A Credit Card System: Uppsala Draft

Dines Bjgrner
Fredsvej 11, DK-2840 Holte, Danmark
E-Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/"dibj

May 31, 2016: 10:31 am

Abstract

This report presents a first attempt at a model of a credit card system. A first version of this
document, marked Uppsala Draft, was worked out for my Uppsala University lectures 18-20
April 2016. Remarks in this type-font refers to my paper: [Bj#l6, Manifest Domains: Analysis
& Description]. Appendix A presents a primer of RSL, the Raise Specification Language.

Contents

1

2

Introduction

Endurants

2.1 Credit Card Systems . . . . . . ..
2.2 Credit Cards . . . . . . L e
2.3 Banks . .. e
2.4 ShOPS . . . .

Perdurants

3.1 Behaviours . . . . e
311 System ... L
3.1.2 Channels . . . . . . e
3.1.3 Behaviour Interactions . . . . . . . .. e
3.1.4 Credit Card . . . . . . e
3.1.5 Banks . ... e
3106 ShOps .« . . o o

Discusssion

Bibliography

5.1 Some Remarks . . . . . .

5.2 Other Domain Descriptions . . . . . . . . . . . e
5.2.1 Published Papers . . . . . . . . e

5.3 References. . . . . . . e

RSL: The Raise Specification Language
Al Type EXPressions . . . . . . . . ... e e e
ALl Atomic Types . . . . . o e
A.1.2 Composite TYpes . . . . . . . o i
Concrete Composite Types . . . . . . . . . e
Sorts and Observer Functions . . . . . . . . . . . ..
A.2 Type Definitions . . . . . . L e
A2.1 Concrete TYPES . . . . . o o i
A2.2 Subtypes . . . ...
A.2.3 Sorts — Abstract Types . . . . . . . . .
A.3 The RSL Predicate Calculus . . . . . . . . . . e

—_
W= O O 03I~ N0 LW w

[y
[&,]



2 Dines Bjgrner

A.3.1 Propositional Expressions . . . . . . ... 23
A.3.2 Simple Predicate Expressions . . . . . . . . .. 24
A.3.3 Quantified Expressions . . . . . . . .. e 24

A.4 Concrete RSL Types: Values and Operations . . . . . . . . . . . . . . . ittt 25
A4 1 Arithmetic . . . . . e 25
A42 Set Expressions . . . . ... L 25

Set Enumerations . . . . . ... L e 25

Set Comprehension . . . . . . ... 25

A.4.3 Cartesian Expressions . . . . . .. 25
Cartesian Enumerations . . . . . . . .. 25

A.4.4 List Expressions . . . . .. . L e 26

List Enumerations . . . . . . . . L e 26

List Comprehension . . . . . . . . . e 26

A45 Map EXPressions . . . . . . .. 26

Map Enumerations . . . . . . . L e 26

Map Comprehension . . . . . . . . e 27

A46 Set Operations . . . . . . . . e 27

Set Operator Signatures . . . . . . . . . . 27

Set Examples . . . . . .. 27

Informal Explication . . . . . . . . e 28

Set Operator Definitions . . . . . . . . . . 28

A.4.7 Cartesian Operations . . . . . . . . .. 29
A48 List Operations . . . . . . . . . 29

List Operator Signatures . . . . . . . . . . ... 29

List Operation Examples . . . . . . . . . . . e 30

Informal Explication . . . . . . . . . e 30

List Operator Definitions . . . . . . . . . . . . . . e 30

A49 Map Operations . . . . . . . . . 31

Map Operator Signatures and Map Operation Examples . . . . . . . .. ... .. ... .. ... .... 31

Map Operation Explication . . . . . . . . . . . . e 32

Map Operation Redefinitions . . . . . . . . . . . .. 32

A5 A-Calculus + Functions . . . . . . . . . 33
A5.1 The A-Calculus Syntax . . . . . . . . 33
A.5.2 Free and Bound Variables . . . . . . . . . 33
A.5.3 Substitution . . . . e 33
A5.4 a-Renaming and B-Reduction . . . . . . ... 34
A.5.5 Function Signatures . . . . . . L 34
A.5.6 Function Definitions . . . . . . . . . . 34

A.6 Other Applicative Expressions . . . . . . . . . .. 35
A.6.1 Simple let Expressions . . . . . . . L 35
A.6.2 Recursive let Expressions . . . . . ... L 35
A.6.3 Predicative let Expressions . . . . . . ... 36
A.6.4 Pattern and "Wild Card” let Expressions . . . . . . . . . . .. 36
A.6.5 Conditionals . . . . . . . e 36
A.6.6 Operator/Operand Expressions . . . . . . . . . . .. . ... 37

A7 Imperative Constructs . . . . . . ... e 37
A.7.1 Statements and State Changes . . . . . . . . . . ... 37
A.7.2 Variables and Assignment . . . . . . . L 37
A.7.3 Statement Sequences and skip . . . . . . ... 38
A.7.4 Imperative Conditionals . . . . . . . . . .. e 38
A.7.5 lterative Conditionals . . . . . . . L 38
A.7.6 lterative Sequencing . . . . . ... 38

A.8 Process Constructs . . . . . . . . . . 38
A.8.1 Process Channels . . . . . . . 38
A.8.2 Process Composition . . . . . . . . L 38
A.8.3 Input/Output Events . . . . . . . . . e 39
A.8.4 Process Definitions . . . . . . . .. 39

A.9 Simple RSL Specifications . . . . . . . . . e 39

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 3

1 Introduction

We present a domain description of an abstracted credit card system. The narrative part of the de-
scription is terse, perhaps a bit too terse. I might “repair” this shortness if told so. A reference is made
to my paper: [Bj@l6, Manifest Domains: Analysis & Description]. That paper can be found on the
Internet: http://www2.compute.dtu.dk/"dibj/2015/faoc/faoc-bjorner.pdf.

Credit cards are moving from simple plastic cards to smart phones. Uses of credit cards move
from their mechanical insertion in credit card terminals to being swiped. Authentication (hence not
modelled) moves from keying in security codes to eye iris “prints”, and/or finger prints or voice prints
or combinations thereof.

This document abstracts from all that in order to understand a bare, minimum essence of credit
cards and their uses. Based on a model, such as presented here, the reader should be able to ex-
tend/refine the model into any future technology — for requirements purposes.

2 Endurants

2.1 Credit Card Systems
[Bj@16, Sect.3.1.6, pg.11:]: observe_part_sorts

1 Credit card systems consists of three kinds of parts:

a. a part, cs:CS, of credit cards’',
b. a part, bs:BS, of banks, and
c. apart, ss:SS, of shops.

type

1. CCS

la.. CS, C, CSI
1b.. BS, B, BSI
lc.. SS, S, SSI
value

la.. obs_CS: CCS — CS, uid_CS: CS — CSl,
1b.. obs_BS: CCS — BS, uid_BS: BS — BSI,
lc.. obs_SS: CCS — SS, uid_SS: SS — SSI

The composite part CS can be thought of as a credit card company, say VISA%. The composite part BS
can be thought of as a bank society, say BBA: British Banking Association. The composite part SS
can be thought of as the association of retailers, say bira: British Independent Retailers Association®.

[Bja16, Sect.3.1.7, pg.13]: observe_part_type

"'We “equate” credit cards with their holders.

2Qur simple model allows for only one credit card company. But that model can easily be extended to model a set of
credit card companies, viz.: VISA, MasterCard, American Express, Diner's Club, etc..

3The model does not prevent “shops” from being airlines, or car rental agencies, or dentists, or consultancy firms. In this
case SS would be some appropriate association.

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



2 The credit card part, cs:CS, abstracts a set, socs:Cs, of credit cards.

3 The bank part, bs:BS, abstracts a set, sobs:Bs, of banks.

4 The shop part, ss5:SS, abstracts a set, soss:Sc, of shops.

type

2. Cs = C-set, C

3. Bs = B-set, B

4. Ss = S-set, S

value

2. 0obs_CS: CS — Cs, obs_Cs: CS — Cs
3. obs_BS: BS — Bs, obs_Bs: BS — Bs
4. o0bsSS: SS — Ss, obs_Ss: SS — Ss

[Bja16, Sect.3.2, pg.16]: observe_unique_identifier

Dines Bjgrner

5 Each credit card, bank and shop has a unique identifier, ci:CI, bi:Bl, respectively si:SI.

6 One can define functions which extract all the

a. unique credit card,
b. bank and

c. shop identifiers

from a credit card system.

type

5. CI, BI, SI

value

5 uidC:C—Cl

5. uid.B: B — BI

5. uidS:S — S|

6a.. xtr_Cls: CCS — Cl-set

6a.. xtr_Cls(ccs) = {uid_C(c)|c:Cec € obs_Cs(obs_CS(ccs))}
6b.. xtr_Bls: CCS — Bl-set

6b.. xtr_Bls(ccs) = {uid_B(s)|b:B+b € obs_Bs(obs_BS(ccs))}
6c.. xtrSls: CCS — Sl-set

6c..  xtr_Sls(ccs) = {uid_S(s)|s:Ses € obs_Ss(obs_SS(ccs))}

7 For all credit card systems it is the case that

a. all credit card identifiers are distinct from bank identifiers,
b. all credit card identifiers are distinct from shop identifiers,

c. all shop identifiers are distinct from bank identifiers,

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark

A Credit Card System



Uppsala Lectures, May 2016 5

axiom

7. Vccs:CCS -

7. let cis=xtr_Cls(ccs), bis=xtr_Bls(ccs), sis = xtr_Sls(ccs) in
7a.. cis N bis = {}

7b..  AcisNsis = {}
7c..  Asis N bis = {} end

2.2 Credit Cards

We “equate” credit cards with their holders.

8 A credit card (besides a unique identification) has

[Bj@16, Sect.3.1.2, pg.17]: observe_mereology

a. amereology which “connects” it to any of the shops of the system and to exactly one bank
of the system,

b. and some attributes — which we shall disregard.

c. The wellformedness of a credit card system includes the wellformedness of credit card
mereologies with respect to the system of banks and shops:

i The unique shop identifiers of a credit card mereology must be those of the shops of
the credit card system; and

ii the unique bank identifier of a credit card mereology must be of one of the banks of
the credit card system.

type

8. C

8a.. CM = Sl-set x Bl

value

8a.. mereo_.CM: C — CM

8c.. wf_CM_of_C: CCS — Bool

8c.. wf_CM_of_C(ccs) =

8a.. let bis=xtr_Bls(ccs), sis=xtr_Sls(ccs) in
8a.. V c:Cec € obs_Cs(obs_CS(ccs)) =
8a.. let (ccsis,bi)=mereo_CM(c) in
8(c.)i. ccsis C sis

8(c.)ii. A b € bis

8a.. end end

Constraint 8(c.)i limits a credit card to potentially be used only in a proper subset of all shops. To
allow for all shops one must change the wording to ‘be all those of the shops ..., and change C in
formula line 8(c.)i to ‘=".

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



6 Dines Bjgrner

2.3 Banks

Our model of banks is very limited.

9 A bank has

a. aunique bank identifier,
b. a mereology which “connects” it to a subset of all credit cards and a subset of all shops,
c. and, as attributes:

i a cash register, and

ii aledger.

9(c.)ii. The ledger records

a. for every card, by unique credit card identifier,

b. the current balance: how much money, credit or debit, i.e., plus or minus, that customer is
owed, respectively has borrowed from the bank,

c. the dates-of-issue and -expiry of the credit card, and
d. the name, address, and other information about the credit card holder.
10 The wellformedness of the credit card system includes the wellformedness of the banks with
respect to the credit cards and shops:
a. the bank mereology’s

b. must list a subset of the credit card identifiers and a subset of the shop identifiers.

type

9. B

9b.. BM = Cl-set x Sl-set

9(c.)i. CR = Bal

9(c.)ii. LG = Cl 7, (BalxDolxDoEx...)
9b.. Bal = Int

value

9b.. mereo_B: B — BM

9(c.)i. attr.CR: B — CR
9(c.)ii.  attr.LG: B — LG

10. wf_BM_B: CCS — Bool

10. wf_BM_B(ccs) =

10. let allcis = xtr_Cls(ccs), allsis = xtr_Sls(ccs) in
10. V b:B « b € obs_Bs(obs_BS(ccs)) in

10a.. let (cis,sis) = mereo_B(b) in

10b.. cis C V cis A sis C allsis

10. end end

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 7

2.4 Shops

11 A shop (besides a unique shop identifier) has a
a. mereology and some attributes.
11a.. The mereology of a shop is a pair:

a. a unique bank identifiers, and

b. a set of unique credit card identifiers.
11a.. We omit treatment of shop attributes.
11a.. The mereology of a shop

a. must list a bank of the credit card system,

b. and a subset (or all) of the unique credit identifiers.

type

1la.. SM = Cl-set x BI
value

1la.. mereoS: S — SM
11a.. wf_.SM_S: CCS — Bool
1la.. wf_SM_S(ccs) =

11a.. let allcis = xtr_Cls(ccs), allbis = xtr_Bls(ccs) in
11a.. V s:S s € obs_Ss(obs_SS(ccs)) =

11a.. let (cis,bi) mereo_S(s) in

11a.. cis C allcis

11b.. A bi € allbis

11a.. end end

3 Perdurants

3.1 Behaviours
3.1.1 System

[Bjal16, Sect.4.11.2, pg.35]: Process Schema I: Abstract is_.composite(p) and Process Schema II:
Concrete is_concrete(p).

12 We ignore the behaviours related to the CCS, CS, HS and SS parts.
13 We therefore only consider the behaviours related to the Cs, Hs and Ss parts.

14 And we therefore compile the credit card system into the parallel composition of the parallel
compositions of all the credit card, crd, all the bank, bnk, and all the shop, shp, behaviours.

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



value

12.
12.
12.
12.
13.
13.
13.
14.
12.
14.
14.
14.
12.
12,
12.

ccs:CCS

cs:CS = obs_CS(ccs), uics:CSI = uid_CS(cs),

bs:BS = obs_BS(ccs), uibs:BSI = uid_BS(bs),

s5:SS = obs_SS(ccs), uiss:SSI = uid_SS(ss),

socs:Cs = obs_Cs(cs),

sobs:Bs = obs_Bs(bs),

s0ss:Ss = obs_Ss(ss),

sys: Unit — Unit,

sys() =

cardsycs(mereo_CS(cs),...) || [[{crdyia_c(c)(mereo_C(c))|c:Cec € socs}

|| banksy;ps(mereo_BS(bs),...) || ||{bnkmd3 )(mereo_B(b))|b:B+b € sobs}
|| shopsiss(mereo_SS(ss),...) || [[{shPuia_s(s) (mereo S(s))|s:Ses € soss},

cardsycs(...) = skip,

banks,ss(...) = skip,

shopsyiss(...) = skip

axiom  sKip || behaviour(...) = behaviour(...)

3.1.2

Channels

[Bja16, Sect.4.5.1, pg.30]: Channels and Communication

15

16

15a..,16a..

17

Credit card behaviours interact with

a. many bank (each with one) and

b. many shop behaviours.
Shop behaviours interact with

a. many bank (each with one) and

15b.. many credit card behaviours.
Bank behaviours interact with many credit card and many shop behaviours.

The inter-behaviour interactions concern:

Dines Bjgrner

a. between credit cards and banks: withdrawal requests as to a sufficient, mk_Wdrw(am),
balance on the credit card account for buying am:aM amounts of goods or services, with

the bank response of either is_OK() or isLNOK(), or the revoke of a card;

b. between credit cards and shops: the buying, for an amount, am:aM, of goods or services:

mk_Buy(am), or the refund of an amount; and

c. between shops and banks: the deposit of an amount, am:aM, in the shops’ bank account:

mk_Dep(am).

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark

A Credit Card System



Uppsala Lectures, May 2016 9

channel

15a.. {ch_cb[ci,bi]|ci:Cl,bi:Blsci € cis A bi € bis}:CB_Msg

15b.. {ch_cs[ci,si]|ci:Cl,si:Sleci € cis A si € sis}:CS_Msg

16a. {ch_sb[si,bi]|si:SI,bi:Blssi € sis A bi € bis}:SB_Msg

type

17a.. CB_Msg == mk_Wdrw(am:aM) | is_OK() | is-NOK() | mk_Rev()
17b.. CS_Msg == mk_Buy(am:aM) | mk_Ref(am:aM)

17c.. SB_Msg == mk_Dep((ci:Cl|si:Sl),am:aM)

3.1.3 Behaviour Interactions

18 The credit card initiates

a. buy transactions

i [1.Buy] by inquiring with its bank as to sufficient purchase funds;
ii [2.Buy] if NOK then there are presently no further actions; if OK
iii [3.Buy] the credit card behaviour requests the purchase from the shop — handing it an
appropriate amount am:aM;

iv [4.Buy] finally the shop requests its bank to deposit the purchase amount in the shop’s
bank account.

b. refund transactions

i [1.Refund] by requesting such refunds, in the amount of am:aM, from a[ny] shop;

ii [2.Refund] whereupon the shop requestss its bank to move the amount am:aM from
the shop’s bank account to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as sketched in Fig. 1 on the following
page.
[1.Buy] Item 23 on the next page: ch_cb[ci,bi]!mk_-Wdrw(am);

Item 33 on Page 12: let mk_Wdrw(ci,am) = [] {ch_cb[bi,bi]?|ci:Clsci € cis}
[2.Buy] Item 35 on Page 12: ch_cb[ci,bi]!is_[NJOK()

Item 33 on Page 12: let mk_Wdrw(ci,am) = [] {ch_cb]ci,bi]?|ci:Cleci € cis} in
[3.Buy] Item 25 on the next page: ch_cs|ci,si]!mk_Buy(am)

Item 45 on Page 13: let mk_Buy(am) = []{ch_cs[ci,si]?|ci:Cleci € cis} in
[4.Buy] Item 45 on Page 13: ch_sb[si,bi]!mk_Dep(si,am)

Item 39 on Page 12: let mk_Dep(si,am)=[] {ch_cs[ci,si]?|si:Slsi € sis} in
[1.Refund] Item 27 on Page 11: ch_cs|ci,si]!mk_Ref((ci,si),am)

Item 46 on Page 13: let (si,mk_Ref(ci,am))=[]{(si’,ch_sb[si,bi]?)|si,si":SI*{si,si'} CsisAsi=si'} in

[2.Refund] Item 41 on Page 13: ch_sb[ci,bi]!mk_Ref(ci,am)

3.1.4 Credit Card

19 The credit card behaviour, crd, takes the credit card unique identifier, the credit card mereology,
and attribute arguments (omitted). The credit card behaviour, crd, accepts inputs from and offers
outputs to the bank, bi, and any of the shops, si€sis.

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



10 Dines Bjgrner

Figure 1: Credit Card, Bank and Shop Behaviours

20 The credit card behaviour, crd, non-deterministically, internally “cycles” between

a. buying,
b. getting re funds.
value

19. crdgicr: (bisis):CM — in,out ch_cb|ci,bi],{ch_cs|[ci,si]|si:Slssi € sis} Unit
19. crd.i(bi,sis) =

20a.. (buy(ci,(bi,sis))
20. M

20b.. rfu(ci,(bi,sis))) ;
19. crd.;(ci,(bi,sis))

21 By am:AM we mean an amount of money, and by si:SI we refer to a shop in which we have
selected a number or goods or services (not detailed) costing am:AM.

22 The amount for which to buy and the shop from which to buy are selected (arbitrarily).
23 The credit card (holder) withdraws am:AM from the bank, if sufficient funds are available*.
24 The response from the bank

25 is either OK and the credit card [holder] completes the purchase by buying the goods or services
offered by the selected shop,

“First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes place,
otherwise not — and the credit card holder is informed accordingly.

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 11

26 or the response is “not OK”, and the transaction is skipped.

type

21. AM = Int

value

20a.. buy: ci:Cl x (bi,sis):CM — in,out ch_cb[ci,bi] out {ch_cs[ci,si]|si:Slsi € sis} Unit
20a.. buy(ci,(bi,sis)) =

22. let am:aM « am>0, si:Sl « si € sis in See Discussion note 49a. on Page 15
23. let msg = (ch_cb[ci,bi]!mk_Wdrw(am);ch_cb][ci,bi]?) in

24, case msg of

25. is_OK() — ch_cs[ci,si]!mk_Buy(am),

26. isZ-NOK() — skip

20a.. end end end

27 The credit card [handler] requests a refund am:aM from shop si:SI.

This request is handled by the shop behaviour’s sub-action ref, see lines 43.—47. page 13.

value
20b.. rfu: ci:Cl x (bi,sis):CM — out {ch_cs[ci,si]|si:Slssi € sis} Unit
20b.. rfu(ci,(bi,sis)) =

27. let am:AM « am>0, si:Sl » si € sisin See Discussion note 49b. on Page 15
27. ch_cs[ci,si]!mk_Ref((ci,si),am)
19. end

3.1.5 Banks

28 The bank behaviour, bnk, takes the bank’s unique identifier, the bank mereology, and the pro-
grammable attribute arguments: the ledger and the cash register. The bank behaviour, bnk,
accepts inputs from and offers outputs to the any of the credit cards, ci€cis, and any of the
shops, si€sis.

29 The bank behaviour non-deterministically internally chooses to accept
30 either withdrawal requests from credit cards
31 or deposit requests from shops or

32 or refund requests from credit cards.

value

28. bnkp;p: (cis,sis):BM — (LGxCR) —

28. in,out {ch_cb[ci,bi]|ci:Cleci € cis} {ch_sb]si,bi]|si:Slsi € sis} Unit
28.  bnky;((cis,sis))(Ig:(bal,doi,doe,...),cr) =

30. withdraw(ci,(cis,sis))(lg,cr)
29.

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



12 Dines Bjgrner

3L deposit(bi,(cis,sis))(Ig,cr)
29. I
32. refund(bi,(cis,sis))(Ig,cr)

33 The withdraw request (an action) non-deterministically, externally offers to accept input from a
credit card behaviour and marks the only possible form of input from credit cards, (mk_-Wdrw(am)),
with the identity of the credit card.

34 If the requested amount (to be withdrawn) is not within balance on the account
35 then we, at present, refrain from defining an outcome (chaos),

36 otherwise the bank behaviour informs the credit card behaviour that the amount can be with-
drawn.

37 Whereupon the bank behaviour is resumed notifying a lower balance and “withdraws” the
monies from the cash register.

value
30. withdraw: bi:Bl x (cis,sis):BM — (LGxCR) — in,out {ch_cb[bi,ci]|ci:Clsci € cis} Unit
30. withdraw(bi,(cis,sis))(Ig,cr)

33. let mk_-Wdrw(ci,am) = [] {ch_cb[ci,bi]?|ci:Cleci € cis} in
37. let (bal,doi,doe) = Ig(ci) in

34. if am>bal

35. then ch_cb[ci,bi]lisZNOK()

36. else ch_cb[ci,bi]lis_OK() end ;

37. bnkp;(cis,sis)(lgt[ci—(bal—am,doi,doe) ],cr—am)

28. end end

38 The deposit action is invoked, buy a shop behaviour, when a credit card [holder] buy’s for a
certain amount, am:aM, or requests a refund of that amount. The deposit is made by shop
behaviours, either on behalf of themselves, hence am:aM, is to be inserted into the shops’ bank
account, si:SI, or on behalf of a credit card [i.e., a customer], hence am:aM, is to be inserted
into the credit card holder’s account, ci:CI.

39 The message, ch_cs|ci,si]?, received from a credit card behaviour is either concerning a buy [in
which case i is a ci:CI, hence sale, or a refund order [in which case i is a si:ST].

40 In either case, the respective bank account is “upped” by am:aM — and the bank behaviour is

resumed.
value
31. deposit: bi:Bl x (cis,sis):BM — (LGxCR) — in,out {ch_sb[bi,si]|si:Slssi € sis} Unit
31. deposit(bi,(cis,sis))(lg,cr) =
30. let mk_Dep(si,am) = [] {ch_cs[ci,si]?|si:Slsi € sis} in
37. let (bal,doi,doe) = Ig(si) in
40. bnkp(cis,sis)(lgt[si—(bal+am,doi,doe)],cr+am)
38. end end

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 13

41 The refund action non-deterministically externally offers to accept a mk_Ref(ci,am) request
from a shop behaviour, si.

42 The bank behaviour is then resumed with the credit card balance incremented by am and the
shop balance decremented by that same amount.

value
31. refund: bi:Bl x (cis,sis):BM — (LGxCR) — in,out {ch_sb|bi,si]|si:Sl-si € sis} Unit
31. refund(bi,(cis,sis))(lg.cr) =

41. let (si,mk_Ref(ci,am)) = [] {(si’,ch_sb[si,bi]?)|si,si":Sl*{si,si'} CsisAsi=si'} in
37. let (balc,doic,doec) = Ig(ci), (sbal,sdoi,sdoe) = Ig(si) in

42. bnky;(cis,sis)(lgt[ci—(bcal4+am,cdoi,cdoe) | t[si—(sbal—am,sdoi,sdoe) ] cr)
31. end end

3.1.6 Shops

43 The shop behaviour, shp, takes the shop’s unique identifier, the shop mereology, and attribute
arguments (omitted). The shop behaviour, shp, accepts inputs from and offers outputs to the
any of the credit cards, ci€cis, and any of the shops, si€sis.

44 The shop behaviour non-deterministically, externally

45 either offers to accept a Buy request from a credit card behaviour.
This input is (via the sale action) of the form mk_Buy(am),

or

46 offers to accept a refund request in this amount, am from a credit card [holder].
This input is (via the refe action) of the form mk_Ref(am),

47 Whereupon the shop behaviour resumes being a shop behaviour.

value

43.  shpgs: sm:(cis:Cl-setxbi:Bl) x ... — in,out: {cs[ci,si]|ci:Clsci € cis},sb[si,bi] Unit
43. shpg((cis,bi),...) =

45. (sal(si,(bi,cis),...)

44,

46. ref(si,(cis,bi),...)):

45. sal: sm:(cis:Cl-setxbi:Bl) x ... — in,out: {cs[ci,si]|ci:Clsci € cis},sb[si,bi] Unit
45. sal(si,(cis,bi),...) =

45. let mk_Buy(am) = []{ch_cs[ci,si]?|ci:Cl-ci € cis} in

45. ch_sb[si,bi]!mk_Dep(si,am) end

47. shpgi((cis,bi),...)

46. ref: sm:(cis:Cl-setxbi:Bl) — in,out: {cs[ci,si]|ci:Cleci € cis},sb[si,bi] Unit
46. ref(si,(cis,bi)) =

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



14

46. let mk_Ref((ci,si),am) = []{ch_cs|ci,si]?|ci:Cl-ci € cis} in
46. ch_sb[ci,bi]!mk_Ref(ci,am) end
47. shpyi((cis,bi),...)

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark

Dines Bjgrner

A Credit Card System



Uppsala Lectures, May 2016 15

4 Discusssion

48 The credit card system narrated and formalised in this document is an abstraction. We claim
that it portrays an essence of credit cards.

49 The reader may object to certain things:

a. We do not model how a credit card holder selects services from a service provider (here
modelled as shops) or products in a shop. Nor do we model that the card holder actually
obtains those services or products.

All this is summarised in Item 3.1.4 on Page 11: let am:aM » am>0, si:Sl * si € sis in.

In other words: this is not considered an element of “an essence” of credit cards.

b. We, “similarly” do not model how the refund request is arrived at.
All this is summarised in Item 3.1.4 on Page 11: let am:AM « am>0, si:Sl * si € sis in.
In other words: this is not considered an element of “an essence” of credit cards.

c. Also: we do not model whether the balance of the shop’s bank account is sufficient to
refund a card holder.

d. Etcetera.

The present credit card system model can “easily” be extended to incorporate these and other
matters.

50 Without showing explicit evidence we claim that present domain description can serve as a basis
for both domain and requirements modelling standard as well as current and future credit/pay/etc.
card systems.

51 Etcetera.

S Bibliography

5.1 Some Remarks

We refer to texts on RSL and Software Engineering: [Bjg06a, Bjg06b, Bjg06¢c, Bjg08b, Bjs08c,
Bjg08d, Bj@10a, Bjg10b, Bjg10c, Bjg09b]

5.2 Other Domain Descriptions

We list a number of reports all of which document descriptions of domains. These descriptions were
carried out in order to research and develop the domain analysis and description concepts now sum-
marised in the present paper. These reports ought now be revised, some slightly, others less so, so
as to follow all of the prescriptions of the current paper. Except where a URL is given in full, please
prefix the web reference with: http://www2.compute.dtu.dk/~dibj/.

1 A Railway Systems Domain: http://euler.fd.cvut.cz/railwaydomain/ (2003)

2 Models of IT Security. Security Rules & Regulations: it-security.pdf (2006)

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



16

10

5.2.1

Dines Bjgrner

A Container Line Industry Domain: container-paper.pdf (2007)
The “Market”: Consumers, Retailers, Wholesalers, Producers: themarket .pdf (2007)
What is Logistics ?: logistics.pdf (2009)
A Domain Model of Oil Pipelines: pipeline.pdf (2009)
Transport Systems: comet/cometl.pdf (2010)
The Tokyo Stock Exchange: todai/tse-1.pdf and todai/tse-2.pdf (2010)
On Development of Web-based Software. A Divertimento: wfdftp.pdf (2010)
Documents (incomplete draft): doc-p.pdf (2013)
Published Papers

Web page www.imm.dtu.dk/"dibj/domains/ lists the published papers and reports mentioned
below.

I have thought about domain engineering for more than 25 years.

But serious, focused writing only started to appear since [Bjg06c, Part IV] — with [Bj@03,
Bj@97] being exceptions:

@ [Bjg07, 2007] suggests a number of domain science and engineering research topics;

@ [Bjp10d, 2008] covers the concept of domain facets;

« [BE10, 2008] explores compositionality and Galois connections.

@ [Bj@08a, Bjg10f, 2008,2009] show how to systematically, but, of course, not automati-
cally, “derive” requirements prescriptions from domain descriptions;

@ [Bj@11a, 2008] takes the triptych software development as a basis for outlining principles
for believable software management;

@ [Bjg09a, Bjsl4a, 2009,2013] presents a model for Stanistaw Lesniewski’s [?] concept of
mereology;

« [Bjg10e, Bjg11b] present an extensive example and is otherwise a precursor for the present
paper;

@ [Bjgl1c, 2010] presents, based on the TripTych view of software development as ideally

proceeding from domain description via requirements prescription to software design,
concepts such as software demos and simulators;

@ [Bjg13, 2012] analyses the TripTych, especially its domain engineering approach, with
respect to Maslow’s  and Peterson’s and Seligman’s © notions of humanity: how can
computing relate to notions of humanity;

STheory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third
Edition, Harper and Row Publishers, 1954.
6 Character strengths and virtues: A handbook and classification. Oxford University Press, 2004

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 17

« the first part of [Bjg14b, 2014] is a precursor for the present paper with its second part
presenting a first formal model of the elicitation process of analysis and description based
on the prompts more definitively presented in the current paper; and

@ [Bjgl4c, 2014] focus on domain safety criticality.

The present paper basically replaces the domain analysis and description section of all of the above
reference — including [Bjg06c, Part IV, 2006].

5.3 References

[BE10]

[Bjg97]

[Bjg03]

[Bjp06a]

[Bj@06b]

[Bjp06c]

[Bj@07]

[Bjp08a]

[Bj@08b]

[Bjg08c]

Dines Bjgrner and Asger Eir. Compositionality: Ontology and Mereology of Domains.
Some Clarifying Observations in the Context of Software Engineering in July 2008, eds.
Martin Steffen, Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem Paul
de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture Notes
in Computer Science, pages 22-59, Heidelberg, July 2010. Springer.

Dines Bjgrner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In
Li ShaoYang and Michael Hinchley, editors, ICFEM’97: International Conference on For-
mal Engineering Methods, Los Alamitos, November 12-14 1997. IEEE Computer Society.
Final Version.

Dines Bjgrner. Domain Engineering: A “Radical Innovation” for Systems and Software
Engineering ? In Verification: Theory and Practice, volume 2772 of Lecture Notes in
Computer Science, Heidelberg, October 7-11 2003. Springer—Verlag. The Zohar Manna
International Conference, Taormina, Sicily 29 June — 4 July 2003. .

Dines Bjgrner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoret-
ical Computer Science, the EATCS Series. Springer, 2006. .

Dines Bjgrner. Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12—14
are primarily authored by Christian Krog Madsen.

Dines Bjgrner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

Dines Bjgrner. Domain Theory: Practice and Theories, Discussion of Possible Research
Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P.
Woodcock et al.), pages 1-17, Heidelberg, September 2007. Springer.

Dines Bjgrner. From Domains to Requirements. In Montanari Festschrift, volume 5065
of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José
Meseguer), pages 1-30, Heidelberg, May 2008. Springer.

Dines Bjgrner. Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua Univer-
sity Press, 2008.

Dines Bjorner. Software Engineering, Vol. 2: Specification of Systems and Languages.
Qinghua University Press, 2008.

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



18

[Bj@08d]

[Bjp09a]

[Bj@09b]

[Bjg10a]

[Bjo10b]

[Bjg10c]

[Bjo10d]

[Bjp10e]

[Bjp10f]

[Bjol1a]

[Bjo11b]

[Bjgllc]

[Bjp13]

Dines Bjgrner

Dines Bjgrner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Qinghua University Press, 2008.

Dines Bjgrner. On Mereologies in Computing Science. In Festschrift: Reflections on the
Work of C.A.R. Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth
R. Wood), pages 47-70, London, UK, 2009. Springer.

Dines Bjgrner. Domain Engineering: Technology Management, Research and Engineering.
A JAIST Press Research Monograph #4, 536 pages, March 2009.

Dines Bjgrner. Chinese: Software Engineering, Vol. 1: Abstraction and Modelling.
Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

Dines Bjgrner. Chinese: Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

Dines Bjgrner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Soft-
ware Design. Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

Dines Bjgrner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal
Methods: State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages
1-42, London, UK, 2010. Springer.

Dines Bjgrner. Domain Science & Engineering — From Computer Science to The Sciences of
Informatics, Part | of Il: The Engineering Part. Kibernetika i sistemny analiz, (4):100-116,
May 2010.

Dines Bjgrner. The Role of Domain Engineering in Software Development. Why Current
Requirements Engineering Seems Flawed! In Perspectives of Systems Informatics, volume
5947 of Lecture Notes in Computer Science, pages 2—-34, Heidelberg, Wednesday, January
27, 2010. Springer.

Dines Bjgrner. Believable Software Management. Encyclopedia of Software Engineering,
1(1):1-32, 2011.

Dines Bjgrner. Domain Science & Engineering — From Computer Science to The Sciences of
Informatics Part Il of Il: The Science Part. Kibernetika i sistemny analiz, (2):100-120, May
2011.

Dines Bjgrner. Domains: Their Simulation, Monitoring and Control — A Divertimento of
Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer
on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and
A. Saloma), pages 167-183. Springer, Heidelberg, Germany, January 2011.

Dines Bjgrner. Domain Science and Engineering as a Foundation for Computation for
Humanity, chapter 7, pages 159-177. Computational Analysis, Synthesis, and Design of
Dynamic Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter J.
Mosterman).

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 19

[Bjgl4a] Dines Bjgrner. A Rdle for Mereology in Domain Science and Engineering. Synthese Li-
brary (eds. Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands,
October 2014.

[Bjg14b] Dines Bjgrner. Domain Analysis: Endurants — An Analysis & Description Process Model.
In Shusaku lida, José Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and
Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

[Bjgl4c] Dines Bjgrner. Domain Engineering — A Basis for Safety Critical Software. Invited
Keynote, ASSC2014: Australian System Safety Conference, Melbourne, 26—28 May, De-
cember 2014.

[Bjg16] Dines Bjgrner. Manifest Domains: Analysis & Description. Expected published by Formal
Aspects of Computing, 2016.

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



20 Dines Bjgrner

A RSL: The Raise Specification Language
A.1 Type Expressions
e Type expressions are expressions whose value are of type type, that is,

e possibly infinite sets of values (of “that” type).

A.1l.1 Atomic Types

e Atomic types have (atomic) values.
e That is, values which we consider to have no proper constituent (sub-)values,

e i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers,
reals, characters, and texts.

type
[1] Bool true, false
2]t .., -2 -2,0,1,2, ..
[3]Nat 0, 1,2 ...
[4] Real ..., —5.43, —-1.0,0.0, 1.23---, 2,7182---, 3,1415.--, 4.56, ...
[5] Char "a","b", .., "0", ..
[6] Text "abracadabra”

A.1.2 Composite Types
e Composite types have composite values.

@ That is, values which we consider to have proper constituent (sub-)values,

@ i.e., can be meaningfully “taken apart”.
e There are two ways of expressing composite types:

@ either explicitly, using concrete type expressions,

« or implicitly, using sorts (i.e., abstract types) and observer functions.

Concrete Composite Types From these one can form type expressions: finite sets, infinite sets,
Cartesian products, lists, maps, etc.
Let A, B and C be any type names or type expressions, then:

| A-set

| A-infset

] A xBx..xC
0

J A

[7
[8
[9
[1

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 21

1] A®

2| A 5 B

3] A— B

4] A 5B

5] (A)

6)A|B]|..|C

7] mk_id(sel_a:A,...,sel_b:B)
8] sel_a:A ... sel_b:B

The following are generic type expressions:

10

11

12

13

14

15

16

A Credit

The Boolean type of truth values false and true.
The integer type on integers ..., —2,-1,0, 1, 2, ... .
The natural number type of positive integer values 0, 1, 2, ...

The real number type of real values, i.e., values whose numerals can be written as an integer,

(122

followed by a period (*.”), followed by a natural number (the fraction).

The character type of character values "a”, "b”, ...

The text type of character string values "aa”, "aaa”, ..., "abc

”,
The set type of finite cardinality set values.

The set type of infinite and finite cardinality set values.

The Cartesian type of Cartesian values.

The list type of finite length list values.

The list type of infinite and finite length list values.

The map type of finite definition set map values.

The function type of total function values.

The function type of partial function values.

In (A) A is constrained to be:

e cither a Cartesian B x C x ... x D, in which case it is identical to type expression kind
9,

e or not to be the name of a built-in type (cf., 1-6) or of a type, in which case the paren-
theses serve as simple delimiters, e.g., (A 7, B), or (A*)-set, or (A-set)list, or (A|B) 7
(C|D|(Em F)), etc.

The postulated disjoint union of types A, B, ..., and C.

Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



22 Dines Bjgrner

17 The record type of mk_id-named record values mk_id(av,...,bv), where av, ..., bv, are values
of respective types. The distinct identifiers sel_a, etc., designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, ..., bv, are values of respective
types. The distinct identifiers sel_a, etc., designate selector functions.

Sorts and Observer Functions

type
A B C ...D
value
obs B: A — B, obs.C: A — C, ..., obs.D: A — D

e The above expresses

« that values of type A
% are composed from at least three values —

@ and these are of type B, C, ..., and D.
e A concrete type definition corresponding to the above

% presupposing material of the next section

type
B, C, ...D
A=BxCx..xD

A.2 Type Definitions
A.2.1 Concrete Types
e Types can be concrete

o in which case the structure of the type is specified by type expressions:

type
A = Type_expr

e Some schematic type definitions are:

[1] Type_name = Type_expr /* without |s or subtypes %/
[2] Type_name = Type_expr_1 | Type_expr_2 | ... | Type_expr_n
[3] Type_name ==

mk_id_1(s_al:Type_name_al,...,s_ai: Type_name_ai) |
mk_id_n(s_z1:Type_name_z1,...,s_zk: Type_name_zk)
[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name._z
[5] Type-name = {| v:Type_name' + 2(v) |}

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 23

e where a form of [2-3] is provided by combining the types:

Typecname =A|B| ... | Z
A == mk.id_1(s_.al:A_1,...,s_ai:A_i)
B == mk.id_2(s_b1:B_1,...,s_bj:B_j)

Z == mk.d_n(s_z1:Z_1,...,s_zk:Z_k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk_id_k are distinct and due to the
use of the disjoint record type constructor ==.

axiom
V al:A_l, a2:A_2, ..., ai:Ai *
s-al(mk.id_1(al,a2,...,ai))=al A s_a2(mk.id_1(al,a2,...,ai))=a2 A
... A s_ai(mk.id_1(al,a2,...,ai))=ai A
V a:A ¢ let mk_id_1(al’,a2’,...,ai") = a in
al’ = s.al(a) A a2’ = s.a2(a) A ... A ai’ = s_ai(a) end

A.2.2 Subtypes

e In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.

e The set of values b which have type B and which satisfy the predicate &2, constitute the subtype
A:

type
A={bB-2(b) |}

A.2.3 Sorts — Abstract Types

e Types can be (abstract) sorts

e in which case their structure is not specified:

type
A B, ..., C

A.3 The RSL Predicate Calculus
A.3.1 Propositional Expressions

e [ et identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false
[or chaos]).

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



24

Dines Bjgrner

e Then:
false, true

a, b, ..., c ~a, aAb, avb, a=b, a=b, a#b

e are propositional expressions having Boolean values.
e ~, A,V, =, =and # are Boolean connectives (i.e., operators).

e They can be read as: not, and, or, if then (or implies), equal and not equal.

A.3.2 Simple Predicate Expressions

e Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values,
e letx, vy, ..., z (or term expressions) designate non-Boolean values
e and leti, j, ..., k designate number values,
e then:
false, true
a, b, ..., c
~a, aAb, aVb, a=-b, a=b, a#b
X=Y, X7Y,

i<j, i<, i2], i#), 2], i>]

e are simple predicate expressions.

A.3.3 Quantified Expressions
e Let X, Y, ..., Cbe type names or type expressions,

e and let Z(x), 2(y) and Z(z) designate predicate expressions in which x,y and z are free.
e Then:

vV x: X« Z(x)
JyY « 2(y)
31 zZ « Z(2)

e are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate &?(x) holds; there exists (at least)

one y (value in type Y) such that the predicate 2(y) holds; and there exists a unique z (value in type
Z) such that the predicate % (z) holds.

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 25

A.4 Concrete RSL Types: Values and Operations
A.4.1 Arithmetic

type
Nat, Int, Real

value
+,—,*%: NatxNat—Nat | IntxInt—Int | Real x Real—Real
/: NatxNat">Nat | IntxInt=Int | Real x Real ~Real
<,<,=,#,>,> (Nat|Int|Real) — (Nat|Int|Real)

A.4.2 Set Expressions
Set Enumerations Let the below a’s denote values of type A, then the below designate simple set
enumerations:

{{}, {a}, {e1.e2,.-..en}, ...} € A-set
{{}, {a} {ei.e2,....en}, ..., {€1,€2,...}} € A-infset

Set Comprehension

e The expression, last line below, to the right of the =, expresses set comprehension.
e The expression “builds” the set of values satisfying the given predicate.

o It is abstract in the sense that it does not do so by following a concrete algorithm.

type
A B
P = A — Bool
Q=A5B
value

comprehend: A-infset x P x Q — B-infset
comprehend(s,P,Q) = { Q(a) | a:A+-a € s A P(a)}

A.4.3 Cartesian Expressions
Cartesian Enumerations

e Let e range over values of Cartesian types involving A, B, ..., C,

o then the below expressions are simple Cartesian enumerations:

type

A B, .. C

A x B x x C
value

(el,e2,...,en)

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



Dines Bjgrner

26

A.4.4 List Expressions
List Enumerations

e et a range over values of type A,

o then the below expressions are simple list enumerations:

..en... ), .} €A®

e The last line above assumes a; and a; to be integer-valued expressions.

o It then expresses the set of integers from the value of ¢; to and including the value of ¢;.

o If the latter is smaller than the former, then the list is empty.

List Comprehension

e The last line below expresses list comprehension.

type
A, BP=A—>Bool,l Q=A 5B

value
comprehend: A? x P x Q = B®

comprehend(l,P,Q) =
( Q@) | iin (1.1en I) « P(I(i)))

A.4.5 Map Expressions
Map Enumerations

e Let (possibly indexed) u and v range over values of type 7T'1 and T2, respectively,

o then the below expressions are simple map enumerations:

type
T1, T2
M=T1 7 T2
value

u,ul,u2,...,.un:T1, v,v1,v2,....vn:T2
[], [u—v], [ul—v1,u2—v2,...,.un—vn] ¥V € M

A Credit Card System

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



Uppsala Lectures, May 2016

Map Comprehension

o The last line below expresses map comprehension:

type
uvVvXxyY
M=U , V
F=USX
G=V3Y
P = U — Bool
value

comprehend: MxFxGxP — (X 7 Y)
comprehend(m,F,G,P) =
[ F(u) = G(m(u)) | u:U »u € dom m A P(u)]

A.4.6 Set Operations
Set Operator Signatures

value

19 €: A x A-infset — Bool

20 ¢: A x A-infset — Bool

21 U: A-infset x A-infset — A-infset
22 U: (A-infset)-infset — A-infset
23 N: A-infset x A-infset — A-infset
24 N: (A-infset)-infset — A-infset
25 \: A-infset x A-infset — A-infset
26 C: A-infset x A-infset — Bool
27 C: A-infset x A-infset — Bool
28 =: A-infset x A-infset — Bool

29 Z: A-infset x A-infset — Bool
30 card: A-infset — Nat

Set Examples

examples
a € {a,bc}
ad{}a¢{bel
{a,b,c} U {a,b,d,e} = {a,b,cde}
U{{a}.{a,b}.{a.d}} = {ab,d}
{a,b,c} N {cde} = {c}
N{{a}.{a,b}.{ad}} = {a}
{ab.c}\ {cd} ={ab}
{a,b} C {a,b,c}

27

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



28

Dines Bjgrner

{a,b,c} C {a,b,c}
{a,b,c} = {a,b,c}

{abc} # {ab}
card {} =0, card {a,b,c} =3

Informal Explication

19
20
21

22

23

24

25

26

27

28
29

30

€: The membership operator expresses that an element is a member of a set.
¢: The nonmembership operator expresses that an element is not a member of a set.

U: The infix union operator. When applied to two sets, the operator gives the set whose members
are in either or both of the two operand sets.

U: The distributed prefix union operator. When applied to a set of sets, the operator gives the
set whose members are in some of the operand sets.

N: The infix intersection operator. When applied to two sets, the operator gives the set whose
members are in both of the two operand sets.

N: The prefix distributed intersection operator. When applied to a set of sets, the operator gives
the set whose members are in some of the operand sets.

\: The set complement (or set subtraction) operator. When applied to two sets, the operator
gives the set whose members are those of the left operand set which are not in the right operand
set.

C: The proper subset operator expresses that all members of the left operand set are also in the
right operand set.

C: The proper subset operator expresses that all members of the left operand set are also in the
right operand set, and that the two sets are not identical.

=: The equal operator expresses that the two operand sets are identical.
=: The nonequal operator expresses that the two operand sets are not identical.

card: The cardinality operator gives the number of elements in a finite set.

Set Operator Definitions The operations can be defined as follows (= is the definition symbol):

value
/ n __ / "
sUs' ={alaAracsVvacs }
sns"={alaAracsnacs}
s\s"={alaAacsnags}
sCs=VaAcacesd=aed
s'Cs”Eslgs”/\Ha:A-a65”/\a§Zs'
s=5s"=VaAcacs=aes =sC ACs

May 31,

2016: 10:31am: 10:31 © Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016

S/ # S// = S/ N S// # {}

card s =
if s = {} then O else
let a:A+acsinl+ card (s \ {a}) end end
pre s /x is a finite set %/

card s = chaos /x tests for infinity of s x/

A.4.7 Cartesian Operations

type
A, B, C
gd: GO=AXxB xC
gl: Gl=(AxBxC)
g2: G2=(AxB)xC
g3: G3=Ax(BxC)
value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):GO,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (al,bl,cl) = g0,
(al’,bl',cl’) = gl in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

A.4.8 List Operations
List Operator Signatures

value
hd: A? 5 A
th: A2 5 A©
len: A® = Nat
inds: A® — Nat-infset
elems: A? — A-infset
(): A? x Nat = A
AT X AY 5 A?
=: A? x A® — Bool
#: A? x A® — Bool

29

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



30 Dines Bjgrner

List Operation Examples

examples
hd(al,a2,...,.am)=al
tl(al,a2,....am)=(a2,...,am)
len(al,a2,....am)=m
inds(al,a2,....am)={1,2,....m}
elems(al,a2,....am)={al,a2,....am}
(al,a2,...,am)(i)=ai
a,b,c)"(a,b,d) = (a,b,c,a,b,d)

Informal Explication
e hd: Head gives the first element in a nonempty list.
o tl: Tail gives the remaining list of a nonempty list when Head is removed.
e len: Length gives the number of elements in a finite list.

e inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists,
this set is the empty set as well.

e elems: Elements gives the possibly infinite set of all distinct elements in a list.

e /(i): Indexing with a natural number, i larger than 0, into a list £ having a number of elements
larger than or equal to i, gives the ith element of the list.

e : Concatenates two operand lists into one. The elements of the left operand list are followed
by the elements of the right. The order with respect to each list is maintained.

e —=: The equal operator expresses that the two operand lists are identical.
e =£: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

List Operator Definitions

value
is_finite_list: A® — Bool

len q =
case is_finite_list(q) of
true — if g = () then O else 1 + len tl q end,
false — chaos end

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016

inds q =
case is_finite_list(q) of
true — {i|iNat-1 <i<lenq},
false — { i | i:Nat « i£0 } end

elems g = { q(i) | :Nat + i € inds q }

q(i) =
if i=1
then
if ()
then let a:A,q"Q + g=(a)"q  in a end
else chaos end
else q(i—1) end

fq " iq =
(if 1 <i < len fq then fq(i) else iq(i — len fq) end
| i:Nat - if len iq#chaos then i < len fq-+len end )
pre is_finite_list(fq)
iq/ — iq//
inds iq’ = inds iq” A V i:Nat « i € inds iq’ = iq'(i) = iq"(i)

~ Il

iq #iq" = ~(iq' = iq")

A.4.9 Map Operations
Map Operator Signatures and Map Operation Examples

value
m(a): M - A 5B, m(a)=b

dom: M — A-infset [domain of map]|
dom [al—bl,a2—b2,....an—~bn| = {al,a2,...,an}

rng: M — B-infset [range of map]
rng [al—bl,a2—b2,...,an—~bn] = {b1,b2,...,bn}

T: M x M — M [override extension ]
[a—b,asba"sb"] § [a'—b” a"isb'] = [arsb,a b a"b']

UM x M— M [merge U]

!N " ///]

[an—)b,a/Hb'a ._>b”] U [a —b r_n "o_m ///]

= [ar>b,a'—b’a"—b" a" b

31

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



32 Dines Bjgrner

\: M x A-infset — M [restriction by]|
[a—b,a'=b’a"=b"]\{a} = [a'+=b'a"=b"]

/: M x A-infset — M [restriction to]
[a’-)b,a/’—> /,a//Hb//]/{a/,a// — [a/’_> /,a//Hb//]

=#: M x M — Bool

(A % B)x (B % C) —= (A 7 C) [composition]
[arsb,a'=b'] © [brsc, b= b"i=c"] = [arrc,a’iC]

Map Operation Explication
e m(a): Application gives the element that @ maps to in the map m.
e dom: Domain/Definition Set gives the set of values which maps to in a map.
e rng: Range/Image Set gives the set of values which are mapped to in a map.

e 7: Override/Extend. When applied to two operand maps, it gives the map which is like an
override of the left operand map by all or some “pairings” of the right operand map.

e U: Merge. When applied to two operand maps, it gives a merge of these maps.

e \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the
left operand map to the elements that are not in the right operand set.

e /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the
left operand map to the elements of the right operand set.

e —=: The equal operator expresses that the two operand maps are identical.
e =£: The nonequal operator expresses that the two operand maps are not identical.

e °: Composition. When applied to two operand maps, it gives the map from definition set
elements of the left operand map, m, to the range elements of the right operand map, m;, such
that if a is in the definition set of m; and maps into b, and if b is in the definition set of m; and
maps into c, then a, in the composition, maps into c.

Map Operation Redefinitions The map operations can also be defined as follows:

value
rmgm={m(a) |a:A-a €domm}

ml ¥ m2 =
[ a—b | a:AbB-
a € dom ml \ dom m2 A b=ml(a) V a € dom m2 A b=m2(a) |

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016

mlUm2=][a—b|aAbB-
a € dom ml1 A b=ml(a) V a € dom m2 A b=m2(a) |

[ a—m(a) |a:A+acdomm\ s |
[ a—»m(a) |a:Acac€dom mNs ]

m\'s
m/s
ml =m2 =

dom m1l = dom m2 AV a:A « a € dom ml = ml(a) = m2(a)
ml # m2 = ~(ml = m2)

m°n =
[ a—c|a:AccC+aedomm A c =n(m(a)) |
pre rng m C dom n

A.5 A-Calculus + Functions
A.5.1 The A-Calculus Syntax

type /x A BNF Syntax: x/
(L) == (V) [ (F) | {A) | ((A))

(V) ::= /x variables, i.e. identifiers x/
(F) = (V) - (L)
(A) 5= (L)L) )
value /+ Examples x/
(L): e f, a, ...
V): x
(F): 7L X*e .
(A): Fa, (Fa), f(a), ()(a), ...

A.5.2 Free and Bound Variables

Let x, y be variable names and e, f be A-expressions.
e (V): Variable x is free in x.
o (F): xis free in Ay *e if x # y and x is free in e.

e (A): xis free in f(e) if it is free in either f or e (i.e., also in both).

A.5.3 Substitution

In RSL, the following rules for substitution apply:

e subst([N/x|x) = N;

33

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



34

o subst([N/x]a) = a,
for all variables a% x;
o subst([N/x|(P Q)) = (subst(|N/x]P) subst(|N/x|Q));
o subst([N/x|(1x-P)) = A y-P;
o subst([N/x](1 y-P)) = Ay* subst([N/x]P),
if x£y and y is not free in N or x is not free in P;
o subst([N/x|(1y-P)) = Azsubst([N/z]subst([z/y]P)),

if y#x and y is free in N and x is free in P

(where z is not free in (N P)).

A.5.4 «a-Renaming and 3-Reduction

e (-renaming: Ax-M

Dines Bjgrner

If x, y are distinct variables then replacing x by y in Ax*M results in Ay-subst([y/x|M). We can
rename the formal parameter of a A-function expression provided that no free variables of its

body M thereby become bound.
e [B-reduction: (Ax-M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free variables

of N thereby become bound in the result. (Ax*M)(N) = subst([N/x]|M)

A.5.5 Function Signatures

For sorts we may want to postulate some functions:

type

A B, C

value

obs_B: A — B,
obs_C: A — C,
gen_A: BxC — A

A.5.6 Function Definitions

Functions can be defined explicitly:

value

f: Arguments — Result
f(args) = DValueExpr

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark

A Credit Card System



Uppsala Lectures, May 2016

g: Arguments = Result

35

g(args) = ValueAndStateChangeClause

pre P(args)
Or functions can be defined implicitly:

value
f: Arguments — Result
f(args) as result
post P1(args,result)

g: Arguments = Result
g(args) as result

pre P2(args)

post P3(args,result)

The symbol = indicates that the function is partial and thus not defined for all arguments. Partial
functions should be assisted by preconditions stating the criteria for arguments to be meaningful to

the function.

A.6 Other Applicative Expressions
A.6.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = &, in &;(a) end

is an “expanded” form of:

(Aa.ép(a))(éa)

A.6.2 Recursive let Expressions

Recursive let expressions are written as:
let f = Aa:A - E(f) in B(f,a) end
is “the same” as:
let f = YF in B(f,a) end
where:

F = Agedas(E(g)) and YF = F(YF)

A Credit Card System

May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



36 Dines Bjgrner

A.6.3 Predicative let Expressions

Predicative let expressions:
let a:A + #(a) in #(a) end

express the selection of a value a of type A which satisfies a predicate Z?(a) for evaluation in the body

B(a).

A.6.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

let {a} Us =setin ... end
let {a,_} Us =setin ... end

let (a,b,....c) = cart in ... end
let (a,_,....c) = cartin ... end

let (a)"¢ = listin ... end
let (a,_,b)"¢ =listin ... end

let [a—b] Um = map in ... end
let [a—b,_] Um = mapin ... end

A.6.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

if b_expr then c_expr else a_expr
end

if b_expr then c_expr end = / same as: x/
if b_expr then c_expr else skip end

if b_expr_1 then c_expr_1
elsif b_expr_2 then c_expr_2
elsif b_expr_3 then c_expr_3

elsif b_expr_n then c_expr_n end
case expr of

choice_pattern_1 — expr_1,
choice_pattern_2 — expr_2,

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 37

choice_pattern_n_or_wild_card — expr_n
end

A.6.6 Operator/Operand Expressions

(Expr) =
(Prefix_Op) (Expr)
| (Expr) (Infix_Op) (Expr)
| (Expr) (Suffix_Op)
(Prefix_Op) 1=
— |~ |U|N|card|len | inds | elems | hd | tl | dom | rng
(Infix_Op) 1=
=|#l=1+1=I«[1l/I<[<|2[>[A]V]=
lelgluln]N|clcl2]D]7[T]°
(Suffix_Op) =1

A.7 Imperative Constructs
A.7.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative
constructs which, through stages of refinements, are turned into concrete and imperative constructs.
Imperative constructs are thus inevitable in RSL.

Unit

value
stmt: Unit — Unit
stmt()

e Statements accept no arguments.

Statement execution changes the state (of declared variables).

Unit — Unit designates a function from states to states.

Statements, stmt, denote state-to-state changing functions.

Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

A.7.2 Variables and Assignment

0. variable v:Type := expression
1. v = expr

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



38 Dines Bjgrner

A.7.3 Statement Sequences and skip

Sequencing is expressed using the ‘;” operator. skip is the empty statement having no value or side-
effect.

2. skip
3. stm_1;stm_2;...;stm_n

A.7.4 Imperative Conditionals

4. if expr then stm_c else stm_a end
5. case e of: p_.1—S_1(p-1),...,p-n—S_n(p_n) end

A.7.5 TIterative Conditionals

6. while expr do stm end
7. do stmt until expr end

A.7.6 Iterative Sequencing
8. for e in list_expr » P(b) do S(b) end

A.8 Process Constructs
A.8.1 Process Channels

Let A and B stand for two types of (channel) messages and i:Kldx for channel array indexes, then:

channel c:A
channel { k[i]:B  i:Kldx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the
designated types (A and B).

A.8.2 Process Composition

e Let P and Q stand for names of process functions,
e i.e., of functions which express willingness to engage in input and/or output events,
e thereby communicating over declared channels.

e Let P() and Q stand for process expressions, then:

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



Uppsala Lectures, May 2016 39

P | Q Parallel composition

P[] Q Nondeterministic external choice (either/or)
P[] Q Nondeterministic internal choice (either/or)
P4 Q Interlock parallel composition

express the parallel (||) of two processes, or the nondeterministic choice between two processes: either
external ([]) or internal (]]). The interlock (4/) composition expresses that the two processes are forced
to communicate only with one another, until one of them terminates.

A.8.3 Input/Output Events

Let ¢, k[i] and e designate channels of type A and B, then:

c?, k[i] 7 Input
c!le k[i]! e Output

e expresses the willingness of a process to engage in an event that

@ “reads” an input, respectively

@ “writes” an output.

A.8.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow ex-
press, in their signature, via which channels they wish to engage in input and output events.

value
P: Unit — in c out kJi]
Unit
Q: i:Kldx — out c in k[i] Unit

The process function definitions (i.e., their bodies) express possible events.

A.9 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is
often done in RSL. An RSL specification is simply a sequence of one or more types, values (including
functions), variables, channels and axioms:

type

variable

A Credit Card System May 31, 2016: 10:31 am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark



40 Dines Bjgrner

channel
value
axiom
In practice a full specification repeats the above listings many times, once for each “module” (i.e.,

aspect, facet, view) of specification. Each of these modules may be “wrapped” into scheme, class or
object definitions.

May 31, 2016: 10:31am: 10:31 (© Dines Bjgrner 2016, Fredsvej 11, DK-2840 Holte, Denmark A Credit Card System



