
6 June 2016, 16:50 : Submitted to Formal Aspects of Computing

From Domain Descriptions to
Requirements Prescriptions:
A Different Initial Approach to Requirements Engineering

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark.

DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

E-mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

In [Bjø16b, Manifest Domains: Analysis & Description] we introduced a method for analysing and describing mani-
fest domains. In this paper we show how to systematically, but, of course, not automatically, “derive” initial require-
ments prescriptions from domain descriptions. There are, as we see it, three kinds of requirements: (i) domain require-
ments, (ii) interface requirements and (iii) machine requirements. The machine is the hardware and software to be
developed from the requirements. (i) Domain requirements are those requirements which can be expressed sôlely
using technical terms of the domain. (ii) Interface requirements are those requirements which can be expressed us-
ing technical terms of both the domain and the machine. (iii) Machine requirements are those requirements which
can be expressed sôlely using technical terms of the machine. We show principles, techniques and tools for “deriving”
domain requirements. The domain requirements development focus on (i.1) projection , (i.2) instantiation , (i.3) deter-
mination , (i.4) extension and (i.5) fitting . We briefly review principles, techniques and tools for “deriving” interface
requirements based on sharing domain (ii.1) endurants, and (ii.2) perdurants (i.e., actions, events and behaviours) with
their machine correspondants. The unfolding of interface requirements lead to a number of machine concepts in
terms of which the interface requirements are expressed. These machine concepts, both hardware and software, make
possible the expression of a set of — what we shall call — derived requirements. The paper explores this concept
briefly. We do not cover machine requirements in this paper. The reason is that we find, cf. [Bjø06, Sect. 19.6], that
when the individual machine requirements are expressed then references to domain phenomena are, in fact, abstract
references, that is, they do not refer to the semantics of what they name. This paper claims only to structure the quest
for requirements conception. Instead of “discovering” requirements ‘ab initio’, for example, through interviews with
stake-holders, we suggest to “derive” the requirements based on domain descriptions. Instead of letting the individ-
ual requirements arise out of initial stake-holder interviews, we suggest to structure these (i) around the structures of
domain descriptions, and (ii) around the structures emerging from domain, interface and machine requirements. We
shall refer to the requirements emerging from (i+ii) as the initial requirements. To these we add the derived require-
ments merging from interview with stakeholders: We are strongly of the opinion that the techniques and tools of, for
example, [DvLF93, Jac01, ZH04, JHJ07, OD08, van09] can be smoothly integrated with those of this paper. We think
that there is some clarification to be gained. We claim that our approach contributes to a restructuring of the field of
requirements engineering and its very many diverse concerns, a structuring that is logically motivated and is based on
viewing software specifications as mathematical objects.

Keywords: Requirements engineering, domain description, design assumptions, design requirements

Correspondence and offprint requests to: Dines Bjørner, Fredsvej 11, DK-2840 Holte, Denmark. e-mail: bjorner@gmail.com

2 Dines Bjørner

1. Introduction

In [Bjø16b, Manifest Domains: Analysis & Description] we introduced a method for analysing and describing man-
ifest domains. In this paper we show how to systematically, but, of course, not automatically, “derive” requirements
prescriptions from domain descriptions.

1.1. The Triptych Dogma of Software Development

We see software development progressing as follows: Before one can design software one must have a firm grasp
of the requirements. Before one can prescribe requirements one must have a reasonably firm grasp of the domain.
Software engineering, to us, therefore include these three phases: domain engineering, requirements engineering and
software design.

1.2. Software As Mathematical Objects

Our base view is that computer programs are mathematical objects. That is, the text that makes up a computer program
can be reasoned about. This view entails that computer program specifications can be reasoned about. And that the
requirements prescriptions upon which these specifications are based can be reasoned about. This base view entails,
therefore, that specifications, whether software design specifications, or requirements prescriptions, or domain de-
scriptions, must [also] be formal specifications. This is in contrast to considering software design specifications being
artifacts of sociological, or even of psychological “nature”.

1.3. The Contribution of This Paper

We claim that the present paper content contributes to our understanding and practice of software engineering as
follows: (1) it shows how the new phase of engineering, domain engineering, as introduced in [Bjø16b], forms a
prerequisite for requirements engineering; (2) it endows the “classical” form of requirements engineering with a struc-
tured set of development stages and steps: (a) first a domain requirements stage, (b) to be followed by an interface
requirements stages, and (c) to be concluded by a machine requirements stage; (3) it further structures and gives a
reasonably precise contents to the stage of domain requirements: (i) first a projection step, (ii) then an instantiation
step, (iii) then a determination step, (iv) then an extension step, and (v) finally a fitting step — with these five steps
possibly being iterated; and (4) it also structures and gives a reasonably precise contents to the stage of interface
requirements based on a notion of shared entities, Each of the steps (i–v) open for the possibility of simplifications.
Steps (a–c) and (i-v), we claim, are new. They reflect a serious contribution, we claim, to a logical structuring of the
field of requirements engineering and its very many otherwise seemingly diverse concerns.

1.4. Some Comments on the Paper Content

By methodology we understand the study and knowledge of one or more methods ⊙1 By a method understand the
study and knowledge of the principles, techniques and tools for constructing some artifact, here (primarily) software
⊙ This paper is, perhaps, unusual in the following respects: (i) It is a methodology paper, hence there are no “neat”
theories about development, no succinctly expressed propositions, lemmas nor theorems, and hence no proofs2. (ii) As
a consequence the paper is borne by many, and by extensive examples. (iii) The examples of this paper are all focused
on a generic road transport net. (iv) To reasonably fully exemplify the requirements approach, illustrating how our
method copes with a seeming complexity of interrelated method aspects, the full example of this paper embodies very
many description and prescription elements: hundreds of concepts (types, axioms, functions). (v) This methodology
paper covers a “grand” area of software engineering: Many textbooks and papers are written on Requirements Engi-
neering. We postulate, in contrast to all such books (and papers), that requirements engineering should be founded

1The ⊙ marks the end of definitions.
2— where these proofs would be about the development theories. The example development of requirements do imply properties, but formu-

lation and proof of these do not constitute specifically new contributions — so are left out.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 3

on domain engineering . Hence we must, somehow, show that our approach relates to major elements of what the
Requirements Engineering books put forward. (vi) As a result, this paper is long.

1.5. Structure of Paper

The structure of the paper is as follows: Section 2 provides a fair-sized, hence realistic example. Sections 3–5 covers
our approach to requirements development. Section 3 overviews the issue of ‘requirements’; relates our approach (i.e.,
Sects. 4–5) to systems, user and external equipment and functional requirements; and Sect. 3 also introduces the con-
cepts of the machine to be requirements prescribed, the domain, the interface and the machine requirements. Section 4
covers the domain requirements stages of projection (Sect. 4.1), instantiation (Sect. 4.2), determination (Sect. 4.3),
extension (Sect. 4.4) and fitting (Sect. 4.5). Section 5 covers key features of interface requirements: shared phenom-
ena (Sect. 5.1.1), shared endurants (Sect. 5.1.2) and shared actions, shared eventsand shared behaviours (Sect. 5.1.3).
Section 5.1.3 further introduces the notion of derived requirements. Section 7 concludes the paper.

2. An Example Domain: Transport

In order to exemplify the various stages and steps of requirements development we first bring a domain description
example. The example follows the steps of an idealised domain description. First we describe the endurants, then we
describe the perdurants. Endurant description initially focus on the composite and atomic parts. Then on their “in-
ternal” qualities: unique identifications, mereologies, and attributes. The descriptions alternate between enumerated,
i.e., labeled narrative sentences and correspondingly “numbered” formalisations. The narrative labels cum formula
numbers will be referred to, frequently in the various steps of domain requirements development.

2.1. Endurants

Since we have chosen a manifest domain, that is, a domain whose endurants can be pointed at, seen, touched, we
shall follow the analysis & description process as outlined in [Bjø16b] and formalised in [Bjø14b]. That is, we first
identify, analyse and describe (manifest) parts, composite and atomic, abstract (Sect. 2.1.1) or concrete (Sect. 2.1.2).
Then we identify, analyse and describe their unique identifiers (Sect. 2.1.3), mereologies (Sect. 2.1.4), and attributes
(Sects. 2.1.5–2.1.5).

The example fragments will be presented in a small type-font.

2.1.1. Domain, Net, Fleet and Monitor

Applying observe part sorts [Bjø16b, Sect. 3.1.6] to to a transport domain δ :∆ yields the following.

The root domain, ∆, is that of a composite traffic system (1.a..)
with a road net, (1.b..) with a fleet of vehicles and (1.c..) of whose
individual position on the road net we can speak, that is, monitor.3

1. We analyse the traffic system into

a. a composite road net,

b. a composite fleet (of vehicles), and

c. an atomic monitor.

type

1. ∆
1.a. N
1.b. F
1.c. M

value

1.a. obs part N: ∆ → N
1.b. obs part F: ∆ → F
1.c. obs part M: ∆ → M

Applying observe part sorts [Bjø16b, Sect. 3.1.6] to a net, n:N, yields the following.

3The monitor can be thought of, i.e., conceptualised. It is not necessarily a physically manifest phenomenon.

4 Dines Bjørner

2. The road net consists of two composite parts, a. an aggregation of hubs and

b. an aggregation of links.

type

2.a. HA
2.b. LA

value

2.a. obs part HA: N → HA
2.b. obs part LA: N → LA

2.1.2. Hubs and Links

Applying observe part types [Bjø16b, Sect. 3.1.7] to hub and link aggregates yields the following.

3. Hub aggregates are sets of hubs.

4. Link aggregates are sets of links.

5. Fleets are set of vehicles.

type
3. H, HS = H-set

4. L, LS = L-set

5. V, VS = V-set

value
3. obs part HS: HA → HS
4. obs part LS: LA → LS

5. obs part VS: F → VS

6. We introduce some auxiliary functions.

a. links extracts the links of a network.

b. hubs extracts the hubs of a network.

value

6.a. links: ∆ → L-set

6.a. links(δ) ≡ obs part LS(obs part LA(obs part N(δ)))
6.b. hubs: ∆ → H-set

6.b. hubs(δ) ≡ obs part HS(obs part HA(obs part N(δ)))

2.1.3. Unique Identifiers

Applying observe unique identifier [Bjø16b, Sect. 3.2] to the observed parts yields the following.

7. Nets, hub and link aggregates, hubs and links, fleets, vehicles and
the monitor all

a. have unique identifiers

b. such that all such are distinct, and

c. with corresponding observers.

type

7.a. NI, HAI, LAI, HI, LI, FI, VI, MI
value

7.c. uid NI: N → NI
7.c. uid HAI: HA → HAI
7.c. uid LAI: LA → LAI
7.c. uid HI: H → HI

7.c. uid LI: L → LI
7.c. uid FI: F → FI
7.c. uid VI: V → VI
7.c. uid MI: M → MI
axiom

7.b. NI
⋂

HAI=Ø, NI
⋂

LAI=Ø, NI
⋂

HI=Ø, etc.

where axiom 7.b.. is expressed semi-formally, in mathematics. We introduce some auxiliary functions:

8. xtr lis extracts all link identifiers of a traffic system.

9. xtr his extracts all hub identifiers of a traffic system.

10. Given an appropriate link identifier and a net get link ‘retrieves’
the designated link.

11. Given an appropriate hub identifier and a net get hub ‘retrieves’
the designated hub.

value

8. xtr lis: ∆ → LI-set

8. xtr lis(δ) ≡
8. let ls = links(δ) in {uid LI(l)|l:L•l ∈ ls} end

9. xtr his: ∆ → HI-set

9. xtr his(δ) ≡
9. let hs = hubs(δ) in {uid HI(h)|h:H•k ∈ hs} end

10. get link: LI → ∆
∼
→ L

10. get link(li)(δ) ≡

10. let ls = links(δ) in

10. let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

10. pre: li ∈ xtr lis(δ)

11. get hub: HI → ∆
∼
→ H

11. get hub(hi)(δ) ≡
11. let hs = hubs(δ) in

11. let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end
11. pre: hi ∈ xtr his(δ)

2.1.4. Mereology

We cover the mereologies of all part sorts introduced so far. We decide that nets, hub aggregates, link aggregates and fleets have no mereologies of
interest.Applying observe mereology [Bjø16b, Sect. 3.3.2] to hubs, links, vehicles and the monitor yields the following.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 5

12. Hub mereologies reflect that they are connected to zero, one or
more links.

13. Link mereologies reflect that they are connected to exactly two
distinct hubs.

14. Vehicle mereologies reflect that they are connected to the moni-
tor.

15. The monitor mereology reflects that it is connected to all vehicles.

16. For all hubs of any net it must be the case that their mereology
designates links of that net.

17. For all links of any net it must be the case that their mereologies
designates hubs of that net.

18. For all transport domains it must be the case that

a. the mereology of vehicles of that system designates the mon-
itor of that system, and that

b. the mereology of the monitor of that system designates vehi-
cles of that system.

value

12. obs mereo H: H → LI-set

13. obs mereo L: L → HI-set
axiom

13. ∀ l:L•card obs mereo L(l)=2
value

14. obs mereo V: V → MI
15. obs mereo M: M → VI-set

axiom

16. ∀ δ :∆, hs:HS•hs=hubs(δ), ls:LS•ls=links(δ) •

16. ∀ h:H•h ∈ hs•obs mereo H(h)⊆xtr lis(δ) ∧
17. ∀ l:L•l ∈ ls•obs mereo L(l)⊆xtr his(δ) ∧
18.a. let f:F•f=obs part F(δ) ⇒
18.a. let m:M•m=obs part M(δ),
18.a. vs:VS•vs=obs part VS(f) in

18.a. ∀ v:V•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)
18.b. ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
18.b. end end

2.1.5. Attributes, I

We may not have shown all of the attributes mentioned below — so consider them informally introduced !

• Hubs: locations4 are considered static, hub states and hub state spaces are considered programmable;

• Links: length s and locations are considered static, link states and link state spaces are considered programmable;

• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine power (kW/horse power) are considered static;
velocity and acceleration may be considered reactive (i.e., a function of gas pedal position, etc.), global position (informed via a GNSS:
Global Navigation Satellite System) and local position (calculated from a global position) are considered biddable �

Applying observe attributes [Bjø16b, Sect. 3.4.3] to hubs, links, vehicles and the monitor yields the following.

First hubs.

19. Hubs

a. have geodetic locations, GeoH,

b. have hub states which are sets of pairs of identifiers of links
connected to the hub5 ,

c. and have hub state spaces which are sets of hub states6 .

20. For every net,

a. link identifiers of a hub state must designate links of that net.

b. Every hub state of a net must be in the hub state space of that
hub.

21. We introduce an auxiliary function: xtr lis extracts all link iden-
tifiers of a hub state.

type

19.a. GeoH
19.b. HΣ = (LI×LI)-set

19.c. HΩ = HΣ-set

value

19.a. attr GeoH: H → GeoH
19.b. attr HΣ: H → HΣ
19.c. attr HΩ: H → HΩ
axiom
20. ∀ δ :∆,

20. let hs = hubs(δ) in

20. ∀ h:H • h ∈ hs •

20.a. xtr lis(h)⊆xtr lis(δ)
20.b. ∧ attr Σ(h) ∈ attr Ω(h)
20. end

value
21. xtr lis: H → LI-set

21. xtr lis(h) ≡
21. {li | li:LI,(li′,li′′):LI×LI • (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}

Then links.

22. Links have lengths.

23. Links have geodetic location.

24. Links have states and state spaces:

a. States modeled here as pairs, (hi′,hi′′), of identifiers the hubs
with which the links are connected and indicating directions

(from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3
or 4 such pairs.

b. State spaces are the set of all the link states that a link may
enjoy.

type

22. LEN
23. GeoL

4By location we mean a geodetic position.
5A hub state “signals” which input-to-output link connections are open for traffic.
6A hub state space indicates which hub states a hub may attain over time.

6 Dines Bjørner

24.a. LΣ = (HI×HI)-set

24.b. LΩ = LΣ-set

value
22. attr LEN: L → LEN
23. attr GeoL: L → GeoL
24.a. attr LΣ: L → LΣ
24.b. attr LΩ: L → LΩ
axiom

24. ∀ n:N •

24. let ls = xtr−links(n), hs = xtr hubs(n) in

24. ∀ l:L•l ∈ ls ⇒
24.a. let lσ = attr LΣ(l) in
24.a. 0≤card lσ≤4
24.a. ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ
24.a. ⇒ {hi′,hi′′}=obs mereo L(l)
24.b. ∧ attr LΣ(l) ∈ attr LΩ(l)
24. end end

Then vehicles.

25. Every vehicle of a traffic system has a position which is either ‘on
a link’ or ‘at a hub’.

a. An ‘on a link’ position has four elements: a unique link iden-
tifier which must designate a link of that traffic system and
a pair of unique hub identifiers which must be those of the
mereology of that link.

b. The ‘on a link’ position real is the fraction, thus properly be-
tween 0 (zero) and 1 (one) of the length from the first identi-
fied hub “down the link” to the second identifier hub.

c. An ‘at a hub’ position has three elements: a unique hub iden-
tifier and a pair of unique link identifiers — which must be
in the hub state.

type

25. VPos = onL | atH
25.a. onL :: LI HI HI R
25.b. R = Real axiom ∀ r:R • 0≤r≤1
25.c. atH :: HI LI LI
value

25. attr VPos: V → VPos

axiom

25.a. ∀ n:N, onL(li,fhi,thi,r):VPos •

25.a. ∃ l:L•l ∈obs part LS(obs part N(n))
25.a. ⇒ li=uid L(l)∧{fhi,thi}=obs mereo L(l),
25.c. ∀ n:N, atH(hi,fli,tli):VPos •

25.c. ∃ h:H•h ∈obs part HS(obs part N(n))
25.c. ⇒ hi=uid H(h)∧(fli,tli) ∈ attr LΣ(h)

26. We introduce an auxiliary function distribute.

a. distribute takes a net and a set of vehicles and

b. generates a map from vehicles to distinct vehicle positions
on the net.

c. We sketch a “formal” distribute function, but, for sim-

plicity we omit the technical details that secures distinctness
— and leave that to an axiom !

27. We define two auxiliary functions:

a. xtr links extracts all links of a net and

b. xtr hub extracts all hubs of a net.

type
26.b. MAP = VI →m VPos
axiom

26.b. ∀ map:MAP • card dom map = card rng map
value

26. distribute: VS → N → MAP
26. distribute(vs)(n) ≡
26.a. let (hs,ls) = (xtr hubs(n),xtr links(n)) in
26.a. let vps = {onL(uid (l),fhi,thi,r) |
26.a. l:L•l ∈ls∧{fhi,thi}
26.a. ⊆obs mereo L(l)∧0≤r≤1}
26.a. ∪ {atH(uid H(h),fli,tli)|

26.a. h:H•h ∈hs∧{fli,tli}
26.a. ⊆obs mereo H(h)} in

26.b. [uid V(v)7→vp|v:V,vp:VPos•v ∈vs∧vp∈vps]
26. end end

27.a. xtr links: N → L-set

27.a. xtr links(n)≡
27.a. obs part LS(obs part LA(n))
27.b. xtr hubs: N → H-set

27.a. xtr hubs(n)≡
27.a. obs part H(obs part HA∆(n))

And finally monitors. We consider only one monitor attribute.

28. The monitor has a vehicle traffic attribute.

a. For every vehicle of the road transport system the vehicle traffic attribute records a possibly empty list of time marked vehicle positions.

b. These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier, the same pair of ‘’to’ and ‘from’ hub identifiers and
increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate with the hub and link mereologies.

type

28. Traffic = VI →m (T × VPos)∗

value
28. attr Traffic: M → Traffic

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 7

axiom

28.b. ∀ δ :∆ •

28.b. let m = obs part M(δ) in
28.b. let tf = attr Traffic(m) in

28.b. dom tf ⊆ xtr vis(δ) ∧
28.b. ∀ vi:VI • vi ∈ dom tf •

28.b. let tr = tf(vi) in
28.b. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

28.b. let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in

28.b. t<t′

28.b.i ∧ case (vp,vp′) of

28.b.i (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
28.b.i → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′ ∧ li ∈ xtr lis(δ) ∧ {fhi,thi} = obs mereo L(get link(li)(δ)),
28.b.ii (atH(hi,fli,tli),atH(hi′,fli′,tli′))
28.b.ii → hi=hi′∧fli=fli′∧tli=tli′ ∧ hi ∈ xtr his(δ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ)),
28.b.iii (onL(li,fhi,thi,1),atH(hi,fli,tli))
28.b.iii → li=fli∧thi=hi ∧ {li,tli} ⊆ xtr lis(δ) ∧ {fhi,thi}=obs mereo L(get link(li)(δ))
28.b.iii ∧ hi ∈ xtr his(δ) ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ)),
28.b.iv (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
28.b.iv → etcetera,
28.b. → false
28.b. end end end end end

2.2. Perdurants

Our presentation of example perdurants is not as systematic as that of example endurants. Give the simple basis of
endurants covered above there is now a huge variety of perdurants, so we just select one example from each of the three
classes of perdurants (as outline in [Bjø16b]): a simple hub insertion action (Sect. 2.2.1), a simple link disappearance
event (Sect. 2.2.2) and a not quite so simple behaviour, that of road traffic (Sect. 2.2.3).

2.2.1. Hub Insertion Action

29. Initially inserted hubs, h, are characterised

a. by their unique identifier which not one of any hub in the net,
n, into which the hub is being inserted,

b. by a mereology, {}, of zero link identifiers, and

c. by — whatever — attributes, attrs, are needed.

30. The result of such a hub insertion is a net, n′,

a. whose links are those of n, and

b. whose hubs are those of n augmented with h.

value
29. insert hub: H → N → N
30. insert hub(h)(n) as n′

29.a. pre: uid H(h) 6∈ xtr his(n)
29.b. ∧ obs mereo H= {}
29.c. ∧ ...

30.a. post: obs part Ls(n) = obs part Ls(n′)
30.b. ∧ obs part Hs(n) ∪ {h} = obs part Hs(n′)

2.2.2. Link Disappearance Event

We formalise aspects of the link disappearance event:

31. The result net, n’:N’, is not well-formed.

32. For a link to disappear there must be at least one link in the net;

33. and such a link may disappear such that

34. it together with the resulting net makes up for the “original” net.

value

31. link diss event: N × N′ × Bool

31. link diss event(n,n′) as tf
32. pre: obs part Ls(obs part LS(n))6={}
33. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
34. l 6∈ obs part Ls(obs part LS(n′))
34. ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))

2.2.3. Road Traffic

The analysis & description of the road traffic behaviour is composed (i) from the description of the global values of nets, links and hubs, vehicles,
monitor, a clock, and an initial distribution, map, of vehicles, “across” the net; (ii) from the description of channels between vehicles and the
monitor; (iii) from the description of behaviour signatures, that is, those of the overall road traffic system, the vehicles, and the monitor; and (iv)
from the description of the individual behaviours, that is, the overall road traffic system, rts, the individual vehicles, veh, and the monitor, mon.

Global Values: There is given some globally observable parts.

8 Dines Bjørner

35. besides the domain, δ :∆,

36. a net, n:N,

37. a set of vehicles, vs:V-set,

38. a monitor, m:M, and

39. a clock, clock, behaviour.

40. From the net and vehicles we generate an initial distribution of
positions of vehicles.

The n:N, vs:V-set and m:M are observable from any road traffic system domain δ .

value

35. δ :∆
36. n:N = obs part N(δ),
36. ls:L-set=links(δ),hs:H-set=hubs(δ),
36. lis:LI-set=xtr lis(δ),his:HI-set=xtr his(δ)
37. va:VS=obs part VS(obs part F(δ)),
37. vs:Vs-set=obs part Vs(va),

37. vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
38. m:obs part M(δ),
38. mi=uid MI(m),
38. ma:attributes(m)
39. clock: T → out {clk ch[vi|vi:VI•vi ∈ vis]} Unit

40. vm:MAP•vpos map = distribute(vs)(n);

Channels:

41. We additionally declare a set of vehicle-to-monitor-channels in-
dexed

a. by the unique identifiers of vehicles

b. and the (single) monitor identifier.7

and communicating vehicle positions.

channel

41. {v m ch[vi,mi]|vi:VI•vi ∈ vis}:VPos

Behaviour Signatures:
42. The road traffic system behaviour, rts, takes no arguments (hence

the first Unit)8; and “behaves”, that is, continues forever (hence
the last Unit).

43. The vehicle behaviour

a. is indexed by the unique identifier, uid V(v):VI,

b. the vehicle mereology, in this case the single monitor identi-
fier mi:MI,

c. the vehicle attributes, obs attribs(v)

d. and — factoring out one of the vehicle attributes — the cur-
rent vehicle position.

e. The vehicle behaviour offers communication to the monitor
behaviour (on channel vm ch[vi]); and behaves “forever”.

44. The monitor behaviour takes

a. the monitor identifier,

b. the monitor mereology,

c. the monitor attributes,

d. and — factoring out one of the vehicle attributes — the dis-
crete road traffic, drtf:dRTF, being repeatedly “updated” as
the result of input communications from (all) vehicles;

e. the behaviour otherwise behaves forever.

value

42. rts: Unit → Unit
43. vehvi:V I : mi:MI → vp:VPos → out vm ch[vi,mi] Unit

44. monmi:MI : vis:VI-set → RTF → in {v m ch[vi,mi]|vi:VI•vi ∈ vis},clk ch Unit

The Road Traffic System Behaviour:
45. Thus we shall consider our road traffic system, rts, as

a. the concurrent behaviour of a number of vehicles and, to “observe”, or, as we shall call it, to monitor their movements,

b. the monitor behaviour.

value

45. rts() =
45.a. ‖ {vehuid VI(v)(mi)(vm(uid VI(v)))|v:V•v ∈ vs}
45.b. ‖ monmi(vis)([vi7→〈〉|vi:VI•vi ∈ vis])

where, wrt, the monitor, we dispense with the mereology and the attribute state arguments and instead just have a monitor traffic argument which
records the discrete road traffic, MAP, initially set to “empty” traces (〈〉, of so far “no road traffic”!).

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate their positions to the monitor via a vehicle to
monitor channel. In order for the monitor to time-stamp these positions it must be able to “read” a clock.

46. We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

a. Either the vehicle remains at that hub informing the monitor
of its position,

b. or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub, identified by
thi, is obtained from the mereology of the link identi-
fied by tli;

7Technically speaking: we could omit the monitor identifier.
8The Unit designator is an RSL technicality.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 9

ii informs the monitor, on channel vm[vi,mi], that it is now
at the very beginning (0) of the link identified by tli,
whereupon the vehicle resumes the vehicle behaviour
positioned at the very beginning of that link,

c. or, again internally non-deterministically, the vehicle “disap-
pears — off the radar” !

46. vehvi(mi)(vp:atH(hi,fli,tli)) ≡
46.a. v m ch[vi,mi]!vp ; vehvi(mi)(vp)
46.b. ⌈⌉
46.b.i let {hi′,thi}=obs mereo L(get link(tli)(n)) in

46.b.i assert: hi′=hi
46.b.ii v m ch[vi,mi]!onL(tli,hi,thi,0) ;
46.b.ii vehvi(mi)(onL(tli,hi,thi,0)) end
46.c. ⌈⌉ stop

47. We describe here an abstraction of the vehicle behaviour on a
Link (ii). Either

a. the vehicle remains at that link position informing the moni-
tor of its position,

b. or, internally non-deterministically, if the vehicle’s position
on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓε (less
than or equal to the distance to the hub) along the link
informing the monitor of this, or

ii else,

A while obtaining a “next link” from the mereology
of the hub (where that next link could very well be
the same as the link the vehicle is about to leave),

B the vehicle informs the monitor that it is now at

the hub identified by thi, whereupon the vehicle re-
sumes the vehicle behaviour positioned at that hub.

c. or, internally non-deterministically, the vehicle “disappears
— off the radar” !

47. vehvi(mi)(vp:onL(li,fhi,thi,r)) ≡
47.a. v m ch[vi,mi]!vp ; vehvi(mi,va)(vp)
47.b. ⌈⌉ if r + ℓε≤1
47.b.i then

47.b.i v m ch[vi,mi]!onL(li,fhi,thi,r+ℓε) ;
47.b.i vehvi(mi)(onL(li,fhi,thi,r+ℓε))
47.b.ii else

47.b.iiA let li′:LI•li′ ∈ obs mereo H(get hub(thi)(n)) in

47.b.iiB v m ch[vi,mi]!atH(li,thi,li′);
47.b.iiB vehvi(mi)(atH(li,thi,li′)) end end

47.c. ⌈⌉ stop

The Monitor Behaviour

48. The monitor behaviour evolves around

a. the monitor identifier,

b. the monitor mereology,

c. and the attributes, ma:ATTR

d. — where we have factored out as a separate arguments — a
table of traces of time-stamped vehicle positions,

e. while accepting messages

i about time

ii and about vehicle positions

f. and otherwise progressing “in[de]finitely”.

49. Either the monitor “does own work”

50. or, internally non-deterministically accepts messages from vehi-
cles.

a. A vehicle position message, vp, may arrive from the vehicle
identified by vi.

b. That message is appended to that vehicle’s movement trace
– prefixed by time (obtained from the time channel),

c. whereupon the monitor resumes its behaviour —

d. where the communicating vehicles range over all identified
vehicles.

48. monmi(vis)(trf) ≡
49. monmi(vis)(trf)
50. ⌈⌉
50.a. ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi]?) in

50.b. let trf′ = trf † [vi 7→ trf(vi)̂ <tvp>] in
50.c. monmi(vis)(trf′)
50.d. end end | vi:VI • vi ∈ vis}

We are about to complete a long, i.e., a 6.3 page example (!). We can now comment on the full example: The domain,
δ : ∆ is a manifest part. The road net, n : N is also a manifest part. The fleet, f : F , of vehicles, vs : V S, likewise, is
a manifest part. But the monitor, m : M, is a concept. One does not have to think of it as a manifest “observer”. The
vehicles are on — or off — the road (i.e., links and hubs). We know that from a few observations and generalise to all
vehicles. They either move or stand still. We also, similarly, know that. Vehicles move. Yes, we know that. Based on
all these repeated observations and generalisations we introduce the concept of vehicle traffic. Unless positioned high
above a road net — and with good binoculars — a single person cannot really observe the traffic. There are simply too
many links, hubs, vehicles, vehicle positions and times. Thus we conclude that, even in a richly manifest domain, we
can also “speak of”, that is, describe concepts over manifest phenomena, including time !

2.3. Domain Facets

The example of this section, i.e., Sect. 2, focuses on the domain facet [Bjø10a, 2008] of (i) instrinsics. It does not reflect
the other domain facets: (ii) domain support technologies, (iii) domain rules, regulations & scripts, (iv) organisation &

10 Dines Bjørner

management, and (v) human behaviour. The requirements examples, i.e., the rest of this paper, thus builds only on the
domain instrinsics. This means that we shall not be able to cover principles, technique and tools for the prescription of
such important requirements that handle failures of support technology or humans. We shall, however point out where
we think such, for example, fault tolerance requirements prescriptions “fit in” and refer to relevant publications for
their handling.

3. Requirements

This and the next three sections, Sects. 4.–5., are the main sections of this paper. Section 4. is the most detailed and
systematic section. It covers the domain requirements operations of projection , instantiation , determination , extension
and, less detailed, fitting . Section 5. surveys the interface requirements issues of shared phenomena: shared endurants,
shared actions, shared events and shared behaviour , and “completes” the exemplification of the detailed domain ex-
tension of our requirements into a road pricing system. Section 5. also covers the notion of derived requirements.
This, the initial, section captures main concepts and principles of requirements. Sections 4.–5. covers initial require-
ments. By initial requirements we shall, “operationally” speaking, understand the requirements that are derived
from the general principles outlined in these sections⊙ In contrast to these are the further requirements that are typ-
ically derived either from the domain facet descriptions of intrinsic, the support technology , the rules & regulations,
the organisation & management , and the human behaviour facets [Bjø10a] — not covered in this paper, (and/)or by
more conventional means [DvLF93, Jac01, ZH04, Lau02, JHJ07, OD08, van09].

• • •

Definition 1. Requirements (I): By a requirements we understand (cf., [IEE90, IEEE Standard 610.12]): “A
condition or capability needed by a user to solve a problem or achieve an objective” ⊙

The objective of requirements engineering is to create a requirements prescription: A requirements prescription
specifies observable properties of endurants and perdurants of the machine such as the requirements stake-holders
wish them to be ⊙ The machine is what is required: that is, the hardware and software that is to be designed and
which are to satisfy the requirements ⊙ A requirements prescription thus (putatively) expresses what there should
be. A requirements prescription expresses nothing about the design of the possibly desired (required) software. But
as the requirements prescription is presented in the form of a model, one can base the design on that model. We shall
show how a major part of a requirements prescription can be “derived” from “its” prerequisite domain description.

Rule 1. The “Golden Rule” of Requirements Engineering: Prescribe only those requirements that can be
objectively shown to hold for the designed software ⊗9 “Objectively shown” means that the designed software can
either be tested, or be model checked, or be proved (verified), to satisfy the requirements. Caveat: Since we do not
illustrate formal tests, model checking nor theorem proving, we shall, alas, not illustrate adherence to this rule.

Rule 2. An “Ideal Rule” of Requirements Engineering: When prescribing (including formalising) require-
ments, also formulate tests and properties for model checking and theorems whose proof should show adherence to
the requirements ⊗ The rule is labelled “ideal” since such precautions will not be shown in this paper. The rule is
clear. It is a question for proper management to see that it is adhered to. See the “Caveat” above !

Rule 3. Requirements Adequacy: Make sure that requirements cover what users expect ⊗ That is, do not express
a requirement for which you have no users, but make sure that all users’ requirements are represented or somehow
accommodated. In other words: the requirements gathering process needs to be like an extremely “fine-meshed net”:
One must make sure that all possible stake-holders have been involved in the requirements acquisition process, and
that possible conflicts and other inconsistencies have been obviated.

Rule 4. Requirements Implementability: Make sure that requirements are implementable ⊗ That is, do not ex-
press a requirement for which you have no assurance that it can be implemented. In other words, although the require-
ments phase is not a design phase, one must tacitly assume, perhaps even indicate, somehow, that an implementation is
possible. But the requirements in and by themselves, may stay short of expressing such designs. Caveat: The domain
and requirements specifications are, in our approach, model-oriented. That helps expressing ‘implementability’.

Definition 2: Requirements (II): By requirements we shall understand a document which prescribes desired
properties of a machine: what endurants the machine shall “maintain”, and what the machine shall (must; not should)

9⊗ marks the end of a rule.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 11

offer of functions and of behaviours while also expressing which events the machine shall “handle” ⊙ By a machine
that “maintains” endurants we shall mean: a machine which, “between” users’ use of that machine, “keeps” the data
that represents these entities. From earlier we repeat:

Definition 3: Machine: By machine we shall understand a, or the, combination of hardware and software that is the
target for, or result of the required computing systems development⊙ So this, then, is a main objective of requirements
development: to start towards the design of the hardware + software for the computing system.

Definition 4: Requirements (III): To specify the machine ⊙ When we express requirements and wish to “convert”
such requirements to a realisation, i.e., an implementation, then we find that some requirements (parts) imply certain
properties to hold of the hardware on which the software to be developed is to “run”, and, obviously, that remaining
— probably the larger parts of the — requirements imply certain properties to hold of that software.

Whereas domain descriptions may describe phenomena that cannot be computed, requirements prescriptions must
describe computable phenomena.

3.1. Some Requirements Aspects

We shall unravel requirements in two stages — (i) the first stage is sketchy (and thus informal) (ii) while the last stage
is systematic and both informal and formal. The sketchy stage consists of (i.1) a narrative problem/objective sketch ,
(i.2) a narrative system requirements sketch , and (i.3) a narrative user & external equipment requirements sketch . (ii)
The narrative and formal stage consists of design assumptions and design requirements. It is systematic, and mandates
both strict narrative and formal prescriptions. And it is “derivable” from the domain description. In a sense stage (i)
is made superfluous once stage (ii) has been completed. The formal, engineering design work is to based on stage
(ii). The purpose of the two stages (i–ii) is twofold: to gently lead the requirements engineer and the reader into
the requirements problems while leading the requirements engineer and reader to focus on the very requirements
essentials.

3.1.1. Requirements Sketches

Problem, Solution and Objective Sketch

Definition 5. Problem, Solution and Objective Sketch: By a problem, solution and objective sketch we un-
derstand a narrative which emphasises what the problem to be solved is, outlines a possible solution and sketches an
objective of the solution ⊙

Example 1. The Problem/Objective Requirements: A Sketch: The problem is that of traffic congestion. The chosen

solution is to [build and] operate a toll-road system integrated into a road net and charge toll-road users a usage fee. The objective is

therefore to create a road-pricing product. By a road-pricing product we shall understand an information technology-based system

containing computers and communications equipment and software that enables the recording of vehicle movements within the toll-

road and thus enables the owner of the road net to charge the owner of the vehicles fees for the usage of that toll-road �

Systems Requirements

Definition 6. System Requirements: By a system requirements narrative we understand a narrative which
emphasises the overall assumed and/or required hardware and software system equipment ⊙

Example 2. The Road-pricing System Requirements: A Narrative: The requirements are based on the following

constellation of system equipment: (i) there is assumed a GNSS: a GLOBAL NAVIGATION SATELLITE SYSTEM; (ii) there are vehicles

equipped with GNSS receivers; (iii) there is a well-delineated road net called a toll-road net with specially equipped toll-gates with

vehicle identification sensors, exit barriers which afford (only specially equipped) vehicles to exit10 from the toll-road net; and (iv)

there is a road-pricing calculator. The system to be designed (from the requirements) is the road-pricing calculator. These four

system elements are required to behave and interact as follows: (a) The GNSS is assumed to continuously offer vehicles information

about their global position; (b) vehicles shall contain a GNSS receiver which based on the global position information shall

regularly calculate their timed local position and offer this to the calculator — while otherwise cruising the general road net as well

as the toll-road net, the latter while carefully moving through toll-gates; (c) toll-gates shall register the identity of vehicles passing the

toll-road and offer this information to the calculator; and (d) the calculator shall accept all messages from vehicles and gates and use

10We omit consideration of entry barriers.

12 Dines Bjørner

this information to record the movements of vehicles and bill these whenever they exit the toll-road. The requirements are therefore

to include assumptions about [1] the GNSS satellite and telecommunications equipment, [2] the vehicle GNSS receiver

equipment, [3] the vehicle handling of GNSS input and forwarding, to the road pricing system, of its interpretation of GNSS input,

[4] the toll-gate sensor equipment, [5] the toll-gate barrier equipment, [6] the toll-gate handling of entry, vehicle identification and

exit sensors and the forwarding of vehicle identification to the road pricing calculator, and [7] the communications between toll-gates

and vehicles, on “one side”, and the road pricing calculator, on the “other side”. It is in this sense that the requirements are for an

information technology-based system of both software and hardware — not just hard computer and communications equipment, but

also movement sensors and electro-mechanical “gear” �

User and External Equipment Requirements

Definition 7. User and External Equipment Requirements: By a user and external equipment require-
ments narrative we understand a narrative which emphasises assumptions about the human user and external equip-
ment interfaces to the system components⊙

The user and external equipment requirements detail, and thus make explicit, the assumptions listed in Example 2.

Example 3. The Road-pricing User and External Equipment Requirements: Narrative: The human users

of the road-pricing system are: (a) vehicle drivers, (b) toll-gate sensor, actuator and barrier service staff, and (c) the road-pricing

calculator service staff. The external equipment are: (1) firstly, the GNSS satellites and the telecommunications equipment which

enables communication between (i) the GNSS satellites and vehicles, (ii) vehicles and the road-pricing calculator and (iii) toll-gates

and the road-pricing calculator. Moreover, the external equipment are (2) the toll-gates with their sensors: entry, vehicle identity, and

exit, and the barrier actuator. The external equipment are, finally, (3), the vehicles ! �

That is, although we do indeed exemplify domain and requirements aspects of users and external equipment, we do
not expect to machine, i.e., to hardware or software design these elements; they are assumed already implemented !

3.1.2. The Narrative and Formal Requirements Stage

Assumption and Design Requirements

Definition 8. Assumption and Design Requirements: By assumption and design requirements we
understand precise prescriptions of the endurants and perdurants of the (to be designed) system components and the
assumptions which that design must rely upon ⊙

The specification principles, techniques and tools of expressing design and assumptions, upon which the design can
be relied, will be covered and exemplified, extensively, in Sects. 4–5.

3.2. The Three Phases of Requirements Engineering

There are, as we see it, three kinds of design assumptions and requirements: (i) domain requirements, (ii) interface
requirements and (iii) machine requirements. (i) Domain requirements are those requirements which can be ex-
pressed sôlely using terms of the domain ⊙ (ii) Interface requirements are those requirements which can be
expressed only using technical terms of both the domain and the machine ⊙ (iii) Machine requirements are those
requirements which, in principle, can be expressed sôlely using terms of the machine ⊙

Definition 9. Verification Paradigm: Some preliminary designations: let D designate the the domain description;
let R designate the requirements prescription, and let S designate the system design. Now D ,S |= R shall be read:
it must be verified that the S ystem design satisfies the Requirements prescription in the context of the Domain
description ⊙

The “in the context of D ...” term means that proofs of S oftware design correctness with respect to Requirements will
often have to refer to Domain requirements assumptions. We refer to [GGJZ00, Gunter, Jackson and Zave, 2000] for
an analysis of a varieties of forms in which |= relate to variants of D , R and S .

3.3. Order of Presentation of Requirements Prescriptions

The domain requirements development stage — as we shall see — can be sub-staged into: projection , instantia-
tion , determination , extension and fitting . The interface requirements development stage — can be sub-staged into

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 13

shared: endurant, action, event and behaviour developments, where “sharedness” pertains to phenomena shared be-
tween, i.e., “present” in, both the domain (concretely, manifestly) and the machine (abstractly, conceptually). These
development stages need not be pursued in the order of the three stages and their sub-stages. We emphasize that one
thing is the stages and steps of development, as for example these: projection, instantiation, determination, extension,
fitting, shared endurants, shared actions, shared events, shared behaviours, etcetera, another thing is the requirements
prescription that results from these development stages and steps. The further software development, after and on the
basis of the requirements prescription starts only when all stages and steps of the requirements prescription have been
fully developed. The domain engineer is now free to rearrange the final prescription, irrespective of the order in which
the various sections were developed, in such a way as to give a most pleasing, pedagogic and cohesive reading (i.e.,
presentation). From such a requirements prescription one can therefore not necessarily see in which order the various
sections of the prescription were developed.

3.4. Design Requirements and Design Assumptions

A crucial distinction is between design requirements and design assumptions. The design requirements are those
requirements for which the system designer has to implement hardware or software in order satisfy system user
expectations ⊙ The design assumptions are those requirements for which the system designer does not have
to implement hardware or software, but whose properties the designed hardware, respectively software relies on for
proper functioning ⊙

Example 4. Road Pricing System — Design Requirements: The design requirements for the road pricing calculator

of this paper are for the design (ii) of that part of the vehicle software which interfaces the GNSS receiver and the road pricing

calculator (cf. Items 129.–132.), (iii) of that part of the toll-gate software which interfaces the toll-gate and the road pricing calculator

(cf. Items 137.–139.) and (i) of the road pricing calculator (cf. Items 168.–181.) �

Example 5. Road Pricing System — Design Assumptions: The design assumptions for the road pricing calculator

include: (i) that vehicles behave as prescribed in Items 128.–132., (ii) that the GNSS regularly offers vehicles correct information as

to their global position (cf. Item 129.), (iii) that toll-gates behave as prescribed in Items 134.–139., and (iv) that the road net is formed

and well-formed as defined in Examples 10–12 �

Example 6. Toll-Gate System — Design Requirements: The design requirements for the toll-gate system of this

paper are for the design of software for the toll-gate and its interfaces to the road pricing system, i.e., Items 133.–134. ⊙

Example 7. Toll-Gate System — Design Assumptions: The design assumptions for the toll-gate system include (i)

that the vehicles behave as per Items 128.–132., and (ii) that the road pricing calculator behave as per Items 168.–181. ⊙

3.5. Derived Requirements

In building up the domain, interface and machine requirements a number of machine concepts are introduced. These
machine concepts enable the expression of additional requirements. It is these we refer to as derived requirements.
Techniques and tools espoused in such classical publications as [DvLF93, Jac01, ZH04, Lau02, van09] can in those
cases be used to advantage.

4. Domain Requirements

Domain requirements primarily express the assumptions that a design must rely upon in order that that design can
be verified. Although domain requirements firstly express assumptions it appears that the software designer is well-
advised in also implementing, as data structures and procedures, the endurants, respectively perdurants expressed in
the domain requirements prescriptions. Whereas domain endurants are “real-life” phenomena they are now, in domain
requirements prescriptions, abstract concepts (to be represented by a machine).

Definition 10. Domain Requirements Prescription: A domain requirements prescription is that subset of
the requirements prescription whose technical terms are defined in a domain description ⊙

To determine a relevant subset all we need is collaboration with requirements, cum domain stake-holders. Experimental
evidence, in the form of example developments of requirements prescriptions from domain descriptions, appears to

14 Dines Bjørner

show that one can formulate techniques for such developments around a few domain-description-to-requirements-pre-
scription operations. We suggest these: projection , instantiation , determination , extension and fitting . In Sect. 3.3
we mentioned that the order in which one performs these domain-description-to-domain-requirements-prescription
operations is not necessarily the order in which we have listed them here, but, with notable exceptions, one is well-
served in starting out requirements development by following this order.

4.1. Domain Projection

Definition 11. Domain Projection: By a domain projection we mean a subset of the domain description, one
which projects out all those endurants: parts, materials and components, as well as perdurants: actions, events and
behaviours that the stake-holders do not wish represented or relied upon by the machine ⊙

The resulting document is a partial domain requirements prescription . In determining an appropriate subset the re-
quirements engineer must secure that the final “projection prescription” is complete and consistent — that is, that
there are no “dangling references”, i.e., that all entities and their internal properties that are referred to are all properly
defined.

4.1.1. Domain Projection — Narrative

We now start on a series of examples that illustrate domain requirements development.

Example 8. Domain Requirements. Projection: A Narrative Sketch: We require that the road pricing system

shall [at most] relate to the following domain entities – and only to these11: the net, its links and hubs, and their properties (unique

identifiers, mereologies and some attributes), the vehicles, as endurants, and the general vehicle behaviours, as perdurants. We treat

projection together with a concept of simplification. The example simplifications are vehicle positions and, related to the simpler vehicle

position, vehicle behaviours. To prescribe and formalise this we copy the domain description. From that domain description we remove

all mention of the hub insertion action, the link disappearance event, and the monitor �

As a result we obtain ∆P , the projected version of the domain requirements prescription12.

4.1.2. Domain Projection — Formalisation

The requirements prescription hinges, crucially, not only on a systematic narrative of all the projected, instantiated,
determinated, extended and fitted specifications, but also on their formalisation. In the formal domain projection
example we, regretfully, omit the narrative texts. In bringing the formal texts we keep the item numbering from Sect. 2,
where you can find the associated narrative texts.

Example 9. Domain Requirements — Projection:

Main Sorts

type

1. ∆P

1.a. NP

1.b. FP

value

1.a. obs part NP : ∆P→NP

1.b. obs part FP : ∆P→FP

type

2.a. HAP

2.b. LAP

value

2.a. obs part HA: NP → HA
2.b. obs part LA: NP → LA �

Concrete Types

type

3. HP , HSP = HP -set

4. LP , LSP = LP -set
5. VP , VSP = VP -set

value

3. obs part HSP : HAP → HSP

4. obs part LSP : LAP → LSP

5. obs part VSP : FP → VSP

6.a. links: ∆P → L-set

6.a. links(δP) ≡ obs part LSR (obs part LAR (δR))

11By ‘relate to . . . these’ we mean that the required system does not rely on domain phenomena that have been “projected away”.
12Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 15

6.b. hubs: ∆P → H-set 6.b. hubs(δP) ≡ obs part HSP (obs part HAP (δP)) �

Unique Identifiers

type

7.a. HI, LI, VI, MI
value

7.c. uid HI: HP → HI
7.c. uid LI: LP → LI

7.c. uid VI: VP → VI
7.c. uid MI: MP → MI
axiom

7.b. HI
⋂

LI=Ø, HI
⋂

VI=Ø, HI
⋂

MI=Ø,
7.b. LI

⋂
VI=Ø, LI

⋂
MI=Ø, VI

⋂
MI=Ø �

Mereology

value
12. obs mereo HP : HP → LI-set

13. obs mereo LP : LP → HI-set

13. axiom ∀ l:LP
• card obs mereo LP (l)=2

14. obs mereo VP : VP → MI
15. obs mereo MP : MP → VI-set

axiom

16. ∀ δP :∆P , hs:HS•hs=hubs(δ), ls:LS•ls=links(δP) ⇒
16. ∀ h:HP

•h ∈ hs ⇒
16. obs mereo HP (h)⊆xtr his(δP) ∧

17. ∀ l:LP
•l ∈ ls •

16. obs mereo LP (l)⊆xtr lis(δP) ∧
18.a. let f:FP

•f=obs part FP (δP) ⇒
18.a. vs:VSP

•vs=obs part VSP (f) in
18.a. ∀ v:VP

•v ∈ vs ⇒
18.a. uid VP (v) ∈ obs mereo MP (m) ∧
18.b. obs mereo MP (m)
18.b. = {uid VP (v)|v:V•v ∈ vs}
18.b. end �

Attributes: We project attributes of hubs, links and vehicles.
First hubs:

type

19.a. GeoH
19.b. HΣP = (LI×LI)-sett
19.c. HΩP = HΣP -set
value

19.b. attr HΣP : HP → HΣP

19.c. attr HΩP : HP → HΩP

axiom

20. ∀ δP :∆P ,
20. let hs = hubs(δP) in

20. ∀ h:HP
• h ∈ hs •

20.a. xtr lis(h)⊆xtr lis(δP)
20.b. ∧ attr ΣP (h) ∈ attr ΩP (h)
20. end �

Then links:

type
23. GeoL
24.a. LΣP = (HI×HI)-set

24.b. LΩP = LΣP -set

value

23. attr GeoL: L → GeoL
24.a. attr LΣP : LP → LΣP

24.b. attr LΩP : LP → LΩP

axiom

24.a.− 24.b. on Page 5.

Finally vehicles: For ‘road pricing’ we need vehicle positions. But, for “technical reasons”, we must abstain from the detailed description
given in Items 25.–25.c.13 We therefore simplify vehicle positions.

51. A simplified vehicle position designates

a. either a link

b. or a hub,

type
51. SVPos = SonL | SatH

51.a. SonL :: LI
51.b. SatH :: HI
axiom
25.a.’ ∀ n:N, SonL(li):SVPos •

25.a.’ ∃ l:L•l ∈obs part LS(obs part N(n)) ⇒ li=uid L(l)
25.c.’ ∀ n:N, SatH(hi):SVPos •

25.c.’ ∃ h:H•h ∈obs part HS(obs part N(n)) ⇒ hi=uid H(h)

Global Values

value

35. δP :∆P ,
36. n:NP = obs part NP (δP),
36. ls:LP -set = links(δP),

36. hs:HP -set = hubs(δP),
36. lis:LI-set = xtr lis(δP),
36. his:HI-set = xtr his(δP)

Behaviour Signatures: We omit the monitor behaviour.

13The ‘technical reasons’ are that we assume that the GNSS cannot provide us with direction of vehicle movement and therefore we cannot,
using only the GNSS provide the details of ‘offset’ along a link (onL) nor the “from/to link” at a hub (atH).

16 Dines Bjørner

52. We leave the vehicle behaviours’ attribute argument unde-
fined.

type

52. ATTR
value

42. trsP : Unit → Unit
43. vehP : VI×MI×ATTR → ... Unit

The System Behaviour: We omit the monitor behaviour.

value

45.a. trsP ()=‖{vehP (uid VI(v),obs mereo V(v),) | v:VP
•v ∈ vs}

The Vehicle Behaviour: Given the simplification of vehicle positions we simplify the vehicle behaviour given in Items 46.–47.

46.′ vehvi(mi)(vp:SatH(hi)) ≡
46.a.′ v m ch[vi,mi]!SatH(hi) ; vehvi(mi)(SatH(hi))
46.b.i’ ⌈⌉ let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

46.b.ii′ v m ch[vi,mi]!SonL(li) ; vehvi(mi)(SonL(li)) end
46.c.′ ⌈⌉ stop

47.′ vehvi(mi)(vp:SonL(li)) ≡
47.a.′ v m ch[vi,mi]!SonL(li) ; vehvi(mi)(SonL(li))
47.b.iiA′ ⌈⌉ let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

47.b.iiB′ v m ch[vi,mi]!SatH(hi) ; vehvi(mi)(atH(hi)) end
47.c.′ ⌈⌉ stop

We can simplify Items 46.′–47.c.′ further.

53. vehvi(mi)(vp) ≡
54. v m ch[vi,mi]!vp ; vehvi(mi)(vp)
55. ⌈⌉ case vp of
55. SatH(hi) →
56. let li:LI•li ∈ obs mereo H(get hub(hi)(n)) in

57. v m ch[vi,mi]!SonL(li) ; vehvi(mi)(SonL(li)) end,
55. SonL(li) →
58. let hi:HI•hi ∈ obs mereo L(get link(li)(n)) in

59. v m ch[vi,mi]!SatH(hi) ; vehvi(mi)(atH(hi)) end end

60. ⌈⌉ stop

53. This line coalesces Items 46.′ and 47.′.

54. Coalescing Items 46.a.′ and 47.′.

55. Captures the distinct parameters of Items 46.′ and 47.′.

56. Item 46.b.i′.

57. Item 46.b.ii′ .

58. Item 47.b.iiA′.

59. Item 47.b.iiB′ .

60. Coalescing Items 46.c.′ and 47.c.′.

The above vehicle behaviour definition will be transformed (i.e., further “refined”) in Sect. 5.1.3’s Example 18; cf. Items 128.– 132. on Page 24 �

4.1.3. Discussion

Domain projection can also be achieved by developing a “completely new” domain description — typically on the
basis of one or more existing domain description(s) — where that “new” description now takes the rôle of being the
project domain requirements.

4.2. Domain Instantiation

Definition 12. Instantiation: By domain instantiation we mean a refinement of the partial domain requirements
prescription (resulting from the projection step) in which the refinements aim at rendering the endurants: parts, materi-
als and components, as well as the perdurants: actions, events and behaviours of the domain requirements prescription
more concrete, more specific ⊙ Instantiations usually render these concepts less general.

Properties that hold of the projected domain shall also hold of the (therefrom) instantiated domain.
Refinement of endurants can be expressed (i) either in the form of concrete types, (ii) or of further “delineating”

axioms over sorts, (iii) or of a combination of concretisation and axioms. We shall exemplify the third possibility.
Example 10 express requirements that the road net (on which the road-pricing system is to be based) must satisfy.
Refinement of perdurants will not be illustrated (other than the simplification of the vehicle projected behaviour).

4.2.1. Domain Instantiation

Example 10. Domain Requirements. Instantiation Road Net: We now require that there is, as before, a road net,
nI :NI , which can be understood as consisting of two, “connected sub-nets”. A toll-road net, trnI :TRNI , cf. Fig. 1 on the facing page,
and an ordinary road net, nP ′ . The two are connected as follows: The toll-road net, trnI , borders some toll-road plazas, in Fig. 1 on
the next page shown by white filled circles (i.e., hubs). These toll-road plaza hubs are proper hubs of the ‘ordinary’ road net, n′

P
.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 17

tij

trn

tpj

...

exitentry

toll−road intersection hubordinary net hub link

n
o

tpa tpb

tia tib tic

tpc tpm

tim

tp

ti

l

l

Fig. 1. A simple, linear toll-road net trn. t p j : toll plaza j, ti j : toll road intersection j.
Upper dashed sub-figure hint at an ordinary road net no.
Lower dotted sub-figure hint at a toll-road net trn.
Dash-dotted (- - -) ”V”-images above t p js hint at links to remaining “parts” of no.

61. The instantiated domain, δI :∆I has just the net, nI :NI

being instantiated.

62. The road net consists of two “sub-nets”

a. an “ordinary” road net, no:NP ′ and

b. a toll-road net proper, trn:TRNI —

c. “connected” by an interface hil:HIL:

i That interface consists of a number of toll-road
plazas (i.e., hubs), modeled as a list of hub identi-
fiers, hil:HI∗.

ii The toll-road plaza interface to the toll-road net,
trn:TRNI

14, has each plaza, hil[i], connected to
a pair of toll-road links: an entry and an exit link:
(le:L, lx :L).

iii The toll-road plaza interface to the ‘ordinary’ net,
no:NP ′ , has each plaza, i.e., the hub designated
by the hub identifier hil[i], connected to one or more
ordinary net links, {li1 , li2 , · · · , lik}.

62.b. The toll-road net, trn:TRNI , consists of three collec-
tions (modeled as lists) of links and hubs:

i a list of pairs of toll-road entry/exit links:
〈(le1

, lx1
), · · · ,(leℓ , lxℓ)〉,

ii a list of toll-road intersection hubs: 〈hi1 ,hi2 , · · · ,hiℓ 〉,
and

iii a list of pairs of main toll-road (“up” and “down”)
links: 〈(mli1u

,mli1d
),(mi2u

,mi2d
), · · · ,(miℓu ,miℓd)〉.

d. The three lists have commensurate lengths (ℓ).

ℓ is the number of toll plazas, hence also the number of toll-road intersection hubs and therefore a number one larger than the number
of pairs of main toll-road (“up” and “down”) links �

type

61. ∆I

62. NI = NP ′ × HIL × TRN
62.a. NP ′

62.b. TRNI = (L×L)∗×H∗×(L×L)∗

62.c. HIL = HI∗

axiom

62.d. ∀ nI :NI
•

62.d. let (n∆,hil,(exll,hl,lll)) = nI in

62.d. len hil = len exll = len hl = len lll + 1
62.d. end �

We have named the “ordinary” net sort (primed) NP ′ . It is “almost” like (unprimed) NP — except that the interface hubs are also
connected to the toll-road net entry and exit links.

The partial concretisation of the net sorts, NP , into NI requires some additional well-formedness conditions to be satisfied.

63. The toll-road intersection hubs all15 have distinct identifiers.

63. wf dist toll road isect hub ids: H∗→Bool

63. wf dist toll road isect hub ids(hl) ≡
63. len hl = card xtr his(hl)

64. The toll-road links all have distinct identifiers.

64. wf dist toll road u d link ids: (L×L)∗→Bool

64. wf dist toll road u d link ids(lll) ≡
64. 2 × len lll = card xtr lis(lll)

14We (sometimes) omit the subscript I when it should be clear from the context what we mean.
15A ‘must’ can be inserted in front of all ‘all’s,

18 Dines Bjørner

65. The toll-road entry/exit links all have distinct identifiers.

65. wf dist e x link ids: (L×L)∗→Bool

65. wf dist e x link ids(exll) ≡
65. 2 × len exll = card xtr lis(exll)

66. Proper net links must not designate toll-road intersection
hubs.

66. wf isoltd toll road isect hubs: HI∗×H∗→NI →Bool

66. wf isoltd toll road isect hubs(hil,hl)(nI) ≡
66. let ls=xtr links(nI) in
66. let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in

66. his ∩ xtr his(hl) = {} end end

67. The plaza hub identifiers must designate hubs of the ‘ordi-
nary’ net.

67. wf p hubs pt of ord net: HI∗→N′
∆→Bool

67. wf p hubs pt of ord net(hil)(n’∆) ≡
67. elems hil ⊆ xtr his(n′∆)

68. The plaza hub mereologies must each,

a. besides identifying at least one hub of the ordinary net,

b. also identify the two entry/exit links with which they are
supposed to be connected.

68. wf p hub interf: N′
∆→Bool

68. wf p hub interf(no ,hil,(exll, ,)) ≡
68. ∀ i:Nat • i ∈ inds exll ⇒
68. let h = get H(hil(i))(n′∆) in

68. let lis = obs mereo H(h) in

68. let lis′ = lis \ xtr lis(n′) in
68. lis′ = xtr lis(exll(i)) end end end

69. The mereology of each toll-road intersection hub must iden-
tify

a. the entry/exit links

b. and exactly the toll-road ‘up’ and ‘down’ links

c. with which they are supposed to be connected.

69. wf toll road isect hub iface: NI →Bool

69. wf toll road isect hub iface(, ,(exll,hl,lll)) ≡

69. ∀ i:Nat • i ∈ inds hl ⇒
69. obs mereo H(hl(i)) =
69.a. xtr lis(exll(i)) ∪
69. case i of

69.b. 1 → xtr lis(lll(1)),
69.b. len hl → xtr lis(lll(len hl−1))
69.b. → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))
69. end

70. The mereology of the entry/exit links must identify exactly
the

a. interface hubs and the

b. toll-road intersection hubs

c. with which they are supposed to be connected.

70. wf exll: (L×L)∗×HI∗×H∗→Bool

70. wf exll(exll,hil,hl) ≡
70. ∀ i:Nat • i ∈ len exll
70. let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in
70. obs mereo L(el) = obs mereo L(xl)
70. = {hi} ∪ {uid H(h)} end

70. pre: len eell = len hil = len hl

71. The mereology of the toll-road ‘up’ and ‘down’ links must

a. identify exactly the toll-road intersection hubs

b. with which they are supposed to be connected.

71. wf u d links: (L×L)∗×H∗→Bool

71. wf u d links(lll,hl) ≡
71. ∀ i:Nat • i ∈ inds lll ⇒
71. let (ul,dl) = lll(i) in
71. obs mereo L(ul) = obs mereo L(dl) =
71.a. uid H(hl(i)) ∪ uid H(hl(i+1)) end

71. pre: len lll = len hl+1

We have used some additional auxiliary functions:

xtr his: H∗→HI-set
xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set

xtr lis(l′,l′′) ≡ {uid LI(l′)}∪{uid LI(l′′)}
xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l′,l′′)|(l′,l′′):(L×L)•(l′,l′′)∈ elems lll}

72. The well-formedness of instantiated nets is now the con-
junction of the individual well-formedness predicates above.

72. wf instantiated net: NI → Bool

72. wf instantiated net(n′∆ ,hil,(exll,hl,lll))
63. wf dist toll road isect hub ids(hl)
64. ∧ wf dist toll road u d link ids(lll)

65. ∧ wf dist e e link ids(exll)
66. ∧ wf isolated toll road isect hubs(hil,hl)(n′)
67. ∧ wf p hubs pt of ord net(hil)(n′)
68. ∧ wf p hub interf(n′∆ ,hil,(exll, ,))
69. ∧ wf toll road isect hub iface(, ,(exll,hl,lll))
70. ∧ wf exll(exll,hil,hl)
71. ∧ wf u d links(lll,hl)

4.2.2. Domain Instantiation — Abstraction

Example 11. Domain Requirements. Instantiation Road Net, Abstraction: Domain instantiation has refined
an abstract definition of net sorts, nP :NP , into a partially concrete definition of nets, nI :NI . We need to show the refinement relation:

• abstraction(nI) = nP .

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 19

value

73. abstraction: NI → NP

74. abstraction(n′∆ ,hil,(exll,hl,lll)) ≡
75. let nP :NP

•

75. let hs = obs part HSP (obs part HAP (n′
P

)),
75. ls = obs part LSP (obs part LAP (n′

P
)),

75. ths = elems hl,
75. eells = xtr links(eell), llls = xtr links(lll) in

76. hs∪ths=obs part HSP (obs part HAP (nP))
77. ∧ ls∪eells∪llls=obs part LSP (obs part LAP (nP))
78. nP end end

73. The abstraction function takes a concrete net, nI :NI , and yields
an abstract net, nP :NP .

74. The abstraction function doubly decomposes its argument into
constituent lists and sub-lists.

75. There is postulated an abstract net, nP :NP , such that

76. the hubs of the concrete net and toll-road equals those of the ab-
stract net, and

77. the links of the concrete net and toll-road equals those of the ab-
stract net.

78. And that abstract net, nP :NP , is postulated to be an abstraction
of the concrete net.

4.2.3. Discussion

Domain descriptions, such as illustrated in [Bjø16b, Manifest Domains: Analysis & Description] and in this paper,
model families of concrete, i.e., specifically occurring domains. Domain instantiation, as exemplified in this section
(i.e., Sect. 4.2), “narrow down” these families. Domain instantiation, such as it is defined, cf. Definition 12 on Page 16,
allows the requirements engineer to instantiate to a concrete instance of a very specific domain, that, for example, of
the toll-road between Bolzano Nord and Trento Sud in Italy (i.e., n=7)16.

4.3. Domain Determination

Definition 13. Determination: By domain determination we mean a refinement of the partial domain require-
ments prescription, resulting from the instantiation step, in which the refinements aim at rendering the endurants:
parts, materials and components, as well as the perdurants: functions, events and behaviours of the partial domain
requirements prescription less non-determinate, more determinate ⊙

Determinations usually render these concepts less general. That is, the value space of endurants that are made more
determinate is “smaller”, contains fewer values, as compared to the endurants before determination has been “applied”.

4.3.1. Domain Determination: Example

We show an example of ‘domain determination’. It is expressed sôlely in terms of axioms over the concrete toll-road
net type.

Example 12. Domain Requirements. Determination Toll-roads: We focus only on the toll-road net. We single out
only two ’determinations’:

All Toll-road Links are One-way Links

79. The entry/exit and toll-road links

a. are always all one way links,

b. as indicated by the arrows of Fig. 1 on Page 17,

c. such that each pair allows traffic in opposite directions.

79. opposite traffics: (L×L)∗ × (L×L)∗ → Bool
79. opposite traffics(exll,lll) ≡
79. ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll ⇒

79.a. let (ltσ ,lfσ) = (attr LΣ(lt),attr LΣ(lf)) in
79.a.′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
79.a.′′. ∧ card ltσ = 1 = card lfσ
79. ∧ let ({(hi,hi′)},{(hi′′,hi′′′)}) = (ltσ ,lfσ) in
79.c. hi=hi′′′ ∧ hi′=hi′′

79. end end

Predicates 79.a.′. and 79.a.′′. express the same property.

All Toll-road Hubs are Free-flow

80. The hub state spaces are singleton sets of the toll-road hub
states which always allow exactly these (and only these)
crossings:

a. from entry links back to the paired exit links,

b. from entry links to emanating toll-road links,

c. from incident toll-road links to exit links, and

d. from incident toll-road link to emanating toll-road links.

80. free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

16Here we disregard the fact that this toll-road does not start/end in neither Bolzano Nord nor Trento Sud.

20 Dines Bjørner

80. free flow toll road hubs(exl,ll) ≡
80. ∀ i:Nat•i ∈ inds hl ⇒
80. attr HΣ(hl(i)) =
80.a. hσ ex ls(exl(i))

80.b. ∪ hσ et ls(exl(i),(i,ll))
80.c. ∪ hσ tx ls(exl(i),(i,ll))
80.d. ∪ hσ tt ls(i,ll)

80.a.: from entry links back to the paired exit links:

80.a. hσ ex ls: (L×L)→LΣ
80.a. hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}

80.b.: from entry links to emanating toll-road links:

80.b. hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
80.b. hσ et ls((e,),(i,ll)) ≡
80.b. case i of

80.b. 2 → {(uid LI(e),uid LI(em(ll(1))))},
80.b. len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},
80.b. → {(uid LI(e),uid LI(em(ll(i−1)))),
80.b. (uid LI(e),uid LI(em(ll(i))))}
80.b. end

The em and in in the toll-road link list (em:L×in:L)∗ designate se-
lectors for emanating, respectively incident links. 80.c.: from incident
toll-road links to exit links:

80.c. hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
80.c. hσ tx ls((,x),(i,ll)) ≡
80.c. case i of

80.c. 2 → {(uid LI(in(ll(1))),uid LI(x))},
80.c. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},
80.c. → {(uid LI(in(ll(i−1))),uid LI(x)),
80.c. (uid LI(in(ll(i))),uid LI(x))}
80.c. end

80.d.: from incident toll-road link to emanating toll-road links:

80.d. hσ tt ls: Nat×(em:L×in:L)∗→LΣ
80.d. hσ tt ls(i,ll) ≡
80.d. case i of

80.d. 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
80.d. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
80.d. → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),
80.d. (uid LI(in(ll(i))),uid LI(em(ll(i))))}
80.d. end �

The example above illustrated ‘domain determination’ with respect to endurants. Typically “endurant determination”
is expressed in terms of axioms that limit state spaces — where “endurant instantiation” typically “limited” the mere-
ology of endurants: how parts are related to one another. We shall not exemplify domain determination with respect to
perdurants.

4.3.2. Discussion

The borderline between instantiation and determination is fuzzy. Whether, as an example, fixing the number of toll-
road intersection hubs to a constant value, e.g., n=7, is instantiation or determination, is really a matter of choice !

4.4. Domain Extension

Definition 14. Extension: By domain extension we understand the introduction of endurants (see Sect. 4.4.1)
and perdurants (see Sect. 5.2) that were not feasible in the original domain, but for which, with computing and com-
munication, and with new, emerging technologies, for example, sensors, actuators and satellites, there is the possibility
of feasible implementations, hence the requirements, that what is introduced becomes part of the unfolding require-
ments prescription ⊙

4.4.1. Endurant Extensions

Definition 15. Endurant Extension: By an endurant extension we understand the introduction of one or more
endurants into the projected, instantiated and determined domain DR resulting in domain DR

′, such that these form a
conservative extension of the theory, TDR

denoted by the domain requirements DR (i.e., “before” the extension), that
is: every theorem of TDR

is still a theorem of TDR
′ .

Usually domain extensions involve one or more of the already introduced sorts. In Example 13 we introduce (i.e.,
“extend”) vehicles with GPSS-like sensors, and introduce toll-gates with entry sensors, vehicle identification sensors,
gate actuators and exit sensors. Finally road pricing calculators are introduced.

Example 13. Domain Requirements — Endurant Extension: We present the extensions in several steps. Some
of them will be developed in this section. Development of the remaining will be deferred to Sect. 5.1.3. The reason for this deferment
is that those last steps are examples of interface requirements. The initial extension-development steps are: [a] vehicle extension,
[b] sort and unique identifiers of road price calculators, [c] vehicle to road pricing calculator channel, [d] sorts and dynamic attributes
of toll-gates, [e] road pricing calculator attributes, [f] “total” system state, and [g] the overall system behaviour. This decomposition
establishes system interfaces in “small, easy steps”.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 21

[a] Vehicle Extension:

81. There is a domain, δE :∆E , which contains

82. a fleet, fE :FE , that is,

83. a set, vsE :VSE , of

84. extended vehicles, vE :VE — their extension amounting to

85. a dynamic reactive attribute, whose value, ti-gpos:TiGpos,

at any time, reflects that vehicle’s time-stamped global po-
sition.17

86. The vehicle’s GNSS receiver calculates, loc pos, its local po-
sition, lpos:LPos, based on these signals.

87. Vehicles access these external attributes via the external
attribute channel, attr TiGPos ch.

type

81. ∆E

82. FE

83. VSE = VE -set

84. VE

85. TiGPos = T × GPos
86. GPos, LPos
value

81. δE :∆E

82. obs part FE : ∆E → FE

82. f = obs part FE (δE)
83. obs part VSE : FE → VSE

83. vs = obs part VSE (f)
83. vis = xtr vis(vs)
85. attr TiGPos ch[vi]?
86. loc pos: GPos → LPos
channel

86. {attr TiGPos ch[vi]|vi:VI•vi ∈ vis}:TiGPos

We define two auxiliary functions,

88. xtr vs, which given a domain, or a fleet, extracts its set of
vehicles, and

89. xtr vis which given a set of vehicles generates their unique
identifiers.

value

88. xtr vs: (∆E |FE |VSE) → VE -set

88. xtr vs(arg) ≡
88. is ∆E (arg) → obs part VSE (obs part FE (arg)),
88. is FE (arg) → obs part VSE (arg),
88. is VSE (arg) → arg
89. xtr vis: (∆E |FE |VSE) → VI-set

89. xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

[b] Road Pricing Calculator: Basic Sort and
Unique Identifier:
90. The domain δE :∆E , also contains a pricing calculator, c:CδE

,

with unique identifier ci:CI.

type

90. C, CI
value

90. obs part C: ∆E → C
90. uid CI: C → CI
90. c = obs part C(δE)
90. ci = uid CI(c)

[c] Vehicle to Road Pricing Calculator Channel:
91. Vehicles can, on their own volition, offer the timed local po-

sition, viti-lpos:VITiLPos

92. to the pricing calculator, c:CE along a vehicles-to-calculator
channel, v c ch.

type

91. VITiLPos = VI × (T × LPos)
channel
92. {v c ch[vi,ci]|vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:VITiLPos

[d] Toll-gate Sorts and Dynamic Types: We extend the domain with toll-gates for vehicles entering and exiting the toll-road
entry and exit links. Figure 2 illustrates the idea of gates.

17We refer to literature on GNSS, global navigation satellite systems. The simple vehicle position, vp:SVPos, is determined from three to four
time-stamped signals received from a like number of GNSS satellites [ESA].

22 Dines Bjørner

gate

Vehicle

identify sensor

arrival sensor departure sensor

Fig. 2. A toll plaza gate

Figure 2 is intended to illustrate a vehicle entering (or exiting) a toll-road arrival link. The toll-gate is equipped with three sensors:
an arrival sensor, a vehicle identification sensor and an departure sensor. The arrival sensor serves to prepare the vehicle identification
sensor. The departure sensor serves to prepare the gate for closing when a vehicle has passed. The vehicle identify sensor identifies
the vehicle and “delivers” a pair: the current time and the vehicle identifier. Once the vehicle identification sensor has identified a
vehicle the gate opens and a message is sent to the road pricing calculator as to the passing vehicle’s identity and the identity of the
link associated with the toll-gate (see Items 109.- 110. on the next page).

93. The domain contains the extended net, n:NE ,

94. with the net extension amounting to the toll-road net, TRNE ,
that is, the instantiated toll-road net, trn:TRNI , is extended,
into trn:TRNE , with entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

95. their unique identifier and

96. their mereology: pairs of entry-, respectively exit link and
calculator unique identifiers; further

97. a pair of gate entry and exit sensors modeled as external
attribute channels, (ges:ES,gls:XS), and

98. a time-stamped vehicle identity sensor modeled as external
attribute channels.

type

93. NE

94. TRNE = (EG×XG)∗ × TRNI

95. GI
value
93. obs part NE : ∆E → NE

94. obs part TRNE : NE → TRNE

95. uid G: (EG|XG) → GI

96. obs mereo G: (EG|XG) → (LI×CI)
94. trn:TRNE = obs part TRNE (δE)
channel

97. {attr entry ch[gi]|gi:GI•xtr eGIds(trn)} ′′
enter

′′

97. {attr exit ch[gi]|gi:GI•xtr xGIds(trn)} ′′
exit

′′

98. {attr identity ch[gi]|gi:GI•xtr GIds(trn)} TIVI
type

98. TIVI = T × VI

We define some auxiliary functions over toll-road nets, trn:TRNE :

99. xtr eGℓ extracts the ℓist of entry gates,

100. xtr xGℓ extracts the ℓist of exit gates,

101. xtr eGIds extracts the set of entry gate identifiers,

102. xtr xGIds extracts the set of exit gate identifiers,

103. xtr Gs extracts the set of all gates, and

104. xtr GIds extracts the set of all gate identifiers.

value

99. xtr eGℓ: TRNE → EG∗

99. xtr eGℓ(pgl,) ≡ {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
100. xtr xGℓ: TRNE → XG∗

100. xtr xGℓ(pgl,) ≡ {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
101. xtr eGIds: TRNE → GI-set
101. xtr eGIds(pgl,) ≡ {uid GI(g)|g:EG•g ∈ xtr eGs(pgl,)}

102. xtr xGIds: TRNE → GI-set

102. xtr xGIds(pgl,) ≡ {uid GI(g)|g:EG•g ∈ xtr xGs(pgl,)}
103. xtr Gs: TRNE → G-set

103. xtr Gs(pgl,) ≡ xtr eGs(pgl,) ∪ xtr xGs(pgl,)
104. xtr GIds: TRNE → GI-set

104. xtr GIds(pgl,) ≡ xtr eGIds(pgl,) ∪ xtr xGIds(pgl,)

105. A well-formedness condition expresses

a. that there are as many entry end exit gate pairs as
there are toll-plazas,

b. that all gates are uniquely identified, and

c. that each entry [exit] gate is paired with an entry [exit]
link and has that link’s unique identifier as one element

of its mereology, the other elements being the calcula-
tor identifier and the vehicle identifiers.

The well-formedness relies on awareness of

106. the unique identifier, ci:CI, of the road pricing calculator,
c:C, and

107. the unique identifiers, vis:VI-set, of the fleet vehicles.

axiom

105. ∀ n:NR3
, trn:TRNR3

•

105. let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

105.a. len exgl = len exl = len hl = len lll + 1
105.b. ∧ card xtr GIds(exgl) = 2 ∗ len exgl

105.c. ∧ ∀ i:Nat•i ∈ inds exgl•

105.c. let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

105.c. obs mereo G(eg) = (uid U(el),ci,vis)
105.c. ∧ obs mereo G(xg) = (uid U(xl),ci,vis)
105. end end

[e] Toll-gate to Calculator Channels:

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 23

108. We distinguish between entry and exit gates.

109. Toll road entry and exit gates offers the road pricing calcula-
tor a pair: whether it is an entry or an exit gates, and pair of
the passing vehicle’s identity and the time-stamped identity
of the link associated with the toll-gate

110. to the road pricing calculator via a (gate to calculator) chan-
nel.

type

108. EE = ′′
entry

′′|′′exit′′

109. EEVITiLI = EE×(VI×(T×SonL))
channel

110. {g c ch[gi,ci]|gi:GI•gi ∈ gis}:EETiVILI

[f] Road Pricing Calculator Attributes:

111. The road pricing attributes include a programmable traffic
map, trm:TRM, which, for each vehicle inside the toll-road
net, records a chronologically ordered list of each vehicle’s
timed position, (τ ,lpos), and

112. a static (total) road location function, vplf:VPLF. The vehicle
position location f unction, vplf:VPLF, which, given a local

position, lpos:LPos, yields either the simple vehicle posi-
tion, svpos:SVPos, designated by the GNSS-provided po-
sition, or yields the response that the provided position is
off the toll-road net The vplf:VPLF function is constructed,
construct vplf,

113. from awareness, of a geodetic road map, GRM, of the topol-
ogy of the extended net, nE :NE , including the mereology
and the geodetic attributes of links and hubs.

type
111. TRM = VI →m (T × SVPos)∗

112. VPLF = GRM → LPos → (SVPos | ′′off_N′′)
113. GRM

value
111. attr TRM: CE → TRM
112. attr VPLF: CE → VPLF

The geodetic road map maps geodetic locations into hub and link identifiers.

23. Geodetic link locations represent the set of point locations
of a link.

19.a. Geodetic hub locations represent the set of point locations
of a hub.

114. A geodetic road map maps geodetic link locations into link
identifiers and geodetic hub locations into hub identifiers.

115. We sketch the construction, geo GRM, of geodetic road
maps.

type

114. GRM = (GeoL →m LI)
⋃

(GeoH →m HI)
value

115. geo GRM: N → GRM
115. geo GRM(n) ≡

115. let ls = xtr links(n), hs = xtr hubs(n) in

115. [attr GeoL(l)7→uid LI(l)|l:L•l ∈ ls]
115. ∪
115. [attr GeoH(h)7→uid HI(h)|h:H•h ∈ hs] end

116. The vplf:VPLF function obtains a simple vehicle position,
svpos, from a geodetic road map, grm:GRM, and a local
position , lpos:

value

116. obtain SVPos: GRM → LPos → SVPos

116. obtain SVPos(grm)(lpos) as svpos
116. post: case svpos of

116. SatH(hi) → within(lpos,grm(hi)),
116. SonL(li) → within(lpos,grm(li)),
116. ′′

off_N
′′ → true end

where within is a predicate which holds if its first argument, a local position calculated from a GNSS-generated global position, falls
within the point set representation of the geodetic locations of a link or a hub. The design of the obtain SVPos represents an interesting
challenge.

[g] “Total” System State: Global values:

117. There is a given domain, δE :∆E ;

118. there is the net, nE :NE , of that domain;

119. there is toll-road net, trnE :TRNE , of that net;

120. there is a set, egsE :EGE -set, of entry gates;

121. there is a set, xgsE :XGE -set, of exit gates;

122. there is a set, gisE :GIE -set, ofgate identifiers;

123. there is a set, vsE :VE -set, of vehicles;

124. there is a set, visE :VIE -set, of vehicle identifiers;

125. there is the road-pricing calculator, cE :CE and

126. there is its unique identifier, ciE :CI.

value

117. δE :∆E

118. nE :NE = obs part NE (δE)
119. trnE :TRNE = obs part TRNE (nE)
120. egsE :EG-set = xtr egs(trnE)
121. xgsE :XG-set = xtr xgs(trnE)

122. gisE :XG-set = xtr gis(trnE)
123. vsE :VE -set = obs part VS(obs part FE (δE))
124. visE :VI-set = {uid VI(vE)|vE :VE

•vE ∈ vsE }
125. cE :CE = obs part CE (δE)
126. ciE :CIE = uid CI(cE)

In the following we shall omit the cumbersome E subscripts.

24 Dines Bjørner

[h] “Total” System Behaviour: The signature and definition of the system behaviour is sketched as are the signatures of the
vehicle, toll-gate and road pricing calculator. We shall model the behaviour of the road pricing system as follows: we shall not model
behaviours nets, hubs and links; thus we shall model only the behaviour of vehicles, veh, the behaviour of toll-gates, gate, and the
behaviour of the road-pricing calculator, calc, The behaviours of vehicles and toll-gates are presented here. But the behaviour of the
road-pricing calculator is “deferred” till Sect. 5.1.3 since it reflects an interface requirements.

127. The road pricing system behaviour, sys, is expressed as

a. the parallel, ‖, (distributed) composition of the be-
haviours of all vehicles,

b. with the parallel composition of the parallel (likewise
distributed) composition of the behaviours of all entry
gates,

c. with the parallel composition of the parallel (likewise
distributed) composition of the behaviours of all exit
gates,

d. with the parallel composition of the behaviour of the
road-pricing calculator,

value
127. sys: Unit → Unit

127. sys() ≡
127.a. ‖ {vehuid V(v)(obs mereo V(v))|v:V•v ∈ vs}
127.b. ‖ ‖ {gateuid EG(eg)(obs mereo G(eg),”entry”)|eg:EG•eg ∈ egs}
127.c. ‖ ‖ {gateuid XG(xg)(obs mereo G(xg),”exit”)|xg:XG•xg ∈ xgs}
127.d. ‖ calcuid C(c)(vis,gis)(rlf)(trm)

128. vehvi: (ci:CI×gis:GI-set) → in attr TiGPos[vi] out v c ch[vi,ci] Unit
134. gategi: (ci:CI×VI-set×LI)×ee:EE → in attr entry ch[gi,ci],attr id ch[gi,ci],attr exit ch[gi,ci] out attr barrier ch[gi],g c ch[gi,ci] Unit

168. calcci : (vis:VI-set×gis:GI-set)×VPLF→TRM→ in {v c ch[vi,ci]|vi:VI•vi ∈ vis},{g c ch[gi,ci]|gi:GI•gi ∈ gis} Unit

We consider ”entry” or ”exit” to be a static attribute of toll-gates. The behaviour signatures were determined as per the techniques presented in
[Bjø16b, Sect. 4.1.1 and 4.5.2].

Vehicle Behaviour: We refer to the vehicle behaviour, in the domain, described in Sect. 2’s The Road Traffic System Behaviour Items 46.
and Items 47., Page 9 and, projected, Page 16.

128. Instead of moving around by explicitly expressed internal non-
determinism18 vehicles move around by unstated internal non-
determinism and instead receive their current position from the
global positioning subsystem.

129. At each moment the vehicle receives its time-stamped global po-
sition, (τ ,gpos):TiGPos,

130. from which it calculates the local position, lpos:VPos

131. which it then communicates, with its vehicle identification,
(vi,(τ ,lpos)), to the road pricing subsystem —

132. whereupon it resumes its vehicle behaviour.

value

128. vehvi: (ci:CI×gis:GI-set) →
128. in attr TiGPos ch[vi] out v c ch[vi,ci] Unit
128. vehvi(ci,gis) ≡
129. let (τ ,gpos) = attr TiGPos ch[vi]? in

130. let lpos = loc pos(gpos) in

131. v c ch[vi,ci] ! (vi,(τ ,lpos)) ;
132. vehvi(ci,gis) end end

128. pre vi ∈ vis

The vehicle signature has attr TiGPos ch[vi] model an external vehicle attribute and v c ch[vi,ci] the embedded attribute sharing [Bjø16b,
Sect. 4.1.1 and 4.5.2] between vehicles (their position) and the price calculator’s road map. The above behaviour represents an assumption about
the behaviour of vehicles. If we were to design software for the monitoring and control of vehicles then the above vehicle behaviour would have
to be refined in order to serve as a proper interface requirements. The refinement would include handling concerns about the drivers’ behaviour
when entering, passing and exiting toll-gates, about the proper function of the GNSS equipment, and about the safe communication with the road
price calculator. The above concerns would already have been addressed in a model of domain facets such as human behaviour, technology support,
proper tele-communications scripts, etcetera. We refer to [Bjø10a].

Gate Behaviour: The entry and the exit gates have “vehicle enter”, “vehicle exit” and “timed vehicle identification” sensors. The following
assumption can now be made: during the time interval between a gate’s vehicle “entry” sensor having first sensed a vehicle entering that gate and
that gate’s “exit” sensor having last sensed that vehicle leaving that gate that gate’s vehicle time and “identify” sensor registers the time when the
vehicle is entering the gate and that vehicle’s unique identification. We sketch the toll-gate behaviour:

133. We parameterise the toll-gate behaviour as either an entry or an
exit gate.

134. Toll-gates operate autonomously and cyclically.

135. The attr enter ch event “triggers” the behaviour specified in for-
mula line Item 136.–138. starting with a ”Raise” barrier action.

136. The time-of-passing and the identity of the passing vehicle is
sensed by attr passing ch channel events.

137. Then the road pricing calculator is informed of time-of-passing
and of the vehicle identity vi and the link li associated with the
gate – and with a ”Lower” barrier action.

138. And finally, after that vehicle has left the entry or exit gate the
barrier is again ”Lower”ered and

139. that toll-gate’s behaviour is resumed.

type

18We refer to Items 46.b., 46.c. on Page 9 and 47.b., 47.b.ii, 47.c. on Page 9

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 25

133. EE = ”enter” | ”exit”
value

134. gategi: (ci:CI×VI-set×LI)×ee:EE →
134. in attr enter ch[gi],attr passing ch[gi],attr leave ch[gi]
134. out attr barrier ch[gi],g c ch[gi,ci] Unit

134. gategi((ci,vis,li),ee) ≡
135. attr enter ch[gi] ? ; attr barrier ch[gi] ! ”Lower”

136. let (τ ,vi) = attr passing ch[gi] ? in assert vi ∈ vis
137. (attr barrier ch[gi] ! ”Raise”
137. ‖ g c ch[gi,ci] ! (ee,(vi,(τ ,SonL(li))))) ;
138. attr leave ch[gi] ? ; attr barrier ch[gi] ! ”Lower”
139. gategi((ci,vis,li),ee)
134. end

134. pre li ∈ lis

The gate signature’s attr enter ch[gi], attr passing ch[gi], attr barrier ch[gi] and attr leave ch[gi] model respective external attributes [Bjø16b,

Sect. 4.1.1 and 4.5.2] (the attr barrier ch[gi] models reactive (i.e., output) attribute), while g c ch[gi,ci] models the embedded attribute sharing

between gates (their identification of vehicle positions) and the calculator road map. The above behaviour represents an assumption about the

behaviour of toll-gates. If we were to design software for the monitoring and control of toll-gates then the above gate behaviour would have to be

refined in order to serve as a proper interface requirements. The refinement would include handling concerns about the drivers’ behaviour when

entering, passing and exiting toll-gates, about the proper function of the entry, passing and exit sensors, about the proper function of the gate barrier

(opening and closing), and about the safe communication with the road price calculator. The above concerns would already have been addressed in

a model of domain facets such as human behaviour, technology support, proper tele-communications scripts, etcetera. We refer to [Bjø10a] �

We shall define the calculator behaviour in Sect. 5.1.3 on Page 29. The reason for this deferral is that it exemplifies
interface requirements.

4.4.2. Discussion

The requirements assumptions expressed in the specifications of the vehicle and gate behaviours assume that these
behave in an orderly fashion. But they seldom do ! The attr TiGPos ch sensor may fail. And so may the attr enter ch,
attr passing ch, and attr leave ch sensors and the attr barrier ch actuator. These attributes represent support tech-
nology facets. They can fail. To secure fault tolerance one must prescribe very carefully what counter-measures are to
be taken and/or the safety assumptions. We refer to [ZH04, JHJ07, OD08]. They cover three alternative approaches to
the handling of fault tolerance. Either of the approaches can be made to fit with our approach. First one can pursue our
approach to where we stand now. Then we join the approaches of either of [ZH04, JHJ07, OD08]. [JHJ07] likewise
decompose the requirements prescription as is suggested here.

4.5. Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in some areas with, another domain: trans-
portation with logistics, health-care with insurance, banking with securities trading and/or insurance, and so on. The
issue of requirements fitting arises when two or more software development projects are based on what appears to be
the same domain. The problem then is to harmonise the two or more software development projects by harmonising,
if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn , being considered, and that
these pertain to the same domain — and can hence be assumed covered by a same domain description.

Definition 16. Requirements Fitting: By requirements fitting we mean a harmonisation of n > 1 domain
requirements that have overlapping (shared) not always consistent parts and which results in n partial domain require-
ments’, pdr1

, pdr2
, . . . , pdrn

, and m shared domain requirements, sdr1
, sdr2

, . . . , sdrm
, that “fit into” two or more of the

partial domain requirements ⊙ The above definition pertains to the result of ‘fitting’. The next definition pertains to
the act, or process, of ‘fitting’.

Definition 17. Requirements Harmonisation: By requirements harmonisation we mean a number of al-
ternative and/or co-ordinated prescription actions, one set for each of the domain requirements actions: Projection,
Instantiation, Determination and Extension. They are – we assume n separate software product requirements: Projec-
tion: If the n product requirements do not have the same projections, then identify a common projection which they all
share, and refer to it as the common projection. Then develop, for each of the n product requirements, if required, a specific
projection of the common one. Let there be m such specific projections, m ≤ n. Instantiation: First instantiate the com-
mon projection, if any instantiation is needed. Then for each of the m specific projections instantiate these, if required.
Determination: Likewise, if required, “perform” “determination” of the possibly instantiated common projection, and,
similarly, if required, “perform” “determination” of the up to m possibly instantiated projections. Extension: Finally
“perform extension” likewise: First, if required, of the common projection (etc.), then, if required, on the up m specific
projections (etc.). These harmonization developments may possibly interact and may need to be iterated ⊙

26 Dines Bjørner

By a partial domain requirements we mean a domain requirements which is short of (that is, is missing) some
prescription parts: text and formula ⊙ By a shared domain requirements we mean a domain requirements ⊙
By requirements fitting m shared domain requirements texts, sdrs, into n partial domain requirements we mean
that there is for each partial domain requirements, pdri, an identified, non-empty subset of sdrs (could be all of sdrs),
ssdrsi, such that textually conjoining ssdrsi to pdri, i.e., ssdrsi ⊕ pdri can be claimed to yield the “original” dri

, that
is, M (ssdrsi ⊕ pdri)⊆ M (dri

), where M is a suitable meaning function over prescriptions ⊙

4.6. Discussion

Facet-oriented Fittings: An altogether different way of looking at domain requirements may be achieved when
also considering domain facets — not covered in neither the example of Sect. 2 nor in this section (i.e., Sect. 4) nor in
the following two sections. We refer to [Bjø10a].

Example 14. Domain Requirements — Fitting: Example 13 hints at three possible sets of interface requirements: (i)

for a road pricing [sub-]system, as will be illustrated in Sect. 5.1.3; (ii) for a vehicle monitoring and control [sub-]system, and (iii) for

a toll-gate monitoring and control [sub-]system. The vehicle monitoring and control [sub-]system would focus on implementing the

vehicle behaviour, see Items 128.- 132. on Page 24. The toll-gate monitoring and control [sub-]system would focus on implementing

the calculator behaviour, see Items 134.- 139. on Page 24. The fitting amounts to (a) making precise the (narrative and formal) texts

that are specific to each of of the three (i–iii) separate sub-system requirements are kept separate; (b) ensuring that (meaning-wise)

shared texts that have different names for (meaning-wise) identical entities have these names renamed appropriately; (c) that these

texts are subject to commensurate and ameliorated further requirements development; etcetera �

5. Interface and Derived Requirements

We remind the reader that interface requirements can be expressed only using terms from both the domain and
the machine ⊙ Users are not part of the machine. So no reference can be made to users, such as “the system must
be user friendly”, and the like !19 By interface requirements we [also] mean requirements prescriptions which
refines and extends the domain requirements by considering those requirements of the domain requirements whose
endurants (parts, materials) and perdurants (actions, events and behaviours) are “shared” between the domain and the
machine (being requirements prescribed) ⊙ The two interface requirements definitions above go hand–in–hand, i.e.,
complement one-another.

By derived requirements we mean requirements prescriptions which are expressed in terms of the machine
concepts and facilities introduced by the emerging requirements ⊙

5.1. Interface Requirements

5.1.1. Shared Phenomena

By sharing we mean (a) that some or all properties of an endurant is represented both in the domain and “inside” the
machine, and that their machine representation must at suitable times reflect their state in the domain; and/or (b) that
an action requires a sequence of several “on-line” interactions between the machine (being requirements prescribed)
and the domain, usually a person or another machine; and/or (c) that an event arises either in the domain, that is,
in the environment of the machine, or in the machine, and need be communicated to the machine, respectively to
the environment; and/or (d) that a behaviour is manifested both by actions and events of the domain and by actions
and events of the machine ⊙ So a systematic reading of the domain requirements shall result in an identification
of all shared endurants, parts, materials and components; and perdurants actions, events and behaviours. Each such
shared phenomenon shall then be individually dealt with: endurant sharing shall lead to interface requirements
for data initialisation and refreshment as well as for access to endurant attributes; action sharing shall lead to
interface requirements for interactive dialogues between the machine and its environment; event sharing shall lead
to interface requirements for how such event are communicated between the environment of the machine and the

19So how do we cope with the statement: “the system must be user friendly” ? We refer to Sect. 5.3.2 on Page 31 for a discussion of this issue.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 27

machine; and behaviour sharing shall lead to interface requirements for action and event dialogues between the
machine and its environment.

Environment–Machine Interface: Domain requirements extension, Sect. 4.4, usually introduce new endurants
into (i.e., ‘extend’ the) domain. Some of these endurants may become elements of the domain requirements. Others
are to be projected “away”. Those that are let into the domain requirements either have their endurants represented,
somehow, also in the machine, or have (some of) their properties, usually some attributes, accessed by the machine.
Similarly for perdurants. Usually the machine representation of shared perdurants access (some of) their properties,
usually some attributes. The interface requirements must spell out which domain extensions are shared. Thus domain
extensions may necessitate a review of domain projection, instantiations and determination. In general, there may be
several of the projection–eliminated parts (etc.) whose dynamic attributes need be accessed in the usual way, i.e., by
means of attr XYZ ch channel communications (where XYZ is a projection–eliminated part attribute).

Example 15. Interface Requirements — Projected Extensions: We refer to Fig. 2 on Page 22.We do not represent
the GNSS system in the machine: only its “effect”: the ability to record global positions by accessing the GNSS attribute (channel):

channel

87. {attr TiGPos ch[vi]|vi:VI•vi ∈ xtr VIs(vs)}: TiGPos

And we do not really represent the gate nor its sensors and actuator in the machine. But we do give an idealised description of the gate behaviour,
see Items 134.–139. Instead we represent their dynamic gate attributes:

(97.) the vehicle entry sensors (leftmost s),

(97.) the vehicle identity sensor (center), and

(98.) the vehicle exit sensors (rightmost s)

by channels — we refer to Example 13 (Sect. 5.1.3, Page 22):

channel
97. {attr entry ch[gi]|gi:GI•xtr eGIds(trn)} ′′

enter
′′

97. {attr exit ch[gi]|gi:GI•xtr xGIds(trn)} ′′
exit

′′

98. {attr identity ch[gi]|gi:GI•xtr GIds(trn)} TIVI �

5.1.2. Shared Endurants

Example 16. Interface Requirements. Shared Endurants: The main shared endurants are the vehicles, the net
(hubs, links, toll-gates) and the price calculator. As domain endurants hubs and links undergo changes, all the time, with respect
to the values of several attributes: length, geodetic information, names, wear and tear (where-ever applicable), last/next scheduled
maintenance (where-ever applicable), state and state space, and many others. Similarly for vehicles: their position, velocity and
acceleration, and many other attributes. We then come up with something like hubs and links are to be represented as tuples of
relations; each net will be represented by a pair of relations a hubs relation and a links relation; each hub and each link may or will be
represented by several tuples; etcetera. In this database modeling effort it must be secured that “standard” operations on nets, hubs
and links can be supported by the chosen relational database system �

Data Initialisation: In general, one must prescribe data initialisation, that is provision for an interactive user inter-
face dialogue with a set of proper display screens, one for establishing net, hub or link attributes names and their types,
and, for example, two for the input of hub and link attribute values. Interaction prompts may be prescribed: next input,
on-line vetting and display of evolving net, etc. These and many other aspects may therefore need prescriptions.

Example 17. Interface Requirements. Shared Endurant Initialisation: The domain is that of the road net, n:N.
By ‘shared road net initialisation’ we mean the “ab initio” establishment, “from scratch”, of a data base recording the properties of all
links, l:L, and hubs, h:H, their unique identifications, uid L(l) and uid H(h), their mereologies, obs mereo L(l) and obs mereo H(h),
the initial values of all their static and programmable attributes and the access values, that is, channel designations for all other attribute
categories.

140. There are rl and rh “recorders” recording link, respectively
hub properties – with each recorder having a unique iden-
tity.

141. Each recorder is charged with the recording of a set of links
or a set of hubs according to some partitioning of all such.

142. The recorders inform a central data base, net db, of their
recordings (ri,hol,(u j ,m j ,attrs j)) where

143. ri is the identity of the recorder,

144. hol is either a hub or a link literal,

145. u j = uid L(l) or uid H(h) for some link or hub,

146. m j = obs mereo L(l) or obs mereo H(h) for that link or hub
and

147. attrs j are attributes for that link or hub — where attributes is
a function which “records” all respective static and dynamic
attributes (left undefined).

28 Dines Bjørner

type

140. RI
value
140. rl,rh:NAT axiom rl>0 ∧ rh>0
type

142. M = RI×′′
link

′′×LNK | RI×′′
hub

′′×HUB
142. LNK = LI × HI-set × LATTRS
142. HUB = HI × LI-set × HATTRS

value

141. partitioning: L-set → Nat → (L-set)∗ | H-set → Nat → (H-set)∗

141. partitioning(s)(r) as sl
141. post: len sl = r ∧ ∪ elems sl = s
141. ∧ ∀ si,sj:(L-set|H-set) •

141. si6={}∧sj6={}∧{si,sj}⊆elems ss⇒si ∩ sj={}

148. The rl + rh recorder behaviours interact with the one net db
behaviour

channel

148. r db: RI×(LNK|HUB)

value

148. link rec: RI → L-set → out r db Unit

148. hub rec: RI → H-set → out r db Unit

148. net db: Unit → in r db Unit

149. The data base behaviour, net db, offers to receive mes-
sages from the link and hub recorders.

150. The data base behaviour, net db, deposits these messages
in respective variables.

151. Initially there is a net, n : N,

152. from which is observed its links and hubs.

153. These sets are partitioned into rl , respectively rh length lists
of non-empty links and hubs.

154. The ab-initio data initialisation behaviour, ab initio data, is
then the parallel composition of link recorder, hub recorder
and data base behaviours with link and hub recorder being
allotted appropriate link, respectively hub sets.

155. We construct, for technical reasons, as the reader will soon
see, disjoint lists of link, respectively hub recorder identities.

value
149. net db:
variable

150. lnk db: (RI×LNK)-set

150. hub db: (RI×HUB)-set
value

151. n:N
152. ls:L-set = obs Ls(obs LS(n))
152. hs:H-set = obs Hs(obs HS(n))

153. lsl:(L-set)∗ = partitioning(ls)(rl)
153. lhl:(H-set)∗ = partitioning(hs)(rh)
155. rill:RI∗ axiom len rill = rl = card elems rill
155. rihl:RI∗ axiom len rihl = rh = card elems rihl
154. ab initio data: Unit → Unit
154. ab initio data() ≡
154. ‖ {lnk rec(rill[i])(lsl[i])|i:Nat•1≤i≤rl} ‖
154. ‖ {hub rec(rihl[i])(lhl[i])|i:Nat•1≤i≤rh}
154. ‖ net db()

156. The link and the hub recorders are near-identical be-
haviours.

157. They both revolve around an imperatively stated for all ...
do ... end. The selected link (or hub) is inspected and the
“data” for the data base is prepared from

158. the unique identifier,

159. the mereology, and

160. the attributes.

161. These “data” are sent, as a message, prefixed the senders
identity, to the data base behaviour.

162. We presently leave the . . . unexplained.

value
148. link rec: RI → L-set → Unit

156. link rec(ri,ls) ≡
157. for ∀ l:L•l ∈ ls do uid L(l)
158. let lnk = (uid L(l),
159. obs mereo L(l),
160. attributes(l)) in

161. rdb ! (ri,′′link′′,lnk);
162. ... end

157. end

148. hub rec: RI × H-set → Unit
156. hub rec(ri,hs) ≡
157. for ∀ h:H•h ∈ hs do uid H(h)
158. let hub = (uid L(h),
159. obs mereo H(h),
160. attributes(h)) in

161. rdb ! (ri,′′hub′′,hub);
162. ... end
157. end

163. The net db data base behaviour revolves around a seem-
ingly “never-ending” cyclic process.

164. Each cycle “starts” with acceptance of some,

165. either link or hub data.

166. If link data then it is deposited in the link data base,

167. if hub data then it is deposited in the hub data base.

value

163. net db() ≡
164. let (ri,hol,data) = r db ? in

165. case hol of
166. ′′

link
′′ → ... ; lnk db := lnk db ∪ (ri,data),

167. ′′
hub

′′ → ... ; hub db := hub db ∪ (ri,data)
165. end end ;
163.′ ... ;
163. net db()

The above model is an idealisation. It assumes that the link and hub data represent a well-formed net. Included in this well-formedness
are the following issues: (a) that all link or hub identifiers are communicated exactly once, (b) that all mereologies refer to defined parts,
and (c) that all attribute values lie within an appropriate value range. If we were to cope with possible recording errors then we could,
for example, extend the model as follows: (i) when a link or a hub recorder has completed its recording then it increments an initially

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 29

zero counter (say at formula Item 162.); (ii) before the net data base recycles it tests whether all recording sessions has ended and
then proceeds to check the data base for well-formedness issues (a–b–c) (say at formula Item 163.′) �

The above example illustrates the ‘interface’ phenomenon: In the formulas, for example, we show both manifest
domain entities, viz., n, l,h etc., and abstract (required) software objects, viz., (ui,me,attrs).

Data Refreshment: One must also prescribe data refreshment: an interactive user interface dialogue with a set of
proper display screens one for selecting the updating of net, of hub or of link attribute names and their types and, for
example, two for the respective update of hub and link attribute values. Interaction-prompts may be prescribed: next
update, on-line vetting and display of revised net, etc. These and many other aspects may therefore need prescriptions.

5.1.3. Shared Perdurants

We can expect that for every part in the domain that is shared with the machine and for which there is a corresponding
behaviour of the domain there might be a corresponding process of the machine. If a projected, instantiated, ‘determi-
nated’ and possibly extended domain part is dynamic, then it is definitely a candidate for being shared and having an
associated machine process. We now illustrate the concept of shared perdurants via the domain requirements extension
example of Sect. 4.4, i.e. Example 13 Pages 20–25.

Example 18. Interface Requirements — Shared Behaviours: Road Pricing Calculator Behaviour:

168. The road-pricing calculator alternates between offering to
accept communication from

169. either any vehicle

170. or any toll-gate.

168. calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
169. in {v c ch[ci,vi]|vi:VI•vi ∈ vis},
170. {g c ch[ci,gi]|gi:GI•gi ∈ gis} Unit

168. calc(ci,(vis,gis))(rlf)(trm) ≡
169. react to vehicles(ci,(vis,gis))(rlf)(trm)
168. ⌈⌉⌊⌋
170. react to gates(ci,(vis,gis))(rlf)(trm)
168. pre ci = ciE ∧ vis = visE ∧ gis = gisE

The calculator signature’s v c ch[ci,vi] and g c ch[ci,gi] model the
embedded attribute sharing between vehicles (their position), respec-
tively gates (their vehicle identfication) and the calculator road map
[Bjø16b, Sect. 4.1.1 and 4.5.2].

171. If the communication is from a vehicle inside the toll-road net

172. then its toll-road net position, vp, is found from the road location
function, rlf,

173. and the calculator resumes its work with the traffic map, trm, suit-
ably updated,

174. otherwise the calculator resumes its work with no changes.

169. react to vehicles(ci,(vis,gis),vplf)(trm) ≡

169. let (vi,(τ ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi]?|vi:VI•vi∈ vis} in

171. if vi ∈ dom trm
172. then let vp = vplf(lpos) in

173. calc(ci,(vis,gis),vplf)(trm†[vi 7→trm̂〈(τ ,vp)〉]) end
174. else calc(ci,(vis,gis),vplf)(trm) end end

175. If the communication is from a gate,

176. then that gate is either an entry gate or an exit gate;

177. if it is an entry gate

178. then the calculator resumes its work with the vehicle (that passed
the entry gate) now recorded, afresh, in the traffic map, trm.

179. Else it is an exit gate and

180. the calculator concludes that the vehicle has ended its to-be-paid-
for journey inside the toll-road net, and hence to be billed;

181. then the calculator resumes its work with the vehicle now re-
moved from the traffic map, trm.

170. react to gates(ci,(vis,gis),vplf)(trm) ≡
170. let (ee,(τ ,(vi,li))) = ⌈⌉⌊⌋ {g c ch[ci,gi]?|gi:GI•gi∈ gis} in

176. case ee of

177. ”Enter” →
178. calc(ci,(vis,gis),vplf)(trm∪[vi7→〈(τ ,SonL(li))〉]),
179. ”Exit” →
180. billing(vi,trm(vi)̂ 〈(τ ,SonL(li))〉);
181. calc(ci,(vis,gis),vplf)(trm\{vi}) end end

The above behaviour is the one for which we are to design software �

5.2. Derived Requirements

Definition 18. Derived Perdurant: By a derived perdurant we shall understand a perdurant which is not shared
with the domain, but which focus on exploiting facilities of the software or hardware of the machine ⊙

“Exploiting facilities of the software”, to us, means that requirements, imply the presence, in the machine, of concepts
(i.e., hardware and/or software), and that it is these concepts that the derived requirements “rely” on. We illustrate
all three forms of perdurant extensions: derived actions, derived events and derived behaviours.

5.2.1. Derived Actions

30 Dines Bjørner

Definition 19. Derived Action: By a derived action we shall understand (a) a conceptual action (b) that calculates
a usually non-Boolean valued property from, and possibly changes to (c) a machine behaviour state (d) as instigated
by some actor ⊙

Example 19. Domain Requirements. Derived Action: Tracing Vehicles: The example is based on the Road
Pricing Calculator Behaviour of Example 18 on the previous page. The “external” actor, i.e., a user of the Road Pricing Calculator
system wishes to trace specific vehicles “cruising” the toll-road. That user (a Road Pricing Calculator staff), issues a command to
the Road Pricing Calculator system, with the identity of a vehicle not already being traced. As a result the Road Pricing Calculator
system augments a possibly void trace of the timed toll-road positions of vehicles. We augment the definition of the calculator definition
Items 168.–181., Pages 29–29.

182. Traces are modeled by a pair of dynamic attributes:

a. as a programmable attribute, tra:TRA, of the set of
identifiers of vehicles being traced, and

b. as a reactive attribute, vdu:VDU20, that maps vehicle
identifiers into time-stamped sequences of simple ve-
hicle positions, i.e., as a subset of the trm:TRM pro-
grammable attribute.

183. The actor-to-calculator begin or end trace command,

cmd:Cmd, is modeled as an autonomous dynamic attribute
of the calculator.

184. The calculator signature is furthermore augmented with the
three attributes mentioned above.

185. The occurrence and handling of an actor trace command is
modeled as a non-deterministic external choice and a re-
act to trace cmd behaviour.

186. The reactive attribute value (attr vdu ch?) is that subset
of the traffic map (trm) which records just the time-stamped
sequences of simple vehicle positions being traced (tra).

type
182.a. TRA = VI-set

182.b. VDU = TRM
183. Cmd = BTr | ETr
183. BTr :: VI
183. ETr :: VI

value
184. calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA
169.,170. in {v c ch[ci,vi]|vi:VI•vi ∈ vis},
169.,170. {g c ch[ci,gi]|gi:GI•gi ∈ gis},

185.,186. attr cmd ch,attr vdu ch Unit
168. calc(ci,(vis,gis))(rlf)(trm)(tra) ≡
169. react to vehicles(ci,(vis,gis),)(rlf)(trm)(tra)
170. ⌈⌉⌊⌋ react to gates(ci,(vis,gis))(rlf)(trm)(tra)
185. ⌈⌉⌊⌋ react to trace cmd(ci,(vis,gis))(rlf)(trm)(tra)
168. pre ci = ciE ∧ vis = visE ∧ gis = gisE

186. axiom � attr vdu ch[ci]? = trm|tra

The 185.,186. attr cmd ch,attr vdu ch of the calculator signature
models the calculator’s external command and visual display unit at-
tributes.

187. The react to trace cmd alternative behaviour is either a
”Begin” or an ”End” request which identifies the affected
vehicle.

188. If it is a ”Begin” request

189. and the identified vehicle is already being traced then we
do not prescribe what to do !

190. Else we resume the calculator behaviour, now recording
that vehicle as being traced.

191. If it is an ”End” request

192. and the identified vehicle is already being traced then we
do not prescribe what to do !

193. Else we resume the calculator behaviour, now recording
that vehicle as no longer being traced.

187. react to trace cmd(ci,(vis,gis))(vplf)(trm)(tra) ≡
187. case attr cmd ch[ci]? of

188.,189.,190. mkBTr(vi) → if vi ∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra ∪ {vi}) end

191.,192.,193. mkETr(vi) → if vi 6∈ tra then chaos else calc(ci,(vis,gis))(vplf)(trm)(tra\{vi}) end
187. end

The above behaviour, Items 168.–193., is the one for which we are to design software �

Example 19 exemplifies an action requirement as per definition 19: (a) the action is conceptual, it has no physical
counterpart in the domain; (b) it calculates (186.) a visual display (vdu); (c) the vdu value is based on a conceptual
notion of traffic road maps (trm), an element of the calculator state; (d) the calculation is triggered by an actor
(attr cmd ch).

5.2.2. Derived Events

Definition 20. Derived Event: By a derived event we shall understand (a) a conceptual event, (b) that calculates
a property or some non-Boolean value (c) from a machine behaviour state change ⊙

20VDU: visual display unit

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 31

Example 20. Domain Requirements. Derived Event: Current Maximum Flow: The example is based on the
Road Pricing Calculator Behaviour of Examples 19 and 18 on Page 29. By “the current maximum flow” we understand a time-stamped
natural number, the number representing the highest number of vehicles which at the time-stamped moment cruised or now cruises
around the toll-road net. We augment the definition of the calculator definition Items 168.–193., Pages 29–30.

194. We augment calculator signature with

195. a time-stamped natural number valued dynamic programmable attribute, (t:T,max:Max).

196. Whenever a vehicle enters the toll-road net, through one of its [entry] gates,

a. it is checked whether the resulting number of vehicles recorded in the road traffic map is higher than the hitherto max imum
recorded number.

b. If so, that programmable attribute has its number element “upped” by one.

c. Otherwise not.

197. No changes are to be made to the react to gates behaviour (Items 170.–181. Page 29) when a vehicle exits the toll-road net.

type

195. MAX = T × NAT
value

184.,194. calc: ci:CI×(vis:VI-set×gis:GI-set) → RLF → TRM → TRA → MAX
169.,170. in {v c ch[ci,vi]|vi:VI•vi ∈ vis}, {g c ch[ci,gi]|gi:GI•gi ∈ gis}, attr cmd ch,attr vdu ch Unit

170. react to gates(ci,(vis,gis))(vplf)(trm)(tra)(t,m) ≡
170. let (ee,(τ ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi]|gi:GI•gi∈ gis} in

176. case ee of

196. ”Enter” → calc(ci,(vis,gis))(vplf)(trm∪[vi7→〈(τ ,SonL(li))〉])(tra)(τ ,if card dom trm = m then m+1 else m end),
197. ”Exit” → billing(vi,trm(vi)̂ 〈(τ ,SonL(li))〉); calc(ci,(vis,gis))(vplf)(trm\{vi})(tra)(t,m) end

176. end

The above behaviour, Items 168. on Page 29 through 196.c., is the one for which we are to design software �

Example 20 exemplifies a derived event requirement as per Definition 20: (a) the event is conceptual, it has no physical
counterpart in the domain; (b) it calculates (196.b.) the max value based on a conceptual notion of traffic road maps
(trm), (c) which is an element of the calculator state.

5.2.3. No Derived Behaviours

There are no derived behaviours. The reason is as follows. Behaviours are associated with parts. A possibly ‘derived
behaviour’ would entail the introduction of an ‘associated’ part. And if such a part made sense it should – in all like-
lihood – already have been either a proper domain part or become a domain extension. If the domain–to-requirements
engineer insist on modeling some interface requirements as a process then we consider that a technical matter, a choice
of abstraction.

5.3. Discussion

5.3.1. Derived Requirements

Formulation of derived actions or derived events usually involves technical terms not only from the domain but
typically from such conceptual ‘domains’ as mathematics, economics, engineering or their visualisation. Derived
requirements may, for some requirements developments, constitute “sizable” requirements compared to “all the
other” requirements. For their analysis and prescription it makes good sense to first having developed “the other”
requirements: domain, interface and machine requirements. The treatment of the present paper does not offer spe-
cial techniques and tools for the conception, &c., of derived requirements. Instead we refer to the seminal works of
[DvLF93, Lau02, van09].

5.3.2. Introspective Requirements

Humans, including human users are, in this paper, considered to never be part of the domain for which a requirements
prescription is being developed. If it is necessary to involve humans in the domain description or the requirements
prescription then their prescription is to reflect assumptions upon whose behaviour the machine rely. It is therefore
that we, above, have stated, in passing, that we cannot accept requirements of the kind: “the machine must be user
friendly”, because, in reality, it means “the user must rely upon the machine being ‘friendly’ ” whatever that may mean.
We are not requirements prescribing humans, nor their sentiments !

32 Dines Bjørner

6. Machine Requirements

Other than listing a sizable number of machine requirement facets we shall not cover machine requirements in this
paper. The reason for this is as follows. We find, cf. [Bjø06, Sect. 19.6], that when the individual machine requirements
are expressed then references to domain phenomena are, in fact, abstract references, that is, they do not refer to the
semantics of what they name. Hence machine requirements “fall” outside the scope of this paper — with that scope
being “derivation” of requirements from domain specifications with emphasis on derivation techniques that relate to
various aspects of the domain.

(A) There are the technology requirements of (1) performance and (2) dependability . Within dependability require-
ments there are (a) accessibility , (b) availability , (c) integrity , (d) reliability , (e) safety , (f) security and (g) robustness
requirements. A proper treatment of dependability requirements need a careful definition of such terms as failure,
error, fault, and, from these dependability. (B) And there are the development requirements of (i) process, (ii) mainte-
nance, (iii) platform , (iv) management and (v) documentation requirements. Within maintenance requirements there
are (ii.1) adaptive, (ii.2) corrective, (ii.3) perfective, (ii.4) preventive, and (ii.5) externsional requirements. Within
platform requirements there are (iii.1) development , (iii.2) execution , (iii.3) maintenance, and (iii.4) demonstration
platform requirements. We refer to [Bjø06, Sect. 19.6] for an early treatment of machine requirements.

7. Conclusion

Conventional requirements engineering considers the domain only rather implicitly. Requirements gathering (‘acquisi-
tion’) is not structured by any pre-existing knowledge of the domain, instead it is “structured” by a number of relevant
techniques and tools [Jac01, van09, Jac10] which, when applied, “fragment-by-fragment” “discovers” such elements
of the domain that are immediately relevant to the requirements. The present paper turns this requirements prescrip-
tion process “up-side-down”. Now the process is guided (“steered”, “controlled”) almost exclusively by the domain
description which is assumed to be existing before the requirements development starts. In conventional requirements
engineering many of the relevant techniques and tools can be said to take into account sociological and psychological
facets of gathering the requirements and linguistic facets of expressing these requirements. That is, the focus is rather
much on the process. In the present paper’s requirements “derivation” from domain descriptions the focus is all the
time on the descriptions and prescriptions, in particular on their formal expressions and the “transformation” of these.
That is (descriptions and) prescriptions are considered formal, mathematical objects. That is, the focus is rather much
on the objects.

• • •

We conclude by briefly reviewing what has been achieved, present shortcomings & possible research challenges, and
a few words on relations to “classical requirements engineering”.

What has been Achieved ? We have shown how to systematically “derive” initial aspects of requirements pre-
scriptions from domain descriptions. The stages21 and steps22 of this “derivation”23 are new. We claim that current
requirements engineering approaches, although they may refer to a or the ‘domain’, are not really ‘serious’ about
this: they do not describe the domain, and they do not base their techniques and tools on a reasoned understanding of
the domain. In contrast we have identified, we claim, a logically motivated decomposition of requirements into three
phases, cf. Footnote 21., of domain requirements into five steps, cf. Footnote 22., and of interface requirements, based
on a concept of shared entities, tentatively into (α) shared endurants, (β) shared actions, (γ) shared events, and (δ)
shared behaviours (with more research into the (α-δ) techniques needed).

Present Shortcomings and Research Challenges: We see three shortcomings: (1) The “derivation” tech-
niques have yet to consider “extracting” requirements from domain facet descriptions. Only by including domain
facet descriptions can we, in “deriving” requirements prescriptions, include failures of, for example, support tech-
nologies and humans, in the design of tault-tolerant software. (2) The “derivation” principles, techniques and tools
should be given a formal treatment. (3) There is a serious need for relating the approach of the present paper to that

21(a) domain, (b) interface and (c) machine requirements
22For domain requirements: (i) projection, (ii) instantiation, (iii) determination, (iv) extension and (v) fitting; etc.
23We use double quotation marks: “. . . ” to indicate that the derivation is not automatable.

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 33

of the seminal text book of [van09, Axel van Lamsweerde]. [van09] is not being “replaced” by the present work. It
tackles a different set of problems. We refer to the penultimate paragraph before the Acknowledgement closing.

Comparison to “Classical” Requirements Engineering: Except for a few, represented by two, we are not
going to compare the contributions of the present paper with published journal or conference papers on the subject of
requirements engineering. The reason for this is the following. The present paper, rather completely, we claim, refor-
mulates requirements engineering, giving it a ‘foundation’, in domain engineering , and then developing requirements
engineering from there, viewing requirements prescriptions as “derived” from domain descriptions. We do not see any
of the papers, except those reviewed below [JHJ07] and [DvLF93], referring in any technical sense to ‘domains’ such
as we understand them.

[JHJ07, Deriving Specifications for Systems That Are Connected to the Physical World] The paper
that comes closest to the present paper in its serious treatment of the [problem] domain as a precursor for requirements
development is that of [JHJ07, Jones, Hayes & Jackson]. A purpose of [JHJ07] (Sect. 1.1, Page 367, last §) is to
see “how little can one say” (about the problem domain) when expressing assumptions about requirements. This
is seen by [JHJ07] (earlier in the same paragraph) as in contrast to our form of domain modeling. [JHJ07] reveals
assumptions about the domain when expressing rely guarantees in tight conjunction with expressing the guarantee
(requirements). That is, analysing and expressing requirements, in [JHJ07], goes hand-in-hand with analysing and
expressing fragments of the domain. The current paper takes the view that since, as demonstrated in [Bjø16b], it is
possible to model sizable aspects of domains, then it would be interesting to study how one might “derive” — and
which — requirements prescriptions from domain descriptions; and having demonstrated that (i.e., the “how much
can be derived”) it seems of scientific interest to see how that new start (i.e., starting with a priori given domain
descriptions or starting with first developing domain descriptions) can be combined with existing approaches, such as
[JHJ07]. We do appreciate the “tight coupling” of rely–guarantees of [JHJ07]. But perhaps one looses understanding
the domain due to its fragmented presentation. If the ‘relies’ are not outright, i.e., textually directly expressed in our
domain descriptions, then they obviously must be provable properties of what our domain descriptions express. Our,
i.e., the present, paper — with its background in [Bjø16b, Sect. 4.7] — develops — with a background in [Jac95,
M.A. Jackson] — a set of principles and techniques for the access of attributes. The “discovery” of the CM and SG

channels of [JHJ07] and of the type of their messages, seems, compared to our approach, less systematic. Also, it is
not clear how the [JHJ07] case study “scales” up to a larger domain. The sluice gate of [JHJ07] is but part of a large
(‘irrigation’) system of reservoirs (water sources), canals, sluice gates and the fields (water sinks) to be irrigated. We
obviously would delineate such a larger system and research & develop an appropriate, both informal, a narrative, and
formal domain description for such a class of irrigation systems based on assumptions of precipitation and evaporation.
Then the users’ requirements, in [JHJ07], that the sluice gate, over suitable time intervals, is open 20% of the time and
otherwise closed, could now be expressed more pertinently, in terms of the fields being appropriately irrigated.

[DvLF93, Goal-directed Requirements Acquisition] outlines an approach to requirements acquisition that
starts with fragments of domain description. The domain description is captured in terms of predicates over actors,
actions, events, entities and (their) relations. Our approach to domain modeling differs from that of [DvLF93] as
follows: Agents, actions, entities and relations are, in [DvLF93], seen as specialisations of a concept of objects. The
nearest analogy to relations, in [Bjø16b], as well as in this paper, is the signatures of perdurants. Our ‘agents’ relate
to discrete endurants, i.e., parts, and are the behaviours that evolve around these parts: one agent per part ! [DvLF93]
otherwise include describing parts, relations between parts, actions and events much like [Bjø16b] and this paper
does. [DvLF93] then introduces a notion of goal . A goal, in [DvLF93], is defined as ′′a nonoperational objective
to be achieved by the desired system. Nonoperational means that the objective is not formulated in terms of objects
and actions “available” to some agent of the system ⊙24′′ [DvLF93] then goes on to exemplify goals. In this, the
current paper, we are not considering goals, also a major theme of [van09].25 Typically the expression of goals of

24We have reservations about this definition: Firstly, it is expressed in terms of some of the “things” it is not ! (To us, not a very useful approach.)
Secondly, we can imagine goals that are indeed formulated in terms of objects and actions ‘available’ to some agent of the system. For example,
wrt. the ongoing library examples of [DvLF93], the system shall automate the borrowing of books, etcetera. Thirdly, we assume that by “ ‘available’
to some agent of the system” is meant that these agents, actions, entities, etc., are also required.

25An example of a goal — for the road pricing system — could be that of shortening travel times of motorists, reducing gasoline consumption
and air pollution, while recouping investments on toll-road construction. We consider techniques for ensuring the above kind of goals “outside” the
realm of computer & computing science but “inside” the realm of operations research (OR) — while securing that the OR models are commensurate
with our domain models.

34 Dines Bjørner

[DvLF93, van09], are “within” computer & computing science and involve the use of temporal logic.26 ′′Constraints
are operational objectives to be achieved by the desired (i.e., required) system, . . . , formulated in terms of objects and
actions “available” to some agents of the system. . . . Goals are made operational through constraints. . . . A constraint
operationalising a goal amounts to some abstract “implementation” of this goal ′′ [DvLF93]. [DvLF93] then goes on to
express goals and constraints operationalising these. [DvLF93] is a fascinating paper27 as it shows how to build goals
and constraints on domain description fragments.

• • •

These papers, [JHJ07] and [DvLF93], as well as the current paper, together with such seminal monographs as [ZH04,
OD08, van09], clearly shows that there are many diverse ways in which to achieve precise requirements prescriptions.
The [ZH04, OD08] monographs primarily study the D ,S |= R specification and proof techniques from the point of

view of the specific tools of their specification languages28. Physics, as a natural science, and its many engineering
‘renditions’, are manifested in many separate sub-fields: Electricity, mechanics, statics, fluid dynamics — each with
further sub-fields. It seems, to this author, that there is a need to study the [ZH04, OD08, van09] approaches and the
approach taken in this paper in the light of identifying sub-fields of requirements engineering. The title of the present
paper suggests one such sub-field.

Acknowledgments: This paper has been many years underway. Earlier versions have been the basis for (“innu-
merable”) PhD lectures and seminars around the world — after I retired, in 2007, from The Technical University of
Denmark. I thank the many organisers of those events for their willingness to “hear me out”: Jin Song Dong, NUS,
Singapore; Kokichi Futatsugi and Kazuhiro Ogata, JAIST, Japan; Dominique Méry, Univ. of Nancy, France; Franz
Wotawa and Bernhard K. Aichernig, Techn. Univ. of Graz, Austria; Wolfgang J. Paul, Univ. of Saarland, Germany;
Alan Bundy, University of Edinburgh, Scotland; Tetsuo Tamai, then at Tokyo Univ., now at Hosei Univ., Tokyo, Japan;
Jens Knoop, Techn. Univ. of Vienna, Austria; Dömölki Balint and Kozma László, Eötös Loránt Univ., Budapest, Hun-
gary; Lars-Henrik Ericsson, Univ. of Uppsala, Sweden; Peter D. Mosses, Univ. of Swansea, Wales; Magne Haveraaen,
Univ. of Bergen, Norway; Sun Meng, Peking Univ., China; He JiFeng and Zhu HuiBiao, East China Normal Univ.,
Shanghai, China; Zhou Chaochen, Lin Huimin and Zhan Naijun, Inst. of Softw., CAS, Beijing, China; Victor P.
Ivannikov, Inst. of Sys. Prgr., RAS, Moscow, Russia; Luı́s Soares Barbosa and Jose Nuno Oliveira, Univ. of Minho,
Portugal; and Steeve McKeever and Andreas Hamfeldt, Uppsala University.

7.1. Bibliographical Notes

I have thought about domain engineering for more than 20 years. But serious, focused writing only started to appear
since [Bjø06, Part IV] — with [Bjø03, Bjø97] being exceptions: [Bjø07] suggests a number of domain science and
engineering research topics; [Bjø10a] covers the concept of domain facets; [BE10] explores compositionality and Ga-
lois connections. [Bjø08, Bjø10c] show how to systematically, but, of course, not automatically, “derive” requirements
prescriptions from domain descriptions; [Bjø11a] takes the triptych software development as a basis for outlining
principles for believable software management; [Bjø09, Bjø14a] presents a model for Stanisław Leśniewski’s [CV99]
concept of mereology; [Bjø10b, Bjø11b] present an extensive example and is otherwise a precursor for the present
paper; [Bjø11c] presents, based on the TripTych view of software development as ideally proceeding from domain
description via requirements prescription to software design, concepts such as software demos and simulators; [Bjø13]
analyses the TripTych, especially its domain engineering approach, with respect to [Mas43, Mas54, Maslow]’s and
[PS04, Peterson’s and Seligman’s]’s notions of humanity: how can computing relate to notions of humanity; the first
part of [Bjø14b] is a precursor for [Bjø16b] with the second part of [Bjø14b] presenting a first formal model of the
elicitation process of analysis and description based on the prompts more definitively presented in the current paper;
and with [Bjø14c] focus on domain safety criticality. The present paper, [Bjø16a], marks, for me, a high point, with
[Bjø16b] now constituting the base introduction to domain science & engineering.

26In this paper we do not exemplify goals, let alone the use of temporal logic. We cannot exemplify all aspects of domain description and
requirements prescription, but, if we were, would then use the temporal logic of [ZH04, The Duration Calculus].

27— that might, however, warrant a complete rewrite.
28The Duration Calculus [DC], respectively DC, Timed Automata and Z

From Domain Descriptions to Requirements Prescriptions: A Different Initial Approach to Requirements Engineering 35

8. References

[BE10] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations in the Context
of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem

Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture Notes in Computer Science, pages 22–59,
Heidelberg, July 2010. Springer.

[Bjø97] Dines Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In Li ShaoYang and Michael Hinchley, ed-
itors, ICFEM’97: International Conference on Formal Engineering Methods, Los Alamitos, November 12–14 1997. IEEE Computer
Society. Final Version.

[Bjø03] Dines Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engineering ? In Verification: Theory and

Practice, volume 2772 of Lecture Notes in Computer Science, Heidelberg, October 7–11 2003. Springer–Verlag. The Zohar Manna
International Conference, Taormina, Sicily 29 June – 4 July 2003. .

[Bjø06] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer Science,
the EATCS Series. Springer, 2006.

[Bjø07] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, volume 4701 of
Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007. Springer.

[Bjø08] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds.
Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[Bjø09] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare, History of Computing
(eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70, London, UK, 2009. Springer.

[Bjø10a] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the Art and New

Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.
[Bjø10b] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics, Part I of II: The

Engineering Part . Kibernetika i sistemny analiz, (4):100–116, May 2010.
[Bjø10c] Dines Bjørner. The Rôle of Domain Engineering in Software Development. Why Current Requirements Engineering Seems Flawed!

In Perspectives of Systems Informatics, volume 5947 of Lecture Notes in Computer Science, pages 2–34, Heidelberg, Wednesday,
January 27, 2010. Springer.

[Bjø11a] Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.
[Bjø11b] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics Part II of II: The

Science Part . Kibernetika i sistemny analiz, (2):100–120, May 2011.
[Bjø11c] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. In Rainbow of Com-

puter Science, Festschrift for Hermann Maurer on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg
and A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January 2011.

[Bjø13] Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chapter 7, pages 159–177. Com-
putational Analysis, Synthesis, and Design of Dynamic Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter J.
Mosterman).

[Bjø14a] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio Calosi and Pierluigi
Graziani). Springer, Amsterdam, The Netherlands, October 2014.

[Bjø14b] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida, José Meseguer, and
Kazuhiro Ogata, editors, Specification, Algebra, and Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer,
May 2014.

[Bjø14c] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014: Australian System Safety
Conference, Melbourne, 26–28 May, December 2014.

[Bjø16a] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to Requirements Engineering.
Submitted for consideration by Formal Aspects of Computing, 2016.

[Bjø16b] Dines Bjørner. Manifest Domains: Analysis & Description. Expected published by Formal Aspects of Computing, 2016.
[CV99] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.
[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed requirements acquisition. Sci. Comput. Program., 20(1-

2):3–50, April 1993.
[ESA] ESA. Global Navigation Satellite Systems. Web, European Space Agency. http://en.wikipedia.org/wiki/Satellite navigation.
[GGJZ00] Carl A. Gunter, Elsa L. Gunter, Michael A. Jackson, and Pamela Zave. A Reference Model for Requirements and Specifications.

IEEE Software, 17(3):37–43, May–June 2000.
[IEE90] IEEE Computer Society. IEEE–STD 610.12-1990: Standard Glossary of Software Engineering Terminology. Technical report,

IEEE, IEEE Headquarters Office, 1730 Massachusetts Avenue, N.W., Washington, DC 20036-1992, USA. Phone: +1-202-371-0101,
FAX: +1-202-728-9614, 1990.

[Jac95] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices. ACM Press. Addison-
Wesley, Reading, England, 1995.

[Jac01] Michael A. Jackson. Problem Frames — Analyzing and Structuring Software Development Problems. ACM Press, Pearson Educa-
tion. Addison-Wesley, England, 2001.

[Jac10] Michael A. Jackson. Program Verification and System Dependability. In Paul Boca and Jonathan Bowen, editors, Formal Methods:

State of the Art and New Directions, pages 43–78, London, UK, 2010. Springer.
[JHJ07] Cliff B. Jones, Ian Hayes, and Michael A. Jackson. Deriving Specfications for Systems That Are Connected to the Physical World.

In Cliff Jones, Zhiming Liu, and James Woodcock, editors, Formal Methods and Hybrid Real-Time Systems: Essays in Honour of
Dines Bjørner and Zhou Chaochen on the Occasion of Their 70th Birthdays, volume 4700 of Lecture Notes in Computer Science,
pages 364–390. Springer, 2007.

[Lau02] Søren Lauesen. Software Requirements - Styles and Techniques. Addison-Wesley, UK, 2002.

36 Dines Bjørner

[Mas43] Abraham Maslow. A Theory of Human Motivation. Psychological Review, 50(4):370–96, 1943. http://psychclassics.yorku.ca/-
Maslow/motivation.htm.

[Mas54] Abraham Maslow. Motivation and Personality. Harper and Row Publishers, 3rd ed., 1954.
[OD08] Ernst-Rüdiger Olderog and Henning Dierks. Real-Time Systems: Formal Specification and Automatic Verification. Cambridge

University Press, UK, 2008.
[PS04] Christopher Peterson and Martin E.P. Seligman. Character strengths and virtues: A handbook and classification. Oxford University

Press, 2004.
[van09] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to Software Specifications. Wiley, 2009.
[ZH04] Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal Approach to Real–time Systems. Monographs in Theoretical

Computer Science. An EATCS Series. Springer–Verlag, 2004.

