as to their value, as if they were al-
ways offered on CSP-like channels [111]. We show how to model essential aspects of perdurants
in terms of their signatures based on the concepts of endurants. And we show how one can
“compile” descriptions of endurant parts into descriptions of perdurant behaviours. We do not
show prompt calculi for perdurants. The above contributions express a method with principles,
techniques and tools for constructing domain descriptions. It is important to realise that we
do not wish to nor claim that the method can describe all that it is interesting to know about
domains.

1.1 Introduction

The broader subject of this compendium is that of software development. The narrower subject of this

chapter is that of manifest domain engineering. We shall see software development in the context of the

TripTych approach (next section). The contribution of this compendium is twofold: the propagation of

manifest domain engineering as a first phase of the development of a large class of software — and a set

1 This chapter is based on [49].
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of principles, techniques and tools for the engineering of the analysis & descriptions of manifest domains.

These principles, techniques and tools are embodied in a set of analysis and description prompts. We claim

that this embodiment — in the form of prompts — is novel.

1.1.1 The TripTych Approach to Software Engineering

We suggest a TripTych view of software engineering: before hardware and software systems can be de-
signed and coded we must have a reasonable grasp of “its” requirements; before requirements can be
prescribed we must have a reasonable grasp of “the underlying” domain. To us, therefore, software engi-

neering contains the three sub-disciplines:

• domain engineering,

• requirements engineering and

• software design.

This paper contributes, we claim, to a methodology for domain analysis &2 domain description. Chap-
ter 5, From Domain Descriptions to Requirements Prescriptions, [54] shows how to “refine”

domain descriptions into requirements prescriptions, and Chapter 6, Domains: Their Simulation,
Monitoring and Control, [48] indicates more general relations between domain descriptions and do-
main demos, domain simulators and more general domain specific software.

The concept of systems engineering arises naturally in the TripTych approach. First: domains can be
claimed to be systems. Secondly: requirements are usually not restricted to software, but encompasses all
the human and technological “assists” that must be considered. Other than that we do not wish to consider

domain analysis & description principles, techniques and tools specific to “systems engineering”.

1.1.2 Method and Methodology

Method

By a method we shall understand a “structured” set of principles for selecting and applying a num-

ber of techniques and tools for analysing problems and synthesizing solutions for a given domain

⊙3

The ‘structuring’ amounts, in this treatise on domain analysis & description, to the techniques and tools

being related to a set of domain analysis & description “prompts”, “issued by the method”, prompting the

domain engineer, hence carried out by the domain analyser & describer4 — conditional upon the result of

other prompts.

Discussion

There may be other ‘definitions’ of the term ‘method’. The above is the one that will be adhered to in

this paper. The main idea is that there is a clear understanding of what we mean by, as here, a software

development method, in particular a domain analysis & description method.
The main principles of the TripTych domain analysis and description approach are those of abstraction

and both narrative and formal modeling. This means that evolving domain descriptions necessarily limit

themselves to a subset of the domain focusing on what is considered relevant, that is, abstract “away” some

domain phenomena.

The main techniques of the TripTych domain analysis and description approach are besides those

techniques which are in general associated with formal descriptions, focus on the techniques that relate to

the deployment of of the individual prompts.

And the main tools of the TripTych domain analysis and description approach are the analysis and

description prompts and the description language, here the Raise Specification Language RSL [96].

A main contribution of this paper is therefore that of “painstakingly” elucidating the principles, tech-

niques and tools of the domain analysis & description method.

2 When, as here, we write A & B we mean A & B to be one subject.
3 Definitions and examples are delimited by ⊙ symbols.
4 We shall thus use the term domain engineer to cover both the analyser & the describer.
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Methodology

By methodology we shall understand the study and knowledge about one or more methods5 ⊙

1.1.3 Computer and Computing Science

By computer science we shall understand the study and knowledge of the conceptual phenomena that

“exists” inside computers and, in a wider context than just computers and computing, of the theories “be-

hind” their formal description languages ⊙ Computer science is often also referred to as theoretical

computer science.

By computing science we shall understand the study and knowledge of how to construct and describe

those phenomena ⊙ Another term for computing science is programming methodology.

This paper is about computing science. It is concerned with the construction of domain descriptions. It

puts forward a calculus for analysing and describing domains. It does not theorize about this calculus. There

are no theorems about this calculus and hence no proofs. We leave that to another study and compendium.

1.1.4 What Is a Manifest Domain ?

By ‘domain’ we mean the same as ‘problem domain’ [120]. We offer a number of complementary delin-

eations of what we mean by a manifest domain. But first some examples, “by name” !

Example 1 . Names of Manifest Domains: Examples of suggestive names of manifest domains are: air
traffic, banks, container lines, documents, hospitals, manufacturing, pipelines, railways and road nets �

A manifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”,

and perdurant, that is temporally “fleeting” entities. Endurant entities are either parts or components or

materials. Perdurant entities are either actions or events or behaviours ⊙

Example 2 . Manifest Domain Endurants: Examples of (names of) endurants are Air traffic: aircraft,
airport, air lane. Banks: client, passbook. Container lines: container, container vessel, container terminal
port. Documents: document, document collection. Hospitals: patient, medical staff, ward, bed, patient
medical journal. Pipelines: well, pump, pipe, valve, sink, oil. Railways: simple rail unit, point, crossover,
line, track, station. Road nets: link (street segment), hub (street intersection) �

Example 3 . Manifest Domain Perdurants: Examples of (names of) perdurants are Air traffic: start
(ascend) an aircraft, change aircraft course. Banks: open, deposit into, withdraw from, close (an account).
Container lines: move container off or on board a vessel. Documents: open, edit, copy, shred.Hospitals:
admit, diagnose, treat (patients). Pipelines: start pump, stop pump, open valve, close valve. Railways:
switch rail point, start train. Road nets: set a hub signal, sense a vehicle �

A manifest domain is further seen as a mapping from entities to qualities, that is, a mapping from mani-
fest phenomena to usually non-manifest qualities ⊙

Example 4 . Endurant Entity Qualities: Examples of (names of) endurant qualities: Pipeline: unique
identity of a pipeline unit, mereology (connectedness) of a pipeline unit, length of a pipe, (pumping) height
of a pump, open/close status of a valve. Road net: unique identity of a road unit (hub or link), road unit
mereology: identity of neighbouring hubs of a link, identity of links emanating from a hub, and state of
hub (traversal) signal �

Example 5 . Perdurant Entity Qualities: Examples of (names of) perdurant qualities: Pipeline: the
signature of an open (or close) valve action, the signature of a start (or stop) pump action, etc. Road net:
the signature of an insert (or remove) link action, the signature of an insert (or remove) hub action, the
signature of a vehicle behaviour, etc. �

We shall in the rest of this paper just write ‘domain’ instead of ‘manifest domain’.

5 Please note our distinction between method and methodology. We often find the two, to us, separate terms used

interchangeably.

December 5, 2016, 07:21, A Foundation for Software Development DRAFT c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark



6 1 Manifest Domains: Analysis & Description

1.1.5 What Is a Domain Description ?

By a domain description we understand a collection of pairs of narrative and commensurate formal texts,

where each pair describes either aspects of an endurant entity or aspects of a perdurant entity ⊙
What does it mean that some text describes a domain entity ?

For a text to be a description text it must be possible from that text to either, if it is a narrative, to

reason, informally, that the designated entity is described to have some properties that the reader of the text

can observe that the described entities also have; or, if it is a formalisation to prove, mathematically, that

the formal text denotes the postulated properties ⊙
By a domain description we shall thus understand a text which describes the entities of the domain:

whether endurant or perdurant, and when endurant whether discrete or continuous, atomic or composite;

or when perdurant whether actions, events or behaviours. as well as the qualities of these entities. So the

task of the domain analyser cum describer is clear: There is a domain: right in front of our very eyes, and

it is expected that that domain be described.

1.1.6 Towards a Methodology of Manifest Domain Analysis & Description

Practicalities of Domain Analysis & Description.

How does one go about analysing & describing a domain ? Well, for the first, one has to designate one

or more domain analysers cum domain describers, i.e., trained domain scientists cum domain engineers.

How does one get hold of a domain engineer ? One takes a software engineer and educates and trains that

person in domain science & domain engineering. A derivative purpose of this paper is to unveil aspects of

domain science & domain engineering. The education and training consists in bringing forth a number of

scientific and engineering issues of domain analysis and of domain description. Among the engineering

issues are such as: what do I do when confronted with the task of domain analysis ? and with the task of
description ? and when, where and how do I select and apply which techniques and which tools ?

Finally, there is the issue of how do I, as a domain describer, choose appropriate abstractions and models ?

The Four Domain Analysis & Description “Players”.

We can say that there are four ‘players’ at work here. (i) the domain, (ii) the domain analyser & describer, (iii)

the domain analysis & description method, and (iv) the evolving domain analysis & description (document). (i)

The domain is there. The domain analyser & describer cannot change the domain. Analysing & describing

the domain does not change it6. During the analysis & description process the domain can be considered

inert. (It changes with the installation of such software as has been developed from the requirements de-

veloped from the domain description.) In the physical sense the domain will usually contain entities that

are static (i.e., constant), and entities that are dynamic (i.e., variable). (ii) The domain analyser & domain

describer is a human, preferably a scientist/engineer

Note 1.1. At the present time domain analysis appears to be partly an artistic, partly a scientific endeavour.

Until such a time when domain analysis & description principles, techniques and tools have matured it will

remain so., well-educated and trained in domain science & engineering. The domain analyser & describer

observes the domain, analyses it according to a method and thereby produces a domain description. (iii)

As a concept the method is here considered “fixed”. By ‘fixed’ we mean that its principles, techniques

and tools do not change during a domain analysis & description. The domain analyser & describer may

very well apply these principles, techniques and tools more-or-less haphazardly during domain analysis &

description, flaunting the method, but the method remains invariant. The method, however, may vary from

one domain analysis & description (project) to another domain analysis & description (project). Domain

analysers & describers, may, for example, have become wiser from a project to the next. (iv) Finally there

is the evolving domain analysis & description. That description is a text, usually both informal and formal.

6 Observing domains, such as we are trying to encircle the concept of domain, is not like observing the physical world

at the level of subatomic particles. The experimental physicists’ instruments of observation change what is being

observed.
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Applying a domain description prompt to the domain yields an additional domain description text which

is added to the thus evolving domain description. One may speculate of the rôle of the “input” domain

description. Does it change ? Does it help determine the additional domain description text ? Etcetera.

Without loss of generality we can assume that the “input” domain description is changed7 and that it helps

determine the added text.

Of course, analysis & description is a trial-and-error, iterative process. During a sequence of analyses,

that is, analysis prompts, the analyser “discovers” either more pleasing abstractions or that earlier analyses

or descriptions were wrong, or that an entity either need be abstracted or made less abstract. So they are

corrected.

An Interactive Domain Analysis & Description Dialogue.

We see domain analysis & description as a process involving the above-mentioned four ‘players’, that is, as

a dialogue between the domain analyser & describer and the domain, where the dialogue is guided by the

method and the result is the description. We see the method as a ‘player’ which issues prompts: alternating

between: “analyse this” (analysis prompts) and “describe that” (synthesis or, rather, description prompts).

Prompts

In this paper we shall suggest a number of domain analysis prompts and a number of domain description

prompts. The domain analysis prompts (schematically: analyse named condition(e)) directs the anal-

yser to inquire as to the truth of whatever the prompt “names” at wherever part (component or material), e,

in the domain the prompt so designates. Based on the truth value of an analysed entity the domain analyser

may then be prompted to describe that part (or material). The domain description prompts (schemati-

cally: observe type or quality(e)) directs the (analyser cum) describer to formulate both an informal

and a formal description of the type or qualities of the entity designated by the prompt. The prompts form

languages, and there are thus two languages at play here.

A Domain Analysis & Description Language.

The ‘Domain Analysis & Description Language’ thus consists of a number of meta-functions, the prompts.

The meta-functions have names (say is endurant) and types, but have no formal definition. They are

not computable. They are “performed” by the domain analysers & describers. These meta-functions are

systematically introduced and informally explained in Sects. 1.2, 1.3 and 1.4.

The Domain Description Language.

The ‘Domain Description Language’ is RSL [96], the RAISE Specification Language [97]. With suitable,

simple adjustments it could also be either of Alloy [114], Event B [1], VDM-SL [61, 62, 89] or Z [183].

We have chosen RSL because of its simple provision for defining sorts, expressing axioms, and postulating

observers over sorts.

Domain Descriptions: Narration & Formalisation

Descriptions must be readable and must be mathematically precise.8 For that reason we decompose domain

description fragments into clearly identified9 “pairs” of narrative texts and formal texts.

7 for example being “stylistically” revised.
8 One must insist on formalised domain descriptions in order to be able to verify that domain descriptions satisfy a

number of properties not explicitly formulated as well as in order to verify that requirements prescriptions satisfy

domain descriptions.
9 The “clear identification” is here achieved by narrative text item and corresponding formula line numbers.
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8 1 Manifest Domains: Analysis & Description

1.1.7 One Domain – Many Models ?

Will two or more domain engineers cum scientists arrive at “the same domain description” ? No, almost

certainly not ! What do we mean by “the same domain description” ? To each proper description we can

associate a mathematical meaning, its semantics. Not only is it very unlikely that the syntactic form of the

domain descriptions are the same or even “marginally similar”. But it is also very unlikely that the two (or

more) semantics are the same; that is, that all properties that can be proved for one domain model can be

proved also for the other. Why will different domain models emerge ? Two different domain describers will,

undoubtedly, when analysing and describing independently, focus on different aspects of the domain. One

describer may focus attention on certain phenomena, different from those chosen by another describer. One

describer may choose some abstractions where another may choose more concrete presentations. Etcetera.

We can thus expect that a set of domain description developments lead to a set of distinct models. As

these domain descriptions are communicated amongst domain engineers cum scientists we can expect that

iterated domain description developments within this group of developers will lead to fewer and more

similar models. Just like physicists, over the centuries of research, have arrived at a few models of nature,

we can expect there to develop some consensus models of “standard” domains. We expect, that sometime

in future, software engineers, when commencing software development for a “standard domain”, that is,

one for which there exists one or more “standard models”, will start with the development of a domain

description based on “one of the standard models” — just like control engineers of automatic control

“repeat” an essence of a domain model for a control problem.

Example 6 . One Domain – Three Models: In this paper we shall bring many examples from a do-

main containing automobiles. (i) One domain model may focus on roads and vehicles, with roads being

modeled in terms of atomic hubs (road intersections) and atomic links (road sections between immediately

neighbouring hubs), and with automobiles being modeled in terms of atomic vehicles. (ii) Another domain

model considers hubs of the former model as being composite, consisting, in addition to the “bare” hub,

also of a signaling part — with automobiles remaining atomic vehicles, (iii) A third model focuses on

vehicles, now as composite parts consisting of composite and atomic sub-parts such as they are relevant in

the assembly-line manufacturing of cars10 �

1.1.8 Formal Concept Analysis

Domain analysis involves that of concept analysis. As soon as we have identified an entity for analysis

we have identified a concept. The entity is usually a spatio-temporal, i.e., a physical thing. Once we speak

of it, it becomes a concept. Instead of examining just one entity the domain analyser shall examine many

entities. Instead of describing one entity the domain describer shall describe a class of entities. Ganter &

Wille’s [95] addresses this issue.

A Formalisation

This section is a transcription of Ganter & Wille’s [95] Formal Concept Analysis, Mathematical Foundations,

the 1999 edition, Pages 17–18.

Some Notation: By E we shall understand the type of entities; by E we shall understand a phenome-

non of type E ; by Q we shall understand the type of qualities; by Q we shall understand a quality of type

Q; by E -set we shall understand the type of sets of entities; by ES we shall understand a set of entities of

type E -set; by Q-set we shall understand the type of sets of qualities; and by QS we shall understand a a

set of qualities of type Q-set.

Definition 1.2. Formal Context: A formal contextK := (ES,I,QS) consists of two sets; ES of entities

and QS of qualities, and a relation I between E and Q

To express that E is in relation I to a Quality Q we write E · I ·Q, which we read as “entity E has quality Q”

Example endurant entities are a specific vehicle, another specific vehicle, etcetera; a specific street segment

(link), another street segment, etcetera; a specific road intersection (hub), another specific road intersection,

10 The road nets of the first two models can be considered a zeroth model.
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1.1 Introduction 9

etcetera, a monitor. Example endurant entity qualities are (a vehicle) has mobility, (a vehicle) has velocity

(≥0), (a vehicle) has acceleration, etcetera; (a link) has length (>0), (a link) has location, (a link) has traffic

state, etcetera.

Definition 1.3. Qualities Common to a Set of Entities: For any subset, sES ⊆ ES, of entities we can

define DQ for “derive[d] set of qualities”.

DQ : E -set → (E -set × I × Q-set) → Q-set

DQ(sES)(ES,I,QS) ≡ {Q | Q:Q,E:E • E∈sES ∧ E · I ·Q}
pre: sES ⊆ ES

The above expresses: “the set of qualities common to entities in sES”

Definition 1.4. Entities Common to a Set of Qualities: For any subset, sQS⊆QS, of qualities we can

define DE for “derive[d] set of entities”.

DE : Q-set → (E -set × I × Q-set) → E -set

DE (sQS)(ES,I,QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I ·Q },
pre: sQS ⊆ QS

The above expresses: “the set of entities which have all qualities in sQS”

Definition 1.5. Formal Concept: A formal concept of a context K is a pair:

• (sQ,sE) where

⋄⋄ DQ(sE)(E,I,Q) = sQ and

⋄⋄ DE (sQ)(E,I,Q) = sE;

• sQ is called the intent of K and sE is called the extent of K

Types Are Formal Concepts

Now comes the “crunch”: In the TripTych domain analysis we strive to find formal concepts and, when
we think we have found one, we assign a type (or a sort) and qualities to it !

Practicalities

There is a little problem. To search for all those entities of a domain which each have the same sets of

qualities is not feasible. So we do a combination of two things: (i) we identify a small set of entities all

having the same qualities and tentatively associate them with a type, and (ii) we identify certain nouns of

our national language and if such a noun does indeed designate a set of entities all having the same set

of qualities then we tentatively associate the noun with a type. Having thus, tentatively, identified a type

we conjecture that type and search for counterexamples, that is, entities which refute the conjecture. This

“process” of conjectures and refutations is iterated until some satisfaction is arrived at that the postulated

type constitutes a reasonable conjecture.

Formal Concepts: A Wider Implication

The formal concepts of a domain form Galois Connections [95]. We gladly admit that this fact is one of the

reasons why we emphasise formal concept analysis. At the same time we must admit that this paper does

not do justice to this fact. We have experimented with the analysis & description of a number of domains,

and have noticed such Galois connections, but it is, for us, too early to report on this. Thus we invite the

reader to study this aspect of domain analysis.
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10 1 Manifest Domains: Analysis & Description

1.1.9 Structure of Chapter

Sections 1.2–1.4 are the main sections of this chapter. They cover the analysis and description of endurants

and perdurants. Section 1.2 introduce the concepts of entities, endurant entities and perdurant entities.

Section 1.3 introduces the external qualities of parts, components and materials, and the internal qualities

of unique part identifiers, part mereologies and part attributes. Section 1.4 complements Sect. 1.3. It covers

analysis and description of perdurants. We consider the “compilation”, Sect. 1.4.11, of part descriptions,

i.e., endurants, into behaviour descriptions to be a separate contribution. Section 1.5 concludes the chapter.

1.2 Entities

1.2.1 General

Definition 1. Entity: By an entity we shall understand a phenomenon, i.e., something that can be ob-
served, i.e., be seen or touched by humans, or that can be conceived as an abstraction of an entity. We
further demand that an entity can be objectively described ⊙

Analysis Prompt 1 . is entity: The domain analyser analyses “things” (θ ) into either entities or non-

entities. The method can thus be said to provide the domain analysis prompt:

• is entity — where is entity(θ) holds if θ is an entity ♦11

is entity is said to be a prerequisite prompt for all other prompts.

Whither Entities: The “demands” that entities be observable and objectively describable raises some

philosophical questions. Can sentiments, like feelings, emotions or “hunches” be objectively described ?

This author thinks not. And, if so, can they be other than artistically described ? It seems that psycho-

logically and aesthetically “phenomena” appears to lie beyond objective description. We shall leave these

speculations for later.

1.2.2 Endurants and Perdurants

Definition 2. Endurant: By an endurant we shall understand an entity that can be observed or conceived
and described as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time
we would still be able to observe the entire endurant ⊙

That is, endurants “reside” in space. Endurants are, in the words of Whitehead [180], continuants.

Example 7 . Traffic System Endurants: Examples of traffic system endurants are: traffic system, road

nets, fleets of vehicles, sets of hubs (i.e., street intersections), sets of links (i.e., street segments [between

hubs]), and individual hubs, links and vehicles �

Definition 3. Perdurant: By a perdurant we shall understand an entity for which only a fragment exists
if we look at or touch them at any given snapshot in time, that is, were we to freeze time we would only
see or touch a fragment of the perdurant ⊙

That is, perdurants “reside” in space and time. Perdurants are, in the words of Whitehead [180], occurrents.

Example 8 . Traffic System Perdurants: Examples of road net perdurants are: insertion and removal of

hubs or links (actions), disappearance of links (events), vehicles entering or leaving the road net (actions),

vehicles crashing (events) and road traffic (behaviour) �

Analysis Prompt 2 . is endurant: The domain analyser analyses an entity, φ , into an endurant as

prompted by the domain analysis prompt:

• is endurant — φ is an endurant if is endurant(φ) holds.

11 Analysis prompt definitions and description prompt definitions and schemes are delimited by ♦.
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1.3 Endurants 11

is entity is a prerequisite prompt for is endurant ♦

Analysis Prompt 3 . is perdurant: The domain analyser analyses an entity φ into perdurants as

prompted by the domain analysis prompt:

• is perdurant — φ is a perdurant if is perdurant(φ) holds.

is entity is a prerequisite prompt for is perdurant ♦

In the words of Whitehead [180] — as communicated by Sowa [170, Page 70] — an endurant has stable

qualities that enable its various appearances at different times to be recognised as the same individual; a

perdurant is in a state of flux that prevents it from being recognised by a stable set of qualities.

Necessity and Possibility: It is indeed possible to make the endurant/perdurant distinction. But is it

necessary ? We shall argue that it is ‘by necessity’ that we make this distinction. Space and time are funda-

mental notions. They cannot be dispensed with. So, to describe manifest domains without resort to space

and time is not reasonable.

1.2.3 Discrete and Continuous Endurants

Definition 4. Discrete Endurant: By a discrete endurant we shall understand an endurant which is
separate, individual or distinct in form or concept ⊙

Example 9 . Discrete Endurants: Examples of discrete endurants are a road net, a link, a hub, a vehicle,

a traffic signal, etcetera �

Definition 5. Continuous Endurant: By a continuous endurant we shall understand an endurant
which is prolonged, without interruption, in an unbroken series or pattern ⊙

Example 10 . Continuous Endurants: Examples of continuous endurants are water, oil, gas, sand,

grain, etcetera �

Continuity shall here not be understood in the sense of mathematics. Our definition of ‘continuity’ focused

on prolonged, without interruption, in an unbroken series or pattern. In that sense materials and components shall

be seen as ‘continuous’,

Analysis Prompt 4 . is discrete: The domain analyser analyses endurants e into discrete entities as

prompted by the domain analysis prompt:

• is discrete — e is discrete if is discrete(e) holds ♦

Analysis Prompt 5 . is continuous: The domain analyser analyses endurants e into continuous enti-

ties as prompted by the domain analysis prompt:

• is continuous — e is continuous if is continuous(e) holds ♦

1.2.4 An Upper Ontology Diagram of Domains

Figure 1.1 on the following page shows a so-called upper ontology for manifest domains. So far we have

covered only a fraction of this ontology, as noted. By ontologies we shall here understand “formal repre-

sentations of a set of concepts within a domain and the relationships between those concepts”. In Sect. 1.5.3

we shall review relations between our approach to modeling domains and that of many related modeling

approaches, including the so-called ontology approach based on AI-models.

1.3 Endurants

This section brings a comprehensive treatment of the analysis and description of endurants.
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A Triptych Manifest Domain Ontology
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Fig. 1.1. An Upper Ontology for Domains

1.3.1 Parts, Components and Materials

General

Definition 6. Part: By a part we shall understand a discrete endurant which the domain engineer chooses
to endow with internal qualities such as unique identification, mereology, and one or more attributes ⊙

We shall define the terms ‘unique identification’, ‘mereology’, and ‘attributes’ shortly.

Example 11 . Parts: Example 7 on Page 10 illustrated, and examples 15 on the facing page and 16 on

Page 14 shall illustrate parts �

Definition 7. Component: By a component we shall understand a discrete endurant which we, the
domain analyser cum describer chooses to not endow with internal qualities ⊙

Example 12 . Components: Examples of components are: chairs, tables, sofas and book cases in a living

room, letters, newspapers, and small packages in a mail box, machine assembly units on a conveyor belt,

boxes in containers of a container vessel, etcetera �

”At the Discretion of the Domain Engineer”: We emphasise the following analysis and description

aspects: (a) The domain is full of observable phenomena. It is the decision of the domain analyser cum

describer whether to analyse and describe some such phenomena, that is, whether to include them in a

domain model. (b) The borderline between an endurant being (considered) discrete or being (considered)

continuous is fuzzy. It is the decision of the domain analyser cum describer whether to model an endurant

as discrete or continuous. (c) The borderline between a discrete endurant being (considered) a part or being

(considered) a component is fuzzy. It is the decision of the domain analyser cum describer whether to

model a discrete endurant as a part or as a component. (d) In Sect. 1.4.11 we shall show how to “compile”

parts into processes. A factor, therefore, in determining whether to model a discrete endurant as a part or

as a component is whether we may consider a discrete endurant as also representing a process.

Definition 8. Material: By a material we shall understand a continuous endurant ⊙
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1.3 Endurants 13

Example 13 . Materials: Examples of material endurants are: air of an air conditioning system, grain

of a silo, gravel of a barge, oil (or gas) of a pipeline, sewage of a waste disposal system, and water of a

hydro-electric power plant. �

Example 14 . Parts Containing Materials: Pipeline units are here considered discrete, i.e., parts.

Pipeline units serve to convey material �

Part, Component and Material Analysis Prompts

Analysis Prompt 6 . is part: The domain analyser analyse endurants, e, into part entities as prompted

by the domain analysis prompt:

• is part — e is a part if is part(e) holds ♦

We remind the reader that the outcome of is part(e) is very much dependent on the domain engineer’s

intention with the domain description, cf. Sect. 1.3.1 on the facing page.

Analysis Prompt 7 . is component: The domain analyser analyse endurants e into component entities

as prompted by the domain analysis prompt:

• is component — e is a component if is component(e) holds ♦

We remind the reader that the outcome of is component(e) is very much dependent on the domain

engineer’s intention with the domain description, cf. Sect. 1.3.1 on the preceding page.

Analysis Prompt 8 . is material: The domain analyser analyse endurants e into material entities as

prompted by the domain analysis prompt:

• is material — e is a material if is material(e) holds ♦

We remind the reader that the outcome of is material(e) is very much dependent on the domain engi-

neer’s intention with the domain description, cf. Sect. 1.3.1 on the facing page.

Atomic and Composite Parts

A distinguishing quality of parts is whether they are atomic or composite. Please note that we shall, in the

following, examine the concept of parts in quite some detail. That is, parts become the domain endurants

of main interest, whereas components and materials become of secondary interest. This is a choice. The

choice is based on pragmatics. It is still the domain analyser cum describers’ choice whether to consider

a discrete endurant a part or a component. If the domain engineer wishes to investigate the details of a

discrete endurant then the domain engineer choose to model the discrete endurant as a part otherwise as a

component.

Definition 9. Atomic Part: Atomic parts are those which, in a given context, are deemed to not consist
of meaningful, separately observable proper sub-parts ⊙

A sub-part is a part ⊙

Example 15 . Atomic Parts: Examples of atomic parts of the above mentioned domains are: aircraft12 (of

air traffic), demand/deposit accounts (of banks), containers (of container lines), documents (of document

systems), hubs, links and vehicles (of road traffic), patients, medical staff and beds (of hospitals), pipes,

valves and pumps (of pipeline systems), and rail units and locomotives (of railway systems) �

Definition 10. Composite Part: Composite parts are those which, in a given context, are deemed to
indeed consist of meaningful, separately observable proper sub-parts ⊙

12 Aircraft from the point of view of airport management are atomic. From the point of view of aircraft manufacturers

they are composite.
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14 1 Manifest Domains: Analysis & Description

Example 16 . Composite Parts: Examples of composite parts of the above mentioned domains are:

airports and air lanes (of air traffic), banks (of a financial service industry), container vessels (of container

lines), dossiers of documents (of document systems), routes (of road nets), medical wards (of hospitals),

pipelines (of pipeline systems), and trains, rail lines and train stations (of railway systems). �
Analysis Prompt 9 . is atomic: The domain analyser analyses a discrete endurant, i.e., a part p into

an atomic endurant:

• is atomic(p): p is an atomic endurant if is atomic(p) holds ♦

Analysis Prompt 10 . is composite: The domain analyser analyses a discrete endurant, i.e., a part p

into a composite endurant:

• is composite(p): p is a composite endurant if is composite(p) holds ♦

is discrete is a prerequisite prompt of both is atomic and is composite.

Whither Atomic or Composite: If we are analysing & describing vehicles in the context of a road net,

cf. Example 7 on Page 10, then we have chosen to abstract vehicles as atomic; if, on the other hand, we are

analysing & describing vehicles in the context of an automobile maintenance garage then we might very

well choose to abstract vehicles as composite — the sub-parts being the object of diagnosis by the auto

mechanics.

On Observing Part Sorts and Types

We use the term ‘sort’ when we wish to speak of an abstract type [164], that is, a type for which we do not

wish to express a model13. We shall use the term ‘type’ to cover both abstract types and concrete types.

On Discovering Part Sorts

Recall from Sect. 1.1.8 on Page 9 that we “equate” a formal concept with a type (i.e., a sort). Thus, to us,

a part sort is a set of all those entities which all have exactly the same qualities. Our aim now is to present

the basic principles that let the domain analyser decide on part sorts. We observe parts one-by-one. (α)

Our analysis of parts concludes when we have “lifted” our examination of a particular part instance to the

conclusion that it is of a given sort, that is, reflects a formal concept.

Thus there is, in this analysis, a “eureka”, a step where we shift focus from the concrete to the abstract,

from observing specific part instances to postulating a sort: from one to the many.

Analysis Prompt 11 . observe parts: The domain analysis prompt:

• observe parts(p)

directs the domain analyser to observe the sub-parts of p ♦

Let us say the sub-parts of p are: {p1,p2,. . . ,pm}. (β ) The analyser analyses, for each of these parts, pik ,

which formal concept, i.e., sort, it belongs to; let us say that it is of sort Pk; thus the sub-parts of p are of sorts

{P1,P2,. . . ,Pm}. Some Pk may be atomic sorts, some may be composite sorts.

The domain analyser continues to examine a finite number of other composite parts: {p j, pℓ, . . . , pn}.

It is then “discovered”, that is, decided, that they all consists of the same number of sub-parts {pi1 ,pi2 ,. . . ,-

pim}, {p j1 ,p j2 ,. . . ,p jm}, {pℓ1
,pℓ2

,. . . ,pℓm
}, ..., {pn1

,pn2
,. . . ,pnm}, of the same, respective, part sorts. (γ) It

is therefore concluded, that is, decided, that {pi, p j,pℓ,. . . ,pn} are all of the same part sort P with observable

part sub-sorts {P1,P2,. . . ,Pm}.

Above we have type-font-highlighted three sentences: (α,β ,γ). When you analyse what they “pre-

scribe” you will see that they entail a “depth-first search” for part sorts. The β sentence says it rather

directly: “The analyser analyses, for each of these parts, pk, which formal concept, i.e., part sort it belongs
to.” To do this analysis in a proper way, the analyser must (“recursively”) analyse the parts “down” to

their atomicity, and from the atomic parts decide on their part sort, and work (“recurse”) their way “back”,

through possibly intermediate composite parts, to the pks. Of course, when the analyser starts by examin-

ing atomic parts then the analysis “recursion” is not necessary; as it is never necessary when the analyser

proceeds “bottom-up”: analysing only such composite parts whose sub-parts have already been analysed

13 for example, in terms of the concrete types: sets, Cartesians, lists, maps, or other.
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1.3 Endurants 15

Part Sort Observer Functions

The above analysis amounts to the analyser first “applying” the domain analysis prompt is composite(p)

to a discrete endurant, where we now assume that the obtained truth value is true. Let us assume that parts

p:P consists of sub-parts of sorts {P1,P2,. . . ,Pm}. Since we cannot automatically guarantee that our domain

descriptions secure that P and each Pi (1≤i≤m) denotes disjoint sets of entities we must prove it.

Domain Description Prompt 1 . observe part sorts : If is composite(p) holds, then the analyser

“applies” the domain description prompt

• observe part sorts(p)

resulting in the analyser writing down the part sorts and part sort observers domain description text ac-

cording to the following schema:

1. observe part sorts schema

Narration:

[s ] ... narrative text on sorts ...
[o ] ... narrative text on sort observers ...
[ i ] ... narrative text on sort recognisers ...
[p ] ... narrative text on proof obligations ...

Formalisation:

type

[s ] P,
[s ] Pi [1≤i≤m ] comment: Pi [1≤i≤m ] abbreviates P1, P2, ..., Pm

value

[o ] obs part Pi: P → Pi [1≤i≤m ]
[ i ] is Pi: (P1|P2|...|Pm) → Bool [1≤i≤m ]

proof obligation [Disjointness of part sorts ]
[p ] ∀ p:(P1|P2|...|Pm) •

[p ]
∧

{is Pi(p) ≡
∧

{∼is P j(p) | j ∈ {1..m} \ {i}} | i ∈ {1..m}}

is composite is a prerequisite prompt of observe part sorts △

We do not here state guidelines for discharging these kinds of proof obligations. But we will very informally

sketch such discharges, see below.

Example 17 . Composite and Atomic Part Sorts of Transportation: The following example illus-

trates the multiple use of the observe part sorts function: first to δ :∆ , a specific transport domain,

Item 1, then to an n : N, the net of that domain, Item 2, and then to an f : F , the fleet of that domain, Item 3.

1 A transportation domain is viewed as composed from a net (of hubs and links), a fleet (of vehicles) and

a monitor.

2 A transportation net is here seen as composed from a collection of hubs and a collection of links.

3 A fleet is here seen as a collection of vehicles.

The monitor is considered an atomic part.

type

1 ∆ , N, F, M
value

1 obs part N: ∆ → N, obs part F: ∆ → F, obs part M: ∆ → M
type

2 HS, LS
value
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2 obs part HS: N → HS, obs part LS: N → LS
type

3 VS
value

3 obs part VS: F → VS

A proof obligation has to be discharged, one that shows disjointedness of sorts N, F and M. An informal
sketch is: entities of sort N are composite and consists of two parts: aggregations of hubs, HS, and aggre-
gations of links, LS. Entities of sort F consists of an aggregation, VS, of vehicles. So already that makes N
and F disjoint. M is an atomic entity — where N and F are both composite. Hence the three sorts N, F and
M are disjoint �

On Discovering Concrete Part Types

Analysis Prompt 12 . has concrete type: The domain analyser may decide that it is expedient, i.e.,

pragmatically sound, to render a part sort, P, whether atomic or composite, as a concrete type, T. That

decision is prompted by the holding of the domain analysis prompt:

• has concrete type(p).

is discrete is a prerequisite prompt of has concrete type ♦

The reader is reminded that the decision as to whether an abstract type is (also) to be described
concretely is entirely at the discretion of the domain engineer.

Domain Description Prompt 2 . observe concrete type : Then the domain analyser applies the

domain description prompt:

• observe concrete type(p)14

to parts p:P which then yield the part type and part type observers domain description text according to the

following schema:

2. observe concrete type schema

Narration:

[ t1 ] ... narrative text on sorts and types Si ...
[ t2 ] ... narrative text on types T ...
[o ] ... narrative text on type observers ...

Formalisation:

type

[ t1 ] S1, S2, ..., Sm, ..., Sn,
[ t2 ] T = E (S1,S2,...,Sn)
value

[o ] obs part T: P → T

where S1,S2,...,Sm,...,Sn may be any types, including part sorts, where 0≤m≤n≥1, where m is the number

of new (atomic or composite) sorts, and where n−m is the number of concrete types (like Bool, Int, Nat)

or sorts already analysed & described. and E (S1,S2,...,Sn) is a type expression △

The type name, T, of the concrete type, as well as those of the auxiliary types, S1,S2,...,Sm, are chosen by

the domain describer: they may have already been chosen for other sort–to–type descriptions, or they may

be new.

Example 18 . Concrete Part Types of Transportation: We continue Example 17 on the previous page:

4 A collection of hubs is here seen as a set of hubs and a collection of links is here seen as a set of links.

14 has concrete type is a prerequisite prompt of observe concrete type.
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1.3 Endurants 17

5 Hubs and links are, until further analysis, part sorts.

6 A collection of vehicles is here seen as a set of vehicles.

7 Vehicles are, until further analysis, part sorts.

type

4 Hs = H-set, Ls = L-set

5 H, L
6 Vs = V-set

7 V
value

4 obs part Hs: HS → Hs, obs part Ls: LS → Ls
6 obs part Vs: VS → Vs �

Forms of Part Types

Usually it is wise to restrict the part type definitions, Ti = Ei(Q,R,...,S), to simple type expressions. T=A-

set or T=A∗ or T=ID→m A or T=At |Bt |...|Ct where ID is a sort of unique identifiers, T=At |Bt |...|Ct

defines the disjoint types At==mkAt(s:As), Bt==mkBt(s:Bs), ..., Ct==mkCt(s:Cs), and where A, As,
Bs, ..., Cs are sorts. Instead of At==mkAt(a:As), etc., we may write At ::As etc.

Part Sort and Type Derivation Chains

Let P be a composite sort. Let P1, P2, . . . , Pm be the part sorts “discovered” by means of observe part -

sorts(p) where p:P. We say that P1, P2, . . . , Pm are (immediately) derived from P. If Pk is derived from

P j and P j is derived from Pi, then, by transitivity, Pk is derived from Pi.

No Recursive Derivations

We “mandate” that if Pk is derived from P j then there can be no P derived from P j such that P is P j, that

is, P j cannot be derived from P j.

That is, we do not allow recursive domain sorts.

It is not a question, actually of allowing recursive domain sorts. It is, we claim to have observed, in very

many domain modeling experiments, that there are no recursive domain sorts !

Names of Part Sorts and Types

The domain analysis and domain description text prompts observe part sorts, observe material -

sorts and observe part type — as well as the attribute names, observe material sorts, ob-

serve unique identifier, observe mereology and observe attributes prompts introduced be-

low — “yield” type names. That is, it is as if there is a reservoir of an indefinite-size set of such names from

which these names are “pulled”, and once obtained are never “pulled” again. There may be domains for

which two distinct part sorts may be composed from identical part sorts. In this case the domain analyser
indicates so by prescribing a part sort already introduced.

Example 19 . Container Line Sorts: Our example is that of a container line with container vessels and

container terminal ports.

8 A container line contains a number of container vessels

and a number of container terminal ports,

as well as other parts.

9 A container vessel contains a container stowage area, etc.

10 A container terminal port contains a container stowage area, etc.

11 A container stowage areas contains a set of uniquely identified container bays.

12 A container bay contains a set of uniquely identified container rows.
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13 A container row contains a set of uniquely identified container stacks.

14 A container stack contains a stack, i.e., a first-in, last-out sequence of containers.

15 Containers are further undefined.

After a some slight editing we get:

type

CL
VS, VI, V, Vs = VI→m V,
PS, PI, P, Ps = PI→m P

value

obs part VS: CL → VS
obs part Vs: VS → Vs
obs part PS: CL → PS
obs part Ps: CTPS → CTPs

type

CSA
value

obs part CSA: V → CSA
obs part CSA: P → CSA

type

BAYS, BI, BAY, Bays=BI→m BAY
ROWS, RI, ROW, Rows=RI→m ROW
STKS, SI, STK, Stks=SI→m STK
C

value

obs part BAYS: CSA → BAYS,
obs part Bays: BAYS → Bays
obs part ROWS: BAY → ROWS,
obs part Rows: ROWS → Rows
obs part STKS: ROW → STKS,
obs part Stks: STKS → Stks
obs part Stk: STK → C∗

Note that observe part sorts(v:V) and observe part sorts(p:P) both yield CSA �

More On Part Sorts and Types

The above “experimental example” motivates the below. We can always assume that composite parts p:P

abstractly consists of a definite number of sub-parts.

Example 1.6.. We comment on Example 17, Page 15: Parts of type ∆ and N are composed from three,

respectively two abstract sub-parts of distinct types �

Some of the parts, say piz of {pi1 ,pi2 ,. . . ,pim}, of p:P, may themselves be composite.

Example 1.7.. We comment on Example 17: Parts of type N, F, HS, LS and VS are all composite �

There are, pragmatically speaking, two cases for such compositionality. Either the part, piz , of type tiz , is is

composed from a definite number of abstract or concrete sub-parts of distinct types.

Example 1.8.. We comment on Example 17: Parts of type N are composed from three sub-parts �

Or it is composed from an indefinite number of sub-parts of the same sort.

Example 1.9.. We comment on Example 17: Parts of type HS, LS and VS are composed from an indefinite

numbers of hubs, links and vehicles, respectively �

Example 20 . Pipeline Parts:

16 A pipeline consists of an indefinite number of pipeline units.

17 A pipeline units is either a well, or a pipe, or a pump, or a valve, or a fork, or a join, or a sink.

18 All these unit sorts are atomic and disjoint.

type

16 PL, U, We, Pi, Pu, Va, Fo, Jo, Si
16 Well, Pipe, Pump, Valv, Fork, Join, Sink
value

16 obs part Us: PL → U-set

type

17 U == We | Pi | Pu | Va | Fo | Jo | Si
18 We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink �
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1.3 Endurants 19

External and Internal Qualities of Parts

By an external part quality we shall understand the is atomic, is composite, is discrete and is -

continuous qualities ⊙ By an internal part quality we shall understand the part qualities to be outlined

in the next sections: unique identification, mereology and attributes ⊙ By part qualities we

mean the sum total of external endurant and internal endurant qualities ⊙

Three Categories of Internal Qualities

We suggest that the internal qualities of parts be analysed into three categories: (i) a category of unique

part identifiers, (ii) a category of mereological quantities and (iii) a category of general attributes. Part

mereologies are about sharing qualities between parts. Some such sharing expresses spatio-topological

properties of how parts are organised. Other part sharing aspects express relations (like equality) of part

attributes. We base our modeling of mereologies on the notion of unique part identifiers. Hence we cover

internal qualities in the order (i–ii–iii).

1.3.2 Unique Part Identifiers

We introduce a notion of unique identification of parts. We assume (i) that all parts, p, of any domain

P, have unique identifiers, (ii) that unique identifiers (of parts p:P) are abstract values (of the unique
identifier sort PI of parts p:P), (iii) such that distinct part sorts, Pi and P j, have distinctly named unique
identifier sorts, say PIi and PI j, (iv) that all πi:PIi and π j:PI j are distinct, and (v) that the observer function

uid P applied to p yields the unique identifier, say π :PI, of p.

Representation of Unique Identifiers: Unique identifiers are abstractions. When we endow two parts

(say of the same sort) with distinct unique identifiers then we are simply saying that these two parts are

distinct. We are not assuming anything about how these identifiers otherwise come about.

Domain Description Prompt 3 . observe unique identifier : We can therefore apply the domain
description prompt:

• observe unique identifier

to parts p:P resulting in the analyser writing down the unique identifier type and observer domain descrip-

tion text according to the following schema:

3. observe unique identifier schema

Narration:

[s ] ... narrative text on unique identifier sort PI ...
[u ] ... narrative text on unique identifier observer uid P ...
[a ] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s ] PI
value

[u ] uid P: P → PI
axiom

[a ] U

U is a predicate over part sorts and unique part identifier sorts. The unique part identifier sort, PI, is

unique, as are all part sort names, P ⊗

Example 21 . Unique Transportation Net Part Identifiers: We continue Example 17 on Page 15.

19 Links and hubs have unique identifiers
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20 1 Manifest Domains: Analysis & Description

20 and unique identifier observers.

type

19 LI, HI
value

20 uid LI: L → LI
20 uid HI: H → HI
axiom [Well−formedness of Links, L, and Hubs, H ]
19 ∀ l,l′:L • uid LI(l)=uid LI(l′) ⇒ l=l′,
19 ∀ h,h′:H • uid HI(h)=uid HI(h′) ⇒ h=h′ �

Axiom 19, although expressed for links and hubs of road nets, applies in general: Two parts with the same

unique part identifiers are indeed one and the same part.

1.3.3 Mereology

Mereology is the study and knowledge of parts and part relations. Mereology, as a logical/philosophi-

cal discipline, can perhaps best be attributed to the Polish mathematician/logician Stanisław Leśniewski

[68, 43].

Part Relations

Which are the relations that can be relevant for part-hood ? We give some examples. Two otherwise distinct

parts may share attribute values. 15

Example 22 . Shared Timetable Mereology (I): Two or more distinct public transport busses may

“run” according to the (identically) same, thus “shared”, bus time table (cf. Example 32 on Page 27) �

Two otherwise distinct parts may be said to, for example, be topologically “adjacent” or one “embedded”

within the other.

Example 23 . Topological Connectedness Mereology: (i) two rail units may be connected (i.e., adja-

cent); (ii) a road link may be connected to two road hubs; (iii) a road hub may be connected to zero or

more road links; (iv) distinct vehicles of a road net may be monitored by one and the same road pricing

sub-system �

The above examples are in no way indicative of the “space” of part relations that may be relevant for part-

hood. The domain analyser is expected to do a bit of experimental research in order to discover necessary,

sufficient and pleasing “mereology-hoods”!

Part Mereology: Types and Functions

Analysis Prompt 13 . has mereology: To discover necessary, sufficient and pleasing “mereology-

hoods” the analyser can be said to endow a truth value, true, to the domain analysis prompt:

• has mereology

When the domain analyser decides that some parts are related in a specifically enunciated mereology, the

analyser has to decide on suitable mereology types and mereology observers (i.e., part relations).

We can define a mereology type as a type E xpression over unique [part] identifier types. We generalise

to unique [part] identifiers over a definite collection of part sorts, P1, P2, ..., Pn, where the parts p1:P1,
p2:P2, ..., pn:Pn are not necessarily (immediate) sub-parts of some part p:P.

type

PI1, PI2, ..., PIn
MT = E (PI1, PI2, ..., PIn),

15 For the concept of attribute value see Sect. 1.3.4 on Page 23.
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1.3 Endurants 21

Domain Description Prompt 4 . observe mereology : If has mereology(p) holds for parts p of

type P, then the analyser can apply the domain description prompt:

• observe mereology

to parts of that type and write down the mereology types and observer domain description text according

to the following schema:

4. observe mereology schema

Narration:

[ t ] ... narrative text on mereology type ...
[m ] ... narrative text on mereology observer ...
[a ] ... narrative text on mereology type constraints ...

Formalisation:

type

[ t ] MT16= E (PI1,PI2,...,PIm)
value

[m ] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies ]
[a ] A (MT)

Here E (PI1,PI2,...,PIm) is a type expression over possibly all unique identifier types of the domain de-

scription, and A (MT) is a predicate over possibly all unique identifier types of the domain description.

To write down the concrete type definition for MT requires a bit of analysis and thinking. has mereology

is a prerequisite prompt for observe mereology △

Example 24 . Road Net Part Mereologies: We continue Example 17 on Page 15 and Example 21 on

Page 19.

21 Links are connected to exactly two distinct hubs.

22 Hubs are connected to zero or more links.

23 For a given net the link and hub identifiers of the mereology of hubs and links must be those of links

and hubs, respectively, of the net.

type

21 LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
22 HM = LI-set

value

21 obs mereo L: L → LM
22 obs mereo H: H → HM
axiom [Well−formedness of Road Nets, N ]
23 ∀ n:N,l:L,h:H•

23 l ∈ obs part Ls(obs part LS(n))
23 ∧ h ∈ obs part Hs(obs part HS(n))
23 ⇒ obs mereo L(l) ⊆ ∪{uid H(h) | h ∈ obs part Hs(obs part HS(n))}
23 ∧ obs mereo H(h) ⊆ ∪{uid H(l) | l ∈ obs part Ls(obs part LS(n))} �

Example 25 . Pipeline Parts Mereology: We continue Example 20 on Page 18. Pipeline units serve to

conduct fluid or gaseous material. The flow of these occur in only one direction: from so-called input to

so-called output.

24 Wells have exactly one connection to an output unit.

16 MT will be used several times in Sect. 1.4.11.
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25 Pipes, pumps and valves have exactly one connection from an input unit and one connection to an

output unit.

26 Forks have exactly one connection from an input unit and exactly two connections to distinct output

units.

27 Joins have exactly two connections from distinct input units and one connection to an output unit.

28 Sinks have exactly one connection from an input unit.

29 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit

identifiers.

type

29 UM′=(UI-set×UI-set)
29 UM={|(iuis,ouis):UM′•iuis ∩ ouis={}|}
value

29 obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0) ]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=obs mereo U(u) in

case (card iuis,card ouis) of

24 (0,1) → is We(u),
25 (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
26 (1,2) → is Fo(u),
27 (2,1) → is Jo(u),
28 (1,0) → is Si(u), → false

end end

Example 38 on Page 30 (axiom Page 30) and Example 39 on Page 31 (axiom Page 31) illustrates the need

to constrain the sets of endurant entities denoted by definitions of part sort, unique identifier and mereology

attribute definitions �

Formulation of Mereologies

The observe mereology domain descriptor, Page 21, may give the impression that the mereo type MT
can be described “at the point of issue” of the observe mereology prompt. Since the MT type expression

may, in general, depend on any part sort the mereo type MT can, for some domains, “first” be described

when all part sorts have been dealt with. Chapter 3, Domain Analysis and Description – Formal
Models of Processes and Prompts, [52] presents a model of one form of evaluation of the TripTych

analysis and description prompts.

1.3.4 Part Attributes

To recall: there are three sets of internal qualities: unique part identifiers, part mereology and attributes.

Unique part identifiers and part mereology are rather definite kinds of internal endurant qualities. Part at-

tributes form more “free-wheeling” sets of internal qualities.

Inseparability of Attributes from Parts

Parts are typically recognised because of their spatial form and are otherwise characterised by their intangi-

ble, but measurable attributes. That is, whereas endurants, whether discrete (as are parts and components)

or continuous (as are materials), are physical, tangible, in the sense of being spatial [or being abstractions,

i.e., concepts, of spatial endurants], attributes are intangible: cannot normally be touched17, or seen18, but

17 One can see the red colour of a wall, but one touches the wall.
18 One cannot see electric current, and one may touch an electric wire, but only if it conducts high voltage can one

know that it is indeed an electric wire.
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1.3 Endurants 23

can be objectively measured19. Thus, in our quest for describing domains where humans play an active

rôle, we rule out subjective “attributes”: feelings, sentiments, moods. Thus we shall abstain, in our domain

science also from matters of aesthetics. We learned from Sect. 1.1.8 that a formal concept, that is, a type,

consists of all the entities which all have the same qualities. Thus removing a quality from an entity makes

no sense: the entity of that type either becomes an entity of another type or ceases to exist (i.e., becomes a

non-entity) !

Attribute Quality and Attribute Value

We distinguish between an attribute, as a logical proposition, and an attribute value, as a value in some not

necessarily Boolean value space.

Example 26 . Attribute Propositions and Other Values: A particular street segment (i.e., a link), say

ℓ, satisfies the proposition (attribute) has length, and may then have value length 90 meter for that attribute.

Another link satisfies the same proposition but has another value; and yet another link satisfies the same

proposition and may have the same value. That is: all links satisfies has length and has some value for

that attribute. A particular road transport domain, δ , has three immediate sub-parts: net, n, fleet, f , and

monitor m; typically nets has net name and has net owner proposition attributes with, for example, US

Interstate Highway System respectively US Department of Transportation as values for those

attributes There may be other aspects of the net value n �

Endurant Attributes: Types and Functions

Let us recall that attributes cover qualities other than unique identifiers and mereology. Let us then consider

that parts have one or more attributes. These attributes are qualities which help characterise “what it means”

to be a part. Note that we expect every part to have at least one attribute.

Example 27 . Atomic Part Attributes: Examples of attributes of atomic parts such as a human are:

name, gender, birth-date, birth-place, nationality, height, weight, eye colour, hair colour, etc. Examples of

attributes of transport net links are: length, location, 1 or 2-way link, link condition, etc. �

Example 28 . Composite Part Attributes: Examples of attributes of composite parts such as a road net

are: owner, public or private net, free-way or toll road, a map of the net, etc. Examples of attributes of

a group of people could be: statistic distributions of gender, age, income, education, nationality, religion,
etc. �

We now assume that all parts have attributes. The question is now, in general, how many and, particularly,

which.

Analysis Prompt 14 . attribute names: The domain analysis prompt attribute names when ap-

plied to a part p yields the set of names of its attribute types:

• attribute names(p): {ηA1,ηA2, ...,ηAn}.

η is a type operator. Applied to a type A it yields is name20 ♦

We cannot automatically, that is, syntactically, guarantee that our domain descriptions secure that the vari-

ous attribute types for an emerging part sort denote disjoint sets of values. Therefore we must prove it.

19 That is, we restrict our domain analysis with respect to attributes to such quantities which are observable, say

by mechanical, electrical or chemical instruments. Once objective measurements can be made of human feelings,

beauty, and other, we may wish to include these “attributes” in our domain descriptions.
20 Normally, in non-formula texts, type A is referred to by ηA. In formulas A denote a type, that is, a set of entities.

Hence, when we wish to emphasize that we speak of the name of that type we use ηA. But often we omit the

distinction
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24 1 Manifest Domains: Analysis & Description

The Attribute Value Observer

The “built-in” description language operator

• attr A

applies to parts, p:P, where ηA∈attribute names(p). It yields the value of attribute A of p.

Domain Description Prompt 5 . observe attributes : The domain analyser experiments, thinks

and reflects about part attributes. That process is initated by the domain description prompt:

• observe attributes.

The result of that domain description prompt is that the domain analyser cum describer writes down

the attribute (sorts or) types and observers domain description text according to the following schema:

5. observe attributes schema

Narration:

[ t ] ... narrative text on attribute sorts ...
[o ] ... narrative text on attribute sort observers ...
[ i ] ... narrative text on attribute sort recognisers ...
[p ] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[ t ] Ai [1≤i≤n ]
value

[o ] attr Ai:P→Ai [1≤i≤n ]
[ i ] is Ai:(A1|A2|...|An)→Bool [1≤i≤n ]
proof obligation [Disjointness of Attribute Types ]
[p ] ∀ δ :∆
[p ] let P be any part sort in [the ∆ domain description]
[p ] let a:(A1|A2|...|An) in is Ai(a) 6= is A j(a) end end [ i6= j, 1≤i, j≤n ]

The type (or rather sort) definitions: A1, A2, ..., An, inform us that the domain analyser has decided

to focus on the distinctly named A1, A2, ..., An attributes.21 And the value clauses attr A1:P→A1,

attr A2:P→A2, ..., attr An:P→An are then “automatically” given: if a part, p:P, has an attribute Ai then

there is postulated, “by definition” [eureka] an attribute observer function attr Ai:P→Ai etcetera △

The fact that, for example, A1, A2, ..., An, are attributes of p:P, means that the propositions

• has attribute A1(p), has attribute A2(p), ..., and has attribute An(p)

holds. Thus the observer functions attr A1, attr A2, ..., attr An can be applied to p in P and yield attribute

values a1:A1, a2:A2, ..., an:An respectively.

Example 29 . Road Hub Attributes: After some analysis a domain analyser may arrive at some inter-

esting hub attributes:

30 hub state: from which links (by reference) can one reach which links (by reference),

31 hub state space: the set of all potential hub states that a hub may attain,

32 such that

a the links referred to in the state are links of the hub mereology

b and the state is in the state space.

33 Etcetera — i.e., there are other attributes not mentioned here.

21 The attribute type names are not like type names of, for example, a programming language. Instead they are chosen

by the domain analyser to reflect on domain phenomena. Cf. Example 27 on the preceding page and Example 28.
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type

30 HΣ = (LI×LI)-set

31 HΩ = HΣ -set

value

30 attr HΣ :H→HΣ
31 attr HΩ :H→HΩ
axiom [Well−formedness of Hub States, HΣ ]
32 ∀ h:H • let hσ = attr HΣ(h) in

32a {li,li′|li,li′:LI•(li,li′)∈ hσ}⊆obs mereo H(h)
32b ∧ hσ ∈ attr HΩ(h)
32 end �

Attribute Categories

One can suggest a hierarchy of part attribute categories: static or dynamic values — and within the dy-

namic value category: inert values or reactive values or active values — and within the dynamic active

value category: autonomous values or biddable values or programmable values. We now review these at-

tribute value types. The review is based on [115, M.A. Jackson]. Part attributes are either constant or

varying, i.e., static or dynamic attributes. By a static attribute, a:A, is static attribute(a), we

shall understand an attribute whose values are constants, i.e., cannot change. By a dynamic attribute,

a:A, is dynamic attribute(a), we shall understand an attribute whose values are variable, i.e., can

change. Dynamic attributes are either inert, reactive or active attributes. By an inert attribute, a:A,

is inert attribute(a), we shall understand a dynamic attribute whose values only change as the re-

sult of external stimuli where these stimuli prescribe properties of these new values. By a reactive at-
tribute, a:A, is reactive attribute(a), we shall understand a dynamic attribute whose values, if they

vary, change value in response to the change of other attribute values. By an active attribute, a:A,

is active attribute(a), we shall understand a dynamic attribute whose values change (also) of its

own volition. Active attributes are either autonomous, biddable or programmable attributes. By an au-

tonomous attribute, a:A, is autonomous attribute(a), we shall understand a dynamic active attribute

whose values change value only “on their own volition”. The values of an autonomous attributes are a “law

onto themselves and their surroundings”. By a biddable attribute, a:A, is biddable attribute(a),

(of a part) we shall understand a dynamic active attribute whose values are prescribed but may fail to

be observed as such. By a programmable attribute, a:A, is programmable attribute(a), we shall

understand a dynamic active attribute whose values can be prescribed.

Example 30 . Static and Dynamic Attributes: Link lengths can be considered static. Buses (i.e., ve-

hicles) have a timetable attribute which is inert, i.e., can change, only when the bus company decides so.

The weather can be considered autonomous. Pipeline valve units include the two attributes of valve opening

(open, close) and internal flow (measured, say gallons per second). The valve opening attribute is of

the biddable attribute category. The flow attribute is reactive (flow changes with valve opening/closing).

Hub states (red, yellow, green) can be considered biddable: one can “try” set the signals but the electro-

mechanics may fail. Bus companies program their own timetables, i.e., bus company timetables are pro-

grammable — are computers �

External Attributes: By an external attribute we shall understand a dynamic attribute which is not a

biddable or a programmable attribute ⊙ The idea of external attributes is this: They are the attributes whose

values are set by factors “outside” the part of which they are an attribute. In contrast, the programmable (and

biddable) attributes have their values determininistically (non-deterministically) set by the part [behaviour]

of which they are an attribute.

Controllable Attributes: By a controllable attribute we shall understand either a biddable or a pro-

grammable attribute ⊙
Figure 1.2 on the next page captures an attribute value ontology.
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Fig. 1.2. Attribute Value Ontology

Access to Attribute Values

In an action, event or a behaviour description (Sect. 1.4.9) static values of parts, p, (say of type A) can

be “copied”, attr A(p), and still retain their (static) value. But, for action, event or behaviour descriptions,

external dynamic values of parts, p, cannot be “copied”, but attr A(p) must be “performed” every time

they are needed. That is: static values require at most one domain access, whereas external attribute values

require repeated domain accesses. We shall return to the issue of attribute value access in Sect. 1.4.7.

Event Values

Among the external attribute values we observe a new kind of value: the event values. We may optionally

ascribe ordinarily typed, say A, values, a:A, with event attributes. By an event attribute we shall under-

stand an attribute whose values are either ”nil” ([f]or “absent”), or are some more definite value (a:A) ⊙
Event values occur instantaneously. They can be thought of as the raising of a signal followed immediately

by the lowering of that signal.

Example 31 . Event Attributes: (i) The passing of a vehicle past a tollgate is an event. It occurs at a

usually unpredictable time. It otherwise “carries” no specific value. (ii) The identification of a vehicle by

a tollgate sensor is an event. It occurs at a usually unpredictable time. It specifically “carries” a vehicle

identifier value �

Event attributes are not to be confused with event perdurants. External attributes are either event attributes

or are not. More on access to event attribute values in Sect. 1.4.7 on Page 36.

Shared Attributes

Normally part attributes of different part sorts are distinctly named. If, however, observe attribu-

tes(pik:Pi) and observe attributes(p jℓ:P j), for any two distinct part sorts, Pi and P j, of a domain,

“discovers” identically named attributes, say A, then we say that parts pi:Pi and p j:P j share attribute A.
that is, that a:attr A(pi) (and a′:attr A(p j)) is a shared attribute (with a=a′ always (�) holding).

Attribute Naming: Thus the domain describer has to exert great care when naming attribute types. If Pi

and P j are two distinct types of a domain, then if and only if an attribute of Pi is to be shared with an

attribute of P j that attribute must be identically named in the description of Pi and P j and otherwise the

attribute names of Pi and P j must be distinct.

Example 1.10.. Shared Attributes. Examples of shared attributes: (i) Bus timetable attributes have the

same value as the fleet timetable attribute – cf. Example 32 below. (ii) A link incident upon or emanating

from a hub shares the connection between that link and the hub as an attribute. (iii) Two pipeline units22, pi

with unique identifier πi, and p j with unique identifier π j, that are connected, such that an outlet marked π j

of pi “feeds into” inlet marked πi of p j, are said to share the connection (modeled by, e.g., {(πi,π j)}) �

22 See Example 25 on Page 21
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Example 32 . Shared Timetables: The fleet and vehicles of Example 17 on Page 15 and Example 18

on Page 16 is that of a bus company.

34 From the fleet and from the vehicles we observe unique identifiers.

35 Every bus mereology records the same one unique fleet identifier.

36 The fleet mereology records the set of all unique bus identifiers.

37 A bus timetable is a shared fleet and bus attribute.

type

34 FI, VI, BT
value

34 uid F: F → FI
34 uid V: V → VI
35 obs mereo F: F → VI-set [cf. Sect. 1.3.3 on Page 20]
36 obs mereo V: V → FI
37 attr BT: (F|V) → BT
axiom

� ∀ f:F ⇒
∀ v:V • v ∈ obs part Vs(obs part VC(f)) • attr BT(f) = attr BT(v) �

The simple identical attribute name-sharing first outlined above may be generalised. If Pi and P j are two

distinct types of a domain, then if an attribute, A, of Pi is to be shared with an attribute, B, of P j, attribute

B must be expressed in terms of A.

1.3.5 Components

We refer to Sect. 1.3.1 on Page 12 for a first coverage of the concept of components: definition and exam-

ples. Components are discrete endurants which the domain analyser & describer has chosen to not endow

with internal qualities.

Example 33 . Parts and Components: We observe components as associated with atomic parts: The

contents, that is, the collection of zero, one or more boxes, of a container are the components of the con-

tainer part. Conveyor belts transport machine assembly units and these are thus considered the components

of the conveyor belt �

We now complement the observe part sorts (of Sect. 1.3.1). We assume, without loss of generality,

that only atomic parts may contain components. Let p:P be some atomic part.

Analysis Prompt 15 . has components: The domain analysis prompt:

• has components(p)

yields true if atomic part p may contain zero, one or more components otherwise false ♦

Let us assume that parts p:P embody components of sorts {K1,K2,. . . ,Kn}. Since we cannot automatically

guarantee that our domain descriptions secure that each Ki ([1≤i≤n ]) denotes disjoint sets of entities we

must prove it.

Domain Description Prompt 6 . observe component sorts : The domain description prompt:

• observe component sorts(p)

yields the component sorts and component sort observer domain description text according to the following

schema: – whether or not the actual part p contains any components:

6. observe component sorts P schema

Narration:

[s ] ... narrative text on component sorts ...
[o ] ... narrative text on component observers ...
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[ i ] ... narrative text on component sort recognisers ...
[p ] ... narrative text on component sort proof obligations ...

Formalisation:

type

[s ] K1, K2, ..., Kn
[s ] K = K1| K2 | ... | Kn
[s ] KS = K-set

value

[o ] components: P → KS
[ i ] is Ki: (K1|K2|...|Kn) → Bool [1≤i≤n ]

Proof Obligation: [Disjointness of Component Sorts ]
[p ] ∀ ki:(K1|K2|...|Kn) •

[p ]
∧

{is Ki(ki) ≡
∧
{∼is K j(k j)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

The Ki are all distinct △

Example 34 . Container Components: We continue Example 19 on Page 17.

38 When we apply obs component sorts C to any container c:C we obtain

a a type clause stating the sorts of the various components, ck:CK, of a container,

b a union type clause over these component sorts, and

c the component observer function signature.

type

38a CK1, CK2, ..., CKn
38b CKS = (CK1|CK2|...|CKn)-set

value

38c obs comp CKS: C → CKS �

We have presented one way of tackling the issue of describing components. There are other ways. We leave

those ‘other ways’ to the reader. We are not going to suggest techniques and tools for analysing, let alone

ascribing qualities to components. We suggest that conventional abstract modeling techniques and tools

be applied.

1.3.6 Materials

We refer to Sect. 1.3.1 on Page 12 for a first coverage of the concept of materials. Continuous endurants

(i.e., materials) are entities, m, which satisfy:

• is material(m) ≡ is endurant(m)∧is continuous(m)

Example 35 . Parts and Materials: We observe materials as associated with atomic parts: Thus liquid

or gaseous materials are observed in pipeline units �

We shall in this paper not cover the case of parts being immersed in materials23. We assume, without loss

of generality, that only atomic parts may contain materials. Let p:P be some atomic part.

Analysis Prompt 16 . has materials: The domain analysis prompt:

• has materials(p)

yields true if the atomic part p:P potentially may contain materials otherwise false ♦

23 Most such cases have the material play a minor, an abstract rôle with respect to the immersed parts. That is, we

presently leave it to hydro- and aerodynamics to domain analyse those cases.
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Let us assume that parts p:P embody materials of sorts {M1,M2,. . . ,Mn}. Since we cannot automatically

guarantee that our domain descriptions secure that each Mi ([1≤i≤n ]) denotes disjoint sets of entities we

must prove it.

Domain Description Prompt 7 . observe material sorts : The domain description prompt:

• observe material sorts(e)

yields the material sorts and material sort observers domain description text according to the following

schema: whether or not part p actually contains materials:

7. observe material sorts schema

Narration:

[s ] ... narrative text on material sorts ...
[o ] ... narrative text on material sort observers ...
[ i ] ... narrative text on material sort recognisers ...
[p ] ... narrative text on material sort proof obligations ...

Formalisation:

type

[s ] M1, M2, ..., Mn
[s ] M = M1 | M2 | ... | Mn
[s ] MS = M-set

value

[o ] obs mat Mi: P → M [1≤i≤n ]
[o ] materials: P → MS
[ i ] is Mi: M → Bool [1≤i≤n ]
proof obligation [Disjointness of Material Sorts ]
[p ] ∀ mi:M •

∧
{is Mi(mi) ≡

∧
{∼is M j(m j)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

The Mi are all distinct △

Example 36 . Pipeline Material: We continue Example 20 on Page 18 and Example 25 on Page 21.

39 When we apply obs material sorts U to any unit u:U we obtain

a a type clause stating the material sort LoG for some further undefined liquid or gaseous material,

and

b a material observer function signature.

type

39a LoG
value

39b obs mat LoG: U → LoG

has materials(u) is a prerequisite for obs mat LoG(u) �

Materials-related Part Attributes

It seems that the “interplay” between parts and materials is an area where domain analysis in the sense of

this compendium is relevant.

Example 37 . Pipeline Material Flow: We continue Examples 20, 25 and 36. Let us postulate a[n at-

tribute] sort Flow. We now wish to examine the flow of liquid (or gaseous) material in pipeline units. We

use two types

40 type F, L.
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Productive flow, F, and wasteful leak, L, is measured, for example, in terms of volume of material per

second. We then postulate the following unit attributes “measured” at the point of in- or out-flow or in the

interior of a unit.

41 current flow of material into a unit input connector,

42 maximum flow of material into a unit input connector while maintaining laminar flow,

43 current flow of material out of a unit output connector,

44 maximum flow of material out of a unit output connector while maintaining laminar flow,

45 current leak of material at a unit input connector,

46 maximum guaranteed leak of material at a unit input connector,

47 current leak of material at a unit input connector,

48 maximum guaranteed leak of material at a unit input connector,

49 current leak of material from “within” a unit, and

50 maximum guaranteed leak of material from “within” a unit.

type

40 F, L
value

41 attr cur iF: U → UI → F
42 attr max iF: U → UI → F
43 attr cur oF: U → UI → F
44 attr max oF: U → UI → F

45 attr cur iL: U → UI → L
46 attr max iL: U → UI → L
47 attr cur oL: U → UI → L
48 attr max oL: U → UI → L
49 attr cur L: U → L
50 attr max L: U → L

The maximum flow attributes are static attributes and are typically provided by the manufacturer as indi-

cators of flows below which laminar flow can be expected. The current flow attributes may be considered

either reactive or biddable attributes �

Laws of Material Flows and Leaks

It may be difficult or costly, or both, to ascertain flows and leaks in materials-based domains. But one

can certainly speak of these concepts. This casts new light on domain modeling. That is in contrast to

incorporating such notions of flows and leaks in requirements modeling where one has to show implement-

ability. Modeling flows and leaks is important to the modeling of materials-based domains.

Example 38 . Pipelines: Intra Unit Flow and Leak Law:

51 For every unit of a pipeline system, except the well and the sink units, the following law apply.

52 The flows into a unit equal

a the leak at the inputs

b plus the leak within the unit

c plus the flows out of the unit

d plus the leaks at the outputs.

axiom [Well−formedness of Pipeline Systems, PLS (1) ]
51 ∀ pls:PLS,b:B\We\Si,u:U •

51 b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
51 let (iuis,ouis) = obs mereo U(u) in

52 sum cur iF(u)(iuis) =
52a sum cur iL(u)(iuis)
52b ⊕ attr cur L(u)
52c ⊕ sum cur oF(u)(ouis)
52d ⊕ sum cur oL(u)(ouis)
51 end

53 The sum cur iF (cf. Item 52) sums current input flows over all input connectors.
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54 The sum cur iL (cf. Item 52a) sums current input leaks over all input connectors.

55 The sum cur oF (cf. Item 52c) sums current output flows over all output connectors.

56 The sum cur oL (cf. Item 52d) sums current output leaks over all output connectors.

53 sum cur iF: U → UI-set →F
53 sum cur iF(u)(iuis) ≡ ⊕ {attr cur iF(u)(ui)|ui:UI•ui ∈ iuis}
54 sum cur iL: U → UI-set → L
54 sum cur iL(u)(iuis) ≡ ⊕ {attr cur iL(u)(ui)|ui:UI•ui ∈ iuis}
55 sum cur oF: U → UI-set → F
55 sum cur oF(u)(ouis) ≡ ⊕ {attr cur iF(u)(ui)|ui:UI•ui ∈ ouis}
56 sum cur oL: U → UI-set → L
56 sum cur oL(u)(ouis) ≡ ⊕ {attr cur iL(u)(ui)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

where ⊕ is both an infix and a distributed-fix function which adds flows and or leaks �

Example 39 . Pipelines: Inter Unit Flow and Leak Law:

57 For every pair of connected units of a pipeline system the following law apply:

a the flow out of a unit directed at another unit minus the leak at that output connector

b equals the flow into that other unit at the connector from the given unit plus the leak at that con-

nector.

axiom [Well−formedness of Pipeline Systems, PLS (2) ]
57 ∀ pls:PLS,b,b′:B,u,u′:U•

57 {b,b′}⊆obs part Bs(pls)∧b 6=b′∧u′=obs part U(b′)
57 ∧ let (iuis,ouis)=obs mereo U(u),(iuis′,ouis′)=obs mereo U(u′),
57 ui=uid U(u),ui′=uid U(u′) in

57 ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
57a attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
57b = attr cur iF(u)(ui) + attr leak iF(u)(ui)
57 end

57 comment: b′ precedes b �

From the above two laws one can prove the theorem: what is pumped from the wells equals what is leaked

from the systems plus what is output to the sinks.

1.3.7 “No Junk, No Confusion”

Domain descriptions are, as we have already shown, formulated, both informally and formally, by means

of abstract types, that is, by sorts for which no concrete models are usually given. Sorts are made to denote

possibly empty, possibly infinite, rarely singleton, sets of entities on the basis of the qualities defined

for these sorts, whether external or internal. By junk we shall understand that the domain description

unintentionally denotes undesired entities. By confusion we shall understand that the domain description

unintentionally have two or more identifications of the same entity or type. The question is can we formulate
a [formal] domain description such that it does not denote junk or confusion ? The short answer to this is

no ! So, since one naturally wishes “no junk, no confusion” what does one do ? The answer to that is one
proceeds with great care ! To avoid junk we have stated a number of sort well-formedness axioms, for

example:24

• Page 20 for wf links and hubs,

• Page 21 for wf road net mereologies,

• Page 21 for wf pipeline mereologies,

• Page 25 for wf hub states,

• Page 30 for wf pipeline systems,

• Page 31 for wf pipeline systems,

24 Let wf abbreviate well-formed.
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To avoid confusion we have stated a number of proof obligations:

• Page 15 for Disjointness of Part Sorts,

• Page 24 for Disjointness of Attribute Types and

• Page 29 for Disjointness of Material Sorts.

1.3.8 Discussion of Endurants

In Sect. 1.3.1 on Page 14 a “depth-first” search for part sorts was hinted at, but only in the sequence of

examples, as given. That sequence of examples essentially expressed that we discover domains epistemo-

logically25 but understand them ontologically.26 The Danish philosopher Søren Kirkegaard (1813–1855)

expressed it this way: Life is lived forwards, but is understood backwards. The presentation of the of the do-
main analysis prompts and the domain description prompts results in domain descriptions which are

ontological. The “depth-first” search recognizes the epistemological nature of bringing about understand-

ing. This “depth-first” search that ends with the analysis of atomic part sorts can be guided, i.e., hastened

(shortened), by postulating composite sorts that “correspond” to vernacular nouns: everyday nouns that

stand for classes of endurants.

1.4 Perdurants

We shall not present a set of domain analysis prompts and a set of domain description prompts
leading to description language, i.e., RSL texts describing perdurant entities. The reason for giving this

albeit cursory overview of perdurants is that we can justify our detailed study of endurants, their part and

sub parts, their unique identifiers, mereology and attributes. This justification is manifested (i) in expressing

the types of signatures, (ii) in basing behaviours on parts, (iii) in basing the for need for CSP-oriented inter-

behaviour communications on shared part attributes, (iv) in indexing behaviours as are parts, i.e., on unique

identifiers, and (v) in directing inter-behaviour communications across channel arrays indexed as per the

mereology of the part behaviours. These are all notions related to endurants and are now justified by their

use in describing perdurants. Perdurants can perhaps best be explained in terms of a notion of state and a

notion of time. We shall, in this paper, not detail notions of time, but refer to [110, 86, 64, 175].

1.4.1 States

Definition 11. State: By a state we shall understand any collection of parts each of which has at least
one dynamic attribute or has components or has materials ⊙

Example 40 . States: A road hub can be a state, cf. Hub State, HΣ , Example 29 on Page 24. A road

net can be a state – since its hubs can be. Container stowage areas, CSA, Example 19 on Page 17, of

container vessels and container terminal ports can be states as containers can be removed from and put on

top of container stacks. Pipeline pipes can be states as they potentially carry material. Conveyor belts can

be states as they may carry components �

1.4.2 Actions, Events and Behaviours

To us perdurants are further, pragmatically, analysed into actions, events, and behaviours. We shall define

these terms below. Common to all of them is that they potentially change a state. Actions and events are here

considered atomic perdurants. For behaviours we distinguish between discrete and continuous behaviours.

25 Epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epis-

temology is the investigation of what distinguishes justified belief from opinion.
26 Ontology: the branch of metaphysics dealing with the nature of being.
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Time Considerations

We shall, without loss of generality, assume that actions and events are atomic and that behaviours are

composite. Atomic perdurants may “occur” during some time interval, but we omit consideration of and

concern for what actually goes on during such an interval. Composite perdurants can be analysed into “con-

stituent” actions, events and “sub-behaviours”. We shall also omit consideration of temporal properties of

behaviours. Instead we shall refer to two seminal monographs: Specifying Systems [124, Leslie Lamport]

and Duration Calculus: A Formal Approach to Real-Time Systems [187, Zhou ChaoChen and Michael

Reichhardt Hansen] (and [26, Chapter 15]). For a seminal book on “time in computing” we refer to the

eclectic [91, Mandrioli et al., 2012]. And for seminal book on time at the epistemology level we refer to

[175, J. van Benthem, 1991].

Actors

Definition 12. Actor: By an actor we shall understand something that is capable of initiating and/or
carrying out actions, events or behaviours ⊙

We shall, in principle, associate an actor with each part. These actors will be described as behaviours. These

behaviours evolve around a state. The state is the set of qualities, in particular the dynamic attributes, of

the associated parts and/or any possible components or materials of the parts.

Example 41 . Actors: We refer to the road transport and the pipeline systems examples of earlier. The

fleet, each vehicle and the road management of the Transportation System of Examples 17 on Page 15

and 32 on Page 27 can be considered actors; so can the net and its links and hubs. The pipeline monitor and

each pipeline unit of the Pipeline System, Example 20 on Page 18 and Examples 20 on Page 18 and 25 on

Page 21 will be considered actors �

Parts, Attributes and Behaviours

Example 41 focused on what shall soon become a major relation within domains: that of parts being also

considered actors, or more specifically, being also considered to be behaviours.

Example 42 . Parts, Attributes and Behaviours: Consider the term ‘train’27. It has several possible

“meanings”. (i) the train as a part, viz., as standing on a train station platform; (ii) the train as listed in a

timetable (an attribute of a transport system part), (iii) the train as a behaviour: speeding down the rail track

�

1.4.3 Discrete Actions

Definition 13. Discrete Action: By a discrete action [181, Wilson and Shpall] we shall understand a
foreseeable thing which deliberately potentially changes a well-formed state, in one step, usually into
another, still well-formed state, and for which an actor can be made responsible ⊙

An action is what happens when a function invocation changes, or potentially changes a state.

Example 43 . Road Net Actions: Examples of Road Net actions initiated by the net actor are: insertion

of hubs, insertion of links, removal of hubs, removal of links, setting of hub states. Examples of Traffic
System actions initiated by vehicle actors are: moving a vehicle along a link, stopping a vehicle, starting a

vehicle, moving a vehicle from a link to a hub and moving a vehicle from a hub to a link �
27 This example is due to Paul Lindgreen, a Danish computer scientist. It dates from the late 1970s.
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1.4.4 Discrete Events

Definition 14. Event: By an event we shall understand some unforeseen thing, that is, some ‘not-planned-
for’ “action”, one which surreptitiously, non-deterministically changes a well-formed state into another, but
usually not a well-formed state, and for which no particular domain actor can be made responsible ⊙

Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a

time or time interval. The notion of event continues to puzzle philosophers [82, 155, 134, 80, 103, 12, 122,

70, 147, 69]. We note, in particular, [80, 12, 122].

Example 44 . Road Net and Road Traffic Events: Some road net events are: “disappearance” of a hub

or a link, failure of a hub state to change properly when so requested, and occurrence of a hub state leading

traffic into “wrong-way” links. Some road traffic events are: the crashing of one or more vehicles (whatever

‘crashing’ means), a car moving in the wrong direction of a one-way link, and the clogging of a hub with

too many vehicles �

1.4.5 Discrete Behaviours

Definition 15. Discrete Behaviour: By a discrete behaviour we shall understand a set of sequences of
potentially interacting sets of discrete actions, events and behaviours ⊙

Example 45 . Behaviours: (i) Road Nets: A sequence of hub and link insertions and removals, link dis-

appearances, etc. (ii) Road Traffic: A sequence of movements of vehicles along links, entering, circling and

leaving hubs, crashing of vehicles, etc. (iii) Pipelines: A sequence of pipeline pump and valve openings

and closings, and failures to do so (events), etc. (iv) Container Vessels and Ports: Concurrent sequences of

movements (by cranes) of containers from vessel to port (unloading), with sequences of movements (by

cranes) from port to vessel (loading), with dropping of containers by cranes, etcetera �

Channels and Communication

Behaviours sometimes synchronise and usually communicate. We use the CSP [111] notation (adopted

by RSL) to introduce and model behaviour communication. Communication is abstracted as the sending

(ch !m) and receipt (ch ?) of messages, m:M, over channels, ch.

type M
channel ch:M

Communication between (unique identifier) indexed behaviours have their channels modeled as similarly

indexed channels:

out: ch[ idx ]!m
in: ch[ idx ]?
channel {ch[ ide ]:M|ide:IDE}

where IDE typically is some type expression over unique identitifer types.

Relations Between Attribute Sharing and Channels

We shall now interpret the syntactic notion of attribute sharing with the semantic notion of channels. This

is in line with the above-hinted interpretation of parts with behaviours, and, as we shall soon see, part

attributes with behaviour states. Thus, for every pair of parts, pik:Pi and p jℓ:P j, of distinct sorts, Pi and

P j which share attribute values in A we are going to associate a channel. If there is only one pair of parts,

pik:Pi and p jℓ:P j , of these sorts, then we associate just a simple channel, say attr A chPi,Pj
, with the shared

attribute.

channel attr A chPi,Pj
:A.
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If there is only one part, pi:Pi, but a definite set of parts p jk:P j, with shared attributes, then we associate

a vector of channels with the shared attribute. Let {p j1, p j2, ..., p jn} be all the parts of the domain sort

Pj. Then uids : {πp j1
,πp j2

, ...,πp jn
} is the set of their unique identifiers. Now a schematic channel array

declaration can be suggested:

channel {attr A ch[{π i,π j} ]:A|π i=uid Pi(pi)∧π j ∈ uids}.

The above can be extended in two ways: From channel matrices to channel tensors, etc., hence the term

channel ‘array’. And from simple shared attributes to “embedded sharing”.

We say that P and Q enjoy embedded attribute sharing when the following is the case: Part sort

Phas attribute type A, and part sort Q, different from P, has attribute type B where B is defined in terms of

A ⊙ For cases where P and Q enjoy embedded attribute sharing the mereology of parts p:P will include

uid Q(q) and the mereology of parts q:Q will include uid P(p).

Example 46 . Bus System Channels: We extend Examples 17 on Page 15 and 32 on Page 27. We

consider the fleet and the vehicles to be behaviours.

58 We assume some transportation system, δ . From that system we observe

59 the fleet and

60 the vehicles.
61 The fleet to vehicle channel array is indexed by the 2-element sets of the unique fleet identifier and the

unique vehicle identifiers. We consider bus timetables to be the only message communicated between

the fleet and the vehicle behaviours.

value

58 δ :∆ ,
59 f:F = obs part F(δ ),
60 vs:V-set = obs part Vs(obs part VC((obs part F(δ ))))

channel

61 {attr BT ch[{uid F(f),uid V(v)} ]|v:V•v ∈ vs}:BT �

1.4.6 Continuous Behaviours

By a continuous behaviour we shall understand a continuous time sequence of state changes. We shall

not go into what may cause these state changes.

Example 47 . Flow in Pipelines: We refer to Examples 25, 36, 37, 38 and 39. Let us assume that oil is

the (only) material of the pipeline units. Let us assume that there is a sufficient volume of oil in the pipeline

units leading up to a pump. Let us assume that the pipeline units leading from the pump (especially valves

and pumps) are all open for oil flow. Whether or not that oil is flowing, if the pump is pumping (with a

sufficient head28) then there will be oil flowing from the pump outlet into adjacent pipeline units �
To describe the flow of material (say in pipelines) requires knowledge about a number of material attributes

— not all of which have been covered in the above-mentioned examples. To express flows one resorts to the

mathematics of fluid-dynamics using such second order differential equations as first derived by Bernoulli

(1700–1782) and Navier–Stokes (1785–1836 and 1819–1903). There is, as yet, no notation that can serve

to integrate formal descriptions (like those of Alloy, B, The B Method,RSL,VDM or Z) with first, let

alone second order differential equations. But some progress has been made [129, 186] since [179].

1.4.7 Attribute Value Access

We refer to paragraph “Access to Attribute Values” in Section 1.3.4 Page 26. We distinguish between four

kinds of attributes: the static attributes which are those whose values are fixed, i.e., does not change, the

programmable attributes or biddable attributes, i.e., the controllable attributes, which are those dynamic

values are exclusively set by part processes, and the remaining dynamic attributes which here, technically

speaking, are seen as separate external processess. The event attributes are those external attributes whose

value occur for an instant of time.

28 The pump head is the linear vertical measurement of the maximum height a specific pump can deliver a liquid to

the pump outlet.
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Access to Static Attribute Values

The static attributes can be “copied”, attr A(p), and retain their values.

Access to External Attribute Values

By the external attributes, to repeat, we shall understand the inert, the autonomous and the reactive
attributes ⊙

62 Let ξA be the set of names, ηA, of all external attributes.

63 Each external attribute, A, is seen as an individual behaviour, each “accessible” by means of unique

channel, attr A ch.

64 External attribute values are then the value, a, of, i.e., accessed by the input, attr A ch ?.

62 value ξA = {ηA|A is any external attribute name}
63 channel {attr A ch:A | ηA ∈ ξA}
64 value a = attr A ch ?

We shall omit the η prefix in actual descriptions. The choice of representing external attribute values as

CSP processes29 is a technical one.

Access to Controllable Attribute Values

The controllable attributes are treated as function arguments. This is a technical choice. It is motivated

as follows. We find that these values are a function of other part attribute values, including at least one

controllable attribute value, and that the values are set (i.e., updated) by part behaviours. That is, to each

part, whether atomic or composite, we associate a behaviour. That behaviour is (to be) described as we

describe functions. These functions (normally) “go on forever”. Therefore these functions are described

basically by a “tail” recursive definition:

value f: Arg → Arg; f(a) ≡ (... let a′ = F (...)(a) in f(a′) end)

where F is some expression based on values defined within the function definition body of f and on f’s
“input” argument a, and where a can be seen as a controllable attribute.

Access to Event Values

We refer to Sect. 1.3.4 on Page 26. Event values reflect a stage change in a part behaviour. We therefore

model events as messages communicated over a channel, attr A ch, that is, attr A ch ! a, where A is the

event attribute, i.e., message type. Thus fulfillment of attr A ch ? expresses both that the event has taken

place and its value, if relevant. Example 52 on Page 42 illustrates the concept of event attributes and event

values.

1.4.8 Perdurant Signatures and Definitions

We shall treat perdurants as function invocations. In our cursory overview of perdurants we shall focus on

one perdurant quality: function signatures.

Definition 16. Function Signature: By a function signature we shall understand a function name and
a function type expression ⊙

Definition 17. Function Type Expression: By a function type expression we shall understand a pair
of type expressions. separated by a function type constructor either → (total) or

∼
→ (partial) function ⊙

The type expressions are part sort or type, or material sort or type, or component sort or type, or attribute

type names, but may, occasionally be expressions over respective type names involving -set, ×, ∗, →m and

| type constructors.

29 — not to be confused with domain behaviours
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1.4.9 Action Signatures and Definitions

Actors usually provide their initiated actions with arguments, say of type VAL. Hence the schematic func-

tion (action) signature and schematic definition:

action: VAL → Σ
∼
→ Σ

action(v)(σ) as σ ′

pre: P(v,σ)
post: Q(v,σ ,σ ′)

expresses that a selection of the domain, as provided by the Σ type expression, is acted upon and possibly

changed. The partial function type operator
∼
→ shall indicate that action(v)(σ) may not be defined for

the argument, i.e., initial state σ and/or the argument v:VAL, hence the precondition P(v,σ). The post

condition Q(v,σ ,σ ′) characterises the “after” state, σ ′:Σ , with respect to the “before” state, σ :Σ , and

possible arguments (v:VAL).

Example 48 . Insert Hub Action Formalisation: We formalise aspects of the above-mentioned hub

action:

65 Insertion of a hub requires

66 that no hub exists in the net with the unique identifier of the inserted hub,

67 and then results in an updated net with that hub.

value

65 insert H: H → N
∼
→ N

65 insert H(h)(n) as n′

66 pre: ∼∃ h′:H•h′ ∈ obs part Hs(obs part HS(n))•uid H(h)=uid H(h′)
67 post: obs part Hs(obs part HS(n′))=obs part Hs(obs part HS(n))∪{h} �

Which could be the argument values, v:VAL, of actions ? Well, there can basically be only the following

kinds of argument values: parts, components and materials, respectively unique part identifiers, mereologies

and attribute values. It basically has to be so since there are no other kinds of values in domains. There can

be exceptions to the above (Booleans, natural numbers), but they are rare !

Perdurant (action) analysis thus proceeds as follows: identifying relevant actions, assigning

names to these, delineating the “smallest” relevant state30, ascribing signatures to action functions, and

determining action pre-conditions and action post-conditions. Of these, ascribing signatures is the most

crucial: In the process of determining the action signature one oftentimes discovers that part or component

or material attributes have been left (“so far”) “undiscovered”.

Example 48 showed example of a signature with only a part argument. Example 49 shows examples

of signatures whose arguments are parts and unique identifiers, or parts, unique identifiers and attribute

values.

Example 49 . Some Function Signatures: Inserting a link between two identified hubs in a net:

value insert L: L × (HI × HI) → N
∼
→ N

Removing a hub and removing a link:

value remove H: HI → N
∼
→ N

remove L: LI → N
∼
→ N

Changing a hub state.

value change HΣ : HI × HΣ → N
∼
→ N �

30 By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain analyser cum

describer should strive for identifying the smallest state.
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1.4.10 Event Signatures and Definitions

Events are usually characterised by the absence of known actors and the absence of explicit “external”

arguments. Hence the schematic function (event) signature:

value

event: Σ × Σ
∼
→ Bool

event(σ ,σ ′) as tf
pre: P(σ)
post: tf = Q(σ ,σ ′)

The event signature expresses that a selection of the domain as provided by the Σ type expression is “acted”

upon, by unknown actors, and possibly changed. The partial function type operator
∼
→ shall indicate that

event(σ ,σ ′) may not be defined for some states σ . The resulting state may, or may not, satisfy axioms and

well-formedness conditions over Σ — as expressed by the post condition Q(σ ,σ ′). Events may thus cause

well-formedness of states to fail. Subsequent actions, once actors discover such “disturbing events”, are

therefore expected to remedy that situation, that is, to restore well-formedness. We shall not illustrate this

point.

Example 50 . Link Disappearence Formalisation: We formalise aspects of the above-mentioned link

disappearance event:

68 The result net is not well-formed.

69 For a link to disappear there must be at least one link in the net;

70 and such a link may disappear such that

71 it together with the resulting net makes up for the “original” net.

value

68 link diss event: N × N′ ∼
→ Bool

68 link diss event(n,n′) as tf
69 pre: obs part Ls(obs part LS(n))6={}
70 post: tf = ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
71 l 6∈ obs part Ls(obs part LS(n′))
71 ∧ n′ ∪ {l} = obs part Ls(obs part LS(n)) �

1.4.11 Discrete Behaviour Signatures and Definitions

Behaviour Signatures

We shall only cover behaviour signatures when expressed in RSL/CSP [96]. The behaviour functions are

now called processes. That a behaviour function is a never-ending function, i.e., a process, is “revealed” in

the function signature by the “trailing” Unit:

behaviour: ... → ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

That a process accepts channel, viz.: ch, inputs, including accesses an external attribute A, is “revealed” in

the function signature as follows:

behaviour: ... → in ch ... , resp. in attr A ch

That a process offers channel, viz.: ch, outputs is “revealed” in the function signature as follows:

behaviour: ... → out ch ...
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That a process accepts other arguments is “revealed” in the function signature as follows:

behaviour: ARG → ...

where ARG can be any type expression:

T, T→T, T→T→T, etcetera

where T is any type expression.

Part Behaviours:

We can, without loss of generality, associate with each part a behaviour; parts which share attributes (and

are therefore referred to in some parts’ mereology), can communicate (their “sharing”) via channels.

Processes are named, and part process names have indexes, namely the unique part identifier: π :Π . The

p be the part and let partπ be the name of the process associated with part p. The process named partπ
shall have the process name partπ mean the following. Let partπ(args)≡B be the definition of process

partπ . Occurrences of π in the definition body B shall be considered bound to the π of the process name

partπ . Thus, if the process named parti has π bound to i both in the process name partπ and in the body

B.

The process evolves around a state, or, rather, a set of values: its possibly changing mereology,

mt:MT31, the possible components and materials of the part, and the attributes of the part. A behaviour

signature is therefore:

behaviourπ :Π : me:MT × sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) Unit

where (i) π :Π is the unique identifier of part p, i.e., π=uid P(p), (ii) me:ME is the mereology of part p, me
= obs mereo P(p), (iii) sa:SA lists the static attribute values of the part, (iv) ca:CA lists the controllable

and attribute values of the part, (v) ichns(ea:EA) refer to the external attribute input channels, and where

(vi) iochs(me) are the input/output channels serving the attributes shared between the part p and the parts

designated in its mereology me, cf. Sect. 1.4.7. We focus, for a little while, on the expression of sa:SA,

ea:EA and ca:CA, that is, on the concrete types of SA, EA and CA.

SA (p): sa:SA lists the static value types, (svT1, ...,svTs), where s is the number of static attributes of

parts p:P.

EA (p): ea:EA lists the external attribute value channels of parts p:P in the behaviour signature and as

input channels, ichns, see 9 lines above.

CA (p): ca:CA lists the controllable value expression types of parts p:P. A controllable attribute
value expression is an expression involving one or more attribute value expressions of the type of the

biddable or programmable attribute ⊙

Behaviour Definitions

Let P be a composite sort defined in terms of sub-sorts P1, P2, . . . , Pn. The process definition compiled

from p:P, is composed from a process description, M cPuid P(p), relying on and handling the unique iden-

tifier, mereology and attributes of part p operating in parallel with processes p1, p2, . . . , pn where p1 is

compiled from p1:P1, p2 is compiled from p2:P2, ..., and pn is compiled from pn:Pn. The domain descrip-

tion “compilation” schematic below “formalises” the above.

Process Schema I: Abstract is composite(p)

value

compile process: P → RSL-Text

compile process(p) ≡
M Puid P(p)(obs mereo P(p),SA (p))(CA (p))
‖ compile process(obs part P1(p))

31 For MT see footnote 16 on Page 21.
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‖ compile process(obs part P2(p))
‖ ...
‖ compile process(obs part Pn(p))

The text macros: SA and CA were informally explained above. Part sorts P1, P2, ..., Pn are obtained

from the observe part sorts prompt, Page 15.

Let P be a composite sort defined in terms of the concrete type Q-set. The process definition compiled

from p:P, is composed from a process, M P, relying on and handling the unique identifier, mereology and

attributes of process p as defined by P operating in parallel with processes q:obs part Qs(p). The domain

description “compilation” schematic below “formalises” the above.

Process Schema II: Concrete is composite(p)

type

Qs = Q-set

value

qs:Q-set = obs part Qs(p)
compile process: P → RSL-Text

compile process(p) ≡
M Puid P(p)(obs mereo P(p),SA (p))(CA (p))

‖ ‖{compile process(q)|q:Q•q ∈ qs}

Process Schema III: is atomic(p)

value

compile process: P → RSL-Text

compile process(p) ≡
M Puid P(p)(obs mereo P(p),SA (p))(CA (p))

Example 51 . Bus Timetable Coordination: We refer to Examples 17 on Page 15, 18 on Page 16, 32

on Page 27 and 46 on Page 35.

72 δ is the transportation system; f is the fleet part of that system; vs is the set of vehicles of the fleet; bt
is the shared bus timetable of the fleet and the vehicles.

73 The fleet process is compiled as per Process Schema II (Page 40).

The definitions of the fleet and vehicle processes are simplified so as to emphasize the master/slave, pro-

grammable/inert relations between these processes.

type

∆ , F, VS [Example 17 on Page 15]
V, Vs=V-set [Example 18 on Page 16]
FI, VI, BT [Example 32 on Page 27]

value

72 δ :∆ ,
72 f:F = obs part F(δ ),
72 fi:FI = uid F(f)
72 vs:V-set = obs part Vs(obs part VS(f))

axiom

72 ∀ v:V•v ∈ vs ⇒ � attr BT(f) = attr BT(v) [Example 32 on Page 27]
value
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73 fleet f i: BT → out attr BT ch Unit

73 fleet f i(bt) ≡ M Ff i(bt) ‖ ‖ {vehicleuid V (v)()|v:V•v ∈ vs}

73 vehiclevi: Unit → in attr BT ch Unit

73 vehiclevi ≡ MVvi(attr BT ch) ; vehiclevi()

The fleet process MF is a “never-ending” processes:

value

M Ff i: BT → out attr BT ch Unit

M Ff i(bt) ≡ let bt′ = F f i(bt) in M Ff i(bt
′) end

Function F f i is a simple action. The expression of actual synchronisation and communication between the

fleet and the vehicle processes is contained in F f i.

value

F f i: bt:BT → out attr BT ch BT
F f i(bt) ≡ (let bt′ = f f i(bt)(...) in bt′ end) ⌈⌉ (attr BT ch ! bt ; bt)
f f i: BT → ... → BT

The auxiliary function f f i “embodies” the programmable nature of the timetable attribute �

Please note a master part’s programmable attribute can be reflected in two ways: as a programmable at-

tribute and as an output channel to the behaviour specification of slave parts. This is illustrated, in Exam-

ple 51 where the fleet behaviour has programmable attribute BT and output channel attr BT ch to vehicle

behaviours.

Process Schema IV: Core Process (I)

The core processes can be understood as never ending, “tail recursively defined” processes:

M Pπ :Π : me:MT×sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) Unit

M Pπ :Π (me,sa)(ca) ≡ let (me′,ca′) = Fπ :Π (me,sa)(ca) in M Pπ :Π (me′,sa)(ca′) end

Fπ :Π : me:MT×sa:SA → CA → in ichns(ea:EA) in,out iochs(me) → MT×CA

Fπ potentially communicates with all those part processes (of the whole domain) with which it shares

attributes, that is, has connectors. Fπ is expected to contain input/output clauses referencing the channels

of the in ... out ... part of their signatures. These clauses enable the sharing of attributes. Fπ also contains

expressions, attr A ch ?, to external attributes.

We present a rough sketch of Fπ . The Fπ action non-deterministically internal choice chooses between

• either [1,2,3,4]

⋄⋄ [1] accepting input from

⋄⋄ [4] a suitable (“offering”) part process,

⋄⋄ [2] optionally offering a reply, and

⋄⋄ [3] finally delivering an updated state;

• or [5,6,7,8]

⋄⋄ [5] finding a suitable “order” (val)
⋄⋄ [8] to a suitable (“inquiring”) behaviour (π ′),

⋄⋄ [6] offering that value (on channel ch[π ′]
⋄⋄ [7] and then delivering an updated state;

• or [9] doing own work resulting in an updated

state.

Process Schema V: Core Process (II)

value

Fπ : me:MT × sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) MT×CA
Fπ(me,sa)(ca) ≡

[1 ] ⌈⌉⌊⌋ { let val = ch[π ′ ] ? in
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[2 ] ( ch[π ′ ] ! in reply(val)(me,sa)(ca) ⌈⌉ skip ) ;
[3 ] in update(val)(me,sa)(ca) end

[4 ] | π ′: Π • π ′ ∈ E (π ,me)}
[5 ] ⌈⌉ ⌈⌉⌊⌋ { let val = await reply(π ′)(me,sa)(ca) in

[6 ] ch[π ′ ] ! val ;
[7 ] out update(val)(me,sa)(ca) end

[8 ] | π ′: Π • π ′ ∈ E (π ,me)}
[9 ] ⌈⌉ (me,own work(sa)(ca))

channels ch[π ′ ] are defined in in ichns(ea:EA) in,out iochs(me)

in reply: VAL → SA×EA → CA → in ichns(ea:EA) in,out iochs(me) VAL
in update: VAL → MT×SA → CA → in,out iochs(me) MT×CA
await reply: Π → MT×SA → CA → in,out iochs(me) VAL
out update: VAL → MT×SA → CA → in,out iochs(me) MT×CA
own work: SA×EA → CA → in,out iochs(me) CA

We leave these auxiliary functions and VAL undefined.

Example 52 . Tollgates: Part and Behaviour: Our example is disconnected from that of a larger ex-

ample of road pricing. Figure 1.3 abstracts essential features of a tollgate.

exit sensorentry sensor

toll barrier

Vehicle linklink link link

Vehicle Identification

Fig. 1.3. A tollgate

74 A tollgate is a composite part. It consists of

75 an entry sensor (32), a vehicle identity sensor (33), a barrier (34), and an exit sensor (35).

76 The sensors function as follows:

a When a vehicle first starts passing the entry sensor then it sends an appropriate (event) message to

the tollgate.

b When a vehicle’s identity is recognised by the identity sensor then it sends an appropriate (event)

message to the tollgate.

c When a vehicle ends passing the exit sensor then it sends an appropriate (event) message to the

tollgate.

77 We therefore model these sensors as shared dynamic event attributes.

a For the sensors these are master attributes.

b For the tollgate they are slave attributes.

c In all three cases they are therefore modeled as channels.

78 A vehicle passing the gate

32 ES
33 IS
34 B
35 XS
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a first “triggers” the entry sensor (”Enter”),

b which results in the lowering (”Lower”) of the barrier,

c then the vehicle identity sensor (”vi:VI”),

d with the tollgate “mysteriously”36 handling that identity, and, simultaneously

e raising (”Raise”) the barrier, and

f finally the output sensor (”Exit”) is triggered as the vehicle leaves the tollgate,

g and the barrier is lowered.

79 whereupon the tollgate resumes being a tollgate.

80 TGI is the type unique tollgate identifiers.

Instead of one tollgate we may think of a number of tollgates: Each with their unique identifier — together

with a finite set of two or more such identifiers, tgis:TGI-set.

type

74 TG
75 ES, IS, B, XS
78a En = {|”Enter”|}
78b Ba = {|”Lower”,”Raise”|}
78c Id = VI
78e Ex = {|”Exit”|}
80 TGI
value

75 obs part ES: TG → ES
75 obs part IS: TG → IS
75 obs part B: TG → B
75 obs part XS: TG → XS
80 uid TGI: TG → TGI
78a attr Enter: TG|ES → {|”Enter”|}
78c attr Identity: TG|IS → VI
78e attr Exit: TG|XS → {|”Exit”|}
channel

78 {attr En ch[ tgi ]|tgi:TGI•tgi∈tgis}: En
78 {attr Id ch[ tgi ]|tgi:TGI•tgi∈tgis}: VI
78 {attr Ba ch[ tgi ]|tgi:TGI•tgi∈tgis}: BA
78 {attr Ex ch[ tgi ]|tgi:TGI•tgi∈tgis}: Ex
value

78 gatetgi:T GI : Unit →
78 in attr En ch[ tgi ],attr Id ch[ tgi ],attr Ex ch[ tgi ]
78 out attr Ba ch[ tgi ] Unit

78 gatetgi:T GI() ≡
78a attr En ch[ tgi ] ? ;
78b attr Ba ch[ tgi ] ! ”Lower” ;
78c let vi = attr Id ch[ tgi ] ? in

78d ( handle(vi) ‖
78e attr Ba ch[ tgi ] ! ”Raise” ) ;
78f attr Ex ch[ tgi ] ? ;
78g attr Ba[ tgi ] ! ”Lower” ;
79 gatetgi:T GI() end

The enter, identity and exit events are slave attributes of the tollgate part and master attributes of respec-

tively the entry sensor, the vehicle identity sensor, and the exit sensor sub-parts. We do not define the

behaviours of these sub-parts. We only assume that they each issue appropriate attr A ch ! output mes-

sages where A is either Enter, Identity, or Exit and where event values en:Enter and ex:Exit are ignored �

1.4.12 Concurrency: Communication and Synchronisation

Process Schemas I, II and IV (Pages 39, 40 and 41), reveal that two or more parts, which temporally coexist

(i.e., at the same time), imply a notion of concurrency. Process Schema IV, through the RSL/CSP language

expressions ch ! v and ch ?, indicates the notions of communication and synchronisation. Other than this

we shall not cover these crucial notion related to parallelism.

1.4.13 Summary and Discussion of Perdurants

The most significant contribution of Sect. 1.4 has been to show that for every domain description there

exists a normal form behaviour — here expressed in terms of a CSP process expression.

36 ... that is, passes vi on to the road pricing monitor — where we omit showing relevant channels.
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Summary

We have proposed to analyse perdurant entities into actions, events and behaviours — all based on no-

tions of state and time. We have suggested modeling and abstracting these notions in terms of functions

with signatures and pre-/post-conditions. We have shown how to model behaviours in terms of CSP (com-

municating sequential processes). It is in modeling function signatures and behaviours that we justify the

endurant entity notions of parts, unique identifiers, mereology and shared attributes.

Discussion

The analysis of perdurants into actions, events and behaviours represents a choice. We suggest skeptical

readers to come forward with other choices.

1.5 Closing

In Sect. 1.1.1 we emphasised that in order to develop software the designers must have a reasonable grasp
of the “underlying” domain. That means that when we design software, its requirements, to us, must be

based on such a “grasp”, that is, that the domain description must cover that “underlying” domain. We are

not claiming that the domain descriptions (for software development) must cover more than the “underly-
ing” domain. But what that “underlying” domain then is, is an open question which we do not speculate

on in this paper. Domain descriptions are not “cast in stone !” It is to be expected that domains are re-

searched and their descriptions are developed as research projects — typically in universities. It is also to

be expected that several domain descriptions coexist “simultaneously”, that they may converge, that some

whither away, are rejected, and that new descriptions are developed “on top of”, that is, on the basis of

existing ones, which they replace, descriptions that enlarge on, or restrict previous descriptions. It is finally

to be expected that when requirements are to be “derived” from a domain description, see, for example,

[54], that the requirements cum domain engineers redevelop a projected domain description having some

existing domain descriptions “at hand”.

1.5.1 Analysis & Description Calculi for Other Domains

The analysis and description calculus of this paper appears suitable for manifest domains. For other do-

mains other calculi may be necessary. There is the introvert, composite domain(s) of systems software:

operating systems, compilers, database management systems, Internet-related software, etcetera. The clas-

sical computer science and software engineering disciplines related to these components of systems soft-

ware appears to have provided the necessary analysis and description “calculi.” There is the domain of

financial systems software accounting & bookkeeping, banking systems, insurance, financial instruments

handling (stocks, etc.), etcetera. Etcetera. For each domain characterisable by a distinct set of analysis &

description calculus prompts such calculi must be identified.

1.5.2 On Domain Description Languages

We have in this paper expressed the domain descriptions in the RAISE [97] specification language RSL

[96]. With what is thought of as minor changes, one can reformulate these domain description texts in

either of Alloy [114] or The B-Method [1] or VDM [61, 62, 89] or Z [183]. One could also express domain

descriptions algebraically, for example in CafeOBJ [94, 93]. The analysis and the description prompts

remain the same. The description prompts now lead to Alloy, B-Method, VDM, Z or CafeOBJ texts. We

did not go into much detail with respect to perdurants. For all the very many domain descriptions, covered

elsewhere, RSL (with its CSP sub-language) suffices. It is favoured here because of its integrated CSP sub-

language which both facilitates the ‘compilation’ of part descriptions into “the dynamics” of parts in terms

of CSP processes, and the modeling of external attributes in terms of CSP process input channels. But there

are cases, not documented in this paper, where, [60], we have conjoined our RSL domain descriptions with

descriptions in Petri Nets [156] or MSC [113] (Message Sequence Charts) or StateCharts [105].
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1.5.3 Comparison to Other Work

Background: The TripTych Domain Ontology

We shall now compare the approach of this paper to a number of techniques and tools that are somehow

related — if only by the term ‘domain’ ! Common to all the “other” approaches is that none of them presents

a prompt calculus that help the domain analyser elicit a, or the, domain description. Figure 1.1 on Page 12

shows the tree-like structuring of what modern day AI researchers cum ontologists would call an upper
ontology.

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is an abbreviation for ‘observe’

Analysis Prompts
Description Prompts

obs_

is_part

unique identifiers attributes

obs_materialshas_materials
is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous
=is_material

qualities: content

en
du

ra
nt

 s
tru

ct
ur

e:
 fo

rm

Fig. 1.4. The Upper Ontology of TripTych Manifest Domains

General

Two related approaches to structuring domain understanding will be reviewed.

0: Ontology Science & Engineering:

Ontologies are “formal representations of a set of concepts within a domain and the relationships
between those concepts” — expressed usually in some logic. Ontology engineering [14] construct on-

tologies. Ontology science appears to mainly study structures of ontologies, especially so-called upper
ontology structures, and these studies “waver” between philosophy and information science37. Internet

published ontologies usually consists of thousands of logical expressions. These are represented in some,

for example, low-level mechanisable form so that they can be interchanged between ontology research

groups and processed by various tools. There does not seem to be a concern for “deriving” such ontolo-

gies into requirements for software. Usually ontology presentations either start with the presentation of, or

makes reference to its reliance on, an upper ontology. The term ‘ontology’ has been much used in con-

nection with automating the design of various aspects WWW applications [178]. Description Logic [8] has

been proposed as a language for the Semantic Web [9].

37 We take the liberty of regarding information science as part of computer science, cf. Page 5.
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The interplay between endurants and perdurants is studied in [17]. That study investigates axiom sys-

tems for two ontologies. One for endurants (SPAN), another for perdurants (SNAP). No examples of de-

scriptions of specific domains are, however, given, and thus no specific techniques nor tools are given,

method components which could help the engineer in constructing specific domain descriptions. [17] is

therefore only relevant to the current paper insofar as it justifies our emphasis on endurant versus perdurant

entities.The interplay between endurant and perdurant entities and their qualities is studied in [119]. In our

study the term quality is made specific and covers the ideas of external and internal qualities, cf. Sect. 1.3.1

on Page 19. External qualities focus on whether endurant or perdurant, whether part, component or ma-

terial, whether action, event or behaviour, whether atomic or composite part, etcetera. Internal qualities

focus on unique identifiers (of parts), the mereology (of parts), and the attributes (of parts, components and

materials), that is, of endurants. In [119] the relationship between universals (types), particulars (values

of types) and qualities is not “restricted” as in the TripTych domain analysis, but is axiomatically inter-

woven in an almost “recursive” manner. Values [of types (‘quantities’ [of ‘qualities’])] are, for example,

seen as sub-ordinated types; this is an ontological distinction that we do not make. The concern of [119]

is also the relations between qualities and both endurant and perdurant entities, where we have yet to fo-

cus on “qualities”, other than signatures, of perdurants. [119] investigates the quality/quantity issue wrt.

endurance/perdurance and poses the questions: [b] are non-persisting quality instances enduring, perdur-

ing or neither ? and [c] are persisting quality instances enduring, perduring or neither ? and arrives, after

some analysis of the endurance/perdurance concepts, at the answers: [b′] non-persisting quality instances

are neither enduring nor perduring particulars (i.e., entities), and [c′] persisting quality instances are en-

during particulars. Answer [b′] justifies our separating enduring and perduring entities into two disjoint,

but jointly “exhaustive” ontologies. The more general study of [119] is therefore really not relevant to our

prompt calculi, in which we do not speculate on more abstract, conceptual qualities, but settle on external

endurant qualities, on the unique identifier, mereology and attribute qualities of endurants, and the sim-

ple relations between endurants and perdurants, specifically in the relations between signatures of actions,

events and behaviours and the endurant sorts , and especially the relation between parts and behaviours

as outlined in Sect. 1.4.11. That is, the TripTych approach to ontology, i.e., its domain concept, is not

only model-theoretic, but, we risk to say, radically different. The concerns of TripTych domain science &

engineering is based on that of algorithmic engineering. The domains to which we are applying our anal-

ysis & description tools and techniques are spatio-temporal, that is, can be observed, physically; this is in

contrast to such conceptual domains as various branches of mathematics, physics, biology, etcetera. Do-

main science & engineering is not aimed at letting the computer solve problems based on the knowledge it

may have stored. Instead it builds models based on knowledge of, but not “in” the domain. The TripTych

form of domain science & engineering differs from conventional ontological engineering in the following,

essential ways: The TripTych domain descriptions rely essentially on a “built-in” upper ontology: types,

abstract as well as model-oriented (i.e., concrete) and actions, events and behaviours. Domain science &

engineering is not, to a first degree, concerned with modalities, and hence do not focus on the modeling

of knowledge and belief, necessity and possibility, i.e., alethic modalities, epistemic modality (certainty),

promise and obligation (deontic modalities), etcetera.

The TripTych emphasis is on the method for constructing descriptions. It seems that publications

on ontological engineering, in contrast, emphasise the resulting ontologies. The papers on ontologies are

almost exclusively computer science (i.e., information science) than computing science papers.

The next section overlaps with the present section.

1: Knowledge Engineering:

The concept of knowledge has occupied philosophers since Plato. No common agreement on what ‘knowl-

edge’ is has been reached. From [128, 6, 136, 172] we may learn that knowledge is a familiarity with
someone or something; it can include facts, information, descriptions, or skills acquired through experi-
ence or education; it can refer to the theoretical or practical understanding of a subject; knowledge is
produced by socio-cognitive aggregates (mainly humans) and is structured according to our understand-
ing of how human reasoning and logic works. The seminal reference here is [84]. The aim of knowledge
engineering was formulated, in 1983, by an originator of the concept, Edward A. Feigenbaum [87]: knowl-
edge engineering is an engineering discipline that involves integrating knowledge into computer systems
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in order to solve complex problems normally requiring a high level of human expertise. Knowledge engi-
neering focus on continually building up (acquire) large, shared data bases (i.e., knowledge bases), their

continued maintenance, testing the validity of the stored ‘knowledge’, continued experiments with respect

to knowledge representation, etcetera. Knowledge engineering can, perhaps, best be understood in contrast

to algorithmic engineering: In the latter we seek more-or-less conventional, usually imperative program-
ming language expressions of algorithms whose algorithmic structure embodies the knowledge required
to solve the problem being solved by the algorithm. The former seeks to solve problems based on an in-

terpreter inferring possible solutions from logical data. This logical data has three parts: a collection that
“mimics” the semantics of, say, the imperative programming language, a collection that formulates the
problem, and a collection that constitutes the knowledge particular to the problem. We refer to [63]. Do-

main science & engineering is not aimed at letting the computer solve problems based on the knowledge it

may have stored. Instead it builds models based on knowledge of the domain.

Finally, the domains to which we are applying ‘our form of’ domain analysis are domains which focus

on spatio-temporal phenomena. That is, domains which have concrete renditions: air traffic, banks, con-

tainer lines, manufacturing, pipelines, railways, road transport, stock exchanges, etcetera. In contrast one

may claim that the domains described in classical ontologies and knowledge representations are mostly

conceptual: mathematics, physics, biology, etcetera.

Specific

2: Database Analysis:

There are different, however related “schools of database analysis”. DSD: the Bachman (or data struc-

ture) diagram model [10]; RDM: the relational data model [77]; and ER: entity set relationshp model [72]

“schools”. DSD and ER aim at graphically specifying database structures. Codd’s RDM simplifies the data

models of DSD and ER while offering two kinds of languages with which to operate on RDM databases: SQL

and Relational Algebra. All three “schools” are focused more on data modeling for databases than on

domain modeling both endurant and perdurant entities.

3: Domain Analysis:

Domain analysis, or product line analysis (see below), as it was then conceived in the early 1980s by James

Neighbors [142], is the analysis of related software systems in a domain to find their common and variable

parts. This form of domain analysis turns matters “upside-down”: it is the set of software “systems” (or

packages) that is subject to some form of inquiry, albeit having some domain in mind, in order to find

common features of the software that can be said to represent a named domain.

In this section we shall mainly be comparing the TripTych approach to domain analysis to that of

Reubén Prieto-Dı̃az’s approach [150, 151, 152]. Firstly, our understanding of domain analysis basically

coincides with Prieto-Dı̃az’s. Secondly, in, for example, [150], Prieto-Dı̃az’s domain analysis is focused on

the very important stages that precede the kind of domain modeling that we have described: major con-

cerns are selection of what appears to be similar, but specific entities, identification of common features,
abstraction of entities and classification. Selection and identification is assumed in our approach, but we

suggest to follow the ideas of Prieto-Dı̃az. Abstraction (from values to types and signatures) and classifi-
cation into parts, materials, actions, events and behaviours is what we have focused on. All-in-all we find

Prieto-Dı̃az’s work very relevant to our work: relating to it by providing guidance to pre-modeling steps,

thereby emphasising issues that are necessarily informal, yet difficult to get started on by most software

engineers. Where we might differ is on the following: although Prieto-Dı̃az does mention a need for do-
main specific languages, he does not show examples of domain descriptions in such DSLs. We, of course,

basically use mathematics as the DSL. In our approach we do not consider requirements, let alone software

components, as do Prieto-Dı̃az, but we find that that is not an important issue.
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4: Domain Specific Languages:

Martin Fowler38 defines a Domain-specific language (DSL) as a computer programming language of limited
expressiveness focused on a particular domain [90]. Other references are [135, 171]. Common to [171, 135,

90] is that they define a domain in terms of classes of software packages; that they never really “derive” the

DSL from a description of the domain; and that they certainly do not describe the domain in terms of that

DSL, for example, by formalising the DSL. In [108] a domain specific language for railway tracks is the basis

for verification of the monitoring and control of train traffic on these tracks. Specifications in that domain

specific language, DSL, manifested by track layout drawings and signal interlocking tables, are translated

into SystemC [99]. [108] thus takes one very specific DSL and shows how to (informally) translate their

“programs”, which are not “directly executable”, and hence does not satisfy Fowler’s definition of DSLs,

into executable programs. [108] is a great paper, but it is not solving our problem, that of systematically

describing any manifest domain. [108] does, however, point a way to search for — say graphical — DSLs

and the possible translation of their programs into executable ones.

5: Feature-oriented Domain Analysis (FODA ):

Feature oriented domain analysis (FODA) is a domain analysis method which introduced feature modeling

to domain engineering. FODA was developed in 1990 following several U.S. Government research projects.

Its concepts have been regarded as “critically advancing software engineering and software reuse.” The

US Government–supported report [121] states: “FODA is a necessary first step” for software reuse. To the

extent that TripTych domain engineering with its subsequent requirements engineering indeed encourages

reuse at all levels: domain descriptions and requirements prescription, we can only agree. Another source

on FODA is [78]. Since FODA “leans” quite heavily on ‘Software Product Line Engineering’ our remarks in

that section, next, apply equally well here.

6: Software Product Line Engineering:

Software product line engineering, earlier known as domain engineering, is the entire process of reusing
domain knowledge in the production of new software systems. Key concerns of software product line engi-

neering are reuse, the building of repositories of reusable software components, and domain specific lan-
guages with which to more-or-less automatically build software based on reusable software components.

These are not the primary concerns of TripTych domain science & engineering. But they do become

concerns as we move from domain descriptions to requirements prescriptions. But it strongly seems that

software product line engineering is not really focused on the concerns of domain description — such as

is TripTych domain engineering. It seems that software product line engineering is primarily based, as is,

for example, FODA: Feature-oriented Domain Analysis, on analysing features of software systems.

Our [38] puts the ideas of software product lines and model-oriented software development in the context

of the TripTych approach.

7: Problem Frames:

The concept of problem frames is covered in [116]. Jackson’s prescription for software development focus

on the “triple development” of descriptions of the problem world, the requirements and the machine (i.e.,

the hardware and software) to be built. Here domain analysis means the same as for us: the problem world
analysis. In the problem frame approach the software developer plays three, that is, all the TripTych

rôles: domain engineer, requirements engineer and software engineer, “all at the same time”, iterating

between these rôles repeatedly. So, perhaps belabouring the point, domain engineering is done only to

the extent needed by the prescription of requirements and the design of software. These, really are minor

points. But in “restricting” oneself to consider only those aspects of the domain which are mandated by the

requirements prescription and software design one is considering a potentially smaller fragment [117] of

the domain than is suggested by the TripTych approach. At the same time one is, however, sure to consider

aspects of the domain that might have been overlooked when pursuing domain description development
in the “more general” TripTych approach.

38 http://martinfowler.com/dsl.html
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8: Domain Specific Software Architectures (DSSA ):

It seems that the concept of DSSA was formulated by a group of ARPA39 project “seekers” who also per-

formed a year long study (from around early-mid 1990s); key members of the DSSA project were Will

Tracz, Bob Balzer, Rick Hayes-Roth and Richard Platek [174]. The [174] definition of domain engineer-
ing is “the process of creating a DSSA: domain analysis and domain modeling followed by creating a
software architecture and populating it with software components.” This definition is basically followed

also by [137, 167, 133]. Defined and pursued this way, DSSA appears, notably in these latter references, to

start with the analysis of software components, “per domain”, to identify commonalities within application

software, and to then base the idea of software architecture on these findings. Thus DSSA turns matter

“upside-down” with respect to TripTych requirements development by starting with software compo-
nents, assuming that these satisfy some requirements, and then suggesting domain specific software built

using these components. This is not what we are doing: we suggest, Chapter 5, From Domain Descrip-
tions to Requirements Prescriptions, [54], that requirements can be “derived” systematically from,

and formally related back to domain descriptionss without, in principle, considering software components,

whether already existing, or being subsequently developed. Of course, given a domain description it is ob-

vious that one can develop, from it, any number of requirements prescriptions and that these may strongly

hint at shared, (to be) implemented software components; but it may also, as well, be the case that two

or more requirements prescriptions “derived” from the same domain description may share no software
components whatsoever ! It seems to this author that had the DSSA promoters based their studies and prac-

tice on also using formal specifications, at all levels of their study and practice, then some very interesting

insights might have arisen.

9: Domain Driven Design (DDD ):

Domain-driven design (DDD)40 “is an approach to developing software for complex needs by deeply con-
necting the implementation to an evolving model of the core business concepts; the premise of domain-
driven design is the following: placing the project’s primary focus on the core domain and domain logic;
basing complex designs on a model; initiating a creative collaboration between technical and domain ex-
perts to iteratively cut ever closer to the conceptual heart of the problem.”41 We have studied some of the

DDD literature, mostly only accessible on the Internet, but see also [109], and find that it really does not

contribute to new insight into domains such as we see them: it is just “plain, good old software engineering

cooked up with a new jargon.

10: Unified Modeling Language (UML ):

Three books representative of UML are [65, 162, 118]. The term domain analysis appears numerous times in

these books, yet there is no clear, definitive understanding of whether it, the domain, stands for entities in

the domain such as we understand it, or whether it is wrought up, as in several of the ‘approaches’ treated

in this section, to wit, in items [3–5, 7–9] with either software design (as it most often is), or requirements
prescription. Certainly, in UML, in [65, 162, 118] as well as in most published papers claiming “adherence”

to UML, that domain analysis usuallyis manifested in some UML text which “models” some requirements
facet. Nothing is necessarily wrong with that, but it is therefore not really the TripTych form of domain
analysis with its concepts of abstract representations of endurant and perdurants, with its distinctions be-

tween domain and requirements, and with its possibility of “deriving” requirements prescriptions from

domain descriptions. The UML notion of class diagrams is worth relating to our structuring of the domain.

Class diagrams appear to be inspired by [10, Bachman, 1969] and [72, Chen, 1976]. It seems that (i) each

part sort — as well as other than part sorts — deserves a class diagram (box); and (ii) that (assignable)

attributes — as well as other non-part types — are written into the diagram box. Class diagram boxes are

line-connected with annotations where some annotations are as per the mereology of the part type and the

connected part types and others are not part related. The class diagrams are said to be object-oriented but

39 ARPA: The US DoD Advanced Research Projects Agency
40 Eric Evans: http://www.domaindrivendesign.org/
41 http://en.wikipedia.org/wiki/Domain-driven design
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it is not clear how objects relate to parts as many are rather implementation-oriented quantities. All this

needs looking into a bit more, for those who care.

11: Requirements Engineering:

There are in-numerous books and published papers on requirements engineering. A seminal one is [177]. I,

myself, find [125] full of very useful, non-trivial insight. [81] is seminal in that it brings a number or early

contributions and views on requirements engineering. Conventional text books, notably [146, 149, 169] all

have their “mandatory”, yet conventional coverage of requirements engineering. None of them “derive”

requirements from domain descriptions, yes, OK, from domains, but since their description is not mandated

it is unclear what “the domain” is. Most of them repeatedly refer to domain analysis but since a written

record of that domain analysis is not mandated it is unclear what “domain analysis” really amounts to. Axel

van Laamsweerde’s book [177] is remarkable. Although also it does not mandate descriptions of domains

it is quite precise as to the relationships between domains and requirements. Besides, it has a fine treatment

of the distinction between goals and requirements, also formally. Most of the advices given in [125] can

beneficially be followed also in TripTych requirements development. Neither [177] nor [125] preempts

TripTych requirements development.

Summary of Comparisons

We find that there are two kinds of relevant comparisons: the concept of ontology, its science more than its

engineering, and the Problem Frame work of Michael A. Jackson. The ontology work, as commented upon

in Item [1] (Pages 45–46), is partly relevant to our work: There are at least two issues: Different classes

of domains may need distinct upper ontologies. Section 1.5.1 suggests that there may be different upper

ontologies for non-manifest domains such as financial systems, etcetera. This seems to warrant at least a

comparative study. We have assumed, cf. Sect. 1.3.4, that attributes cannot be separated from parts. [119,

Johansson 2005] develops the notion that persisting quality instances are enduring particulars. The issue

need further clarification.

Of all the other “comparison” items ([2]–[12]) basically only Jackson’s problem frames (Item [8]) and

[108] (Item [5]) really take the same view of domains and, in essence, basically maintain similar relations

between requirements prescription and domain description. So potential sources of, we should claim,

mutual inspiration ought be found in one-another’s work — with, for example, [100, 117, 108], and the

present document, being a good starting point.

But none of the referenced works make the distinction between discrete endurants (parts) and their

qualities, with their further distinctions between unique identifiers, mereology and attributes. And none

of them makes the distinction between parts, components and materials. Therefore our contribution can

include the mapping of parts into behaviours interacting as per the part mereologies as highlighted in the

process schemas of Sect. 1.4.11 Pages 39–42.

1.5.4 Open Problems

The present paper has outlined a great number of principles, techniques and tools of domain analysis &

description. They give rise, now, to the investigation of further principles, techniques and tools as well

as underlying theories. We list some of these “to do” items: (1) a mathematical model of prompts; (2)

a sharpened definition of “what is a domain”; (3) laws of description prompts; (4) an understanding of
domain facets; (5) a prompt calculus for perdurants; (6) commensurate discrete and continuous models
[179, 186]; (7) a study of the interplay between parts, materials and components; (8) a closer study of
external attributes and their variety of access forms and of biddable attributes; and (9) specific domain
theories; etcetera.
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1.5.5 Tony Hoare’s Summary on ‘Domain Modeling’

In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps conceived as stubborn insistence, on

domain engineering, Tony Hoare summed up his reaction to domain engineering as follows, and I quote42:

“There are many unique contributions that can be made by domain modeling.

1 The models describe all aspects of the real world that are relevant for any good software design in the
area. They describe possible places to define the system boundary for any particular project.

2 They make explicit the preconditions about the real world that have to be made in any embedded
software design, especially one that is going to be formally proved.

3 They describe the whole range of possible designs for the software, and the whole range of technologies
available for its realisation.

4 They provide a framework for a full analysis of requirements, which is wholly independent of the
technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier or later in any design project, and
identify those that are independent and those that conflict. Late discovery of feature interactions can
be avoided.”

All of these issues are covered, to some extent, in [26, Part IV]. Tony Hoare’s list pertains to a wider range

that just the Manifest Domains treated in this paper.

1.5.6 Beauty Is Our Business

It’s life that matters, nothing but life –
the process of discovering, the everlasting and perpetual process,

not the discovery itself, at all.43

I find that quote appropriate in the following, albeit rather mundane, sense: It is the process of analysing

and describing a domain that exhilarates me: that causes me to feel very happy and excited. There is beauty

[88, E.W. Dijkstra Festschrift] not only in the result but also in the process.

1.6 Bibliographical Notes

Web page www.imm.dtu.dk/˜dibj/domains/ lists the published papers and reports mentioned below. I

have thought about domain engineering for more than 25 years. But serious, focused writing only started

to appear since 2006: [26, Part IV] — with [23, 20] being exceptions: [28] suggests a number of domain

science and engineering research topics; Chapter 2, Domain Facets: Analysis & Description, [53]
covers the concept of domain facets; [59] explores compositionality and Galois connections. Chapter 5,
From Domain Descriptions to Requirements Prescriptions, [54] shows how to systematically, but,

of course, not automatically, “derive” requirements prescriptions from domain descriptions; [36] takes the

triptych software development as a basis for outlining principles for believable software management;

[31, 43] presents a model for Stanisław Leśniewski’s [68] concept of mereology; [34, 37] present an ex-

tensive example and is otherwise a precursor for the present chapter; Chapter 3, Domain Analysis and
Description – Formal Models of Processes and Prompts, [52] presents a formal model (i.e., an oper-

ational semantics) of the process of ”discovering” domains and of their prompts; Chapter 6, [Domains:
Their Simulation, Monitoring and Control, [38] presents, based on the TripTych view of software

development as ideally proceeding from domain description via requirements prescription to software de-

sign, concepts such as software demos and simulators; [40] analyses the TripTych, especially its domain

engineering approach, with respect to Maslow’s 44 and Peterson’s and Seligman’s 45 notions of humanity:

42 E-Mail to Dines Bjørner, July 19, 2006
43 Fyodor Dostoyevsky, The Idiot, 1868, Part 3, Sect. V
44 Theory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third

Edition, Harper and Row Publishers, 1954.
45 Character strengths and virtues: A handbook and classification. Oxford University Press, 2004
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how can computing relate to notions of humanity; the first part of [45] is a precursor for the present paper

with its second part presenting a first formal model of the elicitation process of analysis and description

based on the prompts more definitively presented in the current paper; and [46] focus on domain safety

criticality. The present paper basically replaces the domain analysis and description section of all of the

above reference — including [26, Part IV, 2006].
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2

Domain Facets: Analysis & Description

Summary

This chapter1 is a continuation of Chapter 1, Manifest Domains: Analysis & Description,
[49] and is a precursor for Chapter 5, [From Domain Descriptions to Requirements Pre-
scriptions, [54]. Where Chap. 1 covered a method for analysing and describing the intrinsics
of manifest domains, the present paper covers principles and techniques for describing domain
facets — not covered in Chap. 1. Where Chap. 5 covers some basic principles and techniques
for structuring requirements analysis and prescription, the present paper hints at requirements
that can be derived from domain facets. By a domain facet we shall understand one amongst
a finite set of generic ways of analysing a domain: a view of the domain, such that the dif-
ferent facets cover conceptually different views, and such that these views together cover the
domain. We shall outline the following domain facets: intrinsics, support technologies, rules
& regulations, scripts, license languages, management & organisation, and human behaviour.
The present paper is a substantial reformulation and extension of [33] on the background of
Chap. 1 [49].

2.1 Introduction

In Chapter 1, Manifest Domains: Analysis & Description, [49] we outlined a method for analysing

&2 describing domains. By a method we shall understand a set of principles, techniques and tools for

analysing and constructing (synthesizing) an artifact, as here a description ⊙3 By a domain we shall

understand a potentially infinite set of endurants and a usually finite set of perdurants (actions, events and

behaviours) [the latter map endurants into endurants] such that these entities are observable in the world

and can be described ⊙ In this book we cover domain analysis & description principles and techniques not

covered in [49]. That paper focused on manifest domains. Here we, on one side, go “outside” the realm of

manifest domains, and, on the other side, cover, what we shall refer to as, facets, not covered in [49].

2.1.1 Facets of Domains

By a domain facet we shall understand one amongst a finite set of generic ways of analysing a domain:
a view of the domain, such that the different facets cover conceptually different views, and such that these
views together cover the domain ⊙ Now, the definition of what a domain facet is can seem vague. It

cannot be otherwise. The definition is sharpened by the definitions of the specific facets. You can say, that

1 This chapter is based on [53].
2 We use the ampersand (logogram), &, in the following sense: Let A and B be two concepts. By A and B we mean

to refer to these two concepts. With A&B we mean to refer to a composite concept “containing” elements of both A

and B.
3 The ⊙ symbol delimits a definition.
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the definition of domain facet is the “sum” of the definitions of these specific facets. The specific facets –

so far4 – are: intrinsics (Sect. 2.2), support technology (Sect. 2.3), rules & regulations (Sect. 2.4), scripts
(Sect. 2.5), license languages (Sect. 2.6), management & organisation (Sect. 2.7) and human behaviour
(Sect. 2.8). Of these, the rules & regulations, scripts and license languages are closely related. Vagueness

may “pop up”, here and there, in the delineation of facets. It is necessarily so. We are not in a domain of

computer science, let alone mathematics, where we can just define ourselves precisely out of any vagueness

problems. We are in the domain of (usually) really world facts. And these are often hard to encircle.

2.1.2 Structure of Paper

The structure of the paper follows the seven specific facets, as listed above. Each section, 2.2.–2.8., starts

by a definition of the specific facet, Then follows an analysis of the abstract concepts involved usually

with one or more examples – with these examples making up most of the section. We then “speculate” on

derivable requirements thus relating the present paper to [54]. We close each of the sections, 2.2.–2.8., with

some comments on how to model the specific facet of that section.

• • •

Examples 1–22 of sections 2.2.–2.8. present quite a variety. In that, they reflect the wide spectrum of facets.

• • •

More generally, domains can be characterised by intrinsically being endurant, or function, or event, or

behaviour intensive. Software support for activities in such domains then typically amount to database

systems, computation-bound systems, real-time embedded systems, respectively distributed process mon-

itoring and control systems. Other than this brief discourse we shall not cover the “intensity”-aspect of

domains in this paper.

2.2 Intrinsics

• By domain intrinsics we shall understand those phenomena and concepts of a domain which are
basic to any of the other facets (listed earlier and treated, in some detail, below), with such domain
intrinsics initially covering at least one specific, hence named, stakeholder view ⊙

2.2.1 Conceptual Analysis

The principles and techniques of domain analysis & description, as unfolded in [49], focused on and re-

sulted in descriptions of the intrinsics of domains. They did so in focusing the analysis (and hence the

description) on the basic endurants and their related perdurants, that is, on those parts that most readily

present themselves for observation, analysis & description.

Example. 1 Railway Net Intrinsics: We narrate and formalise three railway net intrinsics.

From the view of potential train passengers a railway net consists of lines, l:L, with names, ln:Ln,

stations, s:S, with names sn:Sn, and trains, tn:TN, with names tnm:Tnm. A line connects exactly two

distinct stations.

scheme N0 =
class

type

N, L, S, Sn, Ln, TN, Tnm
value

obs Ls: N → L-set, obs Ss: N → S-set

4 We write: ‘so far’ in order to “announce”, or hint that there may be other specific facets. The one listed are the ones

we have been able to “isolate”, to identify, in the most recent 10-12 years.
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obs Ln: L → Ln, obs Sn: S → Sn
obs Sns: L → Sn-set, obs Lns: S → Ln-set

axiom

...
end

N, L, S, Sn and Ln designate nets, lines, stations, station names and line names. One can observe lines and

stations from nets, line and station names from lines and stations, pair sets of station names from lines, and

lines names (of lines) into and out from a station from stations. Axioms ensure proper graph properties of

these concepts.

From the view of actual train passengers a railway net — in addition to the above — allows for several

lines between any pair of stations and, within stations, provides for one or more platform tracks, tr:Tr, with

names, trn:Trn, from which to embark on or alight from a train.

scheme N1 = extend N0 with

class

type

Tr, Trn
value

obs Trs: S → Tr-set, obs Trn: Tr → Trn
axiom

...
end

The only additions are that of track and track name types, related observer functions and axioms.

From the view of train operating staff a railway net — in addition to the above — has lines and stations

consisting of suitably connected rail units. A rail unit is either a simple (i.e., linear, straight) unit, or is a

switch unit, or is a simple crossover unit, or is a switchable crossover unit, etc. Simple units have two con-

nectors. Switch units have three connectors. Simple and switchable crossover units have four connectors.

A path, p:P, (through a unit) is a pair of connectors of that unit. A state, σ : Σ , of a unit is the set of paths,

in the direction of which a train may travel. A (current) state may be empty: The unit is closed for traffic.

A unit can be in any one of a number of states of its state space, ω : Ω .

scheme N2 = extend N1 with

class

type

U, C
P′ = U × (C×C)
P = {| p:P′

• let (u,(c,c′))=p in (c,c′)∈ ∪ obs Ω(u) end |}
Σ = P-set

Ω = Σ -set

value

obs Us: (N|L|S) → U-set

obs Cs: U → C-set

obs Σ : U → Σ
obs Ω : U → Ω

axiom

...
end

Unit and connector types have been added as have concrete types for paths, unit states, unit state spaces

and related observer functions, including unit state and unit state space observers. �

Different stakeholder perspectives, not only of intrinsics, as here, but of any facet, lead to a number of

different models. The name of a phenomenon of one perspective, that is, of one model, may coincide
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with the name of a “similar” phenomenon of another perspective, that is, of another model, and so on. If

the intention is that the “same” names cover comparable phenomena, then the developer must state the

comparison relation.

Example. 2 Intrinsics of Switches: The intrinsic attribute of a rail switch is that it can take on a number

of states. A simple switch (
c|

Y
c/

c
) has three connectors: {c,c|,c/}. c is the connector of the common rail

from which one can either “go straight” c|, or “fork” c/ (Fig. 2.1). So we have that a possible state space

of such a switch could be ωgs :

{{},
{(c,c|)},{(c|,c)},{(c,c|),(c|,c)},
{(c,c/)},{(c/,c)},{(c,c/),(c/,c)},{(c/,c),(c|,c)},
{(c,c|),(c|,c),(c/,c)},{(c,c/),(c/,c),(c|,c)},{(c/,c),(c,c|)},{(c,c/),(c|,c)}}

   

   

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Fig. 2.1. Possible states of a rail switch

The above models a general switch ideally. Any particular switch ωps may have ωps⊂ωgs . Nothing is said

about how a state is determined: who sets and resets it, whether determined solely by the physical position

of the switch gear, or also by visible or virtual (i.e., invisible, intangible) signals up or down the rail, away

from the switch. �

Example. 3 An Intrinsics of Documents: Think of documents, written, by hand, or typed “onto” a

computer text processing system. One way of considering such documents is as follows. First we abstract

from the syntax that such a document, or set of more-or-less related documents, or just documents, may

have: whether they are letters, with sender and receive addressees, dates written, sent and/or received,

opening and closing paragraphs, etc., etc.; or they are books, technical, scientific, novels, or otherwise,

or they are application forms, tax returns, patient medical records, or otherwise. Then we focus on the

operations that one may perform on documents: their creation, editing, reading, copying, authorisation,

“transfer”5, “freezing”6, and shredding. Finally we consider documents as manifest parts, cf. [49]. Parts, so

documents have unique identifications, in this case, changeable mereology, and a number of attributes. The

mereology of a document, d, reflects those other documents upon which a document is based, i.e., refers to,

and/or refers to d. Among the attributes of a document we can think of (i) a trace of what has happened to

a document, i.e., a trace of all the operations performed on “that” document, since and including creation

— with that trace, for example, consisting of time-stamped triples of the essence of the operations, the

“actor” of the operation (i.e., the operator), and possibly some abstraction of the locale of the document

when operated upon; (ii) a synopsis of what the document text “is all about”, (iii) and some “rendition” of

the document text. �

This view of documents, whether “implementable” or “implemented” or not, is at the basis of our view

of license languages (for digital media, health-care (patient medical record), documents, and transport
(contracts) as that facet is covered in Sect. 2.6.

5 to other editors, readers, etc.
6 i.e., prevention of future operations
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2.2.2 Requirements

[54] illustrated requirements “derived” from the intrinsics of a road transport system – as outlined in [49].

So this paper has little to add to the subject of requirements “derived” from intrinsics.

2.2.3 On Modeling Intrinsics

[49] outlined basic principles, techniques and tools for modeling the intrinsics of manifest domains. Model-

ing the domain intrinsics can often be expressed in property-oriented specification languages (like CafeOBJ

[92]), model-oriented specification languages (like Alloy [114], B [1], VDM-SL [61, 62, 89], RSL [96],

or Z [183]), event-based languages (like Petri nets or [156] or CSP [111]), respectively in process-based

specification languages (like MSCs [113], LSCs [106], Statecharts [105], or CSP [111]). An area not well-

developed is that of modeling continuous domain phenomena like the dynamics of automobile, train and

aircraft movements, flow in pipelines, etc. We refer to [144].

2.3 Support Technologies

• By a domain support technology we shall understand ways and means of implementing certain
observed phenomena or certain conceived concepts ⊙

The “ways and means” may be in the form of “soft technologies”: human manpower, see, however,

Sect. 2.8, or in the form of “hard” technologies: electro-mechanics, etc. The term ‘implementing’ is cru-

cial. It is here used in the sense that, ψτ , which is an ‘implementation’ of a endurant or perdurant, φ , is

an extension of φ , with φ being an abstraction of ψτ . We strive for the extensions to be proof theoretic
conservative extensions [132].

2.3.1 Conceptual Analysis

There are [always] basically two approaches the task of analysing & describing the support technology

facets of a domain. One either stumbles over it, or one tries to tackle the issue systematically. The “stum-

bling” approach occurs when one, in the midst of analysing & describing a domain realises that one is

tackling something that satisfies the definition of a support technology facet. In the systematic approach to

the analysis & description of the support technology facets of a domain one usually starts with a basically

intrinsics facet-oriented domain description. We then suggest that the domain engineer “inquires” of ever

endurant and perdurant whether it is an intrinsic entity or, perhaps a support technology.

Example. 4 Railway Support Technology: We give a rough sketch description of possible rail unit

switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e., by railway staff assigned to

and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers7 and steel wires, switches were

made to change state by means of “throwing” levers in a cabin tower located centrally at the station (with

the lever then connected through wires etc., to the actual switch).

(iii) This partial mechanical technology then emerged into electro-mechanics, and cabin tower staff was

“reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a station track, or from a station track

to a station departure point, are set and reset by means also of electronics, by what is known as interlocking

(for example, so that two different routes cannot be open in a station if they cross one another). �

It must be stressed that Example 4 is just a rough sketch. In a proper narrative description the software (cum

domain) engineer must describe, in detail, the subsystem of electronics, electro-mechanics and the human

operator interface (buttons, lights, sounds, etc.). An aspect of supporting technology includes recording the

state-behaviour in response to external stimuli. We give an example.

7 https://en.wikipedia.org/wiki/Pulley and http://en.wikipedia.org/wiki/Lever
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Example. 5 Probabilistic Rail Switch Unit State Transitions: Figure 2.2 indicates a way of formal-

ising this aspect of a supporting technology. Figure 2.2 intends to model the probabilistic (erroneous and

correct) behaviour of a switch when subjected to settings (to switched (s) state) and re-settings (to direct

(d) state). A switch may go to the switched state from the direct state when subjected to a switch setting s
with probability psd. �

Input stimuli:

Probabilities:  0 <= p.. <= 1

States:

sw/psd

di/1−pdd−edd

sw/pss

di/1−pds−eds

sw/esssw/esd
sw/1−psd−esd

di/pdd
di/edsdi/edd

sw/1−pss−ess

di/pds

e sd

sw: Switch to switched state
di: Revert to direct state

pss: Switching to switched state from switched state
psd: Switching to switched state from direct state
pds: Reverting to direct state from switched state
pds: Reverting to direct state from direct state
esd: Switching to error state from direct state
edd: Reverting to error state from direct state
ess: Switching to error state from switched state
eds: Reverting to error state from switched state

s: Switched state
d: Direct (reverted) state
e: Error state

Fig. 2.2. Probabilistic state switching

Example. 6 Traffic Signals: We continue Examples 17, 18, 25 and 33 of [49]. This example should,

however, be understandable without reference to [49]. A traffic signal represents a technology in support

of visualising hub states (transport net road intersection signaling states) and in effecting state changes.

81 A traffic signal, ts:TS, is considered a part with observable hub states and hub state spaces. Hub states

and hub state spaces are programmable, respectively static attributes of traffic signals.

82 A hub state space, hω , is a set of hub states such that each current hub state is in that hubs’ hub state

space.

83 A hub state, hσ , is now modeled as a set of hub triples.

84 Each hub triple has a link identifier li (“coming from”), a colour (red, yellow or green), and another

link identifier l j (“going to”).

85 Signaling is now a sequence of one or more pairs of next hub states and time intervals, ti:TI, for

example: <(hσ1, ti1),(hσ2, ti2), ...,(hσn−1, tin−1),(hσn, tin)>, n>0. The idea of a signaling is to first

change the designated hub to state hσ1, then wait ti1 time units, then set the designated hub to state hσ2,

then wait ti2 time units, etcetera, ending with final state σn and a (supposedly) long time interval tin
before any decisions are to be made as to another signaling. The set of hub states {hσ1,hσ2, ...,hσn−1}
of <(hσ1, ti1),(hσ2, ti2), ...,(hσn−1, tin−1),(hσn, tin)>, n>0, is called the set of intermediate states.

Their purpose is to secure an orderly phase out of green via yellow to red and phase in of red via

yellow to green in some order for the various directions. We leave it to the reader to devise proper

well-formedness conditions for signaling sequences as they depend on the hub topology.

86 A street signal (a semaphore) is now abstracted as a map from pairs of hub states to signaling sequences.

The idea is that given a hub one can observe its semaphore, and given the state, hσ (not in the above

set), of the hub “to be signaled” and the state hσn into which that hub is to be signal-led “one looks

up” under that pair in the semaphore and obtains the desired signaling.

type
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81 TS ≡ H, HΣ , HΩ
value

82 obs HΣ : H,TS → HΣ
82 obs HΩ : H,TS → HΩ
type

83 HΣ = Htriple-set

83 HΩ = HΣ -set

414 Htriple = LI×Colour×LI
axiom

82 ∀ ts:TS • obs HΣ(ts) ∈ obs HΩ(ts)
type

414 Colour == red | yellow | green
85 Signaling = (HΣ×TI)∗

85 TI
86 Sempahore = (HΣ×HΣ) →m Signalling
value

86 obs Semaphore:TS → Sempahore

87 Based on [49] we treat hubs as processes with hub state spaces and semaphores as static attributes and

hub states as programmable attributes. We ignore other attributes and input/outputs.

88 We can think of the change of hub states as taking place based the result of some internal, non-

deterministic choice.

value

87. hub: HI × LI-set × (HΩ×Semaphore) → HΣ in ... out ... Unit

87. hub(hi,lis,(hω ,sema))(hσ) ≡
87. ...
88. ⌈⌉ let hσ ′:HI • ... in hub(hi,lis,(hω ,sema))(signaling(hσ ,hσ ′)) end

87. ...
87. pre: {hσ ,hσ ′} ⊆ hω

where we do not bother about the selection of hσ ′.

89 Given two traffic signal, i.e., hub states, hσinit and hσend, where hσinit designates a present hub state

and hσend designates a desired next hub state after signaling.

90 Now signaling is a sequence of one or more successful hub state changes.

value

89 signaling: (HΣ×HΣ) × Semaphore → HΣ → HΣ
90 signaling(hσ init,hσend,sema)(hσ) ≡ let sg = sema(hσ init,hσend) in signal sequence(sg)(hσ) end

90 pre hσ init = hσ ∧ (hσ init,hσend) ∈ dom sema

If a desired hub state change fails (i.e., does not meet the pre-condition, or for other reasons (e.g., failure

of technology)), then we do not define the outcome of signaling.

90 signal sequence(〈〉)(hσ) ≡ hσ
90 signal sequence(〈(hσ ‘,ti)〉̂ sg)(hσ) ≡ wait(ti); signal sequence(sg)(hσ ‘)

We omit expression of a number of well-formedness conditions, e.g., that the htriple link identifiers are

those of the corresponding mereology (lis), etcetera. The design of the semaphore, for a single hub or for a

net of connected hubs has many similarities with the design of interlocking tables for railway tracks [108].

�

Another example shows another aspect of support technology: Namely that the technology must guarantee

certain of its own behaviours, so that software designed to interface with this technology, together with the

technology, meets dependability requirements.
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Example. 7 Railway Optical Gates: Train traffic (itf:iTF), intrinsically, is a total function over some

time interval, from time (t:T) to continuously positioned (p:P) trains (tn:TN). Conventional optical gates

sample, at regular intervals, the intrinsic train traffic. The result is a sampled traffic (stf:sTF). Hence the

collection of all optical gates, for any given railway, is a partial function from intrinsic to sampled train

traffics (stf). We need to express quality criteria that any optical gate technology should satisfy — relative

to a necessary and sufficient description of a closeness predicate. The following axiom does that:

• For all intrinsic traffics, itf, and for all optical gate technologies, og, the following must hold: Let stf be
the traffic sampled by the optical gates. For all time points, t, in the sampled traffic, those time points
must also be in the intrinsic traffic, and, for all trains, tn, in the intrinsic traffic at that time, the train
must be observed by the optical gates, and the actual position of the train and the sampled position must
somehow be check-able to be close, or identical to one another.

Since units change state with time, n:N, the railway net, needs to be part of any model of traffic.

type

T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

close: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt ⇒
∀ Tn:TN • tn ∈ dom trf(itt(t))

⇒ tn ∈ dom trf(stt(t)) ∧ close(itt(t),tn,stt(t)) end

Check-ability is an issue of testing the optical gates when delivered for conformance to the closeness

predicate, i.e., to the axiom. �

2.3.2 Requirements

Section 4.4 [Extension] of [54] illustrates a possible toll-gate, whose behaviour exemplifies a support tech-

nology. So do pumps of a pipe-line system such as illustrated in Examples 24, 29 and 42–44 in [49]. A pump

of a pipe-line system gives rise to several forms of support technologies: from the Egyptian Shadoof [irriga-

tion] pumps, and the Hellenic Archimedian screw pumps, via the 11th century Su Song pumps of China8,

and the hydraulic “technologies” of Moorish Spain9 to the centrifugal and gear pumps of the early industrial

age, etcetera, The techniques – to mention those that have influenced this author – of [187, 120, 143, 108]

appears to apply well to the modeling of support technology requirements.

2.3.3 On Modeling Support Technologies

Support technologies in their relation to the domain in which they reside typically reflect real-time em-

beddedness. As such the techniques and languages for modeling support technologies resemble those for

modeling event and process intensity, while temporal notions are brought into focus. Hence typical mod-

eling notations include event-based languages (like Petri nets [156] or CSP) [111]), respectively process-

based specification languages (like MSCs, [113], LSCs [106], Statecharts [105], or CSP) [111]), as well as

temporal languages (like the Duration Calculus and [187] and Temporal Logic of Actions, TLA+) [124]).

8 https://en.wikipedia.org/wiki/Su Song
9 http://www.islamicspain.tv/Arts-and-Science/The-Culture-of-Al-Andalus/Hydraulic-Technology.htm
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2.4 Rules &10 Regulations

• By a domain rule we shall understand some text (in the domain) which prescribes how people
or equipment are expected to behave when dispatching their duties, respectively when performing
their functions ⊙

• By a domain regulation we shall understand some text (in the domain) which prescribes what
remedial actions are to be taken when it is decided that a rule has not been followed according to
its intention ⊙

The domain rules & regulations need or may not be explicitly present, i.e., written down. They may be part

of the “folklore”, i.e., tacitly assumed and understood.

2.4.1 Conceptual Analysis

Example. 8 Trains at Stations:

• Rule: In China the arrival and departure of trains at, respectively from, railway stations is subject to the

following rule:

In any three-minute interval at most one train may either arrive to or depart from a railway
station.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which

prescribes administrative or legal management and/or staff action, as well as some correction to the

railway traffic.

�

Example. 9 Trains Along Lines:

• Rule: In many countries railway lines (between stations) are segmented into blocks or sectors. The

purpose is to stipulate that if two or more trains are moving along the line, then:

There must be at least one free sector (i.e., without a train) between any two trains along
a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which

prescribes administrative or legal management and/or staff action, as well as some correction to the

railway traffic.

�

At a meta-level, i.e., explaining the general framework for describing the syntax and semantics of the

human-oriented domain languages for expressing rules and regulations, we can say the following: There

are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when expressing) rules and

regulations (respectively when invoking actions that are subject to rules and regulations). Two languages,

Rules and Reg, exist for describing rules, respectively regulations; and one, Stimulus, exists for describing

the form of the [always current] domain action stimuli. A syntactic stimulus, sy sti, denotes a function,

se sti:STI: Θ → Θ , from any configuration to a next configuration, where configurations are those of the

system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands for, i.e., has as its semantics,

its meaning, rul:RUL, a predicate over current and next configurations, (Θ × Θ) → Bool, where these next

configurations have been brought about, i.e., caused, by the stimuli. These stimuli express: If the predicate

holds then the stimulus will result in a valid next configuration.

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

10 The concept unifier ‘&’ expresses that A&B designates one concept, not two: A and B.
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value

meaning: Stimulus → STI
meaning: Rule → RUL
valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ ) ≡ meaning(sy rul)(θ ,(meaning(sy sti))(θ ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e., has as its semantics, its mean-

ing, a semantic regulation, se reg:REG, which is a pair. This pair consists of a predicate, pre reg:Pre REG,
where Pre REG = (Θ × Θ) → Bool, and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ , that is, both involving current and next domain configurations. The two kinds

of functions express: If the predicate holds, then the action can be applied. The predicate is almost the

inverse of the rules functions. The action function serves to undo the stimulus function.

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg → REG

The idea is now the following: Any action (i.e., event) of the system, i.e., the application of any stimulus,

may be an action (i.e., event) in accordance with the rules, or it may not. Rules therefore express whether

stimuli are valid or not in the current configuration. And regulations therefore express whether they should

be applied, and, if so, with what effort. More specifically, there is usually, in any current system con-

figuration, given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such pair. Let sy sti
be any possible stimulus. And let θ be the current configuration. Let the stimulus, sy sti, applied in that

configuration result in a next configuration, θ ′, where θ ′ = (meaning(sy sti))(θ ). Let θ ′ violate the rule,

∼valid(sy sti,sy rul)(θ ), then if predicate part, pre reg, of the meaning of the regulation, sy reg, holds

in that violating next configuration, pre reg(θ ,(meaning(sy sti))(θ )), then the action part, act reg, of the

meaning of the regulation, sy reg, must be applied, act reg(θ ), to remedy the situation.

axiom

∀ (sy rul,sy reg):Rul and Reg •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ :Θ •

∼valid(sy sti,se rul)(θ )
⇒ pre reg(θ ,(meaning(sy sti))(θ ))

⇒ ∃ nθ :Θ • act reg(θ )=nθ ∧ se rul(θ ,nθ )
end

It may be that the regulation predicate fails to detect applicability of regulations actions. That is, the inter-

pretation of a rule differs, in that respect, from the interpretation of a regulation. Such is life in the domain,

i.e., in actual reality.

2.4.2 Requirements

Implementation of rules & regulations implies monitoring and partially controlling the states symbolised

by Θ in Sect. 2.4.1. Thus some partial implementation of Θ must be required; as must some monitoring

of states θ :Θ and implementation of the predicates meaning, valid, interpret, pre reg and action(s) act reg.

The emerging requirements follow very much in the line of support technology requirements.
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2.4.3 On Modeling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities, including those grouped

into “the state”, functions, events, and behaviours. Thus the full spectrum of model-ling techniques and

notations may be needed. Since rules usually express properties one often uses some combination of axioms

and wellformedness predicates. Properties sometimes include temporality and hence temporal notations

(like Duration Calculus or Temporal Logic of Actions ) are used. And since regulations usually express

state (restoration) changes one often uses state changing notations (such as found in Allard [114], B or

event-B [1], RSL [96], VDM-SL [61, 62, 89], and Z [183]). In some cases it may be relevant to model

using some constraint satisfaction notation [3] or some Fuzzy Logic notations [176].

2.5 Scripts

• By a domain script we shall understand the structured, almost, if not outright, formally expressed,
wording of a procedure on how to proceed, one that has legally binding power, that is, which may
be contested in a court of law ⊙

2.5.1 Conceptual Analysis

Rules & regulations are usually expressed, even when informally so, as predicates. Scripts, in their proce-

dural form, are like instructions, as for an algorithm.

Example. 10 A Casually Described Bank Script: Our formulation amounts to just a (casual) rough

sketch. It is followed by a series of four large examples. Each of these elaborate on the theme of (bank)

scripts. The problem area is that of how repayments of mortgage loans are to be calculated. At any one time

a mortgage loan has a balance, a most recent previous date of repayment, an interest rate and a handling

fee. When a repayment occurs, then the following calculations shall take place: (i) the interest on the

balance of the loan since the most recent repayment, (ii) the handling fee, normally considered fixed, (iii)

the effective repayment — being the difference between the repayment and the sum of the interest and

the handling fee — and the new balance, being the difference between the old balance and the effective

repayment. We assume repayments to occur from a designated account, say a demand/deposit account. We

assume that bank to have designated fee and interest income accounts. (i) The interest is subtracted from

the mortgage holder’s demand/deposit account and added to the bank’s interest (income) account. (ii) The

handling fee is subtracted from the mortgage holder’s demand/deposit account and added to the bank’s fee

(income) account. (iii) The effective repayment is subtracted from the mortgage holder’s demand/deposit

account and also from the mortgage balance. Finally, one must also describe deviations such as overdue

repayments, too large, or too small repayments, and so on. �

Example. 11 A Formally Described Bank Script: First we must informally and formally define the bank

state: There are clients (c:C), account numbers (a:A), mortgage numbers (m:M), account yields (ay:AY)

and mortgage interest rates (mi:MI). The bank registers, by client, all accounts (ρ :A Register) and all

mortgages (µ :M Register). To each account number there is a balance (α:Accounts). To each mortgage

number there is a loan (ℓ:Loans). To each loan is attached the last date that interest was paid on the loan.

value

r, r′:Real axiom ...
type

C, A, M, Date
AY′ = Real, AY = {| ay:AY′

• 0<ay≤r |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤r′ |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β :Bank′ • wf Bank(β )|}
A Register = C →m A-set

Accounts = A →m Balance
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M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

Then we must define well-formedness of the bank state:

value

ay:AY, mi:MI
wf Bank: Bank → Bool

wf Bank(ρ ,α,µ ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ay<mi [ ∧ ... ]

We — perhaps too rigidly — assume that mortgage interest rates are higher than demand/deposit account

interest rates: ay<mi. Operations on banks are denoted by the commands of the bank script language. First

the syntax:

type

Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P,d:Date)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

value

period: Date × Date → Days [ for calculating interest ]
before: Date × Date → Bool [first date is earlier than last date ]

And then the semantics:

int Cmd(mkPM(c,a,m,p,d))(ρ ,α,µ ,ℓ) ≡
let (b,d′) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,period(d,d′)),
ℓ′ = ℓ † [m 7→ℓ(m)−(p−i) ]
α ′ = α † [a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ a ∈ dom α ∧ m ∈ µ(c)
post before(d,d′)

interest: MI × Loan × Days → P

�

The idea about scripts is that they can somehow be objectively enforced: that they can be precisely under-

stood and consistently carried out by all stakeholders, eventually leading to computerisation. But they are,

at all times, part of the domain.
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2.5.2 Requirements

Script requirements call for the possibly interactive computerisation of algorithms, that is, for rather clas-

sical computing problems. But sometimes these scripts can be expressed, computably, in the form of pro-

grams in a domain specific language. As an example we refer to [76]. [76] illustrates how the design of

pension and life insurance products, and their administration, reserve calculations, and audit, can be based

on a common formal notation. The notation is human-readable and machine-processable,and specialised

to the actuarial domain, achieving great expressive power combined with ease of use and safety. More

specifically (a) product definitions based on standard actuarial models, including arbitrary continuous-time

Markov and semi-Markov models, with cyclic transitions permitted; (b) calculation descriptions for re-

serves and other quantities of interest, based on differential equations; and (c) administration rules.

2.5.3 On Modeling Scripts

Scripts (as are licenses) are like programs (respectively like prescriptions program executions). Hence

the full variety of techniques and notations for modeling programming (or specification) languages apply

[13, 102, 158, 165, 173, 182]. [25, Chaps. 6–9] cover pragmatics, semantics and syntax techniques for

defining functional, imperative and concurrent programming languages.

2.6 License Languages

License: a right or permission
granted in accordance with law

by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction
which but for such license would be unlawful ⊙

Merriam Webster Online [136]

2.6.1 Conceptual Analysis

The Settings

A special form of scripts are increasingly appearing in some domains, notably the domain of electronic,

or digital media. Here licenses express that a licensor, o, permits a licensee, u, to render (i.e., play) works

of proprietary nature CD ROM-like music, DVD-like movies, etc. while obligating the licensee to pay the

licensor on behalf of the owners of these, usually artistic works. Classical digital rights license languages,

[15, 5, 73, 74, 75, 112, 71, 101, 104, 130, 140, 138, 131, 123, 163, 154, 153, 2, 141] applied to the elec-

tronic “downloading”, payment and rendering (playing) of artistic works (for example music, literature

readings and movies). In this we generalise such applications languages and we extend the concept of

licensing to also cover work authorisation (work commitment and promises) in health care, public gov-

ernment and schedule transport. The digital works for these new application domains are patient medical

records, public government documents and bus/train/aircraft transport contracts. Digital rights licensing for

artistic works seeks to safeguard against piracy and to ensure proper payments for the rights to render these

works. Health care and public government license languages seek to ensure transparent and professional

(accurate and timely) health care, respectively ‘good governance’. Transport contract languages seeks to

ensure timely and reliable transport services by an evolving set of transport companies. Proper mathemat-

ical definition of licensing languages seeks to ensure smooth and correct computerised management of

licenses and contracts.
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On Licenses

The concepts of licenses and licensing express relations between (i) actors (licensors (the authority) and

licensees), (ii) entities (artistic works, hospital patients, public administration, citizen documents) and bus

transport contracts and (iii) functions (on entities), and as performed by actors. By issuing a license to a

licensee, a licensor wishes to express and enforce certain permissions and obligations: which functions on

which entities the licensee is allowed (is licensed, is permitted) to perform. In this we shall consider four

kinds of entities: (i) digital recordings of artistic and intellectual nature: music, movies, readings (“audio

books”), and the like, (ii) patients in a hospital as represented also by their patient medical records, (iii)

documents related to public government, and (iv) transport vehicles, time tables and transport nets (of a

buses, trains and aircraft).

Permissions and Obligations

The permissions and obligations issues are, (1) for the owner (agent) of some intellectual property to

be paid (an obligation) by users when they perform permitted operations (rendering, copying, editing,

sub-licensing) on their works; (2) for the patient to be professionally treated — by medical staff who

are basically obliged to try to cure the patient; (3) for public administrators and citizens to enjoy good

governance: transparency in law making (national parliaments and local prefectures and city councils),

in law enforcement (i.e., the daily administration of laws), and law interpretation (the judiciary) — by

agents who are basically obliged to produce certain documents while being permitted to consult (i.e., read,

perhaps copy) other documents; and (4) for bus passengers to enjoy reliable bus schedules — offered by

bus transport companies on contract to, say public transport authorities and on sub-contract to other such

bus transport companies where these transport companies are obliged to honour a contracted schedule.

2.6.2 The Pragmatics

By pragmatics we understand the
study and practice of the factors that govern
our choice of language in social interaction

and the effects of our choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the four domains of (1) production,

distribution and consumption of artistic works, (2) the hospitalisation of patient, i.e., hospital health care,

(3) the handling of law-based document in public government and (4) the operational management of

schedule transport vehicles. The emphasis is on the pragmatics of the terms, i.e., the language used in these

four domains.

Digital Media

Example. 12 Digital Media: The intrinsic entities of the performing arts are the artistic works: drama

or opera performances, music performances, readings of poems, short stories, novels, or jokes, movies,

documentaries, newsreels, etc. We shall limit our span to the scope of electronic renditions of these artistic

works: videos, CDs or other. In this paper we shall not touch upon the technical issues of “download-

ing”(whether ”streaming” or copying, or other). That and other issues should be analysed in [185].

Operations on Digital Works

For a consumer to be able to enjoy these works that consumer must (normally first) usually “buy a ticket”

to their performances. The consumer, i.e., the theatre, opera, concert, etc., “goer” (usually) cannot copy the

performance (e.g., “tape it”), let alone edit such copies of performances. In the context of electronic, i.e.,

digital renditions of these performances the above “cannots” take on a new meaning. The consumer may

copy digital recordings, may edit these, and may further pass on such copies or editions to others. To do

so, while protecting the rights of the producers (owners, performers), the consumer requests permission to
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have the digital works transferred (“downloaded”) from the owner/producer to the consumer, so that the

consumer can render (“play”) these works on own rendering devices (CD, DVD, etc., players), possibly

can copy all or parts of them, then possibly can edit all or parts of the copies, and, finally, possibly can

further license these “edited” versions to other consumers subject to payments to “original” licensor.

License Agreement and Obligation

To be able to obtain these permissions the user agrees with the wording of some license and pays for the

rights to operate on the digital works.

Two Assumptions

Two, related assumptions underlie the pragmatics of the electronics of the artistic works. The first as-

sumption is that the format, the electronic representation of the artistic works is proprietary, that is, that

the producer still owns that format. Either the format is publicly known or it is not, that is, it is somehow

“secret”. In either case we “derive” the second assumption (from the fulfillment of the first). The second as-

sumption is that the consumer is not allowed to, or cannot operate11 on the works by own means (software,

machines). The second assumption implies that acceptance of a license results in the consumer receiving

software that supports the consumer in performing all operations on licensed works, their copies and edited

versions: rendering, copying, editing and sub-licensing.

Protection of the Artistic Electronic Works

The issue now is: how to protect the intellectual property (i.e., artistic) and financial (exploitation) rights of

the owners of the possibly rendered, copied and edited works, both when, and when not further distributed.

�

Health-care

Example. 13 Health-care: Citizens go to hospitals in order to be treated for some calamity (disease or

other), and by doing so these citizens become patients. At hospitals patients, in a sense, issue a request to

be treated with the aim of full or partial restitution. This request is directed at medical staff, that is, the

patient authorises medical staff to perform a set of actions upon the patient. One could claim, as we shall,

that the patient issues a license.

Patients and Patient Medical Records

So patients and their attendant patient medical records (PMRs) are the main entities, the “works” of this

domain. We shall treat them synonymously: PMRs as surrogates for patients. Typical actions on patients

— and hence on PMRs — involve admitting patients, interviewing patients, analysing patients, diagnosing

patients, planning treatment for patients, actually treating patients, and, under normal circumstance, to

finally release patients.

Medical Staff

Medical staff may request (‘refer’ to) other medical staff to perform some of these actions. One can con-

ceive of describing action sequences (and ‘referrals’) in the form of hospitalisation (not treatment) plans.

We shall call such scripts for licenses.

Professional Health Care

The issue is now, given that we record these licenses, their being issued and being honoured, whether the

handling of patients at hospitals follow, or does not follow properly issued licenses. �

11 render, copy and edit
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Government Documents

Example. 14 Documents:By public government we shall, following Charles de Secondat, baron de Mon-

tesquieu (1689–1755)12, understand a composition of three powers: the law-making (legislative), the law-

enforcing and the law-interpreting parts of public government. Typically national parliament and local

(province and city) councils are part of law-making government. Law-enforcing government is called the

executive (the administration). And law-interpreting government is called the judiciary [system] (including

lawyers etc.).

Documents

A crucial means of expressing public administration is through documents.13 We shall therefore provide

a brief domain analysis of a concept of documents. (This document domain description also applies to

patient medical records and, by some “light” interpretation, also to artistic works — insofar as they also

are documents.) Documents are created, edited and read ; and documents can be copied, distributed, the

subject of calculations (interpretations) and be shared and shredded.

Document Attributes

With documents one can associate, as attributes of documents, the actors who created, edited, read, copied,

distributed (and to whom distributed),shared, performed calculations and shredded documents. With these

operations on documents, and hence as attributes of documents one can, again conceptually, associate the

location and time of these operations.

Actor Attributes and Licenses

With actors (whether agents of public government or citizens) one can associate the authority (i.e., the

rights) these actors have with respect to performing actions on documents. We now intend to express these

authorisations as licenses.

Document Tracing

An issue of public government is whether citizens and agents of public government act in accordance with

the laws — with actions and laws reflected in documents such that the action documents enables a trace

from the actions to the laws “governing” these actions. We shall therefore assume that every document

can be traced back to its law-origin as well as to all the documents any one document-creation or -editing

was based on. �

Transportation

Example. 15 Passenger and Goods Transport:

A Synopsis

Contracts obligate transport companies to deliver bus traffic according to a timetable. The timetable is part

of the contract. A contractor may sub-contract (other) transport companies to deliver bus traffic according

to timetables that are sub-parts of their own timetable. Contractors are either public transport authorities or

contracted transport companies. Contracted transport companies may cancel a subset of bus rides provided

the total amount of cancellations per 24 hours for each bus line does not exceed a contracted upper limit

The cancellation rights are spelled out in the contract. A sub-contractor cannot increase a contracted upper

limit for cancellations above what the sub-contractor was told (in its contract) by its contractor. Etcetera.
12 De l’esprit des lois (The Spirit of the Laws), published 1748
13 Documents are, for the case of public government to be the “equivalent” of artistic works.
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A Pragmatics and Semantics Analysis

The “works” of the bus transport contracts are two: the timetables and, implicitly, the designated (and

obligated) bus traffic. A bus timetable appears to define one or more bus lines, with each bus line giving

rise to one or more bus rides. Nothing is (otherwise) said about regularity of bus rides. It appears that

bus ride cancellations must be reported back to the contractor. And we assume that cancellations by a

sub-contractor is further reported back also to the sub-contractor’s contractor. Hence eventually that the

public transport authority is notified. Nothing is said, in the contracts, such as we shall model them, about

passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be paid back from a sub-

contractor to the contractor. So we shall not bother, in this example, about transport costs nor transport

subsidies. But will leave that necessary aspect as an exercise. The opposite of cancellations appears to be

‘insertion’ of extra bus rides, that is, bus rides not listed in the time table, but, perhaps, mandated by special

events14 We assume that such insertions must also be reported back to the contractor. We assume concepts

of acceptable and unacceptable bus ride delays. Details of delay acceptability may be given in contracts, but

we ignore further descriptions of delay acceptability. but assume that unacceptable bus ride delays are also

to be (iteratively) reported back to contractors. We finally assume that sub-contractors cannot (otherwise)

change timetables. (A timetable change can only occur after, or at, the expiration of a license.) Thus we

find that contracts have definite period of validity. (Expired contracts may be replaced by new contracts,

possibly with new timetables.)

Contracted Operations, An Overview

The actions that may be granted by a contractor according to a contract are: (i) start: to commence, i.e., to

start, a bus ride (obligated); (ii) end: to conclude a bus ride (obligated); (iii) cancel: to cancel a bus ride

(allowed, with restrictions); (iv) insert: to insert a bus ride; and (v) subcontract: to sub-contract part or all

of a contract. �

2.6.3 Schematic Rendition of License Language Constructs

There are basically two aspects to licensing languages: (i) the [actual] licensing [and sub-licensing], in the

form of licenses, ℓ, by licensors, o, of permissions and thereby implied obligations, and (ii) the carrying-out

of these obligations in the form of licensee, u, actions. We shall in this paper treat licensors and licensees

on par, that is, some os are also us and vice versa. And we shall think of licenses as not necessarily material

entities (e.g., paper documents), but allow licenses to be tacitly established (understood).

Licensing

The granting of a license ℓ by a licensor o, to a set of licensees uu1
,uu2

, ...,uuu in which ℓ expresses that

these may perform actions aa1
,aa2

, ...,aaa on work items ee1
,ee2

, ...,eee can be schematised:

ℓ : licensor o contracts licensees {uu1
,uu2

,...,uuu}
to perform actions {aa1

,aa2
,...,aaa} on work items {ee1

,ee2
,...,eee}

allowing sub-licensing of actions {aai
,aa j

,...,aak
} to {uux ,uuy ,...,uuz}

The two sets of action designators, das :{aa1
,aa2

, ...,aaa} and sas :{aax,aay , ...,aaz} need not relate. Sub-
licensing: Line 3 of the above schema, ℓ, expresses that licensees uu1

,uu2
, ...,uuu , may act as licensors

and (thereby sub-)license ℓ to licensees us : {uux,uuy , ...,uuz}, distinct from sus : {uu1
,uu2

, ...,uuu}, that is,

us∩sus = {}. Variants: One can easily “cook up” any number of variations of the above license schema.

Revoke Licenses: We do not show expressions for revoking part or all of a previously granted license.

Licensors and Licensees

Example. 16 Licensors and Licensees:
14 Special events: breakdown (that is, cancellations) of other bus rides, sports event (soccer matches), etc.
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Digital Media

: For digital media the original licensors are the original producers of music, film, etc. The “original”

licensees are you and me ! Thereafter some of us may become licensors, etc.

Heath-care

: For health-care the original licensors are, say in Denmark, the Danish governments’ National Board of

Health15; and the “original” licensees are the national hospitals. These then sub-license their medical clinics

(rheumatology, cancer, urology, gynecology, orthopedics, neurology, etc.) which again sub-licenses their

medical staff (doctors, nurses, etc.). A medical doctor may, as is the case in Denmark for certain actions,

not [necessarily] perform these but may sub-license their execution to nurses, etc.

Documents

: For government documents the original licensor are the (i) heads of parliament, regional and local gov-

ernments, (ii) government (prime minister) and the heads of respective ministries, respectively the regional

and local agencies and administrations. The “original” licensees are (i′) the members of parliament, re-

gional and local councils charged with drafting laws, rules and regulations, (ii′) the ministry, respectively

the regional and local agency department heads. These (the ′s) then become licensors when licensing their

staff to handle specific documents.

Transport

: For scheduled passenger (etc.) transportation the original licensors are the state, regional and/or local

transport authorities. The “original” licensees are the public and private transport firms. These latter then

become licensors licensors licensing drivers to handle specific transport lines and/or vehicles. �

Actors and Actions

Example. 17 Actors and Actions:
Digital Media: w refers to a digital “work” with w′ designating a newly created one; si refers to a

sector of some work. render w(si,s j , ...,sk): sectors si,s j , ...,sk of work w are rendered (played, visualised)

in that order. w′ := copy w(si,s j, ...,sk): sectors si,s j, ...,sk of work w are copied and becomes work w′.

w′ := edit w with E (wα (sa,sb, ...,sc), ...,wγ (sp,sq, ...,sr)): work w is edited while [also] incorporating

references to or excerpts from [other] works wα(sa,sb, ...,sc), ...,wγ (sp,sq, ...,sr). read w: work w is read,

i.e., information about work w is somehow displayed. ℓ : licensor m contracts licensees {uu1
,uu2

,...,uuu}
to perform actions {RENDER, COPY, EDIT, READ} on work items {wi1 ,wi2 , ...,wiw}. Etcetera: other

forms of actions can be thought of.

Health-care: Actors are here limited to the patients and the medical staff. We refer to Fig. 2.3 on

the next page. It shows an archetypal hospitalisation plan and identifies a number of actions; π designates

patients, t designates treatment (medication, surgery, . . . ). Actions are performed by medical staff, say h,

with h being an implicit argument of the actions. interview π : a PMR with name, age, family relations,

addresses, etc., is established for patient π . admit π : the PMR records the anamnese (medical history) for

patient π . establish analysis plan π : the PMR records which analyses (blood tests, ECG, blood pressure,

etc.) are to be carried out. analyse π : the PMR records the results of the analyses referred to previously.

diagnose π : medical staff h diagnoses, based on the analyses most recently performed. plan treatment for
π : medical staff h sets up a treatment plan for patient π based on the diagnosis most recently performed.

treat π wrt. t: medical staff h performs treatment t on patient π , observes “reaction” and records this in

the PMR. Predicate “actions”: more analysis π ?, more treatment π ? and more diagnosis π ?. release

π : either the patient dies or is declared ready to be sent ’home’. ℓ : licensor o contracts medical staff

{mm1
,mm2

, ...,mmm} to perform actions {INTERVIEW, ADMIT, PLAN ANALYSIS, ANALYSE, DIAGNOSE,

PLAN TREATMENT, TREAT, RELEASE} on patients {πp1
,πp2

, ...,πpp}. Etcetera: other forms of actions

can be thought of.

15 In the UK: the NHS, etc.
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Fig. 2.3. An example single-illness non-fatal hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

Documents: d refer to documents with d′ designating new documents. d′ := create based on

dx,dy, ...,dz: A new document, named d′, is created, with no information “contents”, but referring to ex-

isting documents dx,dy, ...,dz. edit d with E based on dnα ,dβ , ...,dγ : document d is edited with E being

the editing function and E −1 being its “undo” inverse. read d: document d is being read. d′ := copy d:

document d is copied into a new document named d′. freeze d: document d can, from now on, only be

read. shred d: document d is shredded. That is, no more actions can be performed on d. ℓ : licensor o
contracts civil service staff {cc1

,cc2
, ...,ccc} to perform actions {CREATE, EDIT, READ, COPY, FREEZE,

SHRED} on documents {dd1
,dd2

, ...,ddd
}. Etcetera: other forms of actions can be thought of.

Transport: We restrict, without loss of generality, to bus transport. There is a timetable, tt. It records

bus lines, l, and specific instances of bus rides, b. start bus ride l,b at time t: Bus line l is recorded in tt

and its departure in tt is recorded as τ . Starting that bus ride at t means that the start is either on time, i.e.,

t=τ , or the start is delayed δd : τ-t or advanced δa : t-τ where δd and δa are expected to be small intervals.

All this is to be reported, in due time, to the contractor. end bus ride l,b at time t: Ending bus ride l,b
at time t means that it is either ended on time, or earlier, or delayed. This is to be reported, in due time, to

the contractor. cancel bus ride l,b at time t: t must be earlier than the scheduled departure of bus ride

l,b. insert an extra bus l,b′ at time t: t must be the same time as the scheduled departure of bus ride

l,b with b′ being a “marked” version of b. ℓ : licensor o contracts transport staff {bb1
,bb2

, ...,bbb
} to

perform actions {START, END, CANCEL, INSERT} on work items {ee1
,ee2

,...,eee}. Etcetera: other forms

of actions can be thought of. �

2.6.4 Requirements

Requirements for license language implementation basically amounts to requirements for three aspects.

(i) The design of the license language, its abstract and concrete syntax, its interpreter, and its interfaces

to distributed licensor and licensee behaviours; (ii) the requirements for a distributed system of licensor

and licensee behaviours; and (iii) the monitoring and partial control of the states of licensor and licensee

behaviours. The structuring of these distributed licensor and licensee behaviours differ from slightly to

somewhat, but not that significant in the four license languages examples. Basically the licensor and li-

censee behaviours form a set of behaviours. Basically everyone can communicate with everyone. For the
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case of digital media licensee behaviours communicate back to licensor behaviours whenever a properly

licensed action is performed – resulting in the transfer of funds from licensees to licensors. For the case of

health care some central authority is expected to validate the granting of licenses and appear to be bound

by medical training. For the case of documents such checks appear to be bound by predetermined autho-

risation rules. For the case of transport one can perhaps speak of more rigid management & organisation

dependencies as licenses are traditionally transferred between independent authorities and companies.

2.6.5 On Modeling License Languages

Licensors are expected to maintain a state which records all the licenses it has issued. Whenever at licensee

“reports back” (the begin and/or the end) of the performance of a granted action, this is recorded in its state.

Sometimes these granted actions are subject to fees. The licensor therefore calculates outstanding fees —

etc. Licensees are expected to maintain a state which records all the licenses it has accepted. Whenever an

action is to be performed the licensee records this and checks that it is permitted to perform this action. In

many cases the licensee is expected to “report back”, both the beginning and the end of performance of that

action, to the licensor. A typical technique of modeling licensors, licensees and patients, i.e., their PMRs, is

to model them as (never ending) processes, a la CSP [111]with input/output, ch ?/ch ! m, communications

between licensors, licensees and PMRs. Their states are modeled as programmable attributes.

2.7 Management &16 Organisation

• By domain management we shall understand such people (such decisions) (i) who (which) deter-
mine, formulate and thus set standards (cf. rules and regulations, Sect. 2.4) concerning strategic,
tactical and operational decisions; (ii) who ensure that these decisions are passed on to (lower)
levels of management and to floor staff; (iii) who make sure that such orders, as they were, are
indeed carried out; (iv) who handle undesirable deviations in the carrying out of these orders cum
decisions; and (v) who “backstops” complaints from lower management levels and from “floor”
staff ⊙

• By domain organisation we shall understand (vi) the structuring of management and non-
management staff “overseeable” into clusters with “tight” and “meaningful” relations; (vii) the al-
location of strategic, tactical and operational concerns to within management and non-management
staff clusters; and hence (viii) the “lines of command”: who does what, and who reports to whom,
administratively and functionally ⊙

The ‘&’ is justified from the interrelations of items (i–viii).

2.7.1 Conceptual Analysis

We first bring some examples.

Example. 18 Train Monitoring, I: In China, as an example, till the early 1990s, rescheduling of trains

occurs at stations and involves telephone negotiations with neighbouring stations (“up and down the lines”).

Such rescheduling negotiations, by phone, imply reasonably strict management and organisation (M&O).

This kind of M&O reflects the geographical layout of the rail net. �

Example. 19 Railway Management and Organisation: Train Monitoring, II: We single out a rather

special case of railway management and organisation. Certain (lowest-level operational and station-located)

supervisors are responsible for the day-to-day timely progress of trains within a station and along its in-

coming and outgoing lines, and according to given timetables. These supervisors and their immediate

(middle-level) managers (see below for regional managers) set guidelines (for local station and incoming

and outgoing lines) for the monitoring of train traffic, and for controlling trains that are either ahead of or

16 See footnote 10 on Page 61.
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behind their schedules. By an incoming and an outgoing line we mean part of a line between two stations,

the remaining part being handled by neighbouring station management. Once it has been decided, by such

a manager, that a train is not following its schedule, based on information monitored by non-management

staff, then that manager directs that staff: (i) to suggest a new schedule for the train in question, as well as

for possibly affected other trains, (ii) to negotiate the new schedule with appropriate neighbouring stations,

until a proper reschedule can be decided upon, by the managers at respective stations, (iii) and to enact that

new schedule.17 A (middle-level operations) manager for regional traffic, i.e., train traffic involving several

stations and lines, resolves possible disputes and conflicts. �

The above, albeit rough-sketch description, illustrated the following management and organisation issues:

(i) There is a set of lowest-level (as here: train traffic scheduling and rescheduling) supervisors and their

staff; (ii) they are organised into one such group (as here: per station); (iii) there is a middle-level (as here:

regional train traffic scheduling and rescheduling) manager (possibly with some small staff), organised with

one such per suitable (as here: railway) region; and (iv) the guidelines issued jointly by local and regional

(...) supervisors and managers imply an organisational structuring of lines of information provision and

command.

People staff enterprises, the components of infrastructures with which we are concerned, i.e., for which

we develop software. The larger these enterprises — these infrastructure components — the more need

there is for management and organisation. The role of management is roughly, for our purposes, twofold:

first, to perform strategic, tactical and operational work, to set strategic, tactical and operational policies —

and to see to it that they are followed. The role of management is, second, to react to adverse conditions,

that is, to unforeseen situations, and to decide how they should be handled, i.e., conflict resolution. Policy

setting should help non-management staff operate normal situations — those for which no management

interference is thus needed. And management “backstops” problems: management takes these problems

off the shoulders of non-management staff. To help management and staff know who’s in charge wrt.

policy setting and problem handling, a clear conception of the overall organisation is needed. Organisation

defines lines of communication within management and staff, and between these. Whenever management

and staff has to turn to others for assistance they usually, in a reasonably well-functioning enterprise, follow

the command line: the paths of organigrams — the usually hierarchical box and arrow/line diagrams.

The management and organisation model of a domain is a partial specification; hence all the usual

abstraction and modeling principles, techniques and tools apply. More specifically, management is a set of

predicate functions, or of observer and generator functions These either parametrise other, the operations

functions, that is, determine their behaviour, or yield results that become arguments to these other functions.

Organisation is thus a set of constraints on communication behaviours. Hierarchical, rather than linear, and

matrix structured organisations can also be modeled as sets (of recursively invoked sets) of equations.

To relate classical organigrams to formal descriptions we first show such an organigram (Fig. 2.4),

and then we show schematic processes which — for a rather simple scenario — model managers and the

managed! Based on such a diagram, and modeling only one neighbouring group of a manager and the staff

working for that manager we get a system in which one manager, mgr, and many staff, stf, coexist or work

concurrently, i.e., in parallel. The mgr operates in a context and a state modeled by ψ . Each staff, stf(i)
operates in a context and a state modeled by sσ(i).

type

Msg, Ψ , Σ , Sx
SΣ = Sx →m Σ

channel

{ ms[ i ]:Msg | i:Sx }
value

sσ :SΣ , ψ :Ψ

sys: Unit → Unit

sys() ≡ ‖ { stf(i)(sσ(i)) | i:Sx } ‖ mgr(ψ)

17 That enactment may possibly imply the movement of several trains incident upon several stations: the one at which

the manager is located, as well as possibly at neighbouring stations.
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Fig. 2.4. Organisational structures

In this system the manager, mgr, (1) either broadcasts messages, m, to all staff via message channel ms[i].
The manager’s concoction, m out(ψ), of the message, msg, has changed the manager state. Or (2) is

willing to receive messages, msg, from whichever staff i the manager sends a message. Receipt of the

message changes, m in(i,m)(ψ), the manager state. In both cases the manager resumes work as from the

new state. The manager chooses — in this model — which of thetwo things (1 or 2) to do by a so-called

non-deterministic internal choice (⌈⌉).

mg: Ψ → in,out {ms[ i ]|i:Sx} Unit

mgr(ψ) ≡
(1) let (ψ ′,m)=m out(ψ) in ‖ {ms[ i ]!m|i:Sx};mgr(ψ ′) end

⌈⌉
(2) let ψ ′ = ⌈⌉⌊⌋ {let m=ms[ i ]? in m in(i,m)(ψ) end|i:Sx} in mgr(ψ ′) end

m out: Ψ → Ψ × MSG,
m in: Sx × MSG → Ψ → Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg, from the manager, and then

to change, st in(msg)(σ), state accordingly, or (2) to concoct, st out(σ), a message, msg (thus changing

state) for the manager, and send it ms[i]!msg. In both cases the staff resumes work as from the new state.

The staff member chooses — in this model — which of thetwo “things” (1 or 2) to do by a non-deterministic

internal choice (⌈⌉).

stf: i:Sx → Σ → in,out ms[ i ] Unit

stf(i)(σ) ≡
(1) let m = ms[ i ]? in stf(i)(stf in(m)(σ)) end

⌈⌉
(2) let (σ ′,m) = st out(σ) in ms[ i ]!m; stf(i)(σ ′) end

st in: MSG → Σ → Σ ,
st out: Σ → Σ × MSG

Both manager and staff processes recurse (i.e., iterate) over possibly changing states. The management

process non-deterministically, internal choice, “alternates” between “broadcast”-issuing orders to staff and

receiving individual messages from staff. Staff processes likewise non-deterministically, internal choice,

alternate between receiving orders from management and issuing individual messages to management.

The conceptual example also illustrates modeling stakeholder behaviours as interacting (here CSP-like)

processes.
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Example. 20 Strategic, Tactical and Operations Management: We think of (i) strategic, (ii) tactic,

and (iii) operational managers as well as (iv) supervisors, (v) team leaders and the rest of the (vi) staff

(i.e., workers) of a domain enterprise as functions. Each category of staff, i.e., each function, works in state

and updates that state according to schedules and resource allocations — which are considered part of the

state. To make the description simple we do not detail the state other than saying that each category works

on an “instantaneous copy” of “the” state. Now think of six staff category activities, strategic managers,

tactical managers, operational managers, supervisors, team leaders and workers as six simultaneous sets of

actions. Each function defines a step of collective (i.e., group) (strategic, tactical, operational) management,

supervisor, team leader and worker work. Each step is considered “atomic”. Now think of an enterprise

as the “repeated” step-wise simultaneous performance of these category activities. Six “next” states arise.

These are, in the reality of the domain, ameliorated, that is reconciled into one state. however with the next

iteration, i.e., step, of work having each category apply its work to a reconciled version of the state resulting

from that category’s previously yielded state and the mediated “global” state. Caveat: The below is not a

mathematically proper definition. It suggests one !

type

0. Σ , Σs,Σt ,Σo,Σu,Σe,Σw

value

1. str, tac, opr, sup, tea, wrk: Σ i → Σ i

2. stra, tact, oper, supr, team, work: Σ → (Σx1
×Σx2

×Σx3
×Σx4

×Σx5
) → Σ

3. objective: (Σs×Σt×Σo×Σu×Σe×Σw) → Bool

3. enterprise,ameliorate: (Σs×Σt×Σo×Σu×Σe×Σw) → Σ
4. enterprise: (σs,σt ,σu,σe,σw) ≡
6. let σ ′

s = stra(str(σ s))(σ
′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w),

7. σ ′
t = tact(tac(σ t))(σ

′
s,σ

′
o,σ

′
u,σ

′
e,σ

′
w),

8. σ ′
o = oper(opr(σo))(σ

′
s,σ

′
t ,σ

′
u,σ

′
e,σ

′
w),

9. σ ′
u = supr(sup(σu))(σ

′
s,σ

′
t ,σ

′
o,σ

′
e,σ

′
w),

10. σ ′
e = team(tea(σ e))(σ

′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
w),

11. σ ′
w = work(wrk(σw))(σ

′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e) in

12. if objective(σ ′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w)

13. then ameliorate(σ ′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w)

14. else enterprise(σ ′
s,σ

′
t ,σ

′
o,σ

′
u,σ

′
e,σ

′
w)

15. end end

0. Σ is a further undefined and unexplained enterprise state space. The various enterprise players view

this state in their own way.

1. Six staff group operations, str, tac, opr, sup, tea and wrk, each act in the enterprise state such as

conceived by respective groups to effect a resulting enterprise state such as achieved by respective

groups.

2. Six staff group state amelioration functions, ame s,ame t, ame o, ame u, ame e and ame w, each

apply to the resulting enterprise states such as achieved by respective groups to yield a result state such

as achieved by that group.

3. An overall objective function tests whether a state summary reflects that the objectives of the enterprise

has been achieved or not.

4. The enterprise function applies to the tuple of six group-biased (i.e., ameliorated) states. Initially these

may all be the same state. The result is an ameliorated state.

5. An iteration, that is, a step of enterprise activities, lines 5.–13. proceeds as follows:

6. strategic management operates

• in its state space, σs : Σ ;

• effects a next (un-ameliorated strategic management) state σ ′
s;

• and ameliorates this latter state in the context of all the other player’s ameliorated result states.

7.–11. The same actions take place, simultaneously for the other players: tac, opr, sup, tea and wrk.

12. A test, has objectives been met, is made on the six ameliorated states.

13. If test is successful, then the enterprise terminates in an ameliorated state.
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14. Otherwise the enterprise recurses, that is, “repeats” itself in new states.

The above “function” definition is suggestive. It suggests that a solution to the fix-point 6-tuple of equations

over “intermediate” states, σ ′
x, where x is any of s, t,o,u,e,w, is achieveable by iteration over just these 6

equations. �

2.7.2 Requirements

Top-level, including strategic management tends to not be amenable to “automation”. Increasingly tactical

management tends to “divide” time between “bush-fire, stop-gap” actions – hardly automatable and formu-

lating, initiating and monitoring main operations. The initiation and monitoring of tactical actions appear

amenable to partial automation. Operational management – with its reliance on rules & regulations, scripts

and licenses – is where computer monitoring and partial control has reaped the richest harvests.

2.7.3 On Modeling Management and Organisation

Management and organisation basically spans entity, function, event and behaviour intensities and thus

typically require the full spectrum of modeling techniques and notations — summarised in Sect. 2.2.3.

2.8 Human Behaviour

• By domain human behaviour we shall understand any of a quality spectrum of carrying out
assigned work: from (i) careful, diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent
work, to (iv) outright criminal pursuit ⊙

2.8.1 Conceptual Analysis

To model human behaviour “smacks” like modeling human actors, the psychology of humans, etc. ! We

shall not attempt to model the psychological side of humans — for the simple reason that we neither know

how to do that nor whether it can at all be done. Instead we shall be focusing on the effects on non-human

manifest entities of human behaviour.

Example. 21 Banking — or Programming — Staff Behaviour: Let us assume a bank clerk, “in ye

olde” days, when calculating, say mortgage repayments (cf. Example 10). We would characterise such a

clerk as being diligent, etc., if that person carefully follows the mortgage calculation rules, and checks and

double-checks that calculations “tally up”, or lets others do so. We would characterise a clerk as being

sloppy if that person occasionally forgets the checks alluded to above. We would characterise a clerk as

being delinquent if that person systematically forgets these checks. And we would call such a person a

criminal if that person intentionally miscalculates in such a way that the bank (and/or the mortgage client)

is cheated out of funds which, instead, may be diverted to the cheater. Let us, instead of a bank clerk,

assume a software programmer charged with implementing an automatic routine for effecting mortgage

repayments (cf. Example 11). We would characterise the programmer as being diligent if that person

carefully follows the mortgage calculation rules, and throughout the development verifies and tests that the

calculations are correct with respect to the rules. We would characterise the programmer as being sloppy
if that person forgets certain checks and tests when otherwise correcting the computing program under

development. We would characterise the programmer as being delinquent if that person systematically

forgets these checks and tests. And we would characterise the programmer as being a criminal if that

person intentionally provides a program which miscalculates the mortgage interest, etc., in such a way that

the bank (and/or the mortgage client) is cheated out of funds. �

Example. 22 A Human Behaviour Mortgage Calculation: Example 11 gave a semantics to the mort-

gage calculation request (i.e., command) as would a diligent bank clerk be expected to perform it. To

express, that is, to model, how sloppy, delinquent, or outright criminal persons (staff?) could behave we

must modify the int Cmd(mkPM(c,a,m,p,d′))(ρ ,α,µ ,ℓ) definition.
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int Cmd(mkPM(c,a,m,p,d))(ρ ,α,µ ,ℓ) ≡
let (b,d′) = ℓ(m) in

if q(α(a),p) [α(a)≤p∨α(a)=p∨α(a)≤p∨... ]
then

let i = f1(interest(mi,b,period(d,d′))),
ℓ′ = ℓ † [m 7→f2(ℓ(m)−(p−i)) ],
α ′ = α † [a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),a“staff” 7→f“staff”(α(a“staff”)+i) ] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P [ typically: f“staff” = λp.p ]

�

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example 22 are deliberately left undefined.

They are being defined by the “staffer” when performing (incl., programming) the mortgage calculation

routine. The point of Example 22 is that one must first define the mortgage calculation script precisely as

one would like to see the diligent staff (programmer) to perform (incl., correctly program) it before one

can “pinpoint” all the places where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4 and

f“staff” designate those places. The point of Example 22 is also that we must first domain-define, “to the

best of our ability” all the places where human behaviour may play other than a desirable role. If we cannot,

then we cannot claim that some requirements aim at countering undesirable human behaviour.

Commensurate with the above, humans interpret rules and regulations differently, and, for some hu-

mans, not always consistently — in the sense of repeatedly applying the same interpretations. Our final

specification pattern is therefore:

type

Action = Θ
∼
→ Θ -infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ -infset

hum beha(sy sti,sy rul)(α)(θ ) as θ set
post

θ set = α(θ ) ∧ action(sy sti)(θ ) ∈ θ set
∧ ∀ θ ′:Θ •θ ′ ∈ θ set ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ )⇒se rul(θ ,θ ′)

The above is, necessarily, sketchy: There is a possibly infinite variety of ways of interpreting some rules.

A human, in carrying out an action, interprets applicable rules and chooses one which that person believes

suits some (professional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies the intent,

i.e., yields true on the pre/post-configuration pair, when the action is performed — whether as intended by

the ones who issued the rules and regulations or not. We do not cover the case of whether an appropriate

regulation is applied or not.The above-stated axioms express how it is in the domain, not how we would

like it to be. For that we have to establish requirements.

2.8.2 Requirements

Requirements in relation to the human behaviour facet is not requirements about software that “replaces”

human behaviour. Such requirements were hinted at in Sects. 2.5.2–2.7.2. Human behaviour facet require-

ments are about software that checks human behaviour; that its remains diligent; that it does not transgress
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into sloppy, delinquent, let alone criminal behaviour. When transgressions are discovered, appropriate re-

medial actions may be prescribed.

2.8.3 On Modeling Human Behaviour

To model human behaviour is, “initially”, much like modeling management and organisation. But only ‘ini-

tially’. The most significant human behaviour modeling aspect is then that of modeling non-determinism

and looseness, even ambiguity. So a specification language which allows specifying non-determinism and

looseness (like CafeOBJ [92] and RSL [96]) is to be preferred. To prescribe requirements is to prescribe the

monitoring of the human input at the computer interface.

2.9 Conclusion

We have introduced the scientific and engineering concept of domain theories and domain engineering;

and we have brought but a mere sample of the principles, techniques and tools that can be used in creating

domain descriptions.

2.9.1 Completion

Domain acquisition results in typically up to thousands of units of domain descriptions. Domain analysis

subsequently also serves to classify which facet any one of these description units primarily characterises.

But some such “compartmentalisations” may be difficult, and may be deferred till the step of “completion”.

It may then be, “at the end of the day”, that is, after all of the above facets have been modeled that some

description units are left as not having been described, not deliberately, but “circumstantially”. It then

behooves the domain engineer to fit these “dangling” description units into suitable parts of the domain

description. This “slotting in” may be simple, and all is fine. Or it may be difficult. Such difficulty may

be a sign that the chosen model, the chosen description, in its selection of entities, functions, events and

behaviours to model — in choosing these over other possible selections of phenomena and concepts is not

appropriate. Another attempt must be made. Another selection, another abstraction of entities, functions,

etc., may need be chosen. Usually however, after having chosen the abstractions of the intrinsic phenomena

and concepts, one can start checking whether “dangling” description units can be fitted in “with ease”.

2.9.2 Integrating Formal Descriptions

We have seen that to model the full spectrum of domain facets one needs not one, but several specification

languages. No single specification language suffices. It seems highly unlikely and it appears not to be desir-

able to obtain a single, “universal” specification language capable of “equally” elegantly, suitably abstractly

modeling all aspects of a domain. Hence one must conclude that the full modeling of domains shall deploy

several formal notations – including plain, good old mathematics in all its forms. The issues are then the

following which combinations of notations to select, and how to make sure that the combined specification

denotes something meaningful. The ongoing series of “Integrating Formal Methods” conferences [4] is a

good source for techniques, compositions and meanings.

2.9.3 The Impossibility of Describing Any Domain Completely

Domain descriptions are, by necessity, abstractions. One can never hope for any notion of complete domain

descriptions. The situation is no better for domains such as we define them than for physics. Physicists strive

to understand the manifest world around us – the world that was there before humans started creating “their

domains”. The physicists describe the physical world “in bits and pieces” such that large collections of these

pieces “fit together”, that is, are based on some commonly accepted laws and in some commonly agreed

mathematics. Similarly for such domains as will be the subject of domain science & engineering such as

we cover that subject in Chapter 1, [49] and Chapter 6, [54]. Individual such domain descriptions will

be emphasising some clusters of facets, others will be emphasising other aspects.
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2.9.4 Rôles for Domain Descriptions

We can distinguish between a spectrum of rôles for domain descriptions. Some of the issues brought for-

ward below may have been touched upon in Chaps. 1 and 5 [49, 54].

Alternative Domain Descriptions: It may very well be meaningful to avail oneself of a variety of

domain models (i.e., descriptions) for any one domain, that is, for what we may consider basically one

and the same domain. In control theory (a science) and automation (an engineering) we develop specific

descriptions, usually on the form of a set of differential equations, for any one control problem. The basis

for the control problem is typically the science of mechanics. This science has many renditions (i.e., inter-

pretations). For the control problem, say that of keeping a missile carried by a train wagon, erect during

train movement and/or windy conditions, one may then develop a “self-contained” description of the prob-

lem based on some mechanics theory presentation. Similarly for domains. One may refer to an existing

domain description. But one may re-develop a textually “smaller” domain description for any one given,

i.e., specific problem.

Domain Science: A domain description designates a domain theory. That is, a bundle of propositions,

lemmas and theorems that are either rather explicit or can be proven from the description. So a domain

description is the basis for a theory as well as for the discovery of domain laws, that is, for a domain

science. We have sciences of physics (incl. chemistry), biology, etc. Perhaps it is about time to have proper

sciences, to the extent one can have such sciences for human-made domains.

Business Process Re-engineering: Some domains manifest serious amounts of human actions and

interactions. These may be found to not be efficient to a degree that one might so desire. A given domain

description may therefore be a basis for suggesting other management & organisation structures, and/or

rules & regulations than present ones. Yes, even making explicit scripts or a license language which have

hitherto been tacitly understood – without necessarily computerising any support for such a script or license
language. The given and the resulting domain descriptions may then be the basis for operations research
models that may show desired or acceptable efficiency improvements.

Software Development: Chapter 5 [54] shows one approach to requirements prescription. Domain

analysis & description, i.e., domain engineering, is here seen as an initial phase, with requirements prescrip-

tion engineering being a second phase, and software design being a third phase. We see domain engineering

as indispensable, that is, an absolute must, for software development. Chapter 6 [38, Domains: Their Sim-
ulation, Monitoring and Control ] further illustrates how domain engineering is a base for the development

of domain simulators, demos, monitors and controllers.

2.9.5 Grand Challenges of Informatics19

To establish a reasonably trustworthy and believable theory of a domain, say the transportation, or just

the railway domain, may take years, possibly 10–15 ! Similarly for domains such as the financial service

industry, the market (of consumers and producers, retailers, wholesaler, distribution cum supply chain),

health care, and so forth. The current author urges younger scientists to get going! It is about time.

2.10 Bibliographical Notes

To create domain descriptions, or requirements prescriptions, or software designs, properly, at least such

as this author sees it, is a joy to behold. The beauty of carefully selected and balanced abstractions, their

interplay with other such, the relations between phases, stages and steps, and many more conceptual con-

structions make software engineering possibly the most challenging intellectual pursuit today. For this and

more consult [24, 25, 26].

19 In the early-to-mid 2000s there were a rush of research foundations and scientists enumerating “Grand Challenges

of Informatics”
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Manifest Domains: Formal Models of Processes and Prompts

Summary

Chapter 1, Manifest Domains: Analysis & Description, [49] introduced a method for

analysing and describing manifest domains. In this chapter1 we shall formalise the calculus of

this method. The formalisation has two aspects: the formalisation of the process of sequencing the

prompts of the calculus, and the formalisation of the individual prompts.

3.1 Introduction

The presentation of a calculus for analysing and describing manifest domains, introduced in Chapter 1,
Manifest Domains: Analysis & Description, [49] and summarised in Sect. 3.2, was and is necessar-

ily informal. The human process of “extracting” a description of a domain, based on analysis, “wavers”

between the domain, as it is revealed to our senses, and therefore necessarily informal, and its recorded

description, which we present in two forms, an informal narrative and a formalisation. In the present paper

we shall provide a formal, operational semantics formalisation of the analysis and description calculus.

There are two aspects to the semantics of the analysis and description calculus. There is the formal expla-

nation of the process of applying the analysis and description prompts, in particular the practical meaning2

of the results of applying the analysis prompts, and there is the formal explanation of the meaning of the

results of applying the description prompts. The former (i.e., the practical meaning of the results of apply-

ing the analysis prompts) amounts to a model of the process whereby the domain analyser cum describer

navigates “across” the domain, alternating between applying sequences of one or more analysis prompts

and applying description prompts. The latter (formal explanation of the meaning of the results of applying

the description prompts) amounts to a model of the domain (as it evolves in the mind of the analyser cum

describer3), the meaning of the evolving description, and thereby the relation between the two.

3.1.1 The Triptych Approach to Software Development

Before software can be designed and coded one must have firm understanding of its requirements. Before

requirements can be prescribed one must have a clear grasp of the application domain.

1 This chapter is based on [52].
2 in contrast to a formal mathematical meaning
3 By ‘domain analyser cum describer’ we mean a group of one or more professionals, well-educated and trained in

the domain analysis & description techniques outlined in, for example, [49], and where these professionals work

closely together. By ‘working closely together’ we mean that they, together, day-by-day work on each their sections

of a common domain description document which they “buddy check”, say every morning, then discuss, as a group,

also every day, and then revise and further extend, likewise every day. By “buddy checking” we mean that group

member A reviews group member B’s most recent sections – and where this reviewing alternates regularly: A

may first review B’s work, then C ’s, etcetera.

We shall, occasionally refer to the ‘domain analyser cum describer’ as the ‘domain engineer’.



82 3 Manifest Domains: Formal Models of Processes and Prompts

Definition 18. The Triptych Approach to Software Development: By a triptych software devel-
opment we shall understand a development which, in principle, starts with either studying an existing or
developing a new domain description, then proceeds to systematically deriving a requirements prescription
from the domain description, and finally designs and codes the software from the requirements prescription
⊙

3.1.2 Method and Methodology

Definition 19. Method: By a method we shall understand a set of principles for selecting and applying
a number of techniques and tools for analysing and synthesizing an artifact ⊙

Definition 20. Methodology: By methodology we shall understand the study and knowledge of one or
more methods ⊙

Definition 21. Formal Method: By formal method we shall understand a method some or most of
whose techniques and tools can be understood mathematically ⊙

Definition 22. Formal Software Development: By a formal software development method we
shall understand a formal method where domain descriptions, requirements prescriptions and software
designs are expressed in mathematically founded specification languages with the possibility of proving
properties of these specifications, of steps and stages of development (refinements within domain descrip-
tions, requirements prescriptions, software designs and between these) — properties such as correctness of
software designs with respect to requirements, and satisfaction of user expectations (from software) with
respect to domains ⊙

This paper deals with some of the triptych method principles and techniques for developments of domain

descriptions. The paper puts forward a formal explanation of some of that method.

3.1.3 Related Work

To this author’s knowledge there are not many papers, other than the author’s own, [49, 53, 54, 48] and the

present paper, which proposes a calculus of analysis and description prompts for capturing a domain, let

alone, as this paper tries, to formalise aspects of this calculus.

There is, however a “school of software engineering”, “anchored” in the 1987 publication: [145, Leon

Osterweil]. As the title of that paper reveals: “Software Processes Are Software Too” the emphasis is on

considering the software development process as prescribable by a software program. That is not what we

are aiming at. We are aiming at an abstract and formal description of a large class of domain analysis &

description processes in terms of possible development calculi. And in such a way that one can reason about

such processes. The Osterweil paper suggests that any particular software development can be described

by a program, and, if we wish to reason about the software development process we must reason over that

program, but there is no requirement that the “software process programs” be expressed in a language with

a proof system.4 In contrast we can reason over the properties of the development calculi as well as over

the resulting description.

There is another “school of programming”, one that more closely adheres to the use of a calculus

[11, 139]. The calculus here is a set of refinement rules, a Refinement Calculus5, that “drives” the developer

from a specification to an executable program. Again, that is not what we are doing here. The proposed

calculi of analysis and of description prompts [49] “drives” the domain engineer in developing a domain

description. That description may then be ‘refined’ using a refinement calculus.

4 The RAISE Specification Language [97] does have a proof system.
5 Ralph–Johan Back appears to be the first to have proposed the idea of refinement calculi,

cf. his 1978 PhD thesis On the Correctness of Refinement Steps in Program Development,

http://users.abo.fi/backrj/index.php?page=Refinement calculus all.html&menu=3.
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3.1.4 Structure of Paper

Section 3.2 provides a terse summary of the analysis & description of endurants. It is without examples. For

such we refer to [49, Sects. 2.–3., Pages 7–29.]. Section 3.3 is informal. It discusses issues of syntax and

semantics. The reason we bring this short section is that the current paper turns “things upside/down”: from

semantics we extract syntax ! From the real entities of actual domains we extract domain descriptions. Sec-

tion 3.4 presents a pseudo-formal operational semantics explication of the process of proceeding through

iterated sequences of analysis prompts to description prompts. The formal meaning of these prompts are

given in Sect. 3.8. But first we must “prepare the ground”: The meaning of the analysis and description

prompts is given in terms of some formal “context” in which the domain engineer works. Section 3.5 dis-

cusses this notion of “image” — an informal aspect of the ‘context’. It is a brief discussion. Section 3.6

presents the formal aspect of the ‘context’: perceived abstract syntaxes of the ontology of domain endurants

and of endurant values. Section 3.7 Discusses, in a sense, the mental processes – from syntax to semantics
and back again ! – that the domain engineer appears to undergo while analysing (the semantic) domain enti-

ties and synthesizing (the syntactic) domain descriptions. Section 3.8 presents the analysis and description

prompts meanings. It represents a high point of this paper. It so-to-speak justifies the whole “exercise” !

Section 3.9 concludes the paper. We summarize what we have “achieved”. And we discuss whether this

“achievement” is a valid one !

3.2 Domain Analysis and Description

In the rest of this paper we shall consider entities in the context of their being manifest (i.e., spatio-

temporal). The restrictions of what we cover with respect to [49, Manifest Domains: Analysis & De-
scription] are: we do not cover perdurants, only endurants, and within endurants we do not cover update
mereology, update attributes and shared attributes. These omissions do not affect the main aim of this

paper, namely that of presenting a plausible example of how one might wish to operationally formalise the

notions of the analysis & description process and of the analysis & description prompts. The presentation

is very terse. We refer to [49] for details. Appendices A–B gives “full” examples of “smallish” domain

descriptions.

3.2.1 General

In [49] we developed an ontology for structuring and a prompt calculus analysing and describing domains.

Figure 3.1 on the next page captures the ontology structure. It is thus a slight simplification of the ‘up-

per ontology’ figure given in [49] in that it omits the component ontology. The rest of this section will

summarise the calculus. We refer to [49] for examples.

To the nodes of the upper ontology of Fig. 3.1 on the following page we have affixed some names. Names

beginning with a capital stand for sub-ontologies. Names starting with a slanted obs stand for description

prompts. Other names (starting with an is or a has , or other) stand for analysis prompts.6

3.2.2 Entities

Definition 23. Entity: By an entity we shall understand a phenomenon, i.e., something that can be
observed, i.e., be seen or touched by humans, or that can be conceived as an abstraction of an entity. We
further demand that an entity can be objectively described ⊙7

Analysis Prompt 1 . is entity: The domain analyser analyses “things” (θ ) into either entities or non-

entities. The method can thus be said to provide the domain analysis prompt:

• is entity — where is entity(θ)holds if θ is an entity ♦8

6 In a coloured version of this document the description prompts are coloured red and the analysis prompts are

coloured blue.
7 Definitions and examples are delimited by ⊙ respectively �
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A Triptych Manifest Domain Ontology
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Fig. 3.1. An Upper Ontology for Domains

Although “reasonably” precise, the definition of the concept of entity is still not precise enough for us to

formalise it. In Sect. 3.8.2 we attempt a series of formalisations of the analysis prompts. This is done on the

background of some formalisation (Sect. 3.6) of the ontology being unfolded in this section (i.e., Sect. 3.2).

A formalisation that covers the notion of phenomena and entities is not offered.

3.2.3 Endurants and Perdurants

Definition 24. Endurant: By an endurantwe shall understand an entity that can be observed or conceived
and described as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time
we would still be able to observe the entire endurant ⊙

Definition 25. Perdurant: By a perdurant we shall understand an entity for which only a fragment exists
if we look at or touch them at any given snapshot in time, that is, where we to freeze time we would only
see or touch a fragment of the perdurant ⊙

Analysis Prompt 2 . is endurant: The domain analyser analyses an entity, φ , into an endurant as

prompted by the domain analysis prompt:

• is endurant — e is an endurant if is endurant(e)9 holds.

is entity is a prerequisite prompt for is endurant ♦

Analysis Prompt 3 . is perdurant: The domain analyser analyses an entity φ into perdurants as

prompted by the domain analysis prompt:

• is perdurant — e is a perdurant if is perdurant(e)10 holds.

is entity is a prerequisite prompt for is perdurant ♦

8 Analysis prompt definitions and description prompt definitions and schemes are delimited by ♦ respectively ⊗.
9 We formalise is endurant in Sect. 3.8.2 on Page 107.

10 Since we do not cover perdurants in this paper we shall also refrain from trying to formalise this prompt.
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3.2.4 Discrete and Continuous Endurants

Definition 26. Discrete Endurant: By a discrete endurant we shall understand an endurant which is
separate, individual or distinct in form or concept ⊙

Definition 27. Continuous Endurant: By a continuous endurant we shall understand an endurant
which is prolonged, without interruption, in an unbroken series or pattern ⊙

Analysis Prompt 4 . is discrete: The domain analyser analyse endurants e into discrete entities as

prompted by the domain analysis prompt:

• is discrete — e is discrete if is discrete(e)11 holds ♦

Analysis Prompt 5 . is continuous: The domain analyser analyse endurants e into continuous entities

as prompted by the domain analysis prompt:

• is continuous — e is continuous if is continuous(e)12 holds ♦

3.2.5 Parts, Components and Materials

General

Definition 28. Part: By a part we shall understand a discrete endurant which the domain engineer chooses
to endow with internal qualities such as unique identification, mereology, and one or more attributes ⊙

Definition 29. Component: By a component we shall understand a discrete endurant which the domain
engineer chooses to not endow with internal qualities such as unique identification, mereology, and, even
perhaps no attributes ⊙

Definition 30. Material: By a material we shall understand a continuous endurant ⊙

Part, Component and Material Prompts

Analysis Prompt 6 . is part: The domain analyser analyse endurants e into part entities as prompted

by the domain analysis prompt:

• is part — e is a part if is part(e)13 holds ♦

Analysis Prompt 7 . is component: The domain analyser analyse endurants e into part entities as

prompted by the domain analysis prompt:

• is component — e is a component if is component(e)14 holds ♦

Analysis Prompt 8 . is material: The domain analyser analyse endurants e into material entities as

prompted by the domain analysis prompt:

• is material — e is a material if is material(e)15 holds ♦

There is no difference between is continuous and is material, that is is continuous≡ is material.
We shall henceforth use is material.

11 We formalise is discrete in Sect. 3.8.2 on Page 107.
12 We formalise is continuous in Sect. 3.8.2 on Page 107.
13 We formalise is part in Sect. 3.8.2 on Page 107.
14 We formalise is component in Sect. 3.8.2 on Page 107.
15 We formalise is material in Sect. 3.8.2 on Page 107.
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3.2.6 Atomic and Composite Parts

Definition 31. Atomic Part: Atomic parts are those which, in a given context, are deemed to not consist
of meaningful, separately observable proper sub-parts ⊙

A sub-part is a part ⊙

Definition 32. Composite Part: Composite parts are those which, in a given context, are deemed to
indeed consist of meaningful, separately observable proper sub-parts ⊙

Analysis Prompt 9 . is atomic: The domain analyser analyses a discrete endurant, i.e., a part p into

an atomic endurant:

• is atomic(p): p is an atomic endurant if is atomic(p)16 holds ♦

Analysis Prompt 10 . is composite: The domain analyser analyses a discrete endurant, i.e., a part p

into a composite endurant:

• is composite(p): p is a composite endurant if is composite(p)17 holds ♦

3.2.7 On Observing Part Sorts

Part Sort Observer Functions

Domain Description Prompt 1 . observe part sorts : If is composite(p) holds, then the analyser

“applies” the description language observer prompt

• observe part sorts(p)18

resulting in the analyser writing down the part sorts and part sort observers domain description text ac-

cording to the following schema:

8. observe part sorts(p:P) schema

Narration:

[s ] ... narrative text on sorts ...
[o ] ... narrative text on sort observers ...
[p ] ... narrative text on proof obligations ...

Formalisation:

type

[s ] P1, P2, ..., Pn

value

[o ] obs part Pi: P → Pi [1≤i≤m ]
proof obligation [Disjointness of part sorts ]
[p ] D

D is some predicate over P1, P2, ..., Pn. It expresses their disjointedness. is composite is a prerequisite
prompt of observe part sorts △

16 We formalise is atomic in Sect. 3.8.2 on Page 107.
17 We formalise is composite in Sect. 3.8.2 on Page 108.
18 We formalise observe part sorts in Sect. 3.8.3 on Page 109.
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On Discovering Concrete Part Types

Analysis Prompt 11 . has concrete type: The domain analyser may decide that it is expedient, i.e.,

pragmatically sound, to render a part sort, P, whether atomic or composite, as a concrete type, T. That

decision is prompted by the holding of the domain analysis prompt:

• has concrete type(p).19

is discrete is a prerequisite prompt of has concrete type ♦

Many possibilities offer themselves to model a concrete type as: either a set of abstract sorts, or a list of

abstract sorts, or any compound of such sorts. Without loss of generality we suggest, as concrete type, as

set of sorts. We have modeled many domains. So far, only the set concrete type has been needed.

Domain Description Prompt 2 . observe concrete type : Then the domain analyser applies the

domain description prompt:

• observe concrete type(p)20

to parts p:P which then yield the part type and part type observers domain description text according to the

following schema:

9. observe concrete type(p:P) schema

Narration:

[ t1 ] ... narrative text on types ...
[ t2 ] ... narrative text on types ...
[o ] ... narrative text on type observers ...

Formalisation:

type

[ t1 ] Q
[ t2 ] T = Q-set

value

[o ] obs part T: P → T

Q may be any part sort; has concrete type is a prerequisite prompt of observe part type △

External and Internal Qualities of Parts

By an external part quality we shall understand the is atomic, is composite, is discrete and

is continuous qualities. By an internal part quality we shall understand the part qualities to be out-

lined in the next sections: unique identification, mereology and attributes. By part qualities
we mean the sum total of external endurant and internal endurant qualities.

3.2.8 Unique Part Identifiers

We assume that all parts and components have unique identifiers. It may be, however, that we do not always

need to define such a part or component identifier.

Domain Description Prompt 3 . observe unique identifier : We can, however, always apply the

domain description prompt:

• observe unique identifier(pk)21

19 We formalise has concrete type in Sect. 3.8.2 on Page 108.
20 We formalise observe concrete type in Sect. 3.8.3 on Page 109.
21 We formalise observe unique identifier in Sect. 3.8.3 on Page 110.
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to parts, p:P, or components, k, resulting in the analyser writing down the unique identifier type and
observer domain description text according to the following schema:

10. observe unique identifier(pk:(P|K)) schema

Narration:

[s ] ... narrative text on unique identifier sort ...
[u ] ... narrative text on unique identifier observer ...
[a ] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s ] PI, KI
value

[u ] uid P: P → PI
[u ] uid K: K → KI
axiom

[a ] U

U is a predicate over part sorts and unique part identifier sorts, respectively component sorts and unique

component identifiers. The unique part (component) identifier sort, PI (KI), is unique △

3.2.9 Mereology

Part Mereology: Types and Functions

Analysis Prompt 12 . has mereology: To discover necessary, sufficient and pleasing “mereology-

hoods” the analyser can be said to endow a truth value true to the domain analysis prompt:

• has mereology.22

Domain Description Prompt 4 . observe mereology : If has mereology(p) holds for parts p of

type P, then the analyser can apply the domain description prompt:

• observe mereology(p)23

to parts of that type and write down the mereology types and observers domain description text according

to the following schema:

11. observe mereology(p:P) schema

Narration:

[ t ] ... narrative text on mereology type ...
[m ] ... narrative text on mereology observer ...
[a ] ... narrative text on mereology type constraints ...

Formalisation:

type

[ t ] MT = E (PI1,PI2,...,PIm)
value

[m ] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies ]
[a ] A

22 We formalise has mereology in Sect. 3.8.2 on Page 108.
23 We formalise observe mereology in Sect. 3.8.3 on Page 110.
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MT is a type expression over unique part identifiers. A is some predicate over unique part identifiers. The

PIi are unique part identifier types △

3.2.10 Part, Material and Component Attributes

Domain Description Prompt 5 . observe attributes : The domain analyser experiments, thinks

and reflects about attributes of endurants (parts p:P, components, k:K, or materials, m:M). That process

is initiated by the domain description prompt:

• observe part attributes(e).24

The result of that domain description prompt is that the domain analyser cum describer writes down

the attribute (sorts or) types and observers domain description text according to the following schema:

12. observe part attributes(e:(P|K|M)) schema

Narration:

[ t ] ... narrative text on attribute sorts ...
[o ] ... narrative text on attribute sort observers ...
[p ] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[ t ] A1, A2, ..., An

value

[o ] attr Ai:(P|K|M)→Ai [1≤i≤n ]
proof obligation [Disjointness of Attribute Types ]
[p ] A

The type (or rather sort) definitions: A1, A2, ..., An inform us that the domain analyser has decided to

focus on the distinctly named A1, A2, ..., An attributes.25 A is a predicate over attribute types A1, A2, ...,
An. It expresses their Disjointness △

3.2.11 Components

We now complement the observe part sorts (of Sect. 3.2.7). We assume, without loss of generality,

that only atomic parts may contain components. Let p:P be some atomic part.

Analysis Prompt 13 . has components: The domain analysis prompt:

• has components(p)26

yields true if atomic part p potentially contains components otherwise false ♦

Domain Description Prompt 6 . observe component sort : The domain description prompt:

• observe component sort(p)27

24 We formalise observe attributes in Sect. 3.8.3 on Page 110.
25 The attribute type names are not like type names of, for example, a programming language. Instead they are chosen

by the domain analyser to reflect on domain phenomena.
26 We formalise has components in Sect. 3.8.2 on Page 108.
27 We formalise observe component sort in Sect. 3.8.3 on Page 111.
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yields the part component sorts and component observers domain description text according to the follow-

ing schema:

13. observe component sort(p:P) schema

Narration:

[s ] ... narrative text on component sort ...
[o ] ... narrative text on component sort observer ...

Formalisation:

type

[s ] K
value

[o ] obs comps: P → K-set

Components have unique identifiers and attributes, but no mereology △

3.2.12 Materials

Only atomic parts may contain materials and materials may contain [atomic] parts.

Part Materials

Let p:P be some atomic part.

Analysis Prompt 14 . has material: The domain analysis prompt:

• has material(p)28

yields true if the atomic part p:P potentially contains a material otherwise false ♦

Domain Description Prompt 7 . observe material sorts : The domain description prompt:

• observe material sorts(p)29

yields the part material sort and material observer domain description text according to the following

schema:

14. observe material sorts(p:P) schema

Narration:

[s ] ... narrative text on material sort ...
[o ] ... narrative text on material sort observer ...

Formalisation:

type

[s ] M
value

[o ] obs mat M: P → M

△

28 We formalise has materials in Sect. 3.8.2 on Page 108.
29 We formalise observe material sorts in Sect. 3.8.3 on Page 110.
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Material Parts

Materials may contain parts. We assume that such parts are always atomic and always of the same sort.

Example: Pipe parts usually contain oil material. And that oil material may contain pigs which are parts

whose purpose it is to clean and inspect (i.e., maintain) pipes �

Analysis Prompt 15 . has parts: The domain analysis prompt:

• has parts(m)30

yields true if material m:M potentially contains parts otherwise false ♦

Domain Description Prompt 8 . observe material sorts : The domain description prompt:

• observe material sort(e)31

yields the material part sorts and material part observers domain description text according to the following

schema:

15. observe material sorts(m:M) schema

Narration:

[s ] ... narrative text on material part sort ...
[o ] ... narrative text on material part sort observer ...

Formalisation:

type

[s ] mP
value

[o ] obs mat mP: M → mP

△

3.2.13 Components and Materials

Experimental evidence32 appears to justify the following “limitations”: only atomic parts may contain

either at most one material, and always of the same sort, or a set of zero, one or more components, all of

the same sort; but not both; materials need not be characterised by unique identifiers; and components and

materials need not be endowed with mereologies.

3.2.14 Discussion

We have covered the analysis and description calculi for endurants. We omit covering analysis and descrip-

tion techniques and tools for perdurants.

3.3 Syntax and Semantics

3.3.1 Form and Content

Section 3.2 appears to be expressed in the syntax of the Raise [97] Specification Language, RSL [96]. But

it only “appears” so. When, in the “conventional” use of RSL, we apply meaning functions, we apply them

to syntactic quantities. In Sect. 3.2 the “meaning” functions are the analysis, a.–o., and description, [1]–[8],

prompts:

30 We formalise has parts in Sect. 3.8.2 on Page 108.
31 We formalise observe material part sort in Sect. 3.8.3 on Page 111.
32 — in the form of more than 20 medium-to-large scale domain models
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is atomic, 14, 86

is component, 13, 85

is composite, 14, 86

is continuous, 11, 85

is discrete, 11, 85

is endurant, 10, 84

is entity, 10, 83

is material, 13, 85

is part, 13, 85

is perdurant, 11, 84

and

observe attributes, 24, 89

observe component sorts, 27, 89

observe concrete type, 16, 87

observe material sorts, 29, 90, 91

observe mereology, 21, 88

observe part sorts, 15, 86

observe unique identifier, 19, 87

The quantities that these prompts are “applied to” are semantic ones, in effect, they are the “ultimate”

semantic quantities that we deal with: the real, i.e., actual domain entities ! The quantities that these prompts

“yield” are syntactic ones ! That is, we have “turned matters inside/out”. From semantics we “extract”

syntax. The arguments of the above-listed 23 prompts are domain entities, i.e., in principle, in-formalisable

things. Their types, typically listed as P, denote possibly infinite classes, P , of domain entities. When we

write P we thus mean P .

3.3.2 Syntactic and Semantic Types

When we, classically, define a programming language, we first present its syntax, then it semantics. The lat-

ter is presented as two – or three – possibly interwoven texts: the static semantics, i.e., the well-formedness

of programs, the dynamic semantics, i.e., the mathematical meaning of programs — with a corresponding

proof system being the “third texts”. We shall briefly comment on the ideas of static and dynamic seman-

tics. In designing a programming language, and therefore also in narrating and formalising it, one is well

advised in deciding first on the semantic types, then on the syntactic ones. With describing [f.ex., manifest]

domains, matters are the other way around: The semantic domains are given in the form of the endurants

and perdurants; and the syntactic domains are given in the form that we, the humans of the domain, men-

tion in our speech acts [166, 7]. That is, from a study of actual life domains, we extract the essentials that

speech acts deal with when these speech acts are concerned with performing or talking about entities in

some actual world.

3.3.3 Names and Denotations

Above, we may have been somewhat cavalier with the use of names for sorts and names for their meaning.

Being so, i.e., “cavalier”, is, unfortunately a “standard” practice. And we shall, regrettably, continue to

be cavalier, i.e., “loose” in our use of names of syntactic “things” and names for the denotation of these

syntactic “things”. The context of these uses usually makes it clear which use we refer to: a syntactic use

or a semantic one. As from Sect. 3.6 we shall be more careful distinguishing clearly between the names of

sorts and the values of sorts, i.e., between syntax and semantics.

3.4 A Model of the Domain Analysis & Description Process

3.4.1 Introduction

A Summary of Prompts

In Sect. 3.3.1 we listed the two classes of prompts: the domain [endurant] analysis prompts: and the

domain [endurant] description prompts: These prompts are “imposed” upon the domain by the domain

analyser cum describer. They are “figuratively” applied to the domain. Their orderly, sequenced applica-

tion follows the method hinted at in the previous section, detailed in [49, Manifest Domains: Analysis &
Description]. This process of application of prompts will be expressed in a pseudo-formal notation in this

section. The notation looks formal but since we have not formalised these prompts it is only pseudo-formal.

We formalise these prompts in Sect. 3.8.
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3.4 A Model of the Domain Analysis & Description Process 93

Preliminaries

Let P be a sort, that is, a collection of endurants. By P we shall understand both a syntactic quantity:

the name of P, and a semantic quantity, the type (of all endurant values of type) P. By ιp:P we shall un-

derstand a semantic quantity: an (arbitrarily selected) endurant in P. To guide our analysis & description

process we decompose it into steps. Each step “handles” a part sort p:P or a material sort m:M or a compo-

nent sort k:K. Steps handling discovery of composite part sorts generates a set of part sort names P1, P2,
. . . , Pn:PNm. Steps handling discovery of atomic part sorts may generate a material sort name, m:MNm,

or component sort name, k:KNm. The part, material and component sort names are put in a reservoir for

sorts to be inspected. Once handled, the sort name is removed from that reservoir. Handling of material

sorts besides discovering their attributes may involve the discovery of further part sorts — which we as-

sume to be atomic. Each domain description prompt results in domain specification text (here we show

only the formal texts, not the narrative texts) being deposited in the domain description reservoir, a global

variable τ . We do not formalise this text. Clauses of the form observe XXX(p), where XXX ranges over

part sorts, concrete type, unique identifier, mereology, part attributes, part compo-

nent sorts, part material sorts, and material part sorts, stand for ′′text′′ generating func-

tions. They are defined in Sect. 3.8.3.

Initialising the Domain Analysis & Description Process

We remind the reader that we are dealing only with endurant domain entities. The domain analysis ap-

proach covered in Sect. 3.2 was based on decomposing an understanding of a domain from the “overall

domain” into its components, and these, if not atomic, into their sub-domains. So we need to initialise the

domain analysis & description process by selecting (or choosing) the domain ∆ . Here is how we think of

that “initialisation” process. The domain analyser & describer spends some time focusing on the domain,

maybe at the “white board”33, rambling, perhaps in an un-structured manner, across its domain, ∆ , and its

sub-domains. Informally jotting down more-or-less final sort names, building, in the domain analyser &

describer’s mind an image of that domain. After some time doing this the domain analyser & describer is

ready. An image of the domain includes the or a domain endurant, δ :∆ . Let ∆nm be the name of the sort

∆ . That name may be either a part sort name, or a material sort name, or a component sort name.

3.4.2 A Model of the Analysis & Description Process

A Process State

91 Let Nm denote either a part or a material or a component sort name.

92 A global variable αps will accumulate all the sort names being discovered.

93 A global variable νps will hold names of sorts that have been “discovered”, but have yet to be analysed

& described.

type

91. Nm = PNm | MNm | KNm
variable

92. αps := [∆nm ] type Nm-set

93. νps := [∆nm ] type Nm-set

We shall explain the use of [...]s and operations on the above variables in Sect. 3.4.3 on Page 96. Each iter-

ation of the “root” function, analyse and describe endurant sort(Nm,nι:nm), as we shall call it, involves

the selection of a sort (value) (which is that of either a part sort or a material sort) with this sort (value)

then being removed.

94 The selection occurs from the global state component νps (hence: ()) and changes that state (hence

Unit).

33 Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow “post-it” stickers, or it could be

an electronic conference “gadget”.
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94 3 Manifest Domains: Formal Models of Processes and Prompts

value

94. sel and rem Nm: Unit → Nm
94. sel and rem Nm() ≡ let nm:Nm • nm ∈ νps in νps := νps \ {nm} ; nm end; pre: νps 6= {}

A Technicality

95 The main analysis & description functions of the next sections, except the “root” function, are all

expressed in terms of a pair, (nm,val):NmVAL, of a sort name and an endurant value of that sort.

type

95. NmVAL = (PNm×PVAL) | (MNm×MVAL) | (KNm×KVAL)

Analysis & Description of Endurants

96 To analyse and describe endurants means to first

97 examine those endurants which have yet to be so analysed and described

98 by selecting (and removing from νps) a yet un-examined sort nm;

99 then analyse and describe an endurant entity (ι:nm) of that sort — this analysis, when applied to

composite parts, leads to the insertion of zero34 or more sort names35.

As was indicated in Sect. 3.2, the mereology of a part, if it has one, may involve unique identifiers of any

part sort, hence must be done after all such part sort unique identifiers have been identified. Similarly for

attributes which also may involve unique identifiers,

100 then, if it has a mereology,

101 to analyse and describe the mereology of each part sort,

102 and finally to analyse and describe the attributes of each sort.

value

96. analyse and describe endurants: Unit → Unit

96. analyse and describe endurants() ≡
97. while ∼is empty(νps) do

98. let nm = sel and rem Nm() in

99. analyse and describe endurant sort(nm,ι:nm) end end ;
100. for all nm:PNm • nm ∈ αps do if has mereology(nm,ι:nm)36

101. then observe mereology(nm,ι:nm)37 end end

102. for all nm:Nm • nm ∈ αps do observe attributes(nm,ι:nm)38 end

The ι:nm of Items 99, 100, 101 and 102 are crucial. The domain analyser is focused on (part or material or

component) sort nm and is “directed” (by those items) to choose (select) an endurant (a part or a material

or component) ι:nm of that sort.

103 To analyse and describe an endurant

104 is to find out whether it is a part. If so then it is

to analyse and describe it.

105 If it instead is a material, then to analyse and

describe it as a material.

106 If it instead is a component, then to analyse and

describe it as a component.

34 If the sub-parts of ι :nm are all either atomic and have no materials or components or have already been analysed,

then no new sort names are added to the repository νps).
35 These new sort names are then “picked-up” for sort analysis &c. in a next iteration of the while loop.
38 We formalise has mereology in Sect. 3.8.2 on Page 108.
38 We formalise observe mereology in Sect. 3.8.3 on Page 110.
38 We formalise observe attributes in Sect. 3.8.3 on Page 110.
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value

103. analyse and describe endurant sort: NmVAL → Unit

103. analyse and describe endurant sort(nm,val) ≡
104. is part(nm,val)39 →40 analyse and describe part sorts(nm,val),
105. is material(nm,val)41 → observe material part sort(nm,val)42,
106. is component(nm,val)43 → observe component sort(nm,val)44

107 The analysis and description of a part

108 first describe its unique identifier.

109 If the part is atomic it is analysed and described

as such;

110 If composite it is analysed and described as

such.

111 Part p must be discrete.

value

107. analyse and describe part sorts: NmVAL → Unit

107. analyse and describe part sorts(nm,val) ≡
108. observe unique identifier(nm,val)45;
109. is atomic(nm,val)46→ analyse and describe atomic part(nm,val),
110. is composite(nm,val)47→ analyse and describe composite parts(nm,val)
111. pre: is discrete(nm,val)48

112 To analyse and describe an atomic part is to inquire whether

a it embodies materials, then we analyse and describe these;

b and if it further has components, then we describe their sorts.

value

112. analyse and describe atomic part: NmVAL → Unit

112. analyse and describe atomic part(nm,val) ≡
112a. if has material(nm,val)49 then observe part material sort(nm,val)50 end ;
112b. if has components(nm,val)51 then observe part component sort(nm,val)52 end

113 To analyse and describe a composite endurant of sort nm (and value val)
114 is to analyse if the sort has a concrete type

115 then we analyse and describe that concrete sort type

116 else we analyse and describe the abstract sort.

44 We formalise is part in Sect. 3.8.2 on Page 107.
44 The conditional clause: cond1→clau1,cond2→clau2,...,condn→claun

is same as if cond1 then clau1 else if cond2 then clau2 else ... if condn then claun end end ... end .
44 We formalise is material in Sect. 3.8.2 on Page 107.
44 We formalise observe material part sort in Sect. 3.8.3 on Page 111.
44 We formalise is component in Sect. 3.8.2 on Page 107.
44 We formalise observe component sort in Sect. 3.8.3 on Page 111.
48 We formalise observe unique identifier in Sect. 3.8.3 on Page 110.
48 We formalise is atomic in Sect. 3.8.2 on Page 107.
48 We formalise is composite in Sect. 3.8.2 on Page 108.
48 We formalise is discrete in Sect. 3.8.2 on Page 107.
52 We formalise has material in Sect. 3.8.2 on Page 108.
52 We formalise observe part material sort in Sect. 3.8.3 on Page 110.
52 We formalise has components in Sect. 3.8.2 on Page 108.
52 We formalise observe part component sort in Sect. 3.8.3 on Page 111.
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value

113. analyse and describe composite endurant: NmVAL → Unit

113. analyse and describe composite endurant(nm,val) ≡
114. if has concrete type(nm,val)53

115. then observe concrete type(nm,val)54

116. else observe abstract sorts(nm,val)55

114. end

113. pre is composite(nm,val)56

We do not associate materials or components with composite parts.

3.4.3 Discussion of The Process Model

The above model lacks a formal understanding of the individual prompts as listed in Sect. 3.4.1; such an

understanding is attempted in Sect. 3.8.

Termination

The sort name reservoir νps is “reduced” by one name in each iteration of the while loop of the anal-
yse and describe endurants, cf. Item 98 on Page 94, and is augmented by new part, material and compo-

nent sort names in some iterations of that loop. We assume that (manifest) domains are finite, hence there

are only a finite number of domain sorts. It remains to (formally) prove that the analysis & description

process terminates.

Axioms and Proof Obligations

We have omitted, from Sect. 3.2, treatment of axioms concerning well-formedness of parts, materials and

attributes and proof obligations concerning disjointedness of observed part and material sorts and attribute

types. [49] exemplifies axioms and sketches some proof obligations.

Order of Analysis & Description: A Meaning of ‘⊕’

The variables αps, νps and τ can be defined to hold either sets or lists. The operator ⊕ can be thought of

as either set union (∪ and [...]≡{...}) — in which case the domain description text in τ is a set of domain

description texts — or as list concatenation (̂ and [...]≡〈...〉) of domain description texts. The list operator

ℓ1 ⊕ ℓ2 now has at least two interpretations: either ℓ1̂ℓ2 or ℓ2̂ℓ1. Thus, in the case of lists, the ⊕, i.e.,

,̂ does not (suffix or prefix) append ℓ2 elements already in ℓ1. The sel and rem Nm function on Page 94

applies to the set interpretation. A list interpretation is:

value

98. sel and rem Nm: Unit → Nm
98. sel and rem Nm() ≡ let nm = hd ν ps in ν ps := tl ν ps; nm end; pre: νps 6=<>

In the first case (ℓ1̂ℓ2) the analysis and description process proceeds from the root, breadth first, In the

second case (ℓ2̂ℓ1) the analysis and description process proceeds from the root, depth first. .

53 We formalise has concrete type in Sect. 3.8.2 on Page 108.
53 We formalise observe concrete type in Sect. 3.8.3 on Page 109.
53 We formalise observe part sorts in Sect. 3.8.3 on Page 109.
53 We formalise is composite in Sect. 3.8.2 on Page 108.
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Laws of Description Prompts

The domain ‘method’ outlined in the previous section suggests that many different orders of analysis &

description may be possible. But are they ? That is, will they all result in “similar” descriptions ? If, for

example, Da and Db are two domain description prompts where Da and Db can be pursued in any order

will that yield the same description ? And what do we mean by ‘can be pursued in any order’, and ‘same

description’ ? Let us assume that sort P decomposes into sorts Pa and Pb (etcetera). Let us assume that the

domain description prompt Da is related to the description of Pa and Db to Pb. Here we would expect Da

and Db to commute, that is Da;Db yields same result as does Db;Da. In [37] we made an early exploration

of such laws of domain description prompts. To answer these questions we need a reasonably precise model

of domain prompts. We attempt such a model in Sect. 3.8. But we do not prove theorems.

3.5 A Domain Analyser’s & Describer’s Domain Image

Assumptions: We assume that the domain analysers cum describers are well educated and well trained

in the domain analysis & description techniques such as laid out in [49]. This assumption entails that the

domain analysis & description development process is structured in sequences of alternating (one or more)

analysis prompts and description prompts. We refer to Footnote 3 (Page 81) as well as to the discussion,

“Towards a methodology of manifest domain analysis & description” of [49, Sect. 1.6]. We further assume

that the domain analysers cum describers makes repeated attempts to analyse & describe a domain. We

assume, further, that it is “the same domain” that is being analysed & described – two, three or more times,

“all-over”, before commitment is made to attempt a – hopefully – final analysis & description54, from

“scratch”, that is, having “thrown away”, previous drafts55. We then make the further assumption, as this

iterative analysis & description process proceeds, from iteration i to i+1, that each and all members of the

analysis & description group are forming, in their minds (i.e., brains) an “image” of the domain being anal-

ysed. As iterations proceed one can then say that what is being analysed & described increasingly becomes

this ‘image’ as much as it is being the domain — which we assume is not changing across iterations. The

iterated descriptions are now postulated to converge: a “final” iteration “differs” only “immaterially.” from

the description of the “previous” iteration.

• • •

The Domain Engineer’s Image of Domains: In the opening (‘Assumptions’) of this section, i.e.,

above, we hinted at “an image”, in the minds of the domain analysers & describers, of the domain being

researched and for which a description document is being engineered. In this paragraph we shall analyse

what we mean by such a image. Since the analysis & description techniques are based on applying the

analysis and description prompts (reviewed in Sect. 3.2) we can assume that the image somehow relates to

the ‘ontology’ of the domain entities, whether endurants or perdurants, such as graphed in Fig. 3.1. Rather

than further investigating (i.e., analysing / arguing) the form of this, until now, vague notion, we simply

conjecture that the image is that of an ‘abstract syntax of domain types’.

• • •

The Iterative Nature of The Description Process: Assume that the domain engineers are analysing

& describing a particular endurant; that is, as we shall understand it, are examining a given endurant node

in the domain description tree ! The domain description tree is defined by the facts that composite parts

have sub-parts which may again be composite (tree branches), ending with atomic parts (the leaves of the

tree) but not “circularly”, i.e. recursively ⊙
To make this claim: the domain analysers cum describers are examining a given endurant node in the

domain description tree amounts to saying that the domain engineers have in their mind a reasonably
“stable” “picture” of a domain in terms of a domain description tree.

54 – and if that otherwise planned, final analysis & description is not satisfactory, then yet one more iteration is taken.
55 It may be useful, though, to keep a list of the names of all the endurant parts and their attribute names, should the

group members accidentally forget such endurants and attributes: at least, if they do not appear in later document

iterations, then it can be considered a deliberate omission.
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98 3 Manifest Domains: Formal Models of Processes and Prompts

We need explain this assumption. In this assumption there is “buried” an understanding that the domain

analysers cum describers during the — what we can call “the final” — domain analysis & description

process, that leads to a “deliverable” domain description, are not investigating the domain to be described

for the first time. That is, we certainly assume that any “final” domain analysis & description process has

been preceded by a number of iterations of “trial” domain analysis & description processes.

Hopefully this iteration of experimental domain analysis & description processes converges. Each iter-

ation leads to some domain description, that is, some domain description tree. A first iteration is thus based

on a rather incomplete domain description tree which, however, “quickly” emerges into a less incomplete

one in that first iteration. When the domain engineers decide that a “final” iteration seems possible then

a “final” description emerges If acceptable, OK, otherwise yet an “final” iteration must be performed.

Common to all iterations is that the domain analysers cum describers have in mind some more-or-less

“complete” domain description tree and apply the prompts introduced in Sect. 3.4.

3.6 Domain Types

There are two kinds of types associated with domains: the syntactic types of endurant descriptions, and the

semantic types of endurant values.

3.6.1 Syntactic Types: Parts, Materials and Components

In this section we outline an ‘abstract syntax of domain types’. In Sect. 3.6.1 we introduce the concept

of sort names. Then, in Sects. 3.6.1–3.6.1, we describe the syntax of part, material and component types.

Finally, in Sects. 3.6.1–3.6.1, we analyse this syntax with respect to a number of well-formedness criteria.

Syntax of Part, Material and Component Sort Names

117 There is a further undefined sort, N, of tokens (which we shall consider atomic and the basis for forming

names).

118 From these we form three disjoint sets of sort names:

a part sort names,

b material sort names and

c component sort names,

117 N
118a PNm :: mkPNm(N)
118b MNm :: mkMNm(N)
118c KNm :: mkKNm(N)

An Abstract Syntax of Domain Endurants

119 We think of the types of parts, materials and

components to be a map from their type names

to respective type expressions.

120 Thus part types map part sort names into part

types;

121 material types map material sort names into ma-

terial types; and

122 component types map components sort names

into component types.

123 Thus we can speak of endurant types to be ei-

ther part types or material types or component

types.

124 A part type expression is either an atomic part

type expression or is a composite part type ex-

pression or is a concrete composite part type ex-

pression.

125 An atomic part type expression consists of a

type expression for the qualities of the atomic
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part and, optionally, a material type name or a

component type name (cf. Sect. 3.2.13).

126 An abstract composite part type expression con-

sists of a type expression for the qualities of the

composite part and a finite set of one or more

part type names.

127 A concrete composite part type expression con-

sists of a type expression for the qualities of the

part and a part sort name standing for a set of

parts of that sort.

128 A material part type expression consists of of a

type expression for the qualities of the material

and an optional part type name.

129 We omit consideration of component types.

Endurants: Syntactic Types

119 TypDef = PTypes ∪ MTypes ∪ KTypes
120 PTypes = PNm →m PaTyp
121 MTypes = MNm →m MaTyp
122 KTypes = KNm →m KoTyp
123 ENDType = PaTyp | MaTyp | KoTyp
124 PaTyp == AtPaTyp | AbsCoPaTyp | ConCoPaTyp
125 AtPaTyp :: mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm))
126 AbsCoPaTyp :: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set)
126 axiom ∀ mkAbsCoPaTyp(pq,pns):AbsCoPaTyp • pns 6= {}
127 ConCoPaTyp :: mkConCoPaTyp(s qs:PQ,s p:PNm)
128 MaTyp :: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm))
129 KoTyp :: mkKoTyp(s qs:KQ)

Quality Types

130 There are three aspects to part qualities: the type

of the part unique identifiers, the type of the part

mereology, and the name and type of attributes.

131 The type unique part identifiers is a not further

defined atomic quantity.

132 A part mereology is either "nil" or it is an ex-

pression over part unique identifiers, where such

expressions are those of either simple unique

identifier tokens, or of set, or otherwise over

simple unique identifier tokens, or ..., etc.

133 The type of attributes pairs distinct attribute

names with attribute types —

134 both of which we presently leave further unde-

fined.

135 Material attributes is the only aspect to material

qualities.

136 Components have unique identifiers. Compo-

nent attribute types are left undefined.

Qualities: Syntactic Types

130 PQ = s ui:UI×s me:ME×s atrs:ATRS}
131 UI
132 ME == “nil”|mkUI(s ui:UI)|mkUIset(s uil:UI)|...
133 ATRS = ANm →m ATyp
134 ANm, ATyp
135 MQ = s atrs:ATRS
136 KQ = s uid:UI × s atrs:ATRS

It is without loss of generality that we do not distinguish between part and material attribute names and

types. Material and component attributes do not refer to any part or any other material and component

attributes.

Well-formed Syntactic Types

Well-formed Definitions
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137 We need define an auxiliary function, names,
which, given an endurant type expression,

yields the sort names that are referenced imme-

diately by that type.

a If the endurant type expression is that of an

atomic part type then the sort name is that

of its optional component sort.

b If an abstract composite part type then the

sort names of its parts.

c If a concrete composite part type then the

sort name is that of the sort of its set of

parts.

d If a material type then sort name is that of

the sort of its optional parts.

e Component sorts have no references to

other sorts.

value

137. names: TypDef → (PNm|MNm|KNm) → (PNm|MNm|KNm)-set

137. names(td)(n) ≡
137. ∪ { ns | ns:(PNm|MNm|KNm)-set •

137. case td(n) of

137a. mkAtPaTyp( ,n′) → ns={n′},
137b. mkAbsCoPaTyp( ,ns′) → ns=ns′,
137c. mkConCoPaTyp( ,pn) → ns={pn},
137d. mkMaTyp( ,n′) → ns={n′},
137e. mkKoTyp( ) → ns={}
137. end }

138 Endurant sort names being referenced in part types, PaTyp, in material types, MaTyp, and in compo-

nent types, KoTyp, of the typdef:Typdef definition, must be defined in the defining set, dom typdef,
of the typdef:Typdef definition.

value

138. wf TypDef 1: TypDef → Bool

138. wf TypDef 1(td) ≡ ∀ n:(PNm|MNm|CNm)•n ∈ dom td ⇒ names(td)(n)⊆dom td

Perhaps Item 138. should be sharpened:

139 from “must be defined in” [138.] to “must be equal to” :

139. ∧ ∀ n:(PNm|MNm|CNm) • n ∈ dom td ⇒ names(td)(n)=dom td

No Recursive Definitions

140 Type definitions must not define types recursively.

a A type definition, typdef:TypDef, defines, typically composite part sorts, named, say, n, in terms

of other part (material and component) types. This is captured in the

• mncs (Item 125),

• pns (Item 126),

• p (Item 127) and

• pns (Item 128),

selectable elements of respective type definitions. These elements identify type names of materials

and components, parts, a part, and parts, respectively. None of these names may be n.

b The identified type names may further identify type definitions none of whose selected type names

may be n.

c And so forth.

value

140. wf TypDef 2: TypDef → Bool

140. wf TypDef 2(typdef) ≡ ∀ n:(PNm|MNm)• n ∈ dom typdef ⇒ n 6∈ type names(typdef)(n)
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140a. type names: TypDef → (PNm|MNm) → (PNm|MNm)-set

140a. type names(typdef)(nm) ≡
140b. let ns = names(typdef)(nm) ∪ { names(typdef)(n) | n:(PNm|MNm) • n ∈ ns } in

140c. nm 6∈ ns end

ns is the least fix-point solution to the recursive definition of ns.

3.6.2 Semantic Types: Parts, Materials and Components

Part, Material and Component Values

We define the values corresponding to the type definitions of Items 117.–136, structured as per type defini-

tion Item 123 on Page 98.

141 An endurant value is either a part value, a mate-

rial values or a component value.

142 A part value is either the value of an atomic part,

or of an abstract composite part, or of a concrete

composite part.

143 A atomic part value has a part quality value and,

optionally, either a material or a possibly empty

set of component values (cf. Sect. 3.2.13).

144 An abstract composite part value has a part

quality value and of at least (hence the axiom)

of

145 one or more (distinct part type) part values.

146 A concrete composite part value has a part qual-

ity value and a set of part values.

147 A material value has a material quality value (of

material attributes) and a (usually empty) finite

set of part values.

148 A component value has a component quality

value (of a unique identifier and component at-

tributes).

Endurant Values: Semantic Types

141 ENDVAL = PVAL | MVAL | KVAL
142 PVAL == AtPaVAL|AbsCoPVAL|ConCoPVAL
143 AtPaVAL :: mkAtPaVAL(s qval:PQVAL,s omkvals:({|”nil”|}|MVAL|KVAL-set))
144 AbsCoPVAL :: mkAbsCoPaVAL(s qval:PQVAL,s pvals:(PNm→m PVAL))
145 axiom ∀ mkAbsCoPaVAL(pqs,ppm):AbsCoPVAL • ppm 6= [ ]
146 ConCoPVAL :: mkConCoPaVAL(s qval:PQVAL,s pvals:PVAL-set)
147 MVAL :: mkMaVAL(s qval:MQVAL,s pvals:PVAL-set)
148 KVAL :: mkKoVAL(s qval:KQVAL)

Quality Values

149 A part quality value consists of three qualities:

150 a unique identifier type name, resp. value, which

are both further undefined (atomic value) to-

kens;

151 a mereology expression, resp. value, which is

either a single unique identifier (type, resp.)

value, or a set of such unique identifier (types,

resp.) values, or ...; and

152 an aggregate of attribute values, modeled here

as a map from attribute type names to attribute

values.

153 In this paper we leave attribute type names and

attribute values further undefined.

154 A material quality value consists just of an ag-

gregate of attribute values, modeled here as a

map from attribute type names to attribute val-

ues.

155 A component quality value consists of a pair: a

unique identifier value and an aggregate of at-

tribute values, modeled here as a map from at-

tribute type names to attribute values.
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Qualities: Semantic Types

149 PQVAL = UIVAL×MEVAL×ATTRVALS
150 UIVAL
151 MEVAL == mkUIVAL(s ui:UIVAL)|mkUIVALset(s uis:UIVAL-set)|...
152 ATTRVALS = ANm→m AVAL
153 ANm, AVAL
154 MQVAL = ATTRVALS
155 KQVAL = UIVAL×ATTRVALS

We have left to define the values of attributes. For each part and material attribute value we assume a finite

set of values. And for each unique identifier type (i.e., for each UI) we likewise assume a finite set of

unique identifiers of that type. The value sets may be large. These assumptions help secure that the set of

part, material and component values are also finite.

Type Checking

For part, material and component qualities we postulate an overloaded, simple type checking function,

type of, that applies to unique identifier values, uiv:UIVAL, and yield their unique identifier type name,

ui:UI, to mereology values, mev:MEVAL, and yield their mereology expression, me:ME, and to attribute

values,AVAL andATTRSVAL, and yield their types:ATyp, respectively (ANm→m AVAL)→(ANm→m ATyp).
Since we have let undefined both the syntactic type of attributes types, ATyp, and the semantic type of at-

tribute values, AVAL, we shall leave type of further unspecified.

value type of: (UIVAL→UI)|(MEVAL→ME)|(AVAL→ATyp)|((ANm→m AVAL)→(ANm→m ATyp))

The definition of the syntactic type of attributes types, ATyp, and the semantic type of attribute values,

AVAL, is a simple exercise in a first-year programming language semantics course.

3.7 From Syntax to Semantics and Back Again !

The two syntaxes of the previous section: that of the syntactic domains, formula Items 117–136 (Pages 98–

99), and that of the semantic domains, formula Items 141–155 (Pages 101–101), are not the syntaxes of

domain descriptions, but of some aspects common to all domain descriptions developed according to the

calculi of this paper. The syntactic domain formulas underlie (“are common to”, i.e., “abstracts”) aspects

of all domain descriptions. The semantic domain formulas underlay (“are common to”, i.e., “abstracts”)

aspects of the meaning of all domain descriptions. These two syntaxes, hence, are, so-to-speak, in the minds

of the domain engineer (i.e., the analyser cum describer) while analysing the domain.

3.7.1 The Analysis & Description Prompt Arguments

The domain engineer analyse & describe endurants on the basis of a sort name i.e., a piece of syntax,

nm:Nm, and an endurant value, i.e. a “piece” of semantics, val:VAL, that is, the arguments, (nm,ι:nm), of

the analysis and description prompts of Sect. 3.4. Those two quantities are what the domain engineer are

“operating” with, i.e., are handling: One is tangible, i.e. can be noted (i.e., “scribbled down”), the other

is “in the mind” of the analysers cum describers. We can relate the two in terms of the two syntaxes, the

syntactic types, and the meaning of the semantic types. But first some “preliminaries”.

3.7.2 Some Auxiliary Maps: Syntax to Semantics and Semantics to Syntax

We define two kinds of map types:

156 Nm to ENDVALS are maps from endurant sort names to respective sets of all corresponding endurant

values of, and

157 ENDVAL to Nm are maps from endurant values to respective sort names.
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type

156. Nm to ENDVALS = (PNm→m PVAL-set)∪(MNm→m MVAL-set)∪(KNm→m KVAL-set)
157. ENDVAL to Nm = (PVAL→m PNm )∪(MVAL→m MNm)∪(KVAL→m KNm)

We can derive values of these map types from type definitions:

158 a function, typval, from type definitions, typdef:TypDef to Nm to ENDVALS, and

159 a function valtyp, from Nm to ENDVALS, to ENDVAL to Nm.

value

158. typval: TypDef
∼
→ Nm to ENDVALS

159. valtyp: Nm to ENDVALS
∼
→ ENDVAL to Nm

160 The typval function is defined in terms of a meaning functionM (let ρ :ENV abbreviateNm to ENDVALS:

160. M: (PaTyp→ENV
∼
→PVAL-set)|(MaTyp→ENV

∼
→MVAL-set)|(KoTyp→ENV

∼
→KVAL-set)

158. typval(td) ≡ let ρ = [n 7→M(td(n))(ρ)|n:(PNm|MNm|KNm)•n ∈ dom td ] in ρ end

159. valtyp(ρ) ≡ [v7→n|n:(PNm|MNm|CNm),v:(PVAL|MVAL|KVAL)•n ∈ dom ρ∧v ∈ ρ(n) ]

The environment, ρ , of typval, Item 158, is the least fix point of the recursive equation

• 158. let ρ = [n 7→M(td(n))(ρ)|n:(PNm|MNm|CNm)•n ∈ dom td ] in ...

The M function is defined next.

3.7.3 M: A Meaning of Type Names

Preliminaries

The typval function provides for a homomorphic image fromTypDef to TypNm to VALS. So, the narrative

below, describes, item-by-item, this image. We refer to formula Items 158 and 160. The definition of M is

decomposed into five sub-definitions, one for each kind of endurant type:

• Atomic parts: mkAtPaTyp(s qs:(UI×ME×ATRS),s omkn:({|”nil”|}|MNn|KNm)), Items 161;

• Abstract composite parts: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set), 162 on the next page;

• Concrete composite parts: mkConCoPaTyp(s qs:PQ,s p:PNm), Items 163 on the following page;

• Materials: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm)), Items 164 on Page 105; and

• Components: mkKoTyp(s qs:KQ), Items 165 on Page 105.

We abbreviate, by ENV, the M function argument, ρ , of type: Nm to ENDVALS.

Atomic Parts

161 The meaning of an atomic part type expression,

Item 125. mkAtPaTyp((ui,me,attrs),omkn)
in mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm)),
is the set of all atomic part values,

Items 143., 149., 152. mkAtPaVAL((uiv,mev,attrvals),omkval)
in mkAtPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),

s omkvals:({|”nil”|}|MVAL|KVAL-set)).
a uiv is a value in UIVAL of type ui,
b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d omkvals is a value in ({|”nil”|}|MVAL|KVAL-set):
i either ’’nil’’,
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ii or one material value of type MNm,

iii or a possibly empty set of component values, each of type KNm.

161. M: mkAtPaTyp((UI×ME×(ANm→m ATyp))×({|”nil”|}|MVAL|KVAL-set))→ENV
∼
→PVAL-set

161. M(mkAtPaTyp((ui,me,attrs),omkn))(ρ) ≡
161. { mkATPaVAL((uiv,mev,attrval),omkvals) |
161a. uiv:UIVAL•type of(uiv)=ui,
161b. mev:MEVAL•type of(mev)=me,
161c. attrval:(ANm→m AVAL)•type of(attrval)=attrs,
161d. omkvals: case omkn of

161(d)i. ”nil” → ”nil”,
161(d)ii. mkMNn( ) → mval:MVAL•type of(mval)=omkn,
161(d)iii. mkKNm( ) → kvals:KVAL-set•kvals⊆{kv|kv:KVAL•type of(kval)=omkn}
161d. end }

Formula terms 161a–161(d)iii express that any applicable uiv is combined with any applicable mev is

combined with any applicable attrval is combined with any applicable omkvals.

Abstract Composite Parts

162 The meaning of an abstract composite part type expression,

Item 126. mkAbsCoPaTyp((ui,me,attrs),pns)
in mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set),
is the set of all abstract, composite part values,

Items 144., 149., 152., mkAbsCoPaVAL((uiv,mev,attrvals),pvals)
in mkAbsCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),s pvals:(PNm→m PVAL)).

a uiv is a value in UIVAL of type ui: UI,
b mev is a value in MEVAL of type me: ME,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d pvals is a map of part values in (PNm→m PVAL), one for each name, pn:PNm, in pns such that

these part values are of the type defined for pn.

162. M: mkAbsCoPaTyp((UI×ME×(ANm→m ATyp)),PNm-set) → ENV
∼
→ PVAL-set

162. M(mkAbsCoPaTyp((ui,me,attrs),pns))(ρ) ≡
162. { mkAbsCoPaVAL((uiv,mev,attrvals),pvals) |
162a. uiv:UIVAL•type of(uiv)=ui
162b. mev:MEVAL•type of(mev)=me,
162c. attrvals:(ANm→m ATyp)•type of(attrsval)=attrs,
162d. pvals:(PNm→m PVAL)•pvals∈{[pn 7→pval|pn:PNm,pval:PVAL•pn∈ pns∧pval∈ρ(pn) ]} }

Concrete Composite Parts

163 The meaning of a concrete composite part type expression, Item 127.

mkConCoPaTyp((ui,me,attrs),pn)
in mkConCoPaTyp(s qs:(UI×ME×(ANm→m ATyp)),s pn:PNm),
is the set of all concrete, composite set part values,

Item 146. mkConCoPaVAL((uiv,mev,attrvals),pvals)
in mkConCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),s pvals:PVAL-set).

a uiv is a value in UIVAL of type ui,
b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type attrs, and

d pvals is a[ny] value in PVAL-set where each part value in pvals is of the type defined for pn.
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163. M: mkConCoPaTyp((UI×ME×(ANm→m ATyp))×PNm) → ENV
∼
→ PVAL-set

163. M(mkConCoPaTyp((ui,me,attrs),pn))(ρ) ≡
163. { mkConCoPaVAL((uiv,mev,attrvals),pvals) |
163a. uiv:UIVAL•type of(uiv)=ui,
163b. mev:MEVAL•type of(mev)=me,
163c. attrsval:(ANm→m AVAL)•type of(attrsval)=attrs,
163d. pvals:PVAL-set•pvals⊆ρ(pn) }

Materials

164 The meaning of a material type, 128.,

expression mkMaTyp(mq,pn) in mkMaTyp(s qs:MQ,s pn:PNm)
is the set of values mkMaVAL(mqval,ps)
in mkMaVAL(s qval:MQVAL,s pvals:PVAL-set) such that

a mqval in MQVAL is of type mq, and

b ps is a set of part values all of type pn.

164. M: mkMaTyp(s mq:(ANm→m ATyp),s pn:PNm) → ENV
∼
→ MVAL-set

164. M(mq,pn)(ρ) ≡
164. { mkMVAL(mqval,ps) |
164a. mqval:MVAL•type of(mqval)=mq,
164b. ps:PVAL-set•ps⊆ρ(pn) }

Components

165 The meaning of a component type, 129., expression mkKoType(ui,atrs)
in mkKoTyp(s qs:(s uid:UI×s atrs:ATRS)) is the set of values, 128., mkKQVAL(uiv,attrsval)
in, 148, mkKoVAL(s qval:(uiv,attrsval)).

a uiv is in UIVAL of type ui, and

b attrsval is in ATTRSVAL of type atrs.

165. M: mkKoTyp(UI×ATRS) → ENV → KVAL-set

165. M(mkKoType(ui,atrs))(ρ) ≡
165. { mkKoVAL(uiv,attrsval) |
165a. uiv:UIVAL•type of(uiv)=ui,
165b. attrsval:ATRSVAL•type of(attrsval)=atrs }

3.7.4 The ι Description Function

We can now define the meaning of the syntactic clause:

• ιNm:Nm

166 ιNm:Nm “chooses” an arbitrary value from amongst the values of sort Nm:

value

166. ι nm:Nm ≡ iota(nm)
166. iota: Nm → TypDef → VAL
166. iota(nm)(td) ≡ let val:(PVAL|MVAL|KVAL)•val ∈ (typval(td))(nm) in val end
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Discussion

From the above two functions, typval and valtyp, and the type definition “table” td:TypDef and “argu-

ment value” val:PVAL|MVAL|KVAL, we can form some expressions. One can understand these expres-

sions as, for example reflecting the following analysis situations:

• typval(td): From the type definitions we form a map, by means of function typval, from sort names to

the set of all values of respective sorts: Nm to ENDVALS.

That is, whenever we, in the following, as part of some formula, write typval(td), then we mean to

express that the domain engineer forms those associations, in her mind, from sort names to usually

very large, non-trivial sets of endurant values.

• valtyp(typval(td)): The domain analyser cum describer “inverts”, again in his mind, the typval(td)
into a simple map, ENDVAL to Nm, from single endurant values to their sort names.

• (valtyp(typval(td)))(val): The domain engineer now “applies”, in her mind, the simple map (above)

to an endurant value and obtains its sort name nm:Nm.

• td((valtyp(typval(td)))(val)): The domain analyser cum describer then applies the type definition

“table” td:TypDef to the sort name nm:Nm and obtains, in his mind, the corresponding type definition,

PaTyp|MaTyp|KoTyp.

We leave it to the reader to otherwise get familiarised with these expressions.

3.8 A Formal Description of a Meaning of Prompts

3.8.1 On Function Overloading

In Sect. 3.4 the analysis and description prompt invocations were expressed as

• is XXX(e), has YYY(e) and observe ZZZ(e)

where XXX, YYY, and ZZZ were appropriate entity sorts and e were appropriate endurants (parts, compo-

nents and materials). The function invocations, is XXX(e), etcetera, takes place in the context of a type

definition, td:TypDef, that is, instead of is XXX(e), etc. we get

• is XXX(e)(td), has YYY(e)(td) and observe ZZZ(e)(td).

We say that the functions is XXX, etc., are “lifted”.

3.8.2 The Analysis Prompts

The analysis is expressed in terms of the analysis prompts:

is atomic, 14, 86

is component, 13, 85

is composite, 14, 86

is continuous, 11, 85

is discrete, 11, 85

is endurant, 10, 84

is entity, 10, 83

is material, 13, 85

is part, 13, 85

is perdurant, 11, 84

The analysis takes place in the context of a type definition “image”, td:TypDef, in the minds of the domain

engineers.

is entity

The is entity predicate is meta-linguistic, that is, we cannot model it on the basis of the type systems

given in Sect. 3.6. So we shall just have to accept that.
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is endurant

See analysis prompt definition 2 on Page 84 and Formula Item 104 on Page 94.

value

is endurant: Nm×VAL → TypDef
∼
→ Bool

is endurant( ,val)(td) ≡ val ∈ dom valtyp(typval(td)); pre: VAL is any value type

is discrete

See analysis prompt definition 4 on Page 85 and Formula Item 111 on Page 95.

value

is discrete: NmVAL → TypDef
∼
→ Bool

is discrete( ,val)(td) ≡ (is PaTyp|is CoTyp)(td((valtyp(typval(td)))(val)))

is part

See analysis prompt definition 6 on Page 85 and Formula Item 104 on Page 94.

value

is part: NmVAL → TypDef
∼
→ Bool

is part( ,val)(td) ≡ is PaTyp(td((valtyp(typval(td)))(val)))

is material [≡ is continuous]

See analysis prompt definition 8 on Page 85 and Formula Item 105 on Page 94.

We remind the reader that is continuous≡is material.

value

is material: NmVAL → TypDef
∼
→ Bool

is material( ,val)(td) ≡ is MaTyp(td((valtyp(typval(td)))(val)))

is component

See analysis prompt definition 7 on Page 85 and Formula Item 106 on Page 94.

value

is component: NmVAL → TypDef
∼
→ Bool

is component( ,val)(td) ≡ is CoTyp(td((valtyp(typval(td)))(val)))

is atomic

See analysis prompt definition 9 on Page 86 and Formula Item 109 on Page 95.

value

is atomic: NmVAL → TypDef
∼
→ Bool

is atomic( val)(td) ≡ is AtPaTyp(td((valtyp(typval(td)))()))
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is composite

See analysis prompt definition 10 on Page 86 and Formula Item 110 on Page 95.

value

is composite: NmVAL → TypDef
∼
→ Bool

is composite( ,val)(td) ≡ (is AbsCoPaTyp|is ConCoPaTyp)(td((valtyp(typval(td)))(val)))

has concrete type

See analysis prompt definition 11 on Page 87 and Formula Item 114 on Page 95.

value

has concrete type: NmVAL → TypDef
∼
→ Bool

has concrete type( ,val)(td) ≡ is ConCoPaTyp(td((valtyp(typval(td)))(val)))

has mereology

See analysis prompt definition 12 on Page 88 and Formula Item 100 on Page 94.

value

has mereology: NmVAL → TypDef
∼
→ Bool

has mereology( ,val)(td) ≡ s me(td((valtyp(typval(td)))(val)))6=′′nil′′

has materials

See analysis prompt definition 14 on Page 90 and Formula Item 112a on Page 95.

value

has material: NmVAL → TypDef
∼
→ Bool

has material( ,val)(td) ≡ is MNm(s omkn(td((valtyp(typval(td)))(val))))
pre: is AtPaTyp(td((valtyp(typval(td)))(val)))

has components

See analysis prompt definition 13 on Page 89 and Formula Item 112b on Page 95.

value

has components: NmVAL → TypDef
∼
→ Bool

has components( ,val)(td) ≡ is KNm(s omkn(td((valtyp(typval(td)))(val))))
pre: is AtPaTyp(td((valtyp(typval(td)))(val)))

has parts

See description prompt definition 15 on Page 91.

value

has parts: NmVAL → TypDef
∼
→ Bool

has parts( ,val)(td) ≡ is PNm(s opn(td((valtyp(typval(td)))(val))))
pre: is MaTyp(td((valtyp(typval(td)))(val)))

3.8.3 The Description Prompts

These are the domain description prompts to be defined:
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observe attributes, 24, 89

observe component sorts, 27, 89

observe concrete type, 16, 87

observe material sorts, 29, 90, 91

observe mereology, 21, 88

observe part sorts, 15, 86

observe unique identifier, 19, 87

A Description State

In addition to the analysis state components αps and νps there is now an additional, the description text

state component.

167 Thus a global variable τ will hold the (so far) generated (in this case only) formal domain description

text.

variable

167. τ := [ ] Text-set

We shall explain the use of [...]s and the operations of \ and ⊕ on the above variables in Sect. 3.4.3 on

Page 96.

observe part sorts

See description prompt definition 1 on Page 86 and Formula Item 116 on Page 95.

value

observe part sorts: NmVAL → TypDef → Unit

observe part sorts(nm,val)(td) ≡
let mkAbsCoPaTyp( ,{P1,P2,...,Pn}) = td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [” type P1,P2,...,Pn;
value

obs part P1nm→P1

obs part P2:nm→P2

...,
obs part Pn:nm→Pn;

proof obligation
D ; ” ]

‖ νps := νps ⊕ ([P1,P2,...,Pn ] \ αps)
‖ αps := αps ⊕ [P1,P2,...,Pn ]

end

pre: is AbsCoPaTyp(td((valtyp(typval(td)))(val)))

D is a predicate expressing the disjointedness of part sorts P1,P2,...,Pn

observe concrete type

See description prompt definition 2 on Page 87 and Formula Item 115 on Page 95.

value

observe concrete type: NmVAL → TypDef → Unit

observe concrete type(nm,val)(td) ≡
let mkConCoPaTyp( ,P) = td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [”type T = P-set ; value obs part T: nm→T; ” ]
‖ νps := νps ⊕ ([P ] \ αps)
‖ αps := αps ⊕ [P ]

end

pre: is ConCoPaTyp(td((valtyp(typval(td)))(val)))
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observe unique identifier

See description prompt definition 3 on Page 87 and Formula Item 108 on Page 95.

value

observe unique identifier: P → TypDef → Unit

observe unique identifier(nm,val)(td) ≡
τ := τ ⊕ [” type PI ; value uid PI: nm → PI ; axiom U ; ” ]

U is a predicate expression over unique identifiers.

observe mereology

See description prompt definition 4 on Page 88 and Formula Item 101 on Page 94.

value

observe mereology: NmVAL → TypDef → Unit

observe mereology(nm,val)(td) ≡
τ := τ ⊕ [”type MT = M (PI1,PI2,...,PIn) ;

value obs mereo P: nm → MT ;
axiom ME ; ” ]

pre: has mereology(nm,val)(td) 56

M (PI1,PI2,...,PIn) is a type expression over unique part identifiers. ME is a predicate expression over

unique part identifiers.

observe part attributes

See description prompt definition 5 on Page 89 and Formula Item 102 on Page 94.

value

observe part attributes: NmVAL → TypDef → Unit

observe part attributes(nm,val)(td) ≡
let {A1,A2,...,Aa} = dom s attrs(s qs(val)) in

τ := τ ⊕ [” type A1, A2, ..., Aa

value attr A1: nm→Ai

attr A2: nm→A1

...
attr Aa: nm→Ai

proof obligation [Disjointness of Attribute Types ]
A ; ” ]

end

A is a predicate over attribute types A1, A2, ..., Aa.

observe part material sort

See description prompt definition 7 on Page 90 and Formula Item 112a on Page 95.

value

observe part material sort: NmVAL → TypDef → Unit

observe part material sort(nm,val)(td) ≡
let M = s pns(td((valtyp(typval(td)))(val))) in

56 See analysis prompt definition 12 on Page 88

c© Dines Bjørner 2016 Fredsvej 11, DK–2840 Holte, Denmark DRAFT Domain Science & Engineering December 5, 2016, 07:21



3.9 Conclusion 111

τ := τ ⊕ [” type M ; value obs mat M:nm→M ” ]
‖ νps := νps ⊕ ([M ]\αps)
‖ αps := αps ⊕ [M ]
end

pre: is AtPaVAL(val) ∧ is MNm(s pns(td((valtyp(typval(td)))(val))))

observe component sort

See description prompt definition 6 on Page 89 and Formula Item 112b on Page 95.

value

observe component sort: NmVAL → TypDef → Unit

observe component sort(nm,val)(td) ≡
let K = s omkn(td((valtyp(typval(td)))(val))) in

τ := τ ⊕ [” type K ; value obs-comps: nm → K-set; ” ]
‖ νps := νps ⊕ ([K ]\αps)
‖ αps := αps ⊕ [K ]
end

pre: is AtPaTyp(td((valtyp(typval(td)))(val))) ∧ has components(nm,val)

observe material part sort

See description prompt definition 8 on Page 91 and Formula Item 106 on Page 94.

value

observe material part sort: NmVAL → TypDef → Unit

observe material part sort(nm,val)(td) ≡
let P = s pns(td((valtyp(typval(td)))(val))) in

τ := τ ⊕ [” type P ; value obs part P: nm → P ” ]
‖ νps := νps ⊕ ([P ] \ αps)
‖ αps := αps ⊕ [P ]
end

pre is MaTyp(td((valtyp(typval(td)))(val))) ∧ is PNm(s pns(td((valtyp(typval(td)))(val))))

3.8.4 Discussion of The Prompt Model

The prompt model of this section is formulated so as to reflect a “wavering”, of the domain engineer,

between syntactic and semantic reflections. The syntactic reflections are represented by the syntactic ar-

guments of the sort names, nm, and the type definitions, td. The semantic reflections are represented by

the semantic argument of values, val. When we, in the various prompt definitions, use the expression

td((valtyp(typval(td)))(val)) we mean to model that the domain analyser cum describer reflects semanti-

cally: “viewing”, as it were, the endurant. We could, as well, have written td(nm) — reflecting a syntactic

reference to the (emerging) type model in the mind of the domain engineer.

3.9 Conclusion

It is time to summarise, conclude and look forward.
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3.9.1 What Has Been Achieved ?

[49] proposed a set of domain analysis & description prompts – and Sect. 3.2. summarised that language.

Sections 3.4. and 3.8. proposed an operational semantics for the process of selecting and applying prompts,

respectively a more abstract meaning of of these prompts, the latter based on some notions of an “image”

of perceived abstract types of syntactic and of semantic structures of the perceived domain. These notions

were discussed in Sects. 3.5. and 3.6. To the best of our knowledge this is the first time a reasonably precise

notion of ‘method’ with a similarly reasonably precise notion of a calculi of tools has been backed up

formal definitions.

3.9.2 Are the Models Valid ?

Are the formal descriptions of the process of selecting and applying the analysis & description prompts,

Sect. 3.4., and the meaning of these prompts, Sect. 3.8., modeling this process and these meanings real-

istically ? To that we can only answer the following: The process model is definitely modeling plausible

processes. We discuss interpretations of the analysis & description order that this process model imposes in

Sect. 3.4.3. There might be other orders, but the ones suggested in Sect. 3.4. can be said to be “orderly” and

reflects empirical observations. The model of the meaning of prompts, Sect. 3.8., is more of an hypothesis.

This model refers to “images” that the domain engineer is claimed to have in her mind. It must necessarily

be a valid model, perhaps one of several valid models. We have speculated, over many years, over the

existence of other models. But this is the most reasonable to us.

3.9.3 Future Work

We have hinted at possible ‘laws of description prompts’ in Sect. 3.4.3. Whether the process and prompt

models (Sects. 3.4. and 3.8.) are sufficient to express, let alone prove such laws is an open question. If the

models are sufficient, then they certainly are valid.
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To Every Manifest Domain Mereology a CSP Expression

In memory of Douglas T. Ross 1929–2007 1

Summary

We give an abstract model2 of parts and part-hood relations, of Stansław Leśniewski, of software

application domains such as the financial service industry, railway systems, road transport sys-
tems, health care, oil pipelines, secure [IT] systems, etcetera. We relate this model to axiom

systems for mereology [68], showing satisfiability, and show that for every mereology there corre-

sponds a class of Communicating Sequential Processes [111], that is: a λ –expression.

4.1 Introduction

The term ‘mereology’ is accredited to the Polish mathematician, philosopher and logician Stansław

Leśniewski (1886–1939) who “was a nominalist: he rejected axiomatic set theory and devised three formal

systems, Protothetic, Ontology, and Mereology as a concrete alternative to set theory”. In this contribution

I shall be concerned with only certain aspects of mereology, namely those that appears most immediately

relevant to domain science (a relatively new part of current computer science). Our knowledge of ‘mereol-

ogy’ has been through studying, amongst others, [68, 126].

4.1.1 Computing Science Mereology

“Mereology (from the Greek µερoς ‘part’) is the theory of parthood relations: of the relations of part to

whole and the relations of part to part within a whole”3. In this contribution we restrict ‘parts’ to be those

that, firstly, are spatially distinguishable, then, secondly, while “being based” on such spatially distinguish-

able parts, are conceptually related. We use the term part in exactly the meaning that term was endowed in

Chapter 1. The relation: “being based”, shall be made clear in this chapter.

Accordingly two parts, px and py, (of a same “whole”) are are either “adjacent”, or are “embedded

within” one another as loosely indicated in Fig. 4.1 on the next page.

‘Adjacent’ parts are direct parts of a same third part, pz, i.e., px and py are “embedded within” pz; or

one (px) or the other (py) or both (px and py) are parts of a same third part, p′z “embedded within” pz;

etcetera; as loosely indicated in Fig. 4.2 on the following page. or one is “embedded within” the other —

etc. as loosely indicated in Fig. 4.2 on the next page.

Parts, whether adjacent or embedded within one another, can share properties. For adjacent parts this

sharing seems, in the literature, to be diagrammatically expressed by letting the part rectangles “intersect”.

Usually properties are not spatial hence ‘intersection’ seems confusing. We refer to Fig. 4.3 on the following

page.

1 See the big paragraph first in Sect. 4.7.1 on Page 130.
2 This chapter is based on [50]. That paper is a complete rewrite of [44]. The rewritten sections are marked with

vertical margin bars, as here !
3 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [68]
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Fig. 4.1. ‘Adjacent’ and “Embedded Within’ parts
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Fig. 4.3. Two models, [L,R], of parts sharing properties

Instead of depicting parts sharing properties as in Fig. 4.3[L]eft, where dashed rounded edge rectangles

stands for ‘sharing’, we shall (eventually) show parts sharing properties as in Fig. 4.3[R]ight where •—•
connections connect those parts.

4.1.2 From Domains via Requirements to Software

One reason for our interest in mereology is that we find that concept relevant to the modeling of domains.

A derived reason is that we find the modeling of domains relevant to the development of software. Conven-

tionally a first phase of software development is that of requirements engineering. To us domain engineering

is (also) a prerequisite for requirements engineering [29, 58]. Thus to properly design Software we need

to understand its or their Requirements; and to properly prescribe Requirements one must understand
its Domain. To argue correctness of Software with respect to Requirements one must usually make as-
sumptions about the Domain: D,S |= R. Thus description of Domains become an indispensable part of

Software development.

4.1.3 Domains: Science and Engineering

Domain Science is the study and knowledge of domains. Domain Engineering is the practice of “walk-
ing the bridge” from domain science to domain descriptions: to create domain descriptions on the

background of scientific knowledge of domains, the specific domain “at hand”, or domains in general;

and to study domain descriptions with a view to broaden and deepen scientific results about domain

descriptions. This contribution is based on the engineering and study of many descriptions, of air traffic,
banking, commerce (the consumer/retailer/wholesaler/producer supply chain), container lines, health
care, logistics, pipelines, railway systems, secure [IT] systems, stock exchanges, etcetera.

c© Dines Bjørner 2016 Fredsvej 11, DK–2840 Holte, Denmark DRAFT Domain Science & Engineering December 5, 2016, 07:21



4.2 Our Concept of Mereology 115

4.1.4 Contributions of This Chapter

A general contribution is that of providing elements of a domain science. Three specific contributions

are those of (i) giving a model that satisfies published formal, axiomatic characterisations of mereology;

(ii) showing that to every (such modeled) mereology there corresponds a CSP [111] program; and (iii)

suggesting complementing syntactic and semantic theories of mereology.

4.1.5 Structure of This Chapter

We briefly overview the structure of this contribution. First, on Sect. 4.2, we loosely characterise how
we look at mereologies: “what they are to us !”. Then, in Sect. 4.3, we give an abstract, model-
oriented specification of a class of mereologies in the form of composite parts and composite and

atomic subparts and their possible connections. The abstract model as well as the axiom system (Sect. 4.5)

focuses on the syntax of mereologies. Following that, in Sect. 4.5 we indicate how the model of
Sect. 4.3 satisfies the axiom system of that section. In preparation for Sect. 4.6 presents character-
isations of attributes of parts, whether atomic or composite. Finally Sect. 4.6 presents a semantic
model of mereologies, one of a wide variety of such possible models. This one emphasize the possibility

of considering parts and subparts as processes and hence a mereology as a system of processes. Section 4.7

concludes with some remarks on what we have achieved.

4.2 Our Concept of Mereology

4.2.1 Informal Characterisation

Mereology, to us, is the study and knowledge about how physical and conceptual parts relate and what

it means for a part to be related to another part: being disjoint, being adjacent, being neighbours, being
contained properly within, being properly overlapped with, etcetera. By physical parts we mean such spa-

tial individuals which can be pointed to. Examples: a road net (consisting of street segments and street
intersections); a street segment (between two intersections); a street intersection; a road (of sequentially
neigbouring street segments of the same name) a vehicle; and a platoon (of sequentially neigbouring vehi-
cles).

By a conceptual part we mean an abstraction with no physical extent, which is either present or not.

Examples: a bus timetable (not as a piece or booklet of paper, or as an electronic device, but) as an image
in the minds of potential bus passengers; and routes of a pipeline, that is, neighbouring sequences of pipes,
valves, pumps, forks and joins, for example referred to in discourse: “the gas flows through “such-and-
such” a route”. The tricky thing here is that a route may be thought of as being both a concept or being

a physical part — in which case one ought give them different names: a planned route and an actual road,

for example.

The mereological notion of subpart, that is: contained within can be illustrated by examples: the in-
tersections and street segments are subparts of the road net; vehicles are subparts of a platoon; and pipes,
valves, pumps, forks and joins are subparts of pipelines. The mereological notion of adjacency can be illus-

trated by examples. We consider the various controls of an air traffic system, cf. Fig. 4.4 on the next page,
as well as its aircraft, as adjacent within the air traffic system; the pipes, valves, forks, joins and pumps of a
pipeline, cf. Fig. 4.9 on Page 119, as adjacent within the pipeline system; two or more banks of a banking
system, cf. Fig. 4.6 on Page 117, as being adjacent. The mereo-topological notion of neighbouring can be

illustrated by examples: Some adjacent pipes of a pipeline are neighbouring (connected) to other pipes
or valves or pumps or forks or joins, etcetera; two immediately adjacent vehicles of a platoon are neigh-
bouring. The mereological notion of proper overlap can be illustrated by examples some of which are of a

general kind: two routes of a pipelines may overlap; and two conceptual bus timetables may overlap with
some, but not all bus line entries being the same; and some of really reflect adjacency: two adjacent pipe
overlap in their connection, a wall between two rooms overlap each of these rooms — that is, the rooms
overlap each other “in the wall”.
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4.2.2 Six Examples

We shall, in Sect. 4.3, present a model that is claimed to abstract essential mereological properties of air

traffic, buildings and their installations, machine assemblies, financial service industry, the oil industry and

oil pipelines, and railway nets.

Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

Fig. 4.4. A schematic air traffic system

Figure 4.4 shows nine adjacent (9) boxes and eighteen adjacent (18) lines. Boxes and lines are parts. The

line parts “neighbours” the box parts they “connect”. Individually boxes and lines represent adjacent parts

of the composite air traffic “whole”. The rounded corner boxes denote buildings. The sharp corner box

denote an aircraft. Lines denote radio telecommunication. The “overlap” between neigbouring line and

box parts are indicated by “connectors”. Connectors are shown as small filled, narrow, either horisontal

or vertical “filled” rectangle4 at both ends of the double-headed-arrows lines, overlapping both the line

arrows and the boxes. The index ranges shown attached to, i.e., labeling each unit, shall indicate that there

are a multiple of the “single” (thus representative) box or line unit shown. These index annotations are

what makes the diagram of Fig. 4.4 schematic. Notice that the ‘box’ parts are fixed installations and that

the double-headed arrows designate the ether where radio waves may propagate. We could, for example,

assume that each such line is characterised by a combination of location and (possibly encrypted) radio

communication frequency. That would allow us to consider all lines for not overlapping. And if they were

overlapping, then that must have been a decision of the air traffic system.

Buildings

Figure 4.5 on the next page shows a building plan — as a composite part. The building consists of two

buildings, A and H. The buildings A and H are neighbours, i.e., shares a common wall. Building A has

rooms B, C, D and E, Building H has roomsI, J and K; Rooms L and M are within K. Rooms F and G are

within C.

The thick lines labeled N, O, P, Q, R, S, and T models either electric cabling, water supply, air

conditioning, or some such “flow” of gases or liquids.

4 There are 38 such rectangles in Fig. 4.4.

c© Dines Bjørner 2016 Fredsvej 11, DK–2840 Holte, Denmark DRAFT Domain Science & Engineering December 5, 2016, 07:21



4.2 Our Concept of Mereology 117
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Fig. 4.5. A building plan with installation

Connection κιo provides means of a connection between an environment, shown by dashed lines, and

B or J, i.e. “models”, for example, a door. Connections κ provides “access” between neighbouring rooms.

Note that ‘neighbouring’ is a transitive relation. Connection ωιo allows electricity (or water, or oil) to be

conducted between an environment and a room. Connection ω allows electricity (or water, or oil) to be

conducted through a wall. Etcetera.

Thus “the whole” consists of A and B. Immediate subparts of A are B, C, D and E. Immediate subparts

of C are G and F. Etcetera.
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Fig. 4.6. A Financial Service Industry
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Figure 4.6 on the preceding page is rather rough-sketchy! It shows seven (7) larger boxes [6 of which

are shown by dashed lines], six [6] thin lined “distribution” boxes, and twelve (12) double-arrowed lines.

Boxes and lines are parts. (We do not described what is meant by “distribution”.) Where double-arrowed

lines touch upon (dashed) boxes we have connections. Six (6) of the boxes, the dashed line boxes, are

composite parts, five (5) of them consisting of a variable number of atomic parts; five (5) are here shown as

having three atomic parts each with bullets “between” them to designate “variability”. Clients, not shown,

access the outermost (and hence the “innermost” boxes, but the latter is not shown) through connections,

shown by bullets, •.

Machine Assemblies

Connection

Part

Adjacent Parts

Power Supply

Unit

Valve 1 Valve 2Reservoir

Pump

Lever
Coil/Magnet

Bellows

Air Supply

Unit

Unit
Unit Unit Unit

Unit

Air Load

Composite
Parts

2 Units

Connection

Unit: Atomic Part
Composite Part

Fig. 4.7. An air pump, i.e., a physical mechanical system

Figure 4.7 shows a machine assembly. Square boxes show composite and atomic parts. Black circles or

ovals show connections. The full, i.e., the level 0, composite part consists of four immediate parts and

three internal and three external connections. The Pump is an assembly of six (6) immediate parts, five (5)

internal connections and three (3) external connectors. Etcetera. Some connections afford “transmission” of

electrical power. Other connections convey torque. Two connections convey input air, respectively output

air.

Oil Industry

“The” Overall Assembly

Figure 4.8 on the facing page shows a composite part consisting of fourteen (14) composite parts, left-to-

right: one oil field, a crude oil pipeline system, two refineries and one, say, gasoline distribution network,

two seaports, an ocean (with oil and ethanol tankers and their sea lanes), three (more) seaports, and three,

say gasoline and ethanol distribution networks.

Between all of the neighbouring composite parts there are connections, and from some of these com-

posite parts there are connections (to an external environment). The crude oil pipeline system composite

part will be concretised next.
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Fig. 4.8. A Schematic of an Oil Industry
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Fig. 4.9. A Pipeline System

A Concretised Composite parts

Figure 4.9 shows a pipeline system. It consists of 32 atomic parts: fifteen (15) pipe units (shown as directed

arrows and labeled p1–p15), four (4) input node units (shown as small circles, ◦, and labeled ini–inℓ), four

(4) flow pump units (shown as small circles, ◦, and labeled fpa–fpd ), five (5) valve units (shown as small

circles, ◦, and labeled vx–vw), three (3) join units (shown as small circles, ◦, and labeled jb–jc), two (2)

fork units (shown as small circles, ◦, and labeled fb–fc), one (1) combined join & fork unit (shown as

small circles, ◦, and labeled jafa), and four (4) output node units (shown as small circles, ◦, and labeled

onp–ons).

In this example the routes through the pipeline system start with node units and end with node units,

alternates between node units and pipe units, and are connected as shown by fully filled-out dark coloured

disc connections. Input and output nodes have input, respectively output connections, one each, and shown

as lighter coloured connections.

Railway Nets

Figure 4.10 on the following page diagrams four rail units, each with two, three or four connectors shown

as narrow, somewhat “longish” rectangles. Multiple instances of these rail units can be assembled (i.e.,

composed) by their connectors as shown on Fig. 4.10 on the next page into proper rail nets.

Figure 4.10 on the following page diagrams an example of a proper rail net. It is assembled from the kind of

units shown in Fig. 4.10. In Fig. 4.10 consider just the four dashed boxes: The dashed boxes are assembly
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Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Fig. 4.10. To the left: Four rail units.

To the right: A “model” railway net. An Assembly of four Assemblies: two stations and two lines.

Lines here consist of linear rail units; stations of all the kinds of units shown in to the left.

There are 66 connections and four “dangling” connectors

units. Two designate stations, two designate lines (tracks) between stations. We refer to to the caption four

line text of Fig. 4.10 for more “statistics”. We could have chosen to show, instead, for each of the four

“dangling’ connectors, a composition of a connection, a special “end block” rail unit and a connector.

Discussion

We have brought these examples only to indicate the issues of a “whole” and atomic and composite parts,

adjacency, within, neighbour and overlap relations, and the ideas of attributes and connections. We shall

make the notion of ‘connection’ more precise in the next section. [184] gives URLs to a number of domain

models illustrating a great variety of mereologies.

4.3 An Abstract, Syntactic Model of Mereologies

4.3.1 Parts and Subparts

168 We distinguish between atomic and composite parts.
169 Atomic parts do not contain separately distinguishable parts.

170 Composite parts contain at least one separately distinguishable part.

type

168. P == AP | CP
169. AP :: mkA(...)
170. CP :: mkC(...,s sps:P-set)

It is the domain analyser who decides what constitutes “the whole”, that is, how parts relate to one another,

what constitutes parts, and whether a part is atomic or composite. We refer to the proper parts of a composite

part as subparts. Figure 4.11 on the facing page illustrates composite and atomic parts. The slanted sans
serif uppercase identifiers of Fig. 4.11 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are meta-linguistic, that

is. they stand for the parts they “decorate”; they are not identifiers of “our system”.
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Fig. 4.11. Atomic and composite parts

4.3.2 No “Infinitely” Embedded Parts

The above syntax, Items 168–170, does not prevent composite parts, p, to contain composite parts, p′,

“ad-infinitum ! But we do not wish such “recursively” contained parts !

171 To express the property that parts are finite we introduce a notion of part derivation.

172 The part derivation of an atomic part is the empty set.

173 The part derivation of a composite part, p, mkC(pq,ps) where pq is that composite part’s quality, is the

set ps of subparts of p.

value

171. pt der: P → P-set

172. pt der(mkA(pq)) ≡ {}
173. pt der(mkC(pq,ps)) ≡ ps

174 We can also express the part derivation, pt der(ps) of a set, ps, of parts.

175 If the set is is empty then pt der({}) is the empty set, {}.

176 Let mkA(pq) be an element of ps, then pt der({mkA(pq)}∪ps′) is ps′.
177 Let mkC(pq,ps′) be an element of ps, then pt der(ps′∪ps) is ps′.

174. pt der: P-set → P-set

175. pt der({}) ≡ {}
176. pt der({mkA(pq)}∪ps) ≡ ps
177. pt der({mkC(pq,ps′)}∪ps) ≡ ps’∪ps

178 Therefore, to express that a part is finite we postulate

179 a natural number, n, such that a notion of iterated part set derivations lead to an empty set.

180 An iterated part set derivation takes a set of parts and part set derive that set repeatedly, n times.

181 If the result is an empty set, then part p was finite.

value

178. no infinite parts: P → Bool

179. no infinite parts(p) ≡ ∃ n:Nat • it pt der({p})(n)={}
180. it pt der: P-set → Nat → P-set

181. it pt der(ps)(n) ≡ let ps′ = pt der(ps) in if n=1 then ps′ else it pt der(ps′)(n−1) end end
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4.3.3 Unique Identifications

Each physical part can be uniquely distinguished for example by an abstraction of its properties at a time

of origin. In consequence we also endow conceptual parts with unique identifications.

182 In order to refer to specific parts we endow all parts, whether atomic or composite, with unique

identifications.

183 We postulate functions which observe these unique identifications, whether as parts in general or as

atomic or composite parts in particular.

184 such that any to parts which are distinct have unique identifications.

type

182. UI
value

183. uid UI: P → UI
axiom

184. ∀ p,p′:P • p 6=p′ ⇒ uid UI(p)6=uid UI(p′)

A model for uid UI can be given. Presupposing subsequent material (on attributes and mereology) —

“lumped” into part qualities, pq:PQ, we augment definitions of atomic and composite parts:

type

169. AP :: mkA(s pq:(s uid:UI,...))
170. CP :: mkC(s pq:(s uid:UI,...),s sps:P-set)
value

183. uid UI(mkA((ui,...))) ≡ ui
183. uid UI(mkC((ui,...)),...) ≡ ui

Figure 4.12 illustrates the unique identifications of composite and atomic parts.

ci1

ai5 ai4

ai1

ci3

ai2

ci2

ai3

ai6

Fig. 4.12. ai j: atomic part identifiers, cik: composite part identifiers

No two parts have the same unique identifier.

185 We define an auxiliary function, no prts uis, which applies to a[ny] part, p, and yields a pair: the

number of subparts of the part argument, and the set of unique identifiers of parts within p.

186 no prts uis is defined in terms of yet an auxiliary function, sum no pts uis.

value

185. no prts uis: P → (Nat × UI-set) → (Nat × UI-set)
185. no pts uis(mkA(ui,...))(n,uis) ≡ (n+1,uis∪{ui})
185. no pts uis(mkC((ui,...),ps))(n,uis) ≡ let (n′,uis′) = sum no pts uis(ps) in (n+n′,uis∪uis’) end

185. pre: no infinite parts(p)
186. sum no pts uis: P-set → (Nat × UI-set) → (Nat × UI-set)
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186. sum no pts uis(ps)(n,uis) ≡
186. case ps of

186. {}→(n,uis),
186. {mkA(ui,...)}∪ps’→sum no pts uis(ps′)(n+1,uis∪{ui}),
186. {mkC((ui,...),ps′)}∪ps” →
186. let (n′′,uis′′)=sum no pts uis(ps′)(1,{ui}) in sum no pts uis(ps′′)(n+n′′,uis∪uis”) end

186. end

186. pre: ∀ p:P•p ∈ ps ⇒ no infinite parts(p)

187 That no two parts have the same unique identifier can now be expressed by demanding that the number

of parts equals the number of unique identifiers.

axiom

187. ∀ p:P • let (n,uis)=no prts uis(0,{}) in n=carduis end

4.3.4 Attributes

Attribute Names and Values

188 Parts have sets of named attribute values, attrs:ATTRS.

189 One can observe attributes from parts.

190 Two distinct parts may share attributes:

a For some (one or more) attribute name that is among the attribute names of both parts,

b it is always the case that the corresponding attribute values are identical.

type

188. ANm, AVAL, ATTRS = ANm→m AVAL
value

189. attr ATTRS: P → ATTRS
190. share: P×P → Bool

190. share(p,p′) ≡
190. p 6=p′ ∧ ∼trans adj(p,p′) ∧
190a. ∃ anm:ANm • anm ∈ dom attr ATTRS(p) ∩ dom attr ATTRS(p′) ⇒
190b. � (attr ATTRS(p))(anm) = (attr ATTRS(p′))(anm)

The function trans adj is defined in Sect. 4.4.4 on Page 126.

Attribute Categories

One can suggest a hierarchy of part attribute categories: static or dynamic values — and within the dy-

namic value category: inert values or reactive values or active values — and within the dynamic active

value category: autonomous values or biddable values or programmable values. By a static attribute,

a:A, is static attribute(a), we shall understand an attribute whose values are constants, i.e., cannot

change. By a dynamic attribute, a:A, is dynamic attribute(a), we shall understand an attribute whose

values are variable, i.e., can change. By an inert attribute, a:A, is inert attribute(a), we shall un-

derstand a dynamic attribute whose values only change as the result of external stimuli where these stimuli

prescribe properties of these new values. By a reactive attribute, a:A, is reactive attribute(a), we

shall understand a dynamic attribute whose values, if they vary, change value in response to the change

of other attribute values. By an active attribute, a:A, is active attribute(a), we shall understand

a dynamic attribute whose values change (also) of its own volition. By an autonomous attribute, a:A,

is autonomous attribute(a), we shall understand a dynamic active attribute whose values change value

only “on their own volition”. The values of an autonomous attributes are a “law onto themselves and their
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surroundings”. By a biddable attribute, a:A, is biddable attribute(a), (of a part) we shall under-

stand a dynamic active attribute whose values are prescribed but may fail to be observed as such. By a

programmable attribute, a:A, is programmable attribute(a), we shall understand a dynamic active

attribute whose values can be prescribed. By an external attribute we mean inert, reactive, active or

autonomous attribute. By a controllable attribute we mean a biddable or programmable attribute.

We define some auxiliary functions:

191 SA applies to attrs:ATTRS and yields a grouping (sa1,sa2,...,sans )
5, of static attribute values.

192 CA applies to attrs:ATTRS and yields a grouping (ca1,ca2,...,canc)6 of controllable attribute values.

193 EA applies to attrs:ATTRS and yields a set, {eA1,eA2,...,eAne}
7 of external attribute names.

type

SA,CA = AVAL∗

EA = ANm−st
value

191. SA : ATTRS → SA
192. CA : ATTRS → CA
193. EA : ATTRS → EA

The attribute names of static, controllable and external attributes do not overlap and together make up the

attribute names of attrs.

4.3.5 Mereology

In order to illustrate other than the within and adjacency part relations we introduce the notion of mereol-

ogy. Figure 4.13 illustrates a mereology between parts. A specific mereology-relation is, visually, a •—•
line that connects two distinct parts.

ai6
ai5 ai4

ai1
ai3ai2

ci1
ci3

ci2

Fig. 4.13. Mereology: Relations between Parts

194 The mereology of a part is a set of unique identifiers of other parts.

type

194. ME = UI-set

We may refer to the connectors by the two element sets of the unique identifiers of the parts they connect.

For example with respect to Fig. 4.13:

5 – where {sa1,sa2,...,sans
}⊆rng attrs

6 – where {ca1,ca2,...,cans
}⊆rng attrs

7 – where {eA1,eA2,...,eAne
}⊆dom attrs
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• {ci1,ci3},

• {ai2,ai3},

• {ai6,ci1},

• {ai3,ci1},

• {ai6,ai5} and

• {ai1,ci1}.

4.3.6 The Model

195 The “whole” is a part.

196 A part value has a part sort name and is either

the value of an atomic part or of an abstract

composite part.

197 A atomic part value has a part quality value.

198 An abstract composite part value has a part

quality value and a set of at least of one or more

part values.

199 A part quality value consists of a unique iden-

tifier, a mereology, and a set of one or more at-

tribute named attribute values.

195 W = P
196 P = AP | CP
197 AP :: mkA(s pq:PQ)
198 CP :: mkC(s pq:PQ,s ps:P-set)
199 PQ = UI×ME×(ANm→m AVAL)

We now assume that parts are not “recursively infinite”, and that all parts have unique identifiers

4.4 Some Part Relations

4.4.1 ‘Immediately Within’

200 One part, p, is said to be immediately within, imm within(p,p′), another part, if p′ is a composite part

and p is observable in p′.

value

200. imm within: P × P → Bool

200. imm within(p,p′) ≡
200. case p′ of

200. ( ,mkA( ,ps)) → p ∈ ps,
200. ( ,mkC( ,ps)) → p ∈ ps,
200. → false

200. end

4.4.2 ‘Transitive Within’

We can generalise the ‘immediate within’ property.

201 A part, p, is transitively within a part p′, trans within(p,p′),
a either if p, is immediately within p′

b or

c if there exists a (proper) composite part p′′ of p′ such that trans within(p′′,p).

value

201. trans wihin: P × P → Bool

201. trans within(p,p′) ≡
201a. imm within(p,p′)
201b. ∨
201c. case p′ of

201c. ( ,mkC( ,ps)) → p ∈ ps ∧
201c. ∃ p′′:P• p′′ ∈ ps ∧ trans within(p′′,p),
201c. → false

201. end
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4.4.3 ‘Adjacency’

202 Two parts, p,p′, are said to be immediately adjacent, imm adj(p,p′)(c), to one another, in a composite

part c, such that p and p′ are distinct and observable in c.

value

202. imm adj: P × P → P → Bool

202. imm adj(p,p′)(mkA( ,ps)) ≡ p 6=p′ ∧ {p,p′}⊆ps
202. imm adj(p,p′)(mkC( ,ps)) ≡ p 6=p′ ∧ {p,p′}⊆ps
202. imm adj(p,p′)(mkA( )) ≡ false

4.4.4 Transitive ‘Adjacency’

We can generalise the immediate ‘adjacent’ property.

203 Two parts, p′,p′′, of a composite part, p, are trans adj(p′, p′′) in p
a either if imm adj(p′,p′′)(p),
b or if there are two p′′′ and p′′′′ such that

i p′′′ and p′′′′ are immediately adjacent parts of p and

ii p is equal to p′′′ or p′′′ is properly within p and p′ is equal to p′′′′ or p′′′′ is properly within p′

We leave the formalisation to the reader.

4.5 An Axiom System

Classical axiom systems for mereology focus on just one sort of “things”, namely Parts. Leśniewski had

in mind, when setting up his mereology to have it supplant set theory. So parts could be composite and

consisting of other, the sub-parts — some of which would be atomic; just as sets could consist of elements

which were sets — some of which would be empty.

4.5.1 Parts and Attributes

In our axiom system for mereology we shall avail ourselves of two sorts: Parts, and A ttributes.8

• type P,A

A ttributes are associated with Parts. We do not say very much about attributes: We think of attributes of

parts to form possibly empty sets. So we postulate a primitive predicate, ∈, relating Parts and A ttributes.

• ∈: A ×P → Bool.

4.5.2 The Axioms

The axiom system to be developed in this section is a variant of that in [68]. We introduce the following

relations between parts:

part of: P : P ×P → Bool Page 127

proper part of: PP : P ×P → Bool Page 127

overlap: O : P ×P → Bool Page 127

underlap: U : P ×P → Bool Page 127

over crossing: OX : P ×P → Bool Page 127

under crossing: UX : P ×P → Bool Page 127

proper overlap: PO : P ×P → Bool Page 127

proper underlap: PU : P ×P → Bool Page 127

8 Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers P and A stand for

property-oriented types (parts and attributes).
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4.5 An Axiom System 127

Let P denote part-hood; px is part of py, is then expressed as P(px, py).
9 (4.1) Part px is part of itself

(reflexivity). (4.2) If a part px is part py and, vice versa, part py is part of px, then px = py (anti-symmetry).

(4.3) If a part px is part of py and part py is part of pz, then px is part of pz (transitivity).

∀px : P •P(px, px) (4.1)

∀px, py : P • (P(px, py)∧P(py, px))⇒px = py (4.2)

∀px, py, pz : P • (P(px, py)∧P(py, pz))⇒P(pz, pz) (4.3)

Let PP denote proper part-hood. px is a proper part of py is then expressed as PP(px, py). PP can be

defined in terms of P. PP(px, py) holds if px is part of py, but py is not part of px.

PP(px, py)
△
= P(px, py)∧¬P(py, px) (4.4)

Overlap, O, expresses a relation between parts. Two parts are said to overlap if they have “something” in

common. In classical mereology that ‘something’ is parts. To us parts are spatial entities and these cannot

“overlap”. Instead they can ‘share’ attributes.

O(px, py)
△
= ∃a : A • a ∈ px ∧a ∈ py (4.5)

Underlap, U, expresses a relation between parts. Two parts are said to underlap if there exists a part pz of

which px is a part and of which py is a part.

U(px, py)
△
= ∃pz : P •P(px, pz)∧P(py, pz) (4.6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.

Over-cross, OX, px and py are said to over-cross if px and py overlap and px is not part of py.

OX(px, py)
△
=O(px, py)∧¬P(px, py) (4.7)

Under-cross, UX, px and py are said to under cross if px and py underlap and py is not part of px.

UX(px, py)
△
= U(px, pz)∧¬P(py, px) (4.8)

Proper Overlap, PO, expresses a relation between parts. px and py are said to properly overlap if px and

py over-cross and if py and px over-cross.

PO(px, py)
△
= OX(px, py)∧OX(py, px) (4.9)

Proper Underlap, PU, px and py are said to properly underlap if px and py under-cross and px and py

under-cross.

PU(px, py)
△
= UX(px, py)∧UX(py, px) (4.10)

4.5.3 Satisfaction

We shall sketch a proof that the model of the previous section, Sect. 4.3, satisfies is a model for the

axioms of this section. To that end we first define the notions of interpretation, satisfiability, validity and

model. Interpretation: By an interpretation of a predicate we mean an assignment of a truth value to the

predicate where the assignment may entail an assignment of values, in general, to the terms of the predicate.

Satisfiability: By the satisfiability of a predicate we mean that the predicate is true for some interpretation.

Valid: By the validity of a predicate we mean that the predicate is true for all interpretations. Model: By a

model of a predicate we mean an interpretation for which the predicate holds.

9 Our notation now is not RSL but a conventional first-order predicate logic notation.
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A Proof Sketch

We assign

204 P as the meaning of P

205 ATR as the meaning of A ,

206 imm within as the meaning of P,

207 trans within as the meaning of PP,

208 ∈: ATTR×ATTRS-set→Bool as the meaning of ∈: A ×P →Bool and

209 sharing as the meaning of O.

With the above assignments is is now easy to prove that the other axiom-operatorsU, PO, PU, OX and UX

can be modeled by means of imm within, within, ATTR×ATTRS-set→Bool and sharing.

4.6 A Semantic CSP Model of Mereology

The model of Sect. 4.3 can be said to be an abstract model-oriented definition of the syntax of mereology.

Similarly the axiom system of Sect. 4.5 can be said to be an abstract property-oriented definition of the

syntax of mereology.

We show that to every mereology there corresponds a program of cooperating sequential processes CSP.

We assume that the reader has practical knowledge of Hoare’s CSP [111].

4.6.1 Parts ≃ Processes

The model of mereology presented in Sect. 4.3 focused on (i) parts, (ii) unique identifiers and (iii) mere-

ology. To parts we associate CSP processes. Part processes are indexed by the unique part identifiers. The

mereology reveals the structure of CSP channels between CSP processes.

4.6.2 Channels

We define a general notion of a vector of channels. One vector element for each “pair” of distinct unique

identifiers. Vector indices are set of two distinct unique identifiers.

210 Let w be the “whole” (i.e., a part).

211 Let uis be the set of all unique identifiers of the “whole”.

212 Let M be the type of messages sent over channels.

213 Channels provide means for processes to synchronise and communicate.

value

210. w:P
211. uis = let ( ,uis′)=no prts uis(w) in uis′ end

type

212. M
channel

213. {ch[{ui,ui′} ]:M|ui,ui′:UI•ui 6=ui′ ∧ {ui,ui′}⊆uis}

214 We also define channels for access to external attribute values.

Without loss of generality we do so for all possible parts and all possible attributes.

channel

214. {xch[ui,an ]:AVAL|ui:UI• ui ∈ uis,an:ANm}
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4.6.3 Compilation

We now show how to compile “real-life, actual” parts into RSL-Text. That is, turning “semantics” into

syntax !

value

compile P: P → RSL-Text
compile P(mkA(ui,me,attrs)) ≡ `Ma(ui,me,attrs) ′

compile P(mkC((ui,me,attrs),{p1,p2,...,pn})) ≡

`Mc(ui,me,attrs) ‖ compile process(p1) ‖ compile process(p2) ‖ ... ‖ compile process(pn)
′

The ‘core’ processes Ma and Mc relate to atomic and composite parts. They are defined, schematically,

below as just M .

value

M : ui:UI×me:ME×attrs:ATTRS → ca:CA (attrs) → RSL-Text
M (ui,me,attrs)(ca) ≡ ` let (me′,ca′) = F (ui,me,attrs)(ca) in M (ui,me′,attrs)(ca′) end ′

` value ′

F : ui:UI×me:ME×attrs:ATTRS→ca:CA→in in chs(ui,attrs) in,out in out chs(ui,me)→ME×CA ′

Recall (Page 124) that CA (attrs) is a grouping, (ca1,ca2,...,canc), of controlled attribute values.

215 The in chs function applies to a set of uniquely named attributes and yields some RSL-Text, in the

form of input channel declarations, one for each external attribute.

215. in chs: ui:UI × attrs:ATTRS → RSL−Text

215. in chs(ui,attrs) ≡ ` in { xch[ui,xai ] | xai:ANm • xai∈EA (attrs) } ′

216 The in out chs function applies to a pair, a unique identifier and a mereology, and yields some RSL-
Text, in the form of input/output channel declarations, one for each unique identifier in the mereology.

216. in out chs: ui:UI × me:ME → RSL−Text

216. in out chs(ui,me) ≡ ` in,out { xch[ui,ui′ ]|ui:UI • ui’∈me } ′

F is an action: it returns a possibly updated mereology and possibly updated controlled attribute values.

We present a rough sketch of F . The F action non-deterministically internal choice chooses between

• either [1,2,3,4]

⋄⋄ [1] accepting input from

⋄⋄ [4] a suitable (“offering”) part process,

⋄⋄ [2] optionally offering a reply;

⋄⋄ [3] leading to an updated state;

• or [3,4]

⋄⋄ [5] finding a suitable “order” (val)

⋄⋄ [8] to a suitable (“inquiring”) behaviour,

⋄⋄ [6] offering that value,

⋄⋄ [7] leading to an updated state;

• or [9] doing own work leading to an new state.

value

F (ui,me,attrs)(ca) ≡
[1 ] ⌈⌉⌊⌋ {let val=ch[{ui,ui′} ]? in

[2 ] (ch[{ui,ui′} ]!in reply(val,(ui,me,attrs))(ca)) ;
[3 ] in update(val,(ui,me,attrs))(ca) end

[4 ] | ui′:UI • ui′ ∈ me}
[5 ] ⌈⌉ ⌈⌉⌊⌋ {let val=await reply(ui′,me,attrs)(ca) in

[6 ] ch[{ui,ui′} ]!val ;
[7 ] out update(val,(ui,me,attrs))(ca) end

[8 ] | ui′:UI • ui′ ∈ me}
[9 ] ⌈⌉ (me,own work(ui,attrs)(ca))
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channels ch[ui,ui′ ] are defined in in in chs(ea:EA) in,out in out chs(me:ME)

in reply: VAL × (ui:UI×me:ME×attrs:ATTRS) → ca:CA →
in in chs(attrs) in,out in out chs(ui,me) → VAL

in update: VAL × (ui:UI×me:ME×attrs:ATTRS) → ca:CA →
in,out in out chs(ui,me) → ME × CA

await reply: (ui:UI,me:ME) → ca:CA → in,out in out chs(ui,me:ME) → VAL
out update: (VAL×(ui:UI×me:ME<>attrs:ATTRS)) → ca:CA →

in,out in out chs(ui,me) → ME × CA
own work: (ui:UI×attrs:ATTRS) → CA → in,out in out chs(ui,me) CA

4.6.4 Discussion

General

A little more meaning has been added to the notions of parts and their mereology. The within and ad-
jacent to relations between parts (composite and atomic) reflect a phenomenological world of geometry,

and the mereological relation between parts reflect both physical and conceptual world understandings:

physical world in that, for example, radio waves cross geometric “boundaries”, and conceptual world in

that ontological classifications typically reflect lattice orderings where overlaps likewise cross geometric

“boundaries”.

Specific

The notion of parts is far more general than that of, for example, Sect. 3.6.2 on Page 101. We have been

able to treat Stansław Leśniewski’s notion of mereology sôlely based on parts, that is, their semantic values,

without introducing the notion of the syntax of parts. Our compilation functions are (thus) far more general

than need (for example as needed in Sect. 3.6.2 on Page 101.

4.7 Concluding Remarks

4.7.1 Relation to Other Work

The present contribution has been conceived in the following context.

My first awareness of the concept of ‘mereology’ was from listening to many presentations by Douglas
T. Ross (1929–2007) at IFIP working group WG 2.3 meetings over the years 1980–1999. In [161] Douglas

T. Ross and John E. Ward reports on the 1958–1967 MIT project for computer-aided design (CAD) for
numerically controlled production.10 Pages 13–17 of [161] reflects on issues bordering to and behind the

concerns of mereology. Ross’ thinking is clearly seen in the following text: “. . . our consideration of
fundamentals begins not with design or problem-solving or programming or even mathematics, but
with philosophy (in the old-fashioned meaning of the word) – we begin by establishing a “world-
view”. We have repeatedly emphasized that there is no way to bound or delimit the potential areas
of application of our system, and that we must be prepared to cope with any conceivable problem.
Whether the system will assist in any way in the solution of a given problem is quite another matter,
. . . , but in order to have a firm and uniform foundation, we must have a uniform philosophical basis
upon which to approach any given problem. This “world-view” must provide a working framework
and methodology in terms of which any aspect of our awareness of the world may be viewed. It must
be capable of expressing the utmost in reality, giving expression to unending layers of ever-finer and

10 Doug is said to have coined the term and the abbreviation CAD [159].
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more concrete detail, but at the same time abstract chimerical 11 visions bordering on unreality must fall
within the same scheme. “Above all, the world-view itself must be concrete and workable, for it will form
the basis for all involvement of the computer in the problem-solving process, as well as establishing a
viewpoint for approaching the unknown human component of the problem-solving team.” Yes, indeed,

the philosophical disciplines of ontology, epistemology and mereology, amongst others, ought be standard

curricula items in the computer science and software engineering studies, or better: domain engineers cum

software system designers ought be imbued by the wisdom of those disciplines as was Doug. “. . . in the
summer of 1960 we coined the word plex to serve as a generic term for these philosophical ruminations.
”Plex” derives from the word plexus, “An interwoven combination of parts in a structure”, (Webster).
. . . The purpose of a ‘modeling plex’ is to represent completely and in its entirety a “thing”, whether it
is concrete or abstract, physical or conceptual. A ‘modeling plex’ is a trinity with three primary aspects,
all of which must be present. If any one is missing a complete representation or modeling is impossible.
The three aspects of plex are data, structure, and algorithm. . . . ” which “. . . is concerned with the
behavioral characteristics of the plex model – the interpretive rules for making meaningful the data and
structural aspects of the plex, for assembling specific instances of the plex, and for interrelating the plex
with other plexes and operators on plexes. Specification of the algorithmic aspect removes the ambiguity
of meaning and interpretation of the data structure and provides a complete representation of the thing
being modeled.” In the terminology of the current paper a plex is a part (whether composite or atomic),

the data are the properties (of that part), the structure is the mereology (of that part) and the algorithm is

the process (for that part). Thus Ross was, perhaps, a first instigator (around 1960) of object-orientedness.

A first, “top of the iceberg” account of the mereology-ideas that Doug had then can be found in the much

later (1976) three page note [160]. Doug not only ‘invented’ CAD but was also the father of AED (Algol

Extended for Design), the Automatically Programmed Tool (APT) language, SADT (Structured Analysis

and Design Technique) and helped develop SADT into the IDEF0 method for the Air Force’s Integrated

Computer-Aided Manufacturing (ICAM) program’s IDEF suite of analysis and design methods. Douglas

T. Ross went on for many years thereafter, to deepen and expand his ideas of relations between mereology

and the programming language concept of type at the IFIP WG2.3 working group meetings. He did so in

the, to some, enigmatic, but always fascinating style you find on Page 63 of [160].

In [127] Henry S. Leonard and Henry Nelson Goodman: A Calculus of Individuals and Its Uses
present the American Pragmatist version of Leśniewski’s mereology. It is based on a single primitive:

discreet. The idea of the calculus of individuals is, as in Leśniewski’s mereology, to avoid having to deal

with the empty sets while relying on explicit reference to classes (or parts).

[68] R. Casati and A. Varzi: Parts and Places: the structures of spatial representation has been the

major source for this paper’s understanding of mereology. Although our motivation was not the spatial

or topological mereology, [168], and although the present paper does not utilize any of these concepts’

axiomatision in [68, 168] it is best to say that it has benefited much from these publications.

Domain descriptions, besides mereological notions, also depend, in their successful form. on FCA:

Formal Concept Analysis. Here a main inspiration has been drawn , since the mid 1990s from B. Ganter
and R. Wille’s Formal Concept Analysis — Mathematical Foundations [95]. The approach takes as
input a matrix specifying a set of objects and the properties thereof, called attributes, and finds both
all the “natural” clusters of attributes and all the “natural” clusters of objects in the input data,
where a “natural” object cluster is the set of all objects that share a common subset of attributes, and
a “natural” property cluster is the set of all attributes shared by one of the natural object clusters.
Natural property clusters correspond one-for-one with natural object clusters, and a concept is a pair
containing both a natural property cluster and its corresponding natural object cluster. The family of
these concepts obeys the mathematical axioms defining a lattice, a Galois connection). Thus the choice

of adjacent and embedded (‘within’) parts and their connections is determined after serious formal concept

analysis. In [59] we present a ‘concept analysis’ approach to domain description, where the present paper

presents the mereological approach.

The present paper is based on [31] of which it is an extensive revision and extension.

11 Chimerical: existing only as the product of unchecked imagination: fantastically visionary or improbable
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4.7.2 What Has Been Achieved ?

We have given a model-oriented specification of mereology. We have indicated that the model satisfies a

widely known axiom system for mereology. We have suggested that (perhaps most) work on mereology

amounts to syntactic studies. So we have suggested one of a large number of possible, schematic semantics

of mereology. And we have shown that to every mereology there corresponds a set of communicating

sequential process (CSP).

4.7.3 Future Work

• I hereby offer collaboration with someone, say a young PhD student, to furnish a formal proof instead

of the sketch outline in Sect. 4.5.3 on Page 128.

• We need to characterise, in a proper way, the class of CSP programs for which there corresponds a

mereology. Are you game ?

• One could also wish for an extensive editing and publication of Doug Ross’ surviving notes.
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5

From Domain Descriptions to Requirements Prescriptions

Summary

Chapter 1, Manifest Domains: Analysis & Description, [49] introduced a method for
analysing and describing manifest domains. In this chapter1 we show how to systematically,
but, of course, not automatically, “derive” initial requirements prescriptions from domain de-
scriptions. There are, as we see it, three kinds of requirements: (i) domain requirements, (ii)
interface requirements and (iii) machine requirements. The machine is the hardware and soft-
ware to be developed from the requirements. (i) Domain requirements are those requirements
which can be expressed sôlely using technical terms of the domain. (ii) Interface requirements
are those requirements which can be expressed using technical terms of both the domain and
the machine. (iii)Machine requirements are those requirements which can be expressed sôlely
using technical terms of the machine. We show principles, techniques and tools for “deriving”
domain requirements. The domain requirements development focus on (i.1) projection, (i.2) in-
stantiation, (i.3) determination, (i.4) extension and (i.5) fitting. These domain-to-requirements
operators can be described briefly: (i.1) projection removes such descriptions which are to be
omitted for consideration in the requirements, (i.2) instantiation mandates specific mereolo-
gies, (i.3) determination specifies less non–determinism, (i.4) extension extends the evolving
requirements prescription with further domain description aspects and (i.5) fitting resolves
“loose ends” as they may have emerged during the domain-to-requirements operations. We
briefly review principles, techniques and tools for “deriving” interface requirements based on
sharing domain (ii.1) endurants, and (ii.2) perdurants (i.e., actions, events and behaviours)
with their machine correspondants. The unfolding of interface requirements lead to a num-
ber of machine concepts in terms of which the interface requirements are expressed. These
machine concepts, both hardware and software, make possible the expression of a set of —
what we shall call — derived requirements. The paper explores this concept briefly. We do
not cover machine requirements in this paper. The reason is that we find, cf. [26, Sect. 19.6],
that when the individual machine requirements are expressed then references to domain phe-
nomena are, in fact, abstract references, that is, they do not refer to the semantics of what
they name. This paper claims only to structure the quest for requirements conception. Instead
of “discovering” requirements ‘ab initio’, for example, through interviews with stake-holders,
we suggest to “derive” the requirements based on domain descriptions. Instead of letting the
individual requirements arise out of initial stake-holder interviews, we suggest to structure these
(i) around the structures of domain descriptions, and (ii) around the structures emerging from
domain, interface and machine requirements. We shall refer to the requirements emerging from
(i+ii) as the initial requirements. To these we add the derived requirements merging from in-
terview with stakeholders: We are strongly of the opinion that the techniques and tools of, for
example, [79, 116, 187, 120, 143, 177] can be smoothly integrated with those of this paper.
We think that there is some clarification to be gained. We claim that our approach contributes
to a restructuring of the field of requirements engineering and its very many diverse concerns,
a structuring that is logically motivated and is based on viewing software specifications as
mathematical objects.

1 This chapter is based on [54].
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5.1 Introduction

Chapter 1, Manifest Domains: Analysis & Description, [49] introduced a method for analysing and

describing manifest domains. In this chapter we show how to systematically, but, of course, not automati-

cally, “derive” requirements prescriptions from domain descriptions.

5.1.1 The Triptych Dogma of Software Development

We see software development progressing as follows: Before one can design software one must have a firm
grasp of the requirements. Before one can prescribe requirements one must have a reasonably firm grasp
of the domain. Software engineering, to us, therefore include these three phases: domain engineering,
requirements engineering and software design.

5.1.2 Software As Mathematical Objects

Our base view is that computer programs are mathematical objects. That is, the text that makes up a

computer program can be reasoned about. This view entails that computer program specifications can be

reasoned about. And that the requirements prescriptions upon which these specifications are based can

be reasoned about. This base view entails, therefore, that specifications, whether software design spec-
ifications, or requirements prescriptions, or domain descriptions, must [also] be formal specifications.

This is in contrast to considering software design specifications being artifacts of sociological, or even of

psychological “nature”.

5.1.3 The Contribution of This Paper

We claim that the present paper content contributes to our understanding and practice of software engi-
neering as follows: (1) it shows how the new phase of engineering, domain engineering, as introduced in

[49], forms a prerequisite for requirements engineering; (2) it endows the “classical” form of requirements

engineering with a structured set of development stages and steps: (a) first a domain requirements stage,

(b) to be followed by an interface requirements stages, and (c) to be concluded by a machine requirements

stage; (3) it further structures and gives a reasonably precise contents to the stage of domain requirements:

(i) first a projection step, (ii) then an instantiation step, (iii) then a determination step, (iv) then an extension

step, and (v) finally a fitting step — with these five steps possibly being iterated; and (4) it also structures

and gives a reasonably precise contents to the stage of interface requirements based on a notion of shared

entities, Each of the steps (i–v) open for the possibility of simplifications. Steps (a–c) and (i-v), we claim,

are new. They reflect a serious contribution, we claim, to a logical structuring of the field of requirements

engineering and its very many otherwise seemingly diverse concerns.

5.1.4 Some Comments on the chapter Content

By methodology we understand the study and knowledge of one or more methods ⊙2 By a method
understand the study and knowledge of the principles, techniques and tools for constructing some artifact,

here (primarily) software ⊙ This paper is, perhaps, unusual in the following respects: (i) It is a methodology

paper, hence there are no “neat” theories about development, no succinctly expressed propositions, lemmas

nor theorems, and hence no proofs3. (ii) As a consequence the paper is borne by many, and by extensive

examples. (iii) The examples of this paper are all focused on a generic road transport net. (iv) To reasonably

fully exemplify the requirements approach, illustrating how our method copes with a seeming complexity of

interrelated method aspects, the full example of this paper embodies very many description and prescription

elements: hundreds of concepts (types, axioms, functions). (v) This methodology paper covers a “grand”

2 The ⊙ marks the end of definitions.
3 — where these proofs would be about the development theories. The example development of requirements do

imply properties, but formulation and proof of these do not constitute specifically new contributions — so are left

out.
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area of software engineering: Many textbooks and papers are written on Requirements Engineering. We

postulate, in contrast to all such books (and papers), that requirements engineering should be founded on

domain engineering. Hence we must, somehow, show that our approach relates to major elements of what

the Requirements Engineering books put forward. (vi) As a result, this paper is long.

5.1.5 Structure of Paper

The structure of the paper is as follows: Section 5.2 provides a fair-sized, hence realistic example. Sec-

tions 5.3–5.5 covers our approach to requirements development. Section 5.3 overviews the issue of ‘require-

ments’; relates our approach (i.e., Sects. 5.4–5.5) to systems, user and external equipment and functional
requirements; and Sect. 5.3 also introduces the concepts of the machine to be requirements prescribed, the

domain, the interface and the machine requirements. Section 5.4 covers the domain requirements stages

of projection (Sect. 5.4.1), instantiation (Sect. 5.4.2), determination (Sect. 5.4.3), extension (Sect. 5.4.4)

and fitting (Sect. 5.4.5). Section 5.5 covers key features of interface requirements: shared phenomena
(Sect. 5.5.1), shared endurants (Sect. 5.5.1) and shared actions, shared eventsand shared behaviours
(Sect. 5.5.1). Section 5.5.1 further introduces the notion of derived requirements. Section 5.7 concludes

the paper.

5.2 An Example Domain: Transport

In order to exemplify the various stages and steps of requirements development we first bring a domain

description example. The example follows the steps of an idealised domain description. First we describe

the endurants, then we describe the perdurants. Endurant description initially focus on the composite and

atomic parts. Then on their “internal” qualities: unique identifications, mereologies, and attributes. The de-

scriptions alternate between enumerated, i.e., labeled narrative sentences and correspondingly “numbered”

formalisations. The narrative labels cum formula numbers will be referred to, frequently in the various

steps of domain requirements development.

5.2.1 Endurants

Since we have chosen a manifest domain, that is, a domain whose endurants can be pointed at, seen,

touched, we shall follow the analysis & description process as outlined in [49] and formalised in [45]. That

is, we first identify, analyse and describe (manifest) parts, composite and atomic, abstract (Sect. 5.2.2) or

concrete (Sect. 5.2.2). Then we identify, analyse and describe their unique identifiers (Sect. 5.2.2), mere-

ologies (Sect. 5.2.2), and attributes (Sects. 5.2.2–5.2.2).
The example fragments will be presented in a small type-font.

5.2.2 Domain, Net, Fleet and Monitor

Applying observe part sorts [49, Sect. 3.1.6] to to a transport domain δ :∆ yields the following.

The root domain, ∆ , is that of a composite traffic system (217a.) with a road net, (217b.) with a fleet of vehicles and

(217c.) of whose individual position on the road net we can speak, that is, monitor.4

217 We analyse the traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

type

217 ∆
217a N
217b F

4 The monitor can be thought of, i.e., conceptualised. It is not necessarily a physically manifest phenomenon.
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217c M
value

217a obs part N: ∆ → N
217b obs part F: ∆ → F
217c obs part M: ∆ → M

Applying observe part sorts [49, Sect. 3.1.6] to a net, n:N, yields the following.

218 The road net consists of two composite parts,

a an aggregation of hubs and

b an aggregation of links.

type

218a HA
218b LA
value

218a obs part HA: N → HA
218b obs part LA: N → LA

Hubs and Links

Applying observe part types [49, Sect. 3.1.7] to hub and link aggregates yields the following.

219 Hub aggregates are sets of hubs.

220 Link aggregates are sets of links.

221 Fleets are set of vehicles.

type

219 H, HS = H-set

220 L, LS = L-set

221 V, VS = V-set

value

219 obs part HS: HA → HS
220 obs part LS: LA → LS
221 obs part VS: F → VS

222 We introduce some auxiliary functions.

a links extracts the links of a network.

b hubs extracts the hubs of a network.

value

222a links: ∆ → L-set

222a links(δ ) ≡ obs part LS(obs part LA(obs part N(δ )))
222b hubs: ∆ → H-set

222b hubs(δ ) ≡ obs part HS(obs part HA(obs part N(δ )))

Unique Identifiers

Applying observe unique identifier [49, Sect. 3.2] to the observed parts yields the following.

223 Nets, hub and link aggregates, hubs and links, fleets, vehicles and the monitor all

a have unique identifiers

b such that all such are distinct, and

c with corresponding observers.
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type

223a NI, HAI, LAI, HI, LI, FI, VI, MI
value

223c uid NI: N → NI
223c uid HAI: HA → HAI
223c uid LAI: LA → LAI
223c uid HI: H → HI
223c uid LI: L → LI
223c uid FI: F → FI
223c uid VI: V → VI
223c uid MI: M → MI
axiom

223b NI
⋂
HAI=Ø, NI

⋂
LAI=Ø, NI

⋂
HI=Ø, etc.

where axiom 223b. is expressed semi-formally, in mathematics. We introduce some auxiliary functions:

224 xtr lis extracts all link identifiers of a traffic system.

225 xtr his extracts all hub identifiers of a traffic system.

226 Given an appropriate link identifier and a net get link ‘retrieves’ the designated link.

227 Given an appropriate hub identifier and a net get hub ‘retrieves’ the designated hub.

value

224 xtr lis: ∆ → LI-set

224 xtr lis(δ ) ≡
224 let ls = links(δ ) in {uid LI(l)|l:L•l ∈ ls} end

225 xtr his: ∆ → HI-set

225 xtr his(δ ) ≡
225 let hs = hubs(δ ) in {uid HI(h)|h:H•k ∈ hs} end

226 get link: LI → ∆
∼
→ L

226 get link(li)(δ ) ≡
226 let ls = links(δ ) in

226 let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

226 pre: li ∈ xtr lis(δ )

227 get hub: HI → ∆
∼
→ H

227 get hub(hi)(δ ) ≡
227 let hs = hubs(δ ) in

227 let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end

227 pre: hi ∈ xtr his(δ )

Mereology

We cover the mereologies of all part sorts introduced so far. We decide that nets, hub aggregates, link aggregates and

fleets have no mereologies of interest.Applying observe mereology [49, Sect. 3.3.2] to hubs, links, vehicles and the

monitor yields the following.

228 Hub mereologies reflect that they are connected to zero, one or more links.

229 Link mereologies reflect that they are connected to exactly two distinct hubs.

230 Vehicle mereologies reflect that they are connected to the monitor.

231 The monitor mereology reflects that it is connected to all vehicles.

232 For all hubs of any net it must be the case that their mereology designates links of that net.

233 For all links of any net it must be the case that their mereologies designates hubs of that net.

234 For all transport domains it must be the case that

a the mereology of vehicles of that system designates the monitor of that system, and that

b the mereology of the monitor of that system designates vehicles of that system.

value

228 obs mereo H: H → LI-set

229 obs mereo L: L → HI-set

axiom
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229 ∀ l:L•card obs mereo L(l)=2
value

230 obs mereo V: V → MI
231 obs mereo M: M → VI-set

axiom

232 ∀ δ :∆ , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δ ) •

232 ∀ h:H•h ∈ hs•obs mereo H(h)⊆xtr lis(δ ) ∧
233 ∀ l:L•l ∈ ls•obs mereo L(l)⊆xtr his(δ ) ∧
234a let f:F•f=obs part F(δ ) ⇒
234a let m:M•m=obs part M(δ ),
234a vs:VS•vs=obs part VS(f) in

234a ∀ v:V•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)
234b ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
234b end end

Attributes, I

We may not have shown all of the attributes mentioned below — so consider them informally introduced !

• Hubs: locations5 are considered static, hub states and hub state spaces are considered programmable;
• Links: lengths and locations are considered static, link states and link state spaces are considered programmable;
• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine power (kW/horse

power) are considered static; velocity and acceleration may be considered reactive (i.e., a function of gas pedal

position, etc.), global position (informed via a GNSS: Global Navigation Satellite System) and local po-

sition (calculated from a global position) are considered biddable

Applying observe attributes [49, Sect. 3.4.3] to hubs, links, vehicles and the monitor yields the following.

First hubs.

235 Hubs
a have geodetic locations, GeoH,
b have hub states which are sets of pairs of identifiers of links connected to the hub6,
c and have hub state spaces which are sets of hub states7.

236 For every net,
a link identifiers of a hub state must designate links of that net.
b Every hub state of a net must be in the hub state space of that hub.

237 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub state.

type

235a GeoH
235b HΣ = (LI×LI)-set

235c HΩ = HΣ -set

value

235a attr GeoH: H → GeoH
235b attr HΣ : H → HΣ
235c attr HΩ : H → HΩ
axiom

236 ∀ δ :∆ ,
236 let hs = hubs(δ ) in

236 ∀ h:H • h ∈ hs •

236a xtr lis(h)⊆xtr lis(δ )
236b ∧ attr Σ(h) ∈ attr Ω(h)
236 end

value

237 xtr lis: H → LI-set

237 xtr lis(h) ≡
237 {li | li:LI,(li′,li′′):LI×LI • (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}

5 By location we mean a geodetic position.
6 A hub state “signals” which input-to-output link connections are open for traffic.
7 A hub state space indicates which hub states a hub may attain over time.
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Then links.

238 Links have lengths.

239 Links have geodetic location.

240 Links have states and state spaces:

a States modeled here as pairs, (hi′,hi′′), of identifiers the hubs with which the links are connected and indicat-

ing directions (from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or 4 such pairs.

b State spaces are the set of all the link states that a link may enjoy.

type

238 LEN
239 GeoL
240a LΣ = (HI×HI)-set

240b LΩ = LΣ -set

value

238 attr LEN: L → LEN
239 attr GeoL: L → GeoL
240a attr LΣ : L → LΣ
240b attr LΩ : L → LΩ
axiom

240 ∀ n:N •

240 let ls = xtr−links(n), hs = xtr hubs(n) in

240 ∀ l:L•l ∈ ls ⇒
240a let lσ = attr LΣ(l) in

240a 0≤card lσ≤4
240a ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ
240a ⇒ {hi′,hi′′}=obs mereo L(l)
240b ∧ attr LΣ(l) ∈ attr LΩ(l)
240 end end

Then vehicles.

241 Every vehicle of a traffic system has a position which is either ‘on a link’ or ‘at a hub’.

a An ‘on a link’ position has four elements: a unique link identifier which must designate a link of that traffic

system and a pair of unique hub identifiers which must be those of the mereology of that link.

b The ‘on a link’ position real is the fraction, thus properly between 0 (zero) and 1 (one) of the length from the

first identified hub “down the link” to the second identifier hub.

c An ‘at a hub’ position has three elements: a unique hub identifier and a pair of unique link identifiers —

which must be in the hub state.

type

241 VPos = onL | atH
241a onL :: LI HI HI R
241b R = Real axiom ∀ r:R • 0≤r≤1
241c atH :: HI LI LI
value

241 attr VPos: V → VPos
axiom

241a ∀ n:N, onL(li,fhi,thi,r):VPos •

241a ∃ l:L•l ∈obs part LS(obs part N(n))
241a ⇒ li=uid L(l)∧{fhi,thi}=obs mereo L(l),
241c ∀ n:N, atH(hi,fli,tli):VPos •

241c ∃ h:H•h ∈obs part HS(obs part N(n))
241c ⇒ hi=uid H(h)∧(fli,tli) ∈ attr LΣ(h)

242 We introduce an auxiliary function distribute.

a distribute takes a net and a set of vehicles and

b generates a map from vehicles to distinct vehicle positions on the net.

c We sketch a “formal” distribute function, but, for simplicity we omit the technical details that secures

distinctness — and leave that to an axiom !
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243 We define two auxiliary functions:

a xtr links extracts all links of a net and

b xtr hub extracts all hubs of a net.

type

242b MAP = VI →m VPos
axiom

242b ∀ map:MAP • card dom map = card rng map
value

242 distribute: VS → N → MAP
242 distribute(vs)(n) ≡
242a let (hs,ls) = (xtr hubs(n),xtr links(n)) in

242a let vps = {onL(uid (l),fhi,thi,r) |
242a l:L•l ∈ls∧{fhi,thi}
242a ⊆obs mereo L(l)∧0≤r≤1}
242a ∪ {atH(uid H(h),fli,tli)|
242a h:H•h ∈hs∧{fli,tli}
242a ⊆obs mereo H(h)} in

242b [uid V(v) 7→vp|v:V,vp:VPos•v ∈vs∧vp∈vps ]
242 end end

243a xtr links: N → L-set

243a xtr links(n)≡
243a obs part LS(obs part LA(n))
243b xtr hubs: N → H-set

243a xtr hubs(n)≡
243a obs part H(obs part HA∆ (n))

And finally monitors. We consider only one monitor attribute.

244 The monitor has a vehicle traffic attribute.

a For every vehicle of the road transport system the vehicle traffic attribute records a possibly empty list of time

marked vehicle positions.

b These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier, the same pair of ‘’to’

and ‘from’ hub identifiers and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate with the hub and link mereologies.

type

244 Traffic = VI →m (T × VPos)∗

value

244 attr Traffic: M → Traffic
axiom

244b ∀ δ :∆ •

244b let m = obs part M(δ ) in

244b let tf = attr Traffic(m) in

244b dom tf ⊆ xtr vis(δ ) ∧
244b ∀ vi:VI • vi ∈ dom tf •

244b let tr = tf(vi) in

244b ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

244b let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in

244b t<t′

244(b)i ∧ case (vp,vp′) of

244(b)i (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
244(b)i → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′ ∧ li ∈ xtr lis(δ ) ∧ {fhi,thi} = obs mereo L(get link(li)(δ )),
244(b)ii (atH(hi,fli,tli),atH(hi′,fli′,tli′))
244(b)ii → hi=hi′∧fli=fli′∧tli=tli′ ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),
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244(b)iii (onL(li,fhi,thi,1),atH(hi,fli,tli))
244(b)iii → li=fli∧thi=hi ∧ {li,tli} ⊆ xtr lis(δ ) ∧ {fhi,thi}=obs mereo L(get link(li)(δ ))
244(b)iii ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),
244(b)iv (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
244(b)iv → etcetera,
244b → false

244b end end end end end

5.2.3 Perdurants

Our presentation of example perdurants is not as systematic as that of example endurants. Give the simple

basis of endurants covered above there is now a huge variety of perdurants, so we just select one example

from each of the three classes of perdurants (as outline in [49]): a simple hub insertion action (Sect. 5.2.3),

a simple link disappearance event (Sect. 5.2.3) and a not quite so simple behaviour, that of road traffic

(Sect. 5.2.3).

Hub Insertion Action

245 Initially inserted hubs, h, are characterised

a by their unique identifier which not one of any

hub in the net, n, into which the hub is being in-

serted,

b by a mereology, {}, of zero link identifiers, and

c by — whatever — attributes, attrs, are needed.

246 The result of such a hub insertion is a net, n′,

a whose links are those of n, and

b whose hubs are those of n augmented with h.

value

245 insert hub: H → N → N
246 insert hub(h)(n) as n′

245a pre: uid H(h) 6∈ xtr his(n)
245b ∧ obs mereo H= {}
245c ∧ ...
246a post: obs part Ls(n) = obs part Ls(n′)
246b ∧ obs part Hs(n) ∪ {h} = obs part Hs(n′)

Link Disappearance Event

We formalise aspects of the link disappearance event:

247 The result net, n’:N’, is not well-formed.

248 For a link to disappear there must be at least one link

in the net;

249 and such a link may disappear such that

250 it together with the resulting net makes up for the

“original” net.

value

247 link diss event: N × N′ × Bool

247 link diss event(n,n′) as tf
248 pre: obs part Ls(obs part LS(n)) 6={}
249 post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
250 l 6∈ obs part Ls(obs part LS(n′))
250 ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))

Road Traffic

The analysis & description of the road traffic behaviour is composed (i) from the description of the global values of

nets, links and hubs, vehicles, monitor, a clock, and an initial distribution, map, of vehicles, “across” the net; (ii) from

the description of channels between vehicles and the monitor; (iii) from the description of behaviour signatures, that

is, those of the overall road traffic system, the vehicles, and the monitor; and (iv) from the description of the individual

behaviours, that is, the overall road traffic system, rts, the individual vehicles, veh, and the monitor, mon.

Global Values:

There is given some globally observable parts.
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251 besides the domain, δ :∆ ,
252 a net, n:N,
253 a set of vehicles, vs:V-set,
254 a monitor, m:M, and

255 a clock, clock, behaviour.

256 From the net and vehicles we generate an initial dis-

tribution of positions of vehicles.

The n:N, vs:V-set and m:M are observable from any road traffic system domain δ .

value

251 δ :∆
252 n:N = obs part N(δ ),
252 ls:L-set=links(δ ),hs:H-set=hubs(δ ),
252 lis:LI-set=xtr lis(δ ),his:HI-set=xtr his(δ )
253 va:VS=obs part VS(obs part F(δ )),
253 vs:Vs-set=obs part Vs(va),

253 vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
254 m:obs part M(δ ),
254 mi=uid MI(m),
254 ma:attributes(m)
255 clock: T → out {clk ch[vi|vi:VI•vi ∈ vis ]} Unit

256 vm:MAP•vpos map = distribute(vs)(n);

Channels:

257 We additionally declare a set of vehicle-to-monitor-

channels indexed

a by the unique identifiers of vehicles

b and the (single) monitor identifier.8

and communicating vehicle positions.

channel

257 {v m ch[vi,mi ]|vi:VI•vi ∈ vis}:VPos

Behaviour Signatures:

258 The road traffic system behaviour, rts, takes no argu-

ments (hence the first Unit)9; and “behaves”, that is,

continues forever (hence the last Unit).

259 The vehicle behaviour

a is indexed by the unique identifier, uid V(v):VI,

b the vehicle mereology, in this case the single

monitor identifier mi:MI,

c the vehicle attributes, obs attribs(v)

d and — factoring out one of the vehicle attributes

— the current vehicle position.

e The vehicle behaviour offers communication to

the monitor behaviour (on channel vm ch[vi]);
and behaves “forever”.

260 The monitor behaviour takes

a the monitor identifier,

b the monitor mereology,

c the monitor attributes,

d and — factoring out one of the vehicle attributes

— the discrete road traffic, drtf:dRTF, being re-

peatedly “updated” as the result of input com-

munications from (all) vehicles;

e the behaviour otherwise behaves forever.

value

258 rts: Unit → Unit

259 vehvi:V I : mi:MI → vp:VPos → out vm ch[vi,mi ] Unit

260 monmi:MI : vis:VI-set → RTF → in {v m ch[vi,mi ]|vi:VI•vi ∈ vis},clk ch Unit

The Road Traffic System Behaviour:

261 Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and, to “observe”, or, as we shall call it, to monitor their

movements,

b the monitor behaviour.

value

261 rts() =
261a ‖ {vehuid V I(v)(mi)(vm(uid VI(v)))|v:V•v ∈ vs}

261b ‖ monmi(vis)([vi7→〈〉|vi:VI•vi ∈ vis ])

8 Technically speaking: we could omit the monitor identifier.
9 The Unit designator is an RSL technicality.
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where, wrt, the monitor, we dispense with the mereology and the attribute state arguments and instead just have a

monitor traffic argument which records the discrete road traffic, MAP, initially set to “empty” traces (〈〉, of so far “no

road traffic”!).

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate their positions to

the monitor via a vehicle to monitor channel. In order for the monitor to time-stamp these positions it must be able to

“read” a clock.

262 We describe here an abstraction of the vehicle be-

haviour at a Hub (hi).
a Either the vehicle remains at that hub informing

the monitor of its position,
b or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub,

identified by thi, is obtained from the mere-

ology of the link identified by tli;
ii informs the monitor, on channel vm[vi,mi],

that it is now at the very beginning (0) of the

link identified by tli, whereupon the vehicle

resumes the vehicle behaviour positioned at

the very beginning of that link,

c or, again internally non-deterministically, the ve-

hicle “disappears — off the radar” !

262 vehvi(mi)(vp:atH(hi,fli,tli)) ≡
262a v m ch[vi,mi ]!vp ; vehvi(mi)(vp)
262b ⌈⌉
262(b)i let {hi′,thi}=obs mereo L(get link(tli)(n)) in

262(b)i assert: hi′=hi
262(b)ii v m ch[vi,mi ]!onL(tli,hi,thi,0) ;
262(b)ii vehvi(mi)(onL(tli,hi,thi,0)) end

262c ⌈⌉ stop

263 We describe here an abstraction of the vehicle be-

haviour on a Link (ii). Either
a the vehicle remains at that link position inform-

ing the monitor of its position,
b or, internally non-deterministically, if the vehi-

cle’s position on the link has not yet reached the

hub,
i then the vehicle moves an arbitrary incre-

ment ℓε (less than or equal to the distance to

the hub) along the link informing the moni-

tor of this, or
ii else,

1 while obtaining a “next link” from the

mereology of the hub (where that next

link could very well be the same as the

link the vehicle is about to leave),
2 the vehicle informs the monitor that

it is now at the hub identified by thi,

whereupon the vehicle resumes the ve-

hicle behaviour positioned at that hub.

c or, internally non-deterministically, the vehicle

“disappears — off the radar” !

263 vehvi(mi)(vp:onL(li,fhi,thi,r)) ≡
263a v m ch[vi,mi ]!vp ; vehvi(mi,va)(vp)
263b ⌈⌉ if r + ℓε≤1
263(b)i then

263(b)i v m ch[vi,mi ]!onL(li,fhi,thi,r+ℓε ) ;
263(b)i vehvi(mi)(onL(li,fhi,thi,r+ℓε ))
263(b)ii else

263(b)ii1 let li′:LI•li′ ∈ obs mereo H(get hub(thi)(n)) in

263(b)ii2 v m ch[vi,mi ]!atH(li,thi,li′);
263(b)ii2 vehvi(mi)(atH(li,thi,li′)) end end

263c ⌈⌉ stop

The Monitor Behaviour

264 The monitor behaviour evolves around

a the monitor identifier,

b the monitor mereology,

c and the attributes, ma:ATTR
d — where we have factored out as a separate ar-

guments — a table of traces of time-stamped ve-

hicle positions,

e while accepting messages

i about time

ii and about vehicle positions

f and otherwise progressing “in[de]finitely”.

265 Either the monitor “does own work”

266 or, internally non-deterministically accepts messages

from vehicles.

a A vehicle position message, vp, may arrive from

the vehicle identified by vi.
b That message is appended to that vehicle’s

movement trace – prefixed by time (obtained

from the time channel),

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over

all identified vehicles.

264 monmi(vis)(trf) ≡
265 monmi(vis)(trf)
266 ⌈⌉
266a ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi ]?) in

266b let trf′ = trf † [vi 7→ trf(vi)̂<tvp> ] in

266c monmi(vis)(trf
′)

266d end end | vi:VI • vi ∈ vis}
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We are about to complete a long, i.e., a 6.3 page example (!). We can now comment on the full example:

The domain, δ : ∆ is a manifest part. The road net, n : N is also a manifest part. The fleet, f : F , of vehicles,

vs : VS, likewise, is a manifest part. But the monitor, m : M, is a concept. One does not have to think of

it as a manifest “observer”. The vehicles are on — or off — the road (i.e., links and hubs). We know that

from a few observations and generalise to all vehicles. They either move or stand still. We also, similarly,

know that. Vehicles move. Yes, we know that. Based on all these repeated observations and generalisations

we introduce the concept of vehicle traffic. Unless positioned high above a road net — and with good

binoculars — a single person cannot really observe the traffic. There are simply too many links, hubs,

vehicles, vehicle positions and times. Thus we conclude that, even in a richly manifest domain, we can also

“speak of”, that is, describe concepts over manifest phenomena, including time !

5.2.4 Domain Facets

The example of this section, i.e., Sect. 5.2, focuses on the domain facet [33, 2008] of (i) instrinsics. It

does not reflect the other domain facets: (ii) domain support technologies, (iii) domain rules, regulations

& scripts, (iv) organisation & management, and (v) human behaviour. The requirements examples, i.e.,

the rest of this paper, thus builds only on the domain instrinsics. This means that we shall not be able

to cover principles, technique and tools for the prescription of such important requirements that handle

failures of support technology or humans. We shall, however point out where we think such, for example,

fault tolerance requirements prescriptions “fit in” and refer to relevant publications for their handling.

5.3 Requirements

This and the next three sections, Sects. 5.4.–5.5., are the main sections of this paper. Section 5.4. is the

most detailed and systematic section. It covers the domain requirements operations of projection, instan-
tiation, determination, extension and, less detailed, fitting. Section 5.5. surveys the interface requirements
issues of shared phenomena: shared endurants, shared actions, shared events and shared behaviour, and

“completes” the exemplification of the detailed domain extension of our requirements into a road pricing
system. Section 5.5. also covers the notion of derived requirements.

5.3.1 The Three Phases of Requirements Engineering

There are, as we see it, three kinds of design assumptions and requirements: (i) domain requirements, (ii)

interface requirements and (iii) machine requirements. (i) Domain requirements are those requirements

which can be expressed sôlely using terms of the domain ⊙ (ii) Interface requirements are those re-

quirements which can be expressed only using technical terms of both the domain and the machine ⊙ (iii)

Machine requirements are those requirements which, in principle, can be expressed sôlely using terms

of the machine ⊙

Definition 33. Verification Paradigm: Some preliminary designations: let D designate the the domain

description; let R designate the requirements prescription, and let S designate the system design. Now

D ,S |=R shall be read: it must be verified that the S ystem design satisfies the Requirements prescription

in the context of the Domain description ⊙

The “in the context of D ...” term means that proofs of S oftware design correctness with respect to

Requirements will often have to refer to Domain requirements assumptions. We refer to [100, Gunter,

Jackson and Zave, 2000] for an analysis of a varieties of forms in which |= relate to variants of D , R and

S .

5.3.2 Order of Presentation of Requirements Prescriptions

The domain requirements development stage — as we shall see — can be sub-staged into: projection,

instantiation, determination, extension and fitting. The interface requirements development stage —
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can be sub-staged into shared: endurant, action, event and behaviour developments, where “sharedness”

pertains to phenomena shared between, i.e., “present” in, both the domain (concretely, manifestly) and the

machine (abstractly, conceptually). These development stages need not be pursued in the order of the three

stages and their sub-stages. We emphasize that one thing is the stages and steps of development, as for

example these: projection, instantiation, determination, extension, fitting, shared endurants, shared actions,

shared events, shared behaviours, etcetera, another thing is the requirements prescription that results from

these development stages and steps. The further software development, after and on the basis of the require-

ments prescription starts only when all stages and steps of the requirements prescription have been fully

developed. The domain engineer is now free to rearrange the final prescription, irrespective of the order in

which the various sections were developed, in such a way as to give a most pleasing, pedagogic and cohe-

sive reading (i.e., presentation). From such a requirements prescription one can therefore not necessarily

see in which order the various sections of the prescription were developed.

5.3.3 Design Requirements and Design Assumptions

A crucial distinction is between design requirements and design assumptions. The design requirements
are those requirements for which the system designer has to implement hardware or software in order

satisfy system user expectations ⊙ The design assumptions are those requirements for which the system

designer does not have to implement hardware or software, but whose properties the designed hardware,

respectively software relies on for proper functioning ⊙

Example 5.1. . Road Pricing System — Design Requirements: The design requirements for the road

pricing calculator of this paper are for the design (ii) of that part of the vehicle software which interfaces the

GNSS receiver and the road pricing calculator (cf. Items 345–348), (iii) of that part of the toll-gate software

which interfaces the toll-gate and the road pricing calculator (cf. Items 353–355) and (i) of the road pricing

calculator (cf. Items 384–397) �

Example 5.2. . Road Pricing System — Design Assumptions: The design assumptions for the road

pricing calculator include: (i) that vehicles behave as prescribed in Items 344–348, (ii) that the GNSS regularly

offers vehicles correct information as to their global position (cf. Item 345), (iii) that toll-gates behave as

prescribed in Items 350–355, and (iv) that the road net is formed and well-formed as defined in Examples 5.7–

5.9 �

Example 5.3. . Toll-Gate System — Design Requirements: The design requirements for the toll-gate

system of this paper are for the design of software for the toll-gate and its interfaces to the road pricing system,

i.e., Items 349–350 ⊙

Example 5.4. . Toll-Gate System — Design Assumptions: The design assumptions for the toll-gate

system include (i) that the vehicles behave as per Items 344–348, and (ii) that the road pricing calculator

behave as per Items 384–397 ⊙

5.3.4 Derived Requirements

In building up the domain, interface and machine requirements a number of machine concepts are intro-

duced. These machine concepts enable the expression of additional requirements. It is these we refer to as

derived requirements. Techniques and tools espoused in such classical publications as [79, 116, 187, 125,

177] can in those cases be used to advantage.

5.4 Domain Requirements

Domain requirements primarily express the assumptions that a design must rely upon in order that that de-

sign can be verified. Although domain requirements firstly express assumptions it appears that the software

designer is well-advised in also implementing, as data structures and procedures, the endurants, respectively

perdurants expressed in the domain requirements prescriptions. Whereas domain endurants are “real-life”

phenomena they are now, in domain requirements prescriptions, abstract concepts (to be represented by a

machine).
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Definition 34. Domain Requirements Prescription: A domain requirements prescription is that
subset of the requirements prescription whose technical terms are defined in a domain description ⊙

To determine a relevant subset all we need is collaboration with requirements, cum domain stake-holders.

Experimental evidence, in the form of example developments of requirements prescriptions from domain

descriptions, appears to show that one can formulate techniques for such developments around a few do-

main-description-to-requirements-prescription operations. We suggest these: projection, instantiation, de-
termination, extension and fitting. In Sect. 5.3.2 we mentioned that the order in which one performs these

domain-description-to-domain-requirements-prescription operations is not necessarily the order in which

we have listed them here, but, with notable exceptions, one is well-served in starting out requirements

development by following this order.

5.4.1 Domain Projection

Definition 35. Domain Projection: By a domain projection we mean a subset of the domain descrip-
tion, one which projects out all those endurants: parts, materials and components, as well as perdurants:
actions, events and behaviours that the stake-holders do not wish represented or relied upon by the machine
⊙

The resulting document is a partial domain requirements prescription. In determining an appropriate subset

the requirements engineer must secure that the final “projection prescription” is complete and consistent

— that is, that there are no “dangling references”, i.e., that all entities and their internal properties that are

referred to are all properly defined.

Domain Projection — Narrative

We now start on a series of examples that illustrate domain requirements development.

Example 5.5. . Domain Requirements. Projection: A Narrative Sketch: We require that the road

pricing system shall [at most] relate to the following domain entities – and only to these10: the net, its links and

hubs, and their properties (unique identifiers, mereologies and some attributes), the vehicles, as endurants, and

the general vehicle behaviours, as perdurants. We treat projection together with a concept of simplification.

The example simplifications are vehicle positions and, related to the simpler vehicle position, vehicle behaviours.

To prescribe and formalise this we copy the domain description. From that domain description we remove all

mention of the hub insertion action, the link disappearance event, and the monitor �

As a result we obtain ∆P , the projected version of the domain requirements prescription11.

Domain Projection — Formalisation

The requirements prescription hinges, crucially, not only on a systematic narrative of all the projected,

instantiated, determinated, extended and fitted specifications, but also on their formalisation. In the formal

domain projection example we, regretfully, omit the narrative texts. In bringing the formal texts we keep

the item numbering from Sect. 5.2, where you can find the associated narrative texts.

Example 5.6. . Domain Requirements — Projection: Main Sorts

type

217 ∆P

217a NP

217b FP

value

10 By ‘relate to . . . these’ we mean that the required system does not rely on domain phenomena that have been

“projected away”.
11 Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.
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217a obs part NP : ∆P→NP

217b obs part FP : ∆P→FP

type

218a HAP

218b LAP

value

218a obs part HA: NP → HA
218b obs part LA: NP → LA

Concrete Types

type

219 HP , HSP = HP -set

220 LP , LSP = LP -set

221 VP , VSP = VP -set

value

219 obs part HSP : HAP → HSP

220 obs part LSP : LAP → LSP

221 obs part VSP : FP → VSP

222a links: ∆P → L-set

222a links(δP ) ≡ obs part LSR(obs part LAR(δR))
222b hubs: ∆P → H-set

222b hubs(δP) ≡ obs part HSP(obs part HAP (δP ))

Unique Identifiers

type

223a HI, LI, VI, MI
value

223c uid HI: HP → HI
223c uid LI: LP → LI
223c uid VI: VP → VI
223c uid MI: MP → MI
axiom

223b HI
⋂
LI=Ø, HI

⋂
VI=Ø, HI

⋂
MI=Ø,

223b LI
⋂
VI=Ø, LI

⋂
MI=Ø, VI

⋂
MI=Ø

Mereology

value

228 obs mereo HP : HP → LI-set

229 obs mereo LP : LP → HI-set

229 axiom ∀ l:LP
• card obs mereo LP(l)=2

230 obs mereo VP : VP → MI
231 obs mereo MP : MP → VI-set

axiom

232 ∀ δP :∆P , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δP ) ⇒
232 ∀ h:HP

•h ∈ hs ⇒
232 obs mereo HP(h)⊆xtr his(δP ) ∧
233 ∀ l:LP

•l ∈ ls •

232 obs mereo LP(l)⊆xtr lis(δP ) ∧
234a let f:FP

•f=obs part FP (δP ) ⇒
234a vs:VSP

•vs=obs part VSP (f) in

234a ∀ v:VP
•v ∈ vs ⇒

234a uid VP (v) ∈ obs mereo MP(m) ∧
234b obs mereo MP(m)
234b = {uid VP (v)|v:V•v ∈ vs}
234b end

Attributes: We project attributes of hubs, links and vehicles.

First hubs:
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type

235a GeoH
235b HΣP = (LI×LI)-sett
235c HΩP = HΣP -set

value

235b attr HΣP : HP → HΣP

235c attr HΩP : HP → HΩP

axiom

236 ∀ δP :∆P ,
236 let hs = hubs(δP) in

236 ∀ h:HP
• h ∈ hs •

236a xtr lis(h)⊆xtr lis(δP )
236b ∧ attr ΣP(h) ∈ attr ΩP(h)
236 end

Then links:

type

239 GeoL
240a LΣP = (HI×HI)-set

240b LΩP = LΣP -set

value

239 attr GeoL: L → GeoL
240a attr LΣP : LP → LΣP

240b attr LΩP : LP → LΩP

axiom

240a− 240b on Page 141.

Finally vehicles: For ‘road pricing’ we need vehicle positions. But, for “technical reasons”, we must abstain from the

detailed description given in Items 241–241c12 We therefore simplify vehicle positions.

267 A simplified vehicle position designates

a either a link

b or a hub,

type

267 SVPos = SonL | SatH
267a SonL :: LI
267b SatH :: HI
axiom

241a’ ∀ n:N, SonL(li):SVPos •

241a’ ∃ l:L•l ∈obs part LS(obs part N(n)) ⇒ li=uid L(l)
241c’ ∀ n:N, SatH(hi):SVPos •

241c’ ∃ h:H•h ∈obs part HS(obs part N(n)) ⇒ hi=uid H(h)

Global Values

value

251 δP :∆P ,
252 n:NP = obs part NP (δP),
252 ls:LP -set = links(δP ),
252 hs:HP -set = hubs(δP),
252 lis:LI-set = xtr lis(δP ),
252 his:HI-set = xtr his(δP )

Behaviour Signatures: We omit the monitor behaviour.

268 We leave the vehicle behaviours’ attribute argument undefined.

12 The ‘technical reasons’ are that we assume that the GNSS cannot provide us with direction of vehicle movement

and therefore we cannot, using only the GNSS provide the details of ‘offset’ along a link (onL ) nor the “from/to

link” at a hub (atH ).
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type

268 ATTR
value

258 trsP : Unit → Unit

259 vehP : VI×MI×ATTR → ... Unit

The System Behaviour: We omit the monitor behaviour.

value

261a trsP ()=‖{vehP (uid VI(v),obs mereo V(v), ) | v:VP
•v ∈ vs}

The Vehicle Behaviour: Given the simplification of vehicle positions we simplify the vehicle behaviour given in

Items 262–263

262′ vehvi(mi)(vp:SatH(hi)) ≡
262a′ v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(SatH(hi))
262(b)i’ ⌈⌉ let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

262(b)ii′ v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li)) end

262c′ ⌈⌉ stop

263′ vehvi(mi)(vp:SonL(li)) ≡
263a′ v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li))
263(b)ii1′ ⌈⌉ let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

263(b)ii2′ v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(atH(hi)) end

263c′ ⌈⌉ stop

We can simplify Items 262′–263c′ further.

269 vehvi(mi)(vp) ≡
270 v m ch[vi,mi ]!vp ; vehvi(mi)(vp)
271 ⌈⌉ case vp of

271 SatH(hi) →
272 let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

273 v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li)) end,
271 SonL(li) →
274 let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

275 v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(atH(hi)) end end

276 ⌈⌉ stop

269 This line coalesces Items 262′ and 263′.

270 Coalescing Items 262a′ and 263′.

271 Captures the distinct parameters of Items 262′ and 263′ .

272 Item 262(b)i′.

273 Item 262(b)ii′.

274 Item 263(b)ii1′.

275 Item 263(b)ii2′.

276 Coalescing Items 262c′ and 263c′.

The above vehicle behaviour definition will be transformed (i.e., further “refined”) in Sect. 5.5.1’s Example 5.15; cf.

Items 344– 348 on Page 163 �

Discussion

Domain projection can also be achieved by developing a “completely new” domain description — typically

on the basis of one or more existing domain description(s) — where that “new” description now takes the

rôle of being the project domain requirements.
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152 5 From Domain Descriptions to Requirements Prescriptions

5.4.2 Domain Instantiation

Definition 36. Domain Instantiation: By domain instantiation we mean a refinement of the partial
domain requirements prescription (resulting from the projection step) in which the refinements aim at
rendering the endurants: parts, materials and components, as well as the perdurants: actions, events and
behaviours of the domain requirements prescriptionmore concrete, more specific ⊙ Instantiations usually
render these concepts less general.

Properties that hold of the projected domain shall also hold of the (therefrom) instantiated domain.

Refinement of endurants can be expressed (i) either in the form of concrete types, (ii) or of further

“delineating” axioms over sorts, (iii) or of a combination of concretisation and axioms. We shall exemplify

the third possibility. Example 5.7 express requirements that the road net (on which the road-pricing system

is to be based) must satisfy. Refinement of perdurants will not be illustrated (other than the simplification

of the vehicle projected behaviour).

Domain Instantiation

Example 5.7. . Domain Requirements. Instantiation Road Net: We now require that there is, as
before, a road net, nI :NI , which can be understood as consisting of two, “connected sub-nets”. A toll-road
net, trnI :TRNI , cf. Fig. 5.1, and an ordinary road net, nP ′ . The two are connected as follows: The toll-road
net, trnI , borders some toll-road plazas, in Fig. 5.1 shown by white filled circles (i.e., hubs). These toll-road
plaza hubs are proper hubs of the ‘ordinary’ road net, n′

P
.

tij

trn

tpj

... ... ...... ......

exitentry

toll−road intersection hubordinary net hub link

no

tpa tpb

tia tib tic

tpc tpm

tim

tp

ti

l

l

Fig. 5.1. A simple, linear toll-road net trn. t p j: toll plaza j, ti j: toll road intersection j.
Upper dashed sub-figure hint at an ordinary road net no.
Lower dotted sub-figure hint at a toll-road net trn.
Dash-dotted (- - -) ”V”-images above t p js hint at links to remaining “parts” of no.

277 The instantiated domain, δI :∆I has just the net, nI :NI being instantiated.
278 The road net consists of two “sub-nets”

a an “ordinary” road net, no:NP ′ and
b a toll-road net proper, trn:TRNI —
c “connected” by an interface hil:HIL:

i That interface consists of a number of toll-road plazas (i.e., hubs), modeled as a list of hub
identifiers, hil:HI∗.

ii The toll-road plaza interface to the toll-road net, trn:TRNI
13, has each plaza, hil[i], connected

to a pair of toll-road links: an entry and an exit link: (le:L, lx:L).
iii The toll-road plaza interface to the ‘ordinary’ net, no:NP ′ , has each plaza, i.e., the hub designated

by the hub identifier hil[i], connected to one or more ordinary net links, {li1 , li2 , · · · , lik}.
278b The toll-road net, trn:TRNI , consists of three collections (modeled as lists) of links and hubs:

13 We (sometimes) omit the subscript I when it should be clear from the context what we mean.
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i a list of pairs of toll-road entry/exit links: 〈(le1
, lx1

), · · · ,(leℓ , lxℓ)〉,
ii a list of toll-road intersection hubs: 〈hi1 ,hi2 , · · · ,hiℓ 〉, and
iii a list of pairs of main toll-road (“up” and “down”) links: 〈(mli1u

,mli1d
),(mi2u

,mi2d
), · · · ,(miℓu ,miℓd )〉.

d The three lists have commensurate lengths (ℓ).

ℓ is the number of toll plazas, hence also the number of toll-road intersection hubs and therefore a number one
larger than the number of pairs of main toll-road (“up” and “down”) links

type

277 ∆I

278 NI = NP ′ × HIL × TRN
278a NP ′

278b TRNI = (L×L)∗×H∗×(L×L)∗

278c HIL = HI∗

axiom

278d ∀ nI :NI
•

278d let (n∆ ,hil,(exll,hl,lll)) = nI in

278d len hil = len exll = len hl = len lll + 1
278d end

We have named the “ordinary” net sort (primed) NP ′ . It is “almost” like (unprimed) NP — except that the interface

hubs are also connected to the toll-road net entry and exit links.

The partial concretisation of the net sorts, NP , into NI requires some additional well-formedness conditions to

be satisfied.

279 The toll-road intersection hubs all14 have distinct identifiers.

279 wf dist toll road isect hub ids: H∗→Bool

279 wf dist toll road isect hub ids(hl) ≡
279 len hl = card xtr his(hl)

280 The toll-road links all have distinct identifiers.

280 wf dist toll road u d link ids: (L×L)∗→Bool

280 wf dist toll road u d link ids(lll) ≡
280 2 × len lll = card xtr lis(lll)

281 The toll-road entry/exit links all have distinct identifiers.

281 wf dist e x link ids: (L×L)∗→Bool

281 wf dist e x link ids(exll) ≡
281 2 × len exll = card xtr lis(exll)

282 Proper net links must not designate toll-road intersection hubs.

282 wf isoltd toll road isect hubs: HI∗×H∗→NI →Bool

282 wf isoltd toll road isect hubs(hil,hl)(nI ) ≡
282 let ls=xtr links(nI ) in

282 let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in

282 his ∩ xtr his(hl) = {} end end

283 The plaza hub identifiers must designate hubs of the ‘ordinary’ net.

283 wf p hubs pt of ord net: HI∗→N′
∆→Bool

283 wf p hubs pt of ord net(hil)(n’∆ ) ≡
283 elems hil ⊆ xtr his(n′∆ )

14 A ‘must’ can be inserted in front of all ‘all’s,
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284 The plaza hub mereologies must each,

a besides identifying at least one hub of the ordinary net,

b also identify the two entry/exit links with which they are supposed to be connected.

284 wf p hub interf: N′
∆→Bool

284 wf p hub interf(no,hil,(exll, , )) ≡
284 ∀ i:Nat • i ∈ inds exll ⇒
284 let h = get H(hil(i))(n′∆ ) in

284 let lis = obs mereo H(h) in

284 let lis′ = lis \ xtr lis(n′) in

284 lis′ = xtr lis(exll(i)) end end end

285 The mereology of each toll-road intersection hub must identify

a the entry/exit links

b and exactly the toll-road ‘up’ and ‘down’ links

c with which they are supposed to be connected.

285 wf toll road isect hub iface: NI →Bool

285 wf toll road isect hub iface( , ,(exll,hl,lll)) ≡
285 ∀ i:Nat • i ∈ inds hl ⇒
285 obs mereo H(hl(i)) =
285a xtr lis(exll(i)) ∪
285 case i of

285b 1 → xtr lis(lll(1)),
285b len hl → xtr lis(lll(len hl−1))
285b → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))
285 end

286 The mereology of the entry/exit links must identify exactly the

a interface hubs and the

b toll-road intersection hubs

c with which they are supposed to be connected.

286 wf exll: (L×L)∗×HI∗×H∗→Bool

286 wf exll(exll,hil,hl) ≡
286 ∀ i:Nat • i ∈ len exll
286 let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in

286 obs mereo L(el) = obs mereo L(xl)
286 = {hi} ∪ {uid H(h)} end

286 pre: len eell = len hil = len hl

287 The mereology of the toll-road ‘up’ and ‘down’ links must

a identify exactly the toll-road intersection hubs

b with which they are supposed to be connected.

287 wf u d links: (L×L)∗×H∗→Bool

287 wf u d links(lll,hl) ≡
287 ∀ i:Nat • i ∈ inds lll ⇒
287 let (ul,dl) = lll(i) in

287 obs mereo L(ul) = obs mereo L(dl) =
287a uid H(hl(i)) ∪ uid H(hl(i+1)) end

287 pre: len lll = len hl+1

We have used some additional auxiliary functions:
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xtr his: H∗→HI-set

xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set

xtr lis(l′,l′′) ≡ {uid LI(l′)}∪{uid LI(l′′)}
xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l′,l′′)|(l′,l′′):(L×L)•(l′,l′′)∈ elems lll}

288 The well-formedness of instantiated nets is now the conjunction of the individual well-formedness predicates

above.

288 wf instantiated net: NI → Bool

288 wf instantiated net(n′∆ ,hil,(exll,hl,lll))
279 wf dist toll road isect hub ids(hl)
280 ∧ wf dist toll road u d link ids(lll)
281 ∧ wf dist e e link ids(exll)
282 ∧ wf isolated toll road isect hubs(hil,hl)(n′)
283 ∧ wf p hubs pt of ord net(hil)(n′)
284 ∧ wf p hub interf(n′∆ ,hil,(exll, , ))
285 ∧ wf toll road isect hub iface( , ,(exll,hl,lll))
286 ∧ wf exll(exll,hil,hl)
287 ∧ wf u d links(lll,hl)

Domain Instantiation — Abstraction

Example 5.8. . Domain Requirements. Instantiation Road Net, Abstraction: Domain instantiation
has refined an abstract definition of net sorts, nP :NP , into a partially concrete definition of nets, nI :NI . We
need to show the refinement relation:

• abstraction(nI ) = nP .

value

289 abstraction: NI → NP

290 abstraction(n′∆ ,hil,(exll,hl,lll)) ≡
291 let nP :NP

•

291 let hs = obs part HSP (obs part HAP (n′
P
)),

291 ls = obs part LSP (obs part LAP (n′
P
)),

291 ths = elems hl,
291 eells = xtr links(eell), llls = xtr links(lll) in

292 hs∪ths=obs part HSP (obs part HAP (nP ))
293 ∧ ls∪eells∪llls=obs part LSP(obs part LAP (nP))
294 nP end end

289 The abstraction function takes a concrete net, nI :NI , and yields an abstract net, nP :NP .
290 The abstraction function doubly decomposes its argument into constituent lists and sub-lists.
291 There is postulated an abstract net, nP :NP , such that
292 the hubs of the concrete net and toll-road equals those of the abstract net, and
293 the links of the concrete net and toll-road equals those of the abstract net.
294 And that abstract net, nP :NP , is postulated to be an abstraction of the concrete net.

Discussion

Domain descriptions, such as illustrated in [49, Manifest Domains: Analysis & Description] and in this

paper, model families of concrete, i.e., specifically occurring domains. Domain instantiation, as exemplified

in this section (i.e., Sect. 5.4.2), “narrow down” these families. Domain instantiation, such as it is defined,

cf. Definition 36 on Page 152, allows the requirements engineer to instantiate to a concrete instance of a

very specific domain, that, for example, of the toll-road between Bolzano Nord and Trento Sud in Italy

(i.e., n=7)15.

15 Here we disregard the fact that this toll-road does not start/end in neither Bolzano Nord nor Trento Sud.

December 5, 2016, 07:21, A Foundation for Software Development DRAFT c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark



156 5 From Domain Descriptions to Requirements Prescriptions

5.4.3 Domain Determination

Definition 37. Determination: By domain determination we mean a refinement of the partial domain
requirements prescription, resulting from the instantiation step, in which the refinements aim at rendering
the endurants: parts, materials and components, as well as the perdurants: functions, events and behaviours
of the partial domain requirements prescription less non-determinate, more determinate ⊙

Determinations usually render these concepts less general. That is, the value space of endurants that are

made more determinate is “smaller”, contains fewer values, as compared to the endurants before determi-

nation has been “applied”.

Domain Determination: Example

We show an example of ‘domain determination’. It is expressed sôlely in terms of axioms over the concrete

toll-road net type.

Example 5.9. . Domain Requirements. Determination Toll-roads: We focus only on the toll-road net.
We single out only two ’determinations’:

All Toll-road Links are One-way Links

295 The entry/exit and toll-road links

a are always all one way links,
b as indicated by the arrows of Fig. 5.1 on Page 152,
c such that each pair allows traffic in opposite directions.

295 opposite traffics: (L×L)∗ × (L×L)∗ → Bool

295 opposite traffics(exll,lll) ≡
295 ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll ⇒
295a let (ltσ ,lfσ) = (attr LΣ(lt),attr LΣ(lf)) in

295a′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
295a′′. ∧ card ltσ = 1 = card lfσ
295 ∧ let ({(hi,hi′)},{(hi′′,hi′′′)}) = (ltσ ,lfσ) in

295c hi=hi′′′ ∧ hi′=hi′′

295 end end

Predicates 295a′. and 295a′′. express the same property.

All Toll-road Hubs are Free-flow

296 The hub state spaces are singleton sets of the toll-road hub states which always allow exactly these (and only

these) crossings:

a from entry links back to the paired exit links,

b from entry links to emanating toll-road links,

c from incident toll-road links to exit links, and

d from incident toll-road link to emanating toll-road links.

296 free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

296 free flow toll road hubs(exl,ll) ≡
296 ∀ i:Nat•i ∈ inds hl ⇒
296 attr HΣ(hl(i)) =
296a hσ ex ls(exl(i))
296b ∪ hσ et ls(exl(i),(i,ll))
296c ∪ hσ tx ls(exl(i),(i,ll))
296d ∪ hσ tt ls(i,ll)

296a: from entry links back to the paired exit links:

296a hσ ex ls: (L×L)→LΣ
296a hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}
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296b: from entry links to emanating toll-road links:

296b hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
296b hσ et ls((e, ),(i,ll)) ≡
296b case i of

296b 2 → {(uid LI(e),uid LI(em(ll(1))))},
296b len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},
296b → {(uid LI(e),uid LI(em(ll(i−1)))),
296b (uid LI(e),uid LI(em(ll(i))))}
296b end

The em and in in the toll-road link list (em:L×in:L)∗ designate selectors for emanating, respectively incident links.

296c: from incident toll-road links to exit links:

296c hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
296c hσ tx ls(( ,x),(i,ll)) ≡
296c case i of

296c 2 → {(uid LI(in(ll(1))),uid LI(x))},
296c len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},
296c → {(uid LI(in(ll(i−1))),uid LI(x)),
296c (uid LI(in(ll(i))),uid LI(x))}
296c end

296d: from incident toll-road link to emanating toll-road links:

296d hσ tt ls: Nat×(em:L×in:L)∗→LΣ
296d hσ tt ls(i,ll) ≡
296d case i of

296d 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
296d len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
296d → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),
296d (uid LI(in(ll(i))),uid LI(em(ll(i))))}
296d end

The example above illustrated ‘domain determination’ with respect to endurants. Typically “endurant deter-

mination” is expressed in terms of axioms that limit state spaces — where “endurant instantiation” typically

“limited” the mereology of endurants: how parts are related to one another. We shall not exemplify domain

determination with respect to perdurants.

Discussion

The borderline between instantiation and determination is fuzzy. Whether, as an example, fixing the number

of toll-road intersection hubs to a constant value, e.g., n=7, is instantiation or determination, is really a

matter of choice !

5.4.4 Domain Extension

Definition 38. Extension: By domain extension we understand the introduction of endurants (see
Sect. 5.4.4) and perdurants (see Sect. 5.5.2) that were not feasible in the original domain, but for which,
with computing and communication, and with new, emerging technologies, for example, sensors, actua-
tors and satellites, there is the possibility of feasible implementations, hence the requirements, that what is
introduced becomes part of the unfolding requirements prescription ⊙
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Endurant Extensions

Definition 39. Endurant Extension: By an endurant extension we understand the introduction of one
or more endurants into the projected, instantiated and determined domain DR resulting in domain DR

′,
such that these form a conservative extension of the theory, TDR

denoted by the domain requirements DR

(i.e., “before” the extension), that is: every theorem of TDR
is still a theorem of TDR

′ .

Usually domain extensions involve one or more of the already introduced sorts. In Example 5.10 we intro-

duce (i.e., “extend”) vehicles with GPSS-like sensors, and introduce toll-gates with entry sensors, vehicle

identification sensors, gate actuators and exit sensors. Finally road pricing calculators are introduced.

Example 5.10. . Domain Requirements — Endurant Extension: We present the extensions in several
steps. Some of them will be developed in this section. Development of the remaining will be deferred to
Sect. 5.5.1. The reason for this deferment is that those last steps are examples of interface requirements.
The initial extension-development steps are: [a] vehicle extension, [b] sort and unique identifiers of road price
calculators, [c] vehicle to road pricing calculator channel, [d] sorts and dynamic attributes of toll-gates, [e] road
pricing calculator attributes, [f] “total” system state, and [g] the overall system behaviour. This decomposition
establishes system interfaces in “small, easy steps”.

[a] Vehicle Extension:

297 There is a domain, δE :∆E , which contains
298 a fleet, fE :FE , that is,
299 a set, vsE :VSE , of
300 extended vehicles, vE :VE — their extension amounting to
301 a dynamic reactive attribute, whose value, ti-gpos:TiGpos, at any time, reflects that vehicle’s time-stamped

global position.16

302 The vehicle’s GNSS receiver calculates, loc pos, its local position, lpos:LPos, based on these signals.
303 Vehicles access these external attributes via the external attribute channel, attr TiGPos ch.

type

297 ∆E

298 FE

299 VSE = VE -set

300 VE

301 TiGPos = T × GPos
302 GPos, LPos
value

297 δE :∆E

298 obs part FE : ∆E → FE

298 f = obs part FE (δE )
299 obs part VSE : FE → VSE

299 vs = obs part VSE (f)
299 vis = xtr vis(vs)
301 attr TiGPos ch[vi ]?
302 loc pos: GPos → LPos
channel

302 {attr TiGPos ch[vi ]|vi:VI•vi ∈ vis}:TiGPos

We define two auxiliary functions,

304 xtr vs, which given a domain, or a fleet, extracts its set of vehicles, and

305 xtr vis which given a set of vehicles generates their unique identifiers.

16 We refer to literature on GNSS, global navigation satellite systems. The simple vehicle position, vp:SVPos, is deter-

mined from three to four time-stamped signals received from a like number of GNSS satellites [83].
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value

304 xtr vs: (∆E |FE |VSE ) → VE -set

304 xtr vs(arg) ≡
304 is ∆E (arg) → obs part VSE (obs part FE (arg)),
304 is FE (arg) → obs part VSE (arg),
304 is VSE (arg) → arg
305 xtr vis: (∆E |FE |VSE ) → VI-set

305 xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

[b] Road Pricing Calculator: Basic Sort and Unique Identifier:

306 The domain δE :∆E , also contains a pricing calculator, c:CδE
, with unique identifier ci:CI.

type

306 C, CI
value

306 obs part C: ∆E → C
306 uid CI: C → CI
306 c = obs part C(δE )
306 ci = uid CI(c)

[c] Vehicle to Road Pricing Calculator Channel:

307 Vehicles can, on their own volition, offer the timed local position, viti-lpos:VITiLPos
308 to the pricing calculator, c:CE along a vehicles-to-calculator channel, v c ch.

type

307 VITiLPos = VI × (T × LPos)
channel

308 {v c ch[vi,ci ]|vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:VITiLPos

[d] Toll-gate Sorts and Dynamic Types:

We extend the domain with toll-gates for vehicles entering and exiting the toll-road entry and exit links. Figure 5.2

illustrates the idea of gates.

gate

Vehicle

identify sensor

arrival sensor departure sensor

Fig. 5.2. A toll plaza gate

Figure 5.2 is intended to illustrate a vehicle entering (or exiting) a toll-road arrival link. The toll-gate is equipped with

three sensors: an arrival sensor, a vehicle identification sensor and an departure sensor. The arrival sensor serves to

prepare the vehicle identification sensor. The departure sensor serves to prepare the gate for closing when a vehicle

has passed. The vehicle identify sensor identifies the vehicle and “delivers” a pair: the current time and the vehicle

identifier. Once the vehicle identification sensor has identified a vehicle the gate opens and a message is sent to the

road pricing calculator as to the passing vehicle’s identity and the identity of the link associated with the toll-gate (see

Items 325- 326 on Page 161).

309 The domain contains the extended net, n:NE ,
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310 with the net extension amounting to the toll-road net, TRNE , that is, the instantiated toll-road net, trn:TRNI , is

extended, into trn:TRNE , with entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

311 their unique identifier and

312 their mereology: pairs of entry-, respectively exit link and calculator unique identifiers; further

313 a pair of gate entry and exit sensors modeled as external attribute channels, (ges:ES,gls:XS), and

314 a time-stamped vehicle identity sensor modeled as external attribute channels.

type

309 NE

310 TRNE = (EG×XG)∗ × TRNI

311 GI
value

309 obs part NE : ∆E → NE

310 obs part TRNE : NE → TRNE

311 uid G: (EG|XG) → GI
312 obs mereo G: (EG|XG) → (LI×CI)
310 trn:TRNE = obs part TRNE (δE )
channel

313 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} ′′enter′′

313 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} ′′exit′′

314 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI
type

314 TIVI = T × VI

We define some auxiliary functions over toll-road nets, trn:TRNE :

315 xtr eGℓ extracts the ℓist of entry gates,

316 xtr xGℓ extracts the ℓist of exit gates,

317 xtr eGIds extracts the set of entry gate identifiers,

318 xtr xGIds extracts the set of exit gate identifiers,

319 xtr Gs extracts the set of all gates, and

320 xtr GIds extracts the set of all gate identifiers.
value

315 xtr eGℓ: TRNE → EG∗

315 xtr eGℓ(pgl, ) ≡ {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
316 xtr xGℓ: TRNE → XG∗

316 xtr xGℓ(pgl, ) ≡ {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
317 xtr eGIds: TRNE → GI-set

317 xtr eGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr eGs(pgl, )}
318 xtr xGIds: TRNE → GI-set

318 xtr xGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr xGs(pgl, )}
319 xtr Gs: TRNE → G-set

319 xtr Gs(pgl, ) ≡ xtr eGs(pgl, ) ∪ xtr xGs(pgl, )
320 xtr GIds: TRNE → GI-set

320 xtr GIds(pgl, ) ≡ xtr eGIds(pgl, ) ∪ xtr xGIds(pgl, )

321 A well-formedness condition expresses

a that there are as many entry end exit gate pairs as there are toll-plazas,

b that all gates are uniquely identified, and

c that each entry [exit] gate is paired with an entry [exit] link and has that link’s unique identifier as one element

of its mereology, the other elements being the calculator identifier and the vehicle identifiers.

The well-formedness relies on awareness of

322 the unique identifier, ci:CI, of the road pricing calculator, c:C, and

323 the unique identifiers, vis:VI-set, of the fleet vehicles.

axiom

321 ∀ n:NR3
, trn:TRNR3

•

321 let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

321a len exgl = len exl = len hl = len lll + 1
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321b ∧ card xtr GIds(exgl) = 2 ∗ len exgl
321c ∧ ∀ i:Nat•i ∈ inds exgl•

321c let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

321c obs mereo G(eg) = (uid U(el),ci,vis)
321c ∧ obs mereo G(xg) = (uid U(xl),ci,vis)
321 end end

[e] Toll-gate to Calculator Channels:

324 We distinguish between entry and exit gates.

325 Toll road entry and exit gates offers the road pricing calculator a pair: whether it is an entry or an exit gates, and

pair of the passing vehicle’s identity and the time-stamped identity of the link associated with the toll-gate

326 to the road pricing calculator via a (gate to calculator) channel.

type

324 EE = ′′entry′′|′′exit′′

325 EEVITiLI = EE×(VI×(T×SonL))
channel

326 {g c ch[gi,ci ]|gi:GI•gi ∈ gis}:EETiVILI

[f] Road Pricing Calculator Attributes:

327 The road pricing attributes include a programmable traffic map, trm:TRM, which, for each vehicle inside the

toll-road net, records a chronologically ordered list of each vehicle’s timed position, (τ,lpos), and

328 a static (total) road location function, vplf:VPLF. The vehicle position location f unction, vplf:VPLF, which,

given a local position, lpos:LPos, yields either the simple vehicle position, svpos:SVPos, designated by the GNSS-

provided position, or yields the response that the provided position is off the toll-road net The vplf:VPLF function

is constructed, construct vplf,
329 from awareness, of a geodetic road map, GRM, of the topology of the extended net, nE :NE , including the mere-

ology and the geodetic attributes of links and hubs.

type

327 TRM = VI →m (T × SVPos)∗

328 VPLF = GRM → LPos → (SVPos | ′′off_N′′)
329 GRM
value

327 attr TRM: CE → TRM
328 attr VPLF: CE → VPLF

The geodetic road map maps geodetic locations into hub and link identifiers.

239 Geodetic link locations represent the set of point locations of a link.

235a Geodetic hub locations represent the set of point locations of a hub.

330 A geodetic road map maps geodetic link locations into link identifiers and geodetic hub locations into hub identi-

fiers.

331 We sketch the construction, geo GRM, of geodetic road maps.

type

330 GRM = (GeoL →m LI)
⋃

(GeoH →m HI)
value

331 geo GRM: N → GRM
331 geo GRM(n) ≡
331 let ls = xtr links(n), hs = xtr hubs(n) in

331 [attr GeoL(l) 7→uid LI(l)|l:L•l ∈ ls ]
331 ∪
331 [attr GeoH(h) 7→uid HI(h)|h:H•h ∈ hs ] end
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332 The vplf:VPLF function obtains a simple vehicle position, svpos, from a geodetic road map, grm:GRM, and a

local position , lpos:

value

332 obtain SVPos: GRM → LPos → SVPos
332 obtain SVPos(grm)(lpos) as svpos
332 post: case svpos of

332 SatH(hi) → within(lpos,grm(hi)),
332 SonL(li) → within(lpos,grm(li)),
332 ′′off_N′′ → true end

where within is a predicate which holds if its first argument, a local position calculated from a GNSS-generated global

position, falls within the point set representation of the geodetic locations of a link or a hub. The design of the ob-

tain SVPos represents an interesting challenge.

[g] “Total” System State:

Global values:

333 There is a given domain, δE :∆E ;

334 there is the net, nE :NE , of that domain;

335 there is toll-road net, trnE :TRNE , of that net;

336 there is a set, egsE :EGE -set, of entry gates;

337 there is a set, xgsE :XGE -set, of exit gates;

338 there is a set, gisE :GIE -set, ofgate identifiers;

339 there is a set, vsE :VE -set, of vehicles;

340 there is a set, visE :VIE -set, of vehicle identifiers;

341 there is the road-pricing calculator, cE :CE and

342 there is its unique identifier, ciE :CI.

value

333 δE :∆E

334 nE :NE = obs part NE (δE )
335 trnE :TRNE = obs part TRNE (nE )
336 egsE :EG-set = xtr egs(trnE )
337 xgsE :XG-set = xtr xgs(trnE )
338 gisE :XG-set = xtr gis(trnE )
339 vsE :VE -set = obs part VS(obs part FE (δE ))
340 visE :VI-set = {uid VI(vE )|vE :VE

•vE ∈ vsE }
341 cE :CE = obs part CE (δE )
342 ciE :CIE = uid CI(cE )

In the following we shall omit the cumbersome E subscripts.

[h] “Total” System Behaviour:

The signature and definition of the system behaviour is sketched as are the signatures of the vehicle, toll-gate and road

pricing calculator. We shall model the behaviour of the road pricing system as follows: we shall not model behaviours

nets, hubs and links; thus we shall model only the behaviour of vehicles, veh, the behaviour of toll-gates, gate, and

the behaviour of the road-pricing calculator, calc, The behaviours of vehicles and toll-gates are presented here. But the

behaviour of the road-pricing calculator is “deferred” till Sect. 5.5.1 since it reflects an interface requirements.

343 The road pricing system behaviour, sys, is expressed as

a the parallel, ‖, (distributed) composition of the behaviours of all vehicles,

b with the parallel composition of the parallel (likewise distributed) composition of the behaviours of all entry

gates,

c with the parallel composition of the parallel (likewise distributed) composition of the behaviours of all exit

gates,

d with the parallel composition of the behaviour of the road-pricing calculator,
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value

343 sys: Unit → Unit

343 sys() ≡
343a ‖ {vehuid V (v)(obs mereo V(v))|v:V•v ∈ vs}

343b ‖ ‖ {gateuid EG(eg)(obs mereo G(eg),”entry”)|eg:EG•eg ∈ egs}

343c ‖ ‖ {gateuid XG(xg)(obs mereo G(xg),”exit”)|xg:XG•xg ∈ xgs}

343d ‖ calcuid C(c)(vis,gis)(rlf)(trm)

344 vehvi: (ci:CI×gis:GI-set) → in attr TiGPos[vi ] out v c ch[vi,ci ] Unit

350 gategi: (ci:CI×VI-set×LI)×ee:EE →
350 in attr entry ch[gi,ci ],attr id ch[gi,ci ],attr exit ch[gi,ci ]
350 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

384 calcci: (vis:VI-set×gis:GI-set)×VPLF→TRM→
384 in {v c ch[vi,ci ]|vi:VI•vi ∈ vis},{g c ch[gi,ci ]|gi:GI•gi ∈ gis} Unit

We consider ”entry” or ”exit” to be a static attribute of toll-gates. The behaviour signatures were determined as per the

techniques presented in [49, Sect. 4.1.1 and 4.5.2].

Vehicle Behaviour: We refer to the vehicle behaviour, in the domain, described in Sect. 5.2’s The Road Traffic
System Behaviour Items 262 and Items 263, Page 145 and, projected, Page 151.

344 Instead of moving around by explicitly expressed internal non-determinism17 vehicles move around by unstated

internal non-determinism and instead receive their current position from the global positioning subsystem.

345 At each moment the vehicle receives its time-stamped global position, (τ,gpos):TiGPos,
346 from which it calculates the local position, lpos:VPos
347 which it then communicates, with its vehicle identification, (vi,(τ,lpos)), to the road pricing subsystem —

348 whereupon it resumes its vehicle behaviour.

value

344 vehvi: (ci:CI×gis:GI-set) →
344 in attr TiGPos ch[vi ] out v c ch[vi,ci ] Unit

344 vehvi(ci,gis) ≡
345 let (τ,gpos) = attr TiGPos ch[vi ]? in

346 let lpos = loc pos(gpos) in

347 v c ch[vi,ci ] ! (vi,(τ,lpos)) ;
348 vehvi(ci,gis) end end

344 pre vi ∈ vis

The vehicle signature has attr TiGPos ch[vi ] model an external vehicle attribute and v c ch[vi,ci ] the embedded
attribute sharing [49, Sect. 4.1.1 and 4.5.2] between vehicles (their position) and the price calculator’s road map.

The above behaviour represents an assumption about the behaviour of vehicles. If we were to design software for

the monitoring and control of vehicles then the above vehicle behaviour would have to be refined in order to serve

as a proper interface requirements. The refinement would include handling concerns about the drivers’ behaviour

when entering, passing and exiting toll-gates, about the proper function of the GNSS equipment, and about the safe

communication with the road price calculator. The above concerns would already have been addressed in a model of

domain facets such as human behaviour, technology support, proper tele-communications scripts, etcetera. We refer to

[33].

Gate Behaviour: The entry and the exit gates have “vehicle enter”, “vehicle exit” and “timed vehicle identifica-

tion” sensors. The following assumption can now be made: during the time interval between a gate’s vehicle “entry”

sensor having first sensed a vehicle entering that gate and that gate’s “exit” sensor having last sensed that vehicle leav-

ing that gate that gate’s vehicle time and “identify” sensor registers the time when the vehicle is entering the gate and

that vehicle’s unique identification. We sketch the toll-gate behaviour:

349 We parameterise the toll-gate behaviour as either an entry or an exit gate.

350 Toll-gates operate autonomously and cyclically.

351 The attr enter ch event “triggers” the behaviour specified in formula line Item 352–354 starting with a ”Raise”

barrier action.

352 The time-of-passing and the identity of the passing vehicle is sensed by attr passing ch channel events.

17 We refer to Items 262b, 262c on Page 145 and 263b, 263(b)ii, 263c on Page 145
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353 Then the road pricing calculator is informed of time-of-passing and of the vehicle identity vi and the link li
associated with the gate – and with a ”Lower” barrier action.

354 And finally, after that vehicle has left the entry or exit gate the barrier is again ”Lower”ered and

355 that toll-gate’s behaviour is resumed.

type

349 EE = ”enter” | ”exit”
value

350 gategi: (ci:CI×VI-set×LI)×ee:EE →
350 in attr enter ch[gi ],attr passing ch[gi ],attr leave ch[gi ]
350 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

350 gategi((ci,vis,li),ee) ≡
351 attr enter ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”
352 let (τ,vi) = attr passing ch[gi ] ? in assert vi ∈ vis
353 (attr barrier ch[gi ] ! ”Raise”
353 ‖ g c ch[gi,ci ] ! (ee,(vi,(τ,SonL(li))))) ;
354 attr leave ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”
355 gategi((ci,vis,li),ee)
350 end

350 pre li ∈ lis

The gate signature’s attr enter ch[gi ], attr passing ch[gi ], attr barrier ch[gi ] and attr leave ch[gi ] model respective

external attributes [49, Sect. 4.1.1 and 4.5.2] (the attr barrier ch[gi ] models reactive (i.e., output) attribute), while

g c ch[gi,ci ] models the embedded attribute sharing between gates (their identification of vehicle positions) and the

calculator road map. The above behaviour represents an assumption about the behaviour of toll-gates. If we were to

design software for the monitoring and control of toll-gates then the above gate behaviour would have to be refined in

order to serve as a proper interface requirements. The refinement would include handling concerns about the drivers’

behaviour when entering, passing and exiting toll-gates, about the proper function of the entry, passing and exit sensors,

about the proper function of the gate barrier (opening and closing), and about the safe communication with the road

price calculator. The above concerns would already have been addressed in a model of domain facets such as human

behaviour, technology support, proper tele-communications scripts, etcetera. We refer to [33] �

We shall define the calculator behaviour in Sect. 5.5.1 on Page 169. The reason for this deferral is that it

exemplifies interface requirements.

Discussion

The requirements assumptions expressed in the specifications of the vehicle and gate behaviours assume

that these behave in an orderly fashion. But they seldom do ! The attr TiGPos ch sensor may fail. And so

may the attr enter ch, attr passing ch, and attr leave ch sensors and the attr barrier ch actuator. These

attributes represent support technology facets. They can fail. To secure fault tolerance one must prescribe

very carefully what counter-measures are to be taken and/or the safety assumptions. We refer to [187, 120,

143]. They cover three alternative approaches to the handling of fault tolerance. Either of the approaches

can be made to fit with our approach. First one can pursue our approach to where we stand now. Then we

join the approaches of either of [187, 120, 143]. [120] likewise decompose the requirements prescription

as is suggested here.

5.4.5 Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in some areas with, another domain:

transportation with logistics, health-care with insurance, banking with securities trading and/or insurance,

and so on. The issue of requirements fitting arises when two or more software development projects are

based on what appears to be the same domain. The problem then is to harmonise the two or more software

development projects by harmonising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn , being consid-

ered, and that these pertain to the same domain — and can hence be assumed covered by a same domain

description.
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Definition 40. Requirements Fitting: By requirements fitting we mean a harmonisation of n > 1

domain requirements that have overlapping (shared) not always consistent parts and which results in n

partial domain requirements’, pdr1
, pdr2

, . . . , pdrn
, and m shared domain requirements, sdr1

, sdr2
, . . . , sdrm

,
that “fit into” two or more of the partial domain requirements ⊙ The above definition pertains to the result
of ‘fitting’. The next definition pertains to the act, or process, of ‘fitting’.

Definition 41. Requirements Harmonisation: By requirements harmonisation we mean a number
of alternative and/or co-ordinated prescription actions, one set for each of the domain requirements actions:
Projection, Instantiation, Determination and Extension. They are – we assume n separate software product
requirements: Projection: If the n product requirements do not have the same projections, then identify a
common projection which they all share, and refer to it as the common projection. Then develop, for each
of the n product requirements, if required, a specific projection of the common one. Let there be m such
specific projections, m ≤ n. Instantiation: First instantiate the common projection, if any instantiation is
needed. Then for each of the m specific projections instantiate these, if required. Determination: Likewise,
if required, “perform” “determination” of the possibly instantiated common projection, and, similarly, if
required, “perform” “determination” of the up to m possibly instantiated projections. Extension: Finally
“perform extension” likewise: First, if required, of the common projection (etc.), then, if required, on the
up m specific projections (etc.). These harmonization developments may possibly interact and may need
to be iterated ⊙

By a partial domain requirements we mean a domain requirements which is short of (that is, is missing)

some prescription parts: text and formula ⊙ By a shared domain requirements we mean a domain

requirements ⊙ By requirements fitting m shared domain requirements texts, sdrs, into n partial domain

requirements we mean that there is for each partial domain requirements, pdri, an identified, non-empty

subset of sdrs (could be all of sdrs), ssdrsi, such that textually conjoining ssdrsi to pdri, i.e., ssdrsi ⊕ pdri

can be claimed to yield the “original” dri
, that is, M (ssdrsi ⊕ pdri) ⊆ M (dri

), where M is a suitable

meaning function over prescriptions ⊙

5.4.6 Discussion

Facet-oriented Fittings: An altogether different way of looking at domain requirements may be achieved

when also considering domain facets — not covered in neither the example of Sect. 5.2 nor in this section

(i.e., Sect. 5.4) nor in the following two sections. We refer to [33].

Example 5.11. . Domain Requirements — Fitting: Example 5.10 hints at three possible sets of interface

requirements: (i) for a road pricing [sub-]system, as will be illustrated in Sect. 5.5.1; (ii) for a vehicle monitoring

and control [sub-]system, and (iii) for a toll-gate monitoring and control [sub-]system. The vehicle monitoring

and control [sub-]system would focus on implementing the vehicle behaviour, see Items 344- 348 on Page 163.

The toll-gate monitoring and control [sub-]system would focus on implementing the calculator behaviour, see

Items 350- 355 on the preceding page. The fitting amounts to (a) making precise the (narrative and formal)

texts that are specific to each of of the three (i–iii) separate sub-system requirements are kept separate; (b)

ensuring that (meaning-wise) shared texts that have different names for (meaning-wise) identical entities have

these names renamed appropriately; (c) that these texts are subject to commensurate and ameliorated further

requirements development; etcetera �

5.5 Interface and Derived Requirements

We remind the reader that interface requirements can be expressed only using terms from both the

domain and the machine ⊙ Users are not part of the machine. So no reference can be made to users,

such as “the system must be user friendly”, and the like !18 By interface requirements we [also] mean

18 So how do we cope with the statement: “the system must be user friendly” ? We refer to Sect. 5.5.3 on Page 173

for a discussion of this issue.
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requirements prescriptions which refines and extends the domain requirements by considering those re-
quirements of the domain requirements whose endurants (parts, materials) and perdurants (actions, events
and behaviours) are “shared” between the domain and the machine (being requirements prescribed) ⊙
The two interface requirements definitions above go hand–in–hand, i.e., complement one-another.

By derived requirements we mean requirements prescriptions which are expressed in terms of the
machine concepts and facilities introduced by the emerging requirements ⊙

5.5.1 Interface Requirements

Shared Phenomena

By sharing we mean (a) that some or all properties of an endurant is represented both in the domain and

“inside” the machine, and that their machine representation must at suitable times reflect their state in the

domain; and/or (b) that an action requires a sequence of several “on-line” interactions between the machine

(being requirements prescribed) and the domain, usually a person or another machine; and/or (c) that an

event arises either in the domain, that is, in the environment of the machine, or in the machine, and need be

communicated to the machine, respectively to the environment; and/or (d) that a behaviour is manifested

both by actions and events of the domain and by actions and events of the machine ⊙ So a systematic

reading of the domain requirements shall result in an identification of all shared endurants, parts, materials

and components; and perdurants actions, events and behaviours. Each such shared phenomenon shall then

be individually dealt with: endurant sharing shall lead to interface requirements for data initialisation and

refreshment as well as for access to endurant attributes; action sharing shall lead to interface requirements

for interactive dialogues between the machine and its environment; event sharing shall lead to interface

requirements for how such event are communicated between the environment of the machine and the ma-

chine; and behaviour sharing shall lead to interface requirements for action and event dialogues between

the machine and its environment.

Environment–Machine Interface:

Domain requirements extension, Sect. 5.4.4, usually introduce new endurants into (i.e., ‘extend’ the) do-

main. Some of these endurants may become elements of the domain requirements. Others are to be pro-

jected “away”. Those that are let into the domain requirements either have their endurants represented,

somehow, also in the machine, or have (some of) their properties, usually some attributes, accessed by the

machine. Similarly for perdurants. Usually the machine representation of shared perdurants access (some

of) their properties, usually some attributes. The interface requirements must spell out which domain ex-

tensions are shared. Thus domain extensions may necessitate a review of domain projection, instantiations

and determination. In general, there may be several of the projection–eliminated parts (etc.) whose dynamic

attributes need be accessed in the usual way, i.e., by means of attr XYZ ch channel communications (where

XYZ is a projection–eliminated part attribute).

Example 5.12. . Interface Requirements — Projected Extensions:We refer to Fig. 5.2 on Page 159.We
do not represent the GNSS system in the machine: only its “effect”: the ability to record global positions by
accessing the GNSS attribute (channel):

channel

303 {attr TiGPos ch[vi ]|vi:VI•vi ∈ xtr VIs(vs)}: TiGPos

And we do not really represent the gate nor its sensors and actuator in the machine. But we do give an idealised

description of the gate behaviour, see Items 350–355 Instead we represent their dynamic gate attributes:

(313) the vehicle entry sensors (leftmost s),
(313) the vehicle identity sensor (center ), and
(314) the vehicle exit sensors (rightmost s)

by channels — we refer to Example 5.10 (Sect. 5.5.1, Page 160):

channel

313 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} ′′enter′′

313 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} ′′exit′′

314 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI �
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Shared Endurants

Example 5.13. . Interface Requirements. Shared Endurants: The main shared endurants are the ve-
hicles, the net (hubs, links, toll-gates) and the price calculator. As domain endurants hubs and links undergo
changes, all the time, with respect to the values of several attributes: length, geodetic information, names,
wear and tear (where-ever applicable), last/next scheduled maintenance (where-ever applicable), state and
state space, and many others. Similarly for vehicles: their position, velocity and acceleration, and many other
attributes. We then come up with something like hubs and links are to be represented as tuples of relations;
each net will be represented by a pair of relations a hubs relation and a links relation; each hub and each link
may or will be represented by several tuples; etcetera. In this database modeling effort it must be secured that
“standard” operations on nets, hubs and links can be supported by the chosen relational database system

Data Initialisation:

In general, one must prescribe data initialisation, that is provision for an interactive user interface dialogue

with a set of proper display screens, one for establishing net, hub or link attributes names and their types,

and, for example, two for the input of hub and link attribute values. Interaction prompts may be prescribed:

next input, on-line vetting and display of evolving net, etc. These and many other aspects may therefore

need prescriptions.

Example 5.14. . Interface Requirements. Shared Endurant Initialisation: The domain is that of the
road net, n:N. By ‘shared road net initialisation’ we mean the “ab initio” establishment, “from scratch”, of
a data base recording the properties of all links, l:L, and hubs, h:H, their unique identifications, uid L(l) and
uid H(h), their mereologies, obs mereo L(l) and obs mereo H(h), the initial values of all their static and
programmable attributes and the access values, that is, channel designations for all other attribute categories.

356 There are rl and rh “recorders” recording link, respectively hub properties – with each recorder having a
unique identity.

357 Each recorder is charged with the recording of a set of links or a set of hubs according to some partitioning
of all such.

358 The recorders inform a central data base, net db, of their recordings (ri,hol,(u j ,m j,attrs j)) where
359 ri is the identity of the recorder,
360 hol is either a hub or a link literal,
361 u j = uid L(l) or uid H(h) for some link or hub,
362 m j = obs mereo L(l) or obs mereo H(h) for that link or hub and
363 attrs j are attributes for that link or hub — where attributes is a function which “records” all respective

static and dynamic attributes (left undefined).

type

356 RI
value

356 rl,rh:NAT axiom rl>0 ∧ rh>0
type

358 M = RI×′′link′′×LNK | RI×′′hub′′×HUB
358 LNK = LI × HI-set × LATTRS
358 HUB = HI × LI-set × HATTRS

value

357 partitioning: L-set→Nat→(L-set)∗

357 | H-set→Nat→(H-set)∗

357 partitioning(s)(r) as sl
357 post: len sl = r ∧ ∪ elems sl = s
357 ∧ ∀ si,sj:(L-set|H-set) •

357 si6={}∧sj6={}∧{si,sj}⊆elems ss⇒si ∩ sj={}

364 The rl + rh recorder behaviours interact with the one net db behaviour

December 5, 2016, 07:21, A Foundation for Software Development DRAFT c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark



168 5 From Domain Descriptions to Requirements Prescriptions

channel

364 r db: RI×(LNK|HUB)
value

364 link rec: RI → L-set → out r db Unit

364 hub rec: RI → H-set → out r db Unit

364 net db: Unit → in r db Unit

365 The data base behaviour, net db, offers to receive messages from the link and hub recorders.

366 The data base behaviour, net db, deposits these messages in respective variables.

367 Initially there is a net, n : N,

368 from which is observed its links and hubs.

369 These sets are partitioned into rl , respectively rh length lists of non-empty links and hubs.

370 The ab-initio data initialisation behaviour, ab initio data, is then the parallel composition of link recorder, hub

recorder and data base behaviours with link and hub recorder being allotted appropriate link, respectively hub sets.

371 We construct, for technical reasons, as the reader will soon see, disjoint lists of link, respectively hub recorder

identities.

value

365 net db:
variable

366 lnk db: (RI×LNK)-set

366 hub db: (RI×HUB)-set

value

367 n:N
368 ls:L-set = obs Ls(obs LS(n))
368 hs:H-set = obs Hs(obs HS(n))
369 lsl:(L-set)∗ = partitioning(ls)(rl)
369 lhl:(H-set)∗ = partitioning(hs)(rh)
371 rill:RI∗ axiom len rill = rl = card elems rill
371 rihl:RI∗ axiom len rihl = rh = card elems rihl
370 ab initio data: Unit → Unit

370 ab initio data() ≡
370 ‖ {lnk rec(rill[ i ])(lsl[ i ])|i:Nat•1≤i≤rl} ‖
370 ‖ {hub rec(rihl[ i ])(lhl[ i ])|i:Nat•1≤i≤rh}
370 ‖ net db()

372 The link and the hub recorders are near-identical behaviours.

373 They both revolve around an imperatively stated for all ... do ... end. The selected link (or hub) is inspected and

the “data” for the data base is prepared from

374 the unique identifier,

375 the mereology, and

376 the attributes.

377 These “data” are sent, as a message, prefixed the senders identity, to the data base behaviour.

378 We presently leave the . . . unexplained.

value

364 link rec: RI → L-set → Unit

372 link rec(ri,ls) ≡
373 for ∀ l:L•l ∈ ls do uid L(l)
374 let lnk = (uid L(l),
375 obs mereo L(l),
376 attributes(l)) in

377 rdb ! (ri,′′link′′,lnk);
378 ... end

373 end
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364 hub rec: RI × H-set → Unit

372 hub rec(ri,hs) ≡
373 for ∀ h:H•h ∈ hs do uid H(h)
374 let hub = (uid L(h),
375 obs mereo H(h),
376 attributes(h)) in

377 rdb ! (ri,′′hub′′,hub);
378 ... end

373 end

379 The net db data base behaviour revolves around a seemingly “never-ending” cyclic process.

380 Each cycle “starts” with acceptance of some,

381 either link or hub data.

382 If link data then it is deposited in the link data base,

383 if hub data then it is deposited in the hub data base.

value

379 net db() ≡
380 let (ri,hol,data) = r db ? in

381 case hol of

382 ′′link′′ → ... ; lnk db := lnk db ∪ (ri,data),
383 ′′hub′′ → ... ; hub db := hub db ∪ (ri,data)
381 end end ;
379′ ... ;
379 net db()

The above model is an idealisation. It assumes that the link and hub data represent a well-formed net. Included in this

well-formedness are the following issues: (a) that all link or hub identifiers are communicated exactly once, (b) that all

mereologies refer to defined parts, and (c) that all attribute values lie within an appropriate value range. If we were to

cope with possible recording errors then we could, for example, extend the model as follows: (i) when a link or a hub

recorder has completed its recording then it increments an initially zero counter (say at formula Item 378); (ii) before

the net data base recycles it tests whether all recording sessions has ended and then proceeds to check the data base for

well-formedness issues (a–b–c) (say at formula Item 379′) �

The above example illustrates the ‘interface’ phenomenon: In the formulas, for example, we show both

manifest domain entities, viz., n, l,h etc., and abstract (required) software objects, viz., (ui,me,attrs).

Data Refreshment:

One must also prescribe data refreshment: an interactive user interface dialogue with a set of proper dis-

play screens one for selecting the updating of net, of hub or of link attribute names and their types and,

for example, two for the respective update of hub and link attribute values. Interaction-prompts may be

prescribed: next update, on-line vetting and display of revised net, etc. These and many other aspects may

therefore need prescriptions.

Shared Perdurants

We can expect that for every part in the domain that is shared with the machine and for which there is a cor-

responding behaviour of the domain there might be a corresponding process of the machine. If a projected,

instantiated, ‘determinated’ and possibly extended domain part is dynamic, then it is definitely a candi-

date for being shared and having an associated machine process. We now illustrate the concept of shared

perdurants via the domain requirements extension example of Sect. 5.4.4, i.e. Example 5.10 Pages 158–164.

Example 5.15. . Interface Requirements — Shared Behaviours: Road Pricing Calculator Behaviour:

384 The road-pricing calculator alternates between offering to accept communication from
385 either any vehicle
386 or any toll-gate.
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384 calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
385 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},
386 {g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

384 calc(ci,(vis,gis))(rlf)(trm) ≡
385 react to vehicles(ci,(vis,gis))(rlf)(trm)
384 ⌈⌉⌊⌋
386 react to gates(ci,(vis,gis))(rlf)(trm)
384 pre ci = ciE ∧ vis = visE ∧ gis = gisE

The calculator signature’s v c ch[ci,vi ] and g c ch[ci,gi ] model the embedded attribute sharing between vehicles

(their position), respectively gates (their vehicle identification) and the calculator road map [49, Sect. 4.1.1 and 4.5.2].

387 If the communication is from a vehicle inside the toll-road net

388 then its toll-road net position, vp, is found from the road location function, rlf,
389 and the calculator resumes its work with the traffic map, trm, suitably updated,

390 otherwise the calculator resumes its work with no changes.

385 react to vehicles(ci,(vis,gis),vplf)(trm) ≡
385 let (vi,(τ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi ]?|vi:VI•vi∈ vis} in

387 if vi ∈ dom trm
388 then let vp = vplf(lpos) in

389 calc(ci,(vis,gis),vplf)(trm†[vi7→trm̂〈(τ,vp)〉 ]) end

390 else calc(ci,(vis,gis),vplf)(trm) end end

391 If the communication is from a gate,

392 then that gate is either an entry gate or an exit gate;

393 if it is an entry gate

394 then the calculator resumes its work with the vehicle (that passed the entry gate) now recorded, afresh, in the traffic

map, trm.

395 Else it is an exit gate and

396 the calculator concludes that the vehicle has ended its to-be-paid-for journey inside the toll-road net, and hence to

be billed;

397 then the calculator resumes its work with the vehicle now removed from the traffic map, trm.

386 react to gates(ci,(vis,gis),vplf)(trm) ≡
386 let (ee,(τ,(vi,li))) = ⌈⌉⌊⌋ {g c ch[ci,gi ]?|gi:GI•gi∈ gis} in

392 case ee of

393 ”Enter” →
394 calc(ci,(vis,gis),vplf)(trm∪[vi7→〈(τ,SonL(li))〉 ]),
395 ”Exit” →
396 billing(vi,trm(vi)̂〈(τ,SonL(li))〉);
397 calc(ci,(vis,gis),vplf)(trm\{vi}) end end

The above behaviour is the one for which we are to design software �

5.5.2 Derived Requirements

Definition 42. Derived Perdurant: By a derived perdurant we shall understand a perdurant which is
not shared with the domain, but which focus on exploiting facilities of the software or hardware of the
machine ⊙

“Exploiting facilities of the software”, to us, means that requirements, imply the presence, in the machine,

of concepts (i.e., hardware and/or software), and that it is these concepts that the derived requirements
“rely” on. We illustrate all three forms of perdurant extensions: derived actions, derived events and derived

behaviours.
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Derived Actions

Definition 43. Derived Action: By a derived action we shall understand (a) a conceptual action (b) that
calculates a usually non-Boolean valued property from, and possibly changes to (c) a machine behaviour
state (d) as instigated by some actor ⊙

Example 5.16. . Domain Requirements. Derived Action: Tracing Vehicles: The example is based
on the Road Pricing Calculator Behaviour of Example 5.15 on Page 169. The “external” actor, i.e., a user
of the Road Pricing Calculator system wishes to trace specific vehicles “cruising” the toll-road. That user (a
Road Pricing Calculator staff), issues a command to the Road Pricing Calculator system, with the identity
of a vehicle not already being traced. As a result the Road Pricing Calculator system augments a possibly
void trace of the timed toll-road positions of vehicles. We augment the definition of the calculator definition
Items 384–397, Pages 169–170.

398 Traces are modeled by a pair of dynamic attributes:
a as a programmable attribute, tra:TRA, of the set of identifiers of vehicles being traced, and
b as a reactive attribute, vdu:VDU19, that maps vehicle identifiers into time-stamped sequences of simple
vehicle positions, i.e., as a subset of the trm:TRM programmable attribute.

399 The actor-to-calculator begin or end trace command, cmd:Cmd, is modeled as an autonomous dynamic
attribute of the calculator.

400 The calculator signature is furthermore augmented with the three attributes mentioned above.
401 The occurrence and handling of an actor trace command is modeled as a non-deterministic external choice

and a react to trace cmd behaviour.
402 The reactive attribute value (attr vdu ch ?) is that subset of the traffic map (trm) which records just the

time-stamped sequences of simple vehicle positions being traced (tra).

type

398a TRA = VI-set

398b VDU = TRM
399 Cmd = BTr | ETr
399 BTr :: VI
399 ETr :: VI

value

400 calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA
385,386 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},
385,386 {g c ch[ci,gi ]|gi:GI•gi ∈ gis},
401,402 attr cmd ch,attr vdu ch Unit

384 calc(ci,(vis,gis))(rlf)(trm)(tra) ≡
385 react to vehicles(ci,(vis,gis),)(rlf)(trm)(tra)
386 ⌈⌉⌊⌋ react to gates(ci,(vis,gis))(rlf)(trm)(tra)
401 ⌈⌉⌊⌋ react to trace cmd(ci,(vis,gis))(rlf)(trm)(tra)
384 pre ci = ciE ∧ vis = visE ∧ gis = gisE
402 axiom � attr vdu ch[ci ]? = trm|tra

The 401,402 attr cmd ch,attr vdu ch of the calculator signature models the calculator’s external command and visual

display unit attributes.

403 The react to trace cmd alternative behaviour is either a ”Begin” or an ”End” request which identifies the affected

vehicle.

404 If it is a ”Begin” request

405 and the identified vehicle is already being traced then we do not prescribe what to do !

406 Else we resume the calculator behaviour, now recording that vehicle as being traced.

407 If it is an ”End” request

408 and the identified vehicle is already being traced then we do not prescribe what to do !

409 Else we resume the calculator behaviour, now recording that vehicle as no longer being traced.

19 VDU: visual display unit
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403 react to trace cmd(ci,(vis,gis))(vplf)(trm)(tra) ≡
403 case attr cmd ch[ci ]? of

404,405,406 mkBTr(vi) → if vi ∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra ∪ {vi}) end

407,408,409 mkETr(vi) → if vi 6∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra\{vi}) end

403 end

The above behaviour, Items 384–409, is the one for which we are to design software �

Example 5.16 exemplifies an action requirement as per definition 43: (a) the action is conceptual, it has no

physical counterpart in the domain; (b) it calculates (402) a visual display (vdu); (c) the vdu value is based

on a conceptual notion of traffic road maps (trm), an element of the calculator state; (d) the calculation is

triggered by an actor (attr cmd ch).

Derived Events

Definition 44. Derived Event: By a derived event we shall understand (a) a conceptual event, (b) that
calculates a property or some non-Boolean value (c) from a machine behaviour state change ⊙

Example 5.17. . Domain Requirements. Derived Event: Current Maximum Flow: The example is
based on the Road Pricing Calculator Behaviour of Examples 5.16 and 5.15 on Page 169. By “the current
maximum flow” we understand a time-stamped natural number, the number representing the highest number
of vehicles which at the time-stamped moment cruised or now cruises around the toll-road net. We augment
the definition of the calculator definition Items 384–409, Pages 169–172.

410 We augment the calculator signature with
411 a time-stamped natural number valued dynamic programmable attribute, (t:T,max:Max).
412 Whenever a vehicle enters the toll-road net, through one of its [entry] gates,

a it is checked whether the resulting number of vehicles recorded in the road traffic map is higher than
the hitherto max imum recorded number.

b If so, that programmable attribute has its number element “upped” by one.
c Otherwise not.

413 No changes are to be made to the react to gates behaviour (Items 386–397 Page 170) when a vehicle exits
the toll-road net.

type

411 MAX = T × NAT
value

400,410 calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA → MAX
385,386 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis}, {g c ch[ci,gi ]|gi:GI•gi ∈ gis}, attr cmd ch,attr vdu ch Unit

386 react to gates(ci,(vis,gis))(vplf)(trm)(tra)(t,m) ≡
386 let (ee,(τ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

392 case ee of

412 ”Enter” →
412 calc(ci,(vis,gis))(vplf)(trm∪[vi7→〈(τ,SonL(li))〉 ])(tra)(τ,if card dom trm=m then m+1 else m end),
413 ”Exit” →
413 billing(vi,trm(vi)̂〈(τ,SonL(li))〉); calc(ci,(vis,gis))(vplf)(trm\{vi})(tra)(t,m) end

392 end

The above behaviour, Items 384 on Page 169 through 412c, is the one for which we are to design software �

Example 5.17 exemplifies a derived event requirement as per Definition 44: (a) the event is conceptual, it

has no physical counterpart in the domain; (b) it calculates (412b) the max value based on a conceptual

notion of traffic road maps (trm), (c) which is an element of the calculator state.

No Derived Behaviours

There are no derived behaviours. The reason is as follows. Behaviours are associated with parts. A possibly

‘derived behaviour’ would entail the introduction of an ‘associated’ part. And if such a part made sense it

should – in all likelihood – already have been either a proper domain part or become a domain extension.

If the domain–to-requirements engineer insist on modeling some interface requirements as a process then

we consider that a technical matter, a choice of abstraction.
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5.5.3 Discussion

Derived Requirements

Formulation of derived actions or derived events usually involves technical terms not only from the domain

but typically from such conceptual ‘domains’ as mathematics, economics, engineering or their visualisa-

tion. Derived requirements may, for some requirements developments, constitute “sizable” requirements

compared to “all the other” requirements. For their analysis and prescription it makes good sense to first

having developed “the other” requirements: domain, interface and machine requirements. The treatment of

the present paper does not offer special techniques and tools for the conception, &c., of derived require-

ments. Instead we refer to the seminal works of [79, 125, 177].

Introspective Requirements

Humans, including human users are, in this paper, considered to never be part of the domain for which a

requirements prescription is being developed. If it is necessary to involve humans in the domain description

or the requirements prescription then their prescription is to reflect assumptions upon whose behaviour the

machine rely. It is therefore that we, above, have stated, in passing, that we cannot accept requirements of

the kind: “the machine must be user friendly”, because, in reality, it means “the user must rely upon the
machine being ‘friendly’ ” whatever that may mean. We are not requirements prescribing humans, nor their

sentiments !

5.6 Machine Requirements

Other than listing a sizable number of machine requirement facets we shall not cover machine require-

ments in this paper. The reason for this is as follows. We find, cf. [26, Sect. 19.6], that when the individual

machine requirements are expressed then references to domain phenomena are, in fact, abstract references,

that is, they do not refer to the semantics of what they name. Hence machine requirements “fall” outside

the scope of this paper — with that scope being “derivation” of requirements from domain specifications
with emphasis on derivation techniques that relate to various aspects of the domain.

(A) There are the technology requirements of (1) performance and (2) dependability. Within depend-
ability requirements there are (a) accessibility, (b) availability, (c) integrity, (d) reliability, (e) safety, (f)

security and (g) robustness requirements. A proper treatment of dependability requirements need a care-

ful definition of such terms as failure, error, fault, and, from these dependability. (B) And there are the

development requirements of (i) process, (ii) maintenance, (iii) platform, (iv) management and (v) docu-
mentation requirements. Within maintenance requirements there are (ii.1) adaptive, (ii.2) corrective, (ii.3)

perfective, (ii.4) preventive, and (ii.5) extensional requirements. Within platform requirements there are

(iii.1) development, (iii.2) execution, (iii.3)maintenance, and (iii.4) demonstration platform requirements.

We refer to [26, Sect. 19.6] for an early treatment of machine requirements.

5.7 Conclusion

Conventional requirements engineering considers the domain only rather implicitly. Requirements gather-

ing (‘acquisition’) is not structured by any pre-existing knowledge of the domain, instead it is “structured”

by a number of relevant techniques and tools [116, 177, 117] which, when applied, “fragment-by-fragment”

“discovers” such elements of the domain that are immediately relevant to the requirements. The present

paper turns this requirements prescription process “up-side-down”. Now the process is guided (“steered”,

“controlled”) almost exclusively by the domain description which is assumed to be existing before the re-

quirements development starts. In conventional requirements engineering many of the relevant techniques

and tools can be said to take into account sociological and psychological facets of gathering the require-

ments and linguistic facets of expressing these requirements. That is, the focus is rather much on the

process. In the present paper’s requirements “derivation” from domain descriptions the focus is all the time
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on the descriptions and prescriptions, in particular on their formal expressions and the “transformation”

of these. That is (descriptions and) prescriptions are considered formal, mathematical objects. That is, the

focus is rather much on the objects.

• • •

We conclude by briefly reviewing what has been achieved, present shortcomings & possible research chal-

lenges, and a few words on relations to “classical requirements engineering”.

5.7.1 What has been Achieved ?

We have shown how to systematically “derive” initial aspects of requirements prescriptions from domain

descriptions. The stages20 and steps21 of this “derivation”22 are new. We claim that current requirements

engineering approaches, although they may refer to a or the ‘domain’, are not really ‘serious’ about this:

they do not describe the domain, and they do not base their techniques and tools on a reasoned under-

standing of the domain. In contrast we have identified, we claim, a logically motivated decomposition of

requirements into three phases, cf. Footnote 20., of domain requirements into five steps, cf. Footnote 21.,

and of interface requirements, based on a concept of shared entities, tentatively into (α) shared endurants,

(β ) shared actions, (γ) shared events, and (δ ) shared behaviours (with more research into the (α-δ ) tech-

niques needed).

5.7.2 Present Shortcomings and Research Challenges

We see three shortcomings: (1) The “derivation” techniques have yet to consider “extracting” requirements

from domain facet descriptions. Only by including domain facet descriptions can we, in “deriving” re-
quirements prescriptions, include failures of, for example, support technologies and humans, in the design

of fault-tolerant software. (2) The “derivation” principles, techniques and tools should be given a formal

treatment. (3) There is a serious need for relating the approach of the present paper to that of the seminal

text book of [177, Axel van Lamsweerde]. [177] is not being “replaced” by the present work. It tackles a

different set of problems. We refer to the penultimate paragraph before the Acknowledgment closing.

5.7.3 Comparison to “Classical” Requirements Engineering:

Except for a few, represented by two, we are not going to compare the contributions of the present paper

with published journal or conference papers on the subject of requirements engineering. The reason for this

is the following. The present paper, rather completely, we claim, reformulates requirements engineering,

giving it a ‘foundation’, in domain engineering, and then developing requirements engineering from there,

viewing requirements prescriptions as “derived” from domain descriptions. We do not see any of the papers,

except those reviewed below [120] and [79], referring in any technical sense to ‘domains’ such as we

understand them.

[120, Deriving Specifications for Systems That Are Connected to the Physical World]

The paper that comes closest to the present paper in its serious treatment of the [problem] domain as a

precursor for requirements development is that of [120, Jones, Hayes & Jackson]. A purpose of [120]

(Sect. 1.1, Page 367, last §) is to see “how little can one say” (about the problem domain) when expressing

assumptions about requirements. This is seen by [120] (earlier in the same paragraph) as in contrast to our

form of domain modeling. [120] reveals assumptions about the domain when expressing rely guarantees in

tight conjunction with expressing the guarantee (requirements). That is, analysing and expressing require-

ments, in [120], goes hand-in-hand with analysing and expressing fragments of the domain. The current

paper takes the view that since, as demonstrated in [49], it is possible to model sizable aspects of domains,

20 (a) domain, (b) interface and (c) machine requirements
21 For domain requirements: (i) projection, (ii) instantiation, (iii) determination, (iv) extension and (v) fitting; etc.
22 We use double quotation marks: “. . . ” to indicate that the derivation is not automatable.

c© Dines Bjørner 2016 Fredsvej 11, DK–2840 Holte, Denmark DRAFT Domain Science & Engineering December 5, 2016, 07:21



5.7 Conclusion 175

then it would be interesting to study how one might “derive” — and which — requirements prescriptions

from domain descriptions; and having demonstrated that (i.e., the “how much can be derived”) it seems of

scientific interest to see how that new start (i.e., starting with a priori given domain descriptions or starting

with first developing domain descriptions) can be combined with existing approaches, such as [120]. We

do appreciate the “tight coupling” of rely–guarantees of [120]. But perhaps one looses understanding the

domain due to its fragmented presentation. If the ‘relies’ are not outright, i.e., textually directly expressed

in our domain descriptions, then they obviously must be provable properties of what our domain descrip-

tions express. Our, i.e., the present, paper — with its background in [49, Sect. 4.7] — develops — with a

background in [115, M.A. Jackson] — a set of principles and techniques for the access of attributes. The

“discovery” of the CM and SG channels of [120] and of the type of their messages, seems, compared to our

approach, less systematic. Also, it is not clear how the [120] case study “scales” up to a larger domain. The

sluice gate of [120] is but part of a large (‘irrigation’) system of reservoirs (water sources), canals, sluice

gates and the fields (water sinks) to be irrigated. We obviously would delineate such a larger system and re-

search & develop an appropriate, both informal, a narrative, and formal domain description for such a class

of irrigation systems based on assumptions of precipitation and evaporation. Then the users’ requirements,

in [120], that the sluice gate, over suitable time intervals, is open 20% of the time and otherwise closed,

could now be expressed more pertinently, in terms of the fields being appropriately irrigated.

[79, Goal-directed Requirements Acquisition]

outlines an approach to requirements acquisition that starts with fragments of domain description. The do-

main description is captured in terms of predicates over actors, actions, events, entities and (their) relations.

Our approach to domain modeling differs from that of [79] as follows: Agents, actions, entities and rela-

tions are, in [79], seen as specialisations of a concept of objects. The nearest analogy to relations, in [49],

as well as in this paper, is the signatures of perdurants. Our ‘agents’ relate to discrete endurants, i.e., parts,

and are the behaviours that evolve around these parts: one agent per part ! [79] otherwise include describing

parts, relations between parts, actions and events much like [49] and this paper does. [79] then introduces a

notion of goal. A goal, in [79], is defined as ′′a nonoperational objective to be achieved by the desired sys-
tem. Nonoperational means that the objective is not formulated in terms of objects and actions “available”
to some agent of the system ⊙23′′ [79] then goes on to exemplify goals. In this, the current paper, we are

not considering goals, also a major theme of [177].24 Typically the expression of goals of [79, 177], are

“within” computer & computing science and involve the use of temporal logic.25 ′′Constraints are opera-
tional objectives to be achieved by the desired (i.e., required) system, . . . , formulated in terms of objects
and actions “available” to some agents of the system. . . . Goals are made operational through constraints.
. . . A constraint operationalising a goal amounts to some abstract “implementation” of this goal ′′ [79].

[79] then goes on to express goals and constraints operationalising these. [79] is a fascinating paper26 as it

shows how to build goals and constraints on domain description fragments.

• • •

These papers, [120] and [79], as well as the current paper, together with such seminal monographs as

[187, 143, 177], clearly shows that there are many diverse ways in which to achieve precise requirements

23 We have reservations about this definition: Firstly, it is expressed in terms of some of the “things” it is not ! (To

us, not a very useful approach.) Secondly, we can imagine goals that are indeed formulated in terms of objects

and actions ‘available’ to some agent of the system. For example, wrt. the ongoing library examples of [79], the

system shall automate the borrowing of books, etcetera. Thirdly, we assume that by “ ‘available’ to some agent of

the system” is meant that these agents, actions, entities, etc., are also required.
24 An example of a goal — for the road pricing system — could be that of shortening travel times of motorists, reducing

gasoline consumption and air pollution, while recouping investments on toll-road construction. We consider tech-

niques for ensuring the above kind of goals “outside” the realm of computer & computing science but “inside” the

realm of operations research (OR) — while securing that the OR models are commensurate with our domain models.
25 In this paper we do not exemplify goals, let alone the use of temporal logic. We cannot exemplify all aspects of

domain description and requirements prescription, but, if we were, would then use the temporal logic of [187, The

Duration Calculus].
26 — that might, however, warrant a complete rewrite.
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prescriptions. The [187, 143] monographs primarily study the D ,S |= R specification and proof tech-

niques from the point of view of the specific tools of their specification languages27. Physics, as a natural

science, and its many engineering ‘renditions’, are manifested in many separate sub-fields: Electricity, me-

chanics, statics, fluid dynamics — each with further sub-fields. It seems, to this author, that there is a need

to study the [187, 143, 177] approaches and the approach taken in this paper in the light of identifying

sub-fields of requirements engineering. The title of the present paper suggests one such sub-field.

27 The Duration Calculus [DC], respectively DC, Timed Automata and Z
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6

Domains: Their Simulation, Monitoring and Control

A Divertimento of Ideas and Suggestions
Model Driven Software Engineering and Software Product Lines

Summary

We sketch1 some observations of the concepts of domain, requirements and modeling – where
abstract interpretations of these models cover both a priori, a posteriori and real-time aspects
of the domain as well as 1–1 (i.e., real-time), microscopic and macroscopic simulations, real-
time monitoring and real-time monitoring & control of that domain. The reference frame for
these concepts are domain models: carefully narrated and formally described domains. We
survey more-or-less standard ideas of verifiable software developments and conjecture software
product families of demos, simulators, monitors and monitors & controllers – but now these
“standard ideas” are recast in the context of core requirements prescriptions being “derived”
from domain descriptions.

6.1 Introduction

A background setting for this chapter is the concern for (α) professionally developing the right software,

i.e., software which satisfies users expectations, and (ω) software that is right: i.e., software which is

correct with respect to user requirements and thus has no “bugs”, no “blue screens”. The present chapter

must be seen on the background of a main line of experimental research around the topics of domain

science & engineering and requirements engineering and their relation. For details I refer to Chaps. 1–5

[49, 53, 52, 54].

“Confusing Demos”: This author has had the doubtful honour, on his many visits to computer science

and software engineering laboratories around the world, to be presented, by his colleagues’ aspiring PhD

students, so-called demos of “systems” that they were investigating. There always was a tacit assumption,

namely that the audience, i.e., me, knew, a priori, what the domain “behind” the “system” being “demo’ed”

was. Certainly, if there was such an understanding, it was brutally demolished by the “demo” presenta-

tion. My questions, such as “what are you demo’ing” (etcetera) went unanswered. Instead, while we were

waiting to see “something interesting” to be displayed on the computer screen one was witnessing frantic,

sometimes failed, input of commands and data, “nervous” attempts with “mouse” clickings, etc. – before

something intended was displayed. After a, usually 15 minute, grace period, it was time, luckily, to proceed

to the next “demo” !

Aims & Objectives: The aims of this chapter is to present (a) some ideas about software that either

“demo”, simulate, monitor or monitor & control domains; (b) some ideas about “time scaling”: demo and

simulation time versus domain time; and (c) how these kinds of software relate. The (undoubtedly very

naı̈ve) objectives of the chapter is also to improve the kind of demo-presentations, alluded to above, so as

1 This chapter is based on [48].
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to ensure that the basis for such demos is crystal clear from the very outset of research & development, i.e.,

that domains be well-described. The chapter, we think, tackles the issue of so-called ‘model-oriented (or

model-based) software development’ from altogether different angles than usually promoted.

An Exploratory Chapter: The chapter is exploratory. There will be no theorems and therefore there will

be no proofs. We are presenting what might eventually emerge into (α) a theory of domains, i.e., a domain

science [28, 59, 37, 43], and (β ) a software development theory of domain engineering versus requirements

engineering [36, 29, 30, 34].

The chapter is not a “standard research paper”: it does not compare its claimed achievements with cor-

responding or related achievements of other researchers – simply because we do not claim “achievements”

which have been reasonably well formalised. But we would suggest that you might find some of the ideas

of the chapter (in Sect. 6.3) worthwhile. Hence the “divertimento” suffix to the chapter title.

Structure of Chapter: The structure of the chapter is as follows. In Sect. 6.2 we list a number of do-

main descriptions. In Sect. 6.3 we then outline a series of interpretations of domain descriptions. These

arise, when developed in an orderly, professional manner, from requirements prescriptions which are them-

selves orderly developed from the domain description2, cf. [54]. The essence of Sect. 6.3 is (i) the (albeit

informal) presentation of such tightly related notions as demos (Sect. 6.3.1), simulators (Sect. 6.3.2), mon-
itors (Sect. 6.3.3) and monitors & controllers (Sect. 6.3.3) (these notions can be formalised), and (ii) the

conjectures on a product family of domain-based software developments (Sect. 6.3.5). A notion of script-
based simulation extends demos and is the basis for monitor and controller developments and uses. The

scripts used in our examples are related to time, but one can define non-temporal scripts – so the “carrying

idea” of Sect. 6.3 extends to a widest variety of software. We claim that Sect. 6.3 thus brings these new

ideas: a tightly related software engineering concept of demo-simulator-monitor-controller machines, and

an extended notion of reference models for requirements and specifications [100].

6.2 Domain Descriptions

By a domain description we shall mean a combined narrative, that is, precise, but informal, and a formal

description of the application domain as it is: no reference to any possible requirements let alone software

that is desired for that domain. Thus a requirements prescription is a likewise combined precise, but infor-

mal, narrative, and a formal prescription of what we expect from a machine (hardware + software) that is to

support endurants, actions, events and behaviours of a possibly business process re-engineered application

domain. Requirements expresses a domain as we would like to to be. We present two example domain

descriptions in Part V. We further refer to the published literature for examples: [21, railways (2000)], [22,

the ’market’ (2000)], [30, public government, IT security, hospitals (2006) chapters 8–10], [29, transport
nets (2008)] [34, pipelines (2010)]. On the net you may find technical reports covering “larger” domain

descriptions. “Older” publications on the concept of domain descriptions are [34, 37, 31, 59, 29, 28, 33] all

summarised in Chaps. 1–2 and 5 [49, 53, 54]. Domain descriptions do not necessarily describe computable

objects. They relate to the described domain in a way similar to the way in which mathematical descriptions

of physical phenomena stand to “the physical world”.

6.3 Interpretations

In this main section of this chapter we present a number of interpretations of rôles of domain descriptions.

6.3.1 What Is a Domain-based Demo?

A domain-based demo is a software system which “present” endurants and perdurants3: actions, events

and behaviours of a domain. The “presentation” abstracts these phenomena and their related concepts in

various computer generated forms: visual, acoustic, etc.

2 We do not show such orderly “derivations” but outline their basics in Sect. 6.3.4.
3 The concepts of ‘endurants’ and ‘perdurants’ were defined in [49].
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Examples: There are three main examples. Two are given in Appendix A and Appendix B. The other

is summarised below. It is from Chap. 5 on “deriving requirements prescriptions from domain descrip-

tions” [54]. The summary follows. The domain description of Sect. 5.2 of Chap. 5 [54], outlines an abstract

concept of transport nets (of hubs [street intersections, train stations, harbours, airports] and links [road

segments, rail tracks, shipping lanes, air-lanes]), their development, traffic [of vehicles, trains, ships and

aircraft], etc. We shall assume such a transport domain description below. Endurants are, for example, pre-

sented as follows: (a) transport nets by two dimensional (2D) road, railway or air traffic maps, (b) hubs and

links by highlighting parts of 2D maps and by related photos – and their unique identifiers by labeling hubs

and links, (c) routes by highlighting sequences of paths (hubs and links) on a 2D map, (d) buses by pho-

tographs and by dots at hubs or on links of a 2D map, and (e) bus timetables by, well, indeed, by showing

a 2D bus timetable. Actions are, for example, presented as follows: ( f ) The insertion or removal of a hub

or a link by showing “instantaneous” triplets of “before”, “during” and “after” animation sequences. (g)

The start or end of a bus ride by showing flashing animations of the appearance, respectively the flashing

disappearance of a bus (dot) at the origin, respectively the destination bus stops. Events are, for example,

presented as follows: (h) A mudslide [or fire in a road tunnel, or collapse of a bridge] along a (road) link by

showing an animation of part of a (road) map with an instantaneous sequence of (α) the present link , (β )

a gap somewhere on the link, (γ) and the appearance of two (“symbolic”) hubs “on either side of the gap”.

(i) The congestion of road traffic “grinding to a halt” at, for example, a hub, by showing an animation of

part of a (road) map with an instantaneous sequence of the massive accumulation of vehicle dots moving

(instantaneously) from two or more links into a hub. Behaviours are, for example, presented as follows: (k)

A bus tour: from its start, on time, or “thereabouts”, from its bus stop of origin, via (all) intermediate stops,

with or without delays or advances in times of arrivals and departures, to the bus stop of destination (ℓ) The

composite behaviour of “all bus tours”, meeting or missing connection times, with sporadic delays, with

cancellation of some bus tours, etc. – by showing the sequence of states of all the buses on the net. We say

that behaviours (( j)–(ℓ)) are script-based in that they (try to) satisfy a bus timetable ((e)).

Towards a Theory of Visualisation and Acoustic Manifestation: The above examples shall serve

to highlight the general problem of visualisation and acoustic manifestation. Just as we need sciences of

visualising scientific data and of diagrammatic logics, so we need more serious studies of visualisation and
acoustic manifestation — so amply, but, this author thinks, inconsistently demonstrated by current uses of
interactive computing media.

6.3.2 Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act of simulating something
generally entails representing certain key characteristics or behaviours of a selected physical or abstract
system” [Wikipedia] for the purposes of testing some hypotheses usually stated in terms of the model

being simulated and pairs of statistical data and expected outcomes.

Explication of Figure 6.1: Figure 6.1 on the following page attempts to indicate four things: (i) Left

top: the rounded edge rectangle labeled “The Domain” alludes to some specific domain (“out there”). (ii)

Left middle: the small rounded rectangle labeled “A Domain Description” alludes to some document which

narrates and formalises a description of “the domain”. (iii) Left bottom: the medium sized rectangle labeled

“Domain Demo based on the Domain Description” (for short “Demo”) alludes to a software system that,

in some sense (to be made clear later) “simulates” “The Domain.” (iv) Right: the large rectangle (a) shows

a horisontal time axis which basically “divides” that large rectangle into two parts: (b) Above the time axis

the “fat” rounded edge rectangle alludes to the time-wise behaviour, a domain trace, of “The Domain”
(i.e., the actual, the real, domain). (c) Below the time axis there are eight “thin” rectangles. These are

labels S1, S2, S3, S4, S5, S6, S7 and S8. Each of these denote a “run”, i.e., a time-stamped “execution”,

a program trace, of the “Demo”. Their “relationship” to the time axis is this: their execution takes place

in the real time as related to that of “The Domain” behaviour. A trace (whether a domain or a program

execution trace) is a time-stamped sequence of states: domain states, respectively demo, simulator, monitor

and monitor & control states.

From Fig. 6.1 on the next page and the above explication we can conclude that “executions” S4 and S5
each share exactly one time point, t, at which “The Domain” and “The Simulation” “share” time, that
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Fig. 6.1. Simulations

is, the time-stamped execution S4 and S5 reflect a “Simulation” state which at time t should reflect (some

abstraction of) “The Domain” state. Only if the domain behaviour (i.e., trace) fully “surrounds” that of

the simulation trace, or, vice-versa (cf. Fig. 6.1[S4,S5]), is there a “shared” time. Only if the ‘begin’ and

‘end’ times of the domain behaviour are identical to the ‘start’ and ‘finish’ times of the simulation trace,

is there an infinity of shared 1–1 times. Only then do we speak of a real-time simulation. In Fig 6.2 on the

facing page we show “the same” “Domain Behaviour” (three times) and a (1) simulation, a (2) monitoring
and a (3) monitoring & control, all of whose ‘begin/start’ (b/β ) and ‘end/finish’ (e/ε) times coincide. In

such cases the “Demo/Simulation” takes place in real-time throughout the ‘begin· · · · · ·end’ interval. Let

β and ε be the ‘start’ and ‘finish’ times of either S4 or S5. Then the relationship between t,β ,ε , b and e is
t−b
e-t = t−β

ε−t
— which leads to a second degree polynomial in t which can then be solved in the usual, high

school manner.

Script-based Simulation: A script-based simulation is the behaviour, i.e., an execution, of, basically, a

demo which, step-by-step, follows a script: that is a prescription for highlighting endurants, actions, events

and behaviours. Script-based simulations where the script embodies a notion of time, like a bus timetable,

and unlike a route, can be thought of as the execution of a demos where “chunks” of demo operations take

place in accordance with “chunks”4 of script prescriptions. The latter (i.e., the script prescriptions) can be

said to represent simulated (i.e., domain) time in contrast to “actual computer” time. The actual times in

which the script-based simulation takes place relate to domain times as shown in Simulations S1 to S8 in

Fig. 6.1 and in Fig. 6.2(1–3). Traces Fig. 6.2(1–3) and S8 Fig. 6.1 are said to be real-time: there is a one-

to-one mapping between computer time and domain time. S1 and S4 Fig. 6.1 are said to be microscopic:
disjoint computer time intervals map into distinct domain times. S2, S3, S5, S6 and S7 are said to be

macroscopic: disjoint domain time intervals map into distinct computer times. In order to concretise the

above “vague” statements let us take the example of simulating bus traffic as based on a bus timetable

script. A simulation scenario could be as follows. Initially, not relating to any domain time, the simulation

“demos” a net, available buses and a bus timetable. The person(s) who are requesting the simulation are

asked to decide on the ratio of the domain time interval to simulation time interval. If the ratio is 1 a real-

time simulation has been requested. If the ratio is less than 1 a microscopic simulation has been requested.

If the ratio is larger than 1 a microscopic simulation has been requested. A chosen ratio of, say 48 to 1

means that a 24 hour bus traffic is to be simulated in 30 minutes of elapsed simulation time. Then the

person(s) who are requesting the simulation are asked to decide on the starting domain time, say 6:00am,

and the domain time interval of simulation, say 4 hours – in which case the simulation of bus traffic from

6am till 10am is to be shown in 5 minutes (300 seconds) of elapsed simulation time. The person(s) who are

requesting the simulation are then asked to decide on the “sampling times” or “time intervals” : If ‘sampling
times’ 6:00 am, 6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30 am and 10:00 am are chosen, then the simulation

4 We deliberately leave the notion of chunk vague so as to allow as wide an spectrum of simulations.
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is stopped at corresponding simulation times: 0 sec., 37.5 sec., 75 sec., 150 sec., 225 sec., 262.5 sec. and

300 sec. The simulation then shows the state of selected endurants and actions at these domain times. If

‘sampling time interval’ is chosen and is set to every 5 min., then the simulation shows the state of selected

endurants and actions at corresponding domain times. The simulation is resumed when the person(s) who

are requesting the simulation so indicates, say by a “resume” icon click. The time interval between adjacent

simulation stops and resumptions contribute with 0 time to elapsed simulation time – which in this case

was set to 5 minutes. Finally the requestor provides some statistical data such as numbers of potential and

actual bus passengers, etc. Then two clocks are started: a domain time clock and a simulation time clock.

The simulation proceeds as driven by, in this case, the bus time table. To include “unforeseen” events,

such as the wreckage of a bus (which is then unable to complete a bus tour), we allow any number of such

events to be randomly scheduled. Actually scheduled events “interrupts” the “programmed” simulation and

leads to thus unscheduled stops (and resumptions) where the unscheduled stop now focuses on showing

the event.

The Development Arrow: The arrow, , between a pair of boxes (of Fig. 6.1 on the preceding page)

denote a step of development: (i) from the domain box to the domain description box, , it denotes the

development of a domain description based on studies and analyses of the domain; (ii) from the domain

description box to the domain demo box, , it denotes the development of a software system — where that

development assumes an intermediate requirements box which has not been show; (iii) from the domain

demo box to either of a simulation traces, , it denotes the development of a simulator as the related demo

software system, again depending on whichever special requirements have been put to the simulator.

6.3.3 Monitoring & Control

Figure 6.2 shows three different kinds of uses of software systems (where (2) [Monitoring] and (3)

[Monitoring & Control] represent further) developments from the demo or simulation software system

mentioned in Sect. 6.3.1 and Sect. 6.3.2 on the preceding page. We have added some (three) horisontal
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Fig. 6.2. Simulation, Monitoring and Monitoring & Control

and labeled (p, q and r) lines to Fig. 6.2(1,2,3) (with respect to the traces of Fig. 6.1 on the preceding

page). They each denote a trace of a endurant, an action or an event, that is, they are traces of values of

these phenomena or concepts. A (named) endurant value entails a description of the endurant, whither

atomic (‘hub’, ‘link’, ‘bus timetable’) or composite (‘net’, ‘set of hubs’, etc.): of its unique identity, its

mereology and a selection of its attributes. A (named) action value could, for example, be the pair of the

before and after states of the action and some description of the function (‘insertion of a link’, ‘start of a

bus tour’) involved in the action. A (named) event value could, for example, be a pair of the before and
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after states of the endurants causing, respectively being effected by the event and some description of the

predicate (‘mudslide’, ‘break-down of a bus’) involved in the event. A cross section, such as designated by

the vertical lines (one for the domain trace, one for the “corresponding” program trace) of Fig. 6.2 on the

preceding page(1) denotes a state: a domain, respectively a program state. Figure 6.2(1) attempts to show

a real-time demo or simulation for the chosen domain. Figure 6.2(2) purports to show the deployment of

real-time software for monitoring (chosen aspects of) the chosen domain. Figure 6.2(3) purports to show

the deployment of real-time software for monitoring as well as controlling (chosen aspects of) the chosen

domain.

Monitoring: By domain monitoring we mean “to be aware of the state of a domain”, its endurants, ac-

tions, events and behaviour. Domain monitoring is thus a process, typically within a distributed system for

collecting and storing state data. In this process “observation” points — i.e., endurants, actions and where

events may occur — are identified in the domain, cf. points p, q and r of Fig. 6.2. Sensors are inserted at

these points. The “downward” pointing vertical arrows of Figs. 6.2(2–3), from “the domain behaviour” to

the “monitoring” and the “monitoring & control” traces express communication of what has been sensed

(measured, photographed, etc.) [as directed by and] as input data (etc.) to these monitors. The monitor

(being “executed”) may store these “sensings” for future analysis.

Control: By domain control we mean “the ability to change the value” of endurants and the course of ac-

tions and hence behaviours, including prevention of events of the domain. Domain control is thus based on

domain monitoring. Actuators are inserted in the domain “at or near” monitoring points or at points related

to these, viz. points p and r of Fig. 6.2 on the previous page(3). The “upward” pointing vertical arrows

of Fig. 6.2 on the preceding page(3), from the “monitoring & control” traces to the “domain behaviour”

express communication, to the domain, of what has been computed by the controller as a proper control

reaction in response to the monitoring.

6.3.4 Machine Development

Machines: By a machine we shall understand a combination of hardware and software. For demos and

simulators the machine is “mostly” software with the hardware typically being graphic display units with

tactile instruments. For monitors the “main” machine, besides the hardware and software of demos and

simulators, additionally includes sensors distributed throughout the domain and the technological machine

means of communicating monitored signals from the sensors to the “main” machine and the processing of

these signals by the main machine. For monitors & controllers the machine, besides the monitor machine,

further includes actuators placed in the domain and the machine means of computing and communicating

control signals to the actuators.

Requirements Development: Essential parts of Requirements to a Machine can be systematically “de-

rived” from a Domain description. These essential parts are the domain requirements and the interface
requirements. Domain requirements are those requirements which can be expressed, say in narrative form,

by mentioning technical terms only of the domain. These technical terms cover only phenomena and con-

cepts (endurants, actions, events and behaviours) of the domain. Some domain requirements are projected,
instantiated, made more deterministic and extended 5. We bring examples that are taken from Sect. 2. of

[54], cf. Sect. 6.3.1 on Page 181 of this chapter. (a) By domain projection we mean a sub-setting of the

domain description: parts are left out which the requirements stake-holders, collaborating with the require-

ments engineer, decide is of no relevance to the requirements. For our example it could be that our domain

description had contained models of road net attributes such as “the wear & tear” of road surfaces, the

length of links, states of hubs and links (that is, [dis]allowable directions of traffic through hubs and along

links), etc. Projection might then omit these attributes. (b) By domain instantiation we mean a specialisation

of endurants, actions, events and behaviours, refining them from abstract simple entities to more concrete

such, etc. For our example it could be that we only model freeways or only model road-pricing nets – or any

one or more other aspects. (c) By domain determination we mean that of making the domain description

cum domain requirements prescription less non-deterministic, i.e., more deterministic (or even the other

way around !). For our example it could be that we had domain-described states of street intersections as

5 We omit consideration of fitting.
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not controlled by traffic signals – where the determination is now that of introducing an abstract notion

of traffic signals which allow only certain states (of red, yellow and green). (d) By domain extension we

basically mean that of extending the domain with phenomena and concepts that were not feasible without

information technology. For our examples we could extend the domain with bus mounted GPS gadgets that

record and communicate (to, say a central bus traffic computer) the more-or-less exact positions of buses

– thereby enabling the observation of bus traffic. Interface requirements are those requirements which can

be expressed, say in narrative form, by mentioning technical terms both of the domain and of the machine.

These technical terms thus cover shared phenomena and concepts, that is, phenomena and concepts of the

domain which are, in some sense, also (to be) represented by the machine. Interface requirements rep-

resent (i) the initialisation and “on-the-fly” update of machine endurants on the basis of shared domain

endurants; (ii) the interaction between the machine and the domain while the machine is carrying out a

(previous domain) action; (iii) machine responses, if any, to domain events — or domain responses, if any,

to machine events cum “outputs”; and (iv) machine monitoring and machine control of domain phenomena.

Each of these four (i–iv) interface requirement facets themselves involve projection, instantiation, determi-

nation, extension and fitting. Machine requirements are those requirements which can be expressed, say in

narrative form, by mentioning technical terms only of the machine. (An example is: visual display units.)

6.3.5 Verifiable Software Development

An Example Set of Conjectures: We illustrate some conjectures.

(A)From a domain, D, one can develop a domain description D . D cannot be [formally] verified. It can be

[informally] validated “against” D . Individual properties, PD, of the domain description D and hence,

purportedly, of the domain, D, can be expressed and possibly proved D |= PD and these may be

validated to be properties of D by observations in (or of) that domain.

(B) From a domain description, D , one can develop domain demo requirements, RDEM , for, and from RDEM

one can develop a domain demo software specification SDEM such that D ,SDEM |= RDEM . The formula

D ,S |= R can be read as follows: in order to prove that the Software satisfies the Requirements,

assumptions about the Domain must often be made explicit in steps of the proof.

(C) From a domain description, D , and a domain demo requirements prescription, RDEM , one can develop

domain simulator requirements, RSIM , for, and from such a RSIM , one can develop a domain simulator
software specification SSIM such that (D;RDEM),SSIM |= RSIM . We have “lumped” (D;RDEM) as the

two constitute the extended domain for which we, in this case of development, suggest the next stage

requirements and software development to take place.

(D)From a domain description,D, and a domain simulator requirements prescription,RSIM , one can develop

domain monitor requirements, RMON , for, and from such a RMON one can develop, a domain monitor
software specification SMON such that (D;RSIM),SMON |= RMON .

(E) From a domain description,D, and a domain monitor requirements specification,RMON , one can develop

domain monitor & controller requirements, RM&C , for, and from such a RM&C one can develop, a

domain monitor & controller software specification SM&C such that (D;RMON),SM&C |= RM&C .

Many other such developments can be diagrammed (cf. Fig. 6.3). The one just illustrated leads to four kinds

of strongly related software. The arrow between two boxes, from D to R, means the same thing as was

illustrated in Chap. 2. Two arrows, from boxes D to R ′, to a box R ′′ means that prescription R ′ did not

suffice: there were requirements, to be expressed in R ′′, which needed to be “derived” from D – typically

also requiring fitting, as outlined in Sect. 5.4.5 on Page 164.

Chains of Verifiable Developments: The above illustrated just one chain (A–E) of developments. There

are others. All are shown in Fig. 6.3 on the next page. The figure can also be interpreted as prescribing a

subset of a possible range of software products [66, 148] for a given domain. One domain may give rise to

many different kinds of DEMo machines, SIMulators, MONitors and Mitor & Controllers For each of these

there are similarly, “exponentially” many variants of successor machines.
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6.4 Conclusion

Our divertimento is almost over. It is time to conclude.

The Correctness Relations: The D,M |= R (‘correctness’ of) development relation appears to have

been first indicated in the Computational Logic Inc. Stack [16, 98] and the EU ESPRIT ProCoS [18, 19]

projects; [100] presents this same idea with a purpose much like ours, but with more technical discussions.

Domain Engineering: The term ‘domain engineering’ appears to have at least two meanings: the one

used here [28, 33] and one [107, 85, 67] emerging out of the Software Engineering Institute at CMU where

it is also called product line engineering6. Our meaning, is, in a sense, more narrow, but then it seems to

also be more highly specialised (with detailed description and formalisation principles and techniques).

Fig. 6.3 illustrates, in capsule form, what we think is the CMU/SEI meaning.

Model-driven Software Engineering: The relationship between, say Fig. 6.3 and model-based software
development seems obvious but need be explored. An extensive discussion of the term ‘domain’, as it

appears in the software engineering literature is found in [49, Sect. 5.3].

What Have We Achieved: We have characterised a spectrum of strongly domain-related as well as

strongly inter-related (cf. Fig. 6.3) software product families: demos, simulators, monitors and monitor &
controllers. We have indicated varieties of these: simulators based on demos, monitors based on simulators,

monitor & controllers based on monitors, in fact any of the latter ones in the software product family list

as based on any of the earlier ones. We have sketched temporal relations between simulation traces and

domain behaviours: a priori, a posteriori, macroscopic and microscopic, and we have identified the real-

time cases which lead on to monitors and monitor & controllers.

What Have We Not Achieved — Some Conjectures: We have not characterised the software product

family relations other than by the D,S |= R and (D;SXYZ),S |= R clauses. That is, we should like to prove

conjectured type theoretic inclusion relations like:

℘([[SXmod ext.
]])⊒℘([[S

′...′

Xmod ext.
]]), ℘([[S

′...′

Xmod ext.
]])⊒℘([[S

′′....′

Xmod ext.
]])

where X and Y range appropriately, where [[S ]] expresses the meaning of S , where ℘([[S ]]) denote the

space of all machine meanings and where ℘([[Sxmod ext.
]]) is intended to denote that space modulo (“free

6 http://en.wikipedia.org/wiki/Domain engineering.
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of”) the y facet (here ext., for extension). That is, it is conjectured that the set of more specialised, i.e., n

primed, machines of kind x is type theoretically “contained” in the set of m primed (unprimed) x machines

(0 ≤ m < n). There are undoubtedly many such interesting relations between the DEMO, SIMULATOR,

MONITOR and MONITOR & CONTROLLER machines, unprimed and primed.

What Should We Do Next: This chapter has the subtitle: A Divertimento of Ideas and Suggestions.
It is not a proper theoretical chapter. It tries to throw some light on families and varieties of software,

i.e., their relations. It focuses, in particular, on so-called DEMO, SIMULATOR, MONITOR and MONITOR &

CONTROLLER software and their relation to the “originating” domain, i.e., that in which such software is to

serve, and hence that which is being extended by such software, cf. the compounded ‘domain’ (D;Mi) of in

(D;Mi),M j |= D. These notions should be studied formally. All of these notions: requirements projection,

instantiation, determination and extension can be formalised; and the specification language, in the form

used here (without CSP processes, [111]) has a formal semantics and a proof system — so the various

notions of development, (D;Mi),M j |= R and ℘(M) can be formalised.
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7

Conclusion

7.1 What Have We Achieved ?

We started this volume by claiming, in the Preface (Page v), that

• domain engineering is a viable,

⋄⋄ yes, we would claim,

⋄⋄ necessary initial phase of software development.

We strongly think that the previous chapters have borne out that claim.

We then went on, again in the Preface (Page v), to claim that

• that domain science and engineering

⋄⋄ is a field full of interesting problems

⋄⋄ to be researched.

Again, we strongly think that the previous chapters have borne out also that claim.1

With this we rest our case !

7.2 Domain Science & Engineering

The title of this compendium is Domain Science & Engineering.

• The ‘science’ is covered in Chaps. 3 and 4.

• The ‘engineering’ is covered in remaining chapters.

1 Several of the individual chapters, towards their end, that is, in Sects. 1.5.4–1.5.5, 2.9.1–2.9.4, 3.9.3, 4.7.3 and 5.7.2,

lists some worthwhile research problems.
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May 2008. Springer.

30. Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. Research
Monograph (#4); JAIST Press, 1-1, Asahidai, Nomi, Ishikawa 923-1292 Japan, This Research Monograph
contains the following main chapters:

1 On Domains and On Domain Engineering – Prerequisites for Trustworthy Software – A Necessity for
Believable Management, pages 3–38.

2 Possible Collaborative Domain Projects – A Management Brief, pages 39–56.
3 The Rôle of Domain Engineering in Software Development, pages 57–72.
4 Verified Software for Ubiquitous Computing – A VSTTE Ubiquitous Computing Project Proposal,
pages 73–106.

5 The Triptych Process Model – Process Assessment and Improvement, pages 107–138.
6 Domains and Problem Frames – The Triptych Dogma and M.A.Jackson’s PF Paradigm, pages 139–
175.

7 Documents – A Rough Sketch Domain Analysis, pages 179–200.
8 Public Government – A Rough Sketch Domain Analysis, pages 201–222.
9 Towards a Model of IT Security — – The ISO Information Security Code of Practice – An Incomplete
Rough Sketch Analysis, pages 223–282.

10 Towards a Family of Script Languages – – Licenses and Contracts – An Incomplete Sketch, pages
283–328.

2009.
31. Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R.

Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70,
London, UK, 2009. Springer.

32. Dines Bjørner. What is Logistics ? A Domain Analysis. Techn. report, Incomplete Draft5, Fredsvej 11,
DK-2840 Holte, Denmark, June 2009.

1 http://www.imm.dtu.dk/ db/.pdf
2 http://www2.imm.dtu.dk/ db/themarket.pdf
3 http://www2.imm.dtu.dk/ db/zohar.pdf
4 http://www2.imm.dtu.dk/ db/container-paper.pdf
5 http://www2.imm.dtu.dk/ db/pipeline.pdf

c© Dines Bjørner 2016 Fredsvej 11, DK–2840 Holte, Denmark DRAFT Domain Science & Engineering December 5, 2016, 07:21



References 195

33. Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State
of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010.
Springer.

34. Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics,
Part I of II: The Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May 2010.

35. Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas and Suggestions. Tech-
nical, Technical University of Vienna, August–October 2010. http://www.imm.dtu.dk/˜dibj/wfdftp.pdf.

36. Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.
37. Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics

Part II of II: The Science Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.
38. Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Sug-

gestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of His
70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer,
Heidelberg, Germany, January 2011.

39. Dines Bjørner. Documents – a Domain Description6. Experimental Research Report 2013-3, DTU Compute
and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

40. Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chapter 7,
pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC [Francis &
Taylor], 2013. (eds.: Justyna Zander and Pieter J. Mosterman).

41. Dines Bjørner. Pipelines – a Domain Description7. Experimental Research Report 2013-2, DTU Compute
and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

42. Dines Bjørner. Road Transportation – a Domain Description8. Experimental Research Report 2013-4,
DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

43. Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio
Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, October 2014.

44. Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio
Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, May 2014.

45. Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku
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Part V

Domain Descriptions

In this appendix we show two domain descriptions. Both very terse:

• Credit Card Systems AppendixA, Pages 205–213
• Weather Information Systems AppendixB, Pages 215–226
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http://www.imm.dtu.dk/˜dibj/doc-p.pdf [39] 2013.
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and http://www.imm.dtu.dk/˜dibj/todai/tse-2.pdf [55] 2010.

• On Development of Web-based Software: A Divertimento
http://www.imm.dtu.dk/˜dibj/wfdftp.pdf 2010.

• Pipelines – a Domain Description1 [41] 2009.
• What is Logistics ?

http://www.imm.dtu.dk/˜dibj/logistics.pdf [32] 2009.
• A Container Line Industry Domain

http://www.imm.dtu.dk/˜dibj/container-paper.pdf, [27] 2007
• Models of IT Security: Security Rules & Regulations

http://www.imm.dtu.dk/˜dibj/it-security.pdf [56] 2006.
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⋄⋄ Chris George, Dines Bjørner and Søren Prehn:
Scheduling and Rescheduling of Trains
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⋄⋄ Dines Bjørner:
A Railway Systems Domain
http://www.imm.dtu.dk/ dibj/UNU-IIST-railways.pdf
An “old” UNU-IIST report, 1997

⋄⋄ Dines Bjørner:
Formal Software Techniques in Railway Systems
http://www.imm.dtu.dk/ dibj/amore/docs/dines-ifac.pdf, 2002

⋄⋄ Albena Strupchanska, Martin Penicka and Dines Bjørner:
Railway Staff Rostering
http://www.imm.dtu.dk/ dibj/amore/docs/albena-amore.pdf, 2003

⋄⋄ Dines Bjørner:
Dynamics of Railway Nets
http://www.imm.dtu.dk/ dibj/amore/docs/ifac-dynamics.pdf, 2003

⋄⋄ Martin Penicka, Albena Strupchanska and Dines Bjørner:
Train Maintenance Routing
http://www.imm.dtu.dk/ dibj/amore/docs/martin-amore.pdf, 2003

1 http://www.imm.dtu.dk/˜dibj/pipeline.pdf
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A

Credit Card Systems

Summary

This report presents an attempt at a model of a credit card system. Right-flushed “one-liners” refer
to domain description prompts of Chapter 1. Appendix C presents a primer of RSL, the Raise

Specification Language.

A.1 Introduction

We present a domain description of an abstracted credit card system. The narrative part of the descrip-

tion is terse, perhaps a bit too terse. I might “repair” this shortness if told so. A reference is made to

my paper: [49, Manifest Domains: Analysis & Description]. That paper can be found on the Internet:

http://www2.compute.dtu.dk/˜dibj/2015/faoc/faoc-bjorner.pdf.
Credit cards are moving from simple plastic cards to smart phones. Uses of credit cards move from

their mechanical insertion in credit card terminals to being swiped. Authentication (hence not modelled)

moves from keying in security codes to eye iris “prints”, and/or finger prints or voice prints or combinations

thereof.

This document abstracts from all that in order to understand a bare, minimum essence of credit cards

and their uses. Based on a model, such as presented here, the reader should be able to extend/refine the

model into any future technology – for requirements purposes.

A.2 Endurants

A.2.1 Credit Card Systems

Sect. 1.3.1 Domain Description Prompt 1 on Page 15: observe part sorts

414 Credit card systems, ccs:CCS, 1consists of three kinds of parts:

415 an assembly, cs:CS, of credit cards3,

416 an assembly, bs:BS, of banks, and

417 an assembly, ss:SS, of shops.

1 The composite part CS can be thought of as a credit card company, say VISA2. The composite part BS can be

thought of as a bank society, say BBA: British Banking Association. The composite part SS can be thought of

as the association of retailers, say bira: British Independent Retailers Association. The model does not prevent

“shops” from being airlines, or car rental agencies, or dentists, or consultancy firms. In this case SS would be some

appropriate association.
3 We “equate” credit cards with their holders.
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type

414 CCS
415 CS
416 BS
417 SS
value

415 obs part CS: CCS → CS
416 obs part BS: CCS → BS
417 obs part SS: CCS → SS

Sect. 1.3.1 Domain Description Prompt 2 on Page 16: observe concrete type

418 There are credit cards, c:C, banks b:B, and shops s:S.

419 The credit card part, cs:CS, abstracts a set, soc:Cs, of card.

420 The bank part, bs:BS, abstracts a set, sob:Bs, of banks.

421 The shop part, ss:SS, abstracts a set, sos:Ss, of shops.

type

418 C, B, S
419 Cs = C-set

420 Bs = B-set

421 Ss = S-set

value

419 obs part CS: CS → Cs, obs part Cs: CS → Cs
420 obs part BS: BS → Bs, obs part Bs: BS → Bs
421 obs part SS: SS → Ss, obs part Ss: SS → Ss

Sect. 1.3.2 Domain Description Prompt 3 on Page 19: observe unique identifier

422 Assembliers of credit cards, banks and shops have unique identifiers, csi:CSI, bsi:BSI, and ssi:SSI.

423 Credit cards, banks and shops have unique identifiers, ci:CI, bi:BI, and si:SI.

424 One can define functions which extract all the

425 unique credit card,

426 bank and

427 shop identifiers from a credit card system.

422 CSI, BSI, SSI
423 CI, BI, SI
value

422 uid CS: CS→CSI, uid BS: BS→BSI, uid SS: SS→SSI,
423 uid C: C→CI, uid B: B→BI, uid S: S→SI,
425 xtr CIs: CCS → CI-set

425 xtr CIs(ccs) ≡ {uid C(c)|c:C•c ∈ obs part Cs(obs part CS(ccs))}
426 xtr BIs: CCS → BI-set

426 xtr BIs(ccs) ≡ {uid B(s)|b:B•b ∈ obs part Bs(obs part BS(ccs))}
427 xtr SIs: CCS → SI-set

427 xtr SIs(ccs) ≡ {uid S(s)|s:S•s ∈ obs part Ss(obs part SS(ccs))}

428 For all credit card systems it is the case that

429 all credit card identifiers are distinct from bank identifiers,

430 all credit card identifiers are distinct from shop identifiers,

431 all shop identifiers are distinct from bank identifiers,

axiom

428 ∀ ccs:CCS •

428 let cis=xtr CIs(ccs), bis=xtr BIs(ccs), sis = xtr SIs(ccs) in

429 cis ∩ bis = {}
430 ∧ cis ∩ sis = {}
431 ∧ sis ∩ bis = {} end
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A.2.2 Credit Cards

Sect. 1.3.3 Domain Description Prompt 4 on Page 21: observe mereology

432 A credit card has a mereology which “connects” it to any of the shops of the system and to exactly one bank of

the system,
433 and some attributes — which we shall presently disregard.
434 The wellformedness of a credit card system includes the wellformedness of credit card mereologies with respect

to the system of banks and shops:
435 The unique shop identifiers of a credit card mereology must be those of the shops of the credit card system; and
436 the unique bank identifier of a credit card mereology must be of one of the banks of the credit card system.

type

432. CM = SI-set × BI
value

432. obs mereo CM: C → CM
434 wf CM of C: CCS → Bool

434 wf CM of C(ccs) ≡
432 let bis=xtr BIs(ccs), sis=xtr SIs(ccs) in

432 ∀ c:C•c ∈ obs part Cs(obs part CS(ccs)) ⇒
432 let (ccsis,bi)=obs mereo CM(c) in

435 ccsis ⊆ sis
436 ∧ bi ∈ bis
432 end end

A.2.3 Banks

Sect. 1.3.2 Domain Description Prompt 3 on Page 19: observe unique identifier

Sect. 1.3.3 Domain Description Prompt 4 on Page 21: observe mereology

Our model of banks is (also) very limited.

437 A bank has a mereology which “connects” it to a subset of all credit cards and a subset of all shops,
438 and, as attributes:
439 a cash register, and
440 a ledger.
441 The ledger records for every card, by unique credit card identifier,
442 the current balance: how much money, credit or debit, i.e., plus or minus, that customer is owed, respectively has

borrowed from the bank,
443 the dates-of-issue and -expiry of the credit card, and
444 the name, address, and other information about the credit card holder.
445 The wellformedness of the credit card system includes the wellformedness of the banks with respect to the credit

cards and shops:
446 the bank mereology’s
447 must list a subset of the credit card identifiers and a subset of the shop identifiers.

type

437 BM = CI-set × SI-set

439 CR = Bal
440 LG = CI →m (Bal×DoI×DoE×...)
442 Bal = Int

value

437 obs mereo B: B → BM
439 attr CR: B → CR
440 attr LG: B → LG
445 wf BM B: CCS → Bool

445 wf BM B(ccs) ≡
445 let allcis = xtr CIs(ccs), allsis = xtr SIs(ccs) in

445 ∀ b:B • b ∈ obs part Bs(obs part BS(ccs)) in

446 let (cis,sis) = obs mereo B(b) in

447 cis ⊆ ∀ cis ∧ sis ⊆ allsis end end
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A.2.4 Shops

Sect. 1.3.3 Domain Description Prompt 4 on Page 21: observe mereology

448 The mereology of a shop is a pair: a unique bank identifiers, and a set of unique credit card identifiers.

449 The mereology of a shop

450 must list a bank of the credit card system,

451 band a subset (or all) of the unique credit identifiers.

We omit treatment of shop attributes.

type

448 SM = CI-set × BI
value

448 obs mereo S: S → SM
449 wf SM S: CCS → Bool

449 wf SM S(ccs) ≡
449 let allcis = xtr CIs(ccs), allbis = xtr BIs(ccs) in

449 ∀ s:S • s ∈ obs part Ss(obs part SS(ccs)) ⇒
449 let (cis,bi) obs mereo S(s) in

450 bi ∈ allbis
451 ∧ cis ⊆ allcis
449 end end

A.3 Perdurants

A.3.1 Behaviours

Sect. 1.4.11: Process Schema I: Abstract is composite(p), Page 39

Sect. 1.4.11: Process Schema II: Concrete is concrete(p), Page 40

452 We ignore the behaviours related to the CCS, CS, BS and SS parts.

453 We therefore only consider the behaviours related to the Cs, Bs and Ss parts.

454 And we therefore compile the credit card system into the parallel composition of the parallel compositions of all

the credit card, crd, all the bank, bnk, and all the shop, shp, behaviours.

value

452 ccs:CCS
452 cs:CS = obs part CS(ccs),
452 uics:CSI =uid CS(cs),
452 bs:BS = obs part BS(ccs),
452 uibs:BSI =uid BS(bs),
452 ss:SS = obs part SS(ccs),
452 uiss:SSI =uid SS(ss),
453 socs:Cs = obs part Cs(cs),
453 sobs:Bs = obs part Bs(bs),
453 soss:Ss = obs part Ss(ss),

value

454 sys: Unit → Unit,
452 sys() ≡
454 cardsuics(obs mereo CS(cs),...)
454 ‖ ‖ {crduid C(c)(obs mereo C(c))|c:C•c ∈ socs}

454 ‖ banksuibs(obs mereo BS(bs),...)
454 ‖ ‖ {bnkuid B(b)(obs mereo B(b))|b:B•b ∈ sobs}

454 ‖ shopsuiss(obs mereo SS(ss),...)
454 ‖ ‖ {shpuid S(s)(obs mereo S(s))|s:S•s ∈ soss},
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452 cardsuics(...) ≡ skip,
452 banksuibs(...) ≡ skip,
452 shopsuiss(...) ≡ skip

axiom skip ‖ behaviour(...) ≡ behaviour(...)

A.3.2 Channels

Sect. 1.4.5: Channels and Communications, Page 34

Sect. 1.4.5: Relations Between Attributes Sharing and Channels, Page 34

455 Credit card behaviours interact with bank (each with one) and many shop behaviours.

456 Shop behaviours interact with bank (each with one) and many credit card behaviours.

457 Bank behaviours interact with many credit card and many shop behaviours.

The inter-behaviour interactions concern:

458 between credit cards and banks: withdrawal requests as to a sufficient, mk Wdr(am), balance on the credit card

account for buying am:AM amounts of goods or services, with the bank response of either is OK() or is NOK(),
or the revoke of a card;

459 between credit cards and shops: the buying, for an amount, am:AM, of goods or services: mk Buy(am), or the

refund of an amount;

460 between shops and banks: the deposit of an amount, am:AM, in the shops’ bank account: mk Depost(ui,am) or

the removal of an amount, am:AM, from the shops’ bank account: mk Removl(bi,si,am)

channel

455 {ch cb[ci,bi ]|ci:CI,bi:BI•ci ∈ cis ∧ bi ∈ bis}:CB Msg
456 {ch cs[ci,si ]|ci:CI,si:SI•ci ∈ cis ∧ si ∈ sis}:CS Msg
457 {ch sb[si,bi ]|si:SI,bi:BI•si ∈ sis ∧ bi ∈ bis}:SB Msg
458 CB Msg == mk Wdrw(am:aM) | is OK() | is NOK() | ...
459 CS Msg == mk Buy(am:aM) | mk Ref(am:aM) | ...
460 SB Msg == Depost | Removl | ...
460 Depost == mk Dep((ci:CI|si:SI),am:aM) |
460 Removl == mk Rem(bi:BI,si:SI,am:aM)

A.3.3 Behaviour Interactions

461 The credit card initiates

a buy transactions

i [1.Buy] by enquiring with its bank as to sufficient purchase funds (am:aM);

ii [2.Buy] if NOK then there are presently no further actions; if OK

iii [3.Buy] the credit card requests the purchase from the shop – handing it an appropriate amount;

iv [4.Buy] finally the shop requests its bank to deposit the purchase amount into its bank account.

b refund transactions

i [1.Refund] by requesting such refunds, in the amount of am:aM, from a[ny] shop; whereupon

ii [2.Refund] the shop requests its bank to move the amount am:aM from the shop’s bank account

iii [3.Refund] to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as sketched in Fig. A.1 on the following page.
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1.Buy

2.Buy

3.Buy

4.
B

uy

1.Refund

NOK OK

Credit Card

Bank

Shop

2.Refund
3.Refund

Fig. A.1. Credit Card, Bank and Shop Behaviours

[1.Buy] Item 467, Pg.210 card ch cb[ci,bi ]!mk Wdrw(am) (shown as ... three lines down) and

Item 476, Pg.211 bank mk Wdrw(ci,am)=⌈⌉⌊⌋{ch cb[bi,bi ]?|ci:CI•ci ∈ cis}.

[2.Buy] Items 469-470, Pg.211 bank ch cb[ci,bi ]!is [N]OK() and

Item 467, Pg.210 shop (...;ch cb[ci,bi ]?).

[3.Buy] Item 469, Pg.211 card ch cs[ci,si ]!mk Buy(am) and

Item 491, Pg.213 shop mk Buy(am)=⌈⌉⌊⌋{ch cs[ci,si ]?|ci:CI•ci∈ cis}.

[4.Buy] Item 492, Pg.213 shop ch sb[si,bi ]!mk Dep(si,am) and

Item 481, Pg.212 bank mk Dep(si,am)=⌈⌉⌊⌋{ch cs[ci,si ]?|si:SI•si∈sis}.

[1.Refund] Item 473, Pg.211 card ch cs[ci,si ]!mk Ref((ci,si),am) and

Item 492, Pg.213 shop (si,mk Ref(ci,am))=⌈⌉⌊⌋{si′,ch sb[si,bi ]?|si,si′:SI•{si,si′}⊆sis∧si=si′}.

[2.Refund] Item 496, Pg.213 shop ch sb[si,cbi ]!mk Ref(cbi,(ci,si),am and

Item 485, Pg.212 bank (si,mk Ref(cbi,(ci,am)))=⌈⌉⌊⌋{(si′,ch sb[si,bi ]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}.

[3.Refund] Item 497, Pg.213 shop ch sb[si,sbi ]!mk Wdr(si,am)) end and

Item 486, Pg.212 bank (si,mk Wdr(ci,am))=⌈⌉⌊⌋{(si′,ch sb[si,bi ]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}

A.3.4 Credit Card

Sect. 1.4.11: Process Schema III: is atomic(p), Page 40

462 The credit card behaviour, crd, takes the credit card unique identifier, the credit card mereology, and attribute

arguments (omitted). The credit card behaviour, crd, accepts inputs from and offers outputs to the bank, bi, and

any of the shops, si∈sis.
463 The credit card behaviour, crd, non-deterministically, internally “cycles” between buying and getting refunds.

value

462 crdci:CI : (bi,sis):CM → in,out ch cb[ci,bi ],{ch cs[ci,si ]|si:SI•si ∈ sis} Unit

462 crdci(bi,sis) ≡ (buy(ci,(bi,sis)) ⌈⌉ ref(ci,(bi,sis))) ; crdci(ci,(bi,sis))

Sect. 1.4.11: Process Schema IV: Core Processes (I), Page 41

Sect. 1.4.11: Process Schema V: Core Processes (II), Page 41

464 By am:AM we mean an amount of money, and by si:SI we refer to a shop in which we have selected a number or

goods or services (not detailed) costing am:AM.

465 The buyer action is simple.

466 The amount for which to buy and the shop from which to buy are selected (arbitrarily).

467 The credit card (holder) withdraws am:AM from the bank, if sufficient funds are available4.

468 The response from the bank

4 First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes place,

otherwise not – and the credit card holder is informed accordingly.
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469 is either OK and the credit card [holder] completes the purchase by buying the goods or services offered by the

selected shop,

470 or the response is “not OK”, and the transaction is skipped.

type

464 AM = Int

value

465 buy: ci:CI × (bi,sis):CM →
465 in,out ch cb[ci,bi ] out {ch cs[ci,si ]|si:SI•si ∈ sis} Unit

465 buy(ci,(bi,sis)) ≡
466 let am:aM • am>0, si:SI • si ∈ sis in

467 let msg = (ch cb[ci,bi ]!mk Wdrw(am);ch cb[ci,bi ]?) in

468 case msg of

469 is OK() → ch cs[ci,si ]!mk Buy(am),
470 is NOK() → skip

465 end end end

471 The refund action is simple.

472 The credit card [handler] requests a refund am:AM
473 from shop si:SI.

This request is handled by the shop behaviour’s sub-action re f , see lines 489.–498. page 213.

value

471 rfu: ci:CI × (bi,sis):CM → out {ch cs[ci,si ]|si:SI•si ∈ sis} Unit

471 rfu(ci,(bi,sis)) ≡
472 let am:AM • am>0, si:SI • si ∈ sis in

473 ch cs[ci,si ]!mk Ref(bi,(ci,si),am)
471 end

A.3.5 Banks

Sect. 1.4.11: Process Schema III: is atomic(p), Page 40

474 The bank behaviour, bnk, takes the bank’s unique identifier, the bank mereology, and the programmable attribute

arguments: the ledger and the cash register. The bank behaviour, bnk, accepts inputs from and offers outputs to

the any of the credit cards, ci∈cis, and any of the shops, si∈sis.

475 The bank behaviour non-deterministically externally chooses to accept either ‘withdraw’al requests from credit

cards or ‘deposit’ requests from shops or ‘refund’ requests from credit cards.

value

474 bnkbi:BI: (cis,sis):BM → (LG×CR) →
474 in,out {ch cb[ci,bi ]|ci:CI•ci ∈ cis} {ch sb[si,bi ]|si:SI•si ∈ sis} Unit

474 bnkbi((cis,sis))(lg:(bal,doi,doe,...),cr) ≡
475 wdrw(bi,(cis,sis))(lg,cr)
475 ⌈⌉⌊⌋ depo(bi,(cis,sis))(lg,cr)
475 ⌈⌉⌊⌋ refu(bi,(cis,sis))(lg,cr)

476 The ‘withdraw’ request, wdrw, (an action) non-deterministically, externally offers to accept input from a credit

card behaviour and marks the only possible form of input from credit cards, mk Wdrw(ci,am), with the identity

of the credit card.

477 If the requested amount (to be withdrawn) is not within balance on the account

478 then we, at present, refrain from defining an outcome (chaos), whereupon the bank behaviour is resumed with no

changes to the ledger and cash register;

479 otherwise the bank behaviour informs the credit card behaviour that the amount can be withdrawn; whereupon the

bank behaviour is resumed notifying a lower balance and ‘withdraws’ the monies from the cash register.
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value

475 wdrw: bi:BI × (cis,sis):BM → (LG×CR) → in,out {ch cb[bi,ci ]|ci:CI•ci ∈ cis} Unit

475 wdrw(bi,(cis,sis))(lg,cr) ≡
476 let mk Wdrw(ci,am) = ⌈⌉⌊⌋ {ch cb[ci,bi ]?|ci:CI•ci ∈ cis} in

475 let (bal,doi,doe) = lg(ci) in

477 if am>bal
478 then (ch cb[ci,bi ]!is NOK(); bnkbi(cis,sis)(lg,cr))
479 else (ch cb[ci,bi ]!is OK(); bnkbi(cis,sis)(lg†[ci7→(bal−am,doi,doe) ],cr−am)) end

474 end end

The ledger and cash register attributes, lg,cr, are programmable attributes. Hence they are modeled as separate function

arguments.

480 The deposit action is invoked, either by a shop behaviour, when a credit card [holder] buy’s for a certain amount,

am:AM, or requests a refund of that amount. The deposit is made by shop behaviours, either on behalf of them-

selves, hence am:AM, is to be inserted into the shops’ bank account, si:SI, or on behalf of a credit card [i.e., a

customer], hence am:AM, is to be inserted into the credit card holder’s bank account, si:SI.
481 The message, ch cs[ci,si]?, received from a credit card behaviour is either concerning a buy [in which case i is a

ci:CI, hence sale, or a refund order [in which case i is a si:SI].
482 In either case, the respective bank account is “upped” by am:AM – and the bank behaviour is resumed.

value

480 deposit: bi:BI × (cis,sis):BM → (LG×CR) →
481 in,out {ch sb[bi,si ]|si:SI•si ∈ sis} Unit

480 deposit(bi,(cis,sis))(lg,cr) ≡
481 let mk Dep(si,am) = ⌈⌉⌊⌋ {ch cs[ci,si ]?|si:SI•si ∈ sis} in

480 let (bal,doi,doe) = lg(si) in

482 bnkbi(cis,sis)(lg†[si7→(bal+am,doi,doe) ],cr+am)
480 end end

483 The refund action

484 non-deterministically externally offers to either

485 non-deterministically externally accept a mk Ref(ci,am) request from a shop behaviour, si, or

486 non-deterministically externally accept a mk Wdr(ci,am) request from a shop behaviour, si.
The bank behaviour is then resumed with the

487 credit card’s bank balance and cash register incremented by am and the

488 shop’ bank balance and cash register decremented by that same amount.

value

483 rfu: bi:BI × (cis,sis):BM → (LG×CR) → in,out {ch sb[bi,si ]|si:SI•si ∈ sis} Unit

483 rfu(bi,(cis,sis))(lg,cr) ≡
485 (let (si,mk Ref(cbi,(ci,am))) = ⌈⌉⌊⌋ {(si′,ch sb[si,bi ]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in

483 let (balc,doic,doec) = lg(ci) in

487 bnkbi(cis,sis)(lg†[ci7→(balc+am,doic,doec) ],cr+am)
483 end end)
484 ⌈⌉⌊⌋
486 (let (si,mk Wdr(ci,am)) = ⌈⌉⌊⌋ {(si′,ch sb[si,bi ]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in

483 let (bals,dois,does) = lg(si) in

488 bnkbi(cis,sis)(lg†[si7→(bals−am,dois,does) ],cr−am)
483 end end)

A.3.6 Shops

Sect. 1.4.11: Process Schema III: is atomic(p), Page 40

489 The shop behaviour, shp, takes the shop’s unique identifier, the shop mereology, etcetera.

490 The shop behaviour non-deterministically, externally

either
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491 offers to accept a Buy request from a credit card behaviour,

492 and instructs the shop’s bank to deposit the purchase amount.

493 whereupon the shop behaviour resumes being a shop behaviour;

494 or

495 offers to accept a refund request in this amount, am, from a credit card [holder].

496 It then proceeds to inform the shop’s bank to withdraw the refund from its ledger and cash register,

497 and the credit card’s bank to deposit the refund into its ledger and cash register.

498 Whereupon the shop behaviour resumes being a shop behaviour.

value

489 shpsi:SI : (CI-set×BI)×...→in,out: {ch cs[ci,si ]|ci:CI•ci ∈ cis},{ch sb[si,bi′ ]|bi′:BI•bi′isin bis} Unit

489 shpsi((cis,bi),...) ≡
491 (sal(si,(bi,cis),...)
494 ⌈⌉⌊⌋
495 ref(si,(cis,bi),...)):

489 sal: SI×(CI-set×BI)×...→in,out: {cs[ci,si ]|ci:CI•ci ∈ cis},sb[si,bi ] Unit

489 sal(si,(cis,bi),...) ≡
491 let mk Buy(am) = ⌈⌉⌊⌋{ch cs[ci,si ]?|ci:CI•ci ∈ cis} in

492 ch sb[si,bi ]!mk Dep(si,am) end ;
493 shpsi((cis,bi),...)

489 ref: SI×(CI-set×BI)×...→in,out: {ch cs[ci,si ]|ci:CI•ci ∈ cis},{ch sb[si,bi′ ]|bi′:BI•bi′isin bis} Unit

495 ref(si,(cis,sbi),...) ≡
495 let mk Ref((ci,cbi,si),am) = ⌈⌉⌊⌋{ch cs[ci,si ]?|ci:CI•ci ∈ cis} in

496 (ch sb[si,cbi ]!mk Ref(cbi,(ci,si),am)
497 ‖ ch sb[si,sbi ]!mk Wdr(si,am)) end ;
498 shpsi((cis,sbi),...)

A.4 Discussion

TO BE WRITTEN
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Weather Information Systems

Summary

This document reports work in progress. We show an example domain description. It is developed and
presented as outlined in [49]. The domain being described is that of a generic weather information
system. Four main endurants (i.e., aspects) of a generic weather information system are those of the
weather, weather stations (collecting weather data), weather data interpretation (i.e., metereological
institute[s]), and weather forecast consumers. There are, correspondingly, two kinds of weather infor-
mation: the weather data, and the weather forecasts. These forms of weather information are acted
upon: the weather data interpreter (i.e., a metereological institute) is gathering weather data; based on
such interpretations the metereological institute is “calculating” weather forecasts; and and weather
forecast consumers are requesting and further “interpreting” (i.e., rendering) such forecasts. Thus
weather data is communicated from weather stations to the weather data interpreter; and weather
forecasts are communicated from the weather data interpreter to the weather forecast consumers. It
is the dual purpose of this technical report to present a domain description of the essence of generic
weather information systems, and to add to the “pile” [55, 35, 41, 39, 42, 48, 47, 51] of technical
reports that illustrate the use[fulness] of the principles, techniques and tools of [49].

B.1 On Weather Information Systems

B.1.1 On a Base Terminology

From Wikipedia:

499 Weather is the state of the atmosphere, to the degree that it is hot or cold, wet or dry, calm or stormy,

clear or cloudy, atmospheric (barometric) pressure: high or low.

500 So weather is characterized by temperature, humidity (incl. rain, wind (direction, velocity, center,

incl. its possible mobility), atmospheric pressure, etcetera.

501 By weather information we mean

• either weather data that characterizes the weather as defined above (Item 499),

• or weather forecast, i.e., a prediction of the state of the atmosphere for a given location and time or

time interval.

502 Weather data are collected by weather stations. We shall here not be concerned with technical means

of weather data collection.

503 Weather forecasts are used by forecast consumers, anyone: you and me.

504 Weather data interpretation (i.e., forecasting) is the science and technology of creating weather fore-

casts based on time- or time interval-stamped weather data and locations. Weather data inter-

pretation is amongst the charges of meteorological institutes.

505 Meteorology is the interdisciplinary scientific study of the atmosphere.

506 An atmosphere (from Greek ατµoζ (atmos), meaning “vapour”, and σφαιρα (sphaira), meaning

“sphere”) is a layer of gases surrounding a planet or other material body, that is held in place by the

gravity of that body.
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507 Meteorological institutes work together with the World Meteorological Organization (WMO). Besides

weather forecasting, meteorological institutes (and hence WMO) are concerned also with aviation,

agricultural, nuclear, maritime, military and environmental meteorology, hydrometeorology and re-

newable energy.

508 Agricultural meteorologists, soil scientists, agricultural hydrologists, and agronomists are persons con-

cerned with studying the effects of weather and climate on plant distribution, crop yield, water-use ef-

ficiency, phenology of plant and animal development, and the energy balance of managed and natural

ecosystems. Conversely, they are interested in the rôle of vegetation on climate and weather.

B.1.2 Some Illustrations

Weather Stations

Weather Forecasts

Forecast Consumers

B.2 Major Parts of a Weather Information System

We think of the following parts as being of concern in the kind of weather information systems that we

shall analyse and describe: Figure B.1 on the next page shows one weather (dashed rounded corner all

embracing rectangle), one central weather data interpreter (cummeteorological institute) sevenweather
stations (rounded corner squares), nineteen weather forecast consumers, and one global clock. All are

distributed, as hinted at, in some geographical space. Figure B.2 on Page 218 shows “an orderly diagram”
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Weather Station

Weather Data Interpreter,
i.e., Meteorological Institute

clock

Weather Forecast Consumer

Weather

Fig. B.1. A Weather Information System

of “the same” weather information system as Figure B.1. The lines between pairs of the various parts

shall indicate means communication between the pairs of (thus) connected parts. Dashed lines “crossing”

bundles of these communication lines are labeled ch xy. These labels, ch xy, designated CSP-like channels.

An input, by a weather station (wsi), of weather data from the weather (wi), is designated by the CSP

expression ch ws[wi,wsi] ?. An output, say from the weather data interpreter (wdi) to a weather forecast

consumer (fci), of a forecast f, is designated by ch ic[wdii,fci] ! f

B.3 Endurants

B.3.1 Parts and Materials

Sect. 1.3.1 Domain Description Prompt 1 on Page 15: observe part sorts

509 The WIS domain contains a number of sub-domains:

a the weather, W, which we consider a material,

b the weather stations sub-domain, WSS (a composite part),

c the weather data interpretation sub-domain, WDIS (an atomic part),

d the weather forecast consumers sub-domain, WFCS (a composite part), and

e the (“global”) clock (an atomic part).

type

509 WIS
509a W
509b WSS
509c WDIS
509d WFCS
509e CLK
value

509a obs material W: WIS → W
509b obs part WSS: WIS → WSS
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Weather Data Interpreter,

Weather Stations

Weather

Weather Forecast Consumers

ch_ws

i.e., Meteorological Institute

ch_si

ch_ic

ch_cp

Clock

Fig. B.2. A Weather Information System Diagram

509c obs part WDIS: WIS → WDIS
509d obs part WFCS: WIS → WFCS
509e obs part CLK: WIS → CLK

Sect. 1.3.1 Domain Description Prompt 2 on Page 16: observe concrete type

510 The weather station sub-domain, WSS, consists of a set, WSs,

511 of atomic weather stations, WS.

512 The weather forecast consumers sub-domain, WFCS, consists of a set, WFCs,

513 of atomic weather forecast consumers, WFC.

type

510 WSs = WS-set

511 WS
512 WFCs = WFC-set

513 WFC
value

510 obs part WSs: WSS → WSs
512 obs part WFCs: WFCS → WFCs

B.3.2 Unique Identifiers

We shall consider only atomic parts.

Sect. 1.3.2 Domain Description Prompt 3 on Page 19: observe unique identifier

514 Every single weather station has a unique identifier.

515 The weather data interpretation (i.e., the weather forecast “creator”) has a unique identifier.

516 Every single weather forecast consumer has a unique identifier.

517 The global clock has a unique identifier.
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type

514 WSI
515 WDII
516 WFCI
517 CLKI
value

514 uid WSI: WS → WSI
515 uid WDII: WDIS → WDII
516 uid WFCI: WFC → WFCI
516 uid CLKI: CLK → CLKI

B.3.3 Mereologies

We shall restrict ourselves to consider the mereologies only of the atomic parts.

Sect. 1.3.3 Domain Description Prompt 4 on Page 21: observe mereology

518 The mereology of weather stations is the pair of the unique clock identifier and the unique identifier of the weather

data interpreter.
519 The mereology of weather data interpreter is the triple of the unique clock identifier, set of unique identifiers of

all the weather stations and the set of unique identifiers of all the weather forecast consumers.
520 The mereology of weather forecast consumer is the the pair of the unique clock identifier and the unique identifier

of the weather data interpreter.
521 The mereology of the global clock is the triple of the set of all the unique identifiers of weather stations, the unique

identifier of the weather data interpreter, and the set of all the unique identifiers of weather forecast consumers.

type

518 WSM = CLKI × WDII
519 WDIM = CLKI × WSI-set × WFCI-set

520 WFCM = CLKI × WDII
521 CLKM = CLKI × WDGI-set × WDII × WFCI-set

value

518 mereo WSM: WS → WSM
519 mereo WDI: WDI → WDIM
520 mereo WFC: WFC → WFCM
521 mereo CLK: CLK → CLKM

B.3.4 Attributes

Sect. 1.3.4 Domain Description Prompt 5 on Page 24: observe attributes

Clock, Time and Time-intervals

522 The global clock has an autonomous time attribute.
523 Time values are further undefined, but times are considered absolute in the sense as representing some intervals

since “the birth of time”, an example, concrete time could be December 5, 2016: 07:21 am.
524 Time intervals are further undefined, but time intervals can be considered relative in the sense of representing a

quantity elapsed between two times, examples are: 1 day 2 hours and 3 minutes, etc. When a time interval, ti, is

specified it is always to be understood to designate the times from now, or from a specified time, t, until the time

t + ti.
525 We postulate ⊕, ⊖, and can postulate further “arithmetic” operators, and
526 we can postulate relational operators.

type

522 TIME
523 TI
value

522 attr TIME: CLK → TIME
525 ⊕: TIME×TI→TIME, TI×TI→TI
525 ⊖: TIME×TI→TIME, TIME×TIME→TI
526 =, 6=, <, ≤, ≥, >: TIME×TIME→Bool, TI×TI→Bool, ...
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We do not here define these operations and relations.

Locations

527 Locations are metric, topological spaces and can thus be considered dense spaces of three dimensional points.

528 We can speak of one location properly contained (⊂) within, or contained or equal (⊆), or equal (=), or not equal

( 6=) to another location.

type

527. LOC
value

528. ⊂, ⊆, =, 6=: LOC × LOC → Bool

Weather

529 The weather material is considered a dense, infinite set of weather point volumes WP. Some dense, infinite subsets

(still proper volumes) of such points may be liquid, i.e., rain, water in rivers, lakes and oceans. Other dense, infinite

subsets (still proper volumes) of such points may be gaseous, i.e., the air, or atmosphere. These two forms of proper

volumes “border” along infinite subsets (curved planes, surfaces) of weather points.

530 From the material weather one can observe its location.

type

529 W = WP-infset

529 WP
value

530 attr LOC: W → LOC

531 Some meteorological quantities are:

a Humidity,

b Temperature,

c Wind and

d Barometric pressure.

532 The weather has an indefinite number of attributes at any one time.

a Humidity distribution, at level (above sea) and by location,

b Temperature distribution, at level (above sea) and by location,

c Wind direction, velocity and mobility of wind center, and by location,

d Barometric pressure, and by location,

e etc., etc.

type

531a Hu
531b Te
531c Wi
531d Ba
532a HDL = LOC →m Hu
532b TDL = LOC →m Te
532c WDL = LOC →m Wi
532d BPL = LOC →m Ba
532e ...
value

532a attr HDL: W → HDL
532b attr TDL: W → TDL
532c attr WDL: W → WDL
532d attr APL: W → BPL
532e ...
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Weather Stations

533 Weather stations have static location attributes.

534 Weather stations sample the weather gathering humidity, temperature, wind, barometric pressure, and possibly

other data, into time and location stamped weather data.

value

533 attr LOC: WS → LOC
type

534 WD :: mkWD((TIME×LOC)×(TDL×HDL×WDL×BPL×...))

Weather Data Interpreter

535 There is a programmable attribute: weather data repository, wdr:WDR, of weather data, wd:WD, collected from

weather stations.

536 And there is programmable attribute: weather forecast repository, wfr:WFR, of forecasts, wf:WF, disseminate-

able to weather forecast consumers.

These repositories are updated when

537 received from the weather stations, respectively when

538 calculated by the weather data interpreter.

type

535 WDR
536 WFR
value

537 update wdr: TIME × WD → WDR → WDR
538 update wfr: TIME × WF → WFR → WFR

It is a standard exercise to define these two functions (say algebraically).

Weather Forecasts

539 Weather forecasts are weather forecast format-, time- and location-stamped quantities, the latter referred to as

wefo:WeFo.

540 There are a definite number (n≥1) of weather forecast formats.

541 We do not presently define these various weather forecast formats.

542 They are here thought of as being requested, mkWFReq, by weather forecast consumers.

type

539 WF = WFF × (TIME×TI) × LOC × WeFo
540 WFF = WFF1 | WFF2 | ... | WFFn
541 WFF1, WFF2, ..., WFFn
542 WFReq :: mkWFReq(s wff:WFF,s ti:(TIME×TI),s loc:LOC)

Weather Forecast Consumer

543 There is a programmable attribute, d:D, D for display (!).

544 Displays can be rendered (RND): visualized, tabularised, made audible, translated (between languages and lan-

guage dialects, ...), etc.

545 A rendered display can be “abstracted back” into its basic form.

546 Any abstracted rendered display is identical to its abstracted form.

type

543 D
544 RND
value

543 attr D: WFC → D

544 rndr D: RND × D → D
545 abs D: D → D
axiom

546 ∀ d:D, r:RND • abs D(rndr(r,d)) = d
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B.4 Perdurants

B.4.1 A WIS Context

547 We postulate a given system, wis:WIS.

That system is characterized by

548 a dynamic weather

549 and its unique identifier,

550 a set of weather stations

551 and their unique identifiers,

552 a single weather data interpreter

553 and its unique identifier,

554 a set of weather forecast consumers

555 and their unique identifiers, and

556 a single clock

557 and its unique identifier.

558 Given any specific wis:WIS there is [therefore] a full

set of part identifiers, is, of weather, clock, all weather

stations, the weather data interpreter and all weather

forecast consumers.

We list the above-mentioned values. They will be referenced by the channel declarations and the behaviour definitions

of this section.

value

547 wis:WIS
548 w:W = obs material W(wis)
549 wi:WI = uid WI(w)
550 wss:WSs = obs part WSs(obs part WSS(wis))
551 wsis:WDGI-set = {uid WSI(ws)|ws:WS•ws ∈ wss}
552 wdi:WDI = obs part WDIS(wis)
553 wdii:WDII = uid WDII(wdi)
554 wfcs:WFCs = obs part WFCs(obs part WFCS(wis))
555 wfcis:WFI-set = {uid WFCI(wfc)|wfc:WFC•wfc ∈ wfcs}
556 clk:CLK = obs part CLK(wis)
557 clki:CLKI = uid CLKI(clk)
558 is:(WI|WSI|WDII|WFCI)-set = {wi}∪wsis∪{wdii}∪wfcis

B.4.2 Channels

Sect. 1.4.5: Channels and Communications, Page 34

Sect. 1.4.5: Relations Between Attributes Sharing and Channels, Page 34

559 Weather stations share weather data, WD, with the weather data interpreter — so there is a set of channels, one

each, “connecting” weather stations to the weather data interpreter.

560 The weather data interpreter shares weather forecast requests, WFReq, and interpreted weather data (i.e., fore-

casts), WF, with each and every forecast consumer — so there is a set of channels, one each, “connecting” the

weather data interpreter to the interpreted weather data (i.e., forecast) consumers.

561 The clock offers its current time value to each and every part, except the weather, of the WIS system.

channel

559 { ch si[wsi,wdii ]:WD | wsi:WSI•wsi ∈ wsis }
560 { ch ic[wdii,fci ]:(WFReq|WF) | fci:FCI•fci ∈ fcis }
561 { ch cp[clki,i ]:TIME | i:(WI|CLKI|WSI|WDII|WFCI)•i ∈ is }

B.4.3 WIS Behaviours

Sect. 1.4.11: Process Schema I: Abstract is composite(p), Page 39

Sect. 1.4.11: Process Schema II: Concrete is concrete(p), Page 40

562 WIS behaviour, wis beh, is the

563 parallel composition of all the weather station behaviours, in parallel with the

564 weather data interpreter behaviour, in parallel with the

565 parallel composition of all the weather forecast consumer behaviours, in parallel with the
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566 clock behaviour.

value

562 wis beh: Unit → Unit

562 wis beh() ≡
563 ‖ { ws beh(uid WSI(ws),mereo WS(ws),...) | ws:WS•ws ∈ wss } ‖
564 ‖ wdi beh(uid WDI(wdi),mereo WDI(wdi),...)(wd rep,wf rep) ‖
565 ‖ { wfc beh(uid WFCI(wfc),mereo WDG(wfc),...) | wfc:WFC•wfc ∈ wfcs } ‖
566 clk beh(uid CLKI(clk),mereo CLK(clk),...)(”December 5, 2016: 07:21 am”)

B.4.4 Clock

Sect. 1.4.11: Process Schema III: is atomic(p), Page 40

567 The clock behaviour has a programmable attribute, t.
568 It repeatedly offers its current time to any part of the WIS system.

It nondeterministically internally “cycles” between

569 retaining its current time, or

570 increment that time with a “small” time interval, δ , or

571 offering the current time to a requesting part.

value

567. clk beh: clki:CLKI × clkm:CLKM → TIME →
568. out {ch cp[clki,i ]|i:(WSI|WDII|WFCI)•i ∈wsis∪{wdii}∪wfcis } Unit

567. clk beh(clki,is)(t) ≡
569. clk beh(clki,is)(t)
570. ⌈⌉ clk beh(clki,is)(t⊕δ )
571. ⌈⌉ ( ⌈⌉⌊⌋{ ch cp[clki,i ] ! t | i:(WSI|WDII|WFCI)•i ∈ is } ; clk beh(clki,is)(t) )

B.4.5 Weather Station

Sect. 1.4.11: Process Schema III: is atomic(p), Page 40

572 The weather station behaviour communicates with the global clock and the weather data interpreter.

573 The weather station behaviour simply “cycles” between sampling the weather, reporting its findings to the weather

data interpreter and resume being that overall behaviour.

574 The weather station time-stamp “sample’ the weather (i.e., meteorological information).

575 The meteorological information obtained is analysed with respect to temperature (distribution etc.),

576 humidity (distribution etc.),

577 wind (distribution etc.),

578 barometric pressure (distribution etc.), etcetera,

579 and this is time-stamp and location aggregated (mkWD) and “sent” to the (central ?) weather data interpreter,

580 whereupon the weather data generator behaviour resumes.

value

572 ws beh: wsi:WSI × (clki,wi,wdii):WDGM × (LOC × ...) →
572 in ch cp[clki,wsi ] out ch gi[wsi,wdii ] Unit

573 ws beh(wsi,(clki,wi,wdii),(loc,...)) ≡
575 let tdl = attr TDL(w),
576 hdl = attr HDL(w),
577 wdl = attr WDL(w),
578 bpl = attr BPL(w), ... in

579 ch gi[wsi,wdii ] ! mkWD((ch cp[clki,wsi ] ?,loc),(tdl,hdl,wdl,bpl,...)) end ;
580 wdg beh(wsi,(clki,wi,wdii),(loc,...))
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B.4.6 Weather Data Interpreter

Sect. 1.4.11: Process Schema III: is atomic(p), Page 40

581 The weather data interpreter behaviour communicates with the global clock, all the weather stations and all the

weather forecast consumers.

582 The weather data interpreter behaviour non-deterministically internally (⌈⌉) chooses to

583 either collect weather data,

584 or calculate some weather forecast,

585 or disseminate a weather forecast.

value

581 wdi beh: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
581 in ch cp[clki,wdii ], { ch si[wsi,wdii ] | wsi:WSI•wsi ∈ wsis },
581 out { ch ic[wdii,wfci ] | wfci:WFCI•wfci ∈ wfcis } Unit

581 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
583 collect wd(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)
582 ⌈⌉
584 calculate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)
582 ⌈⌉
585 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep)

collect wd

Sect. 1.4.11: Process Schema IV: Core Processes (I), Page 41

Sect. 1.4.11: Process Schema V: Core Processes (II), Page 41

586 The collect weather data behaviour communicates with the global clock and all the weather stations – but “passes-

on” the capability to communicate with all of the weather forecast consumers.

587 The collect weather data behaviour

588 non-deterministically externally offers to accept weather data from some weather station,

589 updates the weather data repository with a time-stamped version of that weather data,

590 and resumes being a weather data interpreter behaviour, now with an updated weather data repository.

value

586 collect wd: wdii:WDII×(clki,wsis,wfcis):WDIM×...
586 → (WD Rep×WF Rep) →
586 in ch cp[clki,wdii ], { ch si[wsi,wdii ] | wsi:WSI•wsi ∈ wsis },
586 out { ch ic[wdii,wfci ] | wfci:WFCI•wfci ∈ wfcis } Unit

587 collect wd(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
588 let ((ti,loc),(hdl,tdl,wdl,bpl,...)) = ⌈⌉⌊⌋{wsi[wsi,wdii ]?|wsi:WSI•wsi∈wsis} in

589 let wd rep′ = update wdr(ch cp[clki,wdii ]?,((ti,loc),(hdl,tdl,wdl,bpl,...)))(wd rep) in

590 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep′,wf rep) end end

calculate wf

Sect. 1.4.11: Process Schema IV: Core Processes (I), Page 41

Sect. 1.4.11: Process Schema V: Core Processes (II), Page 41

591 The calculate forecast behaviour communicates with the global clock – but “passes-on” the capability to commu-

nicate with all of weather stations and the weather forecast consumers.

592 The calculate forecast behaviour

593 non-deterministically internally chooses a forecast type from among a indefinite set of such,

594 and a current or “future” time-interval,

595 whereupon it calculates the weather forecast and updates the weather forecast repository,

596 and then resumes being a weather data interpreter behaviour now with the weather forecast repository updated

with the calculated forecast.
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value

591 calculate wf: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
591 in ch cp[clki,wdii ], { ch si[wsi,wdii ] | wsi:WSI•wsi ∈ wsis },
591 out { ch ic[wdii,wfci ] | wfci:WFCI•wfci ∈ wfcis } Unit

592 calculate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
593 let tf:WWF = ft1 ⌈⌉ ft2 ⌈⌉ ... ⌈⌉ ftn,
594 ti:(TIME×TIVAL) • toti≥ch cp[clki,wdii ] ? in

595 let wf rep′ = update wfr(calc wf(tf,ti)(wf rep)) in

596 wdi beh(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep′) end end

597 The calculate weather forecast function is, at present, further undefined.

value

597. calc wf: WFF × (TIME×TI) → WFRep → WF
597. calc wf(tf,ti)(wf rep) ≡ ,,,

disseminate wf

Sect. 1.4.11: Process Schema IV: Core Processes (I), Page 41

Sect. 1.4.11: Process Schema V: Core Processes (II), Page 41

598 The disseminate weather forecast behaviour communicates with the global clock and all the weather forecast

consumers – but “passes-on” the capability to communicate with all of weather stations.

599 The disseminate weather forecast behaviour non-deterministically externally offers to received a weather forecast

request from any of the weather forecast consumers, wfci, that request is for a specific format forecast, tf, and

either for a specific time or for a time-interval, toti, as well as for a specific location, loc.

600 The disseminate weather forecast behaviour retrieves an appropriate forecast and

601 sends it to the requesting consumer –

602 whereupon the disseminate weather forecast behaviour resumes being a weather data interpreter behaviour

value

598 disseminate wf: wdii:WDII×(clki,wsis,wfcis):WDIM×...→(WD Rep×WF Rep)→
598 in ch cp[clki,wdii ] in,out { ch ic[wdii,wfci ] | wfci:WFCI•wfci ∈ wfcis } Unit

598 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) ≡
599 let mkReqWF((tf,toti,loc),wfci) = ⌈⌉⌊⌋{ch ic[wdii,wfci ] ? | wfci:WFCI•wfci∈wfcis} in

600 let wf = retr WF((tf,toti,loc),wf rep) in

601 ch ic[wdii,wfci ] ! wf ;
602 disseminate wf(wdii,(clki,wsis,wfcis),...)(wd rep,wf rep) end end

603 The retr WF((tf,toti,loc),wf rep) function invocation retrieves the weather forecast from the weather forecast

repository most “closely” matching the format, tf, time, toti, and location of the request received from the weather

forecast consumer. We do not define this function.

603. retr WF: (WFF×(TIME×TI)×LOC) × WFRep → WF
603. retr WF((tf,toti,loc),wf rep) ≡ ...

We could have included, in our model, the time-stamping of receipt (formula Item 599) of requests, and the time-

stamping of delivery of requested forecast in which case we would insert ch cp[clki,wdii ]? at respective points in

formula Items 599 and 601.

B.4.7 Weather Forecast Consumer

Sect. 1.4.11: Process Schema IV: Core Processes (I), Page 41

Sect. 1.4.11: Process Schema V: Core Processes (II), Page 41

604 The weather forecast consumer communicates with the global clock and the weather data interpreter.

605 The weather forecast consumer behaviour
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606 nondeterministically internally either

607 selects a suitable weather cast format, tf,
608 selects a suitable location, loc′, and

609 selects, toti, a suitable time (past, present or future) or a time interval (that is supposed to start when forecast

request is received by the weather data interpreter.

610 With a suitable formatting of this triple, mkReqWF(tf,loc′,toti), the weather forecast consumer behaviour “out-

puts” a request for a forecast to the weather data interpreter (first “half” of formula Item 609) whereupon it awaits

(;) its response (last “half” of formula Item 609) which is a weather forecast, wf,
611 whereupon the weather forecast consumer behaviour resumes being that behaviour with it programmable attribute,

d, being replaced by the received forecast suitably annotated;

606 or the weather forecast consumer behaviour

612 edits a display

613 and resumes being a weather forecast consumer behaviour with the edited programmable attribute, d′.

value

604 wfc beh: wfci:WFCI × (clki,wdii):WFCM × (LOC × ...) → D →
604 in ch cp[clki,wfci ],
604 in,out { ch ic[wdii,wfci ] | wfci:WFCI•wfci ∈ wfcis } Unit

605 wfc beh(wfci,(clki,wdii),(loc,...))(d) ≡
607 let tf = tf1 ⌈⌉ tf2 ⌈⌉ ... ⌈⌉ tfn,
608 loc′:LOC • loc′=loc∨loc′ 6=loc,
609 (t,ti):(TIME×TI) • ti≥0 in

610 let wf = (ch ic[wdii,wfci ] ! mkReqWF(tf,loc′,(t,ti))) ; ch ic[wdii,wfci ] ? in

611 wfc beh(wfci,(clki,wdii),(loc,...))((tf,loc′,(t,ti)),wf) end end

606 ⌈⌉
612 let d′:D {\EQ} rndr\ D(d,{\DOTDOTDOT}) in

613 wfc beh(wfci,(clki,wdii),(loc,...))(d′) end

The choice of location may be that of the weather forecast consumer location, or it may be one different from that. The

choice of time and time-interval is likewise a non-deterministic internal choice.

B.5 Conclusion

B.5.1 Reference to Similar Work

As far as I know there are no published literature nor, to our knowledge, institutional or private works on the subject of

modelling weather data collection, interpretaion and weather forecast delivery systems.

B.5.2 What Have We Achieved ?

TO BE WRITTEN

B.5.3 What Needs to be Done Next ?

TO BE WRITTEN
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C

RSL: The RAISE Specification Language – A Primer

C.1 Type Expressions

Type expressions are expressions whose value are types, that is, possibly infinite sets of values (of “that” type).

C.1.1 Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent (sub-)values, i.e.,

cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers, reals, characters, and

texts.

type

[1 ] Bool true, false

[2 ] Int ... , −2, −2, 0, 1, 2, ...
[3 ] Nat 0, 1, 2, ...
[4 ] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5 ] Char ”a”, ”b”, ..., ”0”, ...
[6 ] Text ”abracadabra”

C.1.2 Composite Types

Composite types have composite values. That is, values which we consider to have proper constituent (sub-)values, i.e.,

can be meaningfully “taken apart”. There are two ways of expressing composite types: either explicitly, using concrete

type expressions, or implicitly, using sorts (i.e., abstract types) and observer functions.

Concrete Composite Types

From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then the following are type expressions:

[7 ] A-set

[8 ] A-infset

[9 ] A × B × ... × C
[10 ] A∗

[11 ] Aω

[12 ] A →m B

[13 ] A → B

[14 ] A
∼
→ B

[15 ] (A)
[16 ] A | B | ... | C
[17 ] mk id(sel a:A,...,sel b:B)
[18 ] sel a:A ... sel b:B

The following the meaning of the atomic and the composite type expressions:

1 The Boolean type of truth values false and true.

2 The integer type on integers ..., –2, –1, 0, 1, 2, ... .

3 The natural number type of positive integer values 0, 1, 2, ...
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4 The real number type of real values, i.e., values whose numerals can be written as an integer, followed by a period

(“.”), followed by a natural number (the fraction).

5 The character type of character values ′′a′′, ′′bb′′, ...
6 The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...
7 The set type of finite cardinality set values.

8 The set type of infinite and finite cardinality set values.

9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.

11 The list type of infinite and finite length list values.

12 The map type of finite definition set map values.

13 The function type of total function values.

14 The function type of partial function values.

15 In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the parentheses serve as simple

delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E→m F)), etc.

16 The postulated disjoint union of types A, B, . . . , and C.
17 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of respective types.

The distinct identifiers sel a, etc., designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective types. The

distinct identifiers sel a, etc., designate selector functions.

Sorts and Observer Functions

type

A, B, C, ..., D
value

obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three values — and these are of type B, C, . . . ,

and D. A concrete type definition corresponding to the above presupposing material of the next section

type

B, C, ..., D
A = B × C × ... × D

C.2 Type Definitions

C.2.1 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

type

A = Type expr

Some schematic type definitions are:

[19 ] Type name = Type expr /∗ without | s or subtypes ∗/
[20 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[21 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[22 ] Type name :: sel a:Type name a ... sel z:Type name z
[23 ] Type name = {| v:Type name′ • P(v) |}

where a form of [20]–[21] is provided by combining the types:
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Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the use of the disjoint

record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

C.2.2 Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The set of values b
which have type B and which satisfy the predicate P , constitute the subtype A:

type

A = {| b:B • P(b) |}

C.2.3 Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

type

A, B, ..., C

C.3 The RSL Predicate Calculus

C.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos]). Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e., operators).

They can be read as: not, and, or, if then (or implies), equal and not equal.

C.3.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or term expressions)

designate non-Boolean values and let i, j, . . ., k designate number values, then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.
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C.3.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate predicate expressions in

which x,y and z are free. Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least) one y (value in type

Y ) such that the predicate Q(y) holds; and there exists a unique z (value in type Z) such that the predicate R(z) holds.

C.4 Concrete RSL Types: Values and Operations

C.4.1 Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

C.4.2 Set Expressions

Set Enumerations

Let the below a’s denote values of type A, then the below designate simple set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehension. The expression “builds” the set of

values satisfying the given predicate. It is abstract in the sense that it does not do so by following a concrete algorithm.

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

C.4.3 Cartesian Expressions

Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions are simple Cartesian

enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

c© Dines Bjørner 2016 Fredsvej 11, DK–2840 Holte, Denmark DRAFT Domain Science & Engineering December 5, 2016, 07:21



C.4 Concrete RSL Types: Values and Operations 233

C.4.4 List Expressions

List Enumerations

Let a range over values of type A, then the below expressions are simple list enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the set of integers from the

value of ei to and including the value of e j. If the latter is smaller than the former, then the list is empty.

List Comprehension

The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡ 〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

C.4.5 Map Expressions

Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T 2, respectively, then the below expressions are simple

map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [u 7→v ], ..., [u17→v1,u27→v2,...,un 7→vn ] all ∈ M

Map Comprehension

The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡ [ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]
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C.4.6 Set Operations

Set Operator Signatures

value

19 ∈: A × A-infset → Bool

20 6∈: A × A-infset → Bool

21 ∪: A-infset × A-infset → A-infset

22 ∪: (A-infset)-infset → A-infset

23 ∩: A-infset × A-infset → A-infset

24 ∩: (A-infset)-infset → A-infset

25 \: A-infset × A-infset → A-infset

26 ⊂: A-infset × A-infset → Bool

27 ⊆: A-infset × A-infset → Bool

28 =: A-infset × A-infset → Bool

29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼
→ Nat

Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,bb},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,bb},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,bb}
{a,bb} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,bb}
card {} = 0, card {a,b,c} = 3

Informal Explication

19 ∈: The membership operator expresses that an element is a member of a set.

20 6∈: The nonmembership operator expresses that an element is not a member of a set.

21 ∪: The infix union operator. When applied to two sets, the operator gives the set whose members are in either or

both of the two operand sets.

22 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the set whose members

are in some of the operand sets.

23 ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose members are in both

of the two operand sets.

24 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives the set whose

members are in some of the operand sets.

25 \: The set complement (or set subtraction) operator. When applied to two sets, the operator gives the set whose

members are those of the left operand set which are not in the right operand set.

26 ⊆: The proper subset operator expresses that all members of the left operand set are also in the right operand set.

27 ⊂: The proper subset operator expresses that all members of the left operand set are also in the right operand set,

and that the two sets are not identical.

28 =: The equal operator expresses that the two operand sets are identical.

29 6=: The nonequal operator expresses that the two operand sets are not identical.

30 card: The cardinality operator gives the number of elements in a finite set.
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Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

C.4.7 Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

C.4.8 List Operations

List Operator Signatures

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω=: Aω × Aω → Bool6=: Aω × Aω → Bool

List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉
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Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this set is the empty

set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements larger than or equal

to i, gives the i th element of the list.

• :̂ Concatenates two operand lists into one. The elements of the left operand list are followed by the elements of

the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then

if q 6=〈〉
then let a:A,q′:Q • q=〈a〉̂q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

C.4.9 Map Operations

Map Operator Signatures and Map Operation Examples

value
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m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map ]
dom [a17→b1,a27→b2,...,an 7→bn ] = {a1,a2,...,an}

rng: M → B-infset [ range of map ]
rng [a17→b1,a27→b2,...,an 7→bn ] = {b1,b2,...,bn}

†: M × M → M [override extension ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ] † [a′ 7→bb′′,a′′ 7→bb′ ] = [a 7→b,a′7→bb′′,a′′ 7→bb′ ]

∪: M × M → M [merge ∪ ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ] ∪ [a′′′ 7→bb′′′ ] = [a 7→b,a′7→bb′,a′′ 7→bb′′,a′′′ 7→bb′′′ ]

\: M × A-infset → M [ restriction by ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ]\{a} = [a′ 7→bb′,a′′ 7→bb′′ ]

/: M × A-infset → M [ restriction to ]
[a 7→b,a′ 7→bb′,a′′ 7→bb′′ ]/{a′,a′′} = [a′ 7→bb′,a′′ 7→bb′′ ]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition ]
[a 7→b,a′ 7→bb′ ] ◦ [bb 7→c,bb′7→c′,bb′′ 7→c′′ ] = [a 7→c,a′ 7→c′ ]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an override of the left

operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left operand map

to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left operand map

to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition set elements of the left

operand map, m1, to the range elements of the right operand map, m2, such that if a is in the definition set of m1

and maps into b, and if b is in the definition set of m2 and maps into c, then a, in the composition, maps into c.

Map Operation Redefinitions

The map operations can also be defined as follows:

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a) ]

m1 ∪ m2 ≡ [ a 7→b | a:A,b:B •

a ∈ dom m1 ∧ bb=m1(a) ∨ a ∈ dom m2 ∧ bb=m2(a) ]
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m \ s ≡ [ a 7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a 7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

C.5 λ -Calculus + Functions

C.5.1 The λ -Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ 〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

C.5.2 Free and Bound Variables

Let x,y be variable names and e, f be λ -expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

C.5.3 Substitution

In RSL, the following rules for substitution apply:

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a 6= x;
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P)) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;
• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).

C.5.4 α-Renaming and β -Reduction

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can rename the formal

parameter of a λ -function expression provided that no free variables of its body M thereby become bound.
• β -reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free variables of N thereby become

bound in the result. (λx•M)(N) ≡ subst([N/x]M)
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C.5.5 Function Signatures

For sorts we may want to postulate some functions:

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: BB×C → A

C.5.6 Function Definitions

Functions can be defined explicitly:

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments. Partial functions should be

assisted by preconditions stating the criteria for arguments to be meaningful to the function.

C.6 Other Applicative Expressions

C.6.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)
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C.6.2 Recursive let Expressions

Recursive let expressions are written as:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

C.6.3 Predicative let Expressions

Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body B(a).

C.6.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,bb〉̂ℓ = list in ... end

let [a 7→bb ] ∪ m = map in ... end

let [a 7→b, ] ∪ m = map in ... end

C.6.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
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choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

C.6.6 Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

C.7 Imperative Constructs

C.7.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative constructs which,

through stages of refinements, are turned into concrete and imperative constructs. Imperative constructs are thus in-

evitable in RSL.

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

C.7.2 Variables and Assignment

0. variable v:Type := expression
1. v := expr

C.7.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or side-effect.

2. skip

3. stm 1;stm 2;...;stm n
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C.7.4 Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

C.7.5 Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

C.7.6 Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

C.8 Process Constructs

C.8.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

channel c:A
channel { k[ i ]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the designated types (A
and B).

C.8.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage in input and/or

output events, thereby communicating over declared channels. Let P() and Q stand for process expressions, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes: either external (⌈⌉⌊⌋) or

internal (⌈⌉). The interlock (–‖) composition expresses that the two processes are forced to communicate only with one

another, until one of them terminates.

C.8.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively “writes” an output.
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C.8.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express, in their signa-

ture, via which channels they wish to engage in input and output events.

value

P: Unit → in c out k[ i ]
Unit

Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

C.9 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is often done in RSL.

An RSL specification is simply a sequence of one or more types, values (including functions), variables, channels and

axioms:

type

...
variable

...
channel

...
value

...
axiom

...

In practice a full specification repeats the above listings many times, once for each “module” (i.e., aspect, facet, view)

of specification. Each of these modules may be “wrapped” into scheme, class or object definitions.1

1 For schemes, classes and objects we refer to [25, Chap. 10]
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abstract

type, 14

action

derived, 171

discrete, 33

active

attribute, 25, 123

Actor, 33

actor, 33

analysis

domain

prompt, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

prompt

domain, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

assumptions

design, 147

Atomic

part, 13, 86

Atomic Part, 13, 86

attribute

active, 25, 123

biddable, 25, 124

controllable, 25

value expression, 39

dynamic, 25, 123

embedded

sharing, 35

event, 26

external, 25, 36

inert, 25, 123

programmable, 25, 124

reactive, 25, 123

shared, 26

sharing

embedded, 35

static, 25, 123

value expression

controllable, 39

autonomous

attribute, 25, 123

behaviour

continuous, 35

discrete, 34

biddable

attribute, 25, 124

Component, 12, 85

component, 12, 85

Composite

part, 13, 86

Composite Part, 13, 86

computer

science, 5

computing

science, 5

concept

formal, 9

concrete

type, 14

confusion, 31
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context

formal, 8

continuous

behaviour, 35

endurant, 11, 85

Continuous Endurant, 11, 85

controllable

attribute, 25

value expression, 39

value expression

attribute, 39

derived, 17

action, 171

event, 172

perdurant, 170

requirements, 166, 170

Derived Action, 171

Derived Event, 172

Derived Perdurant, 170

description

domain, 6

prompt, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

tree, 97

prompt

domain, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

text, 6

tree

domain, 97

design

assumptions, 147

requirements, 147

Determination, 156

determination

domain, 156

development

software

triptych, 82

triptych

software, 82

discrete

action, 33

behaviour, 34

endurant, 11, 85

Discrete Action, 33

Discrete Behaviour, 34

Discrete Endurant, 11, 85

Domain

Engineering, 114

Science, 114

domain, 5, 53

analysis

prompt, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description, 6

prompt, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

tree, 97

determination, 156

extension, 157

facet, 53

human behaviour, 76

instantiation, 152

management, 72

manifest, 5

organisation, 72

partial

requirement, 165

prescription

requirements, 148

projection, 148

prompt

analysis, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–

91

regulation, 61

requirement

partial, 165

shared, 165

requirements, 135, 146

prescription, 148

rule, 61

script, 63

shared

requirement, 165

tree

description, 97

Domain Instantiation, 152

Domain Projection, 148

Domain Requirements Prescription, 148

dynamic

attribute, 25, 123

embedded

attribute

sharing, 35

sharing

attribute, 35

Endurant, 10, 84

endurant, 10, 84

continuous, 11, 85

discrete, 11, 85

extension, 158

Endurant Extension, 158

Engineering

Domain, 114

engineering

systems, 4

Entity, 10, 83

entity, 10, 83, 84

Epistemology, 32

Event, 34

event, 34

attribute, 26

derived, 172

expression

function

type, 36
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type

function, 36

Extension, 157

extension

domain, 157

endurant, 158

extent, 9

external

attribute, 25, 36

part

quality, 19, 87

quality

part, 19, 87

facet

domain, 53

fitting

requirements, 165

formal

concept, 9

context, 8

method, 82

software development, 82

software development

method, 82

Formal Method, 82

Formal Software Development, 82

function

expression

type, 36

signature, 36

type

expression, 36

Function Signature, 36

Function Type Expression, 36

goal, 175

harmonisation

requirements, 165

has concrete type

prerequisite

prompt, 16

prompt

prerequisite, 16

has mereology

prerequisite

prompt, 21

prompt

prerequisite, 21

human behaviour

domain, 76

inert

attribute, 25, 123

instantiation

domain, 152

intent, 9

interface

requirements, 135, 146, 165

internal

part

quality, 19, 87

quality

part, 19, 87

intrinsics, 54

is composite

prerequisite

prompt, 15, 86

prompt

prerequisite, 15, 86

is discrete

prerequisite

prompt, 14

prompt

prerequisite, 14

is entity

prerequisite

prompt, 84

prompt

prerequisite, 84

junk, 31

knowledge, 46

machine

requirements, 135, 146

management

domain, 72

manifest

domain, 5

Material, 12, 85

material, 12, 28, 85

mereology, 20

type, 20

Method, 82

method, 4, 53, 82, 136

formal, 82

software development, 82

software development

formal, 82

Methodology, 82

methodology, 5, 82, 136

observe concrete type

prerequisite

prompt, 16

prompt

prerequisite, 16

observe part type

prerequisite

prompt, 87

prompt

prerequisite, 87

Ontology, 32

organisation

domain, 72
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Part, 12, 85

part, 12, 85

Atomic, 13, 86

Composite, 13, 86

external

quality, 19, 87

internal

quality, 19, 87

qualities, 19, 87

quality

external, 19, 87

internal, 19, 87

partial

domain

requirement, 165

requirement

domain, 165

Perdurant, 10, 84

perdurant, 10, 84

derived, 170

phenomenon, 10, 83

prerequisite

has concrete type

prompt, 16

has mereology

prompt, 21

is composite

prompt, 15, 86

is discrete

prompt, 14

is entity

prompt, 84

observe concrete type

prompt, 16

observe part type

prompt, 87

prompt, 87

has concrete type, 16

has mereology, 21

is composite, 15, 86

is discrete, 14

is entity, 10, 11, 84

observe concrete type, 16

observe part type, 87

prescription

domain

requirements, 148

requirements

domain, 148

programmable

attribute, 25, 124

projection

domain, 148

prompt

analysis

domain, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description

domain, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

domain

analysis, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–

91

has concrete type

prerequisite, 16

has mereology

prerequisite, 21

is composite

prerequisite, 15, 86

is discrete

prerequisite, 14

is entity

prerequisite, 84

observe concrete type

prerequisite, 16

observe part type

prerequisite, 87

prerequisite, 87

has concrete type, 16

has mereology, 21

is composite, 15, 86

is discrete, 14

is entity, 84

observe concrete type, 16

observe part type, 87

qualities

part, 19, 87

quality

external

part, 19, 87

internal

part, 19, 87

part

external, 19, 87

internal, 19, 87

reactive

attribute, 25, 123

regulation

domain, 61

requirement

domain

partial, 165

shared, 165

partial

domain, 165

shared

domain, 165

requirements

derived, 166, 170

design, 147

domain, 135, 146

prescription, 148

fitting, 165

harmonisation, 165
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interface, 135, 146, 165

machine, 135, 146

prescription

domain, 148

Requirements Fitting, 165

Requirements Harmonisation, 165

rule

domain, 61

Science

Domain, 114

science

computer, 5

computing, 5

script

domain, 63

share, 26

shared

attribute, 26

domain

requirement, 165

requirement

domain, 165

sharing, 166

attribute

embedded, 35

embedded

attribute, 35

signature

function, 36

software

development

triptych, 82

triptych

development, 82

software development

formal

method, 82

method

formal, 82

sort, 14

State, 32

state, 32

static

attribute, 25, 123

sub-part, 13, 86

support

technology, 57

systems

engineering, 4

technology

support, 57

text

description, 6

The Triptych Approach to Software Development, 82

tree

description

domain, 97

domain

description, 97

triptych

development

software, 82

software

development, 82

type, 14

abstract, 14

concrete, 14

expression

function, 36

function

expression, 36

mereology, 20

value expression

attribute

controllable, 39

controllable

attribute, 39

Verification Paradigm, 146

D.2 Concepts

[endurant]

analysis prompts

domain, 92

description prompts

domain, 92

domain

analysis prompts, 92

description prompts, 92

abstract

value, 19

abstraction, 10, 57, 83

access

attribute

value, 26

value

attribute, 26

accessibility, 173

action, 6, 32, 53, 69

shared, 137, 146

actor, 66

attributes, 68

adaptive, 173

algorithmic
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engineering, 47

analyser

domain, 4, 6

analysis

domain, 4, 6, 9, 47–50

prompt, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

problem

world, 48

product line, 47

prompt

domain, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

world

problem, 48

analysis prompts

[endurant]

domain, 92

domain

[endurant], 92

architecture

software, 49

assumptions

design, 147

atomic, 6

attribute, 46

access

value, 26

biddable, 35

controllable, 35, 36

value expression, 39

dynamic, 35

embedded

sharing, 35, 163, 164, 170

event, 26, 35

external, 36, 158, 160, 164

value, 26, 36

programmable, 35

shared, 83

sharing

embedded, 35, 163, 164, 170

static, 35, 36

update, 83

value

access, 26

external, 26, 36

value expression

controllable, 39

autonomous, 36

availability, 173

axiom

sort

well-formedness, 31

well-formedness

sort, 31

bases

knowledge, 47

behaviour, 6, 32, 53

shared, 137, 146

biddable

attribute, 35

change

state, 35

class

diagram, 49

common

projection, 165

communication, 43

component, 83

reusable

software, 48

software, 49

reusable, 48

composite, 6

composite, 137

computer

program, 136

science, 5, 45, 46

computing

science, 5, 46

conceive, 10, 83

concept

formal, 9

concurrency, 43

confusion, 32

conservative

extension, 158

proof theoretic, 57

proof theoretic

extension, 57

Constraint, 175

constructor

function

type, 36

type

function, 36

context, 9

continuant, 10

continuous, 6

time, 35

control, 62

controllable

attribute, 35, 36

value expression, 39

value expression

attribute, 39

corrective, 173

demo

domain, 4

demonstration, 173

dependability, 173

requirements, 173

derivation

part, 121

derived
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requirements, 135, 137, 146

describer, 4

domain, 4, 6

description

development

domain, 48

domain, 4, 6, 47–50, 136

development, 48

facet, 174

projected, 44

prompt, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

tree, 97

facet

domain, 174

projected

domain, 44

prompt

domain, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

tree

domain, 97

description prompts

[endurant]

domain, 92

domain

[endurant], 92

descriptions

domain, 49

design

assumptions, 147

requirements, 147

software, 4, 48, 49

specification, 136

specification

software, 136

determination, 135, 146, 148

development, 173

description

domain, 48

domain

description, 48

requirements, 146

interface

requirements, 146

model-oriented

software, 48

requirements, 49, 50, 173

domain, 146

interface, 146

software

model-oriented, 48

triptych, 82

triptych

software, 82

diagram

class, 49

discrete, 6

documentation, 173

domain, 49, 50, 53

[endurant]

analysis prompts, 92

description prompts, 92

analyser, 4, 6

analysis, 4, 6, 9, 47–50

prompt, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

analysis prompts

[endurant], 92

demo, 4

describer, 4, 6

description, 4, 6, 47–50, 136

development, 48

facet, 174

projected, 44

prompt, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

tree, 97

description prompts

[endurant], 92

descriptions, 49

development

description, 48

requirements, 146

engineer, 4, 6, 48

engineering, 4, 6, 46, 48, 49, 137, 174

extension

requirements, 166

facet, 53, 54, 146

description, 174

intrinsics, 54

support technology, 57

instrinsics, 146

intrinsics, 54

facet, 54

language

specific, 47, 48

manifest, 53

modeling, 30, 47, 49

partial

requirement, 165

prescription

requirements, 148

problem, 5

projected

description, 44

prompt

analysis, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–

91

requirement

partial, 165

shared, 165

requirements, 135, 146

development, 146

extension, 166

prescription, 148

science, 6, 46
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scientist, 6

semantic, 102

shared

requirement, 165

simulator, 4

software

specific, 4, 49

specific

language, 47, 48

software, 4, 49

support technology

facet, 57

syntactic, 102

tree

description, 97

domain requirements

partial

prescription, 148

prescription

partial, 148

dynamic

attribute, 35

external

value, 26

value

external, 26

embedded

attribute

sharing, 35, 163, 164, 170

sharing, 35

attribute, 35, 163, 164, 170

endurant, 5, 6, 53, 83

shared, 137, 146

engineer

domain, 4, 6, 48

requirements, 48

software, 6, 48

engineering

algorithmic, 47

domain, 4, 6, 46, 48, 49, 137, 174

knowledge, 46, 47

ontological, 46

ontology, 45

product line

software, 48

requirements, 4, 48, 50, 137, 174

software, 136

product line, 48

entities, 6

entry, 161

entry,, 160

error, 173

event, 6, 32, 53

attribute, 26, 35

shared, 137, 146

execution, 173

exit, 161

exit,, 160

expression

function

type, 36

type, 36

function, 36

extension, 57, 135, 146, 148

conservative, 158

proof theoretic, 57

domain

requirements, 166

proof theoretic

conservative, 57

requirements

domain, 166

extensional, 173

external

attribute, 36, 158, 160, 164

value, 26, 36

dynamic

value, 26

part

quality, 19, 87

processes, 35

quality

part, 19, 87

value

attribute, 26, 36

dynamic, 26

facet, 53

description

domain, 174

domain, 53, 54, 146

description, 174

intrinsics, 54

support technology, 57

intrinsics

domain, 54

machine

requirement, 173

requirement

machine, 173

specific, 54

support technology

domain, 57

failure, 173

fault, 173

fitting, 135, 146, 148

formal

concept, 9

method

software development, 82

software development

method, 82

specification, 136

formal concept analysis, 9

frame

problem, 48

frames
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problem, 48

function

constructor

type, 36

expression

type, 36

name, 36

type

constructor, 36

expression, 36

goal, 50, 175

guarantee, 174

rely, 174

hardware, 48

has concrete type

prerequisite

prompt, 16

prompt

prerequisite, 16

has mereology

prerequisite

prompt, 21

prompt

prerequisite, 21

head, 35

pump, 35

human behaviour, 54

identifier

unique, 19, 46

imperative

language

programming, 47

programming

language, 47

implementation

partial, 62

inert, 36

information

science, 45, 46

initial, 135

instantiation, 135, 146, 148

instrinsics, 146

domain, 146

integrity, 173

intensive, 54

interface

development

requirements, 146

requirements, 135, 146, 158, 164, 166

development, 146

interface

requirements, 137

internal

part

quality, 19, 87

qualities, 12, 19, 22, 27, 85

quality

part, 19, 87

interval

time, 34

intrinsics, 54

domain, 54

facet, 54

facet

domain, 54

is composite

prerequisite

prompt, 15, 86

prompt

prerequisite, 15, 86

is discrete

prerequisite

prompt, 14

prompt

prerequisite, 14

is entity

prerequisite

prompt, 84

prompt

prerequisite, 84

junk, 31

knowledge, 46

bases, 47

engineering, 46, 47

representation, 47

language

domain

specific, 47, 48

imperative

programming, 47

programming

imperative, 47

specific

domain, 47, 48

license, 65, 66, 69

license languages, 54

licensee, 65, 66, 69

licensing, 66, 69

licensor, 65, 66, 69

machine, 48, 135

facet

requirement, 173

requirement, 173

facet, 173

requirements, 135, 146, 173

maintenance, 173

requirements, 173

management, 173

management & organisation, 54

manifest

domain, 53
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phenomena, 5

mathematical

object, 136

mereology, 46

observer, 20

type, 20

update, 83

method, 53

formal

software development, 82

software development

formal, 82

methodology, 4

model-oriented

development

software, 48

software

development, 48

modeling

domain, 30, 47, 49

requirements, 30

monitor, 62

name

function, 36

non-manifest

qualities, 5

object

mathematical, 136

objective

operational, 175

obligation, 69

proof, 32

observe, 10, 83

observe concrete type

prerequisite

prompt, 16

prompt

prerequisite, 16

observe part type

prerequisite

prompt, 87

prompt

prerequisite, 87

observer

mereology, 20

occurrent, 10

ontological

engineering, 46

ontology

engineering, 45

science, 45

upper, 45, 46

operational

objective, 175

operations research, 79

parallelism, 43

part, 13, 86

derivation, 121

external

quality, 19, 87

internal

quality, 19, 87

quality

external, 19, 87

internal, 19, 87

sort, 14

partial

domain

requirement, 165

domain requirements

prescription, 148

implementation, 62

prescription

domain requirements, 148

requirement

domain, 165

perdurant, 5, 6, 53, 83

perfective, 173

performance, 173

permission, 69

permit, 65

phenomena

manifest, 5

shared, 137

philosophy, 45

platform, 173

requirements, 173

prerequisite

has concrete type

prompt, 16

has mereology

prompt, 21

is composite

prompt, 15, 86

is discrete

prompt, 14

is entity

prompt, 84

observe concrete type

prompt, 16

observe part type

prompt, 87

prompt

has concrete type, 16

has mereology, 21

is composite, 15, 86

is discrete, 14

is entity, 84

observe concrete type, 16

observe part type, 87

prescription

domain

requirements, 148

domain requirements
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partial, 148

partial

domain requirements, 148

requirements, 4, 48–50, 136, 174

domain, 148

preventive, 173

principles, 53

problem

analysis

world, 48

domain, 5

frame, 48

frames, 48

world, 48

analysis, 48

process, 173

schema, 50

processes

external, 35

product line

analysis, 47

engineering

software, 48

software, 48

engineering, 48

program

computer, 136

programmable

attribute, 35

programming

imperative

language, 47

language

imperative, 47

projected

description

domain, 44

domain

description, 44

projection, 135, 146, 148

common, 165

specific, 165

prompt, 7

analysis

domain, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description

domain, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–91

domain

analysis, 7, 10, 11, 13, 14, 16, 20, 23, 27, 28, 32,

83–85, 87–91

description, 7, 15, 16, 19, 21, 24, 27, 29, 32, 87–

91

has concrete type

prerequisite, 16

has mereology

prerequisite, 21

is composite

prerequisite, 15, 86

is discrete

prerequisite, 14

is entity

prerequisite, 84

observe concrete type

prerequisite, 16

observe part type

prerequisite, 87

prerequisite

has concrete type, 16

has mereology, 21

is composite, 15, 86

is discrete, 14

is entity, 84

observe concrete type, 16

observe part type, 87

prompts, 4

proof

obligation, 32

proof theoretic

conservative

extension, 57

extension

conservative, 57

pump

head, 35

qualities, 6

internal, 12, 19, 22, 27, 85

non-manifest, 5

quality, 46

external

part, 19, 87

internal

part, 19, 87

part

external, 19, 87

internal, 19, 87

reactive, 36

reliability, 173

rely

guarantee, 174

representation

knowledge, 47

requirement

domain

partial, 165

shared, 165

facet

machine, 173

machine, 173

facet, 173

partial

domain, 165

shared

domain, 165

requirements, 48–50
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dependability, 173

derived, 135, 137, 146

design, 147

development, 49, 50, 173

domain, 146

interface, 146

domain, 135, 146

development, 146

extension, 166

prescription, 148

engineer, 48

engineering, 4, 48, 50, 137, 174

extension

domain, 166

interface, 135, 146, 158, 164, 166

development, 146

interface , 137

machine, 135, 146, 173

maintenance, 173

modeling, 30

platform, 173

prescription, 4, 48–50, 136, 174

domain, 148

technology, 173

reusable

component

software, 48

software

component, 48

reuse, 48

robustness, 173

rules & regulations, 54

safety, 173

schema

process, 50

science

computer, 5, 45, 46

computing, 5, 46

domain, 6, 46

information, 45, 46

ontology, 45

scientist

domain, 6

scripts, 54

security, 173

semantic

domain, 102

shared

action, 137, 146

attribute, 83

behaviour, 137, 146

domain

requirement, 165

endurant, 137, 146

event, 137, 146

phenomena, 137

requirement

domain, 165

sharing, 19

attribute

embedded, 35, 163, 164, 170

embedded, 35

attribute, 35, 163, 164, 170

signature, 32, 46

simplification, 136, 148

simplify, 150

simulator

domain, 4

software, 48

architecture, 49

component, 49

reusable, 48

design, 4, 48, 49

specification, 136

development

model-oriented, 48

triptych, 82

domain

specific, 4, 49

engineer, 6, 48

engineering, 136

product line, 48

model-oriented

development, 48

product line, 48

engineering, 48

reusable

component, 48

specific

domain, 4, 49

specification

design, 136

triptych

development, 82

software development

formal

method, 82

method

formal, 82

sort, 9

axiom

well-formedness, 31

part, 14

well-formedness

axiom, 31

specific

domain

language, 47, 48

software, 4, 49

facet, 54

language

domain, 47, 48

projection, 165

software

domain, 4, 49

specification
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design

software, 136

formal, 136

software

design, 136

state, 32

change, 35

static

attribute, 35, 36

value, 26

sub-part, 13, 86

support

technology, 164

support technology, 54

domain

facet, 57

facet

domain, 57

synchronisation, 43

syntactic

domain, 102

techniques, 53

technology

requirements, 173

support, 164

time, 32, 34

continuous, 35

interval, 34

tools, 53

tree

description

domain, 97

domain

description, 97

triptych

development

software, 82

software

development, 82

type, 9

constructor

function, 36

expression, 36

function, 36

function

constructor, 36

expression, 36

mereology, 20

Unified Modeling Language

UML, 49

old.UML, 49

unique

identifier, 19, 46

update

attribute, 83

mereology, 83

upper

ontology, 45, 46

value

abstract, 19

access

attribute, 26

attribute

access, 26

external, 26, 36

dynamic

external, 26

external

attribute, 26, 36

dynamic, 26

static, 26

value expression

attribute

controllable, 39

controllable

attribute, 39

well-formedness

axiom

sort, 31

sort

axiom, 31

world

analysis

problem, 48

problem, 48

analysis, 48

D.3 Examples

41 Actors, 33

27 Atomic Part Attributes, 23

15 Atomic Parts, 13

26 Attribute Propositions and Other Values, 23

45 Behaviours, 34

46 Bus System Channels, 35

51 Bus Timetable Coordination, 40

12 Components, 12

28 Composite Part Attributes, 23

16 Composite Parts, 14

17 Composite and Atomic Part Sorts of Transportation, 15

18 Concrete Part Types of Transportation, 16

34 Container Components, 28

19 Container Line Sorts, 17

10 Continuous Endurants, 11

9 Discrete Endurants, 11
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4 Endurant Entity Qualities, 5

31 Event Attributes, 26

47 Flow in Pipelines, 35

48 Insert Hub Action Formalisation, 37

50 Link Disappearence Formalisation, 38

2 Manifest Domain Endurants, 5

3 Manifest Domain Perdurants, 5

13 Materials, 13

1 Names of Manifest Domains, 5

6 One Domain – Three Models, 8

14 Parts Containing Materials, 13

33 Parts and Components, 27

35 Parts and Materials, 28

42 Parts, Attributes and Behaviours, 33

11 Parts, 12

5 Perdurant Entity Qualities, 5

37 Pipeline Material Flow, 29

36 Pipeline Material, 29

25 Pipeline Parts Mereology, 21

20 Pipeline Parts, 18

39 Pipelines: Inter Unit Flow and Leak Law, 31

38 Pipelines: Intra Unit Flow and Leak Law, 30

29 Road Hub Attributes, 24

43 Road Net Actions, 33

24 Road Net Part Mereologies, 21

44 Road Net and Road Traffic Events, 34

1.10 Shared Attributes, 26

22 Shared Timetable Mereology (I), 20

32 Shared Timetables, 27

49 Some Function Signatures, 37

40 States, 32

30 Static and Dynamic Attributes, 25

52 Tollgates: Part and Behaviour, 42

23 Topological Connectedness Mereology, 20

7 Traffic System Endurants, 10

8 Traffic System Perdurants, 10

21 Unique Transportation Net Part Identifiers, 19

Actors (# 41), 33

Atomic Part Attributes (# 27), 23

Atomic Parts (# 15), 13

Attribute Propositions and Other Values (# 26), 23

Behaviours (# 45), 34

Bus System Channels (# 46), 35

Bus Timetable Coordination (# 51), 40–41

Components (# 12), 12

Composite and Atomic Part Sorts of Transportation (# 17),

15–16

Composite Part Attributes (# 28), 23

Composite Parts (# 16), 14

Concrete Part Types of Transportation (# 18), 16–17

Container Components (# 34), 28

Container Line Sorts (# 19), 17–18

Continuous Endurants (# 10), 11

Discrete Endurants (# 9), 11

Domain Requirements

Derived Action:

Tracing Vehicles (# 5.16), 171–172

Derived Event:

Current Maximum Flow (# 5.17), 172

Determination

Toll-roads (# 5.9), 156–157

Endurant Extension (# 5.10), 158–164

Fitting (# 5.11), 165

Instantiation

Road Net (# 5.7), 152–155

Road Net, Abstraction (# 5.8), 155

Projection (# 5.6), 148–151

Projection:

A Narrative Sketch (# 5.5), 148

Endurant Entity Qualities (# 4), 5

Event Attributes (# 31), 26

Flow in Pipelines (# 47), 35

Insert Hub Action Formalisation (# 48), 37

Interface Requirements

Projected Extensions (# 5.12), 166

Shared

Endurant Initialisation (# 5.14), 167–169

Endurants (# 5.13), 167

Shared Behaviours (# 5.15), 169–170

Link Disappearence Formalisation (# 50), 38

Manifest Domain Endurants (# 2), 5

Manifest Domain Perdurants (# 3), 5

Materials (# 13), 13

Names of Manifest Domains (# 1), 5

One Domain – Three Models (# 6), 8

Parts (# 11), 12

Parts and Components (# 33), 27

Parts and Materials (# 35), 28

Parts Containing Materials (# 14), 13

Parts, Attributes and Behaviours (# 42), 33

Perdurant Entity Qualities (# 5), 5

Pipeline Material (# 36), 29

Pipeline Material Flow (# 37), 29–30

Pipeline Parts (# 20), 18

Pipeline Parts Mereology (# 25), 21–22

Pipelines: Inter Unit Flow and Leak Law (# 39), 31

Pipelines: Intra Unit Flow and Leak Law (# 38), 30–31

Road Hub Attributes (# 29), 24–25

Road Net Actions (# 43), 33

Road Net and Road Traffic Events (# 44), 34

Road Net Part Mereologies (# 24), 21

Road Pricing System

Design Assumptions (# 5.2), 147

Design Requirements (# 5.1), 147

Shared Attributes (# 1.10), 26

Shared Timetable Mereology (I) (# 22), 20

Shared Timetables (# 32), 27
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Some Function Signatures (# 49), 37

States (# 40), 32

Static and Dynamic Attributes (# 30), 25

Toll-Gate System

Design Assumptions (# 5.4), 147

Design Requirements (# 5.3), 147

Tollgates: Part and Behaviour (# 52), 42–43

Topological Connectedness Mereology (# 23), 20

Traffic System Endurants (# 7), 10

Traffic System Perdurants (# 8), 10

Unique Transportation Net Part Identifiers (# 21), 19–20

D.4 Analysis Prompts

is atomic, 14, 86

is component, 13, 85

is composite, 14, 86

is continuous, 11, 85

is discrete, 11, 85

is endurant, 10, 84

is entity, 10, 83

is material, 13, 85

is part, 13, 85

is perdurant, 11, 84

D.5 Description Prompts

observe attributes, 24, 89

observe component sorts, 27, 89

observe concrete type, 16, 87

observe material sorts, 29, 90, 91

observe mereology, 21, 88

observe part sorts, 15, 86

observe unique identifier, 19, 87

D.6 RSL Symbolds

Arithmetics

...,-2,-1,0,1,2,..., 229

ai*a j , 232

ai+a j , 232

ai/a j , 232

ai=a j , 231

ai≥a j , 231

ai>a j , 231

ai≤a j , 231

ai<a j , 231

ai 6=a j , 231

ai−a j , 232

Cartesians

(e1,e2,...,en) , 232

Chaos

chaos, 235, 236

Clauses

... elsif ... , 240

case be of pa1 → c1, ... pan → cn end , 240

if be then cc else ca end , 240

Combinators

let a:A • P(a) in c end , 240

let pa = e in c end , 239

Functions

f(args) as result, 239

post P(args,result), 239

pre P(args), 239

f(a), 238

f(args) ≡ expr, 239

Imperative

case be of pa1 → c1, ... pan → cn end , 242

do stmt until be end , 242

for e in listexpr • P(b) do stm(e) end , 242

if be then cc else ca end , 242

skip , 241

variable v:Type := expression , 241

while be do stm end , 242

f(), 241

stm1;stm2;...;stmn; , 241

v := expression , 241

Lists

<Q(l(i))|i in<1..lenl> •P(a)> , 233

hAB, 233

ℓ(i) , 235

〈ei ..ej 〉, 233

〈e1,e2, ...,enB , 233

elems ℓ , 235

hd ℓ , 235

inds ℓ , 235

len ℓ , 235

tl ℓ , 235

Logics
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260 D Indexes

bi ∨ b j , 231

∀ a:A • P(a) , 232

∃! a:A • P(a) , 232

∃ a:A • P(a) , 232

∼ b , 231

false, 229, 231

true, 229, 231

ai=a j , 232

ai≥a j , 232

ai>a j , 232

ai≤a j , 232

ai<a j , 232

ai 6=a j , 232

bi ⇒ b j , 231

bi ∧ b j , 231

Maps

[F(e) 7→G(m(e))|e:E•e∈dom m∧P(e)] , 233

[ ] , 233

[u1 7→v1,u2 7→v2,...,un 7→vn] , 233

mi \ m j , 237

mi ◦ m j , 237

mi / m j , 237

dom m , 237

rng m , 237

mi =m j , 237

mi ∪m j , 237

mi † m j , 237

mi 6=m j , 237

m(e) , 237

Processes

channel c:T , 242

channel {k[i]:T•i:KIdx} , 242

c ! e , 242

c ? , 242

k[i] ! e , 242

k[i] ? , 242

P⌈⌉Q, 242

P–‖ Q, 242

P: Unit→ in c out k[i] Unit , 243

P[]Q, 242

P‖ Q, 242

Q: i:KIdx → out c in k[i] Unit, 243

Sets

{Q(a)|a:A•a∈s∧P(a)} , 232

{} , 232

{e1,e2, ...,en} , 232

∩{s1,s2,...,sn} , 234

∪{s1,s2,...,sn} , 234

card s , 234

e∈s , 234

e6∈s , 234

si=s j , 234

si∩s j , 234

si∪s j , 234

si⊂s j , 234

si⊆s j , 234

si 6=s j , 234

si\s j , 234

Types

(T1×T2×... ×Tn), 229

T∗, 229

Tω , 229

T1 × T2 × ... × Tn, 229

Bool, 229

Char, 229

Int, 229

Nat, 229

Real, 229

Text, 229

Unit, 241, 243

mk id(s1:T1,s2:T2,...,sn:Tn), 229

s1:T1 s2:T2 ... sn:Tn, 229

T = Type Expr, 230

T1 | T2 | ... | T1 | Tn , 229

T={| v:T′• P(v)|} , 230, 231

T==TE1 | TE2 | ... | TEn , 230

Ti
∼
→Tj, 229

Ti→Tj, 229

T-infset, 229

T-set, 229
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