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In [Bjø16b, Manifest Domains: Analysis & Description] we introduced a method for analysing and describing manifest
domains. In this paper we show how to systematically, but, of course, not automatically, “derive” requirements pre-
scriptions from domain descriptions. There are, as we see it, three kinds of requirements: (i) domain requirements —
also referred to as the design assumptions, and the (ii) interface requirements and (iii) machine requirements
— these two together referred to as the design requirements. The machine is the hardware and software to be
developed from the requirements. (i) Domain requirements are those requirements which can be expressed sôlely
using technical terms of the domain. (ii) Interface requirements are those requirements which can be expressed
using technical terms of both the domain and the machine. (iii) Machine requirements are those requirements
which can be expressed sôlely using technical terms of the machine. Since it is the machine we wish to design we
refer to (ii-iii) as the design requirements and to (i) as the design assumptions. We show principles, techniques
and tools for “deriving” domain requirements. The domain requirements development focus on (i.1) projection, (i.2)
instantiation, (i.3) determination, (i.4) extension and (i.5) fitting. These domain-to-requirements operators can be
described briefly: (i.1) projection removes such descriptions which are to be omitted for consideration in the require-
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just derived requirements), (iii.2) technology requirements and (iii.3) development requirements. The reason
for exploring machine requirements in some detail is to analyse requirements issues in the light of the domain concept.
We think that there is some clarification to be gained. We claim that our approach contributes to a restructuring of the
field of requirements engineering and its very many diverse concerns, a structuring that is logically motivated and is
based on viewing software specifications as mathematical objects.
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1. Introduction

In [Bjø16b, Manifest Domains: Analysis & Description] we introduced a method for analysing and describing manifest
domains. In this paper we show how to systematically, but, of course, not automatically, “derive” requirements pre-
scriptions from domain descriptions.

1.1. The Triptych Dogma of Software Development

We see software development progressing as follows: Before one can design software one must have a firm grasp of the

requirements. Before one can prescribe requirements one must have a reasonably firm grasp of the domain. Software engineering,
to us, therefore include these three phases: domain engineering, requirements engineering and software design.

1.2. Software As Mathematical Objects

Our base view is that computer programs are mathematical objects. That is, the text that makes up a computer
program can be reasoned about. This view entails that computer program specifications can be reasoned about. And
that the requirements prescriptions upon which these specifications are based can be reasoned about. This base
view entails, therefore, that specifications, whether software design specifications, or requirements prescriptions,
or domain descriptions, must [also] be formal specifications. This is in contrast to considering software design
specifications being artifacts of sociological, or even of psychological “nature”.

1.3. The Contribution of This Paper

We claim that the present paper content contributes to our understanding and practice of software engineering
as follows: (i) it shows how the new phase of engineering, domain engineering, as introduced in [Bjø16b], forms
a prerequisite for requirements engineering; (ii) it endows the “classical” form of requirements engineering with a
structured set of development stages and steps: (a) first a domain requirements stage, (b) to be followed by an interface
requirements stages, and (c) to be concluded by a machine requirements stage; (iii) it further structures and gives
a reasonably precise contents to the stage of domain requirements: (1) first a projection and simplification step, (2)
then an instantiation step, (3) then a determination step, (4) then an extension step, and (5) finally a fitting step —
with these five steps possibly being iterated; (iv) it also structures and gives a reasonably precise contents to the stage
of interface requirements based on a notion of shared entities; and (v) it finally structures and gives a reasonably
precise contents to the stage of machine requirements: (α) soft requirements, (β ) technology requirements and (γ)
development requirements. Stages (a–c) and steps (1–5, α–γ), we claim, are new. They reflect a serious contribution,
we claim, to a logical structuring of the field of requirements engineering and its very many otherwise seemingly
diverse concerns.

1.4. Some Comments on the Paper Content

This paper is, perhaps, unusual in the following respects: (i) It is a methodology1 paper, hence there are no “neat”
theories, no succinctly expressed propositions, lemmas nor theorems, and hence no proofs. (ii) As a consequence the
paper is borne by many, and by extensive examples. (iii) The examples of this paper are all focused on a generic
road transport net. (iv) To reasonably fully exemplify the requirements approach, illustrating how our method copes
with a seeming complexity of interrelated method aspects, the full example of this paper embodies very, very many
description and prescription elements: hundreds of concepts (types, axioms, functions). (v) This methodology paper
covers a “grand” area of software engineering: Many textbooks and papers are written on Requirements Engineering.
We postulate, in contrast to all such books (and papers), that requirements engineering should be founded on
domain engineering. Hence we must, somehow, show that our approach relates to major elements of what the
Requirements Engineering books put forward. (vi) As a result this paper is long.

1By methodology we understand the study and knowledge of one or more methods By a method understand the study and knowledge
of the principle, techniques and tools for constructing some artifact, here (primarily) software
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1.5. Structure of Paper

The structure of the paper is as follows: Section 2 provides a fair-sized, hence realistic example Sections 3–6 cov-
ers our approach to requirements development. Section 3 overviews the issue of ‘requirements’, relates our approach
(Sects. 4–6) to Systems, User and External Equipment and Functional Requirements, and Sect. 3 also introduces the concepts
of the machine to be requirements prescribed, the domain, the interface and the machine requirements. Section 4 covers the
domain requirements stages of projection (Sect. 4.1), instantiation (Sect. 4.2), determination (Sect. 4.3), extension (Sect. 4.4)
and fitting (Sect. 4.5). Section 5 covers key features of interface requirements: shared phenomena (Sect. 5.1), shared en-

durants (Sect. 5.2) and shared actions, shared eventsand shared behaviours (Sect. 5.3). Section 6 covers key features of ma-

chine requirements: soft requirements (Sect. 6.2), technology requirements (Sect. 6.3) and development requirements. (Sect. 6.4)
Section 7 concludes the paper.

2. An Example Domain: Transport

In order to exemplify the various stages and steps of requirements development we first bring a domain description example. The example follows
the steps of an idealised domain description. First we describe the endurants, then we describe the perdurants. Endurant description initially focus
on the composite and atomic parts. Then on their “internal” qualities: unique identifications, mereologies, and attributes. The descriptions alternate
between enumerated, i.e., labeled narrative sentences and correspondingly “numbered” formalisations. The narrative labels cum formula numbers
will be referred to, frequently in the various steps of domain requirements development.

2.1. Endurants

Since we have chosen a manifest domain, that is, a domain whose endurants can be pointed at, seen, touched, we shall follow the analysis &
description process as outlined in [Bjø16b] and formalised in [Bjø14b]. That is, we first identify, analyse and describe (manifest) parts, composite
and atomic, abstract (Sect. 2.1.1) or concrete (Sect. 2.1.2). Then we identify, analyse and describe their unique identifiers (Sect. 2.1.3), mereologies
(Sect. 2.1.4), and attributes (Sects. 2.1.5–2.1.5).

2.1.1. Domain, Net, Fleet and Monitor

Applying observe part sorts [Bjø16b, Sect. 3.1.6] to to a transport domain δ :∆ yields the following.

The root domain, ∆, is that of a composite traffic system (1.a..)
with a road net, (1.b..) with a fleet of vehicles and (1.c..) of whose
individual position on the road net we can speak, that is, monitor.2

1. We analyse the traffic system into

a. a composite road net,

b. a composite fleet (of vehicles), and

c. an atomic monitor.

type
1. ∆
1.a. N
1.b. F
1.c. M

value
1.a. obs part N: ∆ → N
1.b. obs part F: ∆ → F
1.c. obs part M: ∆ → M

Applying observe part sorts [Bjø16b, Sect. 3.1.6] to a net, n:N, yields the following.

2. The road net consists of two composite parts, a. an aggregation of hubs and

b. an aggregation of links.

type
2.a. HA
2.b. LA

value
2.a. obs part HA: N → HA
2.b. obs part LA: N → LA

2The monitor can be thought of, i.e., conceptualised. It is not necessarily a physically manifest phenomenon.
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2.1.2. Hubs and Links

Applying observe part types [Bjø16b, Sect. 3.1.7] to hub and link aggregates yields the following.

3. Hub aggregates are sets of hubs.

4. Link aggregates are sets of links.

5. Fleets are set of vehicles.

type

3. H, HS = H-set

4. L, LS = L-set

5. V, VS = V-set
value

3. obs part HS: HA → HS
4. obs part LS: LA → LS
5. obs part VS: F → VS

6. We introduce some auxiliary functions.

a. links extracts the links of a network.

b. hubs extracts the hubs of a network.

value

6.a. links: ∆ → L-set
6.a. links(δ ) ≡ obs part LS(obs part LA(obs part N(δ )))
6.b. hubs: ∆ → H-set

6.b. hubs(δ ) ≡ obs part HS(obs part HA(obs part N(δ )))

2.1.3. Unique Identifiers

Applying observe unique identifier [Bjø16b, Sect. 3.2] to the observed parts yields the following.

7. Nets, hub and link aggregates, hubs and links, fleets, vehicles and
the monitor all

a. have unique identifiers

b. such that all such are distinct, and

c. with corresponding observers.

type

7.a. NI, HAI, LAI, HI, LI, FI, VI, MI
value

7.c. uid NI: N → NI
7.c. uid HAI: HA → HAI
7.c. uid LAI: LA → LAI
7.c. uid HI: H → HI

7.c. uid LI: L → LI
7.c. uid FI: F → FI
7.c. uid VI: V → VI
7.c. uid MI: M → MI
axiom

7.b. NI
⋂

HAI=Ø, NI
⋂

LAI=Ø, NI
⋂

HI=Ø, etc.

where axiom 7.b.. is expressed semi-formally, in mathematics. We introduce some auxiliary functions:

8. xtr lis extracts all link identifiers of a traffic system.

9. xtr his extracts all hub identifiers of a traffic system.

10. Given an appropriate link identifier and a net get link ‘retrieves’
the designated link.

11. Given an appropriate hub identifier and a net get hub ‘retrieves’
the designated hub.

value

8. xtr lis: ∆ → LI-set

8. xtr lis(δ ) ≡
8. let ls = links(δ ) in {uid LI(l)|l:L•l ∈ ls} end

9. xtr his: ∆ → HI-set

9. xtr his(δ ) ≡
9. let hs = hubs(δ ) in {uid HI(h)|h:H•k ∈ hs} end

10. get link: LI → ∆
∼
→ L

10. get link(li)(δ ) ≡

10. let ls = links(δ ) in

10. let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

10. pre: li ∈ xtr lis(δ )

11. get hub: HI → ∆
∼
→ H

11. get hub(hi)(δ ) ≡
11. let hs = hubs(δ ) in

11. let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end
11. pre: hi ∈ xtr his(δ )

2.1.4. Mereology

We cover the mereologies of all part sorts introduced so far. We decide that nets, hub aggregates, link aggregates and fleets have no mereologies of
interest.Applying observe mereology [Bjø16b, Sect. 3.3.2] to hubs, links, vehicles and the monitor yields the following.
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12. Hub mereologies reflect that they are connected to zero, one or
more links.

13. Link mereologies reflect that they are connected to exactly two
distinct hubs.

14. Vehicle mereologies reflect that they are connected to the moni-
tor.

15. The monitor mereology reflects that it is connected to all vehicles.

16. For all hubs of any net it must be the case that their mereology
designates links of that net.

17. For all links of any net it must be the case that their mereologies
designates hubs of that net.

18. For all transport domains it must be the case that

a. the mereology of vehicles of that system designates the mon-
itor of that system, and that

b. the mereology of the monitor of that system designates vehi-
cles of that system.

value

12. obs mereo H: H → LI-set

13. obs mereo L: L → HI-set
axiom

13. ∀ l:L•card obs mereo L(l)=2
value

14. obs mereo V: V → MI
15. obs mereo M: M → VI-set

axiom

16. ∀ δ :∆, hs:HS•hs=hubs(δ ), ls:LS•ls=links(δ ) •

16. ∀ h:H•h ∈ hs•obs mereo H(h)⊆xtr lis(δ ) ∧
17. ∀ l:L•l ∈ ls•obs mereo L(l)⊆xtr his(δ ) ∧
18.a. let f:F•f=obs part F(δ ) ⇒
18.a. let m:M•m=obs part M(δ ),
18.a. vs:VS•vs=obs part VS(f) in

18.a. ∀ v:V•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)
18.b. ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
18.b. end end

2.1.5. Attributes, I

We may not have shown all of the attributes mentioned below — so consider them informally introduced !

• Hubs: locations3 are considered static, hub states and hub state spaces are considered programmable;

• Links: lengths and locations are considered static, link states and link state spaces are considered programmable;

• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine power (kW/horse power) are considered
static; velocity and acceleration may be considered reactive (i.e., a function of gas pedal position, etc.), global position (informed via a
GNSS: Global Navigation Satellite System) and local position (calculated from a global position) are considered biddable

Applying observe attributes [Bjø16b, Sect. 3.4.3] to hubs, links, vehicles and the monitor yields the following.

First hubs.

19. Hubs

a. have geodetic locations, GeoH,

b. have hub states which are sets of pairs of identifiers of links
connected to the hub4 ,

c. and have hub state spaces which are sets of hub states5 .

20. For every net,

a. link identifiers of a hub state must designate links of that net.

b. Every hub state of a net must be in the hub state space of that
hub.

21. We introduce an auxiliary function: xtr lis extracts all link iden-
tifiers of a hub state.

type

19.a. GeoH
19.b. HΣ = (LI×LI)-set

19.c. HΩ = HΣ-set
value

19.a. attr GeoH: H → GeoH
19.b. attr HΣ: H → HΣ
19.c. attr HΩ: H → HΩ
axiom

20. ∀ δ :∆,

20. let hs = hubs(δ ) in

20. ∀ h:H • h ∈ hs •

20.a. xtr lis(h)⊆xtr lis(δ )
20.b. ∧ attr Σ(h) ∈ attr Ω(h)
20. end

value

21. xtr lis: H → LI-set
21. xtr lis(h) ≡
21. {li | li:LI,(li′,li′′):LI×LI •

21. (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}

Then links.

22. Links have lengths.

23. Links have geodetic location.

24. Links have states and state spaces:

a. States modeled here as pairs, (hi′,hi′′), of identifiers the hubs
with which the links are connected and indicating directions

(from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3
or 4 such pairs.

b. State spaces are the set of all the link states that a link may
enjoy.

type

22. LEN
23. GeoL

3By location we mean a geodetic position.
4A hub state “signals” which input-to-output link connections are open for traffic.
5A hub state space indicates which hub states a hub may attain over time.



6 Dines Bjørner

24.a. LΣ = (HI×HI)-set

24.b. LΩ = LΣ-set

value
22. attr LEN: L → LEN
23. attr GeoL: L → GeoL
24.a. attr LΣ: L → LΣ
24.b. attr LΩ: L → LΩ
axiom

24. ∀ n:N •

24. let ls = xtr−links(n), hs = xtr hubs(n) in

24. ∀ l:L•l ∈ ls ⇒
24.a. let lσ = attr LΣ(l) in
24.a. 0≤card lσ≤4
24.a. ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ
24.a. ⇒ {hi′,hi′′}=obs mereo L(l)
24.b. ∧ attr LΣ(l) ∈ attr LΩ(l)
24. end end

Then vehicles.

25. Every vehicle of a traffic system has a position which is either ‘on
a link’ or ‘at a hub’.

a. An ‘on a link’ position has four elements: a unique link iden-
tifier which must designate a link of that traffic system and
a pair of unique hub identifiers which must be those of the
mereology of that link.

b. The ‘on a link’ position real is the fraction, thus properly be-
tween 0 (zero) and 1 (one) of the length from the first identi-
fied hub “down the link” to the second identifier hub.

c. An ‘at a hub’ position has three elements: a unique hub iden-
tifier and a pair of unique link identifiers — which must be
in the hub state.

type

25. VPos = onL | atH
25.a. onL :: LI HI HI R
25.b. R = Real axiom ∀ r:R • 0≤r≤1
25.c. atH :: HI LI LI
value

25. attr VPos: V → VPos

axiom

25.a. ∀ n:N, onL(li,fhi,thi,r):VPos •

25.a. ∃ l:L•l ∈obs part LS(obs part N(n))
25.a. ⇒ li=uid L(l)∧{fhi,thi}=obs mereo L(l),
25.c. ∀ n:N, atH(hi,fli,tli):VPos •

25.c. ∃ h:H•h ∈obs part HS(obs part N(n))
25.c. ⇒ hi=uid H(h)∧(fli,tli) ∈ attr LΣ(h)

26. We introduce an auxiliary function distribute.

a. distribute takes a net and a set of vehicles and

b. generates a map from vehicles to distinct vehicle positions
on the net.

c. We sketch a “formal” distribute function, but, for sim-

plicity we omit the technical details that secures distinctness
— and leave that to an axiom !

27. We define two auxiliary functions:

a. xtr links extracts all links of a net and

b. xtr hub extracts all hubs of a net.

type
26.b. MAP = VI →m VPos
axiom

26.b. ∀ map:MAP • card dom map = card rng map
value

26. distribute: VS → N → MAP
26. distribute(vs)(n) ≡
26.a. let (hs,ls) = (xtr hubs(n),xtr links(n)) in
26.a. let vps = {onL(uid (l),fhi,thi,r) |
26.a. l:L•l ∈ls∧{fhi,thi}
26.a. ⊆obs mereo L(l)∧0≤r≤1}
26.a. ∪ {atH(uid H(h),fli,tli)|

26.a. h:H•h ∈hs∧{fli,tli}
26.a. ⊆obs mereo H(h)} in

26.b. [uid V(v)7→vp|v:V,vp:VPos•v ∈vs∧vp∈vps ]
26. end end

27.a. xtr links: N → L-set

27.a. xtr links(n)≡
27.a. obs part LS(obs part LA(n))
27.b. xtr hubs: N → H-set

27.a. xtr hubs(n)≡
27.a. obs part H(obs part HA∆(n))

And finally monitors. We consider only one monitor attribute.

28. The monitor has a vehicle traffic attribute.

a. For every vehicle of the road transport system the vehicle traffic attribute records a possibly empty list of time marked vehicle positions.

b. These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier, the same pair of ‘’to’ and ‘from’ hub identifiers and
increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate with the hub and link mereologies.

type

28. Traffic = VI →m (T × VPos)∗

value
28. attr Traffic: M → Traffic
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axiom

28.b. ∀ δ :∆ •

28.b. let m = obs part M(δ ) in
28.b. let tf = attr Traffic(m) in

28.b. dom tf ⊆ xtr vis(δ ) ∧
28.b. ∀ vi:VI • vi ∈ dom tf •

28.b. let tr = tf(vi) in
28.b. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

28.b. let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in

28.b. t<t′

28.b.i ∧ case (vp,vp′) of

28.b.i (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
28.b.i → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′ ∧ li ∈ xtr lis(δ ) ∧ {fhi,thi} = obs mereo L(get link(li)(δ )),
28.b.ii (atH(hi,fli,tli),atH(hi′,fli′,tli′))
28.b.ii → hi=hi′∧fli=fli′∧tli=tli′ ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),
28.b.iii (onL(li,fhi,thi,1),atH(hi,fli,tli))
28.b.iii → li=fli∧thi=hi ∧ {li,tli} ⊆ xtr lis(δ ) ∧ {fhi,thi}=obs mereo L(get link(li)(δ ))
28.b.iii ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ )),
28.b.iv (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
28.b.iv → etcetera,
28.b. → false
28.b. end end end end end

2.2. Perdurants

Our presentation of example perdurants is not as systematic as that of example endurants. Give the simple basis of endurants covered above there is
now a huge variety of perdurants, so we just select one example from each of the three classes of perdurants (as outline in [Bjø16b]): a simple hub
insertion action (Sect. 2.2.1), a simple link disappearance event (Sect. 2.2.2) and a not quite so simple behaviour , that of road traffic (Sect. 2.2.3).

2.2.1. Hub Insertion Action

29. Initially inserted hubs, h, are characterised

a. by their unique identifier which not one of any hub in the net,
n, into which the hub is being inserted,

b. by a mereology, {}, of zero link identifiers, and

c. by — whatever — attributes, attrs, are needed.

30. The result of such a hub insertion is a net, n′,

a. whose links are those of n, and

b. whose hubs are those of n augmented with h.

value

29. insert hub: H → N → N
30. insert hub(h)(n) as n′

29.a. pre: uid H(h) 6∈ xtr his(n)
29.b. ∧ obs mereo H= {}
29.c. ∧ ...

30.a. post: obs part Ls(n) = obs part Ls(n′)
30.b. ∧ obs part Hs(n) ∪ {h} = obs part Hs(n′)

2.2.2. Link Disappearance Event

We formalise aspects of the link disappearance event:

31. The result net, n’:N’, is not well-formed.

32. For a link to disappear there must be at least one link in the net;

33. and such a link may disappear such that

34. it together with the resulting net makes up for the “original” net.

value

31. link diss event: N × N′ × Bool

31. link diss event(n,n′) as tf
32. pre: obs part Ls(obs part LS(n))6={}
33. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
34. l 6∈ obs part Ls(obs part LS(n′))
34. ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))

2.2.3. Road Traffic

The analysis & description of the road traffic behaviour is composed (i) from the description of the global values of nets, links and hubs, vehicles,
monitor, a clock, and an initial distribution, map, of vehicles, “across” the net; (ii) from the description of channels between vehicles and the
monitor; (iii) from the description of behaviour signatures, that is, those of the overall road traffic system, the vehicles, and the monitor; and (iv)
from the description of the individual behaviours, that is, the overall road traffic system, rts, the individual vehicles, veh, and the monitor, mon.

Global Values: There is given some globally observable parts.
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35. besides the domain, δ :∆,

36. a net, n:N,

37. a set of vehicles, vs:V-set,

38. a monitor, m:M, and

39. a clock, clock, behaviour.

40. From the net and vehicles we generate an initial distribution of
positions of vehicles.

The n:N, vs:V-set and m:M are observable from any road traffic system domain δ .

value

35. δ :∆
36. n:N = obs part N(δ ),
36. ls:L-set=links(δ ),hs:H-set=hubs(δ ),
36. lis:LI-set=xtr lis(δ ),his:HI-set=xtr his(δ )
37. va:VS=obs part VS(obs part F(δ )),
37. vs:Vs-set=obs part Vs(va),

37. vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
38. m:obs part M(δ ),
38. mi=uid MI(m),
38. ma:attributes(m)
39. clock: T → out {clk ch[vi|vi:VI•vi ∈ vis ]} Unit

40. vm:MAP•vpos map = distribute(vs)(n);

Channels:

41. We additionally declare a set of vehicle-to-monitor-channels in-
dexed

a. by the unique identifiers of vehicles

b. and the (single) monitor identifier.6

and communicating vehicle positions.

channel

41. {v m ch[vi,mi ]|vi:VI•vi ∈ vis}:VPos

Behaviour Signatures:
42. The road traffic system behaviour, rts, takes no arguments (hence

the first Unit)7; and “behaves”, that is, continues forever (hence
the last Unit).

43. The vehicle behaviour

a. is indexed by the unique identifier, uid V(v):VI,

b. the vehicle mereology, in this case the single monitor identi-
fier mi:MI,

c. the vehicle attributes, obs attribs(v)

d. and — factoring out one of the vehicle attributes — the cur-
rent vehicle position.

e. The vehicle behaviour offers communication to the monitor
behaviour (on channel vm ch[vi]); and behaves “forever”.

44. The monitor behaviour takes

a. the monitor identifier,

b. the monitor mereology,

c. the monitor attributes,

d. and — factoring out one of the vehicle attributes — the dis-
crete road traffic, drtf:dRTF, being repeatedly “updated” as
the result of input communications from (all) vehicles;

e. the behaviour otherwise behaves forever.

value

42. rts: Unit → Unit
43. veh: vi:VI × mi:MI → vp:VPos → out vm ch[vi,mi ] Unit

44. mon: m:M × vis:VI-set → RTF → in {v m ch[vi,mi ]|vi:VI•vi ∈ vis},clk ch Unit

The Road Traffic System Behaviour:
45. Thus we shall consider our road traffic system, rts, as

a. the concurrent behaviour of a number of vehicles and, to “observe”, or, as we shall call it, to monitor their movements,

b. the monitor behaviour.

value

45. rts() =
45.a. ‖ {veh(uid VI(v),mi)(vm(uid VI(v)))|v:V•v ∈ vs}
45.b. ‖ mon(mi,vis)([vi7→〈〉|vi:VI•vi ∈ vis ])

where, wrt, the monitor, we dispense with the mereology and the attribute state arguments and instead just have a monitor traffic argument which
records the discrete road traffic, MAP, initially set to “empty” traces (〈〉, of so far “no road traffic”!).

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate their positions to the monitor via a vehicle to
monitor channel. In order for the monitor to time-stamp these positions it must be able to “read” a clock.

46. We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

a. Either the vehicle remains at that hub informing the monitor
of its position,

b. or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub, identified by
thi, is obtained from the mereology of the link identi-
fied by tli;

6Technically speaking: we could omit the monitor identifier.
7The Unit designator is an RSL technicality.
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ii informs the monitor, on channel vm[vi,mi], that it is now
at the very beginning (0) of the link identified by tli,
whereupon the vehicle resumes the vehicle behaviour
positioned at the very beginning of that link,

c. or, again internally non-deterministically, the vehicle “disap-
pears — off the radar” !

46. veh(vi,mi)(vp:atH(hi,fli,tli)) ≡
46.a. v m ch[vi,mi ]!vp ; veh(vi,mi)(vp)
46.b. ⌈⌉
46.b.i let {hi′,thi}=obs mereo L(get link(tli)(n)) in

46.b.i assert: hi′=hi
46.b.ii v m ch[vi,mi ]!onL(tli,hi,thi,0) ;
46.b.ii veh(vi,mi)(onL(tli,hi,thi,0)) end
46.c. ⌈⌉ stop

47. We describe here an abstraction of the vehicle behaviour on a
Link (ii). Either

a. the vehicle remains at that link position informing the moni-
tor of its position,

b. or, internally non-deterministically, if the vehicle’s position
on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓε (less
than or equal to the distance to the hub) along the link
informing the monitor of this, or

ii else,

A while obtaining a “next link” from the mereology
of the hub (where that next link could very well be
the same as the link the vehicle is about to leave),

B the vehicle informs the monitor that it is now at

the hub identified by thi, whereupon the vehicle re-
sumes the vehicle behaviour positioned at that hub.

c. or, internally non-deterministically, the vehicle “disappears
— off the radar” !

47. veh(vi,mi)(vp:onL(li,fhi,thi,r)) ≡
47.a. v m ch[vi,mi ]!vp ; veh(vi,mi,va)(vp)
47.b. ⌈⌉ if r + ℓε≤1
47.b.i then
47.b.i v m ch[vi,mi ]!onL(li,fhi,thi,r+ℓε ) ;
47.b.i veh(vi,mi)(onL(li,fhi,thi,r+ℓε ))
47.b.ii else
47.b.iiA let li′:LI•li′ ∈ obs mereo H(get hub(thi)(n)) in

47.b.iiB v m ch[vi,mi ]!atH(li,thi,li′);
47.b.iiB veh(vi,mi)(atH(li,thi,li′)) end end

47.c. ⌈⌉ stop

The Monitor Behaviour

48. The monitor behaviour evolves around

a. the monitor identifier,

b. the monitor mereology,

c. and the attributes, ma:ATTR

d. — where we have factored out as a separate arguments — a
table of traces of time-stamped vehicle positions,

e. while accepting messages

i about time

ii and about vehicle positions

f. and otherwise progressing “in[de]finitely”.

49. Either the monitor “does own work”

50. or, internally non-deterministically accepts messages from vehi-
cles.

a. A vehicle position message, vp, may arrive from the vehicle
identified by vi.

b. That message is appended to that vehicle’s movement trace
– prefixed by time (obtained from the time channel),

c. whereupon the monitor resumes its behaviour —

d. where the communicating vehicles range over all identified
vehicles.

48. mon(mi,vis)(trf) ≡
49. mon(mi,vis)(trf)
50. ⌈⌉
50.a. ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi ]?) in

50.b. let trf′ = trf † [vi 7→ trf(vi)̂ <tvp> ] in

50.c. mon(mi,vis)(trf′)
50.d. end end | vi:VI • vi ∈ vis}

We are about to complete a long, i.e., a 7.5 page example (!). We can now comment on the full example: The domain, δ : ∆ is a manifest part.
The road net, n : N is also a manifest part. The fleet, f : F , of vehicles, vs : VS, likewise, is a manifest part. But the monitor, m : M, is a concept.
One does not have to think of it as a manifest “observer”. The vehicles are on — or off — the road (i.e., links and hubs). We know that from a
few observations and generalise to all vehicles. They either move or stand still. We also, similarly, know that. Vehicles move. Yes, we know that.
Based on all these repeated observations and generalisations we introduce the concept of vehicle traffic. Unless positioned high above a road net
— and with good binoculars — a single person cannot really observe the traffic. There are simply too many links, hubs, vehicles, vehicle positions
and times. Thus we conclude that, even in a richly manifest domain, we can also “speak of”, that is, describe concepts over manifest phenomena,
including time !

2.3. Domain Facets

The example of this section, i.e., Sect. 2, does not reflect the concepts of domain facets such as (i) domain intrinsics,
(ii) domain support technologies, (iii) domain rules, regulations & scripts, (iv) organisation & management, and (v)
human behaviour. These facets are covered in [Bjø10a, 2008].
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3. Requirements

This and the next three sections, Sects. 4–6, are the main sections of this paper. Section 4 is the most detailed and sys-
tematic section. It covers the domain requirements operations of projection, instantiation, determination, extension
and, less detailed, fitting. Section 5 surveys the interface requirements issues of shared phenomena: shared endurants,
shared actions, shared events and shared behaviour, and “completes” the exemplification of the detailed do-

main extension of our requirements into a road pricing system. Section 6 relates some machine requirements issues to
the overall design of the road pricing system: derived requirements, technology requirements and development
requirements. This the, initial section captures main concepts and principles of requirements.

• • •

Definition 1. Requirements (I): By a requirements we understand (cf., [IEE90, IEEE Standard 610.12]): “A

condition or capability needed by a user to solve a problem or achieve an objective”

The objective of requirements engineering is to create a requirements prescription: A requirements prescription
specifies observable properties of endurants and perdurants of the machine such as the requirements stake-holders wish
them to be The machine is what is required: that is, the hardware and software that is to be designed and which
are to satisfy the requirements A requirements prescription thus (putatively) expresses what there should be. A
requirements prescription expresses nothing about the design of the possibly desired (required) software. But as the
requirements prescription is presented in the form of a model, one can base the design on that model. We shall show
how a major part of a requirements prescription can be “derived” from “its” prerequisite domain description. Note that
requirements is about systems.

Rule 1. The “Golden Rule” of Requirements Engineering: Prescribe only those requirements that can be
objectively shown to hold for the designed software “Objectively shown” means that the designed software can
either be tested, or be model checked, or be proved (verified), to satisfy the requirements. Caveat: Since we do not
illustrate formal tests, model checking nor theorem proving, we shall, alas, not illustrate adherence to this rule.

Rule 2. An “Ideal Rule” of Requirements Engineering: When prescribing (including formalising) require-
ments, also formulate tests and properties for model checking and theorems whose proof should show adherence to
the requirements The rule is labelled “ideal” since such precautions will not be shown in this paper. The rule is clear.
It is a question for proper management to see that it is adhered to. See the “Caveat” above !

Rule 3. Requirements Adequacy: Make sure that requirements cover what users expect That is, do not express
a requirement for which you have no users, but make sure that all users’ requirements are represented or somehow
accommodated. In other words: the requirements gathering process needs to be like an extremely “fine-meshed net”:
One must make sure that all possible stake-holders have been involved in the requirements acquisition process, and
that possible conflicts and other inconsistencies have been obviated.

Rule 4. Requirements Implementability: Make sure that requirements are implementable That is, do not ex-
press a requirement for which you have no assurance that it can be implemented. In other words, although the require-
ments phase is not a design phase, one must tacitly assume, perhaps even indicate, somehow, that an implementation is
possible. But the requirements in and by themselves, may stay short of expressing such designs. Caveat: The domain
and requirements specifications are, in our approach, model-oriented. That helps expressing ‘implementability’.

Definition 2: Requirements (II): By requirements we shall understand a document which prescribes desired
properties of a machine: what endurants the machine shall “maintain”, and what the machine shall (must; not should)
offer of functions and of behaviours while also expressing which events the machine shall “handle” By a machine
that “maintains” endurants we shall mean: a machine which, “between” users’ use of that machine, “keeps” the data
that represents these entities. From earlier we repeat:

Definition 3: Machine: By machine we shall understand a, or the, combination of hardware and software that is the
target for, or result of the required computing systems development So this, then, is a main objective of requirements
development: to start towards the design of the hardware + software for the computing system.

Definition 4: Requirements (III): To specify the machine When we express requirements and wish to “convert”
such requirements to a realisation, i.e., an implementation, then we find that some requirements (parts) imply certain
properties to hold of the hardware on which the software to be developed is to “run”, and, obviously, that remaining
— probably the larger parts of the — requirements imply certain properties to hold of that software.
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3.1. Four Requirements Facets

We shall unravel requirements in two stages — (i) the first stage is sketchy (and thus informal) (ii) while the last
stage is systematic and both informal and formal. The sketchy stage consists of (i.1) a narrative problem/objective sketch,
(i.2) a narrative system requirements sketch, and (i.3) a narrative user & external equipment requirements sketch, (ii) The
narrative and formal stage consists of: design assumptions prescription and design requirements prescription, It is systematic,
and mandates both strict narrative and formal prescriptions. And it is “derivable” from the domain description.

3.1.1. Problem, Solution and Objective Sketch

Definition 5. Problem, Solution and Objective Sketch: By a problem, solution and objective sketch we under-
stand a narrative which emphasises what the problem to be solved is, outlines a possible solution and sketches an
objective of the solution

Example 1. The Problem/Objective Requirements: A Sketch: The problem is that of traffic congestion. The chosen

solution is to [build and] operate a toll-road system integrated into a road net and charge toll-road users a usage fee. The objective is

therefore to create a road-pricing product. By a road-pricing product we shall understand an information technology-based system

containing computers and communications equipment and software that enables the recording of vehicle movements within the toll-

road and thus enables the owner of the road net to charge the owner of the vehicles fees for the usage of that toll-road

3.1.2. Systems Requirements

Definition 6. System Requirements: By a system requirements narrative we understand a narrative which
emphasises the overall assumed and/or required hardware and software system equipment

Example 2. The Road-pricing System Requirements: A Narrative: The requirements are based on the following

constellation of system equipment: (i) there is assumed a GNSS: a GLOBAL NAVIGATION SATELLITE SYSTEM; (ii) there are vehicles

equipped with GNSS receivers; (iii) there is a well-delineated road net called a toll-road net with specially equipped toll-gates with

vehicle identification sensors, barriers which afford (only specially equipped) vehicles to enter into and exit from the toll-road net;

and (iv) there is a road-pricing calculator. The system to be designed (from the requirements) is the road-pricing calculator.

These four system elements are required to behave and interact as follows: (a) The GNSS is assumed to continuously offer vehicles

information about their global position; (b) vehicles shall contain a GNSS receiver which based on the global position information

shall regularly calculate their timed local position and offer this to the calculator — while otherwise cruising the general road net as

well as the toll-road net, the latter while carefully moving through toll-gates; (c) toll-gates shall register the identity of vehicles entering

and exiting the toll-road and offer this information to the calculator; and (d) the calculator shall accept all messages from vehicles and

gates and use this information to record the movements of vehicles and bill these whenever they exit the toll-road. The requirements

are therefore to include assumptions about [1] the GNSS satellite and telecommunications equipment, [2] the vehicle GNSS receiver

equipment, [3] the vehicle handling of GNSS input and forwarding, to the road pricing system, of its interpretation of GNSS input, [4]

the toll-gate sensor equipment, [5] the toll-gate barrier equipment, [6] the toll-gate handling of entry, vehicle identification and exit

sensors and the forwarding of vehicle identification to the road pricing calculator, and [7] the communications between toll-gates

and vehicles, on “one side”, and the road pricing calculator, on the “other side”. It is in this sense that the requirements are for an

information technology-based system of both software and hardware — not just hard computer and communications equipment, but

also movement sensors and electro-mechanical “gear”

3.1.3. User and External Equipment Requirements

Definition 7: User and External Equipment Requirements: By a user and external equipment require-
ments narrative we understand a narrative which emphasises assumptions about the human user and external equip-
ment interfaces to the system components The user and external equipment requirements detail, and thus make
explicit the assumptions listed in Example 2.

Example 3. The Road-pricing User and External Equipment Requirements: Narrative: The human users

of the road-pricing system are, (a–c): (a) vehicle drivers, (b) toll-gate sensor, actuator and barrier service staff, and (c) the road-pricing

calculator service staff. The external equipment are, (1–3): (1) firstly, the GNSS satellites and the telecommunications equipment which

enables communication between, (i–iii), (i) the GNSS satellites and vehicles, (ii) vehicles and the road-pricing calculator and (iii) toll-

gates and the road-pricing calculator. Moreover, the external equipment are (2) the toll-gates with their sensors: entry, vehicle identity,

and exit, and the barrier actuator. The external equipment are, finally, (3), the vehicles !
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That is, although we do indeed exemplify domain and requirements aspects of users and external equipment, we do
not expect to machine, i.e., to hardware or software design these elements; they are assumed already implemented !

3.1.4. Design Requirements

Definition 8. Assumption and Design Requirements: By assumption and design requirements we
understand precise prescriptions of the endurants and perdurants of the (to be designed) system components and the
assumptions which that design must rely upon

The design will be done, extensively, in the examples of Sects. 5–6. The assumptions upon which the design can be
relied upon, that is, shall be verified (“against”) are illustrated in Sect. 4

3.2. The Three Phases of Requirements Engineering

There are, as we see it, three kinds of design assumptions and requirements: (i) domain requirements (the primary
design assumptions) , (ii) interface requirements and (iii) machine requirements. The last two being the primary
design requirements. (i) The domain requirements are those requirements which can be expressed sôlely using
technical terms of the domain . (ii) The interface requirements are those requirements which can be expressed
only using technical terms of both the domain and the machine . (iii) The machine requirements are those
requirements which, in principle, can be expressed sôlely using technical terms of the machine .

Definition 9. Verification Paradigm: Some preliminary designations: let D designate the the domain requirements;
let R designate the interface and machine requirements and let S designate the system design. Now D ,S |= R shall
be read: it must be verified that the S ystem design satisfies the interface and machine Requirements in the context of
the Domain requirements

The “in the context of D ...” term means that proofs of S oftware design correctness with respect to Requirements
will often have to refer to Domain requirements assumptions. We refer to [GGJZ00, Gunter, Jackson, Zave, 2000] for
an analysis of a varieties of forms in which |= relate to variants of D , R and S .

3.3. Order of Presentation of Requirements Prescriptions

The domain requirements development stage — as we shall see — can be sub-staged into: projection, instantia-
tion, determination, extension and fitting. The interface requirements development stage — can be sub-staged
into shared: endurant, action, event and behaviour developments, where “sharedness” pertains to phenomena
shared between, i.e., “present” in, both the domain (concretely, manifestly) and the machine (abstractly, conceptually).
These development stages need not be pursued in the order of the three stages and their sub-stages. We emphasize
that one thing is the stages and steps of development, as for example these: projection, instantiation, determination,
extension, fitting, shared endurants, shared actions, shared events, shared behaviours, etcetera, another thing is the re-
quirements prescription that results from these development stages and steps. The further software development, after
and on the basis of the requirements prescription starts only when all stages and steps of the requirements prescription
have been fully developed. The domain engineer is now free to rearrange the final prescription, irrespective of the
order in which the various sections were developed, in such a way as to give a most pleasing, pedagogic and cohesive
reading (i.e., presentation). From such a requirements prescription one can therefore not necessarily see in which order
the various sections of the prescription were developed.

3.4. Design Requirements and Design Assumptions

A crucial distinction is between design requirements and design assumptions. The design requirements are those require-
ments for which the system designer has to implement hardware or software in order satisfy system user expectations

The design assumptions are those requirements for which the system designer does not have to implement hardware
or software, but whose properties the designed hardware, respectively software relies on for proper functioning

Example 4. Road Pricing System — Design Requirements: The design requirements for the road pricing calculator

of this paper are for the design of: (ii) for that part of the vehicle software which interfaces the GNSS receiver and the road pricing
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calculator (cf. Items 128.–131.), (iii) for that part of the toll-gate software which interfaces the toll-gate and the road pricing calculator

(cf. Items 136.–138.) and (i) the road pricing calculator (cf. Items 167.–180.)

Example 5. Road Pricing System — Design Assumptions: The design assumptions for the road pricing calculator

include: (i) that vehicles behave as prescribed in Items 127.–131., (ii) that the GNSS regularly offers vehicles correct information as to

their global position (cf. Item 128.), (iii) that toll-gates behave as prescribed in Items 133.–138., and (iv) that the road net is formed and

well-formed as defined in Examples 10–12

Example 6. Toll-Gate System — Design Requirements: The design requirements for the toll-gate system of this

paper are for the design of software for the toll-gate and its interfaces to the road pricing system, i.e., Items 132.–133.

Example 7. Toll-Gate System — Design Assumptions: The design assumptions for the toll-gate system include (i)

that the vehicles behave as per Items 127.–131., and (ii) that the road pricing calculator behave as per Items 167.–180.

4. Domain Requirements

Domain requirements express the assumptions that a design must rely upon in order that that design can be verified.

Definition 10. Domain Requirements Prescription: A domain requirements prescription is that subset of the
requirements prescription which can be expressed sôlely using terms from the domain description

To determine a relevant subset all we need is collaboration with requirements, cum domain stake-holders. Experimental
evidence, in the form of example developments of requirements prescriptions from domain descriptions, appears to
show that one can formulate techniques for such developments around a few domain-description-to-requirements-pre-
scription operations. We suggest these: projection, instantiation, determination, extension and fitting. In Sect. 3.3
we mentioned that the order in which one performs these domain-description-to-domain-requirements-prescription
operations is not necessarily the order in which we have listed them here, but, with notable exceptions, one is well-
served in starting out requirements development by following this order.

4.1. Domain Projection & Simplification

Definition 11. Domain Projection: By a domain projection & simplification we mean a subset of the domain
description, one which projects out all those endurants: parts, materials and components, as well as perdurants: actions,
events and behaviours that the stake-holders do not wish represented or relied upon by the machine. Simplification
means that we simplify (refine) some internal qualities, like mereologies and/or attributes

The resulting document is a partial domain requirements prescription. In determining an appropriate subset the
requirements engineer must secure that the final “projection prescription” is complete and consistent — that is, that
there are no “dangling references”, i.e., that all entities and their internal properties that are referred to are all properly
defined.

4.1.1. Domain Projection — Narrative

We now start on a series of examples that illustrate domain requirements development.

Example 8. Domain Requirements. Projection: A Narrative Sketch: We require that the road pricing system

shall [at most] relate to the following domain entities – and only to these8: the net, its links and hubs, and their properties (unique

identifiers, mereologies and some attributes), the vehicles, as endurants, and the general vehicle behaviours, as perdurants. We treat

projection together with a concept of simplification. The example simplifications are vehicle positions and, related to the simpler vehicle

position, vehicle behaviours. To prescribe and formalise this we copy the domain description. From that domain description we remove

all mention of the hub insertion action, the link disappearance event, and the monitor

As a result we obtain ∆P , the projected version of the domain requirements prescription9.

8By ‘relate to . . . these’ we mean that the required system does not rely on domain phenomena that have been “projected away”.
9Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.
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4.1.2. Domain Projection — Formalisation

The requirements prescription hinges, crucially, not only on a systematic narrative of all the projected, instantiated,
determinated, extended and fitted specifications, but also on their formalisation. In the formal domain projection
example we, regretfully, omit the narrative texts. In bringing the formal texts we keep the item numbering from Sect. 2,
where you can find the associated narrative texts.

Example 9. Domain Requirements — Projection:

Main Sorts

type

1. ∆P

1.a. NP

1.b. FP

value

1.a. obs part NP : ∆P→NP

1.b. obs part FP : ∆P→FP

type

2.a. HAP

2.b. LAP

value

2.a. obs part HA: NP → HA
2.b. obs part LA: NP → LA

Concrete Types

type

3. HP , HSP = HP -set

4. LP , LSP = LP -set
5. VP , VSP = VP -set

value

3. obs part HSP : HAP → HSP

4. obs part LSP : LAP → LSP

5. obs part VSP : FP → VSP

6.a. links: ∆P → L-set
6.a. links(δP ) ≡ obs part LSR (obs part LAR (δR ))
6.b. hubs: ∆P → H-set

6.b. hubs(δP ) ≡ obs part HSP (obs part HAP (δP ))

Unique Identifiers

type
7.a. HI, LI, VI, MI
value

7.c. uid HI: HP → HI
7.c. uid LI: LP → LI

7.c. uid VI: VP → VI
7.c. uid MI: MP → MI
axiom

7.b. HI
⋂

LI=Ø, HI
⋂

VI=Ø, HI
⋂

MI=Ø,
7.b. LI

⋂
VI=Ø, LI

⋂
MI=Ø, VI

⋂
MI=Ø

Mereology

value

12. obs mereo HP : HP → LI-set

13. obs mereo LP : LP → HI-set
13. axiom ∀ l:LP

• card obs mereo LP (l)=2
14. obs mereo VP : VP → MI
15. obs mereo MP : MP → VI-set
axiom

16. ∀ δP :∆P , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δP ) ⇒
16. ∀ h:HP

•h ∈ hs ⇒
16. obs mereo HP (h)⊆xtr his(δP ) ∧

17. ∀ l:LP
•l ∈ ls •

16. obs mereo LP (l)⊆xtr lis(δP ) ∧
18.a. let f:FP

•f=obs part FP (δP ) ⇒
18.a. vs:VSP

•vs=obs part VSP (f) in

18.a. ∀ v:VP
•v ∈ vs ⇒

18.a. uid VP (v) ∈ obs mereo MP (m) ∧
18.b. obs mereo MP (m)
18.b. = {uid VP (v)|v:V•v ∈ vs}
18.b. end

Attributes: We project attributes of hubs, links and vehicles.
First hubs:

type

19.a. GeoH
19.b. HΣP = (LI×LI)-sett
19.c. HΩP = HΣP -set

value

19.b. attr HΣP : HP → HΣP

19.c. attr HΩP : HP → HΩP

axiom

20. ∀ δP :∆P ,
20. let hs = hubs(δP ) in

20. ∀ h:HP
• h ∈ hs •

20.a. xtr lis(h)⊆xtr lis(δP )
20.b. ∧ attr ΣP (h) ∈ attr ΩP (h)
20. end
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Then links:

type
23. GeoL
24.a. LΣP = (HI×HI)-set

24.b. LΩP = LΣP -set

value

23. attr GeoL: L → GeoL
24.a. attr LΣP : LP → LΣP

24.b. attr LΩP : LP → LΩP

axiom

24.a.− 24.b. on Page 5.

Finally vehicles: For ‘road pricing’ we need vehicle positions. But, for “technical reasons”, we must abstain from the detailed descrip-
tion given in Items 25.–25.c. The ‘technical reasons’ are that we assume that the GNSS cannot provide us with direction of vehicle
movement and therefore we cannot, using only the GNSS provide the details of ‘offset’ along a link (onL) nor the “from/to link” at a hub
(atH). We therefore simplify vehicle positions.

51. A simplified vehicle position designates

a. either a link

b. or a hub,

type

51. SVPos = SonL | SatH

51.a. SonL :: LI
51.b. SatH :: HI
axiom

25.a.’ ∀ n:N, SonL(li):SVPos •

25.a.’ ∃ l:L•l ∈obs part LS(obs part N(n)) ⇒ li=uid L(l)
25.c.’ ∀ n:N, SatH(hi):SVPos •

25.c.’ ∃ h:H•h ∈obs part HS(obs part N(n)) ⇒ hi=uid H(h)

Global Values

value
35. δP :∆P ,
36. n:NP = obs part NP (δP ),
36. ls:LP -set = links(δP ),

36. hs:HP -set = hubs(δP ),
36. lis:LI-set = xtr lis(δP ),
36. his:HI-set = xtr his(δP )

Behaviour Signatures: We omit the monitor behaviour.

52. We leave the vehicle behaviours’ attribute argument unde-
fined.

type

52. ATTR
value

42. trsP : Unit → Unit
43. vehP : VI×MI×ATTR → ... Unit

The System Behaviour: We omit the monitor behaviour.

value

45.a. trsP ()=‖{vehP (uid VI(v),obs mereo V(v), ) | v:VP
•v ∈ vs}

The Vehicle Behaviour: Given the simplification of vehicle positions we simplify the vehicle behaviour given in Items 46.–47.

46.’ veh(vi,mi)(vp:SatH(hi)) ≡
46.a.’ v m ch[vi,mi ]!SatH(hi) ; veh(vi,mi)(SatH(hi))
46.b.i’ ⌈⌉ let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in
46.b.ii’ v m ch[vi,mi ]!SonL(li) ; veh(vi,mi)(SonL(li)) end

46.c.’ ⌈⌉ stop

47.’ veh(vi,mi)(vp:SonL(li)) ≡
47.a.’ v m ch[vi,mi ]!SonL(li) ; veh(vi,mi,va)(SonL(li))
47.b.iiA’ ⌈⌉ let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in
47.b.iiB’ v m ch[vi,mi ]!SatH(hi) ; veh(vi,mi)(atH(hi)) end

47.c.’ ⌈⌉ stop

We can simplify Items 46.′–47.c.′ further.

53. veh(vi,mi)(vp) ≡
54. v m ch[vi,mi ]!vp ; veh(vi,mi,va)(vp)
55. ⌈⌉ case vp of

55. SatH(hi) →
56. let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in
57. v m ch[vi,mi ]!SonL(li) ; veh(vi,mi)(SonL(li)) end,
55. SonL(li) →
58. let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in
59. v m ch[vi,mi ]!SatH(hi) ; veh(vi,mi)(atH(hi)) end end

60. ⌈⌉ stop

53. This line coalesces Items 46.′ and 47.′.

54. Coalescing Items 46.a.′ and 47.′.

55. Captures the distinct parameters of Items 46.′ and 47.′.

56. Item 46.b.i′.

57. Item 46.b.ii′ .

58. Item 47.b.iiA′.

59. Item 47.b.iiB′ .

60. Coalescing Items 46.c.′ and 47.c.′.

The above vehicle behaviour definition will be transformed (i.e., further “refined”) in Sect. 5.3’s Example 18; cf. Items 127.– 131. on Page 23
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Fig. 1. A simple, linear toll-road net trn. t p j : toll plaza j, ti j : toll road intersection j.
Upper dashed sub-figure hint at an ordinary road net no.
Lower dotted sub-figure hint at a toll-road net trn.
Dash-dotted (- - -) ”V”-images above t p js hint at links to remaining “parts” of no.

4.2. Domain Instantiation

Definition 12. Instantiation: By domain instantiation we mean a refinement of the partial domain requirements
prescription (resulting from the projection step) in which the refinements aim at rendering the endurants: parts, materi-
als and components, as well as the perdurants: actions, events and behaviours of the domain requirements prescription
more concrete, more specific Instantiations usually render these concepts less general.

Properties that hold of the projected domain shall also hold of the (therefrom) instantiated domain.
Refinement of endurants can be expressed (i) either in the form of concrete types, (ii) or of further “delineating”

axioms over sorts, (iii) or of a combination of concretisation and axioms. We shall exemplify the third possibility.
Example 10 express requirements that the road net (on which the road-pricing system is to be based) must satisfy.
Refinement of perdurants will not be illustrated (other than the simplification of the vehicle projected behaviour).

4.2.1. Domain Instantiation

Example 10. Domain Requirements. Instantiation Road Net: We now require that there is, as before, a road net,
nI :NI , which can be understood as consisting of two, “connected sub-nets”. A toll-road net, trnI :TRNI , cf. Fig. 1, and an ordinary
road net, nP ′ . The two are connected as follows: The toll-road net, trnI , borders some toll-road plazas, in Fig. 1 shown by white filled
circles (i.e., hubs). These toll-road plaza hubs are proper hubs of the ‘ordinary’ road net, n′

P
.1

2
61. The instantiated domain, δI :∆I has just the net, nI :NI

being instantiated.

62. The road net consists of two “sub-nets”

a. an “ordinary” road net, no:NP ′ and

b. a toll-road net proper, trn:TRNI —

c. “connected” by an interface hil:HIL:

i That interface consists of a number of toll-road
plazas (i.e., hubs), modeled as a list of hub identi-
fiers, hil:HI∗.

ii The toll-road plaza interface to the toll-road net,
trn:TRNI

10, has each plaza, hil[i], connected to
a pair of toll-road links: an entry and an exit link:
(le:L, lx :L).

iii The toll-road plaza interface to the ‘ordinary’ net,
no:NP ′ , has each plaza, i.e., the hub designated
by the hub identifier hil[i], connected to one or more
ordinary net links, {li1 , li2 , · · · , lik}.

62.b. The toll-road net, trn:TRNI , consists of three collec-
tions (modeled as lists) of links and hubs:

i a list of pairs of toll-road entry/exit links:
〈(le1

, lx1
), · · · ,(leℓ , lxℓ )〉,

ii a list of toll-road intersection hubs: 〈hi1 ,hi2 , · · · ,hiℓ 〉,
and

iii a list of pairs of main toll-road (“up” and “down”)
links: 〈(mli1u

,mli1d
),(mi2u

,mi2d
), · · · ,(miℓu ,miℓd )〉.

d. The three lists have commensurate lengths (ℓ).

ℓ is the number of toll plazas, hence also the number of toll-road intersection hubs and therefore a number one larger than the number
of pairs of main toll-road (“up” and “down”) links

10We (sometimes) omit the subscript I when it should be clear from the context what we mean.
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type

61. ∆I

62. NI = NP ′ × HIL × TRN
62.a. NP ′

62.b. TRNI = (L×L)∗×H∗×(L×L)∗

62.c. HIL = HI∗

axiom

62.d. ∀ nI :NI
•

62.d. let (n∆,hil,(exll,hl,lll)) = nI in

62.d. len hil = len exll = len hl = len lll + 1
62.d. end

We have named the “ordinary” net sort (primed) NP ′ . It is “almost” like (unprimed) NP — except that the interface hubs are also
connected to the toll-road net entry and exit links.

The partial concretisation of the net sorts, NP , into NI requires some additional well-formedness conditions to be satisfied.

63. The toll-road intersection hubs all11 have distinct identifiers.

63. wf dist toll road isect hub ids: H∗→Bool

63. wf dist toll road isect hub ids(hl) ≡
63. len hl = card xtr his(hl)

64. The toll-road links all have distinct identifiers.

64. wf dist toll road u d link ids: (L×L)∗→Bool

64. wf dist toll road u d link ids(lll) ≡
64. 2 × len lll = card xtr lis(lll)

65. The toll-road entry/exit links all have distinct identifiers.

65. wf dist e x link ids: (L×L)∗→Bool

65. wf dist e x link ids(exll) ≡
65. 2 × len exll = card xtr lis(exll)

66. Proper net links must not designate toll-road intersection
hubs.

66. wf isoltd toll road isect hubs: HI∗×H∗→NI →Bool

66. wf isoltd toll road isect hubs(hil,hl)(nI ) ≡
66. let ls=xtr links(nI ) in
66. let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in

66. his ∩ xtr his(hl) = {} end end

67. The plaza hub identifiers must designate hubs of the ‘ordi-
nary’ net.

67. wf p hubs pt of ord net: HI∗→N′
∆→Bool

67. wf p hubs pt of ord net(hil)(n’∆ ) ≡
67. elems hil ⊆ xtr his(n′∆)

68. The plaza hub mereologies must each,

a. besides identifying at least one hub of the ordinary net,

b. also identify the two entry/exit links with which they are
supposed to be connected.

68. wf p hub interf: N′
∆→Bool

68. wf p hub interf(no ,hil,(exll, , )) ≡
68. ∀ i:Nat • i ∈ inds exll ⇒
68. let h = get H(hil(i))(n′∆) in
68. let lis = obs mereo H(h) in

68. let lis′ = lis \ xtr lis(n′) in

68. lis′ = xtr lis(exll(i)) end end end

69. The mereology of each toll-road intersection hub must iden-
tify

a. the entry/exit links

b. and exactly the toll-road ‘up’ and ‘down’ links

c. with which they are supposed to be connected.

69. wf toll road isect hub iface: NI →Bool

69. wf toll road isect hub iface( , ,(exll,hl,lll)) ≡

69. ∀ i:Nat • i ∈ inds hl ⇒
69. obs mereo H(hl(i)) =
69.a. xtr lis(exll(i)) ∪
69. case i of
69.b. 1 → xtr lis(lll(1)),
69.b. len hl → xtr lis(lll(len hl−1))
69.b. → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))
69. end

70. The mereology of the entry/exit links must identify exactly
the

a. interface hubs and the

b. toll-road intersection hubs

c. with which they are supposed to be connected.

70. wf exll: (L×L)∗×HI∗×H∗→Bool

70. wf exll(exll,hil,hl) ≡
70. ∀ i:Nat • i ∈ len exll
70. let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in
70. obs mereo L(el) = obs mereo L(xl)
70. = {hi} ∪ {uid H(h)} end

70. pre: len eell = len hil = len hl

71. The mereology of the toll-road ‘up’ and ‘down’ links must

a. identify exactly the toll-road intersection hubs

b. with which they are supposed to be connected.

71. wf u d links: (L×L)∗×H∗→Bool

71. wf u d links(lll,hl) ≡
71. ∀ i:Nat • i ∈ inds lll ⇒
71. let (ul,dl) = lll(i) in

71. obs mereo L(ul) = obs mereo L(dl) =
71.a. uid H(hl(i)) ∪ uid H(hl(i+1)) end

71. pre: len lll = len hl+1

11A ‘must’ can be inserted in front of all ‘all’s,
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We have used some additional auxiliary functions:

xtr his: H∗→HI-set
xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set

xtr lis(l′,l′′) ≡ {uid LI(l′)}∪{uid LI(l′′)}
xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l′,l′′)|(l′,l′′):(L×L)•(l′,l′′)∈ elems lll}

72. The well-formedness of instantiated nets is now the con-
junction of the individual well-formedness predicates above.

72. wf instantiated net: NI → Bool

72. wf instantiated net(n′∆ ,hil,(exll,hl,lll))
63. wf dist toll road isect hub ids(hl)
64. ∧ wf dist toll road u d link ids(lll)

65. ∧ wf dist e e link ids(exll)
66. ∧ wf isolated toll road isect hubs(hil,hl)(n′)
67. ∧ wf p hubs pt of ord net(hil)(n′)
68. ∧ wf p hub interf(n′∆ ,hil,(exll, , ))
69. ∧ wf toll road isect hub iface( , ,(exll,hl,lll))
70. ∧ wf exll(exll,hil,hl)
71. ∧ wf u d links(lll,hl)

4.2.2. Domain Instantiation — Abstraction

Example 11. Domain Requirements. Instantiation Road Net, Abstraction: Domain instantiation has refined
an abstract definition of net sorts, nP :NP , into a partially concrete definition of nets, nI :NI . We need to show the refinement relation:

• abstraction(nI ) = nP .

value

73. abstraction: NI → NP

74. abstraction(n′∆ ,hil,(exll,hl,lll)) ≡
75. let nP :NP

•

75. let hs = obs part HSP (obs part HAP (n′
P

)),
75. ls = obs part LSP (obs part LAP (n′

P
)),

75. ths = elems hl,
75. eells = xtr links(eell), llls = xtr links(lll) in

76. hs∪ths=obs part HSP (obs part HAP (nP ))
77. ∧ ls∪eells∪llls=obs part LSP (obs part LAP (nP ))
78. nP end end

73. The abstraction function takes a concrete net, nI :NI , and yields
an abstract net, nP :NP .

74. The abstraction function doubly decomposes its argument into
constituent lists and sub-lists.

75. There is postulated an abstract net, nP :NP , such that

76. the hubs of the concrete net and toll-road equals those of the ab-
stract net, and

77. the links of the concrete net and toll-road equals those of the ab-
stract net.

78. And that abstract net, nP :NP , is postulated to be an abstraction
of the concrete net.

4.3. Domain Determination

Definition 13. Determination: By domain determination we mean a refinement of the partial domain require-
ments prescription, resulting from the instantiation step, in which the refinements aim at rendering the endurants:
parts, materials and components, as well as the perdurants: functions, events and behaviours of the partial domain
requirements prescription less non-determinate, more determinate

Determinations usually render these concepts less general. That is, the value space of endurants that are made more
determinate is “smaller”, contains fewer values, as compared to the endurants before determination has been “applied”.

4.3.1. Domain Determination: Example

We show an example of ‘domain determination’. It is expressed sôlely in terms of axioms over the concrete toll-road
net type.

Example 12. Domain Requirements. Determination Toll-roads: We focus only on the toll-road net. We single out
only two ’determinations’:

All Toll-road Links are One-way Links

79. The entry/exit and toll-road links

a. are always all one way links,

b. as indicated by the arrows of Fig. 1 on Page 16,

c. such that each pair allows traffic in opposite directions.

79. opposite traffics: (L×L)∗ × (L×L)∗ → Bool

79. opposite traffics(exll,lll) ≡
79. ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll ⇒
79.a. let (ltσ ,lfσ ) = (attr LΣ(lt),attr LΣ(lf)) in

79.a.′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
79.a.′′. ∧ card ltσ = 1 = card lfσ
79. ∧ let ({(hi,hi′)},{(hi′′,hi′′′)}) = (ltσ ,lfσ ) in

79.c. hi=hi′′′ ∧ hi′=hi′′
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79. end end Predicates 79.a.′. and 79.a.′′. express the same property.

All Toll-road Hubs are Free-flow

80. The hub state spaces are singleton sets of the toll-road hub
states which always allow exactly these (and only these)
crossings:

a. from entry links back to the paired exit links,

b. from entry links to emanating toll-road links,

c. from incident toll-road links to exit links, and

d. from incident toll-road link to emanating toll-road links.

80. free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

80. free flow toll road hubs(exl,ll) ≡
80. ∀ i:Nat•i ∈ inds hl ⇒
80. attr HΣ(hl(i)) =
80.a. hσ ex ls(exl(i))
80.b. ∪ hσ et ls(exl(i),(i,ll))
80.c. ∪ hσ tx ls(exl(i),(i,ll))
80.d. ∪ hσ tt ls(i,ll)

80.a.: from entry links back to the paired exit links:

80.a. hσ ex ls: (L×L)→LΣ
80.a. hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}

80.b.: from entry links to emanating toll-road links:

80.b. hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
80.b. hσ et ls((e, ),(i,ll)) ≡
80.b. case i of

80.b. 2 → {(uid LI(e),uid LI(em(ll(1))))},
80.b. len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},
80.b. → {(uid LI(e),uid LI(em(ll(i−1)))),
80.b. (uid LI(e),uid LI(em(ll(i))))}
80.b. end

The em and in in the toll-road link list (em:L×in:L)∗ designate se-
lectors for emanating, respectively incident links. 80.c.: from incident
toll-road links to exit links:

80.c. hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
80.c. hσ tx ls(( ,x),(i,ll)) ≡
80.c. case i of
80.c. 2 → {(uid LI(in(ll(1))),uid LI(x))},
80.c. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},
80.c. → {(uid LI(in(ll(i−1))),uid LI(x)),
80.c. (uid LI(in(ll(i))),uid LI(x))}
80.c. end

80.d.: from incident toll-road link to emanating toll-road links:

80.d. hσ tt ls: Nat×(em:L×in:L)∗→LΣ
80.d. hσ tt ls(i,ll) ≡
80.d. case i of

80.d. 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
80.d. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
80.d. → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),
80.d. (uid LI(in(ll(i))),uid LI(em(ll(i))))}
80.d. end

The example above illustrated ‘domain determination’ with respect to endurants. Typically “endurant determination”
is expressed in terms of axioms that limit state spaces — where “endurant instantiation” typically “limited” the mere-
ology of endurants: how parts are related to one another. We shall not exemplify domain determination with respect to
perdurants. Typically perdurants are expressed in terms of expressions and statements. And, typically, perdurant non-
determinism is expressed in terms of the choice or parallelism operators: Cia⌈⌉Cib or Cxa⌈⌉⌊⌋Cxb

or Cpa‖Cpb
. ‘Perdurant

determination’ is then, typically, a matter of making the choice conditional (i,x) or of “sequentializing” parallelism
(p).

(i) Cia ⌈⌉ Cib ⇒ if Bi then Cia else Cib end
(x) Cxa ⌈⌉⌊⌋ Cxb

⇒ if Bx then Cxa else Cxb
end

(p) Cpa ‖ Cpb
⇒ Cpa ; Cpb

The above CSP “refinements” are just suggestive. For appropriate refinements we refer to [Hoa85, Ros97, Sch00].

4.4. Domain Extension

Definition 14. Extension: By domain extension we understand the introduction of endurants and perdurants that

were not feasible in the original domain, but for which, with computing and communication, and with new, emerging
technologies, for example, sensors, actuators and satellites, there is the possibility of feasible implementations, hence
the requirements, that what is introduced becomes part of the unfolding requirements prescription

Usually extensions involving one of the main sorts entails extensions involving several of the main sorts. In our
example we introduce (i.e., “extend”) vehicles with GPSS-like sensors, and introduce toll-gates with entry sensors,
vehicle identification sensors, gate actuators and exit sensors. Finally road pricing calculators are introduced.
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4.4.1. The Requirements Example: Domain Extension

Example 13. Domain Requirements — Extension: We present the extensions in several steps. Some of them will be
developed in this section. Development of the remaining will be deferred to Sect. 5.3. The reason for this deferment is that those last
steps are examples of interface requirements. The initial extension-development steps are: [a] vehicle extension, [b] sort and unique
identifiers of road price calculators, [c] vehicle to road pricing calculator channel, [d] sorts and dynamic attributes of toll-gates, [e]
road pricing calculator attributes, [f] “total” system state, and [g] the overall system behaviour. This decomposition establishes system
interfaces in “small, easy steps”.

[a] Vehicle Extension:
81. There is a domain, δE :∆E , which contains

82. a fleet, fE :FE , that is,

83. a set, vsE :VSE , of

84. extended vehicles, vE :VE — their extension amounting to

85. a dynamic reactive attribute, whose value, ti-gpos:TiGpos,

at any time, reflects that vehicle’s time-stamped global po-
sition.12

86. The vehicle’s GNSS receiver calculates, loc pos, its local po-
sition, lpos:LPos, based on these signals.

87. Vehicles access these external attributes via the external
attribute channel, attr TiGPos ch.

type
81. ∆E

82. FE

83. VSE = VE -set

84. VE

85. TiGPos = T × GPos
86. GPos, LPos
value
81. δE :∆E

82. obs part FE : ∆E → FE

82. f = obs part FE (δE )
83. obs part VSE : FE → VSE

83. vs = obs part VSE (f)
83. vis = xtr vis(vs)
85. attr TiGPos ch[vi ]?
86. loc pos: GPos → LPos
channel
86. {attr TiGPos ch[vi ]|vi:VI•vi ∈ vis}:TiGPos

We define two auxiliary functions,

88. xtr vs, which given a domain, or a fleet, extracts its set of
vehicles, and

89. xtr vis which given a set of vehicles generates their unique
identifiers.

value

88. xtr vs: (∆E |FE |VSE ) → VE -set

88. xtr vs(arg) ≡
88. is ∆E (arg) → obs part VSE (obs part FE (arg)),
88. is FE (arg) → obs part VSE (arg),
88. is VSE (arg) → arg
89. xtr vis: (∆E |FE |VSE ) → VI-set

89. xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

[b] Road Pricing Calculator: Basic Sort and
Unique Identifier:
90. The domain δE :∆E , also contains a pricing calculator, c:CδE

,

with unique identifier ci:CI.

type

90. C, CI
value

90. obs part C: ∆E → C
90. uid CI: C → CI
90. c = obs part C(δE )
90. ci = uid CI(c)

[c] Vehicle to Road Pricing Calculator Channel:
91. Vehicles can, on their own volition, offer the timed local po-

sition, viti-lpos:VITiLPos

92. to the pricing calculator, c:CE along a vehicles-to-calculator
channel, v c ch.

type

91. VITiLPos = VI × (T × LPos)
channel
92. {v c ch[vi,ci ]|vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:VITiLPos

[d] Toll-gate Sorts and Dynamic Types: We extend the domain with toll-gates for vehicles entering and exiting the toll-
road entry and exit links. Figure 2 illustrates the idea of gates. Figure 2 on the next page is intended to illustrate a vehicle entering (or
exiting) a toll-road entry link. The toll-gate is equipped with three sensors: an entry sensor, a vehicle identification sensor and an exit
sensor. The entry sensor serves to prepare the vehicle identification sensor. The exit sensor serves to prepare the gate for closing
when a vehicle has passed. The vehicle identify sensor identifies the vehicle and “delivers” a pair: the current time and the vehicle
identifier. Once the vehicle identification sensor has identified a vehicle the gate opens and a message is sent to the road pricing
calculator as to the passing vehicle’s identity and the identity of the link associated with the toll-gate (see Items 108.- 109. on the
facing page).

12We refer to literature on GNSS, global navigation satellite systems. The simple vehicle position, vp:SVPos, is determined from three to
four time-stamped signals received from a like number of GNSS satellites [ESA].
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exit sensorgate

Vehicle

entry sensor

identify sensor

Fig. 2. A toll plaza gate

93. The domain contains the extended net, n:NE ,

94. with the net extension amounting to the toll-road net, TRNE ,
that is, the instantiated toll-road net, trn:TRNI , is extended,
into trn:TRNE , with entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

95. their unique identifier and

96. their mereology: pairs of entry-, respectively exit link and
calculator unique identifiers; further

97. a pair of gate entry and exit sensors modeled as external
attribute channels, (ges:ES,gls:XS), and

98. a time-stamped vehicle identity sensor modeled as external
attribute channels.

type

93. NE

94. TRNE = (EG×XG)∗ × TRNI

95. GI
value
93. obs part NE : ∆E → NE

94. obs part TRNE : NE → TRNE

95. uid G: (EG|XG) → GI

96. obs mereo G: (EG|XG) → (LI×CI)
94. trn:TRNE = obs part TRNE (δE )
channel

97. {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} ′′
enter

′′

97. {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} ′′
exit

′′

98. {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI
type

98. TIVI = T × VI

We define some auxiliary functions over toll-road nets, trn:TRNE :

99. xtr eGℓ extracts the ℓist of entry gates,

100. xtr xGℓ extracts the ℓist of exit gates,

101. xtr eGIds extracts the set of entry gate identifiers,

102. xtr xGIds extracts the set of exit gate identifiers,

103. xtr Gs extracts the set of all gates, and

104. xtr GIds extracts the set of all gate identifiers.

value

99. xtr eGℓ: TRNE → EG∗

99. xtr eGℓ(pgl, ) ≡ {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
100. xtr xGℓ: TRNE → XG∗

100. xtr xGℓ(pgl, ) ≡ {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
101. xtr eGIds: TRNE → GI-set
101. xtr eGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr eGs(pgl, )}

102. xtr xGIds: TRNE → GI-set

102. xtr xGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr xGs(pgl, )}
103. xtr Gs: TRNE → G-set
103. xtr Gs(pgl, ) ≡ xtr eGs(pgl, ) ∪ xtr xGs(pgl, )
104. xtr GIds: TRNE → GI-set

104. xtr GIds(pgl, ) ≡ xtr eGIds(pgl, ) ∪ xtr xGIds(pgl, )

105. A well-formedness condition expresses

a. that there are as many entry end exit gate pairs as
there are toll-plazas,

b. that all gates are uniquely identified, and

c. that each entry [exit] gate is paired with an entry [exit]
link and has that link’s unique identifier as one element

of its mereology, the other elements being the calcula-
tor identifier and the vehicle identifiers.

The well-formedness relies on awareness of

106. the unique identifier, ci:CI, of the road pricing calculator,
c:C, and

107. the unique identifiers, vis:VI-set, of the fleet vehicles.

axiom

105. ∀ n:NR3
, trn:TRNR3

•

105. let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

105.a. len exgl = len exl = len hl = len lll + 1
105.b. ∧ card xtr GIds(exgl) = 2 ∗ len exgl

105.c. ∧ ∀ i:Nat•i ∈ inds exgl•

105.c. let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

105.c. obs mereo G(eg) = (uid U(el),ci,vis)
105.c. ∧ obs mereo G(xg) = (uid U(xl),ci,vis)
105. end end

[e] Toll-gate to Calculator Channels:

108. Toll-gate entry and exit gates offer passing a pair: whether
it is an entry or an exit gates, and pair of the vehicle’s iden-
tity and the time-stamped identity of the link associated with
the toll-gate

109. to the road pricing calculator via channel.

type

108. EEVITiLI = (′′Entry′′|′′Exit′′)×(VI×(T×SonL))
channel
109. {g c ch[gi,ci ]|gi:GI•gi ∈ gis}:EEVITiLI

[f] Road Pricing Calculator Attributes:
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110. The road pricing attributes include a programmable traffic
map, trm:TRM, which, for each vehicle inside the toll-road
net, records a chronologically ordered list of each vehicle’s
timed position, (τ ,lpos), and

111. a static (total) road location function, vplf:VPLF. The vehicle
position location f unction, vplf:VPLF, which, given a local
position, lpos:LPos, yields either the simple vehicle posi-

tion, svpos:SVPos, designated by the GNSS-provided po-
sition, or yields the response that the provided position is
off the toll-road net The vplf:VPLF function is constructed,
construct vplf,

112. from awareness, of a geodetic road map, GRM, of the topol-
ogy of the extended net, nE :NE , including the mereology
and the geodetic attributes of links and hubs.

type
110. TRM = VI →m (T × SVPos)∗

111. VPLF = GRM → LPos → (SVPos | ′′off_N′′)
112. GRM

value
110. attr TRM: CE → TRM
111. attr VPLF: CE → VPLF

The geodetic road map maps geodetic locations into hub and link identifiers.

23. Geodetic link locations represent the set of point locations
of a link.

19.a. Geodetic hub locations represent the set of point locations
of a hub.

113. A geodetic road map maps geodetic link locations into link
identifiers and geodetic hub locations into hub identifiers.

114. We sketch the construction, geo GRM, of geodetic road
maps.

type
113. GRM = (GeoL →m LI)

⋃
(GeoH →m HI)

value

114. geo GRM: N → GRM
114. geo GRM(n) ≡

114. let ls = xtr links(n), hs = xtr hubs(n) in
114. [attr GeoL(l)7→uid LI(l)|l:L•l ∈ ls ]
114. ∪
114. [attr GeoH(h)7→uid HI(h)|h:H•h ∈ hs ] end

115. The vplf:VPLF function obtains a simple vehicle position,
svpos, from a geodetic road map, grm:GRM, and a local
position , lpos:

value

115. obtain SVPos: GRM → LPos → SVPos

115. obtain SVPos(grm)(lpos) as svpos
115. post: case svpos of

115. SatH(hi) → within(lpos,grm(hi)),
115. SonL(li) → within(lpos,grm(li)),
115. ′′

off_N
′′ → true end

where within is a predicate which holds if its first argument, a local position calculated from a GNSS-generated global position, falls
within the point set representation of the geodetic locations of a link or a hub. The design of the obtain SVPos represents an interesting
challenge.

[g] “Total” System State: Global values:

116. There is a given domain, δE :∆E ;

117. there is the net, nE :NE , of that domain;

118. there is toll-road net, trnE :TRNE , of that net;

119. there is a set, egsE :EGE -set, of entry gates;

120. there is a set, xgsE :XGE -set, of exit gates;

121. there is a set, gisE :GIE -set, ofgate identifiers;

122. there is a set, vsE :VE -set, of vehicles;

123. there is a set, visE :VIE -set, of vehicle identifiers;

124. there is the road-pricing calculator, cE :CE and

125. there is its unique identifier, ciE :CI.

value

116. δE :∆E

117. nE :NE = obs part NE (δE )
118. trnE :TRNE = obs part TRNE (nE )
119. egsE :EG-set = xtr egs(trnE )
120. xgsE :XG-set = xtr xgs(trnE )

121. gisE :XG-set = xtr gis(trnE )
122. vsE :VE -set = obs part VS(obs part FE (δE ))
123. visE :VI-set = {uid VI(vE )|vE :VE

•vE ∈ vsE }
124. cE :CE = obs part CE (δE )
125. ciE :CIE = uid CI(cE )

[h] “Total” System Behaviour: The signature and definition of the system behaviour is sketched as are the signatures of the
vehicle, toll-gate and road pricing calculator. We shall model the behaviour of the road pricing system as follows: we shall not model
behaviours nets, nhubs and links; thus we shall model only the behaviour of vehicles, veh, the behaviour of toll-gates, gate, and the
behaviour of the road-pricing calculator, calc, The behaviours of vehicles and toll-gates are presented here. But the behaviour of the
road-pricing calculator is “deferred” till Sect. 5.3 since it reflects an interface requirements.

126. The road pricing system behaviour, sys, is expressed as

a. the parallel, ‖, (distributed) composition of the be-
haviours of all vehicles, with the parallel composition
of

b. the parallel (likewise distributed) composition of the be-

haviours of all entry gates, with the parallel composition
of

c. the parallel (likewise distributed) composition of the be-
haviours of all exit gates, with the parallel composition
of

d. the behaviour of the road-pricing calculator,
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value

126. sys: Unit → Unit

126. sys() ≡
126.a. ‖ {veh(uid V(v),(ci,gis),attr TiGPos ch)|v:V•v ∈ vsE }

126.b. ‖ ‖ {gate(̀ `Entry′′)(gi,obs mereo G(eg),(attr entry ch[gi ],attr identify ch[gi ],attr exit ch[gi ]))|eg:EG•eg ∈ egsE ∧gi=uid EG(eg)}

126.c. ‖ ‖ {gate(̀ Èxit′′)(gi,obs mereo G(xg),(attr entry ch[gi ],attr identify ch[gi ],attr exit ch[gi ]))|xg:XG•xg ∈ xgsE ∧gi=uid XG(xg)}
126.d. ‖ calc(ciE ,(visE ,gisE ))(rlf)(trm)

127. veh: vi:VI×(ci:CI×gis:GI-set)×UTiGPos → out v c ch[vi,ci ] Unit

133. gate: ee:EE×gi:GI×(ci:CI×VI-set×LI)×(Uentry×Uidentify×Uexit) → out g c ch[gi,ci ] Unit

167. calc: ci:CI×(vis:VI-set×gis:GI-set)×VPLF→TRM→ in {v c ch[vi,ci ]|vi:VI•vi ∈ vis},{g c ch[gi,ci ]|gi:GI•gi ∈ gis} Unit

Vehicle Behaviour: We refer to the vehicle behaviour, in the domain, described in Sect. 2’s The Road Traffic System Behaviour Items 46. and
Items 47., Page 9 and, projected, Page 15.

127. Instead of moving around by explicitly expressed internal non-
determinism13 vehicles move around by unstated internal non-
determinism and instead receive their current position from the
global positioning subsystem.

128. At each moment the vehicle receives its time-stamped global po-
sition, (τ ,gpos):TiGPos,

129. from which it calculates the local position, lpos:VPos

130. which it then communicates, with its vehicle identification,
(vi,(τ ,lpos)), to the road pricing subsystem —

131. whereupon it resumes its vehicle behaviour.

value

127. veh: vi:VI×(ci:CI×gis:GI-set)×UTiGPos →
127. out v c ch[vi,ci ] Unit
127. veh(vi,(ci,gis),attr TiGPos ch[vi ]) ≡
128. let (τ ,gpos) = attr TiGPos ch[vi ]? in

129. let lpos = loc pos(gpos) in

130. v c ch[vi,ci ] ! (vi,(τ ,lpos)) ;
131. veh(vi,(ci,gis),attr TiGPos ch[vi ]) end end

127. pre vi ∈ visE ∧ ci = ciE ∧ gis = gisE

The above behaviour represents an assumption about the behaviour of vehicles. If we were to design software for the monitoring and control of
vehicles then the above vehicle behaviour would have to be refined in order to serve as a proper interface requirements. The refinement would include
handling concerns about the drivers’ behaviour when entering, passing and exiting toll-gates, about the proper function of the GNSS equipment, and
about the safe communication with the road price calculator. The above concerns would already have been addressed in a model of domain facets
such as human behaviour, technology support, proper tele-communications scripts, etcetera. We refer to [Bjø10a].
Gate Behaviour: The entry and the exit gates have “vehicle enter”, “vehicle exit” and “timed vehicle identification” sensors. The following
assumption can now be made: during the time interval between a gate’s vehicle “entry” sensor having first sensed a vehicle entering that gate and
that gate’s “exit” sensor having last sensed that vehicle leaving that gate that gate’s vehicle time and “identify” sensor registers the time when the
vehicle is entering the gate and that vehicle’s unique identification. We sketch the toll-gate behaviour:

132. We parameterise the toll-gate behaviour as either an entry or an
exit gate.

133. Toll-gates operate autonomously and cyclically.

134. The attr enter ch event “triggers” the behaviour specified in for-
mula line Item 135.–137..

135. The time-of-passing and the identity of the passing vehicle is
sensed by attr passing ch channel events.

136. Then the road pricing calculator is informed of time-of-passing
and of the vehicle identity vi and the link li associated with the
gate.

137. And finally, after that vehicle has left the entry or exit gate

138. that toll-gate’s behaviour is resumed.

type

132. EE = ”Enter” | ”Exit”
value

133. gate: ee:EE×gi:GI×(ci:CI×VI-set×LI)×
133. (Uenter×Upassing×Uleave) →
133. out g c ch[gi,ci ] Unit
133. gate(ee,gi,(ci,vis,li),
133. ea:(attr enter ch[gi ],attr passing ch[gi ],attr leave ch[gi ])) ≡
134. attr enter ch[gi ] ? ;
135. let (τ ,vi) = attr passing ch[gi ] ? in assert vi ∈ vis
136. g c ch[gi,ci ] ! (ee,(vi,(τ ,SonL(li)))) ;
137. attr leave ch[gi ] ? ;
138. gate(ee,gi,(ci,vis,li),ea)
133. end

133. pre ci = ciE ∧ vis = visE ∧ li ∈ lisE

The above behaviour represents an assumption about the behaviour of toll-gates. If we were to design software for the monitoring and control of
toll-gates then the above gate behaviour would have to be refined in order to serve as a proper interface requirements. The refinement would include
handling concerns about the drivers’ behaviour when entering, passing and exiting toll-gates, about the proper function of the entry, passing and
exit sensors, about the proper function of the gate barrier (opening and closing), and about the safe communication with the road price calculator.
The above concerns would already have been addressed in a model of domain facets such as human behaviour, technology support, proper
tele-communications scripts, etcetera. We refer to [Bjø10a]

We shall define the calculator behaviour in Sect. 5.3 on Page 27. The reason for this deferral is that it exemplifies
interface requirements.

13We refer to Items 46.b., 46.c. on Page 9 and 47.b., 47.b.ii, 47.c. on Page 9
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4.5. Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in some areas with, another domain: trans-

portation with logistics, health-care with insurance, banking with securities trading and/or insurance, and so on. The issue of
requirements fitting arises when two or more software development projects are based on what appears to be the same
domain. The problem then is to harmonise the two or more software development projects by harmonising, if not too
late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn , being considered, and that
these pertain to the same domain — and can hence be assumed covered by a same domain description.

Definition 15. Requirements Fitting: By requirements fitting we mean a harmonisation of n > 1 domain re-
quirements that have overlapping (shared) not always consistent parts and which results in n partial domain require-
ments’, pdr1

, pdr2
, . . . , pdrn

, and m shared domain requirements, sdr1
, sdr2

, . . . , sdrm
, that “fit into” two or more of

the partial domain requirements The above definition pertains to the result of ‘fitting’. The next definition pertains
to the act, or process, of ‘fitting’.

Definition 16. Requirements Harmonisation: By requirements harmonisation we mean a number of al-
ternative and/or co-ordinated prescription actions, one set for each of the domain requirements actions: Projection,

Instantiation, Determination and Extension. They are – we assume n separate software product requirements: Projection: If
the n product requirements do not have the same projections, then identify a common projection which they all share,
and refer to it as the common projection. Then develop, for each of the n product requirements, if required, a specific

projection of the common one. Let there be m such specific projections, m ≤ n. Instantiation: First instantiate the common
projection, if any instantiation is needed. Then for each of the m specific projections instantiate these, if required.
Determination: Likewise, if required, “perform” “determination” of the possibly instantiated common projection, and,
similarly, if required, “perform” “determination” of the up to m possibly instantiated projections. Extension: Finally
“perform extension” likewise: First, if required, of the common projection (etc.), then, if required, on the up m specific
projections (etc.). These harmonization developments may possibly interact and may need to be iterated

By a partial domain requirements we mean a domain requirements which is short of (that is, is missing) some pre-
scription parts: text and formula By a shared domain requirements we mean a domain requirements By re-

quirements fitting m shared domain requirements texts, sdrs, into n partial domain requirements we mean that there
is for each partial domain requirements, pdri, an identified, non-empty subset of sdrs (could be all of sdrs), ssdrsi,
such that textually conjoining ssdrsi to pdri, i.e., ssdrsi ⊕ pdri can be claimed to yield the “original” dri

, that is,
M (ssdrsi ⊕ pdri)⊆ M (dri

), where M is a suitable meaning function over prescriptions

4.6. Discussion

Facet-oriented Fittings: An altogether different way of looking at domain requirements may be achieved when
also considering domain facets — not covered in neither the example of Sect. 2 nor in this section (i.e., Sect. 4) nor in
the following two sections. We refer to [Bjø10a].

Example 14. Domain Requirements — Fitting: Example 13 hints at three possible sets of interface requirements: (i)

for a road pricing [sub-]system, as will be illustrated in Sect. 5.3; (ii) for a vehicle monitoring and control [sub-]system, and (iii) for

a toll-gate monitoring and control [sub-]system. The vehicle monitoring and control [sub-]system would focus on implementing the

vehicle behaviour, see Items 127.- 131. on the preceding page. The toll-gate monitoring and control [sub-]system would focus on

implementing the calculator behaviour, see Items 133.- 138. on the previous page. The fitting amounts to (a) making precise the

(narrative and formal) texts that are specific to each of of the three (i–iii) separate sub-system requirements are kept separate; (b)

ensuring that (meaning-wise) shared texts that have different names for (meaning-wise) identical entities have these names renamed

appropriately; (c) that these texts are subject to commensurate and ameliorated further requirements development; etcetera

5. Interface Requirements

We remind the reader that interface requirements can be expressed only using terms from both the domain and the
machine Users are not part of the machine. So no reference can be made to users, such as “the system must be user
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friendly”, and the like ! By an interface requirements we [also] mean a requirements prescription which refines and ex-
tends the domain requirements by considering those requirements of the domain requirements whose endurants (parts,
materials) and perdurants (actions, events and behaviours) are “shared” between the domain and the machine (being
requirements prescribed) The two interface requirements definitions above go hand–in–hand, i.e., complement
one-another.

5.1. Shared Phenomena

By sharing we mean (a) that some or all properties of an endurant is represented both in the domain and “inside” the
machine, and that their machine representation must at suitable times reflect their state in the domain; and/or (b) that
an action requires a sequence of several “on-line” interactions between the machine (being requirements prescribed)
and the domain, usually a person or another machine; and/or (c) that an event arises either in the domain, that is,
in the environment of the machine, or in the machine, and need be communicated to the machine, respectively to
the environment; and/or (d) that a behaviour is manifested both by actions and events of the domain and by actions
and events of the machine So a systematic reading of the domain requirements shall result in an identification
of all shared endurants, parts, materials and components; and perdurants actions, events and behaviours. Each such
shared phenomenon shall then be individually dealt with: endurant sharing shall lead to interface requirements for
data initialisation and refreshment as well as for access to endurant attributes; action sharing shall lead to interface
requirements for interactive dialogues between the machine and its environment; event sharing shall lead to interface
requirements for how such event are communicated between the environment of the machine and the machine; and
behaviour sharing shall lead to interface requirements for action and event dialogues between the machine and its
environment.

Environment–Machine Interface: Domain requirements extension, Sect. 4.4, usually introduce new endurants
into (i.e., ‘extend’ the) domain. Some of these endurants may become elements of the domain requirements. Others
are to be projected “away”. Those that are let into the domain requirements either have their endurants represented,
somehow, also in the machine, or have (some of) their properties, usually some attributes, accessed by the machine.
Similarly for perdurants. Usually the machine representation of shared perdurants access (some of) their properties,
usually some attributes. The interface requirements must spell out which domain extensions are shared. Thus domain
extensions may necessitate a review of domain projection, instantiations and determination. In general, there may be
several of the projection–eliminated parts (etc.) whose dynamic attributes need be accessed in the usual way, i.e., by
means of attr XYZ ch channel communications (where XYZ is a projection–eliminated part attribute).

Example 15. Interface Requirements — Projected Extensions: We refer to Fig. ?? on Page ??.We do not repre-
sent the GNSS system in the machine: only its “effect”: the ability to record global positions by accessing the GNSS attribute (channel):

channel

87. {attr TiGPos ch[vi ]|vi:VI•vi ∈ xtr VIs(vs)}: TiGPos

And we do not really represent the gate nor its sensors and actuator in the machine. But we do give an idealised description of the gate behaviour,
see Items 133.–138. Instead we represent their dynamic gate attributes:

(97.) the vehicle entry sensors (leftmost s),

(97.) the vehicle identity sensor (center ), and

(98.) the vehicle exit sensors (rightmost s)

by channels — we refer to Example 13 (Sect. 5.3, Page 21):

channel

97. {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} ′′
enter

′′

97. {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} ′′
exit

′′

98. {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI

5.2. Shared Endurants

Example 16. Interface Requirements. Shared Endurants: The main shared endurants are the vehicles, the net
(hubs, links, toll-gates) and the price calculator. As domain endurants hubs and links undergo changes, all the time, with respect
to the values of several attributes: length, geodetic information, names, wear and tear (where-ever applicable), last/next scheduled
maintenance (where-ever applicable), state and state space, and many others. Similarly for vehicles: their position, velocity and
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acceleration, and many other attributes. We then come up with something like hubs and links are to be represented as tuples of
relations; each net will be represented by a pair of relations a hubs relation and a links relation; each hub and each link may or will be
represented by several tuples; etcetera. In this database modeling effort it must be secured that “standard” operations on nets, hubs
and links can be supported by the chosen relational database system

5.2.1. Data Initialisation

In general, one must prescribe data initialisation, that is provision for an interactive user interface dialogue with a set
of proper display screens, one for establishing net, hub or link attributes names and their types, and, for example, two
for the input of hub and link attribute values. Interaction prompts may be prescribed: next input, on-line vetting and
display of evolving net, etc. These and many other aspects may therefore need prescriptions.

Example 17. Interface Requirements. Shared Endurant Initialisation: The domain is that of the road net, n:N.
By ‘shared road net initialisation’ we mean the “ab initio” establishment, “from scratch”, of a data base recording the properties of all
links, l:L, and hubs, h:H, their unique identifications, uid L(l) and uid H(h), their mereologies, obs mereo L(l) and obs mereo H(h),
the initial values of all their static and programmable attributes and the access values, that is, channel designations for all other attribute
categories.

139. There are rl and rh “recorders” recording link, respectively
hub properties – with each recorder having a unique iden-
tity.

140. Each recorder is charged with the recording of a set of links
or a set of hubs according to some partitioning of all such.

141. The recorders inform a central data base, net db, of their
recordings (ri,hol,(u j ,m j ,attrs j )) where

142. ri is the identity of the recorder,

143. hol is either a hub or a link literal,

144. u j = uid L(l) or uid H(h) for some link or hub,

145. m j = obs mereo L(l) or obs mereo H(h) for that link or hub
and

146. attrs j are attributes for that link or hub — where attributes is
a function which “records” all respective static and dynamic
attributes (left undefined).

type
139. RI
value

139. rl,rh:NAT axiom rl>0 ∧ rh>0
type
141. M = RI×′′

link
′′×LNK | RI×′′

hub
′′×HUB

141. LNK = LI × HI-set × LATTRS
141. HUB = HI × LI-set × HATTRS

value
140. partitioning: L-set → Nat → (L-set)∗ | H-set → Nat → (H-set)∗

140. partitioning(s)(r) as sl
140. post: len sl = r ∧ ∪ elems sl = s
140. ∧ ∀ si,sj:(L-set|H-set) •

140. si6={}∧sj6={}∧{si,sj}⊆elems ss⇒si ∩ sj={}

147. The rl + rh recorder behaviours interact with the one net db
behaviour

channel

147. r db: RI×(LNK|HUB)

value

147. link rec: RI → L-set → out r db Unit

147. hub rec: RI → H-set → out r db Unit
147. net db: Unit → in r db Unit

148. The data base behaviour, net db, offers to receive mes-
sages from the link and hub recorders.

149. The data base behaviour, net db, deposits these messages
in respective variables.

150. Initially there is a net, n : N,

151. from which is observed its links and hubs.

152. These sets are partitioned into rl , respectively rh length lists
of non-empty links and hubs.

153. The ab-initio data initialisation behaviour, ab initio data, is
then the parallel composition of link recorder, hub recorder
and data base behaviours with link and hub recorder being
allotted appropriate link, respectively hub sets.

154. We construct, for technical reasons, as the reader will soon
see, disjoint lists of link, respectively hub recorder identities.

value
148. net db:
variable

149. lnk db: (RI×LNK)-set

149. hub db: (RI×HUB)-set
value

150. n:N
151. ls:L-set = obs Ls(obs LS(n))
151. hs:H-set = obs Hs(obs HS(n))

152. lsl:(L-set)∗ = partitioning(ls)(rl)
152. lhl:(H-set)∗ = partitioning(hs)(rh)
154. rill:RI∗ axiom len rill = rl = card elems rill
154. rihl:RI∗ axiom len rihl = rh = card elems rihl
153. ab initio data: Unit → Unit
153. ab initio data() ≡
153. ‖ {lnk rec(rill[ i ])(lsl[ i ])|i:Nat•1≤i≤rl} ‖
153. ‖ {hub rec(rihl[ i ])(lhl[ i ])|i:Nat•1≤i≤rh}
153. ‖ net db()
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155. The link and the hub recorders are near-identical be-
haviours.

156. They both revolve around an imperatively stated for all ...
do ... end. The selected link (or hub) is inspected and the
“data” for the data base is prepared from

157. the unique identifier,

158. the mereology, and

159. the attributes.

160. These “data” are sent, as a message, prefixed the senders
identity, to the data base behaviour.

161. We presently leave the . . . unexplained.

value

147. link rec: RI → L-set → Unit

155. link rec(ri,ls) ≡
156. for ∀ l:L•l ∈ ls do uid L(l)
157. let lnk = (uid L(l),
158. obs mereo L(l),
159. attributes(l)) in
160. rdb ! (ri,′′link′′,lnk);
161. ... end

156. end

147. hub rec: RI × H-set → Unit

155. hub rec(ri,hs) ≡
156. for ∀ h:H•h ∈ hs do uid H(h)
157. let hub = (uid L(h),
158. obs mereo H(h),
159. attributes(h)) in

160. rdb ! (ri,′′hub′′,hub);
161. ... end

156. end

162. The net db data base behaviour revolves around a seem-
ingly “never-ending” cyclic process.

163. Each cycle “starts” with acceptance of some,

164. either link or hub data.

165. If link data then it is deposited in the link data base,

166. if hub data then it is deposited in the hub data base.

value

162. net db() ≡
163. let (ri,hol,data) = r db ? in

164. case hol of
165. ′′

link
′′ → ... ; lnk db := lnk db ∪ (ri,data),

166. ′′
hub

′′ → ... ; hub db := hub db ∪ (ri,data)
164. end end ;
162.′ ... ;
162. net db()

The above model is an idealisation. It assumes that the link and hub data represent a well-formed net. Included in this well-formedness
are the following issues: (a) that all link or hub identifiers are communicated exactly once, (b) that all mereologies refer to defined parts,
and (c) that all attribute values lie within an appropriate value range. If we were to cope with possible recording errors then we could,
for example, extend the model as follows: (i) when a link or a hub recorder has completed its recording then it increments an initially
zero counter (say at formula Item 161.); (ii) before the net data base recycles it tests whether all recording sessions has ended and
then proceeds to check the data base for well-formedness issues (a–b–c) (say at formula Item 162.′)

The above example illustrates the ‘interface’ phenomenon: In the formulas, for example, we show both manifest
domain entities, viz., n, l,h etc., and abstract (required) software objects, viz., (ui,me,attrs).

5.2.2. Data Refreshment

One must also prescribe data refreshment: an interactive user interface dialogue with a set of proper display screens
one for selecting the updating of net, of hub or of link attribute names and their types and, for example, two for the
respective update of hub and link attribute values. Interaction-prompts may be prescribed: next update, on-line vetting
and display of revised net, etc. These and many other aspects may therefore need prescriptions.

5.3. Shared Actions, Events and Behaviours

We now illustrate the concept of shared perdurants via the domain requirements extension example of Sect. 4.4, i.e.
Example 13 Pages 20–23.

Example 18. Interface Requirements — Shared Behaviours: Road Pricing Calculator Behaviour:

167. The road-pricing calculator alternates between offering to
accept communication from

168. either any vehicle

169. or any toll-gate.

167. calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
168. in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},

169. {g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

167. calc(ci,(vis,gis))(rlf)(trm) ≡
168. react to vehicles(ci,(vis,gis))(rlf)(trm)
167. ⌈⌉⌊⌋
169. react to gates(ci,(vis,gis))(rlf)(trm)
167. pre ci = ciE ∧ vis = visE ∧ gis = gisE
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170. If the communication is from a vehicle inside the toll-road
net

171. then its toll-road net position, vp, is found from the road lo-
cation function, rlf,

172. and the calculator resumes its work with the traffic map,
trm, suitably updated,

173. otherwise the calculator resumes its work with no changes.

168. react to vehicles(ci,(vis,gis),vplf)(trm) ≡
168. let (vi,(τ ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi ]|vi:VI•vi∈ vis} in

170. if vi ∈ dom trm
171. then let vp = vplf(lpos) in

172. calc(ci,(vis,gis),vplf)(trm†[vi 7→trm̂〈(τ ,vp)〉 ]) end

173. else calc(ci,(vis,gis),vplf)(trm) end end

174. If the communication is from a gate,

175. then that gate is either an entry gate or an exit gate;

176. if it is an entry gate

177. then the calculator resumes its work with the vehicle (that
passed the entry gate) now recorded, afresh, in the traffic
map, trm.

178. Else it is an exit gate and

179. the calculator concludes that the vehicle has ended its to-
be-paid-for journey inside the toll-road net, and hence to be
billed;

180. then the calculator resumes its work with the vehicle now
removed from the traffic map, trm.

169. react to gates(ci,(vis,gis),vplf)(trm) ≡
169. let (ee,(τ ,(vi,li))) =
169. ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

175. case ee of
176. ′′

Enter
′′ →

177. calc(ci,(vis,gis),vplf)(trm∪[vi 7→〈(τ ,SonL(li))〉 ]),
178. ′′

Exit
′′ →

179. billing(vi,trm(vi)̂ 〈(τ ,SonL(li))〉);
180. calc(ci,(vis,gis),vplf)(trm\{vi}) end end

The above behaviour is the one for which we are to design software

5.4. Discussion

TO BE WRITTEN

6. Machine Requirements

Definition 17. Machine Requirements: By machine requirements we shall understand such requirements which
can be expressed “sôlely” using terms from, or of the machine

Definition 18. The Machine: By the machine we shall understand the hardware and software to be built from the
requirements

The expression which can be expressed “sôlely” using terms from, or of the machine shall be understood with “a grain of salt”.
Let us explain. The machine requirements statements may contain references to domain entities but these are meant to
be generic references, that is, references to certain classes of entities in general. We shall illustrate this “genericitiy”
in some of the examples below.

6.1. Varieties of Machine Requirements

Analysis of different kinds of requirements, such as exemplified but not so classified in seminal textbooks [Lau02,
van09] suggests the following categories of machine requirements: (i) derived requirements, Sect. 6.2, (ii) technol-
ogy requirements, Sect. 6.3 and (iii) development requirements, Sect. 6.4.

6.2. Derived Requirements

Definition 19. Derived Requirements: By derived requirements we shall understand such machine require-
ments which focus on exploiting facilities of the software or hardware of the machine

We use the term ‘derived’ for the following reason: “exploiting facilities of the software”, to us, means that design re-
quirements, have resulted in requirements that imply the presence, in the machine, of concepts (i.e., hardware and/or
software), and that it is these concepts that the derived requirements “rely” on. We illustrate two forms of derived
requirements: actions and events. Derived behaviours could be illustrated but we rely on the interface requirements
Example 18: The Road Pricing Calculator shared behaviour. There are other kinds of derived requirements. Some
are query-like. We leave that for the reader to ponder about.
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6.2.1. Derived Actions

Definition 20. Derived Action: By a derived action we shall understand (a) a conceptual action (b) that calculates
a property or some non-Boolean value (c) from a machine behaviour state (d) as instigated by some actor

Example 19. Machine Requirements. Derived Action: Tracing Vehicles: The example is based on the Road
Pricing Calculator Behaviour of Example 18 on Page 27. The “external” actor, i.e., a user of the Road Pricing Calculator system wishes
to trace specific vehicles “cruising” the toll-road. That user (a Road Pricing Calculator staff), issues a command to the Road Pricing
Calculator system, with the identity of a vehicle not already being traced. As a result the Road Pricing Calculator system augments a
possibly void trace of the timed toll-road positions of vehicles. We augment the definition of the calculator definition Items 167.–180.,
Pages 27–28.

181. Traces are modeled by a pair of dynamic attributes:

a. as a programmable attribute, tra:TRA, of the set of identifiers of vehicles being traced, and

b. as a reactive attribute, vdu:VDU14, that maps vehicle identifiers into time-stamped sequences of simple vehicle positions, i.e.,
as a subset of the trm:TRM programmable attribute.

182. The actor-to-calculator begin or end trace command, cmd:Cmd, is modeled as an autonomous dynamic attribute of the calculator.

183. The calculator signature is furthermore augmented with the three attributes mentioned above.

184. The occurrence and handling of an actor trace command is modeled as a non-deterministic external choice and a react to trace cmd
behaviour.

185. The reactive attribute value (attr vdu ch?) is that subset of the traffic map (trm) which records just the time-stamped sequences
of simple vehicle positions being traced (tra).

type

181.a. TRA = VI-set

181.b. VDU = TRM
182. Cmd = BTr | ETr
182. BTr :: VI
182. ETr :: VI

value

183. calc: ci:CI×(vis:VI-set×gis:GI-set)×(UCmd,UTrace,UTrace)→RLF→TRM→TRA
168.,169. in {v c ch[ci,vi ]|vi:VI•vi ∈ vis}, {g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

167. calc(ci,(vis,gis))(rlf)(trm) ≡
168. react to vehicles(ci,(vis,gis),(attr cmd ch,attr vdu ch))(rlf)(trm)(tra)
167. ⌈⌉⌊⌋
169. react to gates(ci,(vis,gis),(attr cmd ch,attr vdu ch))(rlf)(trm)(tra)
167. ⌈⌉⌊⌋
184. react to trace cmd(ci,(vis,gis),(attr cmd ch,attr vdu ch))(rlf)(trm)(tra)
167. pre ci = ciE ∧ vis = visE ∧ gis = gisE

185. axiom � attr vdu ch[ci ]? = trm|tra

168. react to vehicles(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra) ≡
168. let (vi,(τ ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi ]|vi:VI•vi∈ vis} in

170. if vi ∈ dom trm
171. then
171. let vp = vplf(lpos) in

171. calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm†[vi7→trm̂〈(τ ,vp)〉 ])(tra) end

173. else calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra) end end

169. react to gates(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra) ≡
169. let (ee,(τ ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

175. case ee of
176. ′′

Enter
′′ →

176. calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm∪[vi7→〈(τ ,SonL(li))〉 ])(tra),
178. ′′

Exit
′′ →

178. billing(vi,trm(vi)̂ 〈(τ ,SonL(li))〉);
178. calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm\{vi})(tra)
169. end end

186. The react to trace cmd alternative behaviour is either a ”Begin” or an ”End” request which identifies the affected vehicle.

14VDU: visual display unit
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187. If it is a ”Begin” request and the identified vehicle is already being traced then we do not prescribe what to do !

188. Else we resume the calculator behaviour, now recording that vehicle as being traced.

189. If it is an ”End” request and the identified vehicle is already being traced then we do not prescribe what to do !

190. Else we resume the calculator behaviour, now recording that vehicle as no longer being traced.

186. react to trace cmd(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra) ≡
186. let cmd = attr cmd ch[ci ]? in

186. case cmd of
186. mkBTr(vi) →
187. if vi ∈ tra then chaos

188. else calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra ∪ {vi})
186. mkETr(vi) →
189. if vi 6∈ tra then chaos

190. else calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra\{vi})
186. end end

The above behaviour, Items 167.–190., is the one for which we are to design software

Example 19 exemplifies a derived action requirement as per definition 20: (a) the action is conceptual, it has no physical
counterpart in the domain; (b) it calculates (185.) a visual display (vdu); (c) the vdu value is based on a conceptual
notion of traffic road maps (trm), an element of the calculator state; (d) the calculation is triggered by an actor
(attr cmd ch).

6.2.2. Derived Events

Definition 21. Derived Event: By a derived event we shall understand (a) a conceptual event, (b) that calculates
a property or some non-Boolean value (c) from a machine behaviour state change

Example 20. Machine Requirements. Derived Event: Current Maximum Flow: The example is based on the
Road Pricing Calculator Behaviour of Examples 18 and 19. By “the current maximum flow” we understand a time-stamped natural
number, the number representing the highest number of vehicles which at the time-stamped moment cruised or now cruises around
the toll-road net. We augment the definition of the calculator definition Items 167.–190., Pages 27–30.

191. We augment calculator signature with

192. a time-stamped natural number valued dynamic programmable attribute, (t:T,max:Max).

193. Whenever a vehicle enters the toll-road net, through one of its gates,

a. it is checked whether the resulting number of vehicles recorded in the road traffic map is higher than the hitherto max imum
recorded number.

b. If so, that programmable attribute has its number element “upped” by one.

c. Otherwise not.

type

192. MAX = T × NAT
value
183.,191. calc: ci:CI×(vis:VI-set×gis:GI-set)×(UCmd,UTrace,UTrace)→RLF→TRM→TRA→MAX
168.,169. in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},{g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

...

169. react to gates(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm)(tra)(t,m) ≡
169. let (ee,(τ ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

175. case ee of

176. ”Enter” →
193.a. if card dom trm = m
176.,193.b. then calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm∪[vi7→〈(τ ,SonL(li))〉 ])(tra)(τ ,m+1),
176.,193.c. else calc(ci,(vis,gis),(attr cmd ch,attr vdu ch))(vplf)(trm∪[vi7→〈(τ ,SonL(li))〉 ])(tra)(t,m) end end

...
end

The above behaviour, Items 167. on Page 27 through 193.c., is the one for which we are to design software

Example 20 exemplifies a derived event requirement as per definition 21: (a) the event is conceptual, it has no physical
counterpart in the domain; (b) it calculates (193.b.) the max value based on a conceptual notion of traffic road maps
(trm), (c) an element of the calculator state.
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6.3. Technology Requirements

Definition 22. Technology Requirements: By technology requirements we shall understand such machine
requirements which primarily focus on alleviating physical deficiencies of the hardware or inefficiencies of the soft-
ware of the machine — cf. Items (i–ii), i.e., Sects. 6.3.1–6.3.2 below.

We shall, in particular, consider the following kinds of technology requirements: (i) performance requirements
and (ii) dependability requirements with dependability requirements being concerned with either (a) accessibility,
(b) availability, (c) integrity, (d) reliability, (e) safety, (f) security and/or (g) robustness.

6.3.1. Performance Requirements

Definition 23. Performance Requirements: By performance requirements we mean machine requirements that
prescribe storage consumption, (execution, access, etc.) time consumption, as well as consumption of any other ma-
chine resource: number of CPU units (incl. their quantitative characteristics such as cost, etc.), number of printers,
displays, etc., terminals (incl. their quantitative characteristics), number of “other”, ancillary software packages (incl.
their quantitative characteristics), of data communication bandwidth, etcetera

Example 21. Machine Requirements. Technology: Performance: (i) The road pricing system shall be able (i.1)

to keep records of up to 50.000 vehicles at any time, (i.2) to record up to 10.000 vehicle positions per second, and (i.3) to bill up to

1000 (distinct) vehicles per second. (ii) A vehicle is assumed to access the road pricing calculator with a mean time between accesses

of 5 seconds. (iii) A toll-gate is assumed to access the road pricing calculator with a mean time between accesses of 5 seconds

6.3.2. Dependability Requirements

Dependability is a complex notion.

Failures, Errors and Faults To properly define the concept of dependability we need first introduce and define the
concepts of failure, error, and fault.

Definition 24. Failure: A machine failure occurs when the delivered service deviates from fulfilling the machine
function, the latter being what the machine is aimed at [Ran03]

Definition 25. Error: An error is that part of a machine state which is liable to lead to subsequent failure. An
error affecting the service is an indication that a failure occurs or has occurred [Ran03]

Definition 26. Fault: The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an error is a fault [Ran03]

The term hazard is here taken to mean the same as the term fault. One should read the phrase: “adjudged or hypothe-
sised cause” carefully: In order to avoid an unending trace backward as to the cause,15 we stop at the cause which is
intended to be prevented or tolerated.

Definition 27. Machine Service: The service delivered by a machine is its behaviour as it is perceptible by its
user(s), where a user is a human, another machine or a(nother) system which interacts with it [Ran03]

Definition 28. Dependability: Dependability is defined as the property of a machine such that reliance can justi-
fiably be placed on the service it delivers [Ran03]

We continue, less formally, by characterising the above defined concepts [Ran03]. “A given machine, operating in some
particular environment (a wider system), may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given machine constitutes a failure”. The concept
of dependability can be simply defined as “the quality or the characteristic of being dependable”, where the adjective
‘dependable’ is attributed to a machine whose failures are judged sufficiently rare or insignificant. Impairments to
dependability are the unavoidably expectable circumstances causing or resulting from “undependability”: faults, errors
and failures. Means for dependability are the techniques enabling one to provide the ability to deliver a service on

15An example: “The reason the computer went down was the current supply did not deliver sufficient voltage, and the reason for the drop in
voltage was that a transformer station was overheated, and the reason for the overheating was a short circuit in a plant nearby, and the reason for the
short circuit in the plant was that . . . , etc.”



32 Dines Bjørner

which reliance can be placed, and to reach confidence in this ability. Attributes of dependability enable the properties
which are expected from the system to be expressed, and allow the machine quality resulting from the impairments
and the means opposing them to be assessed. Having already discussed the “threats” aspect, we shall therefore discuss
the “means” aspect of the dependability tree.

• Attributes:

⋄⋄ Accessibility

⋄⋄ Availability

⋄⋄ Integrity

⋄⋄ Reliability

⋄⋄ Safety

⋄⋄ Security

• Means:

⋄⋄ Procurement

◦◦ Fault prevention

◦◦ Fault tolerance

⋄⋄ Validation

◦◦ Fault removal

◦◦ Fault forecasting

• Threats:

⋄⋄ Faults

⋄⋄ Errors

⋄⋄ Failures

Despite all the principles, techniques and tools aimed at fault prevention, faults are created. Hence the need for fault
removal. Fault removal is itself imperfect. Hence the need for fault forecasting. Our increasing dependence on com-
puting systems in the end brings in the need for fault tolerance. We refer to special texts [Lap92] on the above four
topics.

Definition 29. Dependability Attribute: By a dependability attribute we shall mean either one of the following:
accessibility, availability, integrity, reliability, robustness, safety and security. That is, a machine is dependable if it
satisfies some degree of “mixture” of being accessible, available, having integrity, and being reliable, safe and secure

The crucial term above is “satisfies”. The issue is: To what “degree”? As we shall see — in a later section — to
cope properly with dependability requirements and their resolution requires that we deploy mathematical formulation
techniques, including analysis and simulation, from statistics (stochastics, etc.). In the next seven subsections we shall
characterise the dependability attributes further. In doing so we have found it useful to consult [Lap92].

Accessibility Usually a desired, i.e., the required, computing system, i.e., the machine, will be used by many users
— over “near-identical” time intervals. Their being granted access to computing time is usually specified, at an abstract
level, as being determined by some internal nondeterministic choice, that is: essentially by “tossing a coin”! If such
internal nondeterminism was carried over, into an implementation, some “coin tossers” might not get access to the
machine “for a long- long time”.

Definition 30. Accessibility: A system being accessible — in the context of a machine being dependable — means
that some form of “fairness” is achieved in guaranteeing users “equal” access to machine resources, notably computing
time (and what derives from that).

Example 22. Machine Requirements. Technology: Accessibility: No vehicle access to the road pricing calculator

shall wait more than 2 seconds. No toll-gate access to the road pricing calculator shall wait more than 2 seconds.

Availability Usually a desired, i.e., the required, computing system, i.e., the machine, will be used by many users
— over “near-identical” time intervals. Once a user has been granted access to machine resources, usually computing
time, that user’s computation may effectively make the machine unavailable to other users — by “going on and on and
on”!

Definition 31. Availability: By availability — in the context of a machine being dependable — we mean its readiness
for usage. That is, that some form of “guaranteed percentage of computing time” per time interval (or percentage of
some other computing resource consumption) is achieved, for example, in the form of “time slicing”

Example 23. Machine Requirements. Technology: Availability: We simplify the availability requirements due to

the apparent simplicity of the vehicle movement records and billings. The complete handling of the recording or billing of a vehicle

movement shall be done without interference from other recordings or billings

Integrity

Definition 32. Integrity: A system has integrity — in the context of a machine being dependable — if it is and
remains unimpaired, i.e., has no faults, errors and failures, and remains so, without these, even in the situations where
the environment of the machine has faults, errors and failures
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Integrity seems to be a highest form of dependability, i.e., a machine having integrity is 100% dependable ! The
machine is sound and is incorruptible.

Example 24. Machine Requirements. Technology: Integrity: We do not require an explicit formulation of integrity.

We instead refer to the reliability, safety, security and robustness measures (below)

Reliability

Definition 33. Reliability: A system being reliable — in the context of a machine being dependable — means some
measure of continuous correct service, that is, measure of (mean) time to failure (MTTF)

Example 25. Machine Requirements. Technology: Reliability: A road pricing calculator shall have a MTTF of

least 108 seconds or approx. 40 months.

Safety

Definition 34. Safety: By safety — in the context of a machine being dependable — we mean some measure of
continuous delivery of service of either correct service, or incorrect service after benign failure, that is: Measure of
time to catastrophic failure

Example 26. Machine Requirements. Technology: Safety: The road pricing system, now including the vehicle

global position system and the toll-gate sensors and barrier actuator shall have a mean time to catastrophic failure equal to the MTTF,

108 seconds

Security We shall take a rather limited view of security. We are not including any consideration of security against
brute-force terrorist attacks. We consider that an issue properly outside the realm of software engineering. Security,
then, in our limited view, requires a notion of authorised user, with authorised users being fine-grained authorised to
access only a well-defined subset of system resources (data, functions, etc.). An unauthorised user (for a resource) is
anyone who is not authorised access to that resource.

Definition 35. Security: A system being secure — in the context of a machine being dependable — means that an
unauthorised user, after believing that he or she has had access to a requested system resource: (i) cannot find out
what the system resource is doing, (ii) cannot find out how the system resource is working and (iii) does not know that
he/she does not know! That is, prevention of unauthorised access to computing and/or handling of information (i.e.,
data)

Example 27. Machine Requirements. Technology: Security: We omit exemplifying road pricing system security

Robustness

Definition 36. Robustness: A system is robust — in the context of dependability — if it retains its attributes after
failure, and after maintenance

Thus a robust system is “stable” across failures and “across” possibly intervening “repairs” and “across” other forms
of maintenance.

Example 28. Machine Requirements. Technology: Robustness: We restrict ourselves to consider only the soft-

ware of the road pricing system. For every instance of restart after failure it shall be verified that all attributes have retained their

appropriate values; and for every instance of software maintenance, see Sect. 6.4.2, the whole system shall be verified, i.e., tested,

model checked and proven correct, to the same and full extent that the original system delivery was verified

Discussion:

TO BE WRITTEN

6.4. Development Requirements
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Definition 37. Development Requirement: By development requirements we shall understand (i) process
requirements (Sect. 6.4.1), (ii) maintenance requirements (Sect. 6.4.2), (iii) platform requirements (Sect. 6.4.3),
(iv) management requirements (Sect. 6.4.4) and (v) documentation requirements (Sect. 6.4.5)

6.4.1. Process Requirements

Definition 38. Process Requirement: By a development process requirements we shall understand re-
quirements which are concerned with the development process to be followed by the development engineers: whether
pursuing formal methods, and to which degree, and (compatibly)/or whether pursuing best practices, and possible
details thereof, and (compatibly)/or whether adhering otherwise to established, e.g., IEEE standards, etcetera

Example 29. Machine Requirements. Development: Road Pricing System: The road pricing system is to

be developed according to the triptych approach; based on, or developing itself, a generic transport domain description, as per

the approach outlined in [Bjø16b], expressing suitable predicates about that description, and testing, model checking and proving

satisfaction of these verifications; accurately detailing the requirements prescriptions as per the approach outlined in [Bjø16a, this

paper (!)]; etcetera; finally testing, model checking and proving satisfaction of D ,S |= R.

6.4.2. Maintenance Requirements

Definition 39. Maintenance Requirements: By maintenance requirements we understand a combination of re-
quirements with respect to: (i) adaptive maintenance, (iii) corrective maintenance, (ii) perfective maintenance, (iv)
preventive maintenance and (v) extensional maintenance

Maintenance of building, mechanical, electrotechnical and electronic artifacts — i.e., of artifacts based on the natural
sciences — is based both on documents and on the presence of the physical artifacts. Maintenance of software is based
just on software, that is, on all the documents (including tests) entailed by software — see Definition 52 on Page 36.

Adaptive Maintenance

Definition 40. Adaptive Maintenance: By adaptive maintenance we understand such maintenance that changes a
part of that software so as to also, or instead, fit to some other software, or some other hardware equipment (i.e., other
software or hardware which provides new, respectively replacement, functions)

Example 30. Machine Requirements. Development: Adaptive Maintenance: Road pricing system adaptive

maintenance shall conclude with a full set of successful formal software tests, model checks, and correctness proofs

Corrective Maintenance

Definition 41. Corrective Maintenance: By corrective maintenance we understand such maintenance which cor-
rects a software error

Example 31. Machine Requirements. Development: Corrective Maintenance: Road pricing system correc-

tive maintenance shall conclude with a full set of successful formal software tests, model checks, and correctness proofs

Perfective Maintenance

Definition 42. Perfective Maintenance: By perfective maintenance we understand such maintenance which helps
improve (i.e., lower) the need for hardware storage, time and (hard) equipment

Example 32. Machine Requirements. Development: Perfective Maintenance: Road pricing system perfective

maintenance shall conclude with a full set of successful formal software tests, model checks, and correctness proofs

Preventive Maintenance

Definition 43. Preventive Maintenance: By preventive maintenance we understand such maintenance which
helps detect, i.e., forestall, future occurrence of software or hardware failures

Example 33. Machine Requirements. Development: Preventive Maintenance: Road pricing system preven-

tive maintenance shall conclude with a full set of successful formal software tests, model checks, and correctness proofs
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Extensional Maintenance

Definition 44. Extensional Maintenance: By extensional maintenance we understand such maintenance which
adds new functionalities to the software, i.e., which implements additional requirements

Example 34. Machine Requirements. Development: Extensional Maintenance: Road pricing system ex-

tensional maintenance shall conclude with a full set of successful formal software tests, model checks, and correctness proofs

6.4.3. Platform Requirements

Delineation and Facets of Platform Requirements

Definition 45. Platform: By a [computing] platform is here understood a combination of hardware and systems
software so equipped as to be able to develop and execute software, in one form or another

What the “in one form or another” is transpires from the next characterisation.

Definition 46. Platform Requirements: By platform requirements we mean a combination of the following: (i)
execution platform requirements, (ii) demonstration platform requirements, (iii) development platform requirements
and (iv) maintenance platform requirements

Execution Platform

Definition 47. Execution Platform Requirements: By execution platform requirements we shall understand
such machine requirements which detail the specific (other) software and hardware for the platform on which the
software is to be executed

Demonstration Platform

Definition 48. Demonstration Platform Requirements: By demonstration platform requirements we shall un-
derstand such machine requirements which detail the specific (other) software and hardware for the platform on which
the software is to be demonstrated to the customer — say for acceptance tests, or for management demos, or for user
training

Development Platform

Definition 49. Development Platform Requirements: By development platform requirements we shall under-
stand such machine requirements which detail the specific software and hardware for the platform on which the
software is to be developed

Maintenance Platform

Definition 50. Maintenance Platform Requirements: By maintenance platform requirements we shall under-
stand such machine requirements which detail the specific (other) software and hardware for the platform on which
the software is to be maintained

• • •

Example 35. Machine Requirements. Development: Platform Requirements: The road pricing system

platform requirements are: the system shall executed and demonstrated on to be detailed and developed and maintained on

to be detailed

6.4.4. Management Requirements

Definition 51. Management Requirements: By management requirements we shall understand require-
ments that express [Bjø11a, Believable Software Management]

Example 36. Machine Requirements. Development: Management:

TO BE WRITTEN
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6.4.5. Documentation Requirements

Definition 52. Software: By software we shall understand (i) not only code that may be the basis for executions
by a computer, (ii) but also its full development documentation: (ii.1) the stages and steps of application
domain description, (ii.2) the stages and steps of requirements prescription, and (ii.3) the stages and steps
of software design prior to code, with all of the above including all validation and verification (incl., formal test
[test model, test suite, test result, etc.], model-checking and proof ) documents. (iii) In addition, as part of our wider
concept of software, we also include a comprehensive collection of supporting documents: (iii.1) training manuals,
(iii.2) installation manuals, (iii.3) user manuals, (iii.4) maintenance manuals, and (iii.5–6) development
and maintenance logbooks.

Definition 53. Documentation Requirements: By documentation requirements we mean requirements of any of
the software documents that together make up software and hardware16

Example 37. Machine Requirements. Development: Documentation: The road pricing system documentation

requirements shall include all of the software documents implied by Definition 52 above

6.5. Discussion

TO BE TYPED

7. Conclusion

We conclude by reviewing what has been achieved, present shortcomings, a few words on relations to “classical
requirements engineering”, and possible research challenges.

7.1. What has been Achieved?

We have put forward a “new approach” to requirements engineering. The “newness” comes from its reliance on there
being a reasonably “complete” domain description already at hand. We refer to the introductory section, Sect. 1.3
for a “repeat” of what we think is our contribution. We will, in this section examine some issues of requirements
engineering.

(i) The field of software requirements specification has yet to find a stable form around which different con-
tributors (book, paper and Web page authors) structure and within which they express their contributions. It seems,
to this author, that there is a bewildering “culture” of different “schools”. The various elements of a prevailing such
“school” are named: (a) user requirements, (b) system requirements, (c) functional requirements and (d) non-
functional requirements. But, to this author, it is hard to see the relations between any pair of these four “classes”.
Our decomposition into domain, machine and interface requirements is clearly related to either the domain, or the
machine or both.

(ii) We have shown how requirements engineering structured into:

* Problem, Solution and Objective Sketch

* System Requirements

* User and External Equipment Requirements

• Domain Requirements

⋄⋄ Projection & Simplification

⋄⋄ Instantiation

⋄⋄ Determination

⋄⋄ Extension

⋄⋄ Fitting

• Interface Requirements

⋄⋄ Shared Endurants

◦◦ Intialisation

◦◦ Refreshment

⋄⋄ Shared Actions

⋄⋄ Shared Events

⋄⋄ Shared Behaviours

• Machine Requirements

16— we omit a definition of what we mean by hardware such as the one we gave for software, cf. Definition 52.
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⋄⋄ Derived Requirements

⋄⋄ Technology Requirements

◦◦ Performance

◦◦ Dependability17

⋄⋄ Development Requirements

◦◦ Process Reqs.

◦◦ Maintenance Reqs.18

◦◦ Platform Reqs.19

◦◦ Management Reqs.

◦◦ Documentation Reqs.

(iii) The above-hinted structuring, ((ii)), is logically motivated and is, we claim, a definite contribution to the field
of requirements engineering, providing it, we claim, with a stable form.

(iv) The rôle of domain engineering in software engineering, together with domain requirements and inter-
face requirements, is to ensure that the software meets client expectations. By avoiding requirements that express
machine concepts the software does not exhibit such properties that make it “user-unfriendly”. ‘User-friendly’ software
reflects only concepts that relate to domain phenomena.

(v)
(vi)

7.2. Present Shortcomings

7.3. Comparison to “Classical” Requirements Engineering

[van09] [Lau02]

7.4. Future Work: Research Challenges

We have outlined three major stages of requirements development, and, within these, a number of steps. They can be
used, we claim, to advantage, already now — as they have indeed been used over the years in projects with which we
have been associated. But more experimental research and path-finder projects has to be absolved. Section ?? of the
Manifest Domains “chapter” of these lectures covered ‘open problems’ with respect to domain science & engineering.
So we shall only mention ‘open problems’ with respect to requirements engineering. A number of research issues
need be studied. We list a few. (i) Domain Facets: Here we are interested in how various domain facets may give rise to
special domain-to-requirements “derivation” principles, techniques and tools. We refer to [Bjø10a, 2008]. (ii) Formal

Aspects of Domain Requirements Operations: (iii) (iv) (v) (vi) (vii) (viii)

8. Thanks

Thanks
8.1. Acknowledgments

9. Bibliography

9.1. Bibliographical Notes

I have thought about domain engineering for more than 20 years. But serious, focused writing only started to appear
since [Bjø06, Part IV] — with [Bjø03, Bjø97] being exceptions: [Bjø07] suggests a number of domain science and
engineering research topics; [Bjø10a] covers the concept of domain facets; [BE10] explores compositionality and Ga-
lois connections. [Bjø08, Bjø10c] show how to systematically, but, of course, not automatically, “derive” requirements
prescriptions from domain descriptions; [Bjø11a] takes the triptych software development as a basis for outlining

17Accessibility, Availability, Integrity, Reliability, Safety, Security, Robustness
18Adaptive, Corrective, Perfective,Preventive, Extensional
19Execution, Development, Demonstration, Development, Maintenance
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principles for believable software management; [Bjø09, Bjø14a] presents a model for Stanisław Leśniewski’s [CV99]
concept of mereology; [Bjø10b, Bjø11b] present an extensive example and is otherwise a precursor for the present
paper; [Bjø11c] presents, based on the TripTych view of software development as ideally proceeding from domain
description via requirements prescription to software design, concepts such as software demos and simulators; [Bjø13]
analyses the TripTych, especially its domain engineering approach, with respect to [Mas43, Mas54, Maslow]’s and
[PS04, Peterson’s and Seligman’s]’s notions of humanity: how can computing relate to notions of humanity; the first
part of [Bjø14b] is a precursor for [Bjø16b] with the second part of [Bjø14b] presenting a first formal model of the
elicitation process of analysis and description based on the prompts more definitively presented in the current paper;
and with [Bjø14c] focus on domain safety criticality. The present paper, [Bjø16a], marks, for me, a high point, with
[Bjø16b] now constituting the base introduction to domain science & engineering.

9.2. References

[BE10] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations in the Context
of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem
Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture Notes in Computer Science, pages 22–59,
Heidelberg, July 2010. Springer.

[Bjø97] Dines Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In Li ShaoYang and Michael Hinchley, ed-
itors, ICFEM’97: International Conference on Formal Engineering Methods, Los Alamitos, November 12–14 1997. IEEE Computer
Society. Final Version.

[Bjø03] Dines Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engineering ? In Verification: Theory and
Practice, volume 2772 of Lecture Notes in Computer Science, Heidelberg, October 7–11 2003. Springer–Verlag. The Zohar Manna
International Conference, Taormina, Sicily 29 June – 4 July 2003. .

[Bjø06] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer Science,
the EATCS Series. Springer, 2006.

[Bjø07] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, volume 4701 of
Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007. Springer.

[Bjø08] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds.
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process, 35
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Machine, 11
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requirements, 1, 12, 29
Machine Requirements, 29



From Domain Descriptions to Requirements Prescriptions: A Different Approach to Requirements Engineering 41

Machine Service, 32
Maintenance Platform Requirements, 36
Maintenance Requirements, 35
management

requirements, 37
Management Requirements, 37
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narrative
requirements
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user and external equipment, 12

system
requirements, 11

user and external equipment
requirements, 12
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Perfective Maintenance, 35
Performance Requirements, 32
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domain
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domain, 13
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Problem, Solution and Objective Sketch, 11
process

development
requirements, 35

requirements
development, 35

Process Requirement, 35
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domain, 13

Reliability, 34
requirement

domain
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shared, 25

partial
domain, 25

shared
domain, 25

requirements, 10
assumption and

design, 12
derived, 29

design, 13
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development, 35
process, 35

domain, 1, 12
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fitting, 24, 25
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interface, 1, 12, 25
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narrative

system, 11
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domain, 13
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system
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technology, 32
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technology
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Technology Requirements, 32
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requirements
narrative, 12
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design, 11
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