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Abstract. We show that manifest domains, an understanding of which are a prerequisite for software require-
ments prescriptions, can be precisely described: narrated and formalised. We show that such manifest domains
can be understood as a collection of endurant, that is, basically spatial entities: parts, components and materi-
als, and perdurant, that is, basically temporal entities: actions, events and behaviours. We show that parts can
be modeled in terms of external qualities whether: atomic or composite parts, having internal qualities: unique
identifications, mereologies, which model relations between parts, and attributes. We show that the manifest
domain analysis endeavour can be supported by a calculus of manifest domain analysis prompts: is entity,
is endurant, is perdurant, is part, is component, is material, is atomic, is composite, has compo-
nents, has materials, has concrete type, attribute names, is stationary, etcetera; and show how the
manifest domain description endeavour can be supported by a calculus of manifest domain description prompts:
observe part sorts, observe part type, observe components, observe materials, observe unique i-
dentifier, observe mereology, observe attributes. We show how tomodel attributes, essentially following
Michael Jackson (Software requirements & specifications: a lexicon of practice, principles and prejudices. ACM
Press, Addison-Wesley, Reading, 1995), but with a twist: The attribute model introduces the attribute analy-
sis prompts is static attribute, is dynamic attribute, is inert attribute, is reactive attribute,
is active attribute, is autonomous attribute, is biddable attribute and is programmable attri-
bute. The twist suggests ways of modeling “access” to the values of these kinds of attributes: the static attributes
by simply “copying” them, once, the reactive and programmable attributes by “carrying” them as function para-
meters whose values are kept always updated, and the remaining, the external attributes, by inquiring, when
needed, as to their value, as if they were always offered on CSP-like channels (Hoare, Communicating sequential
processes. C.A.R. Hoare series in computer science. Prentice-Hall International, London, 2004). We show how
to model essential aspects of perdurants in terms of their signatures based on the concepts of endurants. And we
show how one can “compile” descriptions of endurant parts into descriptions of perdurant behaviours. We do
not show prompt calculi for perdurants. The above contributions express a method with principles, techniques
and tools for constructing domain descriptions. It is important to realise that we do not wish to nor claim that
the method can describe all that it is interesting to know about domains.
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D. Bjørner

1. Introduction

The broader subject of this paper is that of software development. The narrower subject is that of manifest
domain engineering. We shall see software development in the context of the TripTych approach (next section).
The contribution of this paper is twofold: the propagation of manifest domain engineering as a first phase of
the development of a large class of software—and a set of principles, techniques and tools for the engineering of
the analysis & descriptions of manifest domains. These principles, techniques and tools are embodied in a set of
analysis and description prompts. We claim that this embodiment—in the form of prompts—is novel.

1.1. The TripTych approach to software engineering

We suggest a TripTych view of software engineering: before hardware and software systems can be designed
and coded we must have a reasonable grasp of “its” requirements; before requirements can be prescribed we must
have a reasonable grasp of “the underlying” domain. To us, therefore, software engineering contains the three
sub-disciplines:

• domain engineering,
• requirements engineering and
• software design.

Thispaper contributes,we claim, toa methodology for domain analysis&1 domain description.References [Bjø08,Bjø10b]
show how to “refine” domain descriptions into requirements prescriptions, and reference [Bjø11c] indicates more general
relations between domain descriptions and domain demos, domain simulators and more general domain specific software.

The concept of systems engineering arises naturally in the TripTych approach. First: domains can be claimed
to be systems. Secondly: requirements are usually not restricted to software, but encompasses all the human and
technological “assists” that must be considered. Other than that we do not wish to consider domain analysis &
description principles, techniques and tools specific to “systems engineering”.

1.2. Method and methodology

1.2.1. Method

By a method we shall understand a “structured” set of principles for selecting and applying a number of
techniques and tools for analysing problems and synthesizing solutions for a given domain 2

The ‘structuring’ amounts, in this treatise on domain analysis & description, to the techniques and tools being
related to a set of domain analysis & description “prompts”, “issued by the method”, prompting the domain
engineer, hence carried out by the domain analyser & describer3—conditional upon the result of other prompts.

1.2.2. Discussion

There may be other ‘definitions’ of the term ‘method’. The above is the one that will be adhered to in this paper.
The main idea is that there is a clear understanding of what we mean by, as here, a software development method,
in particular a domain analysis & description method.

The main principles of the TripTych domain analysis and description approach are those of abstraction and
both narrative and formalmodeling. Thismeans that evolving domain descriptions necessarily limit themselves to
a subset of the domain focusing onwhat is considered relevant, that is, abstract “away” some domain phenomena.

The main techniques of the TripTych domain analysis and description approach are besides those techniques
which are in general associated with formal descriptions, focus on the techniques that relate to the deployment
of of the individual prompts.

1 When, as here, we write A & B we mean A & B to be one subject.
2 Definitions and examples are delimited by symbols.
3 We shall thus use the term domain engineer to cover both the analyser & the describer.
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And themain tools of the TripTych domain analysis and description approach are the analysis and description
prompts and the description language, here the Raise Specification Language RSL[GHH+92].

A main contribution of this paper is therefore that of “painstakingly” elucidating the principles, techniques
and tools of the domain analysis & description method.

1.2.3. Methodology

By methodology we shall understand the study and knowledge about one or more methods4

1.3. Computer and computing science

By computer sciencewe shall understand the study and knowledge of the conceptual phenomena that “exists” inside
computers and, in a wider context than just computers and computing, of the theories “behind” their formal
description languages Computer science is often also referred to as theoretical computer science.

By computing science we shall understand the study and knowledge of how to construct and describe those
phenomena Another term for computing science is programming methodology.

This paper is about computing science. It is concerned with the construction of domain descriptions. It puts
forward a calculus for analysing and describing domains. It does not theorize about this calculus. There are no
theorems about this calculus and hence no proofs. We leave that to another study and paper.

1.4. What is a manifest domain?

By ‘domain’ we mean the same as ‘problem domain’ [JHJ07]. We offer a number of complementary delineations
of what we mean by a manifest domain. But first some examples, “by name” !

Example 1 Names of Manifest Domains: Examples of suggestive names of manifest domains are: air traffic,
banks, container lines, documents, hospitals, manufacturing, pipelines, railways and road nets

Amanifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”, and perdurant,
that is temporally “fleeting” entities. Endurant entities are either parts or components or materials. Perdurant
entities are either actions or events or behaviours

Example 2 Manifest Domain Endurants: Examples of (names of) endurants are Air traffic: aircraft, airport, air
lane. Banks: client, passbook. Container lines: container, container vessel, container terminal port.Documents: document,
document collection. Hospitals: patient, medical staff, ward, bed, patient medical journal. Pipelines: well, pump, pipe,
valve, sink, oil. Railways: simple rail unit, point, crossover, line, track, station. Road nets: link (street segment), hub
(street intersection)

Example 3 Manifest Domain Perdurants: Examples of (names of) perdurants are Air traffic: start (ascend) an
aircraft, change aircraft course. Banks: open, deposit into, withdraw from, close (an account). Container lines: move
container off or on board a vessel. Documents: open, edit, copy, shred. Hospitals: admit, diagnose, treat (patients).
Pipelines: start pump, stop pump, open valve, close valve. Railways: switch rail point, start train. Road nets: set a hub
signal, sense a vehicle

A manifest domain is further seen as a mapping from entities to qualities, that is, a mapping from manifest phenomena
to usually non-manifest qualities

Example 4 Endurant Entity Qualities: Examples of (names of) endurant qualities: Pipeline: unique identity of a
pipeline unit, mereology (connectedness) of a pipeline unit, length of a pipe, (pumping) height of a pump, open/close
status of a valve. Road net: unique identity of a road unit (hub or link), road unit mereology: identity of neighbouring
hubs of a link, identity of links emanating from a hub, and state of hub (traversal) signal

4 Please note our distinction between method and methodology. We often find the two, to us, separate terms used interchangeably.
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Example 5 Perdurant Entity Qualities: Examples of (names of) perdurant qualities: Pipeline: the signature of an
open (or close) valve action, the signature of a start (or stop) pump action, etc. Road net: the signature of an insert
(or remove) link action, the signature of an insert (or remove) hub action, the signature of a vehicle behaviour,
etc.

We shall in the rest of this paper just write ‘domain’ instead of ‘manifest domain’.

1.5. What is a domain description?

By a domain description we understand a collection of pairs of narrative and commensurate formal texts, where
each pair describes either aspects of an endurant entity or aspects of a perdurant entity

What does it mean that some text describes a domain entity?
For a text to be a description text it must be possible from that text to either, if it is a narrative, to reason,

informally, that the designated entity is described to have some properties that the reader of the text can observe
that the described entities also have; or, if it is a formalisation to prove, mathematically, that the formal text
denotes the postulated properties

By a domain description we shall thus understand a text which describes the entities of the domain: whether
endurant or perdurant, and when endurant whether discrete or continuous, atomic or composite; or when perdurant
whether actions, events or behaviours. as well as the qualities of these entities. So the task of the domain analyser cum
describer is clear: There is a domain: right in front of our very eyes, and it is expected that that domainbe described.

1.6. Towards a methodology of manifest domain analysis & description

Practicalities of domain analysis & description. How does one go about analysing & describing a domain? Well,
for the first, one has to designate one or more domain analysers cum domain describers, i.e., trained domain scientists
cum domain engineers. How does one get hold of a domain engineer? One takes a software engineer and educates and
trains that person in domain science & domain engineering. A derivative purpose of this paper is to unveil aspects of
domain science & domain engineering. The education and training consists in bringing forth a number of scientific and
engineering issues of domain analysis and of domain description. Among the engineering issues are such as: what do I
do when confronted with the task of domain analysis ? and with the task of description ? and when, where and how
do I select and apply which techniques and which tools ? Finally, there is the issue of how do I, as a domain
describer, choose appropriate abstractions and models ?

The four domain analysis & description “players”. We can say that there are four ‘players’ at work here. (i) the
domain, (ii) the domain analyser & describer, (iii) the domain analysis & description method, and (iv) the evolving domain
analysis & description (document). (i) The domain is there. The domain analyser & describer cannot change the
domain. Analysing & describing the domain does not change it.5 During the analysis & description process the
domain can be considered inert. (It changes with the installation of such software as has been developed from
the requirements developed from the domain description.) In the physical sense the domain will usually contain
entities that are static (i.e., constant), and entities that are dynamic (i.e., variable). (ii) The domain analyser
& domain describer is a human, preferably a scientist/engineer,6 well-educated and trained in domain science
& engineering. The domain analyser & describer observes the domain, analyses it according to a method and
thereby produces a domain description. (iii) As a concept the method is here considered “fixed”. By ‘fixed’ we
mean that its principles, techniques and tools do not change during a domain analysis & description. The domain
analyser & describer may very well apply these principles, techniques and tools more-or-less haphazardly during
domain analysis & description, flaunting the method, but the method remains invariant. The method, however,
may vary from one domain analysis & description (project) to another domain analysis & description (project).
Domain analysers & describers, may, for example, have become wiser from a project to the next. (iv) Finally
there is the evolving domain analysis & description. That description is a text, usually both informal and formal.
Applying a domain description prompt to the domain yields an additional domain description text which is added

5 Observing domains, such as we are trying to encircle the concept of domain, is not like observing the physical world at the level of subatomic
particles. The experimental physicists’ instruments of observation change what is being observed.
6 At the present time domain analysis appears to be partly an artistic, partly a scientific endeavour. Until such a time when domain analysis
& description principles, techniques and tools have matured it will remain so.
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to the thus evolving domain description. One may speculate of the rôle of the “input” domain description. Does
it change ? Does it help determine the additional domain description text ? Etcetera. Without loss of generality
we can assume that the “input” domain description is changed7 and that it helps determine the added text.

Of course, analysis & description is a trial-and-error, iterative process. During a sequence of analyses, that is,
analysis prompts, the analyser “discovers” eithermorepleasing abstractionsor that earlier analyses or descriptions
were wrong, or that an entity either need be abstracted or made less abstract. So they are corrected.

An interactive domain analysis& description dialogue. We see domain analysis&description as a process involving
the above-mentioned four ‘players’, that is, as a dialoguebetween thedomain analyser&describer and thedomain,
where the dialogue is guided by the method and the result is the description. We see the method as a ‘player’
which issues prompts: alternating between: “analyse this” (analysis prompts) and “describe that” (synthesis or, rather,
description prompts).

Prompts In this paper we shall suggest a number of domain analysis prompts and a number of domain description prompts.
The domain analysis prompts (schematically: analyse named condition(e)) directs the analyser to inquire as to the
truth of whatever the prompt “names” at wherever part (component or material), e, in the domain the prompt so
designates. Based on the truth value of an analysed entity the domain analyser may then be prompted to describe
that part (or material). The domain description prompts (schematically: observe type or quality(e)) directs the
(analyser cum) describer to formulate both an informal and a formal description of the type or qualities of the
entity designated by the prompt. The prompts form languages, and there are thus two languages at play here.

A domain analysis & description language. The ‘Domain Analysis & Description Language’ thus consists of a
number of meta-functions, the prompts. The meta-functions have names (say is endurant) and types, but have
no formal definition. They are not computable. They are “performed” by the domain analysers & describers.
These meta-functions are systematically introduced and informally explained in Sects. 2, 3 and 4.

The domain description language. The ‘Domain Description Language’ is RSL [GHH+92], the RAISE Specifica-
tion Language [GHH+95]. With suitable, simple adjustments it could also be either of Alloy [Jac06], Event B
[Abr09], VDM-SL [BJ78, BJ82, FL98] or Z [WD96].We have chosen RSL because of its simple provision for defining
sorts, expressing axioms, and postulating observers over sorts.

Domain descriptions: narration & formalisation Descriptions must be readable and must be mathematically pre-
cise.8 For that reason we decompose domain description fragments into clearly identified9 “pairs” of narrative
texts and formal texts.

1.7. One domain: many models?

Will two or more domain engineers cum scientists arrive at “the same domain description” ? No, almost certainly
not ! What do we mean by “the same domain description” ? To each proper description we can associate a
mathematicalmeaning, its semantics.Not only is it very unlikely that the syntactic formof the domaindescriptions
are the same or even “marginally similar”. But it is also very unlikely that the two (or more) semantics are the
same; that is, that all properties that can be proved for one domain model can be proved also for the other. Why
will different domain models emerge ? Two different domain describers will, undoubtedly, when analysing and
describing independently, focus on different aspects of the domain. One describer may focus attention on certain
phenomena, different from those chosen by another describer. One describer may choose some abstractions
where another may choose more concrete presentations. Etcetera. We can thus expect that a set of domain
description developments lead to a set of distinct models. As these domain descriptions are communicated
amongst domain engineers cum scientists we can expect that iterated domain description developments within
this group of developers will lead to fewer and more similar models. Just like physicists, over the centuries
of research, have arrived at a few models of nature, we can expect there to develop some consensus models

7 For example being “stylistically” revised.
8 One must insist on formalised domain descriptions in order to be able to verify that domain descriptions satisfy a number of properties
not explicitly formulated as well as in order to verify that requirements prescriptions satisfy domain descriptions.
9 The “clear identification” is here achieved by narrative text item and corresponding formula line numbers.
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of “standard” domains. We expect, that sometime in future, software engineers, when commencing software
development for a “standard domain”, that is, one for which there exists one or more “standard models”, will
start with the development of a domain description based on “one of the standard models”—just like control
engineers of automatic control “repeat” an essence of a domain model for a control problem.

Example 6 One Domain: Three Models: In this paper we shall bring many examples from a domain containing
automobiles. (i) One domain model may focus on roads and vehicles, with roads being modeled in terms of
atomic hubs (road intersections) and atomic links (road sections between immediately neighbouring hubs), and
with automobiles being modeled in terms of atomic vehicles. (ii) Another domain model considers hubs of the
former model as being composite, consisting, in addition to the “bare” hub, also of a signaling part—with
automobiles remaining atomic vehicles, (iii) A third model focuses on vehicles, now as composite parts consisting
of composite and atomic sub-parts such as they are relevant in the assembly-line manufacturing of cars10

1.8. Formal concept analysis

Domain analysis involves that of concept analysis. As soon as we have identified an entity for analysis we have
identified a concept. The entity is usually a spatio-temporal, i.e., a physical thing. Once we speak of it, it becomes
a concept. Instead of examining just one entity the domain analyser shall examine many entities. Instead of
describing one entity the domain describer shall describe a class of entities. Ganter andWille’s [GW99] addresses
this issue.

1.8.1. A formalisation

This section is a transcription of Ganter and Wille’s [GW99] Formal Concept Analysis, Mathematical Foundations, the
1999 edition, pages 17–18.

Some notation: By E we shall understand the type of entities; by E we shall understand a phenomenon of type
E ; by Q we shall understand the type of qualities; by Q we shall understand a quality of type Q; by E -set we
shall understand the type of sets of entities; by ES we shall understand a set of entities of type E -set; byQ-set we
shall understand the type of sets of qualities; and by QS we shall understand a a set of qualities of typeQ-set.

Definition: 1 Formal context: A formal context K :� (ES, I,QS) consists of two sets; ES of entities and QS of
qualities, and a relation I between E and Q

To express that E is in relation I to a QualityQ we write E · I ·Q, which we read as “entity E has qualityQ” Example
endurant entities are a specific vehicle, another specific vehicle, etcetera; a specific street segment (link), another street segment,
etcetera; a specific road intersection (hub), another specific road intersection, etcetera, amonitor.Example endurant entity qualities
are (a vehicle) has mobility, (a vehicle) has velocity (≥0), (a vehicle) has acceleration, etcetera; (a link) has length (>0), (a
link) has location, (a link) has traffic state, etcetera.

Definition: 2 Qualities common to a set of entities: For any subset, sES ⊆ ES, of entities we can defineDQ for “derive[d]
set of qualities”.

DQ : E -set → (E -set × I × Q-set) → Q-set
DQ(sES)(ES, I,QS) ≡ {Q | Q:Q,E:E • E∈sES ∧ E · I · Q}
pre: sES ⊆ ES

The above expresses: “the set of qualities common to entities in sES”

Definition: 3 Entities common to a set of qualities:For any subset, sQS ⊆ QS, of qualitieswe candefineDE for “derive[d]
set of entities”.

DE : Q-set → (E -set × I × Q-set) → E -set
DE (sQS)(ES, I,QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I · Q },
pre: sQS ⊆ QS

The above expresses: “the set of entities which have all qualities in sQS”

10 The road nets of the first two models can be considered a zeroth model.
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Definition: 4 Formal concept: A formal concept of a context K is a pair:

• (sQ, sE) where



 DQ(sE)(E, I,Q) � sQ and


 DE (sQ)(E, I,Q) � sE;

• sQ is called the intent of K and sE is called the extent of K

1.8.2. Types are formal concepts

Now comes the “crunch”: In the TripTych domain analysis we strive to find formal concepts and, when we
think we have found one, we assign a type (or a sort) and qualities to it !

1.8.3. Practicalities

There is a little problem. To search for all those entities of a domain which each have the same sets of qualities
is not feasible. So we do a combination of two things: (i) we identify a small set of entities all having the same
qualities and tentatively associate them with a type, and (ii) we identify certain nouns of our national language
and if such a noun does indeed designate a set of entities all having the same set of qualities then we tentatively
associate the noun with a type. Having thus, tentatively, identified a type we conjecture that type and search for
counterexamples, that is, entities which refute the conjecture. This “process” of conjectures and refutations is
iterated until some satisfaction is arrived at that the postulated type constitutes a reasonable conjecture.

1.8.4. Formal concepts: a wider implication

The formal concepts of a domain form Galois Connections [GW99]. We gladly admit that this fact is one of
the reasons why we emphasise formal concept analysis. At the same time we must admit that this paper does not
do justice to this fact. We have experimented with the analysis & description of a number of domains, and have
noticed such Galois connections, but it is, for us, too early to report on this. Thus we invite the reader to study
this aspect of domain analysis.

1.9. Structure of paper

Sections 2, 3 and 4 are the main sections of this paper. They cover the analysis and description of endurants
and perdurants. Section 2 introduce the concepts of entities, endurant entities and perdurant entities. Section 3
introduces the external qualities of parts, components and materials, and the internal qualities of unique part
identifiers, part mereologies and part attributes. Section 4 complements Sect. 3. It covers analysis and description
of perdurants. We consider the “compilation”, Sect. 4.11, of part descriptions, i.e., endurants, into behaviour
descriptions to be a separate contribution. Section 5 concludes the paper.

2. Entities

2.1. General

Definition 1 Entity: By an entity we shall understand a phenomenon, i.e., something that can be observed, i.e., be
seen or touched by humans, or that can be conceived as an abstraction of an entity. We further demand that an
entity can be objectively described

Analysis Prompt 1 is entity: The domain analyser analyses “things” (θ ) into either entities or non-entities. The
method can thus be said to provide the domain analysis prompt:

• is entity —where is entity(θ) holds if θ is an entity 11

is entity is said to be a prerequisite prompt for all other prompts.

11 Analysis prompt definitions and description prompt definitions and schemes are delimited by .
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Whither entities: The “demands” that entities be observable and objectively describable raises some philosophical
questions. Can sentiments, like feelings, emotions or “hunches” be objectively described ? This author thinks
not. And, if so, can they be other than artistically described ? It seems that psychologically and aesthetically
“phenomena” appears to lie beyond objective description. We shall leave these speculations for later.

2.2. Endurants and perdurants

Definition 2 Endurant: By an endurant we shall understand an entity that can be observed or conceived and
described as a “complete thing” at no matter which given snapshot of time. Were we to “freeze” time we would
still be able to observe the entire endurant

That is, endurants “reside” in space. Endurants are, in the words of Whitehead [Whi20], continuants.

Example 7 Traffic System Endurants: Examples of traffic system endurants are: traffic system, road nets, fleets
of vehicles, sets of hubs (i.e., street intersections), sets of links (i.e., street segments [between hubs]), and individual
hubs, links and vehicles

Definition 3 Perdurant: By a perdurantwe shall understand an entity for which only a fragment exists if we look at
or touch them at any given snapshot in time, that is, were we to freeze time we would only see or touch a fragment
of the perdurant

That is, perdurants “reside” in space and time. Perdurants are, in the words of Whitehead [Whi20], occurrents.

Example 8 Traffic System Perdurants: Examples of road net perdurants are: insertion and removal of hubs or
links (actions), disappearance of links (events), vehicles entering or leaving the road net (actions), vehicles crashing
(events) and road traffic (behaviour)

Analysis Prompt 2 is endurant: The domain analyser analyses an entity, φ, into an endurant as prompted by the
domain analysis prompt:

• is endurant—φ is an endurant if is endurant(φ) holds.

is entity is a prerequisite prompt for is endurant

Analysis Prompt 3 is perdurant: The domain analyser analyses an entity φ into perdurants as prompted by the
domain analysis prompt:

• is perdurant—φ is a perdurant if is perdurant(φ) holds.

is entity is a prerequisite prompt for is perdurant

In the words ofWhitehead [Whi20]—as communicated by Sowa [Sow99, p. 70]— an endurant has stable qualities
that enable its various appearances at different times to be recognised as the same individual; a perdurant is in a
state of flux that prevents it from being recognised by a stable set of qualities.

Necessity and possibility: It is indeed possible to make the endurant/perdurant distinction. But is it necessary ? We
shall argue that it is ‘by necessity’ that we make this distinction. Space and time are fundamental notions. They
cannot be dispensed with. So, to describe manifest domains without resort to space and time is not reasonable.

2.3. Discrete and continuous endurants

Definition 4 Discrete endurant: By a discrete endurantwe shall understand an endurantwhich is separate, individual
or distinct in form or concept

Example 9 Discrete Endurants: Examples of discrete endurants are a road net, a link, a hub, a vehicle, a traffic
signal, etcetera

Definition 5 Continuous endurant: By a continuous endurant we shall understand an endurant which is prolonged,
without interruption, in an unbroken series or pattern
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Non−describable

PerdurantEndurant

Action Event Behaviour

Describable

Part

A Triptych Manifest Domain Ontology

Component

Discrete Continuous

CompositeAtomic

Material

Section 4. 

Section 3.1

Section 2.

Sections 3.2 − 3.4

Unique Mereology AttributesIdentifier

Fig. 1. An upper ontology for domains

Example 10 Continuous Endurants: Examples of continuous endurants are water, oil, gas, sand, grain, etcetera

Continuity shall here not be understood in the sense of mathematics. Our definition of ‘continuity’ focused on
prolonged, without interruption, in an unbroken series or pattern. In that sense materials and components shall be seen as
‘continuous’,

Analysis Prompt 4 is discrete: The domain analyser analyses endurants e into discrete entities as prompted by
the domain analysis prompt:

• is discrete —e is discrete if is discrete(e) holds

Analysis Prompt 5 is continuous: The domain analyser analyses endurants e into continuous entities as prompt-
ed by the domain analysis prompt:

• is continuous —e is continuous if is continuous(e) holds

2.4. An upper ontology diagram of domains

Figure 1 shows a so-called upper ontology for manifest domains. So far we have covered only a fraction of this
ontology, as noted. By ontologies we shall here understand “formal representations of a set of concepts within a domain
and the relationships between those concepts” . In Sect. 5.3 we shall review relations between our approach to modeling
domains and that of many related modeling approaches, including the so-called ontology approach based on
AI-models.

3. Endurants

This section brings a comprehensive treatment of the analysis and description of endurants.
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3.1. Parts, components and materials

3.1.1. General

Definition 6 Part: By a partwe shall understand a discrete endurant which the domain engineer chooses to endow
with internal qualities such as unique identification, mereology, and one or more attributes

We shall define the terms ‘unique identification’, ‘mereology’, and ‘attributes’ shortly.

Example 11 Parts: Example 7 on page 8 illustrated, and examples 15 on the facing page and 16 on the next page
shall illustrate parts

Definition 7 Component: By a component we shall understand a discrete endurant which we, the domain analyser
cum describer chooses to not endow with internal qualities

Example 12 Components: Examples of components are: chairs, tables, sofas and book cases in a living room,
letters, newspapers, and small packages in a mail box, machine assembly units on a conveyor belt, boxes in
containers of a container vessel, etcetera

”At the Discretion of the Domain Engineer”: Weemphasise the following analysis and description aspects: (a) The domain
is full of observable phenomena. It is the decision of the domain analyser cum describer whether to analyse and
describe some such phenomena, that is, whether to include them in a domain model. (b) The borderline between
an endurant being (considered) discrete or being (considered) continuous is fuzzy. It is the decision of the domain
analyser cum describer whether to model an endurant as discrete or continuous. (c) The borderline between
a discrete endurant being (considered) a part or being (considered) a component is fuzzy. It is the decision of
the domain analyser cum describer whether to model a discrete endurant as a part or as a component. (d) In
Sect. 4.11 we shall show how to “compile” parts into processes. A factor, therefore, in determining whether to
model a discrete endurant as a part or as a component is whether we may consider a discrete endurant as also
representing a process.

Definition 8 Material: By a material we shall understand a continuous endurant

Example 13 Materials: Examples of material endurants are: air of an air conditioning system, grain of a silo,
gravel of a barge, oil (or gas) of a pipeline, sewage of a waste disposal system, and water of a hydro-electric power
plant.

Example 14 Parts Containing Materials: Pipeline units are here considered discrete, i.e., parts. Pipeline units
serve to convey material

3.1.2. Part, component and material analysis prompts

Analysis Prompt 6 is part: The domain analyser analyse endurants, e, into part entities as prompted by the
domain analysis prompt:

• is part—e is a part if is part(e) holds

We remind the reader that the outcome of is part(e) is verymuch dependent on the domain engineer’s intention
with the domain description, cf. Sect. 3.1.1.

Analysis Prompt 7 is component: The domain analyser analyse endurants e into component entities as prompted
by the domain analysis prompt:

• is component —e is a component if is component(e) holds

We remind the reader that the outcome of is component(e) is very much dependent on the domain engineer’s
intention with the domain description, cf. Sect. 3.1.1.

Analysis Prompt 8 is material: The domain analyser analyse endurants e into material entities as prompted by
the domain analysis prompt:

• is material —e is a material if is material(e) holds

We remind the reader that the outcome of is material(e) is very much dependent on the domain engineer’s
intention with the domain description, cf. Sect. 3.1.1.
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3.1.3. Atomic and composite parts

A distinguishing quality of parts is whether they are atomic or composite. Please note that we shall, in the
following, examine the concept of parts in quite some detail. That is, parts become the domain endurants of main
interest, whereas components and materials become of secondary interest. This is a choice. The choice is based
on pragmatics. It is still the domain analyser cum describers’ choice whether to consider a discrete endurant a
part or a component. If the domain engineer wishes to investigate the details of a discrete endurant then the
domain engineer choose to model the discrete endurant as a part otherwise as a component.

Definition 9 Atomic part: Atomic parts are those which, in a given context, are deemed to not consist of meaningful,
separately observable proper sub-parts

A sub-part is a part

Example 15 Atomic Parts: Examples of atomic parts of the above mentioned domains are: aircraft12 (of air
traffic), demand/deposit accounts (of banks), containers (of container lines), documents (of document systems),
hubs, links and vehicles (of road traffic), patients, medical staff and beds (of hospitals), pipes, valves and pumps
(of pipeline systems), and rail units and locomotives (of railway systems)

Definition 10 Composite part: Composite parts are those which, in a given context, are deemed to indeed consist of
meaningful, separately observable proper sub-parts

Example 16 Composite Parts: Examples of composite parts of the above mentioned domains are: airports and
air lanes (of air traffic), banks (of a financial service industry), container vessels (of container lines), dossiers
of documents (of document systems), routes (of road nets), medical wards (of hospitals), pipelines (of pipeline
systems), and trains, rail lines and train stations (of railway systems).

Analysis Prompt 9 is atomic: The domain analyser analyses a discrete endurant, i.e., a part p into an atomic
endurant:

• is atomic(p): p is an atomic endurant if is atomic(p) holds

Analysis Prompt 10 is composite: Thedomain analyser analyses adiscrete endurant, i.e., a partp into a composite
endurant:

• is composite(p): p is a composite endurant if is composite(p) holds

is discrete is a prerequisite prompt of both is atomic and is composite.

Whither atomic or composite: If we are analysing & describing vehicles in the context of a road net, cf. Example 7 on
page 8, then we have chosen to abstract vehicles as atomic; if, on the other hand, we are analysing & describing
vehicles in the context of an automobile maintenance garage then we might very well choose to abstract vehicles
as composite—the sub-parts being the object of diagnosis by the auto mechanics.

3.1.4. On observing part sorts and types

We use the term ‘sort’ when we wish to speak of an abstract type [ST12], that is, a type for which we do not wish
to express a model.13 We shall use the term ‘type’ to cover both abstract types and concrete types.

3.1.5. On discovering part sorts

Recall from Sect. 1.8.2 on page 7 that we “equate” a formal concept with a type (i.e., a sort). Thus, to us, a part
sort is a set of all those entities which all have exactly the same qualities. Our aim now is to present the basic
principles that let the domain analyser decide on part sorts. We observe parts one-by-one. (α) Our analysis of parts
concludes when we have “lifted” our examination of a particular part instance to the conclusion that it is of a given sort, that is, reflects
a formal concept.

Thus there is, in this analysis, a “eureka”, a step where we shift focus from the concrete to the abstract, from
observing specific part instances to postulating a sort: from one to the many.

12 Aircraft from the point of view of airport management are atomic. From the point of view of aircraft manufacturers they are composite.
13 for example, in terms of the concrete types: sets, Cartesians, lists, maps, or other.
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Analysis Prompt 11 observe parts: The domain analysis prompt:

• observe parts(p)

directs the domain analyser to observe the sub-parts of p

Let us say the sub-parts of p are: {p1,p2,. . . ,pm}. (β) The analyser analyses, for each of these parts, pik , which formal concept,
i.e., sort, it belongs to; let us say that it is of sort Pk ; thus the sub-parts of p are of sorts {P1,P2,. . . ,Pm }. Some Pk may be atomic
sorts, some may be composite sorts.

The domain analyser continues to examine a finite number of other composite parts: {pj , p�, . . . , pn}. It is
then “discovered”, that is, decided, that they all consists of the same number of sub-parts {pi1 ,pi2 ,. . . ,pim }, {pj1 ,-
pj2 ,. . . ,pjm }, {p�1 ,p�2 ,. . . ,p�m }, . . . , {pn1 ,pn2 ,. . . ,pnm

}, of the same, respective, part sorts. (γ ) It is therefore concluded,
that is, decided, that {pi , pj ,p�,. . . ,pn } are all of the same part sort P with observable part sub-sorts {P1,P2,. . . ,Pm }.

Above we have type-font-highlighted three sentences: (α, β, γ ). When you analyse what they “prescribe” you
will see that they entail a “depth-first search” for part sorts. The β sentence says it rather directly: “The analyser
analyses, for each of these parts, pk , which formal concept, i.e., part sort it belongs to.” To do this analysis in a
proper way, the analyser must (“recursively”) analyse the parts “down” to their atomicity, and from the atomic
parts decide on their part sort, and work (“recurse”) their way “back”, through possibly intermediate composite
parts, to the pk s. Of course, when the analyser starts by examining atomic parts then the analysis “recursion” is
not necessary; as it is never necessary when the analyser proceeds “bottom-up”: analysing only such composite
parts whose sub-parts have already been analysed

3.1.6. Part sort observer functions

The above analysis amounts to the analyser first “applying” the domain analysis prompt is composite(p)
to a discrete endurant, where we now assume that the obtained truth value is true. Let us assume that parts
p:P consists of sub-parts of sorts {P1,P2,. . . ,Pm}. Since we cannot automatically guarantee that our domain
descriptions secure that P and each Pi (1≤ i ≤m) denotes disjoint sets of entities we must prove it.

Domain Description Prompt 1 observe part sorts: If is composite(p) holds, then the analyser “applies” the
domain description prompt

• observe part sorts(p)

resulting in the analyser writing down the part sorts and part sort observers domain description text according to the
following schema:

1. observe part sorts schema

Narration:
[ s ] ... narrative text on sorts ...
[ o ] ... narrative text on sort observers ...
[ i ] ... narrative text on sort recognisers ...
[ p ] ... narrative text on proof obligations ...

Formalisation:
type
[ s ] P,
[ s ] Pi [ 1≤i ≤m ] comment: Pi [ 1≤i≤m ] abbreviates P1, P2, ..., Pm

value
[ o ] obs part Pi : P → Pi [ 1≤ i ≤m ]
[ i ] is Pi : (P1|P2|...|Pm ) → Bool [ 1≤ i ≤m ]

proof obligation [Disjointness of part sorts ]
[ p ] ∀ p:(P1|P2|...|Pm ) •

[ p ]
∧ {is Pi (p) ≡ ∧ {∼is Pj (p) | j ∈ {1..m} \ {i}} | i ∈ {1..m}}

is composite is a prerequisite prompt of observe part sorts
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We do not here state guidelines for discharging these kinds of proof obligations. But wewill very informally sketch
such discharges, see below.

Example 17 Composite and Atomic Part Sorts of Transportation: The following example illustrates themultiple
use of the observe part sorts function: first to δ:	, a specific transport domain, Item1, then to an n : N , the
net of that domain, Item2, and then to an f : F , the fleet of that domain, Item 3.

1. A transportation domain is viewed as composed from a net (of hubs and links), a fleet (of vehicles) and a
monitor.

2. A transportation net is here seen as composed from a collection of hubs and a collection of links.

3. A fleet is here seen as a collection of vehicles.

The monitor is considered an atomic part.

type
1. 	, N, F, M
value
1. obs part N: 	 → N, obs part F: 	 → F, obs part M: 	 → M
type
2. HS, LS
value
2. obs part HS: N → HS, obs part LS: N → LS
type
3. VS
value
3. obs part VS: F → VS

A proof obligation has to be discharged, one that shows disjointedness of sorts N, F and M. An informal sketch is:
entities of sort N are composite and consists of two parts: aggregations of hubs, HS, and aggregations of links, LS.
Entities of sort F consists of an aggregation, VS, of vehicles. So already that makes N and F disjoint.M is an atomic
entity—where N and F are both composite. Hence the three sorts N, F and M are disjoint

3.1.7. On discovering concrete part types

Analysis Prompt 12 has concrete type: The domain analyser may decide that it is expedient, i.e., pragmatically
sound, to render a part sort, P, whether atomic or composite, as a concrete type, T. That decision is prompted
by the holding of the domain analysis prompt:

• has concrete type(p).

is discrete is a prerequisite prompt of has concrete type

The reader is reminded that the decision as to whether an abstract type is (also) to be described concretely
is entirely at the discretion of the domain engineer.

Domain Description Prompt 2 observe part type: Then the domain analyser applies the domain description prompt:

• observe part type(p)14

to parts p:P which then yield the part type and part type observers domain description text according to the following
schema:

14 Has concrete type is a prerequisite prompt of observe part type.
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2. observe part type schema

Narration:
[ t1 ] ... narrative text on sorts and types Si ...
[ t2 ] ... narrative text on types T ...
[ o ] ... narrative text on type observers ...

Formalisation:
type
[ t1 ] S1, S2, ..., Sm , ..., Sn ,
[ t2 ] T � E (S1,S2,...,Sn )
value
[ o ] obs part T: P → T

where S1,S2,. . . ,Sm ,. . . ,Sn may be any types, including part sorts, where 0 ≤ m ≤ n ≥ 1, wherem is the number
of new (atomic or composite) sorts, and where n −m is the number of concrete types (like Bool, Int, Nat) or sorts
already analysed & described. and E (S1,S2,. . . ,Sn ) is a type expression

The type name, T, of the concrete type, as well as those of the auxiliary types, S1,S2,. . . ,Sm , are chosen by the
domain describer: they may have already been chosen for other sort-to-type descriptions, or they may be new.

Example 18 Concrete Part Types of Transportation: We continue Example 17 on the previous page:

4. A collection of hubs is here seen as a set of hubs and
a collection of links is here seen as a set of links.

5. Hubs and links are, until further analysis, part sorts.
6. A collection of vehicles is here seen as a set of vehicles.
7. Vehicles are, until further analysis, part sorts.

type
4. Hs � H-set, Ls � L-set
5. H, L
6. Vs � V-set
7. V
value
4. obs part Hs: HS → Hs, obs part Ls: LS → Ls
6. obs part Vs: VS → Vs

3.1.8. Forms of part types

Usually it is wise to restrict the part type definitions, Ti = Ei (Q,R,. . . ,S), to simple type expressions. T�A-set
or T�A∗ or T� ID →

m A or T�At |Bt |...|Ct where ID is a sort of unique identifiers, T�At |Bt |...|Ct defines the
disjoint types At��mkAt (s:As ), Bt��mkBt (s:Bs ), . . . , Ct��mkCt (s:Cs ), and where A, As , Bs , ..., Cs are
sorts. Instead of At��mkAt (a:As ), etc., we may write At ::As etc.

3.1.9. Part sort and type derivation chains

Let P be a composite sort. Let P1, P2, . . . , Pm be the part sorts “discovered” by means of observe part -
sorts(p) where p:P. We say that P1, P2, . . . , Pm are (immediately) derived from P. If Pk is derived from Pj and
Pj is derived from Pi , then, by transitivity, Pk is derived from Pi .
No recursive derivationsWe “mandate” that if Pk is derived from Pj then there can be no P derived from Pj such
that P is Pj , that is, Pj cannot be derived from Pj .

That is, we do not allow recursive domain sorts.
It is not a question, actually of allowing recursive domain sorts. It is, we claim to have observed, in very many

domain modeling experiments, that there are no recursive domain sorts !
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3.1.10. Names of part sorts and types

The domain analysis and domain description text prompts observe part sorts, observe material sorts
and observe part type—as well as the attribute names, observe material sorts, observe unique i-
dentifier, observe mereology and observe attributes prompts introduced below—“yield” type names.
That is, it is as if there is a reservoir of an indefinite-size set of such names from which these names are “pulled”,
and once obtained are never “pulled” again. There may be domains for which two distinct part sorts may be
composed from identical part sorts. In this case the domain analyser indicates so by prescribing a part sort already
introduced.

Example 19 Container Line Sorts: Our example is that of a container line with container vessels and container
terminal ports.

8. A container line contains a number of container vessels
and a number of container terminal ports,
as well as other parts.

9. A container vessel contains a container stowage area, etc.
10. A container terminal port contains a container stowage area, etc.
11. A container stowage areas contains a set of uniquely identified container bays.
12. A container bay contains a set of uniquely identified container rows.
13. A container row contains a set of uniquely identified container stacks.
14. A container stack contains a stack, i.e., a first-in, last-out sequence of containers.
15. Containers are further undefined.

After a some slight editing we get:

type
CL
VS, VI, V, Vs � VI →

m V,
PS, PI, P, Ps � PI →

m P
value
obs part VS: CL → VS
obs part Vs: VS → Vs
obs part PS: CL → PS
obs part Ps: CTPS → CTPs

type
CSA

value
obs part CSA: V → CSA
obs part CSA: P → CSA

type
BAYS, BI, BAY, Bays�BI →

m BAY
ROWS, RI, ROW, Rows�RI →

m ROW
STKS, SI, STK, Stks�SI →

m STK
C

value
obs part BAYS: CSA → BAYS,
obs part Bays: BAYS → Bays
obs part ROWS: BAY → ROWS,
obs part Rows: ROWS → Rows
obs part STKS: ROW → STKS,
obs part Stks: STKS → Stks
obs part Stk: STK → C∗

Note that observe part sorts(v:V) and observe part sorts(p:P) both yield CSA

3.1.11. More on part sorts and types

Theabove“experimental example”motivates thebelow.Wecanalwaysassume that compositepartsp:P abstractly
consists of a definite number of sub-parts.

Example 20. We comment on Example 17, Page 13: Parts of type 	 and N are composed from three, respectively
two abstract sub-parts of distinct types
Some of the parts, say piz of {pi1 ,pi2 ,. . . ,pim }, of p:P , may themselves be composite.

Example 21. We comment on Example 17: Parts of type N, F, HS, LS and VS are all composite
There are, pragmatically speaking, two cases for such compositionality. Either the part, piz , of type tiz , is is
composed from a definite number of abstract or concrete sub-parts of distinct types.

Example 22. We comment on Example 17: Parts of type N are composed from three sub-parts
Or it is composed from an indefinite number of sub-parts of the same sort.
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Example 23.We comment on Example 17: Parts of typeHS, LS and VS are composed from an indefinite numbers
of hubs, links and vehicles, respectively

Example 24 Pipeline Parts:

16. A pipeline consists of an indefinite number of pipeline units.

17. A pipeline units is either a well, or a pipe, or a pump, or a valve, or a fork, or a join, or a sink.

18. All these unit sorts are atomic and disjoint.

type
16. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
16. Well, Pipe, Pump, Valv, Fork, Join, Sink
value
16. obs part Us: PL → U-set
type
17. U �� We | Pi | Pu | Va | Fo | Jo | Si
18. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink

3.1.12. External and internal qualities of parts

By an external part quality we shall understand the is atomic, is composite, is discrete and is contin-
uous qualities By an internal part quality we shall understand the part qualities to be outlined in the next
sections: unique identification, mereology and attributes By part qualities we mean the sum total of
external endurant and internal endurant qualities

3.1.13. Three categories of internal qualities

We suggest that the internal qualities of parts be analysed into three categories: (i) a category of unique part
identifiers, (ii) a category of mereological quantities and (iii) a category of general attributes. Part mereologies
are about sharing qualities between parts. Some such sharing expresses spatio-topological properties of how parts
are organised. Other part sharing aspects express relations (like equality) of part attributes. We base our modeling
of mereologies on the notion of unique part identifiers. Hence we cover internal qualities in the order (i–ii–iii).

3.2. Unique part identifiers

We introduce a notion of unique identification of parts. We assume (i) that all parts, p, of any domain P, have
unique identifiers, (ii) that unique identifiers (of parts p:P) are abstract values (of the unique identifier sort PI of parts p:P),
(iii) such that distinct part sorts, Pi and Pj , have distinctly named unique identifier sorts, say PIi and PIj , (iv) that all
πi :PIi and πj :PIj are distinct, and (v) that the observer function uid P applied to p yields the unique identifier,
say π :PI, of p.

Representation of unique identifiers: Unique identifiers are abstractions. When we endow two parts (say of the same
sort) with distinct unique identifiers then we are simply saying that these two parts are distinct. We are not
assuming anything about how these identifiers otherwise come about.

Domain Description Prompt 3 observe unique identifier: We can therefore apply the domain description prompt:

• observe unique identifier

to parts p:P resulting in the analyser writing down the unique identifier type and observer domain description text
according to the following schema:
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3. observe unique identifier schema

Narration:
[ s ] ... narrative text on unique identifier sort PI ...
[ u ] ... narrative text on unique identifier observer uid P ...
[ a ] ... axiom on uniqueness of unique identifiers ...

Formalisation:
type
[ s ] PI
value
[ u ] uid P: P → PI
axiom
[ a ] U

U is a predicate over part sorts and unique part identifier sorts. The unique part identifier sort, PI, is unique, as
are all part sort names, P

Example 25 Unique Transportation Net Part Identifiers: We continue Example 17 on page 13.

19. Links and hubs have unique identifiers
20. and unique identifier observers.

type
19. LI, HI
value
20. uid LI: L → LI
20. uid HI: H → HI
axiom [Well−formedness of Links, L, and Hubs, H ]
19. ∀ l,l′:L • uid LI(l)�uid LI(l′) ⇒ l�l′,
19. ∀ h,h′:H • uid HI(h)�uid HI(h′) ⇒ h�h′

Axiom 19, although expressed for links and hubs of road nets, applies in general: Two parts with the same unique
part identifiers are indeed one and the same part.

3.3. Mereology

Mereology is the study andknowledge of parts andpart relations.Mereology, as a logical/philosophical discipline,
can perhaps best be attributed to the Polish mathematician/logician Stanisław Leśniewski [CV99, Bjø14a].

3.3.1. Part relations

Which are the relations that can be relevant for part-hood ? We give some examples. Two otherwise distinct parts
may share attribute values. 15

Example 26 Shared TimetableMereology (I): Twoormoredistinct public transport bussesmay“run”according
to the (identically) same, thus “shared”, bus time table (cf. Example 37 on page 23)

Two otherwise distinct parts may be said to, for example, be topologically “adjacent” or one “embedded” within
the other.

Example 27 Topological Connectedness Mereology: (i) two rail units may be connected (i.e., adjacent); (ii) a
road link may be connected to two road hubs; (iii) a road hub may be connected to zero or more road links; (iv)
distinct vehicles of a road net may be monitored by one and the same road pricing sub-system

15 For the concept of attribute value see Sect. 3.4.2 on page 20.
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The above examples are in no way indicative of the “space” of part relations that may be relevant for part-hood.
The domain analyser is expected to do a bit of experimental research in order to discover necessary, sufficient
and pleasing “mereology-hoods” !

3.3.2. Part mereology: types and functions

Analysis Prompt 13 has mereology: Todiscover necessary, sufficient andpleasing “mereology-hoods” the analyser
can be said to endow a truth value, true, to the domain analysis prompt:

• has mereology

When the domain analyser decides that some parts are related in a specifically enunciated mereology, the analyser
has to decide on suitable mereology types and mereology observers (i.e., part relations).

We can define a mereology type as a type E xpression over unique [part] identifier types. We generalise to unique
[part] identifiers over a definite collection of part sorts,P1, P2, . . . , Pn, where the parts p1:P1, p2:P2, . . . , pn:Pn
are not necessarily (immediate) sub-parts of some part p:P.

type
PI1, PI2, ..., PIn
MT � E (PI1, PI2, ..., PIn),

Domain Description Prompt 4 observe mereology: If has mereology(p) holds for parts p of type P, then the
analyser can apply the domain description prompt:

• observe mereology

to parts of that type andwrite down themereology types and observer domain description text according to the following
schema:

4. observe mereology schema

Narration:
[ t ] ... narrative text on mereology type ...
[m ] ... narrative text on mereology observer ...
[ a ] ... narrative text on mereology type constraints ...

Formalisation:
type
[ t ] MT16� E (PI1,PI2,...,PIm)
value
[m ] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies ]
[ a ] A (MT)

Here E (PI1,PI2,. . . ,PIm) is a type expression over possibly all unique identifier types of the domain description,
and A (MT) is a predicate over possibly all unique identifier types of the domain description. To write down the
concrete type definition for MT requires a bit of analysis and thinking. has mereology is a prerequisite prompt for
observe mereology

Example 28 RoadNet Part Mereologies: We continueExample 17 onpage 13 andExample 25 on the preceding
page.

21. Links are connected to exactly two distinct hubs.
22. Hubs are connected to zero or more links.
23. For a given net the link and hub identifiers of the mereology of hubs and links must be those of links and

hubs, respectively, of the net.

16 MT will be used several times in Sect. 4.11.
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type
21. LM′ � HI-set, LM � {|his:HI-set • card(his)�2|}
22. HM � LI-set
value
21. obs mereo L: L → LM
22. obs mereo H: H → HM
axiom [Well−formedness of Road Nets, N ]
23. ∀ n:N,l:L,h:H•

23. l ∈ obs part Ls(obs part LS(n))
23. ∧ h ∈ obs part Hs(obs part HS(n))
23. ⇒ obs mereo L(l) ⊆ ∪{uid H(h) | h ∈ obs part Hs(obs part HS(n))}
23. ∧ obs mereo H(h) ⊆ ∪{uid H(l) | l ∈ obs part Ls(obs part LS(n))}

Example 29 Pipeline Parts Mereology: We continue Example 24 on page 16. Pipeline units serve to conduct
fluid or gaseous material. The flow of these occur in only one direction: from so-called input to so-called output.

24. Wells have exactly one connection to an output unit.

25. Pipes, pumps and valves have exactly one connection from an input unit and one connection to an output
unit.

26. Forks have exactly one connection from an input unit and exactly two connections to distinct output units.

27. Joins have exactly two connections from distinct input units and one connection to an output unit.

28. Sinks have exactly one connection from an input unit.

29. Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit identifiers.

type
29. UM′�(UI-set×UI-set)
29. UM�{|(iuis,ouis):UM′•iuis ∩ ouis�{}|}
value
29. obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0) ]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)�obs mereo U(u) in
case (card iuis,card ouis) of

24. (0,1) → is We(u),
25. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
26. (1,2) → is Fo(u),
27. (2,1) → is Jo(u),
28. (1,0) → is Si(u), → false

end end

Example 43 on page 27 (axiom Page 27) and Example 44 on page 28 (axiom Page 28) illustrates the need to
constrain the sets of endurant entities denoted by definitions of part sort, unique identifier and mereology
attribute definitions

3.3.3. Formulation of mereologies

The observe mereology domain descriptor, Page 18, may give the impression that the mereo type MT can be
described “at the point of issue” of the observe mereology prompt. Since the MT type expression may, in gen-
eral, depend on any part sort the mereo typeMT can, for some domains, “first” be described when all part sorts
have been dealt with. In [Bjø14b] we we present a model of one form of evaluation of the TripTych analysis and
description prompts.
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3.4. Part attributes

To recall: there are three sets of internal qualities: unique part identifiers, part mereology and attributes. Unique part identifiers
and part mereology are rather definite kinds of internal endurant qualities. Part attributes formmore “free-wheeling”
sets of internal qualities.

3.4.1. Inseparability of attributes from parts

Parts are typically recognised because of their spatial form and are otherwise characterised by their intangible, but
measurable attributes. That is, whereas endurants, whether discrete (as are parts and components) or continuous
(as arematerials), are physical, tangible, in the sense of being spatial (or being abstractions, i.e., concepts, of spatial
endurants), attributes are intangible: cannot normally be touched,17 or seen,18 but can be objectively measured.19

Thus, in our quest for describing domains where humans play an active rôle, we rule out subjective “attributes”:
feelings, sentiments, moods. Thus we shall abstain, in our domain science also from matters of aesthetics. We
learned from Sect. 1.8 that a formal concept, that is, a type, consists of all the entities which all have the same
qualities. Thus removing a quality from an entity makes no sense: the entity of that type either becomes an entity
of another type or ceases to exist (i.e., becomes a non-entity) !

3.4.2. Attribute quality and attribute value

We distinguish between an attribute, as a logical proposition, and an attribute value, as a value in some not
necessarily Boolean value space.

Example 30 Attribute Propositions and Other Values: A particular street segment (i.e., a link), say �, satisfies
the proposition (attribute) has length, and may then have value length 90 m for that attribute. Another link satisfies
the same proposition but has another value; and yet another link satisfies the same proposition and may have
the same value. That is: all links satisfies has length and has some value for that attribute. A particular road
transport domain, δ, has three immediate sub-parts: net, n, fleet, f , and monitorm; typically nets has net name
and has net owner proposition attributes with, for example, US Interstate Highway System respectively US
Department of Transportation as values for those attributes There may be other aspects of the net value n

3.4.3. Endurant attributes: types and functions

Let us recall that attributes cover qualities other than unique identifiers and mereology. Let us then consider that
parts have one or more attributes. These attributes are qualities which help characterise “what it means” to be a
part. Note that we expect every part to have at least one attribute.

Example 31 Atomic Part Attributes: Examples of attributes of atomic parts such as a human are: name, gender,
birth-date, birth-place, nationality, height, weight, eye colour, hair colour, etc. Examples of attributes of transport
net links are: length, location, 1 or 2-way link, link condition, etc.

Example 32 Composite Part Attributes: Examples of attributes of composite parts such as a road net are:owner,
public or private net, free-way or toll road, a map of the net, etc. Examples of attributes of a group of people could
be: statistic distributions of gender, age, income, education, nationality, religion, etc.

We now assume that all parts have attributes. The question is now, in general, howmany and, particularly, which.

17 One can see the red colour of a wall, but one touches the wall.
18 One cannot see electric current, and one may touch an electric wire, but only if it conducts high voltage can one know that it is indeed an
electric wire.
19 That is, we restrict our domain analysis with respect to attributes to such quantities which are observable, say by mechanical, electrical
or chemical instruments. Once objective measurements can be made of human feelings, beauty, and other, we may wish to include these
“attributes” in our domain descriptions.
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Analysis Prompt 14 attribute names: The domain analysis prompt attribute nameswhen applied to a part p yields
the set of names of its attribute types:

• attribute names(p): {ηA1, ηA2, . . . , ηAn }.
η is a type operator. Applied to a type A it yields is name20

We cannot automatically, that is, syntactically, guarantee that our domain descriptions secure that the various
attribute types for an emerging part sort denote disjoint sets of values. Therefore we must prove it.

The attribute value observer The “built-in” description language operator

• attr A

applies to parts, p:P, where ηA∈attribute names(p). It yields the value of attribute A of p.

Domain Description Prompt 5 observe attributes: The domain analyser experiments, thinks and reflects about
part attributes. That process is initated by the domain description prompt:

• observe attributes.

The result of that domain description prompt is that the domain analyser cum describer writes down the attribute (sorts
or) types and observers domain description text according to the following schema:

5. observe attributes schema

Narration:
[ t ] ... narrative text on attribute sorts ...
[ o ] ... narrative text on attribute sort observers ...
[ i ] ... narrative text on attribute sort recognisers ...
[ p ] ... narrative text on attribute sort proof obligations ...

Formalisation:
type
[ t ] Ai [ 1≤i≤n ]
value
[ o ] attr Ai :P→Ai [ 1≤i≤n ]
[ i ] is Ai :(A1|A2|...|An )→Bool [ 1≤i≤n ]
proof obligation [Disjointness of Attribute Types ]
[ p ] ∀ δ:	
[ p ] let P be any part sort in [the 	 domain description]
[ p ] let a:(A1|A2|...|An ) in is Ai (a) �� is Aj (a) end end [ i ��j , 1≤i ,j≤n ]

The type (or rather sort) definitions:A1, A2, . . . , An , informus that the domain analyser has decided to focus on the
distinctly named A1, A2, . . . , An attributes.21 And the value clauses attr A1:P→A1, attr A2:P→A2, ..., attr An :P→An

are then “automatically” given: if a part, p:P, has an attributeAi then there is postulated, “by definition” [eureka]
an attribute observer function attr Ai :P→Ai etcetera

The fact that, for example, A1, A2, . . . , An , are attributes of p:P, means that the propositions

• has attribute A1(p), has attribute A2(p), . . . , and has attribute An (p)

holds. Thus the observer functions attr A1, attr A2, . . . , attr An can be applied to p in P and yield attribute values
a1:A1, a2:A2, . . . , an :An respectively.

Example 33 Road Hub Attributes: After some analysis a domain analyser may arrive at some interesting hub
attributes:

20 Normally, in non-formula texts, type A is referred to by ηA. In formulas A denote a type, that is, a set of entities. Hence, when we wish
to emphasize that we speak of the name of that type we use ηA. But often we omit the distinction.
21 The attribute type names are not like type names of, for example, a programming language. Instead they are chosen by the domain analyser
to reflect on domain phenomena. Cf. Example 31 on the facing page and Example 32.
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30. hub state: from which links (by reference) can one reach which links (by reference),
31. hub state space: the set of all potential hub states that a hub may attain,
32. such that

(a) the links referred to in the state are links of the hub mereology
(b) and the state is in the state space.

33 Etcetera—i.e., there are other attributes not mentioned here.

type
30 H� � (LI×LI)-set
31 H � H�-set
value
30 attr H�:H→H�
31 attr H:H→H
axiom [Well−formedness of Hub States, H� ]
32 ∀ h:H • let hσ � attr H�(h) in
a {li,li′|li,li′:LI•(li,li′)∈ hσ }⊆obs mereo H(h)
b ∧ hσ ∈ attr H(h)
32 end

3.4.4. Attribute categories

One can suggest a hierarchy of part attribute categories: static or dynamic values—and within the dynamic
value category: inert values or reactive values or active values—and within the dynamic active value category:
autonomous values or biddable values or programmable values. We now review these attribute value types. The
review is based on [Jac95,M.A. Jackson]. Part attributes are either constant or varying, i.e., static or dynamic attributes.
By a static attribute, a:A, is static attribute(a), we shall understand an attribute whose values are constants,
i.e., cannot change. By a dynamic attribute, a:A, is dynamic attribute(a), we shall understand an attribute
whose values are variable, i.e., can change. Dynamic attributes are either inert, reactive or active attributes. By an inert
attribute, a:A, is inert attribute(a), we shall understand a dynamic attribute whose values only change as the
result of external stimuli where these stimuli prescribe properties of these new values. By a reactive attribute,
a:A, is reactive attribute(a), we shall understand a dynamic attribute whose values, if they vary, change
value in response to the change of other attribute values. By an active attribute, a:A, is active attribute(a),
we shall understand a dynamic attribute whose values change (also) of its own volition. Active attributes are either
autonomous, biddable or programmable attributes. By an autonomous attribute, a:A, is autonomous attribute(a),
we shall understand a dynamic active attributewhose values change value only “on their own volition”. The values
of an autonomous attributes are a “lawonto themselves and their surroundings”.By abiddable attribute, a:A,is -
biddable attribute(a) , (of a part) we shall understand a dynamic active attribute whose values are prescribed
but may fail to be observed as such. By a programmable attribute, a:A, is programmable attribute(a), we
shall understand a dynamic active attribute whose values can be prescribed.

Example 34 Static and Dynamic Attributes: Link lengths can be considered static. Buses (i.e., vehicles) have
a timetable attribute which is inert, i.e., can change, only when the bus company decides so. The weather can be
considered autonomous. Pipeline valve units include the two attributes of valve opening (open, close) and internal
flow (measured, say gallons per second). The valve opening attribute is of the biddable attribute category. The flow
attribute is reactive (flow changes with valve opening/closing). Hub states (red, yellow, green) can be considered
biddable: one can “try” set the signals but the electro-mechanics may fail. Bus companies program their own
timetables, i.e., bus company timetables are programmable—are computers

External attributes: By an external attribute we shall understand a dynamic attribute which is not a biddable or a
programmable attribute The idea of external attributes is this: They are the attributes whose values are set by
factors “outside” the part of which they are an attribute. In contrast, the programmable (and biddable) attributes
have their values determininistically (non-deterministically) set by the part (behaviour) of which they are an
attribute. Controllable Attributes: By a controllable attribute we shall understand either a biddable or a programmable
attribute

Figure 2 on the next page captures an attribute value ontology.
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Fig. 2. Attribute value ontology

3.4.5. Access to attribute values

In an action, event or a behaviour description (Sect. 4.9) static values of parts, p, (say of type A) can be “copied”,
attr A(p), and still retain their (static) value. But, for action, event or behaviour descriptions, external dynamic values
of parts, p, cannot be “copied”, but attr A(p) must be “performed” every time they are needed. That is: static
values require at most one domain access, whereas external attribute values require repeated domain accesses.We shall
return to the issue of attribute value access in Sect. 4.7.

3.4.6. Event values

Among the external attribute values we observe a new kind of value: the event values. We may optionally ascribe
ordinarily typed, say A, values, a:A, with event attributes. By an event attributewe shall understand an attribute whose
values are either "nil" ([f]or “absent”), or are somemore definite value (a:A) Event values occur instantaneously.
They can be thought of as the raising of a signal followed immediately by the lowering of that signal.

Example 35 Event Attributes: (i) The passing of a vehicle past a tollgate is an event. It occurs at a usually
unpredictable time. It otherwise “carries” no specific value. (ii) The identification of a vehicle by a tollgate sensor
is an event. It occurs at a usually unpredictable time. It specifically “carries” a vehicle identifier value

Event attributes are not to be confused with event perdurants. External attributes are either event attributes or
are not. More on access to event attribute values in Sect. 4.7.4 on page 33.

3.4.7. Shared attributes

Normally part attributes of different part sorts are distinctly named. If, however,observe attributes(pik :Pi )
and observe attributes(pj �:Pj ), for any two distinct part sorts,Pi andPj , of a domain, “discovers” identically
named attributes, say A, then we say that parts pi :Pi and pj :Pj share attribute A. that is, that a:attr A(pi ) (and
a′:attr A(pj )) is a shared attribute (with a=a′ always (�) holding).

Attribute naming: Thus the domain describer has to exert great care when naming attribute types. If Pi and Pj are
two distinct types of a domain, then if and only if an attribute of Pi is to be shared with an attribute of Pj that
attribute must be identically named in the description of Pi and Pj and otherwise the attribute names of Pi and
Pj must be distinct.

Example 36. Shared attributes.Examples of shared attributes: (i) Bus timetable attributes have the same value as the fleet
timetable attribute—cf. Example 37 below. (ii) A link incident upon or emanating from a hub shares the connection
between that link and the hub as an attribute. (iii) Two pipeline units,22 pi with unique identifier πi , and pj with
unique identifier πj , that are connected, such that an outlet marked πj of pi “feeds into” inlet marked πi of pj , are
said to share the connection (modeled by, e.g., {(πi , πj )})
Example 37 Shared Timetables: The fleet and vehicles of Example 17 on page 13 and Example 18 on page 14
is that of a bus company.

22 See Example 29 on page 19.
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34. From the fleet and from the vehicles we observe unique identifiers.

35. Every bus mereology records the same one unique fleet identifier.

36. The fleet mereology records the set of all unique bus identifiers.

37. A bus timetable is a shared fleet and bus attribute.

type
34. FI, VI, BT
value
34. uid F: F → FI
34. uid V: V → VI
35. obs mereo F: F → VI-set [cf. Sect. 3.3.2 on page 18]
36. obs mereo V: V → FI
37. attr BT: (F|V) → BT
axiom

� ∀ f:F ⇒
∀ v:V • v ∈ obs part Vs(obs part VC(f)) • attr BT(f) � attr BT(v)

The simple identical attribute name-sharing first outlined above may be generalised. If Pi and Pj are two distinct
types of a domain, then if an attribute, A, of Pi is to be shared with an attribute, B, of Pj , attribute B must be
expressed in terms of A.

3.5. Components

We refer to Sect. 3.1.1 on page 10 for a first coverage of the concept of components: definition and examples.
Components are discrete endurants which the domain analyser & describer has chosen to not endow with internal
qualities.

Example 38 Parts andComponents:Weobserve components as associatedwith atomic parts: The contents, that
is, the collection of zero, one or more boxes, of a container are the components of the container part. Conveyor
belts transport machine assembly units and these are thus considered the components of the conveyor belt

We now complement the observe part sorts (of Sect. 3.1.6). We assume, without loss of generality, that only
atomic parts may contain components. Let p:P be some atomic part.

Analysis Prompt 15 has components: The domain analysis prompt:

• has components(p)

yields true if atomic part p may contain zero, one or more components otherwise false

Let us assume that parts p:P embody components of sorts {K1,K2,. . . ,Kn }. Since we cannot automatically
guarantee that our domain descriptions secure that each Ki ([ 1≤i≤n ]) denotes disjoint sets of entities we must
prove it.

Domain Description Prompt 6 observe component sorts: The domain description prompt:

• observe component sorts P(p)

yields the component sorts and component sort observer domain description text according to the following schema—
whether or not the actual part p contains any components:
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6. observe component sorts P schema

Narration:
[ s ] ... narrative text on component sorts ...
[ o ] ... narrative text on component observers ...
[ i ] ... narrative text on component sort recognisers ...
[ p ] ... narrative text on component sort proof obligations ...

Formalisation:
type
[ s ] K1, K2, ..., Kn
[ s ] K � K1| K2 | ... | Kn
[ s ] KS � K-set
value
[ o ] components: P → KS
[ i ] is Ki : (K1|K2|...|Kn ) → Bool [ 1≤i≤n ]

Proof Obligation: [Disjointness of Component Sorts ]
[ p ] ∀ ki :(K1|K2|...|Kn ) •

[ p ]
∧ {is Ki (ki ) ≡ ∧{∼is Kj (kj )|j ∈ {1..m}\{i}}|i ∈ {1..m}}

The Ki are all distinct

Example 39 Container Components: We continue Example 19 on page 15.

38. When we apply obs component sorts C to any container c:C we obtain

(a) a type clause stating the sorts of the various components, ck:CK, of a container,
(b) a union type clause over these component sorts, and
(c) the component observer function signature.

type
38.a CK1, CK2, ..., CKn
38.b CKS � (CK1|CK2|...|CKn)-set

value
38.c obs comp CKS: C → CKS

We have presented one way of tackling the issue of describing components. There are other ways. We leave those
‘other ways’ to the reader. We are not going to suggest techniques and tools for analysing, let alone ascribing
qualities to components. We suggest that conventional abstract modeling techniques and tools be applied.

3.6. Materials

We refer to Sect. 3.1.1 on page 10 for a first coverage of the concept of materials. Continuous endurants (i.e.,
materials) are entities, m, which satisfy:

• is material(m) ≡ is endurant(m)∧is continuous(m)

Example 40 Parts and Materials: We observe materials as associated with atomic parts: Thus liquid or gaseous
materials are observed in pipeline units

We shall in this paper not cover the case of parts being immersed in materials.23 We assume, without loss of
generality, that only atomic parts may contain materials. Let p:P be some atomic part.

Analysis Prompt 16 has materials: The domain analysis prompt:

23 Most such cases have the material play a minor, an abstract rôle with respect to the immersed parts. That is, we presently leave it to hydro-
and aerodynamics to domain analyse those cases.
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• has materials(p)

yields true if the atomic part p:P potentially may contain materials otherwise false

Let us assume that parts p:P embodymaterials of sorts {M1,M2,. . . ,Mn}. Sincewe cannot automatically guarantee
that our domain descriptions secure that eachMi ([ 1≤i≤n ]) denotes disjoint sets of entities we must prove it.

Domain Description Prompt 7 observe material sorts P: The domain description prompt:

• observe material sorts P(e)

yields the material sorts and material sort observers domain description text according to the following schema whether
or not part p actually contains materials:

7. observe material sorts P schema

Narration:
[ s ] ... narrative text on material sorts ...
[ o ] ... narrative text on material sort observers ...
[ i ] ... narrative text on material sort recognisers ...
[ p ] ... narrative text on material sort proof obligations ...

Formalisation:
type
[ s ] M1, M2, ..., Mn
[ s ] M � M1 | M2 | ... | Mn
[ s ] MS � M-set
value
[ o ] obs mat Mi : P → M [ 1≤i≤n ]
[ o ] materials: P → MS
[ i ] is Mi : M → Bool [ 1≤i≤n ]
proof obligation [Disjointness of Material Sorts ]
[ p ] ∀ mi :M •

∧ {is Mi (mi ) ≡ ∧{∼is Mj (mj )|j ∈ {1..m}\{i}}|i ∈ {1..m}}

The Mi are all distinct

Example 41 Pipeline Material: We continue Example 24 on page 16 and Example 29 on page 19.

39. When we apply obs material sorts U to any unit u:U we obtain

(a) a type clause stating the material sort LoG for some further undefined liquid or gaseous material, and
(b) a material observer function signature.

type
39.a LoG

value
39.b obs mat LoG: U → LoG

has materials(u) is a prerequisite for obs mat LoG(u)

3.6.1. Materials-related part attributes

It seems that the “interplay” between parts and materials is an area where domain analysis in the sense of this
paper is relevant.

Example 42 Pipeline Material Flow: We continue Examples 24, 29 and 41. Let us postulate a[n attribute] sort
Flow. We now wish to examine the flow of liquid (or gaseous) material in pipeline units. We use two types

40 type F, L.

Productive flow, F, and wasteful leak, L, is measured, for example, in terms of volume of material per second. We
then postulate the following unit attributes “measured” at the point of in- or out-flow or in the interior of a unit.
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41. current flow of material into a unit input connector,
42. maximum flow of material into a unit input connector while maintaining laminar flow,
43. current flow of material out of a unit output connector,
44. maximum flow of material out of a unit output connector while maintaining laminar flow,
45. current leak of material at a unit input connector,
46. maximum guaranteed leak of material at a unit input connector,
47. current leak of material at a unit input connector,
48. maximum guaranteed leak of material at a unit input connector,
49. current leak of material from “within” a unit, and
50. maximum guaranteed leak of material from “within” a unit.

type
40. F, L
value
41. attr cur iF: U → UI → F
42. attr max iF: U → UI → F
43. attr cur oF: U → UI → F
44. attr max oF: U → UI → F

45. attr cur iL: U → UI → L
46. attr max iL: U → UI → L
47. attr cur oL: U → UI → L
48. attr max oL: U → UI → L
49. attr cur L: U → L
50. attr max L: U → L

The maximum flow attributes are static attributes and are typically provided by the manufacturer as indicators
of flows below which laminar flow can be expected. The current flow attributes may be considered either reactive
or biddable attributes

3.6.2. Laws of material flows and leaks

Itmay be difficult or costly, or both, to ascertain flows and leaks inmaterials-based domains. But one can certainly
speak of these concepts. This casts new light on domainmodeling. That is in contrast to incorporating such notions
of flows and leaks in requirements modeling where one has to show implement-ability. Modeling flows and leaks
is important to the modeling of materials-based domains.

Example 43 Pipelines: Intra Unit Flow and Leak Law:

51. For every unit of a pipeline system, except the well and the sink units, the following law apply.
52. The flows into a unit equal

(a) the leak at the inputs
(b) plus the leak within the unit
(c) plus the flows out of the unit
(d) plus the leaks at the outputs.

axiom [Well−formedness of Pipeline Systems, PLS (1) ]
51. ∀ pls:PLS,b:B\We\Si,u:U •

51. b ∈ obs part Bs(pls)∧u�obs part U(b)⇒
51. let (iuis,ouis) � obs mereo U(u) in
52. sum cur iF(u)(iuis) �
52.a. sum cur iL(u)(iuis)
52.b. ⊕ attr cur L(u)
52.c. ⊕ sum cur oF(u)(ouis)
52.d. ⊕ sum cur oL(u)(ouis)
51. end

53. The sum cur iF (cf. Item 52) sums current input flows over all input connectors.
54. The sum cur iL (cf. Item 52.a) sums current input leaks over all input connectors.
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55. The sum cur oF (cf. Item 52.c) sums current output flows over all output connectors.
56. The sum cur oL (cf. Item 52.d) sums current output leaks over all output connectors.

53. sum cur iF: U → UI-set →F
53. sum cur iF(u)(iuis) ≡ ⊕ {attr cur iF(u)(ui)|ui:UI•ui ∈ iuis}
54. sum cur iL: U → UI-set → L
54. sum cur iL(u)(iuis) ≡ ⊕ {attr cur iL(u)(ui)|ui:UI•ui ∈ iuis}
55. sum cur oF: U → UI-set → F
55. sum cur oF(u)(ouis) ≡ ⊕ {attr cur iF(u)(ui)|ui:UI•ui ∈ ouis}
56. sum cur oL: U → UI-set → L
56. sum cur oL(u)(ouis) ≡ ⊕ {attr cur iL(u)(ui)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

where ⊕ is both an infix and a distributed-fix function which adds flows and or leaks

Example 44 Pipelines: Inter Unit Flow and Leak Law:

57. For every pair of connected units of a pipeline system the following law apply:

(a) the flow out of a unit directed at another unit minus the leak at that output connector
(b) equals the flow into that other unit at the connector from the given unit plus the leak at that connector.

axiom [Well−formedness of Pipeline Systems, PLS (2) ]
57. ∀ pls:PLS,b,b′:B,u,u′:U•

57. {b,b′}⊆obs part Bs(pls)∧b��b′∧u′�obs part U(b′)
57. ∧ let (iuis,ouis)�obs mereo U(u),(iuis′,ouis′)�obs mereo U(u′),
57. ui�uid U(u),ui′�uid U(u′) in
57. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
57.a. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
57.b. � attr cur iF(u)(ui) + attr leak iF(u)(ui)
57. end
57. comment: b′ precedes b

From the above two laws one can prove the theorem: what is pumped from the wells equals what is leaked from
the systems plus what is output to the sinks.

3.7. “No junk, no confusion”

Domain descriptions are, as we have already shown, formulated, both informally and formally, by means of
abstract types, that is, by sorts for which no concrete models are usually given. Sorts are made to denote possibly
empty, possibly infinite, rarely singleton, sets of entities on the basis of the qualities defined for these sorts,
whether external or internal. By junk we shall understand that the domain description unintentionally denotes
undesired entities. By confusion we shall understand that the domain description unintentionally have two or
more identifications of the same entity or type. The question is can we formulate a [formal] domain description
such that it does not denote junk or confusion ? The short answer to this is no ! So, since one naturally wishes “no
junk, no confusion” what does one do ? The answer to that is one proceeds with great care ! To avoid junk we have
stated a number of sort well-formedness axioms, for example:24

• Page 17 for wf links and hubs,
• Page 18 for wf road net mereologies,
• Page 19 for wf pipeline mereologies,

• Page 22 for wf hub states,
• Page 27 for wf pipeline systems,
• Page 28 for wf pipeline systems,

To avoid confusion we have stated a number of proof obligations:

• Page 12 for Disjointness of Part Sorts,

24 Let wf abbreviate well-formed.
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• Page 21 for Disjointness of Attribute Types and
• Page 26 for Disjointness of Material Sorts.

3.8. Discussion of endurants

In Sect. 3.1.5 on page 11 a “depth-first” search for part sorts was hinted at, but only in the sequence of examples,
as given. That sequence of examples essentially expressed that we discover domains epistemologically 25 but
understand them ontologically.26 The Danish philosopher Søren Kirkegaard (1813–1855) expressed it this way:
Life is lived forwards, but is understood backwards. The presentation of the of the domain analysis prompts and the
domain description prompts results in domain descriptions which are ontological. The “depth-first” search recognizes
the epistemological nature of bringing about understanding. This “depth-first” search that ends with the analysis
of atomic part sorts can be guided, i.e., hastened (shortened), by postulating composite sorts that “correspond”
to vernacular nouns: everyday nouns that stand for classes of endurants.

4. Perdurants

We shall not present a set of domain analysis prompts and a set of domain description prompts leading to description
language, i.e., RSL texts describing perdurant entities. The reason for giving this albeit cursory overview of
perdurants is that we can justify our detailed study of endurants, their part and sub parts, their unique identifiers,
mereology and attributes. This justification is manifested (i) in expressing the types of signatures, (ii) in basing
behaviours on parts, (iii) in basing the for need for CSP-oriented inter-behaviour communications on shared part
attributes, (iv) in indexing behaviours as are parts, i.e., on unique identifiers, and (v) in directing inter-behaviour
communications across channel arrays indexed as per the mereology of the part behaviours. These are all notions
related to endurants and are now justified by their use in describing perdurants. Perdurants can perhaps best be
explained in terms of a notion of state and a notion of time. We shall, in this paper, not detail notions of time,
but refer to [Hei62, Far90, Bli90, van91].

4.1. States

Definition 11 State: By a state we shall understand any collection of parts each of which has at least one dynamic
attribute or has components or has materials

Example 45 States: A road hub can be a state, cf. Hub State, H�, Example 33 on page 21. A road net can be
a state—since its hubs can be. Container stowage areas, CSA, Example 19 on page 15, of container vessels and
container terminal ports can be states as containers can be removed from and put on top of container stacks.
Pipeline pipes can be states as they potentially carry material. Conveyor belts can be states as they may carry
components

4.2. Actions, events and behaviours

To us perdurants are further, pragmatically, analysed into actions, events, and behaviours. We shall define these
terms below. Common to all of them is that they potentially change a state. Actions and events are here considered
atomic perdurants. For behaviours we distinguish between discrete and continuous behaviours.

4.2.1. Time considerations

We shall, without loss of generality, assume that actions and events are atomic and that behaviours are composite.
Atomic perdurants may “occur” during some time interval, but we omit consideration of and concern for what

25 Epistemology:the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of
what distinguishes justified belief from opinion.
26 Ontology: the branch of metaphysics dealing with the nature of being.
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actually goes on during such an interval. Composite perdurants can be analysed into “constituent” actions,
events and “sub-behaviours”. We shall also omit consideration of temporal properties of behaviours. Instead we
shall refer to two seminal monographs: Specifying Systems [Lam02, Leslie Lamport] and Duration Calculus: A
Formal Approach toReal-TimeSystems [ZH04,ZhouChaoChenandMichaelReichhardtHansen] (and [Bjø06,
Chapter15]). For a seminal bookon“time in computing”we refer to the eclectic [FMMR12,Mandriolietal., 2012].
And for seminal book on time at the epistemology level we refer to [van91, J. vanBenthem,1991].

4.2.2. Actors

Definition 12 Actor: By an actor we shall understand something that is capable of initiating and/or carrying out
actions, events or behaviours

We shall, in principle, associate an actor with each part. These actors will be described as behaviours. These
behaviours evolve around a state. The state is the set of qualities, in particular the dynamic attributes, of the
associated parts and/or any possible components or materials of the parts.

Example 46 Actors: We refer to the road transport and the pipeline systems examples of earlier. The fleet, each
vehicle and the road management of the Transportation System of Examples 17 on page 13 and 37 on page 23
can be considered actors; so can the net and its links and hubs. The pipeline monitor and each pipeline unit of
the Pipeline System, Example 24 on page 16 and Examples 24 on page 16 and 29 on page 19 will be considered
actors

4.2.3. Parts, attributes and behaviours

Example 46 focused on what shall soon become a major relation within domains: that of parts being also
considered actors, or more specifically, being also considered to be behaviours.

Example 47 Parts, Attributes and Behaviours: Consider the term ‘train’.27 It has several possible “meanings”.
(i) the train as a part, viz., as standing on a train station platform; (ii) the train as listed in a timetable (an attribute
of a transport system part), (iii) the train as a behaviour: speeding down the rail track

4.3. Discrete actions

Definition 13 Discrete action: By a discrete action [WS12, Wilson and Shpall] we shall understand a foreseeable
thingwhich deliberately potentially changes awell-formed state, in one step, usually into another, still well-formed
state, and for which an actor can be made responsible

An action is what happens when a function invocation changes, or potentially changes a state.

Example 48 Road Net Actions: Examples of Road Net actions initiated by the net actor are: insertion of hubs,
insertion of links, removal of hubs, removal of links, setting of hub states. Examples of Traffic System actions
initiated by vehicle actors are: moving a vehicle along a link, stopping a vehicle, starting a vehicle, moving a vehicle
from a link to a hub and moving a vehicle from a hub to a link

4.4. Discrete events

Definition 14 Event: By an event we shall understand some unforeseen thing, that is, some ‘not-planned-for’
“action”, one which surreptitiously, non-deterministically changes a well-formed state into another, but usually
not a well-formed state, and for which no particular domain actor can be made responsible

Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a time or
time interval. The notion of event continues to puzzle philosophers [Dre67, Qui79,Mel80, Dav80, Hac82, Bad05,
Kim93, CV96, Pi99, CV10]. We note, in particular, [Dav80, Bad05, Kim93].

27 This example is due to Paul Lindgreen, a Danish computer scientist. It dates from the late 1970s.
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Example 49 Road Net and Road Traffic Events: Some road net events are: “disappearance” of a hub or a
link, failure of a hub state to change properly when so requested, and occurrence of a hub state leading traffic
into “wrong-way” links. Some road traffic events are: the crashing of one or more vehicles (whatever ‘crashing’
means), a car moving in the wrong direction of a one-way link, and the clogging of a hub with too many vehicles

4.5. Discrete behaviours

Definition 15 Discrete behaviour: By a discrete behaviour we shall understand a set of sequences of potentially
interacting sets of discrete actions, events and behaviours

Example 50 Behaviours: (i) Road Nets:A sequence of hub and link insertions and removals, link disappearances,
etc. (ii) Road Traffic: A sequence of movements of vehicles along links, entering, circling and leaving hubs, crashing
of vehicles, etc. (iii) Pipelines: A sequence of pipeline pump and valve openings and closings, and failures to do so
(events), etc. (iv) Container Vessels and Ports: Concurrent sequences of movements (by cranes) of containers from
vessel to port (unloading), with sequences of movements (by cranes) from port to vessel (loading), with dropping
of containers by cranes, etcetera

4.5.1. Channels and communication

Behaviours sometimes synchronise and usually communicate. We use the CSP [Hoa85] notation (adopted by RSL)
to introduce and model behaviour communication. Communication is abstracted as the sending (ch !m) and
receipt (ch ?) of messages, m:M, over channels, ch.

type M
channel ch:M

Communication between (unique identifier) indexed behaviours have their channels modeled as similarly indexed
channels:

out: ch[ idx ]!m
in: ch[ idx ]?
channel {ch[ ide ]:M|ide:IDE}

where IDE typically is some type expression over unique identitifer types.

4.5.2. Relations between attribute sharing and channels

We shall now interpret the syntactic notion of attribute sharing with the semantic notion of channels. This is in
line with the above-hinted interpretation of parts with behaviours, and, as we shall soon see, part attributes with
behaviour states. Thus, for every pair of parts, pik :Pi and pj �:Pj , of distinct sorts,Pi and Pj which share attribute
values in A we are going to associate a channel. If there is only one pair of parts, pik :Pi and pj �:Pj , of these sorts,
then we associate just a simple channel, say attr A chPi ,Pj

, with the shared attribute.

channel attr A chPi ,Pj
:A.

If there is only one part, pi :Pi , but a definite set of parts pjk :Pj , with shared attributes, then we associate a
vector of channels with the shared attribute. Let {pj1, pj2, . . . , pjn } be all the parts of the domain sort Pj . Then
uids : {πpj1 , πpj2 , . . . , πpjn

} is the set of their unique identifiers. Now a schematic channel array declaration can
be suggested:

channel {attr A ch[ {π i ,π j } ]:A|π i�uid Pi (pi )∧π j ∈ uids}.
The above can be extended in two ways: From channel matrices to channel tensors, etc., hence the term channel
‘array’. And from simple shared attributes to “embedded sharing”.

We say that P and Q enjoy embedded attribute sharing when the following is the case: Part sort Phas attribute
type A, and part sortQ, different from P, has attribute type Bwhere B is defined in terms of A For cases where
P and Q enjoy embedded attribute sharing the mereology of parts p:P will include uid Q(q) and the mereology of
parts q:Q will include uid P(p).
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Example 51 Bus System Channels: We extend Examples 17 on page 13 and 37 on page 23. We consider the
fleet and the vehicles to be behaviours.

58. We assume some transportation system, δ. From that system we observe
59. the fleet and
60. the vehicles.
61. The fleet to vehicle channel array is indexed by the 2-element sets of the unique fleet identifier and the unique

vehicle identifiers. We consider bus timetables to be the only message communicated between the fleet and
the vehicle behaviours.

value
58. δ:	,
59. f:F � obs part F(δ),
60. vs:V-set � obs part Vs(obs part VC((obs part F(δ))))

channel
61. {attr BT ch[ {uid F(f),uid V(v)} ]|v:V•v ∈ vs}:BT

4.6. Continuous behaviours

By a continuous behaviour we shall understand a continuous time sequence of state changes. We shall not go into what
may cause these state changes.

Example 52 Flow in Pipelines: We refer to Examples 29, 41, 42, 43 and 44. Let us assume that oil is the (only)
material of the pipeline units. Let us assume that there is a sufficient volume of oil in the pipeline units leading
up to a pump. Let us assume that the pipeline units leading from the pump (especially valves and pumps) are all
open for oil flow. Whether or not that oil is flowing, if the pump is pumping (with a sufficient head28) then there
will be oil flowing from the pump outlet into adjacent pipeline units

To describe the flow of material (say in pipelines) requires knowledge about a number of material attributes—not
all of which have been covered in the above-mentioned examples. To express flows one resorts to the mathematics
of fluid-dynamics using such second order differential equations as first derived by Bernoulli (1700–1782) and
Navier–Stokes (1785–1836 and 1819–1903). There is, as yet, no notation that can serve to integrate formal
descriptions (like those of Alloy, B, The B Method,RSL,VDM or Z) with first, let alone second order differential
equations. But some progress has been made [LWZ13, ZWZ13] since [WYZ94].

4.7. Attribute value access

We refer to paragraph “Access to Attribute Values” in Sect. 3.4.5 page 23. We distinguish between four kinds
of attributes: the static attributes which are those whose values are fixed, i.e., does not change, the programmable
attributes or biddable attributes, i.e., the controllable attributes, which are those dynamic values are exclusively set by
part processes, and the remaining dynamic attributes which here, technically speaking, are seen as separate external
processess. The event attributes are those external attributes whose value occur for an instant of time.

4.7.1. Access to static attribute values

The static attributes can be “copied”, attr A(p), and retain their values.

4.7.2. Access to external attribute values

By the external attributes, to repeat, we shall understand the inert, the autonomous and the reactive attributes

62. Let ξA be the set of names, ηA, of all external attributes.

28 The pump head is the linear vertical measurement of the maximum height a specific pump can deliver a liquid to the pump outlet.
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63. Each external attribute, A, is seen as an individual behaviour, each “accessible” by means of unique channel,
attr A ch.

64. External attribute values are then the value, a, of, i.e., accessed by the input, attr A ch ?.

62. value ξA � {ηA|A is any external attribute name}
63. channel {attr A ch:A | ηA ∈ ξA}
64. value a � attr A ch ?

We shall omit the η prefix in actual descriptions. The choice of representing external attribute values as CSP processes29

is a technical one.

4.7.3. Access to controllable attribute values

The controllable attributes are treated as function arguments. This is a technical choice. It is motivated as follows. We
find that these values are a function of other part attribute values, including at least one controllable attribute
value, and that the values are set (i.e., updated) by part behaviours. That is, to each part, whether atomic or
composite, we associate a behaviour. That behaviour is (to be) described as we describe functions. These functions
(normally) “go on forever”. Therefore these functions are described basically by a “tail” recursive definition:

value f: Arg → Arg; f(a) ≡ (... let a′ � F (...)(a) in f(a′) end)

where F is some expression based on values defined within the function definition body of f and on f’s “input”
argument a, and where a can be seen as a controllable attribute.

4.7.4. Access to event values

We refer to Sect. 3.4.6 on page 23. Event values reflect a stage change in a part behaviour. We therefore model
events as messages communicated over a channel, attr A ch, that is, attr A ch ! a, where A is the event attribute, i.e.,
message type. Thus fulfillment of attr A ch ? expresses both that the event has taken place and its value, if relevant.
Example 57 on page 39 illustrates the concept of event attributes and event values.

4.8. Perdurant signatures and definitions

We shall treat perdurants as function invocations. In our cursory overview of perdurants we shall focus on one
perdurant quality: function signatures.

Definition 16 Function signature: By a function signature we shall understand a function name and a function type
expression

Definition 17 Function type expression: By a function type expression we shall understand a pair of type expressions.
separated by a function type constructor either → (total function) or

∼→ (partial function)

The type expressions are part sort or type, or material sort or type, or component sort or type, or attribute type
names, but may, occasionally be expressions over respective type names involving -set, ×, ∗, →

m and | type
constructors.

4.9. Action signatures and definitions

Actors usually provide their initiated actions with arguments, say of type VAL. Hence the schematic function
(action) signature and schematic definition:

action: VAL → �
∼→ �

action(v)(σ ) as σ ′
pre: P(v,σ )
post: Q(v,σ ,σ ′)

29 Not to be confused with domain behaviours.

Author's personal copy



D. Bjørner

expresses that a selection of the domain, as provided by the� type expression, is acted upon and possibly changed.
The partial function type operator

∼→ shall indicate that action(v)(σ ) may not be defined for the argument,
i.e., initial state σ and/or the argument v:VAL, hence the precondition P(v,σ ). The post condition Q(v,σ, σ ′)
characterises the “after” state, σ ′:�, with respect to the “before” state, σ :�, and possible arguments (v:VAL).

Example 53 Insert Hub Action Formalisation: We formalise aspects of the above-mentioned hub action:

65. Insertion of a hub requires
66. that no hub exists in the net with the unique identifier of the inserted hub,
67. and then results in an updated net with that hub.

value
65. insert H: H → N

∼→ N
65. insert H(h)(n) as n′

66. pre: ∼∃ h′:H•h′ ∈ obs part Hs(obs part HS(n))•uid H(h)�uid H(h′)
67. post: obs part Hs(obs part HS(n′))�obs part Hs(obs part HS(n))∪{h}

Which could be the argument values, v:VAL, of actions ? Well, there can basically be only the following kinds of
argument values: parts, components and materials, respectively unique part identifiers, mereologies and attribute
values. It basically has to be so since there are no other kinds of values in domains. There can be exceptions to
the above (Booleans, natural numbers), but they are rare !

Perdurant (action) analysis thus proceeds as follows: identifying relevant actions, assigning names to these,
delineating the “smallest” relevant state,30 ascribing signatures to action functions, and determining action pre-
conditions and action post-conditions. Of these, ascribing signatures is the most crucial: In the process of deter-
mining the action signature one oftentimes discovers that part or component or material attributes have been left
(“so far”) “undiscovered”.

Example 53 showed example of a signature with only a part argument. Example 54 shows examples of signa-
tures whose arguments are parts and unique identifiers, or parts, unique identifiers and attribute values.

Example 54 Some Function Signatures: Inserting a link between two identified hubs in a net:

value insert L: L × (HI × HI) → N
∼→ N

Removing a hub and removing a link:

value remove H: HI → N
∼→ N

remove L: LI → N
∼→ N

Changing a hub state.

value change H�: HI × H� → N
∼→ N

4.10. Event signatures and definitions

Events are usually characterised by the absence of known actors and the absence of explicit “external” arguments.
Hence the schematic function (event) signature:

value
event: � × �

∼→ Bool
event(σ ,σ ′) as tf

pre: P (σ )
post: tf � Q(σ ,σ ′)

30 By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain analyser cum describer should strive
for identifying the smallest state.

Author's personal copy



Manifest domains: analysis and description

The event signature expresses that a selection of the domain as provided by the� type expression is “acted” upon,
by unknown actors, and possibly changed. The partial function type operator

∼→ shall indicate that event(σ, σ ′)
may not be defined for some states σ . The resulting state may, or may not, satisfy axioms and well-formedness
conditions over�—as expressed by the post conditionQ(σ, σ ′). Events may thus cause well-formedness of states
to fail. Subsequent actions, once actors discover such “disturbing events”, are therefore expected to remedy that
situation, that is, to restore well-formedness. We shall not illustrate this point.

Example 55 Link Disappearance Formalisation: We formalise aspects of the above-mentioned link disappear-
ance event:

68. The result net is not well-formed.
69. For a link to disappear there must be at least one link in the net;
70. and such a link may disappear such that
71. it together with the resulting net makes up for the “original” net.

value
68. link diss event: N × N′ ∼→ Bool
68. link diss event(n,n′) as tf
69. pre: obs part Ls(obs part LS(n))��{}
70. post: tf � ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
71. l �∈ obs part Ls(obs part LS(n′))
71. ∧ n′ ∪ {l} � obs part Ls(obs part LS(n))

4.11. Discrete behaviour signatures and definitions

4.11.1. Behaviour signatures

We shall only cover behaviour signatures when expressed in RSL/CSP [GHH+92]. The behaviour functions are
now called processes. That a behaviour function is a never-ending function, i.e., a process, is “revealed” in the
function signature by the “trailing” Unit:

behaviour: ... → ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

That a process accepts channel, viz.: ch, inputs, including accesses an external attribute A, is “revealed” in the
function signature as follows:

behaviour: ... → in ch ... , resp. in attr A ch

That a process offers channel, viz.: ch, outputs is “revealed” in the function signature as follows:

behaviour: ... → out ch ...

That a process accepts other arguments is “revealed” in the function signature as follows:

behaviour: ARG → ...

where ARG can be any type expression:

T, T→T, T→T→T, etcetera

where T is any type expression.
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Part behaviours: We can, without loss of generality, associate with each part a behaviour; parts which share
attributes (and are therefore referred to in some parts’ mereology), can communicate (their “sharing”) via chan-
nels. The process evolves around a state, or, rather, a set of values its unique identity, π :�,31 its possibly changing
mereology,mt:MT,32 the possible components andmaterials of the part, and the attributes of the part.Abehaviour
signature is therefore:

behaviourπ : �: me:MT × sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) Unit

where (i) π :� is the unique identifier of part p, i.e., π=uid P(p), (ii) me:ME is the mereology of part p, me
= obs mereo P(p), (iii) sa:SA lists the static attribute values of the part, (iv) ca:CA lists the controllable
and attribute values of the part, (v) ichns(ea:EA) refer to the external attribute input channels , and where (vi)
iochs(me) are the input/output channels serving the attributes shared between the part p and the parts designated
in its mereology me, cf. Sect. 4.7.2. We focus, for a little while, on the expression of sa:SA, ea:EA and ca:CA,
that is, on the concrete types of SA, EA and CA.

SA (p): sa:SA lists the static value types, (svT1, . . . , svTs ), where s is the number of static attributes of parts
p:P.

EA (p): ea:EA lists the external attribute value channels of parts p:P in the behaviour signature and as input
channels, ichns, see 9 lines above.

CA (p): ca:CA lists the controllable value expression types of parts p:P . A controllable attribute value expression
is an expression involving one or more attribute value expressions of the type of the biddable or programmable
attribute

4.11.2. Behaviour definitions

Let P be a composite sort defined in terms of sub-sortsP1, P2, . . . , Pn . The process definition compiled from p:P,
is composed from a process description,M cPuid P (p), relying on and handling the unique identifier, mereology
and attributes of part p operating in parallel with processes p1, p2, . . . , pn where p1 is compiled from p1:P1, p2
is compiled from p2:P2, . . . , and pn is compiled from pn :Pn . The domain description “compilation” schematic
below “formalises” the above.

Process Schema I: Abstract is composite(p)

value
compile process: P → RSL-Text
compile process(p) ≡

MPuid P (p)(obs mereo P(p),SA (p))(CA (p))
‖ compile process(obs part P1(p))
‖ compile process(obs part P2(p))
‖ ...
‖ compile process(obs part Pn (p))

The text macros: SA and CA were informally explained above. Part sorts P1, P2, . . . , Pn are obtained from
the observe part sorts prompt, page 12.

Let P be a composite sort defined in terms of the concrete type Q-set. The process definition compiled from
p:P, is composed from a process, MP , relying on and handling the unique identifier, mereology and attributes
of process p as defined by P operating in parallel with processes q :obs part Qs(p). The domain description
“compilation” schematic below “formalises” the above.

31 Unique identifiers of parts are like static attributes and hence (not really) contributing to the part state.
32 For MT see footnote 16 on page 18.
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Process Schema II: Concrete is composite(p)

type
Qs � Q-set

value
qs:Q-set � obs part Qs(p)
compile process: P → RSL-Text
compile process(p) ≡

MPuid P (p)(obs mereo P(p),SA (p))(CA (p))
‖ ‖{compile process(q)|q:Q•q ∈ qs}

Process Schema III: is atomic(p)

value
compile process: P → RSL-Text
compile process(p) ≡

MPuid P (p)(obs mereo P(p),SA (p))(CA (p))

Example 56 Bus Timetable Coordination: We refer to Examples 17 on page 13, 18 on page 14, 37 on page 23
and 51 on page 32.

72. δ is the transportation system; f is the fleet part of that system; vs is the set of vehicles of the fleet; bt is the
shared bus timetable of the fleet and the vehicles.

73. The fleet process is compiled as per Process Schema II (Page 37).

The definitions of the fleet and vehicle processes are simplified so as to emphasize the master/slave, program-
mable/inert relations between these processes.

type
	, F, VS [Example 17 on page 13]
V, Vs�V-set [Example 18 on page 14]
FI, VI, BT [Example 37 on page 23]

value
72. δ:	,
72. f:F � obs part F(δ),
72. fi:FI � uid F(f)
72. vs:V-set � obs part Vs(obs part VS(f))

axiom
72. ∀ v:V•v ∈ vs ⇒ � attr BT(f) � attr BT(v) [Example 37 on page 23]

value
73. fleetfi : BT → out attr BT ch Unit
73. fleetfi (bt) ≡ MFfi (bt) ‖ ‖ {vehicleuid V (v )()|v:V•v ∈ vs}

73. vehiclevi : Unit → in attr BT ch Unit
73. vehiclevi ≡ MVvi (attr BT ch) ; vehiclevi ()

The fleet process MF is a “never-ending” processes:

value
MFfi : BT → out attr BT ch Unit
MFfi (bt) ≡ let bt′ � Ffi (bt) in MFfi (bt

′) end

FunctionFfi is a simple action. The expression of actual synchronisation and communication between the fleet
and the vehicle processes is contained in Ffi .
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value
Ffi : bt:BT → out attr BT ch BT
Ffi (bt) ≡ (let bt′ � ffi (bt)(...) in bt′ end) �� (attr BT ch ! bt ; bt)
ffi : BT → ... → BT

The auxiliary function ffi “embodies” the programmable nature of the timetable attribute

Please note a master part’s programmable attribute can be reflected in two ways: as a programmable attribute
and as an output channel to the behaviour specification of slave parts. This is illustrated, in Example 56 where
the fleet behaviour has programmable attribute BT and output channel attr BT ch to vehicle behaviours.

Process Schema IV: Core Process(I)

The core processes can be understood as never ending, “tail recursively defined” processes:

MPπ :�: me:MT×sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) Unit
MPπ :�(me,sa)(ca) ≡ let (me′,ca′) � Fπ :�(me,sa)(ca) in MPπ :�(me′,sa)(ca′) end

Fπ :�: me:MT×sa:SA → CA → in ichns(ea:EA) in,out iochs(me) → MT×CA

Fπ potentially communicates with all those part processes (of the whole domain) with which it shares attributes,
that is, has connectors.Fπ is expected to contain input/output clauses referencing the channels of the in ... out ...
part of their signatures. These clauses enable the sharing of attributes.Fπ also contains expressions, attr A ch ?,
to external attributes.

We present a rough sketch ofFπ . The Fπ action non-deterministically internal choice chooses between

• either [1,2,3,4]



 [1] accepting input from


 [4] a suitable (“offering”) part process,

Process Schema V: Core Process (II)

value
Fπ : me:MT × sa:SA → ca:CA → in ichns(ea:EA) in,out iochs(me) MT×CA
Fπ (me,sa)(ca) ≡

[ 1 ] ���� { let val � ch[ π ′ ] ? in
[ 2 ] ( ch[ π ′ ] ! in reply(val)(me,sa)(ca) �� skip ) ;
[ 3 ] in update(val)(me,sa)(ca) end
[ 4 ] | π ′: � • π ′ ∈ E (π ,me)}
[ 5 ] �� ���� { let val � await reply(π ′)(me,sa)(ca) in
[ 6 ] ch[ π ′ ] ! val ;
[ 7 ] out update(val)(me,sa)(ca) end
[ 8 ] | π ′: � • π ′ ∈ E (π ,me)}
[ 9 ] �� (me,own work(sa)(ca))

channels ch[ π ′ ] are defined in in ichns(ea:EA) in,out iochs(me)

in reply: VAL → SA×EA → CA → in ichns(ea:EA) in,out iochs(me) VAL
in update: VAL → MT×SA → CA → in,out iochs(me) MT×CA
await reply: � → MT×SA → CA → in,out iochs(me) VAL
out update: VAL → MT×SA → CA → in,out iochs(me) MT×CA
own work: SA×EA → CA → in,out iochs(me) CA

We leave these auxiliary functions and VAL undefined.
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exit sensorentry sensor

toll barrier

Vehicle linklink link link

Vehicle Identification

Fig. 3. A tollgate



 [2] optionally offering a reply, and


 [3] finally delivering an updated state;

• or [5,6,7,8]



 [5] finding a suitable “order” (val)


 [8] to a suitable (“inquiring”) behaviour (π ′),


 [6] offering that value (on channel ch[π ′]


 [7] and then delivering an updated state;

• or [9] doing own work resulting in an updated state.

Example 57 Tollgates: Part and Behaviour: Our example is disconnected from that of a larger example of road
pricing. Figure 3 abstracts essential features of a tollgate.

74. A tollgate is a composite part. It consists of
75. an entry sensor (ES), a vehicle identity sensor (IS), a barrier (B), and an exit sensor (XS).
76. The sensors function as follows:

(a) When a vehicle first starts passing the entry sensor then it sends an appropriate (event) message to the
tollgate.

(b) When a vehicle’s identity is recognised by the identity sensor then it sends an appropriate (event) message
to the tollgate.

(c) When a vehicle ends passing the exit sensor then it sends an appropriate (event) message to the tollgate.

77. We therefore model these sensors as shared dynamic event attributes.

(a) For the sensors these are master attributes.
(b) For the tollgate they are slave attributes.
(c) In all three cases they are therefore modeled as channels.

78. A vehicle passing the gate

(a) first “triggers” the entry sensor (“Enter"),
(b) which results in the lowering (“Lower") of the barrier,
(c) then the vehicle identity sensor (“vi:VI"),
(d) with the tollgate “mysteriously”33 handling that identity, and, simultaneously
(e) raising (“Raise") the barrier, and
(f) finally the output sensor (“Exit") is triggered as the vehicle leaves the tollgate,
(g) and the barrier is lowered.

79. whereupon the tollgate resumes being a tollgate.
80. TGI is the type unique tollgate identifiers.

33 ... that is, passes vi on to the road pricing monitor—where we omit showing relevant channels.
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Instead of one tollgate we may think of a number of tollgates: Each with their unique identifier—together with
a finite set of two or more such identifiers, tgis:TGI-set.

type
74. TG
75. ES, IS, B, XS
78.a. En � {|"Enter"|}
78.b. Ba � {|"Lower","Raise"|}
78.c. Id � VI
78.e. Ex � {|"Exit"|}
80. TGI
value
75. obs part ES: TG → ES
75. obs part IS: TG → IS
75. obs part B: TG → B
75. obs part XS: TG → XS
80. uid TGI: TG → TGI
78.a. attr Enter: TG|ES → {|"Enter"|}
78.c. attr Identity: TG|IS → VI
78.e. attr Exit: TG|XS → {|"Exit"|}

channel
78. {attr En ch[ tgi ]|tgi:TGI•tgi∈tgis}: En
78. {attr Id ch[ tgi ]|tgi:TGI•tgi∈tgis}: VI
78. {attr Ba ch[ tgi ]|tgi:TGI•tgi∈tgis}: BA
78. {attr Ex ch[ tgi ]|tgi:TGI•tgi∈tgis}: Ex
value
78. gatetgi :TGI : Unit →
78. in attr En ch[ tgi ],attr Id ch[ tgi ],attr Ex ch[ tgi ]
78. out attr Ba ch[ tgi ] Unit
78. gatetgi :TGI () ≡
78.a. attr En ch[ tgi ] ? ;
78.b. attr Ba ch[ tgi ] ! "Lower" ;
78.c. let vi � attr Id ch[ tgi ] ? in
78.d. ( handle(vi) ‖
78.e. attr Ba ch[ tgi ] ! "Raise" ) ;
78.f. attr Ex ch[ tgi ] ? ;
78.g. attr Ba[ tgi ] ! "Lower" ;
79. gatetgi :TGI () end

The enter, identity and exit events are slave attributes of the tollgate part and master attributes of respectively the
entry sensor, the vehicle identity sensor, and the exit sensor sub-parts. We do not define the behaviours of these
sub-parts. We only assume that they each issue appropriate attr A ch ! output messages where A is either Enter,
Identity, or Exit and where event values en:Enter and ex:Exit are ignored

4.12. Concurrency: communication and synchronisation

Process Schemas I, II and IV (pages 36, 37 and 38), reveal that two or more parts, which temporally coexist (i.e.,
at the same time), imply a notion of concurrency. Process Schema IV, through the RSL/CSP language expressions
ch ! v and ch ?, indicates the notions of communication and synchronisation. Other than this we shall not cover these
crucial notion related to parallelism.

4.13. Summary and discussion of perdurants

The most significant contribution of Sect. 4 has been to show that for every domain description there exists a
normal form behaviour—here expressed in terms of a CSP process expression.

4.13.1. Summary

Wehave proposed to analyse perdurant entities into actions, events and behaviours— all based on notions of state
and time. We have suggested modeling and abstracting these notions in terms of functions with signatures and
pre-/post-conditions. We have shown how to model behaviours in terms of communicating sequential processes
(CSP). It is in modeling function signatures and behaviours that we justify the endurant entity notions of parts,
unique identifiers, mereology and shared attributes.

4.13.2. Discussion

The analysis of perdurants into actions, events and behaviours represents a choice. We suggest skeptical readers
to come forward with other choices.
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5. Closing

In Sect. 1.1 we emphasised that in order to develop software the designers must have a reasonable grasp of the
“underlying” domain. That means that when we design software, its requirements, to us, must be based on such a
“grasp”, that is, that the domain description must cover that “underlying” domain. We are not claiming that the
domain descriptions (for software development) must cover more than the “underlying” domain. But what that
“underlying” domain then is, is an open question which we do not speculate on in this paper. Domain descriptions
are not “cast in stone !” It is to be expected that domains are researched and their descriptions are developed
as research projects—typically in universities. It is also to be expected that several domain descriptions coexist
“simultaneously”, that they may converge, that some whither away, are rejected, and that new descriptions are
developed “on top of”, that is, on the basis of existing ones, which they replace, descriptions that enlarge on,
or restrict previous descriptions. It is finally to be expected that when requirements are to be “derived” from a
domain description, see, for example, [Bjø16b], that the requirements cum domain engineers redevelop a projected
domain description having some existing domain descriptions “at hand”.

5.1. Analysis & description calculi for other domains

The analysis and description calculus of this paper appears suitable for manifest domains. For other domains
other calculimay be necessary. There is the introvert, composite domain(s) of systems software: operating systems,
compilers, database management systems, Internet-related software, etcetera. The classical computer science and
software engineering disciplines related to these components of systems software appears to have provided the
necessary analysis and description “calculi”. There is the domain of financial systems software accounting &
bookkeeping, banking systems, insurance, financial instruments handling (stocks, etc.), etcetera. Etcetera. For
each domain characterisable by a distinct set of analysis & description calculus prompts such calculi must be
identified.

5.2. On domain description languages

We have in this paper expressed the domain descriptions in the RAISE [GHH+95] specification language RSL
[GHH+92]. With what is thought of as minor changes, one can reformulate these domain description texts in
either of Alloy [Jac06] or The B-Method [Abr09] or VDM [BJ78, BJ82, FL98] or Z [WD96]. One could also express
domain descriptions algebraically, for example in CafeOBJ [FN97, FGO12]. The analysis and the description
prompts remain the same. The description prompts now lead to Alloy, B-Method, VDM, Z or CafeOBJ texts.
We did not go into much detail with respect to perdurants. For all the very many domain descriptions, covered
elsewhere, RSL (with its CSP sub-language) suffices. It is favoured here because of its integrated CSP sub-language
which both facilitates the ‘compilation’ of part descriptions into “the dynamics” of parts in terms of CSPprocesses,
and themodelingof external attributes in termsof CSPprocess input channels. But there are cases, not documented
in this paper, where, [BGH+in], we have conjoined our RSL domain descriptions with descriptions in Petri Nets
[Rei10] or MSC [IT99] (Message Sequence Charts) or StateCharts [Har87].

5.3. Comparison to other work

5.3.1. Background: the TripTych domain ontology

We shall now compare the approach of this paper to a number of techniques and tools that are somehow related—
if only by the term ‘domain’ ! Common to all the “other” approaches is that none of them presents a prompt
calculus that help the domain analyser elicit a, or the, domain description. Figure 1 on page 9 shows the tree-like
structuring of what modern day AI researchers cum ontologists would call an upper ontology.

5.3.2. General

Two related approaches to structuring domain understanding will be reviewed.
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Fig. 4. The upper ontology of TripTych manifest domains

1: Ontology science & engineering: Ontologies are “formal representations of a set of concepts within a domain
and the relationships between those concepts”—expressed usually in some logic.Ontology engineering [BF98]
construct ontologies. Ontology science appears to mainly study structures of ontologies, especially so-called
upper ontology structures, and these studies “waver” between philosophy and information science.34 Internet published
ontologies usually consists of thousands of logical expressions. These are represented in some, for example, low-
level mechanisable form so that they can be interchanged between ontology research groups and processed by
various tools. There does not seem to be a concern for “deriving” such ontologies into requirements for software.
Usually ontology presentations either start with the presentation of, or makes reference to its reliance on, an
upper ontology. The term ‘ontology’ has been much used in connection with automating the design of various
aspects WWW applications [WDS06]. Description Logic [BCM+03] has been proposed as a language for the
Semantic Web [BHS05].

The interplay between endurants and perdurants is studied in [BDS04]. That study investigates axiom systems
for two ontologies. One for endurants (SPAN), another for perdurants (SNAP). No examples of descriptions of
specific domains are, however, given, and thus no specific techniques nor tools are given, method components
which could help the engineer in constructing specific domain descriptions. [BDS04] is therefore only relevant
to the current paper insofar as it justifies our emphasis on endurant versus perdurant entities. The interplay
between endurant and perdurant entities and their qualities is studied in [Joh05]. In our study the term quality
is made specific and covers the ideas of external and internal qualities, cf. Sect. 3.1.12 on page 16. External
qualities focus on whether endurant or perdurant, whether part, component or material, whether action, event
or behaviour, whether atomic or composite part, etcetera. Internal qualities focus on unique identifiers (of parts),
the mereology (of parts), and the attributes (of parts, components and materials), that is, of endurants. In [Joh05]
the relationship between universals (types), particulars (values of types) and qualities is not “restricted” as in the
TripTych domain analysis, but is axiomatically interwoven in an almost “recursive” manner. Values [of types
(‘quantities’ [of ‘qualities’])] are, for example, seen as sub-ordinated types; this is an ontological distinction that
we do not make. The concern of [Joh05] is also the relations between qualities and both endurant and perdurant
entities, where we have yet to focus on “qualities”, other than signatures, of perdurants. [Joh05] investigates
the quality/quantity issue wrt. endurance/perdurance and poses the questions: [b] are non-persisting quality
instances enduring, perduring or neither ? and [c] are persisting quality instances enduring, perduring or neither ?
and arrives, after some analysis of the endurance/perdurance concepts, at the answers: [b′] non-persisting quality
instances are neither enduring nor perduring particulars (i.e., entities), and [c′] persisting quality instances are

34 We take the liberty of regarding information science as part of computer science, cf. page 3.
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enduring particulars. Answer [b′] justifies our separating enduring and perduring entities into two disjoint, but
jointly “exhaustive” ontologies. The more general study of [Joh05] is therefore really not relevant to our prompt
calculi, in which we do not speculate on more abstract, conceptual qualities, but settle on external endurant
qualities, on the unique identifier, mereology and attribute qualities of endurants, and the simple relations between
endurants and perdurants, specifically in the relations between signatures of actions, events and behaviours and
the endurant sorts , and especially the relation between parts and behaviours as outlined in Sect. 4.11. That is,
the TripTych approach to ontology, i.e., its domain concept, is not only model-theoretic, but, we risk to say,
radically different.

2: Knowledge engineering: The concept of knowledge has occupied philosophers since Plato. No common agree-
ment on what ‘knowledge’ is has been reached. From [LFCO87, Aud95, Mer04, Sta99] we may learn that knowl-
edge is a familiarity with someone or something; it can include facts, information, descriptions, or skills acquired
through experience or education; it can refer to the theoretical or practical understanding of a subject; knowledge
is produced by socio-cognitive aggregates (mainly humans) and is structured according to our understanding of how
human reasoning and logic works. The seminal reference here is [FHMV96]. The aim of knowledge engineering
was formulated, in 1983, by an originator of the concept, Edward A. Feigenbaum [FM83]: knowledge engineering
is an engineering discipline that involves integrating knowledge into computer systems in order to solve complex
problems normally requiring a high level of human expertise.Knowledge engineering focus on continually building
up (acquire) large, shared data bases (i.e., knowledge bases), their continued maintenance, testing the validity of
the stored ‘knowledge’, continued experiments with respect to knowledge representation, etcetera.Knowledge engi-
neering can, perhaps, best be understood in contrast to algorithmic engineering: In the latter we seek more-or-less
conventional, usually imperative programming language expressions of algorithms whose algorithmic structure
embodies the knowledge required to solve the problem being solved by the algorithm. The former seeks to solve
problems based on an interpreter inferring possible solutions from logical data. This logical data has three parts:
a collection that “mimics” the semantics of, say, the imperative programming language, a collection that formulates
the problem, and a collection that constitutes the knowledge particular to the problem.We refer to [BN92]. Domain
science & engineering is not aimed at letting the computer solve problems based on the knowledge it may have
stored. Instead it buildsmodels based on knowledge of the domain. Finally, the domains to whichwe are applying
‘our form of’ domain analysis are domains which focus on spatio-temporal phenomena. That is, domains which
have concrete renditions: air traffic, banks, container lines, manufacturing, pipelines, railways, road transport,
stock exchanges, etcetera. In contrast one may claim that the domains described in classical ontologies and
knowledge representations are mostly conceptual: mathematics, physics, biology, etc.

5.3.3. Specific

3: Database analysis: There are different, however related “schools of database analysis”. DSD: the Bachman (or
data structure) diagram model [Bac69]; RDM: the relational data model [Cod70]; and ER: entity set relationshp
model [Che76] “schools”. DSD and ER aim at graphically specifying database structures. Codd’s RDM simplifies
the data models of DSD and ER while offering two kinds of languages with which to operate on RDM databases:
SQL and Relational Algebra. All three “schools” are focused more on data modeling for databases than on
domain modeling both endurant and perdurant entities.

4: Domain analysis: Domain analysis, or product line analysis (see below), as it was then conceived in the early
1980s by James Neighbors [Nei84], is the analysis of related software systems in a domain to find their common
and variable parts. This form of domain analysis turns matters “upside-down”: it is the set of software “systems”
(or packages) that is subject to some form of inquiry, albeit having some domain inmind, in order to find common
features of the software that can be said to represent a named domain.

In this section we shall mainly be comparing the TripTych approach to domain analysis to that of Reubén
Prieto–Dı̃az’s approach [PD87, PD90, PDA91]. Firstly, our understanding of domain analysis basically coincides
with Prieto–Dı̃az’s. Secondly, in, for example, [PD87], Prieto–Dı̃az’s domain analysis is focused on the very
important stages that precede the kind of domain modeling that we have described: major concerns are selection
of what appears to be similar, but specific entities, identification of common features, abstraction of entities and
classification. Selection and identification is assumed in our approach, but we suggest to follow the ideas of
Prieto–Dı̃az. Abstraction (from values to types and signatures) and classification into parts, materials, actions,
events and behaviours is what we have focused on. All-in-all we find Prieto–Dı̃az’s work very relevant to our

Author's personal copy



D. Bjørner

work: relating to it by providing guidance to pre-modeling steps, thereby emphasising issues that are necessarily
informal, yet difficult to get started on by most software engineers. Where we might differ is on the following:
although Prieto–Dı̃az does mention a need for domain specific languages, he does not show examples of domain
descriptions in such DSLs.We, of course, basically use mathematics as the DSL. In our approach we do not consider
requirements, let alone software components, as do Prieto–Dı̃az, but we find that that is not an important issue.

5: Domain specific languages: Martin Fowler35 defines a Domain-specific language (DSL) as a computer pro-
gramming language of limited expressiveness focused on a particular domain [Fow20]. Other references are
[MHS05, Spi01]. Common to [Spi01, MHS05, Fow20] is that they define a domain in terms of classes of software
packages; that they never really “derive” the DSL from a description of the domain; and that they certainly do
not describe the domain in terms of that DSL, for example, by formalising the DSL. In [HPK11] a domain specific
language for railway tracks is the basis for verification of the monitoring and control of train traffic on these
tracks. Specifications in that domain specific language, DSL, manifested by track layout drawings and signal
interlocking tables, are translated into SystemC [GLMS02]. [HPK11] thus takes one very specific dsl and shows
how to (informally) translate their “programs”, which are not “directly executable”, and hence does not satisfy
Fowler’s definition of DSLs, into executable programs. [HPK11] is a great paper, but it is not solving our problem,
that of systematically describing any manifest domain. [HPK11] does, however, point a way to search for—say
graphical—dsls and the possible translation of their programs into executable ones.

6: Feature-oriented domain analysis (FODA): Feature oriented domain analysis (FODA) is a domain analysis method
which introduced feature modeling to domain engineering. FODA was developed in 1990 following several U.S.
Government research projects. Its concepts have been regarded as “critically advancing software engineering
and software reuse”. The US Government-supported report [KCH+90] states: “FODA is a necessary first step”
for software reuse. To the extent that TripTych domain engineering with its subsequent requirements engineering
indeed encourages reuse at all levels: domain descriptions and requirements prescription, we canonly agree.Another
source on FODA is [CE00]. Since FODA “leans” quite heavily on ‘Software Product Line Engineering’ our remarks
in that section, next, apply equally well here.

7: Software product line engineering: Software product line engineering, earlier known as domain engineering, is
the entire process of reusing domainknowledge in theproductionofnewsoftware systems.Key concernsof software
product line engineering are reuse, the building of repositories of reusable software components, and domain specific
languages with which to more-or-less automatically build software based on reusable software components. These
are not the primary concerns of TripTych domain science& engineering. But they do become concerns as wemove
from domain descriptions to requirements prescriptions. But it strongly seems that software product line engineering
is not really focused on the concerns of domain description—such as is TripTych domain engineering. It seems
that software product line engineering is primarily based, as is, for example, FODA: Feature-oriented Domain
Analysis , on analysing features of software systems. Our [Bjø11c] puts the ideas of software product lines and
model-oriented software development in the context of the TripTych approach.

8: Problem frames: The concept of problem frames is covered in [Jac01]. Jackson’s prescription for software
development focus on the “triple development” of descriptions of the problem world , the requirements and the
machine (i.e., the hardware and software) to be built. Here domain analysis means the same as for us: the problem
world analysis. In the problem frame approach the software developer plays three, that is, all the TripTych rôles:
domain engineer, requirements engineer and software engineer, “all at the same time”, iterating between these
rôles repeatedly. So, perhaps belabouring the point, domain engineering is done only to the extent needed by
the prescription of requirements and the design of software. These, really are minor points. But in “restricting”
oneself to consider only those aspects of the domain which are mandated by the requirements prescription and
software design one is considering a potentially smaller fragment [Jac10] of the domain than is suggested by the
TripTych approach. At the same time one is, however, sure to consider aspects of the domain that might have
been overlooked when pursuing domain description development in the “more general” TripTych approach.

35 http://www.martinfowler.com/dsl.html.
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9: Domain specific software architectures (DSSA): It seems that the concept of DSSA was formulated by a group of
ARPA36 project “seekers” who also performed a year long study (from around early-mid 1990s); key members of
the DSSA project wereWill Tracz, BobBalzer, RickHayes-Roth andRichard Platek [Tra94]. The [Tra94] definition
of domain engineering is “the process of creating a DSSA: domain analysis and domain modeling followed by creating
a software architecture and populating it with software components”. This definition is basically followed also by
[MG92, SG96, MC04]. Defined and pursued this way, DSSA appears, notably in these latter references, to start
with the analysis of software components, “per domain”, to identify commonalities within application software,
and to then base the idea of software architecture on these findings. Thus DSSA turns matter “upside-down” with
respect to TripTych requirements development by starting with software components, assuming that these satisfy
some requirements, and then suggesting domain specific software built using these components. This is not what
we are doing: we suggest, [Bjø08], that requirements can be “derived” systematically from, and formally related
back to domain descriptionss without, in principle, considering software components, whether already existing,
or being subsequently developed. Of course, given a domain description it is obvious that one can develop, from
it, any number of requirements prescriptions and that these may strongly hint at shared, (to be) implemented
software components; but it may also, as well, be the case that two or more requirements prescriptions “derived”
from the same domain description may share no software components whatsoever ! It seems to this author that
had the DSSA promoters based their studies and practice on also using formal specifications, at all levels of their
study and practice, then some very interesting insights might have arisen.

10: Domain driven design (DDD): Domain-driven design (DDD)37 “is an approach to developing software for com-
plex needs by deeply connecting the implementation to an evolving model of the core business concepts; the premise
of domain-driven design is the following: placing the project’s primary focus on the core domain and domain logic;
basing complex designs on a model; initiating a creative collaboration between technical and domain experts to
iteratively cut ever closer to the conceptual heart of the problem”. 38 We have studied some of the DDD literature,
mostly only accessible on the Internet, but see also [Hay09], and find that it really does not contribute to new
insight into domains such as we see them: it is just “plain, good old software engineering cooked up with a new
jargon.

11: Unified modeling language (UML): Three books representative of UML are [BRJ98, RJB98, JBR99]. The term
domain analysis appears numerous times in these books, yet there is no clear, definitive understanding of whether
it, the domain, stands for entities in the domain such as we understand it, or whether it is wrought up, as in several
of the ‘approaches’ treated in this section, to wit, in items [3–5, 7–9] with either software design (as it most often
is), or requirements prescription. Certainly, in UML, in [BRJ98, RJB98, JBR99] as well as in most published papers
claiming “adherence” to UML, that domain analysis usuallyis manifested in some UML text which “models” some
requirements facet. Nothing is necessarily wrong with that, but it is therefore not really the TripTych form of
domain analysis with its concepts of abstract representations of endurant and perdurants, with its distinctions
between domain and requirements, and with its possibility of “deriving” requirements prescriptions from domain
descriptions. The UML notion of class diagrams is worth relating to our structuring of the domain. Class diagrams
appear to be inspired by [Bac69, Bachman, 1969] and [Che76, Chen, 1976]. It seems that (i) each part sort—aswell
as other than part sorts—deserves a class diagram (box); and (ii) that (assignable) attributes—as well as other
non-part types—are written into the diagram box. Class diagram boxes are line-connected with annotations
where some annotations are as per the mereology of the part type and the connected part types and others are
not part related. The class diagrams are said to be object-oriented but it is not clear how objects relate to parts as
many are rather implementation-oriented quantities. All this needs looking into a bit more, for those who care.

12: Requirements engineering: There are in-numerous books and published papers on requirements engineering.
A seminal one is [van09]. I, myself, find [Lau02] full of very useful, non-trivial insight. [DT97] is seminal in that it
brings a number or early contributions and views on requirements engineering. Conventional text books, notably
[Pfl01, Pre01, Som06] all have their “mandatory”, yet conventional coverage of requirements engineering. None

36 ARPA: The US DoD Advanced Research Projects Agency.
37 Eric Evans: http://www.domaindrivendesign.org/.
38 http://www.en.wikipedia.org/wiki/Domain-driven_design.
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of them “derive” requirements from domain descriptions, yes, OK, from domains, but since their description
is not mandated it is unclear what “the domain” is. Most of them repeatedly refer to domain analysis but since
a written record of that domain analysis is not mandated it is unclear what “domain analysis” really amounts
to. Axel van Laamsweerde’s book [van09] is remarkable. Although also it does not mandate descriptions of
domains it is quite precise as to the relationships between domains and requirements. Besides, it has a fine
treatment of the distinction between goals and requirements, also formally. Most of the advices given in [Lau02]
can beneficially be followed also in TripTych requirements development. Neither [van09] nor [Lau02] preempts
TripTych requirements development.

5.3.4. Summary of comparisons

We find that there are two kinds of relevant comparisons: the concept of ontology, its science more than its
engineering, and the Problem Frame work of Michael A. Jackson. The ontology work, as commented upon in
Item [1] (Pages 41–43), is partly relevant to our work: There are at least two issues: Different classes of domains
may need distinct upper ontologies. Section 5.1 suggests that there may be different upper ontologies for non-
manifest domains such as financial systems, etcetera. This seems to warrant at least a comparative study. We
have assumed, cf. Sect. 3.4.1, that attributes cannot be separated from parts. [Joh05, Johansson 2005] develops
the notion that persisting quality instances are enduring particulars. The issue need further clarification.

Of all the other “comparison” items ([2]–[12]) basically only Jackson’s problem frames (Item [8]) and [HPK11]
(Item [5]) really take the same view of domains and, in essence, basically maintain similar relations between
requirements prescription and domain description. So potential sources of, we should claim, mutual inspiration
ought be found in one-another’s work—with, for example, [GGJZ00, Jac10, HPK11], and the present document,
being a good starting point.

But none of the referenced works make the distinction between discrete endurants (parts) and their qualities,
with their further distinctions between unique identifiers, mereology and attributes. And none of them makes the
distinction between parts, components and materials. Therefore our contribution can include the mapping of
parts into behaviours interacting as per the part mereologies as highlighted in the process schemas of Sect. 4.11
Pages 36–38.

5.4. Open problems

The present paper has outlined a great number of principles, techniques and tools of domain analysis & descrip-
tion. They give rise, now, to the investigation of further principles, techniques and tools as well as underlying
theories. We list some of these “to do” items: (1) a mathematical model of prompts; (2) a sharpened definition of
“what is a domain”; (3) laws of description prompts; (4) an understanding of domain facets [Bjø16a]; (5) a prompt
calculus for perdurants; (6) commensurate discrete and continuous models [WYZ94, ZWZ13]; (7) a study of the
interplay between parts, materials and components; (8) a closer study of external attributes and their variety of
access forms and of biddable attributes; and (9) specific domain theories; etcetera.

5.5. Tony Hoare’s summary on ‘domain modeling’

In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps conceived as stubborn insistence, on domain
engineering, Tony Hoare summed up his reaction to domain engineering as follows, and I quote39:
“There are many unique contributions that can be made by domain modeling.

1. The models describe all aspects of the real world that are relevant for any good software design in the area. They
describe possible places to define the system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be made in any embedded software design,
especially one that is going to be formally proved.

3. They describe the whole range of possible designs for the software, and the whole range of technologies available
for its realisation.

39 E-Mail to Dines Bjørner, July 19, 2006.
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4. They provide a framework for a full analysis of requirements, which is wholly independent of the technology of
implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later in any design project, and identify
those that are independent and those that conflict. Late discovery of feature interactions can be avoided”.

All of these issues are covered, to some extent, in [Bjø06, Part IV]. Tony Hoare’s list pertains to a wider range
that just the Manifest Domains treated in this paper.

5.6. Beauty is our business

It’s life that matters, nothing but life –
the process of discovering, the everlasting and perpetual process,

not the discovery itself, at all.40

I find that quote appropriate in the following, albeit rather mundane, sense: It is the process of analysing
and describing a domain that exhilarates me: that causes me to feel very happy and excited. There is beauty
[FvGGM90, E.W.Dijkstra Festschrift] not only in the result but also in the process.
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A.1. Bibliographical notes

A.1.1. Published papers

Web page http://www.imm.dtu.dk/~dibj/domains/ lists the published papers and reports mentioned below. I have thought
about domain engineering formore than 25 years. But serious, focusedwriting only started to appear since [Bjø06,
Part IV]—with [Bjø03, Bjø97] being exceptions: [Bjø07, 2007] suggests a number of domain science and engineer-
ing research topics; [Bjø10a, 2008] covers the concept of domain facets; [BE10, 2008] explores compositionality
and Galois connections. [Bjø08, Bjø10c, 2008,2009] show how to systematically, but, of course, not automati-
cally, “derive” requirements prescriptions from domain descriptions; [Bjø11a, 2008] takes the triptych software
development as a basis for outlining principles for believable software management; [Bjø09, Bjø14a, 2009,2013]
presents a model for Stanisław Leśniewski’s [CV99] concept of mereology; [Bjø10b, Bjø11b] present an extensive
example and is otherwise a precursor for the present paper; [Bjø11c, 2010] presents, based on the TripTych view
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of software development as ideally proceeding from domain description via requirements prescription to soft-
ware design, concepts such as software demos and simulators; [Bjø13, 2012] analyses the TripTych, especially its
domain engineering approach, with respect toMaslow’s 41 and Peterson’s and Seligman’s 42 notions of humanity:
how can computing relate to notions of humanity; the first part of [Bjø14b, 2014] is a precursor for the present
paper with its second part presenting a first formal model of the elicitation process of analysis and description
based on the prompts more definitively presented in the current paper; and [Bjø14c, 2014] focus on domain safety
criticality. The present paper basically replaces the domain analysis and description section of all of the above
reference—including [Bjø06, Part IV, 2006].

A.1.2. Reports

We list a number of reports all of which document descriptions of domains. These descriptions were carried out
in order to research and develop the domain analysis and description concepts now summarised in the present
paper. These reports ought now be revised, some slightly, others less so, so as to follow all of the prescriptions
of the current paper. Except where a URL is given in full, please prefix the web reference with: http://www2.
compute.dtu.dk/-~dibj/.
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