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• In [Manifest Domains: Analysis & Description] we introduced

a method for analysing and describing manifest domains.

• In the next lectures of this seminar

⋄⋄ we show how to systematically,

⋄⋄ but, of course, not automatically,

⋄⋄ “derive” initial requirements prescriptions from

⋄⋄ domain descriptions.
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• There are, as we see it, three kinds of requirements:

⋄⋄ domain requirements ,

⋄⋄ interface requirements and

⋄⋄ machine requirements .

• The machine is the hardware and software

to be developed from the requirements.
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• (i) Domain requirements are those requirements which can be

expressed sôlely using technical terms of the domain.

• (ii) Interface requirements are those requirements which can be

expressed using technical terms of both the domain and the

machine.

• (iii) Machine requirements are those requirements which can

be expressed sôlely using technical terms of the machine.
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• We show principles, techniques and tools for “deriving”

⋄⋄ domain requirements.

• The domain requirements development focus on

⋄⋄ (i.1) projection ,

⋄⋄ (i.2) instantiation ,

⋄⋄ (i.3) determination ,

⋄⋄ (i.4) extension and

⋄⋄ (i.5) fitting .
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• These domain-to-requirements operators can be described briefly:

⋄⋄ (i.1) projection removes such descriptions which are to be

omitted for consideration in the requirements,

⋄⋄ (i.2) instantiation mandates specific mereologies,

⋄⋄ (i.3) determination specifies less non–determinism,

⋄⋄ (i.4) extension extends the evolving requirements prescription

with further domain description aspects and

⋄⋄ (i.5) fitting resolves “loose ends” as they may have emerged

during the domain-to-requirements operations.
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• We briefly review principles, techniques and tools for “deriving”

interface requirements based on sharing domain

⋄⋄ (ii.1) endurants, and

⋄⋄ (ii.2) perdurants (i.e., actions, events and behaviours)

with their machine correspondants.
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⋄⋄ The unfolding of interface requirements

lead to a number of machine concepts

in terms of which the interface requirements are expressed.

◦◦ These machine concepts, both hardware and software,

◦◦ make possible the expression of a set of

what we shall call

derived requirements.

◦◦ The paper explores this concept briefly.
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⋄⋄ We do not cover machine requirements in this paper.

⋄⋄ The reason is that

◦◦ we find, cf. [Bjø06, Sect. 19.6], that

◦◦ when the individual machine requirements are expressed

◦◦ then references to domain phenomena

◦◦ are, in fact, abstract references, that is,

◦◦ they do not refer to the semantics of what they name.
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• This paper claims only to structure the quest for requirements

conception.

⋄⋄ Instead of “discovering” requirements ‘ab initio’,

◦◦ for example, through interviews with stake-holders,

◦◦ we suggest to “derive” the requirements based on domain

descriptions.

⋄⋄ Instead of letting the individual requirements arise out of initial

stake-holder interviews,

we suggest to structure these

◦◦ (i) around the structures of domain descriptions, and

◦◦ (ii) around the structures emerging from domain, interface and

machine requirements.
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⋄⋄ We shall refer to the requirements emerging from (i+ii)

⋄⋄ as the initial requirements.

⋄⋄ To these we add the derived requirements
merging from interview with stakeholders:

◦◦ We are strongly of the opinion that the techniques and tools of,

for example, [DvLF93, Jac01, ZH04, JHJ07, OD08, van09]

◦◦ can be smoothly integrated with those of this paper.

• We think that there is some clarification to be gained.
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• We claim that our approach

⋄⋄ contributes to a restructuring of

⋄⋄ the field of requirements engineering

⋄⋄ and its very many diverse concerns,

⋄⋄ a structuring that is logically motivated

⋄⋄ and is based on viewing

software specifications as mathematical objects.
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1. Introduction

1. Introduction

• In [Manifest Domains: Analysis & Description]

we introduced a method for analysing and describing manifest

domains.

⋄⋄ In these lectures

◦◦ we show how to systematically,

◦◦ but, of course, not automatically,

◦◦ “derive” requirements prescriptions from

◦◦ domain descriptions.
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141. Introduction 1.1. The Triptych Dogma of Software Development

1.1. The Triptych Dogma of Software Development

⋄⋄ We see software development progressing as follows:

◦◦ Before one can design software

◦◦ one must have a firm grasp of the requirements.

◦◦ Before one can prescribe requirements

◦◦ one must have a reasonably firm grasp of the domain.

⋄⋄ Software engineering, to us, therefore include these

three phases:

◦◦ domain engineering,

◦◦ requirements engineering and

◦◦ software design.
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151. Introduction 1.2. Software As Mathematical Objects

1.2. Software As Mathematical Objects

• Our base view is that computer programs are mathematical objects.

⋄⋄ That is, the text that makes up a computer program

can be reasoned about.

⋄⋄ This view entails that computer program specifications

can be reasoned about.

⋄⋄ And that the requirements prescriptions upon which

these specifications are based can be reasoned about.
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161. Introduction 1.2. Software As Mathematical Objects

• This base view entails, therefore,

⋄⋄ that specifications,

◦◦ whether software design specifications,

◦◦ or requirements prescriptions,

◦◦ or domain descriptions,

⋄⋄ must [also] be formal specifications.

• This is in contrast to considering software design specifications

⋄⋄ being artifacts of sociological,

⋄⋄ or even of psychological

“nature”.
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1. Introduction 1.3. The Contribution of These Lectures

1.3. The Contribution of These Lectures

• We claim that the present lecture content contributes to our

understanding and practice of software engineering as follows:

⋄⋄ (1) it shows how the new phase of engineering,

◦◦ domain engineering,

◦◦ as introduced in [Bjø16b],

forms a prerequisite for requirements engineering;

⋄⋄ (2) it endows the “classical” form of requirements engineering

with a structured set of development stages and steps:

◦◦ (a) first a domain requirements stage,

◦◦ (b) to be followed by an interface requirements stages, and

◦◦ (c) to be concluded by a machine requirements stage;
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181. Introduction 1.3. The Contribution of These Lectures

⋄⋄ (3) it further structures and gives a reasonably precise contents to

the stage of domain requirements:

◦◦ (i) first a projection step,

◦◦ (ii) then an instantiation step,

◦◦ (iii) then a determination step,

◦◦ (iv) then an extension step, and

◦◦ (v) finally a fitting step —

with these five steps possibly being iterated;
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191. Introduction 1.3. The Contribution of These Lectures

⋄⋄ (4) it also structures and gives a reasonably precise contents to

the stage of interface requirements based on a notion of shared

entities; and

⋄⋄ (5) it finally structures and gives a reasonably precise contents to

the stage of machine requirements:

◦◦ (α) technology requirements and

◦◦ (β ) development requirements.

• Each of the steps (i–v) open for the possibility of simplifications.

• Steps (a–c), (i-v), and (α–β ), we claim, are new.

• They reflect a serious contribution, we claim,

to a logical structuring of the field of requirements engineering

and its very many otherwise seemingly diverse concerns.
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201. Introduction 1.4. Some Comments on the Lecture Content

1.4. Some Comments on the Lecture Content

• By methodology we understand the study and knowledge of one

or more methods 1

• By a method understand the study and knowledge of the

principles, techniques and tools for constructing some artifact, here

(primarily) software

1The marks the end of definitions.
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211. Introduction 1.4. Some Comments on the Lecture Content

• These lectures are, perhaps, unusual in the following respects:

⋄⋄ They are methodology lectures, hence there are no “neat”

theories about development, no succinctly expressed

propositions, lemmas nor theorems, and hence no proofs2.

⋄⋄ As a consequence the lectures are borne

by many, and by extensive examples.

⋄⋄ The examples of these lectures

are all focused on a generic road transport net.

2— where these proofs would be about the development theories. The example development of requirements do imply properties, but formulation and proof of these do not

constitute specifically new contributions — so are left out.
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221. Introduction 1.4. Some Comments on the Lecture Content

⋄⋄ To reasonably fully exemplify the requirements approach,

◦◦ illustrating how our method copes with

◦◦ a seeming complexity of interrelated method aspects,

◦◦ the full example of these lectures embodies

◦◦ hundreds of concepts (types, axioms, functions).
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231. Introduction 1.4. Some Comments on the Lecture Content

⋄⋄ These methodology lectures covers

a “grand” area of software engineering:

◦◦ Many textbooks and papers are written on

Requirements Engineering.

◦◦ We postulate, in contrast to all such books (and papers), that

requirements engineering
should be founded on domain engineering .

◦◦ Hence we must, somehow, show that

our approach relates to major elements of

what the Requirements Engineering books put forward.

⋄⋄ As a result these lectures are many !
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241. Introduction 1.5. Structure of Lectures

1.5. Structure of Lectures

• The structure of the paper is as follows:

⋄⋄ Section 2. provides a fair-sized, hence realistic example.

⋄⋄ Sections 3–5. covers our approach to requirements development.

◦◦ Section 3. overviews the issue of ‘requirements’; relates our

approach (Sects. 4.–5.) to

∗ systems,

∗ user and external equipment and

∗ functional requirements;

and

◦◦ Sect. 3. also introduces the concepts of

∗ the machine to be requirements prescribed,

∗ the domain,

∗ the interface and

∗ the machine requirements.
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251. Introduction 1.5. Structure of Lectures

◦◦ Section 4. covers the domain requirements stages of

∗ projection (Sect. 4.1),

∗ instantiation (Sect. 4.2),

∗ determination (Sect. 4.3),

∗ extension (Sect. 4.3),

∗ fitting (Sect. 4.5).

◦◦ Section 5. covers key features of interface requirements:

∗ shared phenomena (Sect. 5.1),

∗ shared endurants (Sect. 5.2),

∗ shared actions,

shared events
shared behaviours (Sect. 5.3).

∗ Section 5.3 further introduces the notion of derived
requirements .

◦◦ Section 7. concludes the paper.
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262. An Example Domain: Transport

2. An Example Domain: Transport

• In order to exemplify the various stages and steps of requirements

development we first bring a domain description example.

⋄⋄ The example follows the steps of an idealised domain

description.

⋄⋄ First we describe the endurants,

⋄⋄ then we describe the perdurants.

• Endurant description initially focus on the composite and atomic

parts.

• Then on their “internal” qualities:

⋄⋄ unique identifications,

⋄⋄ mereologies, and

⋄⋄ attributes.
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2. An Example Domain: Transport

• The descriptions alternate between

⋄⋄ enumerated, i.e., labeled narrative sentences and

⋄⋄ correspondingly “numbered” formalisations.

• The narrative labels cum formula numbers

⋄⋄ will be referred to, frequently in the

⋄⋄ various steps of domain requirements development.
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282. An Example Domain: Transport 2.1. Endurants

2.1. Endurants

• Since we have chosen a manifest domain,

that is, a domain whose endurants can be pointed at, seen, touched,

we shall follow the analysis & description process as

outlined in [Bjø16b] and formalised in [Bjø14b].

⋄⋄ That is, we first identify, analyse and describe (manifest) parts,

composite and atomic, abstract (Sect. ) or concrete (Sect. ).

⋄⋄ Then we identify, analyse and describe

◦◦ their unique identifiers (Sect. ),

◦◦ mereologies (Sect. ), and

◦◦ attributes (Sects. –).
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292. An Example Domain: Transport 2.1. Endurants 2.1.1. Domain, Net, Fleet and Monitor

2.1.1. Domain, Net, Fleet and Monitor

Applying observe part sorts [Bjø14d, Sect. 3.1.6] to to a

transport domain δ :∆ yields the following.

• The root domain, ∆,

is that of a composite traffic system

⋄⋄ with a road net,

⋄⋄ with a fleet of vehicles and

⋄⋄ of whose individual position on the road net we can speak, that

is, monitor.
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2. An Example Domain: Transport 2.1. Endurants 2.1.1. Domain, Net, Fleet and Monitor

1 We analyse the composite traffic system into

a. a composite road net,

b. a composite fleet (of vehicles), and

c. an atomic monitor.
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2. An Example Domain: Transport 2.1. Endurants 2.1.1. Domain, Net, Fleet and Monitor

type

1 ∆

1a. N

1b. F

1c. M

value

1a. obs part N: ∆ → N

1b. obs part F: ∆ → F

1c. obs part M: ∆ → M
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322. An Example Domain: Transport 2.1. Endurants 2.1.1. Domain, Net, Fleet and Monitor

Applying observe part sorts [Bjø14d, Sect. 3.1.6] to a net, n:N, yields the

following.

2 The road net consists of two composite parts,

a. an aggregation of hubs and

b. an aggregation of links.
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332. An Example Domain: Transport 2.1. Endurants 2.1.1. Domain, Net, Fleet and Monitor

type

2a. HA

2b. LA

value

2a. obs part HA: N → HA

2b. obs part LA: N → LA
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342. An Example Domain: Transport 2.1. Endurants 2.1.2. Hubs and Links

2.1.2. Hubs and Links

Applying observe part types [Bjø14d, Sect. 3.1.7] to hub and

link aggregates yields the following.

3 Hub aggregates are sets of hubs.

4 Link aggregates are sets of links.

5 Fleets are set of vehicles.
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352. An Example Domain: Transport 2.1. Endurants 2.1.2. Hubs and Links

type

3 H, HS = H-set

4 L, LS = L-set

5 V, VS = V-set

value

3 obs part HS: HA → HS

4 obs part LS: LA → LS

5 obs part VS: F → VS

6 We introduce some auxiliary

functions.

a. links extracts the links of a

network.

b. hubs extracts the hubs of a

network.

value

6a. links: ∆ → L-set

6a. links(δ ) ≡ obs part LS(obs part LA(obs

6b. hubs: ∆ → H-set

6b. hubs(δ ) ≡ obs part HS(obs part HA(obs
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2. An Example Domain: Transport 2.1. Endurants 2.1.3. Unique Identifiers

2.1.3. Unique Identifiers

Applying observe unique identifier [Bjø14d, Sect. 3.2] to

the observed parts yields the following.

7 Nets, hub and link aggregates, hubs and links, fleets, vehicles and

the monitor all

a. have unique identifiers

b. such that all such are distinct, and

c. with corresponding observers.
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372. An Example Domain: Transport 2.1. Endurants 2.1.3. Unique Identifiers

type

7a. NI, HAI, LAI, HI, LI, FI, VI, MI

value

7c. uid NI: N → NI

7c. uid HAI: HA → HAI

7c. uid LAI: LA → LAI

7c. uid HI: H → HI

7c. uid LI: L → LI

7c. uid FI: F → FI

7c. uid VI: V → VI

7c. uid MI: M → MI

axiom

7b. NI
⋂

HAI=Ø, NI
⋂

LAI=Ø, NI
⋂

HI=Ø, etc.

where axiom 7b.. is expressed semi-formally, in mathematics.
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382. An Example Domain: Transport 2.1. Endurants 2.1.3. Unique Identifiers

We introduce some auxiliary functions:

8 xtr lis extracts all link identifiers of a traffic system.

9 xtr his extracts all hub identifiers of a traffic system.

10 Given an appropriate link identifier and a net get link ‘retrieves’ the designated

link.

11 Given an appropriate hub identifier and a net get hub ‘retrieves’ the designated

hub.
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392. An Example Domain: Transport 2.1. Endurants 2.1.3. Unique Identifiers

value

8 xtr lis: ∆ → LI-set

8 xtr lis(δ ) ≡
8 let ls = links(δ ) in {uid LI(l)|l:L•l ∈ ls} end

9 xtr his: ∆ → HI-set

9 xtr his(δ ) ≡
9 let hs = hubs(δ ) in {uid HI(h)|h:H•k ∈ hs} end

10 get link: LI → ∆
∼
→ L

10 get link(li)(δ ) ≡
10 let ls = links(δ ) in

10 let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

10 pre: li ∈ xtr lis(δ )

11 get hub: HI → ∆
∼
→ H

11 get hub(hi)(δ ) ≡
11 let hs = hubs(δ ) in

11 let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end

11 pre: hi ∈ xtr his(δ )
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402. An Example Domain: Transport 2.1. Endurants 2.1.4. Mereology

2.1.4. Mereology
Applying observe mereology [Bjø14d, Sect. 3.3.2] to hubs, links, vehicles and

the monitor yields the following.

12 Hub mereologies reflect that they are connected to zero, one or more links.

13 Link mereologies reflect that they are connected to exactly two distinct hubs.

14 Vehicle mereologies reflect that they are connected to the monitor.

15 The monitor mereology reflects that it is connected to all vehicles.

16 For all hubs of any net it must be the case that their mereology designates links

of that net.

17 For all links of any net it must be the case that their mereologies designates hubs

of that net.

18 For all transport domains it must be the case that

a. the mereology of vehicles of that system designates the monitor of that

system, and that

b. the mereology of the monitor of that system designates vehicles of that

system.
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412. An Example Domain: Transport 2.1. Endurants 2.1.4. Mereology

value

12 obs mereo H: H → LI-set

13 obs mereo L: L → HI-set

axiom

13 ∀ l:L•card obs mereo L(l)=2

value

14 obs mereo V: V → MI

15 obs mereo M: M → VI-set

axiom

16 ∀ δ :∆, hs:HS•hs=hubs(δ ), ls:LS•ls=links(δ ) •

16 ∀ h:H•h ∈ hs•obs mereo H(h)⊆xtr lis(δ ) ∧
17 ∀ l:L•l ∈ ls•obs mereo L(l)⊆xtr his(δ ) ∧
18a. let f:F•f=obs part F(δ ) ⇒
18a. let m:M•m=obs part M(δ ),

18a. vs:VS•vs=obs part VS(f) in

18a. ∀ v:V•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)

18b. ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
18b. end end

a Different Approach to Requirements Engineering 41 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



422. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

2.1.5. Attributes, I

We may not have shown all of the attributes mentioned below — so

consider them informally introduced !

• Hubs:

⋄⋄ locations are considered static,

⋄⋄ hub states and hub state spaces are considered programmable;
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432. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

• Links:

⋄⋄ lengths and locations are considered static,

⋄⋄ link states and link state spaces are considered programmable;
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442. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

• Vehicles:

⋄⋄ manufacturer name, engine type (whether diesel, gasoline or

electric) and engine power (kW/horse power) are considered

static;

⋄⋄ velocity and acceleration may be considered reactive (i.e., a

function of gas pedal position, etc.),

⋄⋄ global position (informed via a GNSS: Global Navigation

Satellite System) and local position (calculated from a

global position) are considered biddable
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452. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

Applying observe attributes [Bjø14d, Sect. 3.4.3] to hubs,

links, vehicles and the monitor yields the following.
First hubs.

19 Hubs

a. have geodetic locations, GeoH,

b. have hub states which are sets of pairs of identifiers of links connected to the

hub3,

c. and have hub state spaces which are sets of hub states4.

20 For every net,

a. link identifiers of a hub state must designate links of that net.

b. Every hub state of a net must be in the hub state space of that hub.

21 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub

state.

3A hub state “signals” which input-to-output link connections are open for traffic.
4A hub state space indicates which hub states a hub may attain over time.
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462. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

type

19a. GeoH

19b. HΣ = (LI×LI)-set

19c. HΩ = HΣ-set

value

19a. attr GeoH: H → GeoH

19b. attr HΣ: H → HΣ

19c. attr HΩ: H → HΩ

axiom

20 ∀ δ :∆,

20 let hs = hubs(δ ) in

20 ∀ h:H • h ∈ hs •

20a. xtr lis(h)⊆xtr lis(δ )

20b. ∧ attr Σ(h) ∈ attr Ω(h)

20 end

value

21 xtr lis: H → LI-set

21 xtr lis(h) ≡

21 {li | li:LI,(li
′
,li

′′
):LI×LI •

21 (li
′
,li

′′
) ∈ attr HΣ(h) ∧ li ∈ {li

′
,li

′′
}}

a Different Approach to Requirements Engineering 46 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



472. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

Then links.

22 Links have lengths.

23 Links have geodetic location.

24 Links have states and state spaces:

a. States modeled here as pairs, (hi′,hi′′), of identifiers the hubs

with which the links are connected and indicating directions

(from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or 4

such pairs.

b. State spaces are the set of all the link states that a link may enjoy.
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482. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

type

22 LEN

23 GeoL

24a. LΣ = (HI×HI)-set

24b. LΩ = LΣ-set

value

22 attr LEN: L → LEN

23 attr GeoL: L → GeoL

24a. attr LΣ: L → LΣ

24b. attr LΩ: L → LΩ

axiom

24 ∀ n:N •

24 let ls = xtr−links(n), hs = xtr hubs(n) in

24 ∀ l:L•l ∈ ls ⇒

24a. let lσ = attr LΣ(l) in

24a. 0≤card lσ≤4

24a. ∧ ∀ (hi
′
,hi

′′
):(HI×HI)•(hi

′
,hi

′′
) ∈ lσ

24a. ⇒ {hi
′
,hi

′′
}=obs mereo L(l)

24b. ∧ attr LΣ(l) ∈ attr LΩ(l)

24 end end
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492. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

Then vehicles.

25 Every vehicle of a traffic system has a position which is either ‘on a

link’ or ‘at a hub’.

a. An ‘on a link’ position has four elements: a unique link identifier

which must designate a link of that traffic system and a pair of

unique hub identifiers which must be those of the mereology of

that link.

b. The ‘on a link’ position real is the fraction, thus properly

between 0 (zero) and 1 (one) of the length from the first

identified hub “down the link” to the second identifier hub.

c. An ‘at a hub’ position has three elements: a unique hub identifier

and a pair of unique link identifiers — which must be in the hub

state.
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50
2. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

type

25 VPos = onL | atH

25a. onL :: LI HI HI R

25b. R = Real axiom ∀ r:R • 0≤r≤1

25c. atH :: HI LI LI

value

25 attr VPos: V → VPos

axiom

25a. ∀ n:N, onL(li,fhi,thi,r):VPos •

25a. ∃ l:L•l ∈obs part LS(obs part N(n))

25a. ⇒ li=uid L(l)∧{fhi,thi}=obs mereo L(l),

25c. ∀ n:N, atH(hi,fli,tli):VPos •

25c. ∃ h:H•h ∈obs part HS(obs part N(n))

25c. ⇒ hi=uid H(h)∧(fli,tli) ∈ attr LΣ(h)
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512. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

26 We introduce an auxiliary function distribute.

a. distribute takes a net and a set of vehicles and

b. generates a map from vehicles to distinct vehicle positions on the

net.

c. We sketch a “formal” distribute function, but, for

simplicity we omit the technical details that secures distinctness

— and leave that to an axiom !

27 We define two auxiliary functions:

a. xtr links extracts all links of a net and

b. xtr hub extracts all hubs of a net.
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52
2. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

type

26b. MAP = VI →m VPos

axiom

26b. ∀ map:MAP • card dom map = card rng map

value

26 distribute: VS → N → MAP

26 distribute(vs)(n) ≡

26a. let (hs,ls) = (xtr hubs(n),xtr links(n)) in

26a. let vps = {onL(uid (l),fhi,thi,r) |

26a. l:L•l ∈ls∧{fhi,thi}

26a. ⊆obs mereo L(l)∧0≤r≤1}

26a. ∪ {atH(uid H(h),fli,tli)|

26a. h:H•h ∈hs∧{fli,tli}

26a. ⊆obs mereo H(h)} in

26b. [uid V(v) 7→vp|v:V,vp:VPos•v ∈vs∧vp∈vps ]

26 end end
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532. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

And finally monitors. We consider only one monitor attribute.

28 The monitor has a vehicle traffic attribute.

a. For every vehicle of the road transport system the vehicle traffic

attribute records a possibly empty list of time marked vehicle

positions.

b. These vehicle positions are alternate sequences of ‘on link’ and

‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the

same link identifier, the same pair of ‘’to’ and ‘from’ hub

identifiers and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is

commensurate with the link and hub mereologies, and

iv such that vehicle transition from a hub to a link is

commensurate with the hub and link mereologies.
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542. An Example Domain: Transport 2.1. Endurants 2.1.5. Attributes, I

type

28 Traffic = VI →m (T × VPos)∗

value

28 attr Traffic: M → Traffic

axiom

28b. ∀ δ :∆ •

28b. let m = obs part M(δ ) in

28b. let tf = attr Traffic(m) in

28b. dom tf ⊆ xtr vis(δ ) ∧

28b. ∀ vi:VI • vi ∈ dom tf •

28b. let tr = tf(vi) in

28b. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

28b. let (t,vp)=tr(i),(t
′
,vp

′
)=tr(i+1) in

28b. t<t
′

28(b.)i ∧ case (vp,vp
′
) of

28(b.)i (onL(li,fhi,thi,r),onL(li
′
,fhi

′
,thi

′
,r

′
))

28(b.)i → li=li
′
∧fhi=fhi

′
∧thi=thi

′
∧r≤r

′
∧ li ∈ xtr lis(δ ) ∧ {fhi,thi} = obs mereo L(get link(li)(δ )),

28(b.)ii (atH(hi,fli,tli),atH(hi
′
,fli

′
,tli

′
))

28(b.)ii → hi=hi
′
∧fli=fli

′
∧tli=tli

′
∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),

28(b.)iii (onL(li,fhi,thi,1),atH(hi,fli,tli))

28(b.)iii → li=fli∧thi=hi ∧ {li,tli} ⊆ xtr lis(δ ) ∧ {fhi,thi}=obs mereo L(get link(li)(δ ))

28(b.)iii ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),

28(b.)iv (atH(hi,fli,tli),onL(li
′
,fhi

′
,thi

′
,0))

28(b.)iv → etcetera,

28b. → false

28b. end end end end end
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55
2. An Example Domain: Transport 2.2. Perdurants

2.2. Perdurants

• Our presentation of example perdurants is not as systematic as that

of example endurants.

• Give the simple basis of endurants covered above there is now a

huge variety of perdurants, so we just select one example from each

of the three classes of perdurants (as outline in [Bjø16b]):

⋄⋄ a simple hub insertion action (Sect. ),

⋄⋄ a simple link disappearance event (Sect. ) and

⋄⋄ a not quite so simple behaviour, that of road traffic (Sect. ).
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562. An Example Domain: Transport 2.2. Perdurants 2.2.1. Hub Insertion Action

2.2.1. Hub Insertion Action

29 Initially inserted hubs, h, are characterised

a. by their unique identifier which not one of any hub in the net, n,

into which the hub is being inserted,

b. by a mereology, {}, of zero link identifiers, and

c. by — whatever — attributes, attrs, are needed.

30 The result of such a hub insertion is a net, n′,

a. whose links are those of n, and

b. whose hubs are those of n augmented with h.
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572. An Example Domain: Transport 2.2. Perdurants 2.2.1. Hub Insertion Action

value

29 insert hub: H → N → N

30 insert hub(h)(n) as n
′

29a. pre: uid H(h) 6∈ xtr his(n)

29b. ∧ obs mereo H= {}
29c. ∧ ...

30a. post: obs part Ls(n) = obs part Ls(n′)

30b. ∧ obs part Hs(n) ∪ {h} = obs part Hs(n′)
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582. An Example Domain: Transport 2.2. Perdurants 2.2.2. Link Disappearance Event

2.2.2. Link Disappearance Event

We formalise aspects of the link disappearance event:

31 The result net, n’:N’, is not well-formed.

32 For a link to disappear there must be at least one link in the net;

33 and such a link may disappear such that

34 it together with the resulting net makes up for the “original” net.

value

31 link diss event: N × N
′

× Bool

31 link diss event(n,n
′

) as tf

32 pre: obs part Ls(obs part LS(n)) 6={}
33 post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
34 l 6∈ obs part Ls(obs part LS(n

′

))

34 ∧ n
′

∪ {l} = obs part Ls(obs part LS(n))
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592. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic

2.2.3. Road Traffic

• The analysis & description of the road traffic behaviour is

composed

⋄⋄ (i) from the description of the global values of

◦◦ nets, links and hubs,

◦◦ vehicles,

◦◦ monitor,

◦◦ a clock, and

◦◦ an initial distribution, map, of vehicles, “across” the net;

⋄⋄ (ii) from the description of channels

◦◦ between vehicles and

◦◦ the monitor;
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60
2. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic

⋄⋄ (iii) from the description of behaviour signatures, that is, those of

◦◦ the overall road traffic system,

◦◦ the vehicles, and

◦◦ the monitor; and

⋄⋄ (iv) from the description of the individual behaviours, that is,

◦◦ the overall road traffic system, rts,

◦◦ the individual vehicles, veh, and

◦◦ the monitor, mon.
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61
2. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.1. Global Values:

2.2.3.1 Global Values:

• There is given some globally observable parts.

35 besides the domain, δ :∆,

36 a net, n:N,

37 a set of vehicles, vs:V-set,

38 a monitor, m:M, and

39 a clock, clock, behaviour.

40 From the net and vehicles we generate an initial distribution of

positions of vehicles.

• The n:N, vs:V-set and m:M are observable from any road traffic

system domain δ .
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622. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.1. Global Values:

value

35 δ :∆

36 n:N = obs part N(δ ),

36 ls:L-set=links(δ ),hs:H-set=hubs(δ ),

36 lis:LI-set=xtr lis(δ ),his:HI-set=xtr his(δ )

37 va:VS=obs part VS(obs part F(δ )),

37 vs:Vs-set=obs part Vs(va),

37 vis:VI-set = {uid VI(v)|v:V•v ∈ vs},

38 m:obs part M(δ ),

38 mi=uid MI(m),

38 ma:attributes(m)

39 clock: T → out {clk ch[vi|vi:VI•vi ∈ vis ]} Unit

40 vm:MAP•vpos map = distribute(vs)(n);
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632. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.2. Channels:

2.2.3.2 Channels:

41 We additionally declare a set of vehicle-to-monitor-channels

indexed

a. by the unique identifiers of vehicles

b. and the (single) monitor identifier.5

and communicating vehicle positions.

channel

41 {v m ch[vi,mi ]|vi:VI•vi ∈ vis}:VPos

5Technically speaking: we could omit the monitor identifier.
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642. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.3. Behaviour Signatures:

2.2.3.3 Behaviour Signatures:

42 The road traffic system behaviour, rts, takes no arguments; and

“behaves”, that is, continues forever.

43 The vehicle behaviour

a. is indexed by the unique identifier, uid V(v):VI,

b. the vehicle mereology, in this case the single monitor identifier

mi:MI,

c. the vehicle attributes, obs attribs(v)

d. and — factoring out one of the vehicle attributes — the current

vehicle position.

e. The vehicle behaviour offers communication to the monitor

behaviour; and behaves “forever”.
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65
2. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.3. Behaviour Signatures:

44 The monitor behaviour takes

a. the monitor identifier,

b. the monitor mereology,

c. the monitor attributes,

d. and — factoring out one of the vehicle attributes — the discrete

road traffic, drtf:dRTF;

e. the behaviour otherwise behaves forever.

value

42 rts: Unit → Unit

43 veh: vi:VI × mi:MI → vp:VPos → out vm ch[vi,mi ] Unit

44 mon: m:M × vis:VI-set → RTF → in {v m ch[vi,mi ]|vi:VI•vi ∈ vis},clk
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662. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

2.2.3.4 The Road Traffic System Behaviour:

45 Thus we shall consider our road traffic system, rts, as

a. the concurrent behaviour of a number of vehicles and,

to “observe”, or, as we shall call it, to monitor their movements,

b. the monitor behaviour.

value

45 rts() =
45a. ‖ {veh(uid VI(v),mi)(vm(uid VI(v)))|v:V•v ∈ vs}
45b. ‖ mon(mi,vis)([vi 7→〈〉|vi:VI•vi ∈ vis ])
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672. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

• where, wrt, the monitor, we

⋄⋄ dispense with the mereology and the attribute state arguments

⋄⋄ and instead just have a monitor traffic argument which

◦◦ records the discrete road traffic, MAP,

◦◦ initially set to “empty” traces (〈〉, of so far “no road traffic”!).

• In order for the monitor behaviour to assess the vehicle positions

⋄⋄ these vehicles communicate their positions

⋄⋄ to the monitor

⋄⋄ via a vehicle to monitor channel.

• In order for the monitor to time-stamp these positions

⋄⋄ it must be able to “read” a clock.
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68
2. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

46 We describe here an abstraction of the vehicle behaviour at a Hub

(hi).

a. Either the vehicle remains at that hub informing the monitor of

its position,

b. or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub, identified by thi, is

obtained from the mereology of the link identified by tli;

ii informs the monitor, on channel vm[vi,mi], that it is now at the

very beginning (0) of the link identified by tli, whereupon the

vehicle resumes the vehicle behaviour positioned at the very

beginning of that link,

c. or, again internally non-deterministically, the vehicle “disappears

— off the radar” !
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69
2. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

46 veh(vi,mi)(vp:atH(hi,fli,tli)) ≡
46a. v m ch[vi,mi ]!vp ; veh(vi,mi)(vp)

46b. ⌈⌉
46(b.)i let {hi

′

,thi}=obs mereo L(get link(tli)(n)) in

46(b.)i assert: hi
′

=hi

46(b.)ii v m ch[vi,mi ]!onL(tli,hi,thi,0) ;

46(b.)ii veh(vi,mi)(onL(tli,hi,thi,0)) end

46c. ⌈⌉ stop
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702. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

47 We describe here an abstraction of the vehicle behaviour on a Link (ii).

Either

a. the vehicle remains at that link position informing the monitor of its position,

b. or, internally non-deterministically, if the vehicle’s position on the link has

not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓε (less than or equal to the

distance to the hub) along the link informing the monitor of this, or

ii else,

A while obtaining a “next link” from the mereology of the hub (where that

next link could very well be the same as the link the vehicle is about to

leave),

B the vehicle informs the monitor that it is now at the hub identified by thi,

whereupon the vehicle resumes the vehicle behaviour positioned at that

hub.

c. or, internally non-deterministically, the vehicle “disappears — off the radar” !
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712. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

47 veh(vi,mi)(vp:onL(li,fhi,thi,r)) ≡
47a. v m ch[vi,mi ]!vp ; veh(vi,mi,va)(vp)

47b. ⌈⌉ if r + ℓε≤1

47(b.)i then

47(b.)i v m ch[vi,mi ]!onL(li,fhi,thi,r+ℓε) ;

47(b.)i veh(vi,mi)(onL(li,fhi,thi,r+ℓε))

47(b.)ii else

47(b.)iiA let li
′

:LI•li
′

∈ obs mereo H(get hub(thi)(n)) in

47(b.)iiB v m ch[vi,mi ]!atH(li,thi,li
′

);

47(b.)iiB veh(vi,mi)(atH(li,thi,li
′

)) end end

47c. ⌈⌉ stop
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722. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

The Monitor Behaviour

48 The monitor behaviour evolves around

a. the monitor identifier,

b. the monitor mereology,

c. and the attributes, ma:ATTR

d. — where we have factored out as a separate arguments — a table

of traces of time-stamped vehicle positions,

e. while accepting messages

i about time

ii and about vehicle positions

f. and otherwise progressing “in[de]finitely”.
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732. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

49 Either the monitor “does own work”

50 or, internally non-deterministically accepts messages from vehicles.

a. A vehicle position message, vp, may arrive from the vehicle

identified by vi.

b. That message is appended to that vehicle’s movement trace –

prefixed by time (obtained from the time channel),

c. whereupon the monitor resumes its behaviour —

d. where the communicating vehicles range over all identified

vehicles.
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74
2. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

48 mon(mi,vis)(trf) ≡
49 mon(mi,vis)(trf)

50 ⌈⌉
50a. ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi ]?) in

50b. let trf′ = trf † [vi 7→ trf(vi)̂ <tvp> ] in

50c. mon(mi,vis)(trf′)

50d. end end | vi:VI • vi ∈ vis}
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752. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

• We are about to complete a long, i.e., a 50 slide example (!).

• We can now comment on the full example:

⋄⋄ The domain, δ : ∆ is a manifest part.

⋄⋄ The road net, n : N is also a manifest part.

⋄⋄ The fleet, f : F , of vehicles, vs : VS, likewise, is a manifest part.

⋄⋄ But the monitor, m : M, is a concept.

a Different Approach to Requirements Engineering 75 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



762. An Example Domain: Transport 2.2. Perdurants 2.2.3. Road Traffic 2.2.3.4. The Road Traffic System Behaviour:

◦◦ One does not have to think of it as a manifest “observer”.

◦◦ The vehicles are on — or off — the road (i.e., links and hubs).

◦◦ We know that from a few observations and generalise to all

vehicles.

◦◦ They either move or stand still. We also, similarly, know that.

◦◦ Vehicles move. Yes, we know that.

◦◦ Based on all these repeated observations and generalisations

we introduce the concept of vehicle traffic.

◦◦ Unless positioned high above a road net — and with good

binoculars — a single person cannot really observe the traffic.

◦◦ There are simply too many links, hubs, vehicles, vehicle

positions and times.

⋄⋄ Thus we conclude that, even in a richly manifest domain, we can

also “speak of”, that is, describe concepts over manifest

phenomena, including time !
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772. An Example Domain: Transport 2.3. Domain Facets

2.3. Domain Facets

• The example of this section focuses on the domain facet [Bjø10a,

2008] of instrinsics .

• It does not reflect the other domain facets:

⋄⋄ domain support technologies,

⋄⋄ domain rules, regulations & scripts,

⋄⋄ organisation & management, and

⋄⋄ human behaviour.
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2. An Example Domain: Transport 2.3. Domain Facets

• The requirements examples, i.e., the rest of this paper, thus builds

only on the domain instrinsics .

⋄⋄ This means that we shall not be able to cover

principles, technique and tools for the prescription of such

important requirements that handle failures of support

technology or humans.

⋄⋄ We shall, however point out where we think such, for example,

fault tolerance requirements prescriptions “fit in”

and refer to relevant publications for their handling.
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793. Requirements

3. Requirements

• This and the next three sections,

Sects. 3., 4. and 5., are the main sections

of these lectures’ coverage of requirements.

⋄⋄ Section 4. is the most detailed and systematic section.

⋄⋄ It covers the domain requirements operations of

◦◦ projection ,

◦◦ instantiation ,

◦◦ determination ,

◦◦ extension and, less detailed,

◦◦ fitting .
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803. Requirements

⋄⋄ Section 5. surveys the interface requirements issues of shared

phenomena:

◦◦ shared endurants,

◦◦ shared actions,

◦◦ shared events and

◦◦ shared behaviour ,

and “completes” the exemplification of the detailed domain

extension of our requirements into a road pricing system.

⋄⋄ Section 5. also covers the notion of derived requirements .

• This, the initial, section captures

main concepts and principles of requirements.
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813. Requirements

• Sections 3., 4., and 5. covers initial requirements .

⋄⋄ By initial requirements we shall, “operationally” speaking,

understand the requirements

that are derived from the general principles outlined in these

sections

⋄⋄ In contrast to these are the further requirements that are typically

derived

◦◦ either from the domain facet descriptions of intrinsic , the

support technology, the rules & regulations , the organisation
& management , and the human behaviour facets [Bjø10a] —

not covered in this paper,

◦◦ (and/)or by more conventional means

[DvLF93, Jac01, ZH04, Lau02, JHJ07, OD08, van09].
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3. Requirements

Definition 1 Requirements (I): By a requirements we understand

(cf., IEEE Standard 610.12):

• “A condition or capability needed by a user to solve a

problem or achieve an objective”

• The objective of requirements engineering is to create a

requirements prescription:

⋄⋄ A requirements prescription specifies observable properties

of endurants and perdurants of the machine such as the

requirements stake-holders wish them to be

⋄⋄ The machine is what is required: that is, the hardware and

software that is to be designed and which are to satisfy the

requirements
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833. Requirements

• A requirements prescription thus (putatively) expresses what there

should be.

• A requirements prescription expresses nothing about the design of

the possibly desired (required) software.

• But as the requirements prescription is presented in the form of a

model, one can base the design on that model.

• We shall show how a major part of a requirements prescription can

be “derived” from “its” prerequisite domain description.
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843. Requirements

Rule 1. The “Golden Rule” of Requirements Engineering:

Prescribe only those requirements that can be objectively shown to

hold for the designed software 6

• “Objectively shown” means that the designed software can

⋄⋄ either be tested,

⋄⋄ or be model checked,

⋄⋄ or be proved (verified),

to satisfy the requirements.

• Caveat7

6 marks the end of a rule.
7Will not be illustrated !
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3. Requirements

Rule 2. An “Ideal Rule” of Requirements Engineering: When

prescribing (including formalising) requirements, also formulate tests

and properties for model checking and theorems whose proof should

show adherence to the requirements

• The rule is labelled “ideal” since such precautions will not be

shown in this seminar.

• The rule is clear.

• It is a question for proper management to see that it is adhered to.

• See the “Caveat” above !
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3. Requirements

Rule 3. Requirements Adequacy: Make sure that requirements

cover what users expect

• That is,

⋄⋄ do not express a requirement for which you have no users,

⋄⋄ but make sure that all users’ requirements are represented or

somehow accommodated.

• In other words:

⋄⋄ the requirements gathering process needs to be like an extremely

“fine-meshed net”:

⋄⋄ One must make sure that all possible stake-holders have been

involved in the requirements acquisition process,

⋄⋄ and that possible conflicts and other inconsistencies have been

obviated.
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3. Requirements

Rule 4. Requirements Implementability: Make sure that

requirements are implementable

• That is, do not express a requirement for which you have no

assurance that it can be implemented.

• In other words,

⋄⋄ although the requirements phase is not a design phase,

⋄⋄ one must tacitly assume, perhaps even indicate, somehow, that

an implementation is possible.

• But the requirements in and by themselves, may stay short of

expressing such designs.

• Caveat !
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3. Requirements

Definition 2: Requirements (II):

• By requirements we shall understand

⋄⋄ a document

⋄⋄ which prescribes desired properties of

⋄⋄ a machine:

◦◦ what endurants the machine shall “maintain”, and

◦◦ what the machine shall (must; not should) offer of

∗ functions and of

∗ behaviours

◦◦ while also expressing which events the machine shall “handle”
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3. Requirements

• By a machine that “maintains” endurants we shall mean:

⋄⋄ a machine which, “between” users’ use of that machine,

⋄⋄ “keeps” the data that represents these entities.

• From earlier we repeat:

Definition 3: Machine: By machine we shall understand a, or the,

combination of hardware and software that is the target for, or result of

the required computing systems development

• So this, then, is a main objective of requirements development:

• to start towards the design of the hardware + software for the

computing system.
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903. Requirements

Definition 4: Requirements (III): To specify the machine

• When we express requirements and wish to “convert” such

requirements to a realisation, i.e., an implementation, then we find

⋄⋄ that some requirements (parts) imply certain properties to hold of

the hardware on which the software to be developed is to “run”,

⋄⋄ and, obviously, that remaining — probably the larger parts of the

— requirements imply certain properties to hold of that software.
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913. Requirements

• Whereas domain descriptions may describe phenomena that cannot

be computed,

• requirements prescriptions must describe computable phenomena.
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923. Requirements 3.1. Some Requirements Aspects

3.1. Some Requirements Aspects

• We shall unravel requirements in two stages —

⋄⋄ (i) the first stage is sketchy (and thus informal)

⋄⋄ (ii) while the last stage is systematic

and both informal and formal.

⋄⋄ The sketchy stage consists of

◦◦ a narrative problem/objective sketch ,

◦◦ a narrative system requirements sketch , and

◦◦ a narrative user & external equipment requirements sketch .
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933. Requirements 3.1. Some Requirements Aspects

• The narrative and formal stage

⋄⋄ consists of

◦◦ design assumptions and

◦◦ design requirements .

⋄⋄ It is systematic, and mandates

◦◦ both strict narrative

◦◦ and formal

prescriptions.

⋄⋄ And it is “derivable” from the domain description.

• In a sense stage (i) is made superfluous once stage (ii) has been

completed.

• The formal, engineering design work is to based on stage (ii).
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943. Requirements 3.1. Some Requirements Aspects

• The purpose of the two stages (i–ii) is twofold:

⋄⋄ to gently lead the requirements engineer and the reader

into the requirements problems

⋄⋄ while leading the requirements engineer and reader

to focus on the very requirements essentials.

a Different Approach to Requirements Engineering 94 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



953. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches

3.1.1. Requirements Sketches

3.1.1.1 Problem, Solution and Objective Sketch

Definition 5 Problem, Solution and Objective Sketch: By a

problem, solution and objective sketch we understand

• a narrative which emphasises

• what the problem to be solved is,

• outlines a possible solution

• and sketches an objective of the solution
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963. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.1. Problem, Solution and Objective Sketch

Example 1 The Problem/Objective Requirements: A Sketch:

• The problem is that of traffic congestion.

• The chosen solution is to [build and] operate

a toll-road system integrated into a road net

and charge toll-road users a usage fee.

• The objective is therefore to create a road-pricing product.

⋄⋄ By a road-pricing product
◦◦ we shall understand an IT-based system

◦◦ containing C&C equipment and software

◦◦ that enables the recording of vehicle movements

◦◦ within the toll-road
◦◦ and thus enables

∗ the owner of the road net to charge

∗ the owner of the vehicles

∗ fees for the usage of that toll-road
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973. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.2. Systems Requirements

3.1.1.2 Systems Requirements

Definition 6 System Requirements: By a system

requirements narrative we understand

• a narrative which emphasises

• the overall assumed and/or required

• hardware and software system equipment
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983. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.2. Systems Requirements

Example 2 The Road-pricing System Requirements: A Narrative:

• The requirements are based on the following

constellation of system equipment:

⋄⋄ there is assumed a GNSS:

a GLOBAL NAVIGATION SATELLITE SYSTEM;

⋄⋄ there are vehicles equipped with GNSS receivers;

⋄⋄ there is a well-delineated road net called a toll-road net

with specially equipped toll-gates with

◦◦ vehicle identification sensors,

◦◦ exit barriers which afford (only specially equipped)

vehicles to exit8 from the toll-road net;

and

⋄⋄ there is a road-pricing calculator.

8We omit consideration of entry barriers.
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993. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.2. Systems Requirements

• The system to be designed (from the requirements) is

the road-pricing calculator.

• These four system elements are required

to behave and interact as follows:

⋄⋄ The GNSS is assumed to continuously offer vehicles

information about their global position;

⋄⋄ vehicles shall contain a GNSS receiver

which based on the global position information

shall regularly calculate their timed local position

and offer this to the calculator —

while otherwise cruising the general road net

as well as the toll-road net,

the latter while carefully moving through toll-gates;
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1003. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.2. Systems Requirements

⋄⋄ toll-gates shall register the identity of vehicles passing the

toll-road and offer this information to the calculator; and

⋄⋄ the calculator shall accept all messages from vehicles and

gates and use this information to record the movements of

vehicles and bill these whenever they exit the toll-road.
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1013. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.2. Systems Requirements

• The requirements are therefore to include assumptions

about

⋄⋄ the GNSS satellite and telecommunications equipment,

⋄⋄ the vehicle GNSS receiver equipment,

⋄⋄ the vehicle handling of GNSS input and forwarding, to the

road pricing system, of its interpretation of GNSS input,

⋄⋄ the toll-gate sensor equipment,

⋄⋄ the toll-gate barrier equipment,

⋄⋄ the toll-gate handling of entry, vehicle identification and exit

sensors and the forwarding of vehicle identification to the

road pricing calculator, and

⋄⋄ the communications between toll-gates and vehicles, on

“one side”, and the road pricing calculator, on the “other

side”.
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3. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.2. Systems Requirements

• It is in this sense that the requirements are for

an information technology-based system

⋄⋄ of both software and

⋄⋄ hardware —

◦◦ not just hard computer and communications equipment,

◦◦ but also movement sensors

◦◦ and electro-mechanical “gear”
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1033. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.3. User and External Equipment Requirements

3.1.1.3 User and External Equipment Requirements

Definition 7 User and External Equipment Requirements: By

a user and external equipment requirements narrative we

understand

• a narrative which emphasises assumptions about

⋄⋄ the human user and

⋄⋄ external equipment

interfaces

• to the system components

• The user and external equipment requirements

⋄⋄ detail, and thus make explicit,

⋄⋄ the assumptions listed in Example 2.
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1043. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.3. User and External Equipment Requirements

Example 3 The Road-pricing User and External Equipment

Requirements: Narrative:

• The human users of the road-pricing system are:

⋄⋄ vehicle drivers,

⋄⋄ toll-gate sensor, actuator and barrier service staff, and

⋄⋄ the road-pricing calculator service staff.

• The external equipment are:

⋄⋄ firstly, the GNSS satellites and the telecommunications

equipment which enables communication between

◦◦ the GNSS satellites and vehicles,

◦◦ vehicles and the road-pricing calculator and

◦◦ toll-gates and the road-pricing calculator.
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1053. Requirements 3.1. Some Requirements Aspects 3.1.1. Requirements Sketches 3.1.1.3. User and External Equipment Requirements

⋄⋄ Moreover, the external equipment are

◦◦ the toll-gates with their sensors:

∗ entry,

∗ vehicle identity, and

∗ exit,

and the barrier actuator.

⋄⋄ The external equipment are, finally, the vehicles !

• That is,

⋄⋄ although we do indeed exemplify

domain and requirements aspects

of users and external equipment,

⋄⋄ we do not expect to machine,

i.e., to hardware or software design these elements;

⋄⋄ they are assumed already implemented !
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1063. Requirements 3.1. Some Requirements Aspects 3.1.2. The Narrative and Formal Requirements Stage

3.1.2. The Narrative and Formal Requirements Stage

3.1.2.1 Assumption and Design Requirements

Definition 8 Assumption and Design Requirements:

• By assumption and design requirements we understand

precise prescriptions of

⋄⋄ the endurants

⋄⋄ and perdurants

of the (to be designed) system components

• and the assumptions which that design must rely upon
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1073. Requirements 3.1. Some Requirements Aspects 3.1.2. The Narrative and Formal Requirements Stage 3.1.2.1. Assumption and Design Requirements

• The specification principles, techniques and tools of expressing

• design and

• assumptions, upon which the design can be relied,

• will be covered and exemplified, extensively,

• in Sects. 4.–5.
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3. Requirements 3.2. The Three Phases of Requirements Engineering

3.2. The Three Phases of Requirements Engineering

• There are, as we see it, three kinds of design assumptions and

requirements:

⋄⋄ domain requirements ,

⋄⋄ interface requirements and

⋄⋄ machine requirements .
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1093. Requirements 3.2. The Three Phases of Requirements Engineering

• Domain requirements are those requirements which can be

expressed sôlely using terms of the domain

• Interface requirements are those requirements which can be

expressed only using technical terms of both the domain and the

machine

• Machine requirements are those requirements which, in

principle, can be expressed sôlely using terms of the machine
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1103. Requirements 3.2. The Three Phases of Requirements Engineering

Definition 9 Verification Paradigm:

• Some preliminary designations:

⋄⋄ let D designate the the domain description;

⋄⋄ let R designate the requirements prescription, and

⋄⋄ let S designate the system design.

• Now D ,S |= R shall be read:

⋄⋄ it must be verified that the S ystem design

⋄⋄ satisfies the Requirements prescription

⋄⋄ in the context of the Domain description
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1113. Requirements 3.2. The Three Phases of Requirements Engineering

• The “in the context of D ...” term means that

⋄⋄ proofs of S oftware design correctness

⋄⋄ with respect to Requirements

⋄⋄ will often have to refer to Domain requirements assumptions.

• We refer to [GGJZ00, Gunter, Jackson and Zave, 2000] for an

analysis of a varieties of forms in which |= relate to variants of D ,

R and S .
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3. Requirements 3.3. Order of Presentation of Requirements Prescriptions

3.3. Order of Presentation of Requirements Prescriptions

• The domain requirements development stage — as we shall see —

can be sub-staged into:

⋄⋄ projection ,

⋄⋄ instantiation ,

⋄⋄ determination ,

⋄⋄ extension and

⋄⋄ fitting .

• The interface requirements development stage — can be

sub-staged into shared:

⋄⋄ endurant,

⋄⋄ action,

⋄⋄ event and

⋄⋄ behaviour

developments, where “sharedness” pertains to phenomena shared

between, i.e., “present” in, both the domain (concretely, manifestly)

and the machine (abstractly, conceptually).
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1133. Requirements 3.3. Order of Presentation of Requirements Prescriptions

• These development stages need not be pursued in the order of the

three stages and their sub-stages.

• We emphasize that

⋄⋄ one thing is the stages and steps of development, as for example

these:

◦◦ projection, instantiation, determination, extension, fitting,

◦◦ shared endurants, shared actions, shared events, shared

behaviours,

◦◦ etcetera,

⋄⋄ another thing is the requirements prescription that results from

these development stages and steps.

◦◦ The further software development,

◦◦ after and on the basis of the requirements prescription

◦◦ starts only when all stages and steps of the requirements

prescription have been fully developed.
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1143. Requirements 3.3. Order of Presentation of Requirements Prescriptions

• The domain engineer is now free to rearrange the final prescription,

⋄⋄ irrespective of the order in which the various sections were

developed,

⋄⋄ in such a way as to give a most

◦◦ pleasing,

◦◦ pedagogic and

◦◦ cohesive

reading (i.e., presentation).

• From such a requirements prescription one can therefore not

necessarily see in which order the various sections of the

prescription were developed.
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1153. Requirements 3.4. Design Requirements and Design Assumptions

3.4. Design Requirements and Design Assumptions

• A crucial distinction is between design requirements and design
assumptions .

⋄⋄ The design requirements

◦◦ are those requirements for which

◦◦ the system designer has to implement

◦◦ hardware or software

◦◦ in order satisfy system user expectations
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1163. Requirements 3.4. Design Requirements and Design Assumptions

⋄⋄ The design assumptions

◦◦ are those requirements for which

◦◦ the system designer

does not have to implement hardware or software,

◦◦ but whose properties

◦◦ the designed hardware, respectively software relies on

for proper functioning

a Different Approach to Requirements Engineering 116 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



1173. Requirements 3.4. Design Requirements and Design Assumptions

Example 4 Road Pricing System — Design Requirements:

• The design requirements for the road pricing calculator of these

lectures are for the design

⋄⋄ of that part of the vehicle software which interfaces the GNSS

receiver and the road pricing calculator

(cf. Items 129–132),

⋄⋄ of that part of the toll-gate software which interfaces the toll-gate

and the road pricing calculator

(cf. Items 137–139) and

⋄⋄ of the road pricing calculator

(cf. Items 168–181)
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1183. Requirements 3.4. Design Requirements and Design Assumptions

Example 5 Road Pricing System — Design Assumptions:

• The design assumptions for the road pricing calculator include:

⋄⋄ that vehicles behave as prescribed

in Items 128–132,

⋄⋄ that the GNSS regularly offers vehicles correct information as to

their global position

(cf. Item 129),

⋄⋄ that toll-gates behave as prescribed

in Items 134–139, and

⋄⋄ that the road net is formed and well-formed as defined in

Examples 10–12
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1193. Requirements 3.4. Design Requirements and Design Assumptions

Example 6 Toll-Gate System — Design Requirements:

• The design requirements for the toll-gate system of these lectures

are for the design of

⋄⋄ software for the toll-gate

⋄⋄ and its interfaces to the road pricing system,

⋄⋄ i.e., Items 133–134
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3. Requirements 3.4. Design Requirements and Design Assumptions

Example 7 Toll-Gate System — Design Assumptions:

• The design assumptions for the toll-gate system include

⋄⋄ that the vehicles behave as per Items 128–132, and

⋄⋄ that the road pricing calculator behave as per Items 168–181
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1213. Requirements 3.5. Derived Requirements

3.5. Derived Requirements

• In building up the domain, interface and machine requirements

a number of machine concepts are introduced.

⋄⋄ These machine concepts enable the expression of additional

requirements.

⋄⋄ It is these we refer to as derived requirements.

⋄⋄ Techniques and tools espoused in such classical publications as

[DvLF93, Jac01, ZH04, Lau02, van09] can in those cases be

used to advantage.
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4. Domain Requirements

• Domain requirements primarily express the assumptions

⋄⋄ that a design must rely upon

⋄⋄ in order that that design can be verified.

• Although domain requirements firstly express assumptions

⋄⋄ it appears that the software designer is well-advised

⋄⋄ in also implementing, as data structures and procedures,

⋄⋄ the endurants, respectively perdurants

⋄⋄ expressed in the domain requirements prescriptions.

• Whereas

⋄⋄ domain endurants are “real-life” phenomena

⋄⋄ they are now, in domain requirements prescriptions,

⋄⋄ abstract concepts (to be represented by a machine).
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1234. Domain Requirements

Definition 10 Domain Requirements Prescription: A domain

requirements prescription

• is that subset of the requirements prescription

• whose technical terms are defined in a domain description
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• To determine a relevant subset all we need is collaboration with

requirements, cum domain stake-holders.

• Experimental evidence,

⋄⋄ in the form of example developments

◦◦ of requirements prescriptions

◦◦ from domain descriptions,

appears to show

⋄⋄ that one can formulate techniques for such developments

⋄⋄ around a few domain-description-to-requirements-prescription

operations.

⋄⋄ We suggest these:

◦◦ projection ,

◦◦ instantiation ,

◦◦ determination ,

◦◦ extension and

◦◦ fitting .
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4. Domain Requirements

• In Sect. 3.3

⋄⋄ we mentioned that the order in which one performs

⋄⋄ these description-to-prescription operations

⋄⋄ is not necessarily the order in which we have listed them here,

⋄⋄ but, with notable exceptions, one is well-served in starting out

requirements development

⋄⋄ by following this order.
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4.1. Domain Projection

Definition 11 Domain Projection: By a domain projection we

mean

• a subset of the domain description,

• one which projects out all those

⋄⋄ endurants:

◦◦ parts,

◦◦ materials and

◦◦ components,

as well as

⋄⋄ perdurants:

◦◦ actions,

◦◦ events and

◦◦ behaviours

that the stake-holders do not wish represented or relied upon by the

machine
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4. Domain Requirements 4.1. Domain Projection

• The resulting document is a partial domain requirements prescription.

• In determining an appropriate subset

⋄⋄ the requirements engineer must secure

⋄⋄ that the final “projection prescription”

⋄⋄ is complete and consistent — that is,

◦◦ that there are no “dangling references”,

◦◦ i.e., that all entities

◦◦ and their internal properties

◦◦ that are referred to

◦◦ are all properly defined.
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1284. Domain Requirements 4.1. Domain Projection 4.1.1. Domain Projection — Narrative

4.1.1. Domain Projection — Narrative

• We now start on a series of examples

• that illustrate domain requirements development.

Example 8 Domain Requirements. Projection: A Narrative Sketch:

• We require that the road pricing system shall [at most] relate to the

following domain entities – and only to these9:

⋄⋄ the net,

◦◦ its links and hubs,

◦◦ and their properties

(unique identifiers, mereologies and some attributes),

⋄⋄ the vehicles, as endurants, and

⋄⋄ the general vehicle behaviours, as perdurants.

9By ‘relate to . . . these’ we mean that the required system does not rely on domain phenomena that have been “projected away”.
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1294. Domain Requirements 4.1. Domain Projection 4.1.1. Domain Projection — Narrative

• We treat projection together with a concept of simplification .

• The example simplifications are

⋄⋄ vehicle positions and,

⋄⋄ related to the simpler vehicle position,

⋄⋄ vehicle behaviours.
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• To prescribe and formalise this we copy the domain description.

• From that domain description we remove all mention of

⋄⋄ the hub insertion action,

⋄⋄ the link disappearance event, and

⋄⋄ the monitor

• As a result we obtain ∆P , the projected version of the domain

requirements prescription10.

10Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next

domain requirements steps.
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1314. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

4.1.2. Domain Projection — Formalisation

• The requirements prescription hinges, crucially,

⋄⋄ not only on a systematic narrative of all the

◦◦ projected,

◦◦ instantiated,

◦◦ determinated,

◦◦ extended and

◦◦ fitted

specifications,

⋄⋄ but also on their formalisation.

• In the formal domain projection example

we, regretfully, omit the narrative texts.

⋄⋄ In bringing the formal texts

we keep the item numbering from Sect. 2.,

⋄⋄ where you can find the associated narrative texts.
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1324. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

Example 9 Domain Requirements — Projection:

Main Sorts

type

1 ∆P

1a. NP

1b. FP

value

1a. obs part NP: ∆P→NP

1b. obs part FP: ∆P→FP

type

2a. HAP

2b. LAP

value

2a. obs part HA: NP → HA

2b. obs part LA: NP → LA
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Concrete Types

type

3 HP, HSP = HP-set

4 LP, LSP = LP-set

5 VP, VSP = VP-set

value

3 obs part HSP: HAP → HSP

4 obs part LSP: LAP → LSP

5 obs part VSP: FP → VSP

6a. links: ∆P → L-set

6a. links(δ P) ≡ obs part LSR(obs part LAR(δ R))

6b. hubs: ∆P → H-set

6b. hubs(δ P) ≡ obs part HSP(obs part HAP(δ P))
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1344. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

Unique Identifiers

type

7a. HI, LI, VI, MI

value

7c. uid HI: HP → HI

7c. uid LI: LP → LI

7c. uid VI: VP → VI

7c. uid MI: MP → MI

axiom

7b. HI
⋂

LI=Ø, HI
⋂

VI=Ø, HI
⋂

MI=Ø,

7b. LI
⋂

VI=Ø, LI
⋂

MI=Ø, VI
⋂

MI=Ø
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1354. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

Mereology

value

12 obs mereo HP: HP → LI-set

13 obs mereo LP: LP → HI-set

13 axiom ∀ l:LP
• card obs mereo LP(l)=2

14 obs mereo VP: VP → MI

15 obs mereo MP: MP → VI-set

axiom

16 ∀ δ P :∆P, hs:HS•hs=hubs(δ ), ls:LS•ls=links(δ P) ⇒

16 ∀ h:HP
•h ∈ hs ⇒

16 obs mereo HP(h)⊆xtr his(δ P) ∧

17 ∀ l:LP
•l ∈ ls •

16 obs mereo LP(l)⊆xtr lis(δ P) ∧

18a. let f:FP
•f=obs part FP(δ P) ⇒

18a. vs:VSP
•vs=obs part VSP(f) in

18a. ∀ v:VP
•v ∈ vs ⇒

18a. uid VP(v) ∈ obs mereo MP(m) ∧

18b. obs mereo MP(m)

18b. = {uid VP(v)|v:V•v ∈ vs}

18b. end
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1364. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

Attributes: We project attributes of hubs, links and vehicles.
First hubs:

type

19a. GeoH

19b. HΣP = (LI×LI)-sett

19c. HΩP = HΣP-set

value

19b. attr HΣP: HP → HΣP

19c. attr HΩP: HP → HΩP

axiom

20 ∀ δ P:∆P,

20 let hs = hubs(δ P) in

20 ∀ h:HP
• h ∈ hs •

20a. xtr lis(h)⊆xtr lis(δ P)

20b. ∧ attr ΣP(h) ∈ attr ΩP(h)

20 end
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1374. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

Then links:

type

23 GeoL

24a. LΣP = (HI×HI)-set

24b. LΩP = LΣP-set

value

23 attr GeoL: L → GeoL

24a. attr LΣP: LP → LΣP

24b. attr LΩP: LP → LΩP

axiom

24a.− 24b. on Slide 47.
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Finally vehicles:

• For ‘road pricing’ we need vehicle positions.

⋄⋄ But, for “technical reasons”,

⋄⋄ we must abstain from the detailed description

⋄⋄ given in Items 25–25c.11

• We therefore simplify vehicle positions.

11The ‘technical reasons’ are that we assume that the GNSS
cannot provide us with direction of vehicle movement and therefore we cannot, using only the GNSS
provide the details of ‘offset’ along a link (onL )

nor the “from/to link” at a hub (atH ).
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1394. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

51 A simplified vehicle position designates

a. either a link

b. or a hub,

type

51 SVPos = SonL | SatH

51a. SonL :: LI

51b. SatH :: HI

axiom

25a.’ ∀ n:N, SonL(li):SVPos •

25a.’ ∃ l:L•l ∈obs part LS(obs part N(n)) ⇒ li=uid L(l)

25c.’ ∀ n:N, SatH(hi):SVPos •

25c.’ ∃ h:H•h ∈obs part HS(obs part N(n)) ⇒ hi=uid H(h)
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Global Values

value

35 δ P:∆P,

36 n:NP = obs part NP(δ P),

36 ls:LP-set = links(δ P),

36 hs:HP-set = hubs(δ P),

36 lis:LI-set = xtr lis(δ P),

36 his:HI-set = xtr his(δ P)
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1414. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

Behaviour Signatures: We omit the monitor behaviour.

52 We leave the vehicle behaviours’ attribute argument undefined.

type

52 ATTR

value

42 trsP: Unit → Unit

43 vehP: VI×MI×ATTR → ... Unit

The System Behaviour: We omit the monitor behaviour.

value

45a. trsP()=‖{vehP(uid VI(v),obs mereo V(v), ) | v:VP
•v ∈ vs}
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1424. Domain Requirements 4.1. Domain Projection 4.1.2. Domain Projection — Formalisation

The Vehicle Behaviour:

• Given the simplification of vehicle positions

• we simplify the vehicle behaviour given in Items 46–47

46′ veh(vi,mi)(vp:SatH(hi)) ≡
46a.′ v m ch[vi,mi ]!SatH(hi) ; veh(vi,mi)(SatH(hi))

46(b.)i’ ⌈⌉ let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

46(b.)ii′ v m ch[vi,mi ]!SonL(li) ; veh(vi,mi)(SonL(li)) end

46c.′ ⌈⌉ stop

47′ veh(vi,mi)(vp:SonL(li)) ≡
47a.′ v m ch[vi,mi ]!SonL(li) ; veh(vi,mi,va)(SonL(li))

47(b.)iiA′ ⌈⌉ let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

47(b.)iiB′ v m ch[vi,mi ]!SatH(hi) ; veh(vi,mi)(atH(hi)) end

47c.′ ⌈⌉ stop
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• We can simplify Items 46′–47c.′ further.

53 veh(vi,mi)(vp) ≡
54 v m ch[vi,mi ]!vp ; veh(vi,mi,va)(vp)

55 ⌈⌉ case vp of

55 SatH(hi) →
56 let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

57 v m ch[vi,mi ]!SonL(li) ; veh(vi,mi)(SonL(li)) end,

55 SonL(li) →
58 let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

59 v m ch[vi,mi ]!SatH(hi) ; veh(vi,mi)(atH(hi)) end end

60 ⌈⌉ stop
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53 This line coalesces Items 46′ and 47′.

54 Coalescing Items 46a.′ and 47′.

55 Captures the distinct parameters of Items 46′ and 47′.

56 Item 46(b.)i′.

57 Item 46(b.)ii′.

58 Item 47(b.)iiA′.

59 Item 47(b.)iiB′.

60 Coalescing Items 46c.′ and 47c.′.
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• The above vehicle behaviour definition

⋄⋄ will be transformed (i.e., further “refined”)

⋄⋄ in Sect. 5.4’s Example 18;

⋄⋄ cf. Items 128– 132 on Slide 208
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4. Domain Requirements 4.1. Domain Projection 4.1.3. Discussion

4.1.3. Discussion

• Domain projection can also be achieved by

⋄⋄ developing a “completely new” domain description —

⋄⋄ typically on the basis of one or more existing domain

description(s) —

⋄⋄ where that “new” description now takes the rôle

⋄⋄ of being the project domain requirements.
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4.2. Domain Instantiation

Definition 12 Instantiation: By domain instantiation we mean

• a refinement of the partial domain requirements prescription

• (resulting from the projection step)

• in which the refinements aim at rendering the

⋄⋄ endurants:

◦◦ parts,

◦◦ materials and

◦◦ components,

as well as the

⋄⋄ perdurants:

◦◦ actions,

◦◦ events and

◦◦ behaviours

of the domain requirements prescription

• more concrete, more specific
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1484. Domain Requirements 4.2. Domain Instantiation

• Properties that hold of the projected domain shall also hold of the

(therefrom) instantiated domain.

• Refinement of endurants can be expressed

⋄⋄ either in the form of concrete types,

⋄⋄ or of further “delineating” axioms over sorts,

⋄⋄ or of a combination of concretisation and axioms.

• We shall exemplify the third possibility.

• Example 10 express requirements that the road net

⋄⋄ (on which the road-pricing system is to be based)

must satisfy.

• Refinement of perdurants will not be illustrated

(other than the simplification of the vehicle projected behaviour).
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4.2.1. Domain Instantiation

Example 10 Domain Requirements. Instantiation Road Net:

• We now require that there is, as before, a road net, nI :NI ,

which can be understood as consisting of two, “connected

sub-nets”.

⋄⋄ A toll-road net, trnI :TRNI , cf. Fig. 1 on the following slide,

⋄⋄ and an ordinary road net, nP ′.

⋄⋄ The two are connected as follows:

◦◦ The toll-road net, trnI , borders some toll-road plazas,

in Fig. 1 on the next slide shown by white filled circles.

◦◦ These toll-road plaza hubs are proper hubs of the

‘ordinary’ road net, n′
P

.
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Figure 1: A simple, linear toll-road net
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61 The instantiated domain, δI :∆I has just the net, nI :NI

being instantiated.

62 The road net consists of two “sub-nets”

a. an “ordinary” road net, no:NP ′ and

b. a toll-road net proper, trn:TRNI —
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1524. Domain Requirements 4.2. Domain Instantiation 4.2.1. Domain Instantiation

c. “connected” by an interface hil:HIL:

i That interface consists of a number of toll-road plazas

(i.e., hubs), modeled as a list of hub identifiers, hil:HI∗.

ii The toll-road plaza interface to the toll-road net,

trn:TRNI
12, has each plaza, hil[i], connected to a pair of

toll-road links: an entry and an exit link: (le:L, lx:L).

iii The toll-road plaza interface to the ‘ordinary’ net, no:NP ′,

has each plaza, i.e., the hub designated by the hub

identifier hil[i], connected to one or more ordinary net

links, {li1, li2, · · · , lik}.

12We (sometimes) omit the subscript I when it should be clear from the context what we mean.
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62b. The toll-road net, trn:TRNI , consists of three collections

(modeled as lists) of links and hubs:

i a list of pairs of toll-road entry/exit links:

〈(le1
, lx1

), · · · ,(leℓ, lxℓ)〉,

ii a list of toll-road intersection hubs: 〈hi1,hi2, · · · ,hiℓ
〉, and

iii a list of pairs of main toll-road (“up” and “down”) links:

〈(mli1u
,mli1d

),(mi2u
,mi2d

), · · · ,(miℓu
,miℓd

)〉.

d. The three lists have commensurate lengths (ℓ).
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type

61 ∆I

62 NI = NP ′ × HIL × TRN

62a. NP ′

62b. TRNI = (L×L)∗×H∗×(L×L)∗

62c. HIL = HI∗

axiom

62d. ∀ nI :NI
•

62d. let (n∆,hil,(exll,hl,lll)) = nI in

62d. len hil = len exll = len hl = len lll + 1

62d. end

[Lecturer explains NP ′]

• The partial concretisation of the net sorts, NP, into NI requires some

additional well-formedness conditions to be satisfied.

63 The toll-road intersection hubs all13 have distinct identifiers.

63 wf dist toll road isect hub ids: H∗→Bool

63 wf dist toll road isect hub ids(hl) ≡
63 len hl = card xtr his(hl)

13A ‘must’ can be inserted in front of all ‘all’s,
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64 The toll-road links all have distinct identifiers.

64 wf dist toll road u d link ids: (L×L)∗→Bool

64 wf dist toll road u d link ids(lll) ≡
64 2 × len lll = card xtr lis(lll)

65 The toll-road entry/exit links all have distinct identifiers.

65 wf dist e x link ids: (L×L)∗→Bool

65 wf dist e x link ids(exll) ≡
65 2 × len exll = card xtr lis(exll)

66 Proper net links must not designate toll-road intersection hubs.

66 wf isoltd toll road isect hubs: HI∗×H∗→NI→Bool

66 wf isoltd toll road isect hubs(hil,hl)(nI ) ≡
66 let ls=xtr links(nI ) in

66 let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in

66 his ∩ xtr his(hl) = {} end end
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67 The plaza hub identifiers must designate hubs of the ‘ordinary’ net.

67 wf p hubs pt of ord net: HI∗→N′
∆→Bool

67 wf p hubs pt of ord net(hil)(n’∆) ≡
67 elems hil ⊆ xtr his(n′

∆)

68 The plaza hub mereologies must each,

a. besides identifying at least one hub of the ordinary net,

b. also identify the two entry/exit links with which they are supposed to be

connected.

68 wf p hub interf: N′
∆→Bool

68 wf p hub interf(no,hil,(exll, , )) ≡

68 ∀ i:Nat • i ∈ inds exll ⇒

68 let h = get H(hil(i))(n′
∆) in

68 let lis = obs mereo H(h) in

68 let lis
′
= lis \ xtr lis(n

′
) in

68 lis
′
= xtr lis(exll(i)) end end end
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69 The mereology of each toll-road intersection hub must identify

a. the entry/exit links

b. and exactly the toll-road ‘up’ and ‘down’ links

c. with which they are supposed to be connected.

69 wf toll road isect hub iface: NI→Bool

69 wf toll road isect hub iface( , ,(exll,hl,lll)) ≡
69 ∀ i:Nat • i ∈ inds hl ⇒
69 obs mereo H(hl(i)) =
69a. xtr lis(exll(i)) ∪
69 case i of

69b. 1 → xtr lis(lll(1)),

69b. len hl → xtr lis(lll(len hl−1))

69b. → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))

69 end
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1584. Domain Requirements 4.2. Domain Instantiation 4.2.1. Domain Instantiation

70 The mereology of the entry/exit links must identify exactly the

a. interface hubs and the

b. toll-road intersection hubs

c. with which they are supposed to be connected.

70 wf exll: (L×L)∗×HI∗×H∗→Bool

70 wf exll(exll,hil,hl) ≡
70 ∀ i:Nat • i ∈ len exll

70 let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in

70 obs mereo L(el) = obs mereo L(xl)

70 = {hi} ∪ {uid H(h)} end

70 pre: len eell = len hil = len hl
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1594. Domain Requirements 4.2. Domain Instantiation 4.2.1. Domain Instantiation

71 The mereology of the toll-road ‘up’ and ‘down’ links must

a. identify exactly the toll-road intersection hubs

b. with which they are supposed to be connected.

71 wf u d links: (L×L)∗×H∗→Bool

71 wf u d links(lll,hl) ≡
71 ∀ i:Nat • i ∈ inds lll ⇒
71 let (ul,dl) = lll(i) in

71 obs mereo L(ul) = obs mereo L(dl) =
71a. uid H(hl(i)) ∪ uid H(hl(i+1)) end

71 pre: len lll = len hl+1
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1604. Domain Requirements 4.2. Domain Instantiation 4.2.1. Domain Instantiation

• We have used some additional auxiliary functions:

xtr his: H∗→HI-set

xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set

xtr lis(l
′

,l
′′

) ≡ {uid LI(l
′

)}∪{uid LI(l
′′

)}
xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l

′

,l
′′

)|(l
′

,l
′′

):(L×L)•(l
′

,l
′′

)∈ elems lll}
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1614. Domain Requirements 4.2. Domain Instantiation 4.2.1. Domain Instantiation

72 The well-formedness of instantiated nets is now the conjunction of

the individual well-formedness predicates above.

72 wf instantiated net: NI → Bool

72 wf instantiated net(n′
∆,hil,(exll,hl,lll))

63 wf dist toll road isect hub ids(hl)

64 ∧ wf dist toll road u d link ids(lll)

65 ∧ wf dist e e link ids(exll)

66 ∧ wf isolated toll road isect hubs(hil,hl)(n
′

)

67 ∧ wf p hubs pt of ord net(hil)(n
′

)

68 ∧ wf p hub interf(n′
∆,hil,(exll, , ))

69 ∧ wf toll road isect hub iface( , ,(exll,hl,lll))

70 ∧ wf exll(exll,hil,hl)

71 ∧ wf u d links(lll,hl)
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1624. Domain Requirements 4.2. Domain Instantiation 4.2.2. Domain Instantiation — Abstraction

4.2.2. Domain Instantiation — Abstraction

Example 11 Domain Requirements. Instantiation Road Net,

Abstraction:

• Domain instantiation has refined

⋄⋄ an abstract definition of net sorts, nP:NP,

⋄⋄ into a partially concrete definition of nets, nI :NI .

• We need to show the refinement relation:

⋄⋄ abstraction(nI ) = nP.
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1634. Domain Requirements 4.2. Domain Instantiation 4.2.2. Domain Instantiation — Abstraction

value

73 abstraction: NI → NP

74 abstraction(n′
∆,hil,(exll,hl,lll)) ≡

75 let nP:NP
•

75 let hs = obs part HSP(obs part HAP(n′
P

)),

75 ls = obs part LSP(obs part LAP(n′
P

)),

75 ths = elems hl,

75 eells = xtr links(eell), llls = xtr links(lll) in

76 hs∪ths=obs part HSP(obs part HAP(nP))

77 ∧ ls∪eells∪llls=obs part LSP(obs part LAP(nP))

78 nP end end
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1644. Domain Requirements 4.2. Domain Instantiation 4.2.2. Domain Instantiation — Abstraction

73 The abstraction function takes a concrete net, nI :NI , and yields an

abstract net, nP:NP .

74 The abstraction function doubly decomposes its argument into

constituent lists and sub-lists.

75 There is postulated an abstract net, nP:NP , such that

76 the hubs of the concrete net and toll-road equals those of the

abstract net, and

77 the links of the concrete net and toll-road equals those of the

abstract net.

78 And that abstract net, nP:NP , is postulated to be an abstraction of

the concrete net.
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165
4. Domain Requirements 4.2. Domain Instantiation 4.2.3. Discussion

4.2.3. Discussion

• Domain descriptions, such as illustrated in [Bjø16b, Manifest

Domains: Analysis & Description] and in this paper,

⋄⋄ model families of concrete, i.e., specifically occurring domains.

⋄⋄ Domain instantiation, as exemplified in this section (i.e., Sect. ),

“narrow down” these families.

⋄⋄ Domain instantiation, such as it is defined, cf. Definition 12 on

Slide 147,

allows the requirements engineer to instantiate

to a concrete instance of a very specific domain,

⋄⋄ that, for example, of the toll-road between Bolzano Nord and

Trento Sud in Italy (i.e., n=7)14.

14Here we disregard the fact that this toll-road does not start/end in neither Bolzano Nord nor Trento Sud.
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1664. Domain Requirements 4.3. Domain Determination

4.3. Domain Determination

Definition 13 Determination: By domain determination we

mean

• a refinement of the partial domain requirements prescription,

• resulting from the instantiation step,

• in which the refinements aim at rendering the

⋄⋄ endurants:

◦◦ parts,

◦◦ materials and

◦◦ components, as well as the

⋄⋄ perdurants:

◦◦ functions,

◦◦ events and

◦◦ behaviours

of the partial domain requirements prescription

• less non-determinate, more determinate
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167
4. Domain Requirements 4.3. Domain Determination

• Determinations usually render these concepts less general.

⋄⋄ That is, the value space

◦◦ of endurants that are made more determinate

◦◦ is “smaller”, contains fewer values,

◦◦ as compared to the endurants

before determination has been “applied”.

4.3.1. Domain Determination: Example

• We show an example of ‘domain determination’.

⋄⋄ It is expressed sôlely in terms of

⋄⋄ axioms over the concrete toll-road net type.
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1684. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

Example 12 Domain Requirements. Determination Toll-roads:

• We focus only on the toll-road net.

• We single out only two ’determinations’:

All Toll-road Links are One-way Links

79 The entry/exit and toll-road links

a. are always all one way links,

b. as indicated by the arrows of Fig. 2,

c. such that each pair allows traffic in opposite directions.
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1694. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

79 opposite traffics: (L×L)∗ × (L×L)∗ → Bool

79 opposite traffics(exll,lll) ≡
79 ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll ⇒
79a. let (ltσ ,lfσ ) = (attr LΣ(lt),attr LΣ(lf)) in

79a.′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
79a.′′. ∧ card ltσ = 1 = card lfσ
79 ∧ let ({(hi,hi

′

)},{(hi
′′

,hi
′′′

)}) = (ltσ ,lfσ ) in

79c. hi=hi
′′′

∧ hi
′

=hi
′′

79 end end
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1704. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

All Toll-road Hubs are Free-flow

80 The hub state spaces are singleton sets of the toll-road hub states which

always allow exactly these (and only these) crossings:

a. from entry links back to the paired exit links,

b. from entry links to emanating toll-road links,

c. from incident toll-road links to exit links, and

d. from incident toll-road link to emanating toll-road links.

80 free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

80 free flow toll road hubs(exl,ll) ≡

80 ∀ i:Nat•i ∈ inds hl ⇒

80 attr HΣ(hl(i)) =

80a. hσ ex ls(exl(i))

80b. ∪ hσ et ls(exl(i),(i,ll))

80c. ∪ hσ tx ls(exl(i),(i,ll))

80d. ∪ hσ tt ls(i,ll)
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1714. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

80a.: from entry links back to the paired exit links:

80a. hσ ex ls: (L×L)→LΣ

80a. hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}
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1724. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

80b.: from entry links to emanating toll-road links:

80b. hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ

80b. hσ et ls((e, ),(i,ll)) ≡
80b. case i of

80b. 2 → {(uid LI(e),uid LI(em(ll(1))))},

80b. len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},

80b. → {(uid LI(e),uid LI(em(ll(i−1)))),

80b. (uid LI(e),uid LI(em(ll(i))))}
80b. end

• The em and in in the toll-road link list (em:L×in:L)∗

designate selectors for emanating, respectively incident links.
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1734. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

80c.: from incident toll-road links to exit links:

80c. hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ

80c. hσ tx ls(( ,x),(i,ll)) ≡
80c. case i of

80c. 2 → {(uid LI(in(ll(1))),uid LI(x))},

80c. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},

80c. → {(uid LI(in(ll(i−1))),uid LI(x)),

80c. (uid LI(in(ll(i))),uid LI(x))}
80c. end
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1744. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

80d.: from incident toll-road link to emanating toll-road links:

80d. hσ tt ls: Nat×(em:L×in:L)∗→LΣ

80d. hσ tt ls(i,ll) ≡
80d. case i of

80d. 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},

80d. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},

80d. → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),

80d. (uid LI(in(ll(i))),uid LI(em(ll(i))))}
80d. end
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1754. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

• The example above illustrated ‘domain determination’ with respect

to endurants.

⋄⋄ Typically “endurant determination” is expressed in terms of

axioms that limit state spaces —

⋄⋄ where “endurant instantiation” typically “limited” the mereology

of endurants: how parts are related to one another.
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1764. Domain Requirements 4.3. Domain Determination 4.3.1. Domain Determination: Example

• We shall not exemplify domain determination with respect to

perdurants.
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1774. Domain Requirements 4.3. Domain Determination 4.3.2. Discussion

4.3.2. Discussion

⋄⋄ The borderline between instantiation and determination is fuzzy.

◦◦ Whether, as an example, fixing the number of toll-road

intersection hubs to a constant value, e.g., n=7,

◦◦ is instantiation

◦◦ or determination,

is really a matter of choice !
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1784. Domain Requirements 4.4. Domain Extension

4.4. Domain Extension

Definition 14 Extension: By domain extension we understand

the

• introduction of

⋄⋄ endurants (see Sect. ) and

⋄⋄ perdurants (see Sect. )

that were not feasible in the original domain,

• but for which, with computing and communication,

• and with new, emerging technologies,

• for example, sensors, actuators and satellites,

• there is the possibility of feasible implementations,

• hence the requirements,

• that what is introduced becomes part of the unfolding requirements
prescription
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1794. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions

4.4.1. Endurant Extensions

Definition 15 Endurant Extension:

• By an endurant extension we understand

⋄⋄ the introduction of one or more endurants

⋄⋄ into the projected, instantiated and determined domain DR

⋄⋄ resulting in domain DR
′,

⋄⋄ such that these form a conservative extension

⋄⋄ of the theory, TDR

⋄⋄ denoted by the domain requirements DR (i.e., “before” the

extension),

⋄⋄ that is: every theorem of TDR

⋄⋄ is still a theorem of TDR
′.
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1804. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions

• Usually domain extensions involve one or more of the already

introduced sorts.

• In Example 13 we introduce (i.e., “extend”)

⋄⋄ vehicles with GPSS-like sensors,

⋄⋄ and introduce toll-gates with

◦◦ entry sensors,

◦◦ vehicle identification sensors,

◦◦ gate actuators and

◦◦ exit sensors.

⋄⋄ Finally road pricing calculators are introduced.

a Different Approach to Requirements Engineering 180 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



1814. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions

Example 13 Domain Requirements — Endurant Extension:

• We present the extensions in several steps.

⋄⋄ Some of them will be developed in this section.

⋄⋄ Development of the remaining will be deferred to Sect. .

⋄⋄ The reason for this deferment is that those last steps are

examples of interface requirements .
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1824. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions

• The initial extension-development steps are:

⋄⋄ [a] vehicle extension,

⋄⋄ [b] sort and unique identifiers of road price calculators,

⋄⋄ [c] vehicle to road pricing calculator channel,

⋄⋄ [d] sorts and dynamic attributes of toll-gates,

⋄⋄ [e] road pricing calculator attributes,

⋄⋄ [f] “total” system state, and

⋄⋄ [g] the overall system behaviour.

• This decomposition establishes system interfaces in “small, easy

steps”.
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1834. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.1. [a] Vehicle Extension:

4.4.1.1 [a] Vehicle Extension:

81 There is a domain, δE :∆E , which contains

82 a fleet, fE :FE , that is,

83 a set, vsE :VSE , of

84 extended vehicles, vE :VE — their extension amounting to

85 a dynamic reactive attribute, whose value, ti-gpos:TiGpos, at any

time, reflects that vehicle’s time-stamped global position.

86 The vehicle’s GNSS receiver calculates, loc pos, its local position,

lpos:LPos, based on these signals.

87 Vehicles access these external attributes via the external attribute
channel, attr TiGPos ch.
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184
4. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.1. [a] Vehicle Extension:

type

81 ∆E

82 FE

83 VSE = VE -set

84 VE

85 TiGPos = T × GPos

86 GPos, LPos

value

81 δ E :∆E

82 obs part FE : ∆E → FE

82 f = obs part FE (δ E )

83 obs part VSE : FE → VSE

83 vs = obs part VSE (f)

83 vis = xtr vis(vs)

85 attr TiGPos ch[vi ]?

86 loc pos: GPos → LPos

channel

86 {attr TiGPos ch[vi ]|vi:VI•vi ∈ vis}:TiGPos
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1854. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.1. [a] Vehicle Extension:

We define two auxiliary functions,

88 xtr vs, which given a domain, or a fleet, extracts its set of vehicles,

and

89 xtr vis which given a set of vehicles generates their unique

identifiers.

value

88 xtr vs: (∆E |FE |VSE ) → VE -set

88 xtr vs(arg) ≡
88 is ∆E (arg) → obs part VSE (obs part FE (arg)),

88 is FE (arg) → obs part VSE (arg),

88 is VSE (arg) → arg

89 xtr vis: (∆E |FE |VSE ) → VI-set

89 xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}
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1864. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.2. [b] Road Pricing Calculator: Basic Sort and Unique Identifier:

4.4.1.2 [b] Road Pricing Calculator: Basic Sort and Unique Identifier:

90 The domain δE :∆E , also contains a pricing calculator, c:CδE
, with

unique identifier ci:CI.

type

90 C, CI

value

90 obs part C: ∆E → C

90 uid CI: C → CI

90 c = obs part C(δ E )

90 ci = uid CI(c)
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1874. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.3. [c] Vehicle to Road Pricing Calculator Channel:

4.4.1.3 [c] Vehicle to Road Pricing Calculator Channel:

91 Vehicles can, on their own volition, offer the timed local position,

viti-lpos:VITiLPos

92 to the pricing calculator, c:CE along a vehicles-to-calculator

channel, v c ch.

type

91 VITiLPos = VI × (T × LPos)

channel

92 {v c ch[vi,ci ]|vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:VITiLPos
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1884. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

4.4.1.4 [d] Toll-gate Sorts and Dynamic Types:

• We extend the domain with toll-gates for vehicles

entering and exiting the toll-road entry and exit links.

• Figure 2 illustrates the idea of gates.
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189

gate

Vehicle

identify sensor

arrival sensor departure sensor

Figure 2: A toll plaza gate

• Figure 2 is intended to illustrate a vehicle entering (or exiting) a toll-road

arrival link.
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1904. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

⋄⋄ The toll-gate is equipped with three sensors:

an arrival sensor, a vehicle identification sensor and an departure

sensor.

⋄⋄ The arrival sensor serves to prepare

the vehicle identification sensor.

⋄⋄ The departure sensor serves to prepare

the gate for closing when a vehicle has passed.

⋄⋄ The vehicle identify sensor identifies the vehicle and “delivers” a

pair: the current time and the vehicle identifier.

⋄⋄ Once the vehicle identification sensor has identified a vehicle

◦◦ the gate opens and

◦◦ a message is sent to the road pricing calculator as to the

passing vehicle’s identity and the identity of the link

associated with the toll-gate (see Items 109- 110 on Slide 197).
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1914. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

93 The domain contains the extended net, n:NE ,

94 with the net extension amounting to the toll-road net, TRNE , that is, the

instantiated toll-road net, trn:TRNI , is extended, into trn:TRNE , with entry,

eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

95 their unique identifier and

96 their mereology: pairs of entry-, respectively exit link and calculator unique

identifiers; further

97 a pair of gate entry and exit sensors modeled as external attribute channels,

(ges:ES,gls:XS), and

98 a time-stamped vehicle identity sensor modeled as external attribute channels.
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1924. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

type

93 NE

94 TRNE = (EG×XG)∗ × TRNI

95 GI

value

93 obs part NE : ∆E → NE

94 obs part TRNE : NE → TRNE

95 uid G: (EG|XG) → GI

96 obs mereo G: (EG|XG) → (LI×CI)

94 trn:TRNE = obs part TRNE (δ E )

channel

97 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)}
′′

enter
′′

97 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)}
′′

exit
′′

98 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI

type

98 TIVI = T × VI
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1934. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

We define some auxiliary functions over toll-road nets, trn:TRNE :

99 xtr eGℓ extracts the ℓist of entry gates,

100 xtr xGℓ extracts the ℓist of exit gates,

101 xtr eGIds extracts the set of entry gate identifiers,

102 xtr xGIds extracts the set of exit gate identifiers,

103 xtr Gs extracts the set of all gates, and

104 xtr GIds extracts the set of all gate identifiers.
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1944. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

value

99 xtr eGℓ: TRNE → EG∗

99 xtr eGℓ(pgl, ) ≡ {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
100 xtr xGℓ: TRNE → XG∗

100 xtr xGℓ(pgl, ) ≡ {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
101 xtr eGIds: TRNE → GI-set

101 xtr eGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr eGs(pgl, )}
102 xtr xGIds: TRNE → GI-set

102 xtr xGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr xGs(pgl, )}
103 xtr Gs: TRNE → G-set

103 xtr Gs(pgl, ) ≡ xtr eGs(pgl, ) ∪ xtr xGs(pgl, )

104 xtr GIds: TRNE → GI-set

104 xtr GIds(pgl, ) ≡ xtr eGIds(pgl, ) ∪ xtr xGIds(pgl, )
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1954. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

105 A well-formedness condition expresses

a. that there are as many entry end exit gate pairs as there are

toll-plazas,

b. that all gates are uniquely identified, and

c. that each entry [exit] gate is paired with an entry [exit] link and

has that link’s unique identifier as one element of its mereology,

the other elements being the calculator identifier and the vehicle

identifiers.

The well-formedness relies on awareness of

106 the unique identifier, ci:CI, of the road pricing calculator, c:C, and

107 the unique identifiers, vis:VI-set, of the fleet vehicles.
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1964. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.4. [d] Toll-gate Sorts and Dynamic Types:

axiom

105 ∀ n:NR3
, trn:TRNR3

•

105 let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

105a. len exgl = len exl = len hl = len lll + 1

105b. ∧ card xtr GIds(exgl) = 2 ∗ len exgl

105c. ∧ ∀ i:Nat•i ∈ inds exgl•

105c. let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

105c. obs mereo G(eg) = (uid U(el),ci,vis)

105c. ∧ obs mereo G(xg) = (uid U(xl),ci,vis)

105 end end
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197
4. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.5. [e] Toll-gate to Calculator Channels:

4.4.1.5 [e] Toll-gate to Calculator Channels:

108 We distinguish between entry and exit gates.

109 Toll road entry and exit gates offers the road pricing calculator a

pair: whether it is an entry or an exit gates, and pair of the passing

vehicle’s identity and the time-stamped identity of the link

associated with the toll-gate

110 to the road pricing calculator via a (gate to calculator) channel.

type

108 EE =
′′

entry
′′

|
′′

exit
′′

109 EEVITiLI = EE×(VI×(T×SonL))

channel

110 {g c ch[gi,ci ]|gi:GI•gi ∈ gis}:EETiVILI
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1984. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.6. [f] Road Pricing Calculator Attributes:

4.4.1.6 [f] Road Pricing Calculator Attributes:

111 The road pricing attributes include a programmable traffic map,

trm:TRM, which, for each vehicle inside the toll-road net, records a

chronologically ordered list of each vehicle’s timed position,

(τ ,lpos), and

112 a static (total) road location function, vplf:VPLF. The vehicle

position location f unction, vplf:VPLF, which, given a local

position, lpos:LPos, yields either the simple vehicle position,

svpos:SVPos, designated by the GNSS-provided position, or
yields the response that the provided position is off the toll-road net

The vplf:VPLF function is constructed, construct vplf,

113 from awareness, of a geodetic road map, GRM, of the topology of

the extended net, nE :NE , including the mereology and the geodetic

attributes of links and hubs.
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199
4. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.6. [f] Road Pricing Calculator Attributes:

type

111 TRM = VI →m (T × SVPos)∗

112 VPLF = GRM → LPos → (SVPos |
′′

off_N
′′

)

113 GRM

value

111 attr TRM: CE → TRM

112 attr VPLF: CE → VPLF
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2004. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.6. [f] Road Pricing Calculator Attributes:

• The geodetic road map maps geodetic locations into hub and link

identifiers.

23 Geodetic link locations represent the set of point locations of a link.

19a. Geodetic hub locations represent the set of point locations of a hub.

114 A geodetic road map maps geodetic link locations into link

identifiers and geodetic hub locations into hub identifiers.

115 We sketch the construction, geo GRM, of geodetic road maps.
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2014. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.6. [f] Road Pricing Calculator Attributes:

type

114 GRM = (GeoL →m LI)
⋃

(GeoH →m HI)

value

115 geo GRM: N → GRM

115 geo GRM(n) ≡
115 let ls = xtr links(n), hs = xtr hubs(n) in

115 [attr GeoL(l) 7→uid LI(l)|l:L•l ∈ ls ]
115 ∪
115 [attr GeoH(h) 7→uid HI(h)|h:H•h ∈ hs ] end

a Different Approach to Requirements Engineering 201 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



2024. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.6. [f] Road Pricing Calculator Attributes:

116 The vplf:VPLF function obtains a simple vehicle position, svpos,

from a geodetic road map, grm:GRM, and a local position , lpos:

value

116 obtain SVPos: GRM → LPos → SVPos

116 obtain SVPos(grm)(lpos) as svpos

116 post: case svpos of

116 SatH(hi) → within(lpos,grm(hi)),

116 SonL(li) → within(lpos,grm(li)),

116
′′

off_N
′′

→ true end
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2034. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.7. [g] “Total” System State:

4.4.1.7 [g] “Total” System State:

Global values:

117 There is a given domain, δE :∆E ;

118 there is the net, nE :NE , of that domain;

119 there is toll-road net, trnE :TRNE , of that net;

120 there is a set, egsE :EGE -set, of entry gates;

121 there is a set, xgsE :XGE -set, of exit gates;

122 there is a set, gisE :GIE -set, ofgate identifiers;

123 there is a set, vsE :VE -set, of vehicles;

124 there is a set, visE :VIE -set, of vehicle identifiers;

125 there is the road-pricing calculator, cE :CE and

126 there is its unique identifier, ciE :CI.
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2044. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.7. [g] “Total” System State:

value

117 δ E :∆E

118 nE :NE = obs part NE (δ E )

119 trnE :TRNE = obs part TRNE (nE )

120 egsE :EG-set = xtr egs(trnE )

121 xgsE :XG-set = xtr xgs(trnE )

122 gisE :XG-set = xtr gis(trnE )

123 vsE :VE -set = obs part VS(obs part FE (δE ))
124 visE :VI-set = {uid VI(vE )|vE :VE

•vE ∈ vsE }
125 cE :CE = obs part CE (δ E )

126 ciE :CIE = uid CI(cE )
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2054. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

4.4.1.8 [h] “Total” System Behaviour:

The signature and definition of the system behaviour is sketched as are

the signatures of the vehicle, toll-gate and road pricing calculator.

• We shall model the behaviour of the road pricing system as

follows:

⋄⋄ we shall not model behaviours nets, hubs and links;

⋄⋄ thus we shall model only

◦◦ the behaviour of vehicles, veh,

◦◦ the behaviour of toll-gates, gate, and

◦◦ the behaviour of the road-pricing calculator, calc,

⋄⋄ The behaviours of vehicles and toll-gates are presented here.

⋄⋄ But the behaviour of the road-pricing calculator is “deferred” till

Sect. 5.4 since it reflects an interface requirements.

a Different Approach to Requirements Engineering 205 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



2064. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

127 The road pricing system behaviour, sys, is expressed as

a. the parallel, ‖, (distributed) composition of the behaviours of all

vehicles,

b. with the parallel composition of the parallel (likewise

distributed) composition of the behaviours of all entry gates,

c. with the parallel composition of the parallel (likewise

distributed) composition of the behaviours of all exit gates,

d. with the parallel composition of the behaviour of the

road-pricing calculator,
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2074. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

value

127 sys: Unit → Unit

127 sys() ≡

127a. ‖ {veh(uid V(v),(ci,gis))|v:V•v ∈ vsE }

127b. ‖ ‖ {gate(gi,”entry”,obs mereo G(eg))|eg:EG•eg ∈ egsE∧gi=uid EG(eg)}

127c. ‖ ‖ {gate(gi,”exit”,obs mereo G(xg))|xg:XG•xg ∈ xgsE∧gi=uid XG(xg)}

127d. ‖ calc(ciE ,(visE ,gisE ))(rlf)(trm)

128 veh: vi:VI×(ci:CI×gis:GI-set) → out v c ch[vi,ci ] Unit

134 gate: gi:GI×ee:EE×(ci:CI×VI-set×LI) → in attr entry ch[gi,ci ],attr id ch[gi,ci ],attr exit ch[gi,ci ] out

168 calc: ci:CI×(vis:VI-set×gis:GI-set)×VPLF→TRM→ in {v c ch[vi,ci ]|vi:VI•vi ∈ vis},{g c ch[gi,ci ]|gi:GI

• We consider ”entry” or ”exit” to be a static attribute of toll-gates.

• The behaviour signatures were determined as per the techniques presented in [Bjø16b, Sect. 4.1.1

and 4.5.2].
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2084. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

Vehicle Behaviour:

128 Instead of moving around by explicitly expressed internal

non-determinism15 vehicles move around by unstated internal

non-determinism and instead receive their current position from the

global positioning subsystem.

129 At each moment the vehicle receives its time-stamped global

position, (τ ,gpos):TiGPos,

130 from which it calculates the local position, lpos:VPos

131 which it then communicates, with its vehicle identification,

(vi,(τ ,lpos)), to the road pricing subsystem —

132 whereupon it resumes its vehicle behaviour.

15We refer to Items 46b., 46c. on Slide 68 and 47b., 47(b.)ii, 47c. on Slide 70
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2094. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

value

128 veh: vi:VI×(ci:CI×gis:GI-set) →
128 in attr TiGPos ch[vi ] out v c ch[vi,ci ] Unit

128 veh(vi,(ci,gis)) ≡
129 let (τ ,gpos) = attr TiGPos ch[vi ]? in

130 let lpos = loc pos(gpos) in

131 v c ch[vi,ci ] ! (vi,(τ ,lpos)) ;

132 veh(vi,(ci,gis)) end end

128 pre vi ∈ visE ∧ ci = ciE ∧ gis = gisE
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2104. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

• The above behaviour represents an assumption

about the behaviour of vehicles.

⋄⋄ If we were to design software for the monitoring and control

of vehicles

⋄⋄ then the above vehicle behaviour would have to be refined in

order to serve as a proper interface requirements.

⋄⋄ The refinement would include handling concerns

◦◦ about the drivers’ behaviour when entering, passing and

exiting toll-gates,

◦◦ about the proper function of the GNSS equipment, and

◦◦ about the safe communication with the road price calculator.
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2114. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

⋄⋄ The above concerns would already have been addressed

◦◦ in a model of domain facets such as

∗ human behaviour,

∗ technology support,

∗ proper tele-communications scripts,

∗ etcetera.

◦◦ We refer to [Bjø10a].
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2124. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

Gate Behaviour:

• The entry and the exit gates have “vehicle enter”, “vehicle exit” and

“timed vehicle identification” sensors.

⋄⋄ The following assumption can now be made:

◦◦ during the time interval between

◦◦ a gate’s vehicle “entry” sensor having first sensed a vehicle

entering that gate

◦◦ and that gate’s “exit” sensor having last sensed that vehicle

leaving that gate

◦◦ that gate’s vehicle time and “identify” sensor registers the time

when the vehicle is entering the gate and that vehicle’s unique

identification.
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213
4. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

• We sketch the toll-gate behaviour:

133 We parameterise the toll-gate behaviour as either an entry or an exit gate.

134 Toll-gates operate autonomously and cyclically.

135 The attr enter ch event “triggers” the behaviour specified in formula line Item

136–138 starting with a ”Raise” barrier action.

136 The time-of-passing and the identity of the passing vehicle is sensed by

attr passing ch channel events.

137 Then the road pricing calculator is informed of time-of-passing and of the

vehicle identity vi and the link li associated with the gate – and with a ”Lower”

barrier action.

138 And finally, after that vehicle has left the entry or exit gate the barrier is again

”Lower”ered and

139 that toll-gate’s behaviour is resumed.
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2144. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

type

133 EE =
′′

enter
′′

|
′′

exit
′′

value

134 gate: gi:GI×ee:EE×(ci:CI×VI-set×LI) →
134 in attr enter ch[gi ],attr passing ch[gi ],attr leave ch[gi ]
134 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

134 gate(gi,ee,(ci,vis,li)) ≡
135 attr enter ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”

136 let (τ ,vi) = attr passing ch[gi ] ? in assert vi ∈ vis

137 (attr barrier ch[gi ] ! ”Raise” ‖ g c ch[gi,ci ] ! (ee,(vi,(τ ,SonL(li))))) ;

138 attr leave ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”

139 gate(gi,ee,(ci,vis,li))

134 end

134 pre ci = ciE ∧ vis = visE ∧ li ∈ lisE
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2154. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

• The gate signature’s attr enter ch[gi ], attr passing ch[gi ],
attr barrier ch[gi ] and attr leave ch[gi ] model respective external
attributes [Bjø16b, Sect. 4.1.1 and 4.5.2] (the attr barrier ch[gi ]
models reactive (i.e., output) attribute), while

• g c ch[gi,ci ] models the embedded attribute sharing between gates

(their identification of vehicle positions) and the calculator road

map.
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2164. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

• The above behaviour represents an assumption

about the behaviour of toll-gates.

⋄⋄ If we were to design software for the monitoring and control

of toll-gates

⋄⋄ then the above gate behaviour would have to be refined in order

to serve as a proper interface requirements.

⋄⋄ The refinement would include handling concerns

◦◦ about the drivers’ behaviour when entering, passing and

exiting toll-gates,

◦◦ about the proper function of the entry, passing and exit sensors,

◦◦ about the proper function of the gate barrier (opening and

closing), and

◦◦ about the safe communication with the road price calculator.
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2174. Domain Requirements 4.4. Domain Extension 4.4.1. Endurant Extensions 4.4.1.8. [h] “Total” System Behaviour:

The above concerns would already have been addressed

• in a model of domain facets such as

⋄⋄ human behaviour,

⋄⋄ technology support,

⋄⋄ proper tele-communications scripts,

⋄⋄ etcetera.

• We refer to [Bjø10a]
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2184. Domain Requirements 4.5. Requirements Fitting

4.5. Requirements Fitting

• Often a domain being described

• “fits” onto, is “adjacent” to, “interacts” in some areas with,

• another domain:

⋄⋄ transportation with logistics,

⋄⋄ health-care with insurance,

⋄⋄ banking with securities trading and/or insurance,

⋄⋄ and so on.
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219
4. Domain Requirements 4.5. Requirements Fitting

• The issue of requirements fitting arises

⋄⋄ when two or more software development projects

⋄⋄ are based on what appears to be the same domain.

• The problem then is

⋄⋄ to harmonise the two or more software development projects

⋄⋄ by harmonising, if not too late, their requirements developments.
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2204. Domain Requirements 4.5. Requirements Fitting

• We thus assume

⋄⋄ that there are n domain requirements developments,

dr1
, dr2

, . . . , drn, being considered, and

⋄⋄ that these pertain to the same domain — and can hence be

assumed covered by a same domain description.
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2214. Domain Requirements 4.5. Requirements Fitting

Definition 16 Requirements Fitting:

• By requirements fitting we mean

⋄⋄ a harmonisation of n > 1 domain requirements

⋄⋄ that have overlapping (shared) not always consistent parts and

⋄⋄ which results in

◦◦ n partial domain requirements’, pdr1
, pdr2

, . . . , pdrn
, and

◦◦ m shared domain requirements, sdr1
, sdr2

, . . . , sdrm
,

◦◦ that “fit into” two or more of the partial domain requirements

• The above definition pertains to the result of ‘fitting’.

• The next definition pertains to the act, or process, of ‘fitting’.
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2224. Domain Requirements 4.5. Requirements Fitting

Definition 17 Requirements Harmonisation:

• By requirements harmonisation we mean

⋄⋄ a number of alternative

and/or co-ordinated prescription actions,

⋄⋄ one set for each of the domain requirements actions:

◦◦ Projection,

◦◦ Instantiation,

◦◦ Determination and

◦◦ Extension.
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223
4. Domain Requirements 4.5. Requirements Fitting

• They are – we assume n separate software product requirements:

⋄⋄ Projection:

◦◦ If the n product requirements

do not have the same projections,

◦◦ then identify a common projection which they all share,

◦◦ and refer to it as the common projection .

◦◦ Then develop, for each of the n product requirements,

◦◦ if required,

◦◦ a specific projection of the common one.

◦◦ Let there be m such specific projections, m ≤ n.
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2244. Domain Requirements 4.5. Requirements Fitting

⋄⋄ Instantiation:

◦◦ First instantiate the common projection,

if any instantiation is needed.

◦◦ Then for each of the m specific projections

◦◦ instantiate these, if required.

⋄⋄ Determination:

◦◦ Likewise, if required, “perform” “determination”

of the possibly instantiated common projection,

◦◦ and, similarly, if required,

◦◦ “perform” “determination” of the up to m

possibly instantiated projections.
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2254. Domain Requirements 4.5. Requirements Fitting

⋄⋄ Extension:

◦◦ Finally “perform extension” likewise:

◦◦ First, if required, of the common projection (etc.),

◦◦ then, if required, on the up m specific projections (etc.).

⋄⋄ These harmonization developments may possibly interact

and may need to be iterated

• By a partial domain requirements we mean a domain

requirements which is short of (that is, is missing) some

prescription parts: text and formula

• By a shared domain requirements we mean a domain

requirements
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2264. Domain Requirements 4.5. Requirements Fitting

• By requirements fitting m shared domain requirements texts,

sdrs, into n partial domain requirements we mean that

⋄⋄ there is for each partial domain requirements, pdri,

⋄⋄ an identified, non-empty subset of sdrs (could be all of sdrs),

ssdrsi,

⋄⋄ such that textually conjoining ssdrsi to pdri,

⋄⋄ i.e., ssdrsi⊕ pdri

⋄⋄ can be claimed to yield the “original” dri
,

⋄⋄ that is, M (ssdrsi⊕ pdri)⊆ M (dri
),

⋄⋄ where M is a suitable meaning function over prescriptions
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2274. Domain Requirements 4.6. Discussion

4.6. Discussion

• Facet-oriented Fittings:

⋄⋄ An altogether different way of looking at domain requirements

◦◦ may be achieved when also considering domain facets

◦◦ not covered in neither the example of Sect. nor in this section

(i.e., Sect. )

◦◦ nor in the following two sections.

⋄⋄ We refer to [Bjø10a].
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2284. Domain Requirements 4.6. Discussion

Example 14 Domain Requirements — Fitting:

• Example 13 hints at three possible sets of interface requirements:

⋄⋄ (i) for a road pricing [sub-]system, as will be illustrated in Sect. ;

⋄⋄ (ii) for a vehicle monitoring and control [sub-]system, and

⋄⋄ (iii) for a toll-gate monitoring and control [sub-]system.

• The vehicle monitoring and control [sub-]system would focus on

implementing the vehicle behaviour, see Items 128- 132 on

Slide 208.

• The toll-gate monitoring and control [sub-]system would focus on

implementing the calculator behaviour, see Items 134- 139 on

Slide 213.
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229
4. Domain Requirements 4.6. Discussion

The fitting amounts to

• (a) making precise the (narrative and formal) texts that are specific

to each of of the three (i–iii) separate sub-system requirements are

kept separate;

• (b) ensuring that (meaning-wise) shared texts that have different

names for (meaning-wise) identical entities have these names

renamed appropriately;

• (c) that these texts are subject to commensurate and ameliorated

further requirements development;

• etcetera
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230
5. Interface and Derived Requirements

5. Interface and Derived Requirements

• We remind the listener that

⋄⋄ interface requirements

◦◦ can be expressed only using terms from

◦◦ both the domain

◦◦ and the machine

• Users are not part of the machine.

⋄⋄ So no reference can be made to users, such as

⋄⋄ “the system must be user friendly”,

⋄⋄ and the like !16

16So how do we cope with the statement: “the system must be user friendly” ? We

refer to Sect. on Slide 284 for a discussion of this issue.
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231
5. Interface and Derived Requirements

• By interface requirements we [also] mean

⋄⋄ requirements prescriptions

which refines and extends the domain requirements

⋄⋄ by considering those requirements
of the domain requirements whose

◦◦ endurants (parts, materials) and

◦◦ perdurants (actions, events and behaviours)

⋄⋄ are “shared”

⋄⋄ between the domain and the machine
(being requirements prescribed)

⋄⋄ The two interface requirements definitions above go

hand–in–hand, i.e., complement one-another.
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2325. Interface and Derived Requirements

• By derived requirements we mean

⋄⋄ requirements prescriptions

⋄⋄ which are expressed in terms of the machine concepts and
facilities

⋄⋄ introduced by the emerging requirements
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2335. Interface and Derived Requirements 5.1. Interface Requirements

5.1. Interface Requirements

5.1.1. Shared Phenomena

• By sharing we mean

⋄⋄ that some or all properties of an endurant is represented both

◦◦ in the domain and

◦◦ “inside” the machine, and

◦◦ that their machine representation

◦◦ must at suitable times

◦◦ reflect their state in the domain;

and/or

⋄⋄ that an action

◦◦ requires a sequence of several “on-line” interactions

◦◦ between the machine (being requirements prescribed) and

◦◦ the domain, usually a person or another machine;

and/or
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234
5. Interface and Derived Requirements 5.1. Interface Requirements 5.1.1. Shared Phenomena

⋄⋄ that an event

◦◦ arises either in the domain,

that is, in the environment of the machine,

◦◦ or in the machine,

◦◦ and need be communicated to the machine, respectively to the

environment;

and/or

⋄⋄ that a behaviour is manifested both

◦◦ by actions and events of the domain and

◦◦ by actions and events of the machine
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2355. Interface and Derived Requirements 5.1. 5.1.1.

• So a systematic reading of the domain requirements shall

⋄⋄ result in an identification of all shared

◦◦ endurants,

∗ parts,

∗ materials and

∗ components;

and

◦◦ perdurants

∗ actions,

∗ events and

∗ behaviours.
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236
5. Interface and Derived Requirements 5.1. 5.1.1.

• Each such shared phenomenon shall then be individually dealt with:

⋄⋄ endurant sharing shall lead to interface requirements for data

initialisation and refreshment as well as for access to endurant

attributes;

⋄⋄ action sharing shall lead to interface requirements for

interactive dialogues between the machine and its environment;

⋄⋄ event sharing shall lead to interface requirements for how

such event are communicated between the environment of the

machine and the machine; and

⋄⋄ behaviour sharing shall lead to interface requirements for

action and event dialogues between the machine and its

environment.
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237
5. Interface and Derived Requirements 5.1. 5.1.1. 5.1.1.1. Environment–Machine Interface:

5.1.1.1 Environment–Machine Interface:

• Domain requirements extension, Sect. 4.4,

⋄⋄ usually introduce new endurants into (i.e., ‘extend’ the) domain.

⋄⋄ Some of these endurants may become elements of

the domain requirements.

⋄⋄ Others are to be projected “away”.

⋄⋄ Those that are let into the domain requirements

◦◦ either have their endurants represented, somehow,

also in the machine,

◦◦ or have (some of) their properties, usually some attributes,

accessed by the machine.
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2385. Interface and Derived Requirements 5.1. 5.1.1. 5.1.1.1. Environment–Machine Interface:

⋄⋄ Similarly for perdurants.

◦◦ Usually the machine representation of shared perdurants

access (some of) their properties, usually some attributes.

⋄⋄ The interface requirements must spell out

which domain extensions are shared.

⋄⋄ Thus domain extensions may necessitate a review of domain

◦◦ projection,

◦◦ instantiations and

◦◦ determination.
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239
5. Interface and Derived Requirements 5.1. 5.1.1. 5.1.1.1. Environment–Machine Interface:

• In general, there may be several of the projection–eliminated parts

(etc.) whose dynamic attributes need be accessed

in the usual way, i.e., by means of attr XYZ ch channel

communications (where XYZ is a projection–eliminated part

attribute).
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2405. Interface and Derived Requirements 5.1. 5.1.1. 5.1.1.1. Environment–Machine Interface:

Example 15 Interface Requirements — Projected

Extensions: We refer to Fig. 2 on Slide 189.

• We do not represent the GNSS system in the machine:

⋄⋄ only its “effect”: the ability to record global positions

⋄⋄ by accessing the GNSS attribute (channel):

channel

87 {attr TiGPos ch[vi ]|vi:VI•vi ∈ xtr VIs(vs)}: TiGPos
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2415. Interface and Derived Requirements 5.1. 5.1.1. 5.1.1.1. Environment–Machine Interface:

• And we do not really represent the gate nor its sensors and actuator

in the machine.

• But we do give an idealised description of the gate behaviour,

see Items 134–139

• Instead we represent their dynamic gate attributes:

(97) the vehicle entry sensors (leftmost s),

(97) the vehicle identity sensor (center ), and

(98) the vehicle exit sensors (rightmost s)

• by channels — we refer to Example 13 (Sect. , Slide 192):

channel

97 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)}
′′

enter
′′

97 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)}
′′

exit
′′

98 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI
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2425. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants

5.1.2. Shared Endurants

Example 16 Interface Requirements. Shared Endurants:

• The main shared endurants are

⋄⋄ the vehicles,

⋄⋄ the net (hubs, links, toll-gates) and

⋄⋄ the price calculator.

• As domain endurants hubs and links undergo changes,

⋄⋄ all the time,

⋄⋄ with respect to the values of several attributes:

◦◦ length, geodetic information, names,

◦◦ wear and tear (where-ever applicable),

◦◦ last/next scheduled maintenance (where-ever applicable),

◦◦ state and state space,

◦◦ and many others.
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2435. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants

• Similarly for vehicles:

⋄⋄ their position,

⋄⋄ velocity and acceleration, and

⋄⋄ many other attributes.

• We then come up with something like

⋄⋄ hubs and links are to be represented as tuples of relations;

⋄⋄ each net will be represented by a pair of relations

◦◦ a hubs relation and a links relation;

◦◦ each hub and each link may or will be represented by several

tuples;

⋄⋄ etcetera.

• In this database modeling effort it must be secured that “standard”

operations on nets, hubs and links can be supported by the chosen

relational database system

a Different Approach to Requirements Engineering 243 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



2445. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

5.1.2.1 Data Initialisation:

• In general, one must prescribe data initialisation, that is provision

for

⋄⋄ an interactive user interface dialogue with a set of proper display

screens,

◦◦ one for establishing net, hub or link attributes names and their

types, and, for example,

◦◦ two for the input of hub and link attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next input,

◦◦ on-line vetting and

◦◦ display of evolving net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.
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2455. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

Example 17 Interface Requirements. Shared Endurant Initialisation:

• The domain is that of the road net, n:N.

• By ‘shared road net initialisation’

we mean the “ab initio” establishment, “from scratch”,

of a data base recording the properties of all links, l:L, and hubs,

h:H,

⋄⋄ their unique identifications, uid L(l) and uid H(h),

⋄⋄ their mereologies, obs mereo L(l) and obs mereo H(h),

⋄⋄ the initial values of all their static and programmable attributes

and

⋄⋄ the access values, that is, channel designations for all other

attribute categories.
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2465. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

140 There are rl and rh “recorders” recording link, respectively hub

properties – with each recorder having a unique identity.

141 Each recorder is charged with the recording of a set of links or a set

of hubs according to some partitioning of all such.

142 The recorders inform a central data base, net db, of their

recordings (ri,hol,(u j,m j,attrs j)) where

143 ri is the identity of the recorder,

144 hol is either a hub or a link literal,

145 u j = uid L(l) or uid H(h) for some link or hub,

146 m j = obs mereo L(l) or obs mereo H(h) for that link or hub

and

147 attrs j are attributes for that link or hub — where attributes is a

function which “records” all respective static and dynamic

attributes (left undefined).
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2475. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

type

140 RI

value

140 rl,rh:NAT axiom rl>0 ∧ rh>0

type

142 M = RI×
′′

link
′′

×LNK | RI×
′′

hub
′′

×HUB

142 LNK = LI × HI-set × LATTRS

142 HUB = HI × LI-set × HATTRS
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2485. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

value

141 partitioning: L-set → Nat → (L-set)∗ | H-set → Nat → (H-set)∗

141 partitioning(s)(r) as sl

141 post: len sl = r ∧ ∪ elems sl = s

141 ∧ ∀ si,sj:(L-set|H-set) •

141 si 6={}∧sj 6={}∧{si,sj}⊆elems ss⇒si ∩ sj={}
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2495. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

148 The rl + rh recorder behaviours interact with the one net db

behaviour

channel

148 r db: RI×(LNK|HUB)

value

148 link rec: RI → L-set → out r db Unit

148 hub rec: RI → H-set → out r db Unit

148 net db: Unit → in r db Unit
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2505. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

149 The data base behaviour, net db, offers to receive messages from

the link and hub recorders.

150 The data base behaviour, net db, deposits these messages in

respective variables.

151 Initially there is a net, n : N,

152 from which is observed its links and hubs.

153 These sets are partitioned into rl, respectively rh length lists of

non-empty links and hubs.

154 The ab-initio data initialisation behaviour, ab initio data, is then

the parallel composition of link recorder, hub recorder and data

base behaviours with link and hub recorder being allotted

appropriate link, respectively hub sets.

155 We construct, for technical reasons, as the listener will soon see,

disjoint lists of link, respectively hub recorder identities.
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2515. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

value

149 net db:

variable

150 lnk db: (RI×LNK)-set

150 hub db: (RI×HUB)-set

value

151 n:N

152 ls:L-set = obs Ls(obs LS(n))

152 hs:H-set = obs Hs(obs HS(n))

153 lsl:(L-set)∗ = partitioning(ls)(rl)

153 lhl:(H-set)∗ = partitioning(hs)(rh)

155 rill:RI∗ axiom len rill = rl = card elems rill

155 rihl:RI∗ axiom len rihl = rh = card elems rihl

154 ab initio data: Unit → Unit

154 ab initio data() ≡
154 ‖ {lnk rec(rill[ i ])(lsl[ i ])|i:Nat•1≤i≤rl} ‖
154 ‖ {hub rec(rihl[ i ])(lhl[ i ])|i:Nat•1≤i≤rh}
154 ‖ net db()
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2525. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

156 The link and the hub recorders are near-identical behaviours.

157 They both revolve around an imperatively stated for all ... do ...

end.

The selected link (or hub) is inspected and the “data” for the data

base is prepared from

158 the unique identifier,

159 the mereology, and

160 the attributes.

161 These “data” are sent, as a message, prefixed the senders identity,

to the data base behaviour.

162 We presently leave the . . . unexplained.
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2535. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

value

148 link rec: RI → L-set → Unit

156 link rec(ri,ls) ≡
157 for ∀ l:L•l ∈ ls do uid L(l)

158 let lnk = (uid L(l),

159 obs mereo L(l),

160 attributes(l)) in

161 rdb ! (ri,
′′

link
′′

,lnk);

162 ... end

157 end
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2545. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

148 hub rec: RI × H-set → Unit

156 hub rec(ri,hs) ≡
157 for ∀ h:H•h ∈ hs do uid H(h)

158 let hub = (uid L(h),

159 obs mereo H(h),

160 attributes(h)) in

161 rdb ! (ri,
′′

hub
′′

,hub);

162 ... end

157 end
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2555. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

163 The net db data base behaviour revolves around a seemingly

“never-ending” cyclic process.

164 Each cycle “starts” with acceptance of some,

165 either link or hub data.

166 If link data then it is deposited in the link data base,

167 if hub data then it is deposited in the hub data base.
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2565. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

value

163 net db() ≡
164 let (ri,hol,data) = r db ? in

165 case hol of

166
′′

link
′′

→ ... ; lnk db := lnk db ∪ (ri,data),

167
′′

hub
′′

→ ... ; hub db := hub db ∪ (ri,data)

165 end end ;

163′ ... ;

163 net db()
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2575. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

• The above model is an idealisation.

⋄⋄ It assumes that the link and hub data represent a well-formed net.

⋄⋄ Included in this well-formedness are the following issues:

◦◦ (a) that all link or hub identifiers are communicated exactly once,

◦◦ (b) that all mereologies refer to defined parts, and

◦◦ (c) that all attribute values lie within an appropriate value range.

⋄⋄ If we were to cope with possible recording errors then we could,

for example, extend the model as follows:

◦◦ (i) when a link or a hub recorder has completed its recording

then it increments an initially zero counter (say at formula Item 162);

◦◦ (ii) before the net data base recycles it tests whether

all recording sessions has ended and then proceeds to check the data base

for well-formedness issues (a–b–c) (say at formula Item 163′)
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2585. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.1. Data Initialisation:

• The above example illustrates the ‘interface’ phenomenon:

⋄⋄ In the formulas, for example, we show both

◦◦ manifest domain entities, viz., n, l,h etc., and

◦◦ abstract (required) software objects, viz., (ui,me,attrs).
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2595. Interface and Derived Requirements 5.1. 5.1.2. Shared Endurants 5.1.2.2. Data Refreshment:

5.1.2.2 Data Refreshment:

• One must also prescribe data refreshment:

⋄⋄ an interactive user interface dialogue

with a set of proper display screens

◦◦ one for selecting the updating of net, of hub or of link attribute

names and their types and, for example,

◦◦ two for the respective update of hub and link attribute values.

⋄⋄ Interaction-prompts may be prescribed:

◦◦ next update,

◦◦ on-line vetting and

◦◦ display of revised net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.
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2605. Interface and Derived Requirements 5.1. 5.1.3. Shared Perdurants

5.1.3. Shared Perdurants

• We can expect that

⋄⋄ for every part in the domain

⋄⋄ that is shared with the machine and

⋄⋄ for which there is a corresponding behaviour of the domain

⋄⋄ there might be a corresponding process of the machine.

• If a projected, instantiated, ‘determinated’ and possibly extended

domain part is dynamic,

then it is definitely a candidate for being shared

and having an associated machine process.
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2615. Interface and Derived Requirements 5.1. 5.1.3. Shared Perdurants

• We now illustrate the concept of shared perdurants

⋄⋄ via the domain requirements extension example

⋄⋄ of Sect. 4.4, i.e. Example 13 Slides 181–217.
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2625. Interface and Derived Requirements 5.1. 5.1.3. Shared Perdurants

Example 18 Interface Requirements — Shared Behaviours:

Road Pricing Calculator Behaviour:

168 The road-pricing calculator alternates between offering to accept

communication from

169 either any vehicle

170 or any toll-gate.

168 calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
169 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},

170 {g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

168 calc(ci,(vis,gis))(rlf)(trm) ≡
169 react to vehicles(ci,(vis,gis))(rlf)(trm)

168 ⌈⌉⌊⌋
170 react to gates(ci,(vis,gis))(rlf)(trm)

168 pre ci = ciE ∧ vis = visE ∧ gis = gisE
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2635. Interface and Derived Requirements 5.1. 5.1.3. Shared Perdurants

171 If the communication is from a vehicle inside the toll-road net

172 then its toll-road net position, vp, is found from the road location

function, rlf,

173 and the calculator resumes its work with the traffic map, trm,

suitably updated,

174 otherwise the calculator resumes its work with no changes.

169 react to vehicles(ci,(vis,gis),vplf)(trm) ≡
169 let (vi,(τ ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi ]?|vi:VI•vi∈ vis} in

171 if vi ∈ dom trm

172 then let vp = vplf(lpos) in

173 calc(ci,(vis,gis),vplf)(trm†[vi 7→trm̂〈(τ ,vp)〉 ]) end

174 else calc(ci,(vis,gis),vplf)(trm) end end
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2645. Interface and Derived Requirements 5.1. 5.1.3. Shared Perdurants

175 If the communication is from a gate,

176 then that gate is either an entry gate or an exit gate;

177 if it is an entry gate

178 then the calculator resumes its work with the vehicle (that passed

the entry gate) now recorded, afresh, in the traffic map, trm.

179 Else it is an exit gate and

180 the calculator concludes that the vehicle has ended its

to-be-paid-for journey inside the toll-road net, and hence to be

billed;

181 then the calculator resumes its work with the vehicle now removed

from the traffic map, trm.
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2655. Interface and Derived Requirements 5.1. 5.1.3. Shared Perdurants

170 react to gates(ci,(vis,gis),vplf)(trm) ≡
170 let (ee,(τ ,(vi,li))) = ⌈⌉⌊⌋ {g c ch[ci,gi ]?|gi:GI•gi∈ gis} in

176 case ee of

177 ”Enter” →
178 calc(ci,(vis,gis),vplf)(trm∪[vi 7→〈(τ ,SonL(li))〉 ]),
179 ”Exit” →
180 billing(vi,trm(vi)̂ 〈(τ ,SonL(li))〉);
181 calc(ci,(vis,gis),vplf)(trm\{vi}) end end

The ⌈⌉⌊⌋ operator is the slide version of the non-deterministic choice

operator ⌈⌉⌊⌋.

• The above behaviour is the one for which we are to design software
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5. Interface and Derived Requirements 5.2. Derived Requirements

5.2. Derived Requirements

Definition 18 Derived Perdurant: By a derived perdurant we

shall understand

• a perdurant which is not shared with the domain,

• but which focus on exploiting facilities

• of the software or hardware of the machine
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5. Interface and Derived Requirements 5.2. Derived Requirements

• “Exploiting facilities of the software”, to us,

⋄⋄ means that requirements,

⋄⋄ imply the presence, in the machine, of concepts (i.e., hardware

and/or software),

⋄⋄ and that it is these concepts

⋄⋄ that the derived requirements “rely” on.

• We illustrate all three forms of perdurant extensions:

⋄⋄ derived actions,

⋄⋄ derived events and

⋄⋄ derived behaviours.
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5. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

5.2.1. Derived Actions

Definition 19 Derived Action:

• By a derived action we shall understand

⋄⋄ (a) a conceptual action

⋄⋄ (b) that calculates

◦◦ a usually non-Boolean valued property from,

◦◦ and possibly changes to

⋄⋄ (c) a machine behaviour state

⋄⋄ (d) as instigated by some actor
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2695. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

Example 19 Domain Requirements. Derived Action: Tracing

Vehicles:

• The example is based on the Road Pricing Calculator Behaviour of

Example 18 on Slide 262.

⋄⋄ The “external” actor, i.e., a user of the Road Pricing Calculator

system

⋄⋄ wishes to trace specific vehicles “cruising” the toll-road.

⋄⋄ That user (a Road Pricing Calculator staff),

◦◦ issues a command to the Road Pricing Calculator system,

◦◦ with the identity of a vehicle

◦◦ not already being traced.

⋄⋄ As a result the Road Pricing Calculator system

◦◦ augments a possibly void trace of

◦◦ the timed toll-road positions of vehicles.
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2705. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

• We augment the definition of the calculator definition

Items 168–181, Slides 262–265.

182 Traces are modeled by a pair of dynamic attributes:

a. as a programmable attribute, tra:TRA, of the set of identifiers of

vehicles being traced, and

b. as a reactive attribute, vdu:VDU 17, that maps vehicle identifiers

into time-stamped sequences of simple vehicle positions, i.e., as

a subset of the trm:TRM programmable attribute.

183 The actor-to-calculator begin or end trace command, cmd:Cmd, is

modeled as an autonomous dynamic attribute of the calculator.

184 The calculator signature is furthermore augmented with the three

attributes mentioned above.

17VDU: visual display unit
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5. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

185 The occurrence and handling of an actor trace command is modeled

as a non-deterministic external choice and a react to trace cmd
behaviour.

186 The reactive attribute value (attr vdu ch?) is that subset of the

traffic map (trm) which records just the time-stamped sequences of

simple vehicle positions being traced (tra).

type

182a. TRA = VI-set

182b. VDU = TRM

183 Cmd = BTr | ETr

183 BTr :: VI

183 ETr :: VI
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2725. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

value

184 calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA

169,170 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},

169,170 {g c ch[ci,gi ]|gi:GI•gi ∈ gis},

185,186 attr cmd ch,attr vdu ch Unit

168 calc(ci,(vis,gis))(rlf)(trm)(tra) ≡
169 react to vehicles(ci,(vis,gis),)(rlf)(trm)(tra)

170 ⌈⌉⌊⌋ react to gates(ci,(vis,gis))(rlf)(trm)(tra)

185 ⌈⌉⌊⌋ react to trace cmd(ci,(vis,gis))(rlf)(trm)(tra)

168 pre ci = ciE ∧ vis = visE ∧ gis = gisE

186 axiom � attr vdu ch[ci ]? = trm|tra
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2735. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

187 The react to trace cmd alternative behaviour is either a ”Begin” or

an ”End” request which identifies the affected vehicle.

188 If it is a ”Begin” request

189 and the identified vehicle is already being traced then we do not

prescribe what to do !

190 Else we resume the calculator behaviour, now recording that

vehicle as being traced.

191 If it is an ”End” request

192 and the identified vehicle is already being traced then we do not

prescribe what to do !

193 Else we resume the calculator behaviour, now recording that

vehicle as no longer being traced.
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2745. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

187 react to trace cmd(ci,(vis,gis))(vplf)(trm)(tra) ≡

187 case attr cmd ch[ci ]? of

188,189,190 mkBTr(vi) → if vi ∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra ∪ {vi}) end

191,192,193 mkETr(vi) → if vi 6∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra\{vi}) end

187 end

• The above behaviour, Items 168–193, is the one for which we are to design software
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5. Interface and Derived Requirements 5.2. Derived Requirements 5.2.1. Derived Actions

• Example 19 exemplifies an action requirement as per definition 19:

⋄⋄ (a) the action is conceptual,

it has no physical counterpart in the domain;

⋄⋄ (b) it calculates (186) a visual display (vdu);

⋄⋄ (c) the vdu value is based on a conceptual notion of traffic road

maps (trm), an element of the calculator state;

⋄⋄ (d) the calculation is triggered by an actor (attr cmd ch).
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5.2.2. Derived Events

Definition 20 Derived Event: By a derived event we shall

understand

• (a) a conceptual event,

• (b) that calculates a property or some non-Boolean value

• (c) from a machine behaviour state change
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2775. Interface and Derived Requirements 5.2. Derived Requirements 5.2.2. Derived Events

Example 20 Domain Requirements. Derived Event: Current

Maximum Flow:

• The example is based on the Road Pricing Calculator Behaviour of

Examples 19 and 18 on Slide 262.

⋄⋄ By “the current maximum flow” we understand

◦◦ a time-stamped natural number, the number

◦◦ representing the highest number of vehicles which

∗ at the time-stamped moment cruised

∗ or now cruises

around the toll-road net.

• We augment the definition of the calculator definition

Items 168–193, Slides 262–274.
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5. Interface and Derived Requirements 5.2. Derived Requirements 5.2.2. Derived Events

194 We augment calculator signature with

195 a time-stamped natural number valued dynamic programmable

attribute, (t:T,max:Max).

196 Whenever a vehicle enters the toll-road net, through one of its

[entry] gates,

a. it is checked whether the resulting number of vehicles recorded

in the road traffic map is higher than the hitherto maximum

recorded number.

b. If so, that programmable attribute has its number element

“upped” by one.

c. Otherwise not.

197 No changes are to be made to the react to gates behaviour

(Items 170–181 Slide 265) when a vehicle exits the toll-road net.
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type

195 MAX = T × NAT

value

184,194 calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA → MAX

169,170 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},

169,170 {g c ch[ci,gi ]|gi:GI•gi ∈ gis},

169,170 attr cmd ch,attr vdu ch Unit

...

170 react to gates(ci,(vis,gis))(vplf)(trm)(tra)(t,m) ≡

170 let (ee,(τ ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

176 case ee of

177 ”Enter” →

196 calc(ci,(vis,gis))(vplf)(trm∪[vi 7→〈(τ ,SonL(li))〉 ])(tra)(τ ,if card dom trm = m then m+1 else m end),

197 ”Exit” →

180 billing(vi,trm(vi)̂ 〈(τ ,SonL(li))〉);

181 calc(ci,(vis,gis))(vplf)(trm\{vi})(tra)(t,m) end

176 end

• The above behaviour, Items 168 on Slide 262 through 196c. on the preceding slide, is the one for

which we are to design software
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5. Interface and Derived Requirements 5.2. Derived Requirements 5.2.2. Derived Events

• Example 20 exemplifies a derived event requirement as per

Definition 20:

⋄⋄ (a) the event is conceptual, it has no physical counterpart in the

domain;

⋄⋄ (b) it calculates (196b.) the max value based on a conceptual

notion of traffic road maps (trm),

⋄⋄ (c) which is an element of the calculator state.
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2815. Interface and Derived Requirements 5.2. Derived Requirements 5.2.3. No Derived Behaviours

5.2.3. No Derived Behaviours

• There are no derived behaviours. The reason is as follows.

⋄⋄ Behaviours are associated with parts.

⋄⋄ A possibly ‘derived behaviour’ would entail the introduction of

an ‘associated’ part.

⋄⋄ And if such a part made sense it should – in all likelihood –

already have been either a proper domain part

or become a domain extension.

• If the domain–to-requirements engineer insist on modeling some

interface requirements as a process

then we consider that a technical matter, a choice of abstraction.
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5. Interface and Derived Requirements 5.3. Discussion

5.3. Discussion

5.3.1. Derived Requirements

• Formulation of derived actions or derived events

usually involves technical terms not only from the domain

but typically from such conceptual ‘domains’ as

mathematics, economics, engineering or their visualisation.
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2835. Interface and Derived Requirements 5.3. Discussion 5.3.1. Derived Requirements

• Derived requirements may, for some requirements developments,

constitute “sizable” requirements

compared to “all the other” requirements.

⋄⋄ For their analysis and prescription it makes good sense

to first having developed “the other” requirements:

◦◦ domain,

◦◦ interface and

◦◦ machine

requirements.

⋄⋄ The treatment of the present paper does not offer special

techniques and tools for the conception, &c., of derived

requirements.

⋄⋄ Instead we refer to the seminal works of

[DvLF93, Lau02, van09].
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5. Interface and Derived Requirements 5.3. Discussion 5.3.2. Introspective Requirements

5.3.2. Introspective Requirements

• Humans, including human users are, in this paper,

considered to never be part of the domain

for which a requirements prescription is being developed.

⋄⋄ If it is necessary to involve humans

⋄⋄ in the domain description or the requirements prescription

⋄⋄ then their prescription is to reflect assumptions

⋄⋄ upon whose behaviour the machine rely.
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2855. Interface and Derived Requirements 5.3. Discussion 5.3.2. Introspective Requirements

• It is therefore that we, above, have stated, in passing,

that we cannot accept requirements of the kind:

“the machine must be user friendly”,

because, in reality, it means “the user must rely upon the machine

being ‘friendly’ ”
whatever that may mean.

• We are not requirements prescribing humans, nor their sentiments !
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2866. Machine Requirements

6. Machine Requirements

Definition 21 Machine Requirements: By machine

requirements we shall understand

• such requirements

• which can be expressed “sôlely” using terms

• from, or of the machine

Definition 22 The Machine: By the machine we shall understand

• the hardware

• and software

• to be built from the requirements
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2876. Machine Requirements

• The expression

⋄⋄ which can be expressed

⋄⋄ “sôlely” using terms

⋄⋄ from, or of the machine

shall be understood with “a grain of salt”.

⋄⋄ Let us explain.

◦◦ The machine requirements statements

◦◦ may contain references to domain entities

◦◦ but these are meant to be generic references,

◦◦ that is, references to certain classes of entities in general.

We shall illustrate this “genericity” in some of the examples below.
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2886. Machine Requirements

• Analysis of different kinds of requirements,

⋄⋄ such as exemplified

⋄⋄ but not so classified

⋄⋄ in seminal textbooks [Lau02, van09]

⋄⋄ suggests the following categories of machine requirements:

◦◦ (i) technology requirements and

◦◦ (ii) development requirements .
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6.1. Technology Requirements

Definition 23 Technology Requirements: By technology

requirements we shall understand

• such machine requirements

• which primarily focus on alleviating

⋄⋄ physical deficiencies of the hardware or

⋄⋄ inefficiencies of the software

of the machine —

• cf. Items (i–ii), i.e., Sects. – below
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2906. Machine Requirements 6.1. Technology Requirements

• We shall, in particular, consider the following kinds of technology

requirements:

⋄⋄ (i) performance requirements and

⋄⋄ (ii) dependability requirements

• with dependability requirements being concerned with either

⋄⋄ (a) accessibility,

⋄⋄ (b) availability,

⋄⋄ (c) integrity,

⋄⋄ (d) reliability,

⋄⋄ (e) safety,

⋄⋄ (f) security and/or

⋄⋄ (g) robustness .
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2916. Machine Requirements 6.1. Technology Requirements 6.1.1. Performance Requirements

6.1.1. Performance Requirements

Definition 24 Performance Requirements: By performance
requirements we mean machine requirements that prescribe

• storage consumption,

• (execution, access, etc.) time consumption,

• as well as consumption of any other machine resource:

⋄⋄ number of CPU units (incl. their quantitative characteristics such

as cost, etc.),

⋄⋄ number of printers, displays, etc., terminals (incl. their

quantitative characteristics),

⋄⋄ number of “other”, ancillary software packages (incl. their

quantitative characteristics),

⋄⋄ of data communication bandwidth,

⋄⋄ etcetera
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6. Machine Requirements 6.1. Technology Requirements 6.1.1. Performance Requirements

Example 21 Machine Requirements. Technology: Performance:

• The road pricing system shall be able

⋄⋄ to keep records of up to 50.000 vehicles at any time,

⋄⋄ to record up to 10.000 vehicle positions per second, and

⋄⋄ to bill up to 1000 (distinct) vehicles per second.

• A vehicle is assumed to access the road pricing calculator with a

mean time between accesses of 5 seconds.

• A toll-gate is assumed to access the road pricing calculator with a

mean time between accesses of 5 seconds
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements

6.1.2. Dependability Requirements

• Dependability is a complex notion.

6.1.2.1 Failures, Errors and Faults

• To properly define the concept of dependability we need first

introduce and define the concepts of

⋄⋄ failure,

⋄⋄ error, and

⋄⋄ fault.

a Different Approach to Requirements Engineering 293 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



294
6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

Definition 25 Failure:

• A machine failure occurs

• when the delivered service

• deviates from fulfilling the machine function,

• the latter being what the machine is aimed at
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2956. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

Definition 26 Error:

• An error

• is that part of a machine state

• which is liable to lead to subsequent failure.

• An error affecting the service

• is an indication that a failure occurs or has occurred
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

Definition 27 Fault:

• The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an

error

• is a fault

• The term hazard is here taken to mean the same as the term fault.

• One should read the phrase: “adjudged or hypothesised cause”

carefully:

• In order to avoid an unending trace backward as to the cause,

• we stop at the cause which is intended to be prevented or tolerated.
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Definition 28 Machine Service: The service delivered by a machine

• is its behaviour

• as it is perceptible by its user(s),

• where a user is a human, another machine or a(nother) system

• which interacts with it
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

Definition 29 Dependability: Dependability is defined

• as the property of a machine

• such that reliance can justifiably be placed on the service it delivers

• We continue, less formally, by characterising the above defined

concepts.

• “A given machine, operating in some particular environment (a

wider system), may fail in the sense that some other machine (or

system) makes, or could in principle have made, a judgement that

the activity or inactivity of the given machine constitutes a failure”.

• The concept of dependability can be simply defined as “the quality

or the characteristic of being dependable”, where the adjective

‘dependable’ is attributed to a machine whose failures are judged

sufficiently rare or insignificant.
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2996. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

• Impairments to dependability are the unavoidably expectable

circumstances causing or resulting from “undependability”: faults,

errors and failures.

• Means for dependability are the techniques enabling one

⋄⋄ to provide the ability to deliver a service on which reliance can

be placed,

⋄⋄ and to reach confidence in this ability.

• Attributes of dependability enable

⋄⋄ the properties which are expected from the system to be

expressed,

⋄⋄ and allow the machine quality resulting from the impairments

and the means opposing them to be assessed.

• We consider the following attributes:
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3006. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

• Accessibility

• Availability

• Integrity

• Reliability

• Safety

• Security
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

• Despite all the principles, techniques and tools aimed at fault
prevention,

• faults are created.

• Hence the need for fault removal.

• Fault removal is itself imperfect.

• Hence the need for fault forecasting.

• Our increasing dependence on computing systems in the end brings

in the need for fault tolerance.
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

Definition 30 Dependability Attribute: By a dependability
attribute we shall mean either one of the following:

• accessibility,

• availability,

• integrity,

• reliability,

• robustness,

• safety and

• security.

That is, a machine is dependable if it satisfies some degree of

“mixture” of being accessible, available, having integrity, and being

reliable, safe and secure
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.1. Failures, Errors and Faults

• The crucial term above is “satisfies”.

• The issue is: To what “degree”?

• As we shall see — in a later later lecture — to cope properly

⋄⋄ with dependability requirements and

⋄⋄ their resolution

requires that we deploy

⋄⋄ mathematical formulation techniques,

⋄⋄ including analysis and simulation,

from statistics (stochastics, etc.).
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3046. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.2. Accessibility

6.1.2.2 Accessibility

• Usually a desired, i.e., the required, computing system, i.e., the

machine, will be used by many users — over “near-identical” time

intervals.

• Their being granted access to computing time is usually specified,

at an abstract level, as being determined by some internal

nondeterministic choice, that is: essentially by “tossing a coin”!

• If such internal nondeterminism was carried over, into an

implementation, some “coin tossers” might not get access to the

machine “for a long- long time”.

a Different Approach to Requirements Engineering 304 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



3056. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.2. Accessibility

Definition 31 Accessibility: A system being accessible — in the

context of a machine being dependable —

• means that some form of “fairness”

• is achieved in guaranteeing users “equal” access

• to machine resources, notably computing time (and what derives

from that).

Example 22 Machine Requirements. Technology: Accessibility:

• No vehicle access to the road pricing calculator shall wait more

than 2 seconds.

• No toll-gate access to the road pricing calculator shall wait more

than 2 seconds.
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.3. Availability

6.1.2.3 Availability

• Usually a desired, i.e., the required, computing system, i.e., the

machine, will be used by many users — over “near-identical” time

intervals.

• Once a user has been granted access to machine resources, usually

computing time, that user’s computation may effectively make the

machine unavailable to other users —

• by “going on and on and on”!

a Different Approach to Requirements Engineering 306 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



3076. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.3. Availability

Definition 32 Availability: By availability — in the context of a

machine being dependable — we mean

• its readiness for usage.

• That is, that some form of “guaranteed percentage of computing
time” per time interval (or percentage of some other computing

resource consumption)

• is achieved, for example, in the form of “time slicing”

Example 23 Machine Requirements. Technology: Availability:

• We simplify the availability requirements due to the apparent

simplicity of the vehicle movement records and billings.

⋄⋄ The complete handling of the recording or billing of a vehicle

movement shall be done without interference from other

recordings or billings
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6.1.2.4 Integrity

Definition 33 Integrity: A system has integrity — in the context of a

machine being dependable — if

• it is and remains unimpaired,

• i.e., has no faults, errors and failures,

• and remains so, without these,

• even in the situations where the environment of the machine has

faults, errors and failures

• Integrity seems to be a highest form of dependability,

• i.e., a machine having integrity is 100% dependable !

• The machine is sound and is incorruptible.
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3096. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.4. Integrity

Example 24 Machine Requirements. Technology: Integrity:

• We do not require an explicit formulation of integrity.

• We instead refer to the

⋄⋄ reliability,

⋄⋄ safety,

⋄⋄ security and

⋄⋄ robustness

measures (below)
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3106. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.5. Reliability

6.1.2.5 Reliability

Definition 34 Reliability: A system being reliable — in the context

of a machine being dependable — means

• some measure of continuous correct service,

• that is, measure of (mean) time to failure (MTTF)

Example 25 Machine Requirements. Technology: Reliability:

• A road pricing calculator shall have a MTTF of least 108 seconds or

approx. 40 months.
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3116. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.6. Safety

6.1.2.6 Safety

Definition 35 Safety: By safety — in the context of a machine being

dependable — we mean

• some measure of continuous delivery of service of

⋄⋄ either correct service, or incorrect service after benign failure,

• that is: Measure of time to catastrophic failure
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3126. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.6. Safety

Example 26 Machine Requirements. Technology: Safety:

• The road pricing system, now including the

⋄⋄ vehicle global position system and the

⋄⋄ toll-gate sensors and barrier actuator

• shall have

⋄⋄ a mean time to catastrophic failure

⋄⋄ equal to the MTTF, 108 seconds
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3136. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.7. Security

6.1.2.7 Security

We shall take a rather limited view of security. We are not including

any consideration of security against brute-force terrorist attacks. We

consider that an issue properly outside the realm of software

engineering.

• Security, then, in our limited view, requires a notion of authorised
user,

• with authorised users being fine-grained authorised to access only a

well-defined subset of system resources (data, functions, etc.).

• An unauthorised user (for a resource) is anyone who is not

authorised access to that resource.
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.7. Security

Definition 36 Security: A system being secure — in the context of a

machine being dependable —

• means that an unauthorised user, after believing that he or she has

had access to a requested system resource:

⋄⋄ cannot find out what the system resource is doing,

⋄⋄ cannot find out how the system resource is working

⋄⋄ and does not know that he/she does not know!

• That is, prevention of unauthorised access to computing and/or

handling of information (i.e., data)

Example 27 Machine Requirements. Technology: Security:

• We omit exemplifying road pricing system security
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3156. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.8. Robustness

6.1.2.8 Robustness

Definition 37 Robustness: A system is robust — in the context of

dependability —

• if it retains its attributes

⋄⋄ after failure, and

⋄⋄ after maintenance

• Thus a robust system is “stable”

⋄⋄ across failures

⋄⋄ and “across” possibly intervening “repairs”

⋄⋄ and “across” other forms of maintenance.
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6. Machine Requirements 6.1. Technology Requirements 6.1.2. Dependability Requirements 6.1.2.8. Robustness

Example 28 Machine Requirements. Technology: Robustness:

• We restrict ourselves to consider only the software of the road

pricing system.

⋄⋄ For every instance of

◦◦ restart after failure

◦◦ it shall be verified

◦◦ that all attributes have retained their appropriate values;

⋄⋄ and for every instance of

◦◦ software maintenance, see Sect. ,

◦◦ the whole system shall be verified, i.e.,

∗ tested,

∗ model checked and

∗ proven correct,

◦◦ to the same and full extent that the original system delivery

was verified
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6. Machine Requirements 6.2. Development Requirements

6.2. Development Requirements

Definition 38 Development Requirement:

• By development requirements we shall understand

⋄⋄ (i) process requirements (Sect. 6.4.1),

⋄⋄ (ii) maintenance requirements (Sect. 6.4.2),

⋄⋄ (iii) platform requirements (Sect. 6.4.3),

⋄⋄ (iv) management requirements (Sect. 6.4.4) and

⋄⋄ (v) documentation requirements (Sect. 6.4.5)
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3186. Machine Requirements 6.2. Development Requirements 6.2.1. Process Requirements

6.2.1. Process Requirements

Definition 39 Process Requirement:

• By a development process requirements we shall

understand requirements which are concerned with the

development process to be followed by the development engineers:

⋄⋄ whether pursuing formal methods, and to which degree, and

(compatibly)/or

⋄⋄ whether pursuing best practices, and possible details thereof, and

(compatibly)/or

⋄⋄ whether adhering otherwise to established, e.g., IEEE standards,

⋄⋄ etcetera
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6. Machine Requirements 6.2. Development Requirements 6.2.1. Process Requirements

Example 29 Machine Requirements. Development: Road Pricing

System:

• The road pricing system is to be developed

⋄⋄ according to the triptych approach;

⋄⋄ based on, or developing itself, a generic transport domain

description,

as per the approach outlined in [Bjø16b],

expressing suitable predicates about that description,

and testing, model checking and proving satisfaction of these

verifications;

⋄⋄ accurately detailing the requirements prescriptions as per the

approach outlined in [Bjø16a, this paper (!)];

⋄⋄ etcetera;

⋄⋄ finally testing, model checking and proving satisfaction of

D ,S |= R.
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3206. Machine Requirements 6.2. Development Requirements 6.2.2. Maintenance Requirements

6.2.2. Maintenance Requirements

Definition 40 Maintenance Requirements: By maintenance
requirements we understand a combination of requirements with

respect to:

• adaptive maintenance,

• corrective maintenance,

• perfective maintenance,

• preventive maintenance and

• extensional maintenance
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6. Machine Requirements 6.2. Development Requirements 6.2.2. Maintenance Requirements

• Maintenance of building, mechanical, electrotechnical and

electronic artifacts — i.e., of artifacts based on the natural sciences

— is based both on documents and on the presence of the physical

artifacts.

• Maintenance of software is based just on software, that is, on all the

documents (including tests) entailed by software — see

Definition 53 on Slide 337.
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6. Machine Requirements 6.2. Development Requirements 6.2.2. Maintenance Requirements 6.2.2.1. Adaptive Maintenance

6.2.2.1 Adaptive Maintenance

Definition 41 Adaptive Maintenance: By adaptive maintenance
we understand such maintenance

• that changes a part of that software so as to also, or instead, fit to

⋄⋄ some other software, or

⋄⋄ some other hardware equipment

(i.e., other software or hardware which provides new, respectively

replacement, functions)

a Different Approach to Requirements Engineering 322 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



3236. Machine Requirements 6.2. Development Requirements 6.2.2. Maintenance Requirements 6.2.2.1. Adaptive Maintenance

Example 30 Machine Requirements. Development: Adaptive

Maintenance:

• Road pricing system adaptive maintenance shall conclude with a

full set of successful

⋄⋄ formal software tests,

⋄⋄ model checks, and

⋄⋄ correctness proofs
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6.2.2.2 Corrective Maintenance

Definition 42 Corrective Maintenance: By corrective
maintenance we understand such maintenance which

• corrects a software error

Example 31 Machine Requirements. Development: Corrective

Maintenance:

• Road pricing system corrective maintenance shall conclude with a

full set of successful

⋄⋄ formal software tests,

⋄⋄ model checks, and

⋄⋄ correctness proofs
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6.2.2.3 Perfective Maintenance

Definition 43 Perfective Maintenance: By perfective maintenance
we understand such maintenance which

• helps improve (i.e., lower) the need for

• hardware storage, time and (hard) equipment

Example 32 Machine Requirements. Development: Perfective

Maintenance:

• Road pricing system perfective maintenance shall conclude with a

full set of successful

⋄⋄ formal software tests,

⋄⋄ model checks, and

⋄⋄ correctness proofs
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3266. Machine Requirements 6.2. Development Requirements 6.2.2. Maintenance Requirements 6.2.2.4. Preventive Maintenance

6.2.2.4 Preventive Maintenance

Definition 44 Preventive Maintenance: By preventive
maintenance we understand such maintenance which

• helps detect, i.e., forestall, future occurrence

• of software or hardware failures

Example 33 Machine Requirements. Development: Preventive

Maintenance:

• Road pricing system preventive maintenance shall conclude with a

full set of successful

⋄⋄ formal software tests,

⋄⋄ model checks, and

⋄⋄ correctness proofs
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3276. Machine Requirements 6.2. Development Requirements 6.2.2. Maintenance Requirements 6.2.2.5. Extensional Maintenance

6.2.2.5 Extensional Maintenance

Definition 45 Extensional Maintenance: By extensional
maintenance we understand such maintenance which adds new

functionalities to the software, i.e., which implements additional

requirements

Example 34 Machine Requirements. Development: Extensional

Maintenance:

• Road pricing system extensional maintenance shall conclude with a

full set of successful

⋄⋄ formal software tests,

⋄⋄ model checks, and

⋄⋄ correctness proofs
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6.2.3. Platform Requirements

6.2.3.1 Delineation and Facets of Platform Requirements

Definition 46 Platform: By a [computing] platform is here

understood

• a combination of hardware and systems software

• so equipped as to be able to develop and execute software,

• in one form or another

• What the “in one form or another” is

• transpires from the next characterisation.
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3296. Machine Requirements 6.2. Development Requirements 6.2.3. Platform Requirements 6.2.3.1. Delineation and Facets of Platform Requirements

Definition 47 Platform Requirements: By platform requirements
we mean a combination of the following:

• execution platform requirements,

• demonstration platform requirements,

• development platform requirements and

• maintenance platform requirements
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6.2.3.2 Execution Platform

Definition 48 Execution Platform Requirements: By execution
platform requirements we shall understand such machine

requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be executed

a Different Approach to Requirements Engineering 330 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



331
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6.2.3.3 Demonstration Platform

Definition 49 Demonstration Platform Requirements: By

demonstration platform requirements we shall understand such

machine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be demonstrated to the customer — say for acceptance tests,

or for management demos, or for user training
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3326. Machine Requirements 6.2. Development Requirements 6.2.3. Platform Requirements 6.2.3.4. Development Platform

6.2.3.4 Development Platform

Definition 50 Development Platform Requirements: By

development platform requirements we shall understand such machine

requirements which

• detail the specific software and hardware

• for the platform on which the software

• is to be developed
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3336. Machine Requirements 6.2. Development Requirements 6.2.3. Platform Requirements 6.2.3.5. Maintenance Platform

6.2.3.5 Maintenance Platform

Definition 51 Maintenance Platform Requirements: By

maintenance platform requirements we shall understand such machine

requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be maintained
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6. Machine Requirements 6.2. Development Requirements 6.2.3. Platform Requirements 6.2.3.5. Maintenance Platform

Example 35 Machine Requirements. Development: Platform:

• The DDC [BGOR10] Ada Compiler [BO80, CO84, Oes86] development

platform requirements were: the system

⋄⋄ shall execute on the US Military Space computer MI1750

running its proprietary MI1750 operating system;

⋄⋄ shall be developed on SUN Sparc Workstations using UNIX;

⋄⋄ shall be demonstrated and maintanied on the NASA Houston TX

installation of MI1750 emulating SUN Sparc workstation

software

⋄⋄
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6. Machine Requirements 6.2. Development Requirements 6.2.4. Management Requirements

6.2.4. Management Requirements

Definition 52 Management Requirements:

• By management requirements we shall understand

requirements that express principles of

⋄⋄ project preparation: staffing, budgetting and financing;

⋄⋄ development: formal/informal, verification (testing, etc.);

⋄⋄ product transfer: maketing, sales, maintenance;

⋄⋄ etcetera
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6. Machine Requirements 6.2. Development Requirements 6.2.4. Management Requirements

Example 36 Machine Requirements. Development: Management:

• We shall refer to [Bjø11a, Believable Software Management]

• for the principles to be followed for the

• development phase(s)
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6.2.5. Documentation Requirements

Definition 53 Software: By software we shall understand

• not only code that may be the basis for executions by a computer,

• but also its full development documentation:

⋄⋄ the stages and steps of application domain description,

⋄⋄ the stages and steps of requirements prescription, and

⋄⋄ the stages and steps of software design prior to code,

with all of the above including all validation and verification (incl.,

formal test [test model, test suite, test result, etc.], model-checking
and proof ) documents.
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3386. Machine Requirements 6.2. Development Requirements 6.2.5. Documentation Requirements

• In addition, as part of our wider concept of software, we also

include a comprehensive collection of supporting documents:

⋄⋄ training manuals,

⋄⋄ installation manuals,

⋄⋄ user manuals,

⋄⋄ maintenance manuals, and

⋄⋄ development and maintenance logbooks.
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Definition 54 Documentation Requirements: By documentation

requirements

• we mean requirements

• of any of the software documents

• that together make up

⋄⋄ software and

⋄⋄ hardware18

Example 37 Machine Requirements. Development: Documentation:

• The road pricing system documentation requirements shall include

⋄⋄ all of the software documents

⋄⋄ implied by Definition 53 on Slide 337 above

18— we omit a definition of what we mean by hardware such as the one we gave for

software, cf. Definition 53 on Slide 337.
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6.3. Discussion

TO BE WRITTEN
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7. Conclusion

7. Conclusion

• Conventional requirements engineering considers the domain only

rather implicitly.

⋄⋄ Requirements gathering (‘acquisition’) is not structured by any

pre-existing knowledge of the domain,

⋄⋄ instead it is “structured” by a number of relevant techniques and

tools [Jac01, van09, Jac10]

⋄⋄ which, when applied, “fragment-by-fragment” “discovers” such

elements of the domain that are immediately relevant to the

requirements.
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3427. Conclusion

• The present work turns this requirements prescription process

“up-side-down”.

⋄⋄ Now the process is guided (“steered”, “controlled”) almost

exclusively by the domain description

⋄⋄ which is assumed to be existing before the requirements

development starts.
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3437. Conclusion

• In conventional requirements engineering

⋄⋄ many of the relevant techniques and tools can be said to take into

account

⋄⋄ sociological and psychological facets of gathering the

requirements and

⋄⋄ linguistic facets of expressing these requirements.

⋄⋄ That is, the focus is rather much on the process.
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3447. Conclusion

• In the present paper’s requirements “derivation” from domain

descriptions

⋄⋄ the focus is all the time on the descriptions and prescriptions,

⋄⋄ in particular on their formal expressions and

⋄⋄ the “transformation” of these.

⋄⋄ That is (descriptions and) prescriptions are considered formal,

mathematical objects.

⋄⋄ That is, the focus is rather much on the objects.
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3457. Conclusion

•••

• We conclude by briefly reviewing

⋄⋄ what has been achieved,

⋄⋄ present shortcomings,

⋄⋄ possible research challenges, and

⋄⋄ a few words on relations to “classical requirements engineering”.
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3467. Conclusion

7.0.0.1 What has been Achieved ?

• We have shown how to systematically “derive”

initial aspects of requirements prescriptions from domain

descriptions.

⋄⋄ The stages19 and steps20 of this “derivation”21 are new.

⋄⋄ We claim that current requirements engineering approaches,

although they may refer to a or the ‘domain’,

are not really ‘serious’ about this:

◦◦ they do not describe the domain, and

◦◦ they do not base their techniques and tools

◦◦ on a reasoned understanding of the domain.

19(a) domain, (b) interface and (c) machine requirements
20For domain requirements: (i) projection, (ii) instantiation, (iii) determination, (iv) extension and (v) fitting; etc.
21We use double quotation marks: “. . . ” to indicate that the derivation is not automatable.
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3477. Conclusion

⋄⋄ In contrast we have identified, we claim, a logically motivated

decomposition of

◦◦ requirements into three phases, cf. Footnote 19 on the

preceding slide.,

◦◦ of domain requirements into five steps, cf. Footnote 20 on the

previous slide., and

◦◦ of interface requirements, based on a concept of shared

entities,

tentatively into (α) shared endurants, (β ) shared actions, (γ)

shared events, and (δ ) shared behaviours

(with more research into the (α-δ ) techniques needed).
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3487. Conclusion

7.0.0.2 Present Shortcomings and Research Challenges:

• We see three shortcomings:

⋄⋄ (1) The “derivation” techniques have yet to consider

“extracting” requirements from domain facet descriptions.

◦◦ We plan to rewrite [Bjø10a] and extend it to include

requirements considerations.

◦◦ Only by including domain facet descriptions

∗ can we, in “deriving” requirements prescriptions,

∗ include failures of, for example, support technologies and

humans,

∗ in the design of tault-tolerant software.
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⋄⋄ (2) The “derivation” principles, techniques and tools

should be given a formal treatment.

⋄⋄ (3) There is a serious need for relating the approach of the

present paper to that of the seminal text book of [van09, Axel

van Lamsweerde].

◦◦ [van09] is not being “replaced” by the present work.

It tackles a different set of problems.

◦◦ We refer to the penultimate paragraph before the

Acknowledgement closing.

a Different Approach to Requirements Engineering 349 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



3507. Conclusion

7.0.0.3 Comparison to “Classical” Requirements Engineering:

• Except for a few, represented by two,

we are not going to compare

the contributions of the present paper

with published journal or conference papers

on the subject of requirements engineering.
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• The reason for this is the following.

⋄⋄ The present paper, rather completely, we claim,

reformulates requirements engineering,

⋄⋄ giving it a ‘foundation’, in domain engineering ,

⋄⋄ and then developing requirements engineering from there,

⋄⋄ viewing requirements prescriptions as “derived” from domain

descriptions.

⋄⋄ We do not see any of the papers, except those reviewed below

[JHJ07] and [DvLF93],

referring in any technical sense to ‘domains’ such as we

understand them.
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7.0.0.4 [JHJ07, Deriving Specifications for Systems That Are Connected to the Physical World]

• The paper that comes closest to the present paper in its serious

treatment of the [problem] domain as a precursor for requirements

development is that of [JHJ07, Jones, Hayes & Jackson].

⋄⋄ A purpose of [JHJ07] (Sect. 1.1, Page 367, last §)

is to see “how little can one say” (about the problem domain)

when expressing assumptions about requirements.

⋄⋄ This is seen by [JHJ07] (earlier in the same paragraph) as in

contrast to our form of domain modeling.

⋄⋄ [JHJ07] reveals assumptions about the domain when expressing

rely guarantees in tight conjunction with expressing the

guarantee (requirements).

⋄⋄ That is, analysing and expressing requirements, in [JHJ07], goes

hand-in-hand with analysing and expressing fragments of the

domain.

a Different Approach to Requirements Engineering 352 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



353
7. Conclusion

• The current paper takes the view that

⋄⋄ since, as demonstrated in [Bjø16b], it is possible to model

sizable aspects of domains,

⋄⋄ then it would be interesting to study how one might “derive” —

and which — requirements prescriptions from domain

descriptions;

⋄⋄ and having demonstrated that (i.e., the “how much can be

derived”)

⋄⋄ it seems of scientific interest to see how that new start

(i.e., starting with a priori given domain descriptions

or starting with first developing domain descriptions)

can be combined with existing approaches, such as [JHJ07].
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• We do appreciate the “tight coupling” of rely–guarantees of

[JHJ07].

⋄⋄ But perhaps one looses understanding the domain

⋄⋄ due to its fragmented presentation.

⋄⋄ If the ‘relies’ are not outright, i.e., textually directly expressed

⋄⋄ in our domain descriptions, then they obviously

⋄⋄ must be provable properties of what our domain descriptions

express.
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• Our, i.e., the present, paper — with its background in [Bjø16b,

Sect. 4.7] —

⋄⋄ develops — with a background in [Jac95, M.A. Jackson] —

⋄⋄ a set of principles and techniques for the access of attributes.

⋄⋄ The “discovery” of the CM and SG channels of [JHJ07] and of

the type of their messages,

⋄⋄ seems, compared to our approach, less systematic.
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• Also, it is not clear how the [JHJ07] case study “scales” up to a larger domain.

⋄⋄ The sluice gate of [JHJ07] is

but part of a large (‘irrigation’) system of reservoirs (water sources), canals,

sluice gates and the fields (water sinks) to be irrigated.

⋄⋄ We obviously would delineate such a larger system

⋄⋄ and research & develop an appropriate, both informal, a narrative,

and formal domain description for such a class of irrigation systems based on

assumptions of precipitation and evaporation.

⋄⋄ Then the users’ requirements, in [JHJ07],

that the sluice gate, over suitable time intervals,

is open 20% of the time and otherwise closed,

could now be expressed more pertinently,

in terms of the fields being appropriately irrigated.
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7.0.0.5 [DvLF93, Goal-directed Requirements Acquisition]

• outlines an approach to requirements acquisition that starts with

fragments of domain description.

⋄⋄ The domain description is captured in terms of predicates over

actors, actions, events, entities and (their) relations.
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⋄⋄ Our approach to domain modeling differs from that of [DvLF93]

as follows:

◦◦ Agents, actions, entities and relations are, in [DvLF93], seen

as specialisations of a concept of objects.

◦◦ The nearest analogy to relations, in [Bjø16b], as well as in this

paper, is the signatures of perdurants.

◦◦ Our ‘agents’ relate to discrete endurants, i.e., parts, and are the

behaviours that evolve around these parts: one agent per part !

◦◦ [DvLF93] otherwise include describing parts, relations

between parts, actions and events much like [Bjø16b] and this

paper does.
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• [DvLF93] then introduces a notion of goal .

⋄⋄ A goal, in [DvLF93], is defined as

⋄⋄ ′′a nonoperational objective

⋄⋄ to be achieved by the desired system.

⋄⋄ Nonoperational means that the objective is not formulated in
terms

⋄⋄ of objects and actions “available” to some agent of the system
22′′

22We have reservations about this definition: Firstly, it is expressed in terms of some

of the “things” it is not ! (To us, not a very useful approach.) Secondly, we can

imagine goals that are indeed formulated in terms of objects and actions ‘available’

to some agent of the system. For example, wrt. the ongoing library examples of

[DvLF93], the system shall automate the borrowing of books, etcetera. Thirdly, we

assume that by “ ‘available’ to some agent of the system” is meant that these agents,

actions, entities, etc., are also required.
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• [DvLF93] then goes on to exemplify goals.

⋄⋄ In this, the current paper, we are not considering goal s, also a major theme of

[van09].23

⋄⋄ Typically the expression of goals of [DvLF93, van09], are “within” computer

& computing science and involve the use of temporal logic.24

23An example of a goal — for the road pricing system — could be that of

◦◦ shortening travel times of motorists,

◦◦ reducing gasoline consumption and air pollution,

◦◦ while recouping investments on toll-road construction.

⋄⋄ We consider techniques for ensuring the above kind of goals

◦◦ “outside” the realm of computer & computing science

◦◦ but “inside” the realm of operations research (OR) —

◦◦ while securing that the OR models are commensurate with our domain models.

24In this paper we do not exemplify goals, let alone the use of temporal logic. We cannot exemplify all aspects of domain description and requirements prescription, but, if

we were, would then use the temporal logic of [ZH04, The Duration Calculus].
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⋄⋄ ′′Constraints are operational objectives

◦◦ to be achieved by the desired (i.e., required) system, . . . ,

◦◦ formulated in terms of objects and actions “available”

◦◦ to some agents of the system. . . .

⋄⋄ Goals are made operational through constraints. . . .

⋄⋄ A constraint operationalising a goal amounts to some abstract
“implementation” of this goal ′′ [DvLF93].

⋄⋄ [DvLF93] then goes on to express goals and constraints

operationalising these.

⋄⋄ [DvLF93] is a fascinating paper25 as it shows how to build goals

and constraints on domain description fragments.

25— that might, however, warrant a complete rewrite.

a Different Approach to Requirements Engineering 361 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 12, 2016: 10:32



3627. Conclusion

•••

• These papers, [JHJ07] and [DvLF93], as well as the current paper,

⋄⋄ together with such seminal monographs as

[ZH04, OD08, van09],

⋄⋄ clearly shows that there are many diverse ways

⋄⋄ in which to achieve precise requirements prescriptions.

⋄⋄ The [ZH04, OD08] monographs primarily study the D ,S |= R

specification and proof techniques

from the point of view of the specific tools of their specification

languages26.

26The Duration Calculus [DC], respectively DC, Timed Automata and Z
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⋄⋄ Physics, as a natural science, and its many engineering

‘renditions’,

are manifested in many separate sub-fields: Electricity,

mechanics, statics, fluid dynamics — each with further

sub-fields.

⋄⋄ It seems, to this author, that there is a need to study

⋄⋄ the [ZH04, OD08, van09] approaches

and the approach taken in this paper

in the light of identifying sub-fields of requirements engineering.

⋄⋄ The title of the present paper suggests one such sub-field.
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7. Conclusion 7.1. Bibliographical Notes

7.1. Bibliographical Notes

• I have thought about domain engineering for more than 20 years.

• But serious, focused writing only started to appear since [Bjø06,

Part IV] — with [Bjø03, Bjø97] being exceptions:

⋄⋄ [Bjø07] suggests a number of domain science and engineering

research topics;

⋄⋄ [Bjø10a] covers the concept of domain facets;

⋄⋄ [BE10] explores compositionality and Galois connections.

⋄⋄ [Bjø08, Bjø10c] show how to systematically, but, of course, not

automatically, “derive” requirements prescriptions from domain

descriptions;
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3687. Conclusion 7.1. Bibliographical Notes

⋄⋄ [Bjø11a] takes the triptych software development as a basis for

outlining principles for believable software management;

⋄⋄ [Bjø09, Bjø14a] presents a model for Stanisław Leśniewski’s

[CV99] concept of mereology;

⋄⋄ [Bjø10b, Bjø11b] present an extensive example and is otherwise

a precursor for the present paper;

⋄⋄ [Bjø11c] presents, based on the TripTych view of software

development as ideally proceeding from domain description via

requirements prescription to software design, concepts such as

software demos and simulators;

⋄⋄ [Bjø13] analyses the TripTych, especially its domain

engineering approach, with respect to [Mas43, Mas54,

Maslow]’s and [PS04, Peterson’s and Seligman’s]’s notions of

humanity: how can computing relate to notions of humanity;
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⋄⋄ the first part of [Bjø14b] is a precursor for [Bjø16b] with the

second part of [Bjø14b] presenting a first formal model of the

elicitation process of analysis and description based on the

prompts more definitively presented in the current paper; and

with

⋄⋄ [Bjø14c] focus on domain safety criticality.

⋄⋄ The present paper, [Bjø16a], marks, for me, a high point, with

⋄⋄ [Bjø16b] now constituting the base introduction to domain

science & engineering.
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