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Abstract

We give an abstract model1 of parts and part-hood relations, of Stansław Leśniewski’s

mereology [2]. Mereology applies to software application domains such as the fi-
nancial service industry, railway systems, road transport systems, health care, oil
pipelines, secure [IT] systems, etcetera. We relate this model to axiom systems

for mereology, showing satisfiability, and show that for every mereology there

corresponds a class of Communicating Sequential Processes [3], that is: a

λ–expression.
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In memory of Douglas T. Ross 1929–2007

1. Introduction

The term ‘mereology’ is accredited to the Polish mathematician, philosopher

and logician Stansław Leśniewski (1886–1939). In this contribution we shall be

concerned with only certain aspects of mereology, namely those that appears most

immediately relevant to domain science (a relatively new part of current computer

science). Our knowledge of ‘mereology’ has been through studying, amongst

others, [2].

1.1. Computing Science Mereology

“Mereology (from the Greek µερoς ‘part’) is the theory of parthood relations:

of the relations of part to whole and the relations of part to part within a whole”2.

1This paper is a complete rewrite of [1]. Sections 3 and 6 are thus completely rewritten.
2Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [2]
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Figure 1: Immediately ‘Adjacent’ and ‘Embedded Within’ Parts
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Figure 2: Transitively ‘Adjacent’ and ‘Embedded Within’ Parts

In this contribution we restrict ‘parts’ to be those that, firstly, are spatially distin-

guishable, then, secondly, while “being based” on such spatially distinguishable

parts, are conceptually related. We use the term ‘part’ in a more general sense than

in [4]. The relation: “being based”, shall be made clear in this paper. Accordingly

two parts, px and py, (of a same “whole”) are are either “adjacent”, or are “embed-

ded within”, one within the other, as loosely indicated in Fig. 1. ‘Adjacent’ parts

are direct parts of a same third part, pz, i.e., px and py are “embedded within” pz;

or one (px) or the other (py) or both (px and py) are parts of a same third part,

p′z “embedded within” pz; etcetera; as loosely indicated in Fig. 2, or one is “em-

bedded within” the other — etc. as loosely indicated in Fig. 2. Parts, whether

‘adjacent’ or ‘embedded within’, can share properties. For adjacent parts this

sharing seems, in the literature, to be diagrammatically expressed by letting the

part rectangles “intersect”. Usually properties are not spatial hence ‘intersection’

seems confusing. We refer to Fig. 3. Instead of depicting parts sharing properties

as in Fig. 3[L]eft, where shaded, dashed rounded-edge rectangles stands for ‘shar-

ing’, we shall (eventually) show parts sharing properties as in Fig. 3[R]ight where

•—• connections connect those parts.
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Figure 3: Two models, [L,R], of parts sharing properties
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1.2. From Domains via Requirements to Software

One reason for our interest in mereology is that we find that concept relevant

to the modeling of domains. A derived reason is that we find the modeling of

domains relevant to the development of software. Conventionally a first phase of

software development is that of requirements engineering. To us domain engi-

neering is (also) a prerequisite for requirements engineering [5]. Thus to prop-

erly design Software we need to understand its or their Requirements; and to

properly prescribe Requirements one must understand its Domain. To argue

correctness of Software with respect to Requirements one must usually make as-

sumptions about the Domain: D,S |= R. Thus description of Domains become

an indispensable part of Software development.

1.3. Domains: Science and Engineering

Domain Science is the study and knowledge of domains. Domain Engi-

neering is the practice of “walking the bridge” from domain science to do-

main descriptions: to create domain descriptions on the background of sci-

entific knowledge of domains, the specific domain “at hand”, or domains in gen-

eral; and to study domain descriptions with a view to broaden and deepen

scientific results about domain descriptions. This contribution is based on the

engineering and study of many descriptions, of air traffic, banking, commerce
(the consumer/retailer/wholesaler/producer supply chain), container lines, health
care, logistics, pipelines, railway systems, secure [IT] systems, stock exchanges,
etcetera.

1.4. Contributions of This Paper

A general contribution of this paper is that of providing elements of a domain

science. Three specific contributions are those of (i) giving a model that satisfies

published formal, axiomatic characterisations of mereology; (ii) showing that to

every (such modeled) mereology there corresponds a CSP [3] program; and (iii)

suggesting complementing syntactic and semantic theories of mereology.

1.5. Structure of This Paper

We briefly overview the structure of this contribution. First, in Sect. 2, we

loosely characterise how we look at mereologies: “what they are to

us !”. Then, in Sect. 3, we give an abstract, model-oriented specification

of a class of mereologies in the form of composite parts and composite and

atomic subparts and their possible connections. The abstract model as well as the

axiom system (Sect. 5) focuses on the syntax of mereologies. Following that,

in Sect. 5, we indicate how the model of Sect. 3 satisfies the axiom system

of that section. In preparation for Sect. 6 we present characterisations of

attributes of parts, whether atomic or composite. Finally Sect. 6 presents a
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semantic model of mereologies, one of a wide variety of such possible models.

This one emphasizes the possibility of considering parts and subparts as processes

and hence a mereology as a system of processes. Section 7 concludes with some

remarks on what we have achieved.

2. Our Concept of Mereology

2.1. Informal Characterisation

Mereology, to us, is the study and knowledge about how physical and concep-

tual parts relate and what it means for a part to be related to another part: being

disjoint, being adjacent, being neighbours, being contained properly within, be-

ing properly overlapped with, etcetera. By physical parts we mean such spatial

individuals which can be pointed to. Examples: a road net (consisting of street

segments and street intersections); a street segment (between two intersections);

a street intersection; a road (of sequentially neigbouring street segments of the

same name); a vehicle; and a platoon (of sequentially neigbouring vehicles). By

a conceptual part we mean an abstraction with no physical extent, which is either

present or not. Examples: a bus timetable (not as a piece or booklet of paper, or as

an electronic device, but) as an image in the minds of potential bus passengers; and

routes of a pipeline, that is, neighbouring sequences of pipes, valves, pumps, forks

and joins, for example referred to in discourse: “the gas flows through “such-and-
such” a route”. The tricky thing here is that a route may be thought of as being

both a concept or being a physical part — in which case one ought give them dif-

ferent names: a planned route and an actual road, for example. The mereological

notion of subpart, that is: contained within can be illustrated by examples: the in-

tersections and street segments are subparts of the road net; vehicles are subparts

of a platoon; and pipes, valves, pumps, forks and joins are subparts of pipelines.

The mereological notion of adjacency can be illustrated by examples. We con-

sider the various controls of an air traffic system, cf. Fig. 4 on the following page,

as well as its aircraft, as adjacent within the air traffic system; the pipes, valves,

forks, joins and pumps of a pipeline, cf. Fig. 9 on Page 9, as adjacent within the

pipeline system; two or more banks of a banking system, cf. Fig. 6 on Page 7, as

being adjacent. The mereo-topological notion of neighbouring can be illustrated

by examples: Some adjacent pipes of a pipeline are neighbouring (connected) to

other pipes or valves or pumps or forks or joins, etcetera; two immediately adja-

cent vehicles of a platoon are neighbouring. The mereological notion of proper
overlap can be illustrated by examples some of which are of a general kind: two

routes of a pipelines may overlap; and two conceptual bus timetables may overlap

with some, but not all bus line entries being the same; and some really reflect ad-

jacency: two adjacent pipe overlap in their connection, a wall between two rooms

overlap each of these rooms — that is, the rooms overlap each other “in the wall”.
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Figure 4: A schematic air traffic system

2.2. Six Examples

We shall, in Sect. 3, present a model that is claimed to abstract essential mere-

ological properties of air traffic, buildings and their installations, machine as-

semblies, financial service industry, the oil industry and oil pipelines, and railway

nets.

2.2.1. Air Traffic

Figure 4 shows nine adjacent (9) boxes and eighteen adjacent (18) lines. Boxes

and lines are parts. The line parts “neighbours” the box parts they “connect”.

Individually boxes and lines represent adjacent parts of the composite air traffic

“whole”. The rounded corner boxes denote buildings. The sharp corner box de-

note aircraft. Lines denote radio telecommunication. The “overlap” between neig-

bouring line and box parts are indicated by “connectors”. Connectors are shown as

small filled, narrow, either horisontal or vertical “filled” rectangle3 at both ends of

the double-headed-arrows lines, overlapping both the line arrows and the boxes.

The index ranges shown attached to, i.e., labeling each unit, shall indicate that

there are a multiple of the “single” (thus representative) box or line unit shown.

These index annotations are what makes the diagram of Fig. 4 schematic. Notice

that the ‘box’ parts are fixed installations and that the double-headed arrows desig-

nate the ether where radio waves may propagate. We could, for example, assume

that each such line is characterised by a combination of location and (possibly

encrypted) radio communication frequency. That would allow us to consider all

lines for not overlapping. And if they were overlapping, then that must have been

a decision of the air traffic system.

3There are 38 such rectangles in Fig. 4.
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Figure 5: A building plan with installation

2.2.2. Buildings

Figure 5 shows a building plan — as a composite part. The building consists

of two buildings, A and H. The buildings A and H are neighbours, i.e., shares a

common wall. Building A has rooms B, C, D and E, Building H has roomsI, J
and K; Rooms L and M are within K. Rooms F and G are within C. The thick lines

labeled N, O, P, Q, R, S, and T models either electric cabling, water supply, air

conditioning, or some such “flow” of gases or liquids. Connection κιo provides

means of a connection between an environment, shown by dashed lines, and B or

J, i.e. “models”, for example, a door. Connections κ provides “access” between

neighbouring rooms. Note that ‘neighbouring’ is a transitive relation. Connection

ωιo allows electricity (or water, or oil) to be conducted between an environment

and a room. Connection ω allows electricity (or water, or oil) to be conducted

through a wall. Etcetera. Thus “the whole” consists of A and B. Immediate sub-

parts of A are B, C, D and E. Immediate subparts of C are G and F. Etcetera.

2.2.3. Financial Service Industry

Figure 6 on the next page is rather rough-sketchy! It shows seven (7) larger boxes

[6 of which are shown by dashed lines], six [6] thin lined “distribution” boxes,

and twelve (12) double-arrowed lines. Boxes and lines are parts. (We do not de-

scribed what is meant by “distribution”.) Where double-arrowed lines touch upon

(dashed) boxes we have connections. Six (6) of the boxes, the dashed line boxes,

are composite parts, five (5) of them consisting of a variable number of atomic

parts; five (5) are here shown as having three atomic parts each with bullets “be-

tween” them to designate “variability”. Clients, not shown, access the outermost

(and hence the “innermost” boxes, but the latter is not shown) through connec-

tions, shown by bullets, •.
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2.2.4. Machine Assemblies

Figure 7 on the preceding page shows a machine assembly. Square boxes desig-

nate either composite or atomic parts. Black circles or ovals show connections.

The full, i.e., the level 0, composite part consists of four immediate parts and

three internal and three external connections. The Pump is an assembly of six

(6) immediate parts, five (5) internal connections and three (3) external connec-

tors. Etcetera. Some connections afford “transmission” of electrical power. Other

connections convey torque. Two connections convey input air, respectively output

air.

2.2.5. Oil Industry

“The” Overall Assembly. Figure 8 shows a composite part consisting of four-

teen (14) composite parts, left-to-right: one oil field, a crude oil pipeline system,

two refineries and one, say, gasoline distribution network, two seaports, an ocean

(with oil and ethanol tankers and their sea lanes), three (more) seaports, and three,

say gasoline and ethanol distribution networks. Between all of the neighbouring

composite parts there are connections, and from some of these composite parts

there are connections (to an external environment). The crude oil pipeline system

composite part will be concretised next.

A Concretised Composite Pipeline. Figure 9 on the following page shows

a pipeline system. It consists of 32 atomic parts: fifteen (15) pipe units (shown

as directed arrows and labeled p1–p15), four (4) input node units (shown as small

circles, ◦, and labeled ini–inℓ), four (4) flow pump units (shown as small circles, ◦,

and labeled fpa–fpd ), five (5) valve units (shown as small circles, ◦, and labeled

vx–vw), three (3) join units (shown as small circles, ◦, and labeled jb–jc), two

(2) fork units (shown as small circles, ◦, and labeled fb–fc), one (1) combined

join & fork unit (shown as small circles, ◦, and labeled jafa), and four (4) output

node units (shown as small circles, ◦, and labeled onp–ons). In this example

the routes through the pipeline system start with node units and end with node

units, alternates between node units and pipe units, and are connected as shown

8



fpb

fpa fpc

fpd

p1

p2

p3

p4 p5

p7

p6

p10

p11

p12

p8

p9
p13

p14

p15

inj

inl

onr

ons

ini

ink

onp

onq

may connect to oil field

may be left dangling

may connect to refinery

may be left "dangling"

Connector       

Node unit

Connection (between pipe units and node units)

Pipe unit

v: valve f: forkfp: pump j: join jf: join & fork

jb

jc

jafa

fb

fc

Figure 9: A Pipeline System

by fully filled-out dark coloured disc connections. Input and output nodes have

input, respectively output connections, one each, and shown as lighter coloured

connections. In [6] we present a description of a class of abstracted pipeline sys-

tems.

2.2.6. Railway Nets

The left of Fig. 10 on the next page [L] diagrams four rail units, each with two,

three or four connectors shown as narrow, somewhat “longish” rectangles. Mul-

tiple instances of these rail units can be assembled (i.e., composed) by their con-

nectors as shown on Fig. 10 on the following page [L] into proper rail nets. The

right of Fig. 10 on the next page [R] diagrams an example of a proper rail net. It

is assembled from the kind of units shown in Fig. 10 [L]. In Fig. 10 [R] consider

just the four dashed boxes: The dashed boxes are assembly units. Two designate

stations, two designate lines (tracks) between stations. We refer to to the caption

four line text of Fig. 10 on the following page for more “statistics”. We could have

chosen to show, instead, for each of the four “dangling’ connectors, a composition

of a connection, a special “end block” rail unit and a connector.

2.2.7. Discussion

We have brought these examples only to indicate the issues of a “whole” and

atomic and composite parts, adjacency, within, neighbour and overlap relations,

and the ideas of attributes and connections. We shall make the notion of ‘connec-

tion’ more precise in the next section.

3. An Abstract, Syntactic Model of Mereologies

3.1. Parts and Subparts

1 We distinguish between atomic and composite parts.
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Figure 10: To the left: Four rail units.

To the right: A “model” railway net. An Assembly of four Assemblies: two stations and

two lines.

Lines here consist of linear rail units; stations of all the kinds of units shown in to the left.

There are 66 connections and four “dangling” connectors

2 Atomic parts do not contain separately distinguishable parts.

3 Composite parts contain at least one separately distinguishable part.

type

1. P == AP | CP
2. AP :: mkA(...)
3. CP :: mkC(...,s sps:P-set) axiom ∀ mkC( ,ps):CP • ps6={}

It is the domain analyser who decides what constitutes “the whole”, that is, how

parts relate to one another, what constitutes parts, and whether a part is atomic or

composite. We refer to the proper parts of a composite part as subparts. Figure 11

on the next page illustrates composite and atomic parts. The slanted sans serif
uppercase identifiers of Fig. 11 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are

meta-linguistic, that is. they stand for the parts they “decorate”; they are not

identifiers of “our system”.

3.2. No “Infinitely” Embedded Parts

The above syntax, Items 1–3, does not prevent composite parts, p, to contain

composite parts, p′, “ad-infinitum ! But we do not wish such “recursively” con-

tained parts !

4 To express the property that parts are finite we introduce a notion of part
derivation.

5 The part derivation of an atomic part is the empty set.
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6 The part derivation of a composite part, p, mkC(pq,ps) where pq is that

composite part’s quality, is the set ps of subparts of p.

value

4. pt der: P → P-set

5. pt der(mkA(pq)) ≡ {}
6. pt der(mkC(pq,ps)) ≡ ps

7 We can also express the part derivation, pt der(ps) of a set, ps, of parts.

8 If the set is is empty then pt der({}) is the empty set, {}.

9 Let mkA(pq) be an element of ps, then pt der({mkA(pq)}∪ps′) is ps′.

10 Let mkC(pq,ps′) be an element of ps, then pt der(ps′∪ps) is ps′.

7. pt der: P-set → P-set

8. pt der({}) ≡ {}
9. pt der({mkA(pq)}∪ps) ≡ ps
10. pt der({mkC(pq,ps’)}∪ps) ≡ ps’∪ps

11 Therefore, to express that a part is finite we postulate

12 a natural number, n, such that a notion of iterated part set derivations lead

to an empty set.

13 An iterated part set derivation takes a set of parts and part set derive that set

repeatedly, n times.

14 If the result is an empty set, then part p was finite.
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value

11. no infinite parts: P → Bool

12. no infinite parts(p) ≡
12. ∃ n:Nat • it pt der({p})(n)={}
13. it pt der: P-set → Nat → P-set

14. it pt der(ps)(n) ≡
14. let ps′ = pt der(ps) in

14. if n=1 then ps′ else it pt der(ps′)(n−1) end end

3.3. Unique Identifications

Each physical part can be uniquely distinguished for example by an abstraction

of its properties at a time of origin. In consequence we also endow conceptual

parts with unique identifications.

15 In order to refer to specific parts we endow all parts, whether atomic or

composite, with unique identifications.

16 We postulate functions which observe these unique identifications, whether

as parts in general or as atomic or composite parts in particular.

17 such that any to parts which are distinct have unique identifications.

type

15. UI
value

16. uid UI: P → UI
axiom

17. ∀ p,p′:P • p6=p′ ⇒ uid UI(p) 6=uid UI(p′)

A model for uid UI can be given. Presupposing subsequent material (on attributes

and mereology) — “lumped” into part qualities, pq:PQ, we augment definitions

of atomic and composite parts:

type

2. AP :: mkA(s pq:(s uid:UI,...))
3. CP :: mkC(s pq:(s uid:UI,...),s sps:P-set)
value

16. uid UI(mkA((ui,...))) ≡ ui
16. uid UI(mkC((ui,...)),...) ≡ ui

Figure 12 illustrates the unique identifications of composite and atomic parts.

No two parts have the same unique identifier.
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18 We define an auxiliary function, no prts uis, which applies to a[ny] part, p,

and yields a pair: the number of subparts of the part argument, and the set

of unique identifiers of parts within p.

19 no prts uis is defined in terms of yet an auxiliary function, sum no pts uis.

value

18. no prts uis: P → (Nat × UI-set) → (Nat × UI-set)
18. no pts uis(mkA(ui,...))(n,uis) ≡ (n+1,uis∪{ui})
18. no pts uis(mkC((ui,...),ps))(n,uis) ≡
18. let (n′,uis′) = sum no pts uis(ps) in

18. (n+n′,uis∪uis’) end

18. pre: no infinite parts(p)
19. sum no pts uis: P-set → (Nat × UI-set) → (Nat × UI-set)
19. sum no pts uis(ps)(n,uis) ≡
19. case ps of

19. {}→(n,uis),
19. {mkA(ui,...)}∪ps’→sum no pts uis(ps′)(n+1,uis∪{ui}),
19. {mkC((ui,...),ps′)}∪ps” →
19. let (n′′,uis′′)=sum no pts uis(ps′)(1,{ui}) in

19. sum no pts uis(ps′′)(n+n′′,uis∪uis”) end

19. end

19. pre: ∀ p:P•p ∈ ps ⇒ no infinite parts(p)

20 That no two parts have the same unique identifier can now be expressed by

demanding that the number of parts equals the number of unique identifiers.

axiom

20. ∀ p:P • let (n,uis)=no prts uis(0,{}) in n=card uis end
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3.4. Attributes

3.4.1. Attribute Names and Values

21 Parts have sets of named attribute values, attrs:ATTRS.

22 One can observe attributes from parts.

23 Two distinct parts may share attributes:

a For some (one or more) attribute name that is among the attribute

names of both parts,

b it is always the case that the corresponding attribute values are identi-

cal.

type

21. ANm, AVAL, ATTRS = ANm→m AVAL
value

22. attr ATTRS: P → ATTRS
23. share: P×P → Bool

23. share(p,p′) ≡
23. p6=p′ ∧ ∼trans adj(p,p′) ∧
23a. ∃ anm:ANm • anm ∈ dom attr ATTRS(p) ∩ dom attr ATTRS(p′) ⇒
23b. � (attr ATTRS(p))(anm) = (attr ATTRS(p′))(anm)

The function trans adj is defined in Sect. 4.4 on Page 18.

3.4.2. Attribute Categories

One can suggest a hierarchy of part attribute categories: static or dynamic

values — and within the dynamic value category: inert values or reactive values

or active values — and within the dynamic active value category: autonomous

values or biddable values or programmable values. By a static attribute, a:A,

is static attribute(a), we shall understand an attribute whose values are con-

stants, i.e., cannot change. By a dynamic attribute, a:A, is dynamic attri-

bute(a), we shall understand an attribute whose values are variable, i.e., can

change. By an inert attribute, a:A, is inert attribute(a), we shall under-

stand a dynamic attribute whose values only change as the result of external stim-

uli where these stimuli prescribe properties of these new values. By a reactive

attribute, a:A, is reactive attribute(a), we shall understand a dynamic at-

tribute whose values, if they vary, change value in response to the change of other

attribute values. By an active attribute, a:A, is active attribute(a), we

shall understand a dynamic attribute whose values change (also) of its own vo-

lition. By an autonomous attribute, a:A, is autonomous attribute(a), we

shall understand a dynamic active attribute whose values change value only “on
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their own volition”. The values of an autonomous attributes are a “law onto them-

selves and their surroundings”. By a biddable attribute, a:A, is biddable -

attribute(a), (of a part) we shall understand a dynamic active attribute whose

values are prescribed but may fail to be observed as such. By a programmable

attribute, a:A, is programmable attribute(a:A), we shall understand a dy-

namic active attribute whose values can be prescribed. By an external attribute

we mean inert, reactive, active or autonomous attribute. By a controllable at-

tribute we mean a biddable or programmable attribute. We define some auxiliary

functions:

24 SA applies to attrs:ATTRS and yields a grouping (sa1,sa2,...,sans
)4, of

static attribute values.

25 CA applies to attrs:ATTRS and yields a grouping (ca1,ca2,...,canc
)5 of con-

trollable attribute values.

26 EA applies to attrs:ATTRS and yields a set, {eA1,eA2,...,eAne
}6 of exter-

nal attribute names.

type

SA,CA = AVAL∗

EA = ANm−st
value

24. SA : ATTRS → SA
25. CA : ATTRS → CA
26. EA : ATTRS → EA

The attribute names of static, controllable and external attributes do not overlap

and together make up the attribute names of attrs.

3.5. Mereology

In order to illustrate other than the within and adjacency part relations we

introduce the notion of mereology. Figure 13 on the next page illustrates a mere-

ology between parts. A specific mereology-relation is, visually, a •—• line that

connects two distinct parts.

27 The mereology of a part is a set of unique identifiers of other parts.

type

27. ME = UI-set

We may refer to the connectors by the two element sets of the unique identifiers

of the parts they connect. For example with respect to Fig. 13 on the following

page:

4– where {sa1,sa2,...,sans}⊆rng attrs
5– where {ca1,ca2,...,cans}⊆rng attrs
6– where {eA1,eA2,...,eAne}⊆dom attrs
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Figure 13: Mereology: Relations between Parts

• {ci1,ci3},

• {ai2,ai3},

• {ai6,ci1},

• {ai3,ci1},

• {ai6,ai5} and

• {ai1,ci1}.

3.6. The Model

28 The “whole” is a part.

29 A part value has a part sort name

and is either the value of an

atomic part or of an abstract com-

posite part.

30 A atomic part value has a part

quality value.

31 An abstract composite part value

has a part quality value and a set

of at least of one or more part val-

ues.

32 A part quality value consists of

a unique identifier, a mereology,

and a set of one or more attribute

named attribute values.

28 W = P
29 P = AP | CP
30 AP :: mkA(s pq:PQ)
31 CP :: mkC(s pq:PQ,s ps:P-set)
32 PQ = UI×ME×(ANm→m AVAL)

We now assume that parts are not “recursively infinite”, and that all parts have

unique identifiers

4. Some Part Relations

4.1. ‘Immediately Within’

33 One part, p, is said to be immediately within, imm within(p,p′), another

part, if p′ is a composite part and p is observable in p′.
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value

33. imm within: P × P → Bool

33. imm within(p,p′) ≡
33. case p′ of

33. ( ,mkA( ,ps)) → p ∈ ps,
33. ( ,mkC( ,ps)) → p ∈ ps,
33. → false

33. end

4.2. ‘Transitive Within’

We can generalise the ‘immediate within’ property.

34 A part, p, is transitively within a part p′, trans within(p,p′),

a either if p, is immediately within p′

b or

c if there exists a (proper) composite part p′′ of p′ such that trans within(p′′,p).

value

34. trans wihin: P × P → Bool

34. trans within(p,p′) ≡
34a. imm within(p,p′)
34b. ∨
34c. case p′ of

34c. ( ,mkC( ,ps)) → p ∈ ps ∧
34c. ∃ p′′:P• p′′ ∈ ps ∧ trans within(p′′,p),
34c. → false

34. end

4.3. ‘Adjacency’

35 Two parts, p,p′, are said to be immediately adjacent, imm adj(p,p′)(c), to

one another, in a composite part c, such that p and p′ are distinct and ob-

servable in c.

value

35. imm adj: P × P → P → Bool

35. imm adj(p,p′)(mkA( ,ps)) ≡ p6=p′ ∧ {p,p′}⊆ps
35. imm adj(p,p′)(mkC( ,ps)) ≡ p6=p′ ∧ {p,p′}⊆ps
35. imm adj(p,p′)(mkA( )) ≡ false
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4.4. Transitive ‘Adjacency’

We can generalise the immediate ‘adjacent’ property.

36 Two parts, p′,p′′, of a composite part, p, are trans adj(p′, p′′) in p

a either if imm adj(p′,p′′)(p),
b or if there are two p′′′ and p′′′′ such that

i p′′′ and p′′′′ are immediately adjacent parts of p and

ii p is equal to p′′′ or p′′′ is properly within p and p′ is equal to p′′′′

or p′′′′ is properly within p′

We leave the formalisation to the reader.

5. An Axiom System

Classical axiom systems for mereology focus on just one sort of “things”,

namely Parts. Leśniewski had in mind, when setting up his mereology to have it

supplant set theory. So parts could be composite and consisting of other, the sub-

parts — some of which would be atomic; just as sets could consist of elements

which were sets — some of which would be empty.

5.1. Parts and Attributes

In our axiom system for mereology we shall avail ourselves of two sorts:

Parts, and A ttributes.7

• type P,A

A ttributes are associated with Parts. We do not say very much about attributes:

We think of attributes of parts to form possibly empty sets. So we postulate a

primitive predicate, ∈, relating Parts and A ttributes.

• ∈: A ×P → Bool.

5.2. The Axioms

The axiom system to be developed in this section is a variant of that in [2]. We

introduce the following relations between parts:

7IdentifiersP and A stand for model-oriented types (parts and atomic parts), whereas identifiers

P and A stand for property-oriented types (parts and attributes).
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part of: P : P ×P → Bool Page 19

proper part of: PP : P ×P → Bool Page 19

overlap: O : P ×P → Bool Page 19

underlap: U : P ×P → Bool Page 19

over crossing: OX : P ×P → Bool Page 19

under crossing: UX : P ×P → Bool Page 20

proper overlap: PO : P ×P → Bool Page 20

proper underlap: PU : P ×P → Bool Page 20

Let P denote part-hood; px is part of py, is then expressed as P(px, py).
8 (1) Part

px is part of itself (reflexivity). (2) If a part px is part py and, vice versa, part py is

part of px, then px = py (anti-symmetry). (3) If a part px is part of py and part py

is part of pz, then px is part of pz (transitivity).

∀px : P •P(px, px) (1)

∀px, py : P • (P(px, py)∧P(py, px))⇒px = py (2)

∀px, py, pz : P • (P(px, py)∧P(py, pz))⇒P(pz, pz) (3)

Let PP denote proper part-hood. px is a proper part of py is then expressed as

PP(px, py). PP can be defined in terms of P. PP(px, py) holds if px is part of py,

but py is not part of px.

PP(px, py)
△
= P(px, py)∧¬P(py, px) (4)

Overlap, O, expresses a relation between parts. Two parts are said to overlap

if they have “something” in common. In classical mereology that ‘something’ is

parts. To us parts are spatial entities and these cannot “overlap”. Instead they can

‘share’ attributes.

O(px, py)
△
= ∃a : A •a ∈ px ∧a ∈ py (5)

Underlap, U, expresses a relation between parts. Two parts are said to underlap

if there exists a part pz of which px is a part and of which py is a part.

U(px, py)
△
= ∃pz : P •P(px, pz)∧P(py, pz) (6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.

Over-cross, OX, px and py are said to over-cross if px and py overlap and px is

not part of py.

OX(px, py)
△
=O(px, py)∧¬P(px, py) (7)

8Our notation now is not RSL but a conventional first-order predicate logic notation.
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Under-cross, UX, px and py are said to under cross if px and py underlap and py

is not part of px.

UX(px, py)
△
= U(px, pz)∧¬P(py, px) (8)

Proper Overlap, PO, expresses a relation between parts. px and py are said to

properly overlap if px and py over-cross and if py and px over-cross.

PO(px, py)
△
= OX(px, py)∧OX(py, px) (9)

Proper Underlap, PU, px and py are said to properly underlap if px and py

under-cross and px and py under-cross.

PU(px, py)
△
= UX(px, py)∧UX(py, px) (10)

5.3. Satisfaction

We shall sketch a proof that the model of the previous section, Sect. 3, satisfies

is a model for the axioms of this section. To that end we first define the notions

of interpretation, satisfiability, validity and model. Interpretation: By an inter-

pretation of a predicate we mean an assignment of a truth value to the predicate

where the assignment may entail an assignment of values, in general, to the terms

of the predicate. Satisfiability: By the satisfiability of a predicate we mean that

the predicate is true for some interpretation. Valid: By the validity of a predicate

we mean that the predicate is true for all interpretations. Model: By a model of a

predicate we mean an interpretation for which the predicate holds.

5.3.1. A Proof Sketch

We assign

37 P as the meaning of P

38 ATR as the meaning of A ,

39 imm within as the meaning of P,

40 trans within as the meaning of PP,

41 ∈: ATTR×ATTRS-set→Bool as the meaning of ∈: A ×P →Bool and

42 sharing as the meaning of O.

With the above assignments is is now easy to prove that the other axiom-operators

U, PO, PU, OX and UX can be modeled by means of imm within, within, ATTR-
×ATTRS-set→Bool and sharing.

20



6. A Semantic CSP Model of Mereology

The model of Sect. 3 can be said to be an abstract model-oriented definition

of the syntax of mereology. Similarly the axiom system of Sect. 5 can be said to

be an abstract property-oriented definition of the syntax of mereology. We show

that to every mereology there corresponds a program of cooperating sequential

processes CSP. We assume that the reader has practical knowledge of Hoare’s CSP
[3].

6.1. Parts ≃ Processes

The model of mereology presented in Sect. 3 focused on (i) parts, (ii) unique

identifiers and (iii) mereology. To parts we associate CSP processes. Part pro-

cesses are indexed by the unique part identifiers. The mereology reveals the struc-

ture of CSP channels between CSP processes.

6.2. Channels

We define a general notion of a vector of channels. One vector element for

each “pair” of distinct unique identifiers. Vector indices are set of two distinct

unique identifiers.

43 Let w be the “whole” (i.e., a part).

44 Let uis be the set of all unique identifiers of the “whole”.

45 Let M be the type of messages sent over channels.

46 Channels provide means for processes to synchronise and communicate.

value

43. w:P
44. uis = let ( ,uis′)=no prts uis(w) in uis′ end

type

45. M
channel

46. {ch[{ui,ui′} ]:M|ui,ui′:UI•ui 6=ui′ ∧ {ui,ui′}⊆uis}

47 We also define channels for access to external attribute values.

Without loss of generality we do so for all possible parts and all possible attributes.

channel

47. {xch[ui,an ]:AVAL|ui:UI• ui ∈ uis,an:ANm}
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6.3. Compilation

We now show how to compile “real-life, actual” parts into RSL-Text. That is,

turning “semantics” into syntax !

value

comp P: P → RSL-Text

comp P(mkA(ui,me,attrs)) ≡ “Ma(ui,me,attrs)”
comp P(mkC((ui,me,attrs),{p1,p2,...,pn})) ≡

“Mc(ui,me,attrs) ‖
” comp process(p1)“‖”comp process(p2)“‖”...“‖”comp process(pn)

The so-called core process expressions Ma and Mc relate to atomic and composite

parts. They are defined, schematically, below as just M . The compilation expres-

sions have two elements: (i) those embraced by double quotes: “...”, and (ii)

those that invoke further compilations, The first texts, (i), shall be understood as

RSL-Texts. The compilation invocations, (ii), as expending into RSL-Texts. We

emphasize the distinction between ‘usages’ and ‘definitions’. The expressions be-

tween double quotes: “...” designate usages. We now show how some of these

usages require “definitions”. These ‘definitions’ are not the result of ‘parts-to-

processes’ compilations. They are shown here to indicate, to the domain engi-

neers, what must be further described, beyond the ‘mere’ compilations.

value

M : ui:UI×me:ME×attrs:ATTRS → ca:CA (attrs) → RSL-Text

M (ui,me,attrs)(ca) ≡
let (me′,ca′) = F (ui,me,attrs)(ca) in M (ui,me′,attrs)(ca′) end

F : ui:UI×me:ME×attrs:ATTRS→ca:CA→
in in chs(ui,attrs) in,out in out chs(ui,me)→ME×CA ′

Recall (Page 15) that CA (attrs) is a grouping, (ca1,ca2,...,canc
), of controlled at-

tribute values.

48 The in chs function applies to a set of uniquely named attributes and yields

some RSL-Text, in the form of input channel declarations, one for each

external attribute.

48. in chs: ui:UI × attrs:ATTRS → RSL−Text

48. in chs(ui,attrs) ≡ “in { xch[ui,xai ] | xai:ANm • xai∈EA (attrs) }”

49 The in out chs function applies to a pair, a unique identifier and a mereol-

ogy, and yields some RSL-Text, in the form of input/output channel decla-

rations, one for each unique identifier in the mereology.
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49. in out chs: ui:UI × me:ME → RSL−Text

49. in out chs(ui,me) ≡ “in,out { xch[ui,ui′ ]|ui:UI • ui’∈me }”

F is an action: it returns a possibly updated mereology and possibly updated

controlled attribute values. We present a rough sketch of F . The F action non-

deterministically internal choice chooses between

• either [1,2,3,4]

⋄⋄ [1] accepting input from

⋄⋄ [4] a suitable (“offering”)

part process,

⋄⋄ [2] optionally offering a re-

ply;

⋄⋄ [3] leading to an updated

state;

• or [3,4]

⋄⋄ [5] finding a suitable “or-

der” (val)

⋄⋄ [8] to a suitable (“inquir-

ing”) behaviour,

⋄⋄ [6] offering that value,

⋄⋄ [7] leading to an updated

state;

• or [9] doing own work leading to

an new state.

value

F (ui,me,attrs)(ca) ≡
[1 ] ⌈⌉⌊⌋ {let val=ch[{ui,ui′} ]? in

[2 ] (ch[{ui,ui′} ]!in reply(val,(ui,me,attrs))(ca)) ;
[3 ] in update(val,(ui,me,attrs))(ca) end

[4 ] | ui′:UI • ui′ ∈ me}
[5 ] ⌈⌉ ⌈⌉⌊⌋ {let val=await reply(ui′,me,attrs)(ca) in

[6 ] ch[{ui,ui′} ]!val ;
[7 ] out update(val,(ui,me,attrs))(ca) end

[8 ] | ui′:UI • ui′ ∈ me}
[9 ] ⌈⌉ (me,own work(ui,attrs)(ca))

in reply: VAL×(ui:UI×me:ME×attrs:ATTRS)→ca:CA→
in in chs(attrs) in,out in out chs(ui,me)→VAL

in update: VAL × (ui:UI×me:ME×attrs:ATTRS)→ca:CA→
in,out in out chs(ui,me)→ME×CA

await reply: (ui:UI,me:ME)→ca:CA→in,out in out chs(ui,me:ME)→VAL
out update: (VAL×(ui:UI×me:ME<>attrs:ATTRS))→ca:CA→

in,out in out chs(ui,me)→ME×CA
own work: (ui:UI×attrs:ATTRS)→CA→in,out in out chs(ui,me) CA

The above definitions of channels and core functions M and F are not examples

of what will be compiled but of what the domain engineer must, after careful
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analysis, “create”.

6.4. Discussion

6.4.1. General

A little more meaning has been added to the notions of parts and their mereol-

ogy. The within and adjacent to relations between parts (composite and atomic)

reflect a phenomenological world of geometry, and the mereological relation be-

tween parts reflect both physical and conceptual world understandings: physical

world in that, for example, radio waves cross geometric “boundaries”, and con-

ceptual world in that ontological classifications typically reflect lattice orderings

where overlaps likewise cross geometric “boundaries”.

6.4.2. Specific

The notion of parts is far more general than that of [4]. We have been able

to treat Stansław Leśniewski’s notion of mereology sôlely based on parts, that is,

their semantic values, without introducing the notion of the syntax of parts. Our

compilation functions are (thus) far more general than defined in [4].

7. Concluding Remarks

7.1. Relation to Other Work

The present contribution has been conceived in the following context.

My first awareness of the concept of ‘mereology’ was from listening to many

presentations by Douglas T. Ross (1929–2007) at IFIP working group WG 2.3

meetings over the years 1980–1999. In [7] Douglas T. Ross and John E. Ward

reports on the 1958–1967 MIT project for computer-aided design (CAD) for nu-

merically controlled production.9 Pages 13–17 of [7] reflects on issues bordering

to and behind the concerns of mereology. Ross’ thinking is clearly seen in the

following text: “. . . our consideration of fundamentals begins not with design
or problem-solving or programming or even mathematics, but with philosophy
(in the old-fashioned meaning of the word) – we begin by establishing a “world-
view”. We have repeatedly emphasized that there is no way to bound or delimit
the potential areas of application of our system, and that we must be prepared to
cope with any conceivable problem. Whether the system will assist in any way in
the solution of a given problem is quite another matter, . . . , but in order to have
a firm and uniform foundation, we must have a uniform philosophical basis upon
which to approach any given problem. This “world-view” must provide a working
framework and methodology in terms of which any aspect of our awareness of

9Doug is said to have coined the term and the abbreviation CAD [8].
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the world may be viewed. It must be capable of expressing the utmost in real-
ity, giving expression to unending layers of ever-finer and more concrete detail,
but at the same time abstract chimerical 10 visions bordering on unreality must
fall within the same scheme. “Above all, the world-view itself must be concrete
and workable, for it will form the basis for all involvement of the computer in
the problem-solving process, as well as establishing a viewpoint for approaching
the unknown human component of the problem-solving team.” Yes, indeed,

the philosophical disciplines of ontology, epistemology and mereology, amongst

others, ought be standard curricula items in the computer science and software

engineering studies, or better: domain engineers cum software system designers

ought be imbued by the wisdom of those disciplines as was Doug. “. . . in the
summer of 1960 we coined the word plex to serve as a generic term for these
philosophical ruminations. ”Plex” derives from the word plexus, “An interwoven
combination of parts in a structure”, (Webster). . . . The purpose of a ‘modeling

plex’ is to represent completely and in its entirety a “thing”, whether it is con-
crete or abstract, physical or conceptual. A ‘modeling plex’ is a trinity with three
primary aspects, all of which must be present. If any one is missing a complete
representation or modeling is impossible. The three aspects of plex are data,

structure, and algorithm. . . . ” which “. . . is concerned with the behavioral
characteristics of the plex model – the interpretive rules for making meaningful
the data and structural aspects of the plex, for assembling specific instances of
the plex, and for interrelating the plex with other plexes and operators on plexes.
Specification of the algorithmic aspect removes the ambiguity of meaning and
interpretation of the data structure and provides a complete representation of
the thing being modeled.” In the terminology of the current paper a plex is a part

(whether composite or atomic), the data are the properties (of that part), the struc-

ture is the mereology (of that part) and the algorithm is the process (for that part).

Thus Ross was, perhaps, a first instigator (around 1960) of object-orientedness.

A first, “top of the iceberg” account of the mereology-ideas that Doug had then

can be found in the much later (1976) three page note [9]. Doug not only ‘in-

vented’ CAD but was also the father of AED (Algol Extended for Design), the

Automatically Programmed Tool (APT) language, SADT (Structured Analysis

and Design Technique) and helped develop SADT into the IDEF0 method for the

Air Force’s Integrated Computer-Aided Manufacturing (ICAM) program’s IDEF

suite of analysis and design methods. Douglas T. Ross went on for many years

thereafter, to deepen and expand his ideas of relations between mereology and the

programming language concept of type at the IFIP WG2.3 working group meet-

10Chimerical: existing only as the product of unchecked imagination: fantastically visionary or

improbable
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ings. He did so in the, to some, enigmatic, but always fascinating style you find

on Page 63 of [9].

In [10] Henry S. Leonard and Henry Nelson Goodman: A Calculus of

Individuals and Its Uses present the American Pragmatist version of Leśniewski’s

mereology. It is based on a single primitive: discreet. The idea of the calculus

of individuals is, as in Leśniewski’s mereology, to avoid having to deal with the

empty sets while relying on explicit reference to classes (or parts).

[2] R. Casati and A. Varzi: Parts and Places: the structures of spatial repre-

sentation has been the major source for this paper’s understanding of mereology.

Although our motivation was not the spatial or topological mereology, [11], and

although the present paper does not utilize any of these concepts’ axiomatision in

[2, 11] it is best to say that it has benefited much from these publications.

Domain descriptions, besides mereological notions, also depend, in their suc-

cessful form. on FCA: Formal Concept Analysis. Here a main inspiration has

been drawn , since the mid 1990s from B. Ganter and R. Wille’s Formal Con-

cept Analysis — Mathematical Foundations [12]. The approach takes as input
a matrix specifying a set of objects and the properties thereof, called attributes,
and finds both all the “natural” clusters of attributes and all the “natural” clus-
ters of objects in the input data, where a “natural” object cluster is the set of
all objects that share a common subset of attributes, and a “natural” property
cluster is the set of all attributes shared by one of the natural object clusters.
Natural property clusters correspond one-for-one with natural object clusters, and
a concept is a pair containing both a natural property cluster and its correspond-
ing natural object cluster. The family of these concepts obeys the mathematical
axioms defining a lattice, a Galois connection). Thus the choice of adjacent and

embedded (‘within’) parts and their connections is determined after serious formal

concept analysis.

7.2. What Has Been Achieved ?

We have given a model-oriented specification of mereology. We have indi-

cated that the model satisfies a widely known axiom system for mereology. We

have suggested that (perhaps most) work on mereology amounts to syntactic stud-

ies. So we have suggested one of a large number of possible, schematic semantics

of mereology. And we have shown that to every mereology there corresponds a

set of communicating sequential process (CSP).

7.3. Future Work

I hereby offer collaboration with, say, a young PhD student, to furnish a formal

proof instead of the sketch outline in Sect. 5.3.1 on Page 20. We need to char-

acterise, in a proper way, the class of CSP programs for which there corresponds
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a mereology. Are you game ? One could also wish for an extensive editing and

publication of Doug Ross’ surviving notes.

8. Bibliography

8.1. Bibliographical Notes

This paper shall be seen in the context of the following other papers:

• [4, Manifest Domains: Analysis & Description] lays the foundation for
analysing & describing a large class of domains. It introduces two calculi
of analysis and of description prompts.

• [13, Domain Facets: Analysis & Description] continues that of [4] by en-
larging the scope of phenomena being analysed and described.

• [14, Formal Models of Processes and Prompts] presents an operational
semantics for the analysis and description processes and prompts covered
in [4].

• [5, From Domain Descriptions to Requirements Prescriptions] shows how
to systematically ‘derive’ core elements of requirements from domain de-
scriptions.

• [15, Domains: Their Simulation, Monitoring and Control] discusses soft-
ware product lines of demos, simulators, monitors and monitors & con-
trollers as they relate to descriptions and prescriptions for the product line
domain.

Together these papers, the present and those referenced above, form a scientific

and engineering basis for domain engineering.
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