40 Years of Formal Methods

Reminiscences of a Beautiful Profession

Dedicated to Chris W. George
Univ. of NSW, Sydney, 19 May 2014

Dines Bjgrner & Klaus Havelund
Fredsvej 11, DK-2840 Holte, Denmark & JPL, Pasadena, Calif., USA
May 1, 2014: 11:20

8 Obstacles and 3 Possibilities 1 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



0. Summary
e In this “40 years of formal methods” talk we shall

» first delineate what we mean by

@ method, @ software engineering, and
o formal method, @ model-oriented and
@ computer science, o algebraic methods.

@ computing science,

¢ Based on this we shall characterise a spectrum

o from specification-oriented methods
o to analysis-oriented methods.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 2 40 Years of Formal Methods



e Then we shall provide a “survey”:

& which are the ‘prerequisite works’
that have enabled formal methods;

and

@ which are, to us, the, by now, classical ‘formal methods’.
e We then ask ourselves the question:

& Have formal methods for software development,
@ in the sense of this talk

& been successtul ?

e Our answer is, regretfully, no!

8 Obstacles and 3 Possibilities 3 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



e We motivate this answer

& by discussing eight obstacles or hindrances
® to the proper integration of formal methods
@ 1n university research and education

@ as well as in industry practice.
e This “looking back” is complemented by a

» “looking forward” at some promising developments

» besides the alleviation of the (eighth or more) hindrances!

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 4 40 Years of Formal Methods



1. Summar y

1. Introduction

e It is all too easy to use terms colloquially.

e That is, without proper definitions.

1.1. Some Delineations
1.1.0.1 Method

e By a method we shall understand

@ a set of principles

» for selecting and applying

¢ techniques and tools

» for analysing and/or synthesizing
» an artefact.




1. Introduction 1.1. Some Delineations

e In this we shall be concerned with
methods for analysing and synthesizing software artefacts.

e We consider the code, or program, components of software
to be mathematical artefacts.!

e That is why we shall only consider such methods
which we call formal methods.

‘Major “schools” of software engineering seem to not take this view.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 6 40 Years of Formal Methods



1. Introduction 1.1. Some Delineations

1.1.0.2 Formal Method

e By a formal method we shall understand a method

» whose techniques and tools can be explained in
mathematics.

» If, for example, the method includes, as a tool, a specification
language, then that language has
o a formal syntax.
o a formal semantics, and
o a formal proof system.

8 Obstacles and 3 Possibilities 7 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



1. Introduction 1.1. Some Delineations

» The techniques of a formal method help

@ construct a specification, and/or
o analyse a specification, and /or
» transform (refine)

one (or more) specification(s) into a program.

» The techniques of a formal method.,
(besides the specification languages)
o are typically software packages
o that help developers use
o the techniques and other tools.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 8

40 Years of Formal Methods



1. Introduction 1.1. Some Delineations

1.1.0.3 Formal, Rigorous or Systematic Development

e The aim of developing software,

@ either formally
® or rigorously
® or systematically?

e is to [be able to|] reason in a precise manner about
properties of what is being developed.

:We may informally characterise the spectrum of “formality”. All specifications are

formal.
o in a formal development all arguments are formal;

@ in a rigorous development some arguments are made and they are formal;

@ in a systematic development some arguments are made, but they are not neces-

sarily formal, although on a form such that they can be made formal.
Boundary lines are, however, fuzzy.

8 Obstacles and 3 Possibilities 9 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



10

1. Introduction 1.1. Some Delineations

1.1.0.4 Computer Science, Computing Science and Software Engineering

e By computer science we shall understand

» the study of and knowledge about
» the mathematical structures
¢ that “exists inside” computers.

e By computing science we shall understand

» the study of and knowledge about
< how to construct those structures.

The term programming methodology is here used
synonymously with computing science.




11

1. Introduction 1.1. Some Delineations

1.1.0.5 Model-oriented and Algebraic Methods

e By a model-oriented method we shall understand

@ a method which is based on model-oriented specifications,
® that is, specifications whose data types are concrete,
& such as numbers, sets, Cartesians, lists, maps.
e By an algebraic method, or as we shall call it,
property-oriented method we shall understand
@ a method which is based on property-oriented specifications,
® that is, specifications whose data types are abstract,
& that 1s, postulated abstract types, called carrier sets,
® together with a number of postulated operations

@ defined in terms of axioms over carrier elements and operations.

11 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



12

1. Introduction 1.1. Some Delineations

1.1.0.5.1. An Aside on the Term ‘Model’

e When used in conjunction with ‘model-oriented specification’
» ‘model’ refers to data types bing mathematical entities.
e Both model-oriented and property-oriented specifications

& are meant to designate models.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 12 40 Years of Formal Methods



13

1. Introduction 1.2. Specification versus Analysis Methods

1.2. Specification versus Analysis Methods

e We here introduce the reader to the distinction between
specification-oriented methods and analysis-oriented methods.

e Specification-oriented methods,

@ are primarily characterized by a formal specification language.,
o and include for example VDM, Z and RAISE/RSL.

® The focus is mostly on convenient and expressive specification
languages and their semantics.

» The main challenge is considered to be how to write simple, easy
to understand and elegant /beautiful specifications.

& These systems, however, eventually got analysis tools and
techniques.

13 (© Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



14

1. Introduction 1.2. Specification versus Analysis Methods

e Analysis-oriented methods,

@ on the other hand, are born with focus on analysis,

» and include for example

Alloy, Astrée. Event B, PVS. Z3 and SPIN.

& Some of these analysis-oriented methods, however, offer very
convenient specification languages, PVS being an example.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 14 40 Years of Formal Methods



15

2. Introduction

2. A Syntactic Status Review

e Our focus is on
model-oriented specification and development approaches.

e We shall, however, briefly mention the
property-oriented, or algebraic approaches also.

e By a syntactic review we mean a status that focuses

@ publications,
o formal methods (“by name”),
@ conferences and

@ USEI groups.

8 Obstacles and 3 Possibilities 15 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



16

2. A Syntactic Status Review 2.1. a Background for Formal Methods

2.1. A Background for Formal Methods

e The formal methods being surveyed has a basis, we think,

& in a number of seminal papers and

& In a number of seminar textbooks.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 16 40 Years of Formal Methods



2. A Syntactic Status Review 2.1. A Background for Formal Methods

17

2.1.0.1 Seminal Papers

e What has made formal software development methods possible 7

e Here we should like to briefly mention some of the giant
contributions which are the foundation for formal methods.

@ There is John McCarthy’s work:
o Recursive Functions of Symbolic Expressions
and Their Computation by Machines and
» Towards a Mathematical Science of Computation.

& There i1s Peter Landin’s work:

@ The Mechanical Evaluation of Expressions,

o Correspondence between ALGOL 60
and Church’s Lambda-notation and

o Programs and their Proofs: an Algebraic Approach.

17 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



18

2. A Syntactic Status Review 2.1. A Background for Formal Methods

¢ There i1s Robert Floyd’s work:
o Assigning Meanings to Programs.
» There is John Reynold’s work:

o Definitional Interpreters for Higher-order Programming
Languages.

@ There is Dana Scott and Christopher Strachey’s work:

o Towards a Mathematical Semantics
for Computer Languages.

» There is Edsger Dijkstra’s work:
o A Discipline of Programming.
@ And there is Tony Hoare’s work:

o An Axiomatic Basis for Computer Programming and
@ Proof of Correctness of Data Representations.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 18 40 Years of Formal Methods



19
2. A Syntactic Status Review 2.1. A Background for Formal Methods

2.1.0.2 Some Supporting Text Books

e Some monographs or text books

@ “In line” with formal development of programs,

& but not “keyed” to specific notations,

are.

» The Art of Programming 'Donald E. Knuth, 1968-1973
» A Discipline of Programming Edsger W. Dijkstra, 1976,

» The Science of Programming [David Gries, 1981],
» The Craft of Programming [John C. Reynolds, 1981] and
» The Logic of Programming [Eric C.R. Hehner, 1984].

19 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



20

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2. A Brief Technology and Community Survey

e We remind the audience of our distinction between

& formal specification methods and

» formal analysis methods.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 20 40 Years of Formal Methods



21
2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.1 A List of Formal, Model-oriented Specification Methods

e The foremost specification and model-oriented formal methods are,
chronologically listed:

» [b| VDM Bjorner & Jones 197841982, Jones 198041989,
Fitzgerald & Gorm Larsen 1996-+2008|,
® [6] Z° [Woodcock et al., 1996],
o [4] RAISE/RSL |George et al., 199241995, Bjgrner 2006], and
o [2] B [Abrial 1996].
e The foremost analysis and model-oriented formal methods are:
» [3] Event-B |Abrial 2009] and
» [1] Alloy [Jackson, 2006].
s/ Zermelo

1B: Bourbaki

21 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



22

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

e The main focus is on the development of specifications, one or
more.

o Of these VDM, Z and RAISE
originated as rather “purist” specification methods,

» Event-B and Alloy from their conception
focused strongly on analysis.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 22 40 Years of Formal Methods



2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

23

2.2.0.2 A List of Formal, Algebraic Methods

e The foremost property-oriented formal methods are:

» CafeOBJ |[Futatsugi, 1998],
o CASL® [Sannella, Tarlecki, etc., 2004] and
» Maude |[Meseguer, 2011].

e The definitive text on algebraic semantics is

% Foundations of Algebraic Semantics and Formal Softw. Deuvt.,
Sannella & Tarlecki, 2012].

e It is a characteristic of algebraic methods that

® their specification logics are analysis friendly,

» usually in terms of rewriting.

®Common Algebraic Specification Language

23 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



24

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.3 A List of Formal Analysis Methods

e The foremost analysis methods® can be roughly “classified” into
three classes:
» Abstract Interpretation, for example:
o Astrée;
» Theorem Proving. for example:

© ACL27 ©) STEP7
© Coq, o PVS and
» Isabelle/HOL, o Z3.

» Model-Checking, for example:
» SMV and » SPIN/Promela.

6in addition to those of formal algebraic methods

© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 24 40 Years of Formal Methods



25

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

e Shallow program analysis is provided by static analysis tools such as

@ Semmle, ¢ CodeSonar and

® Coverity, ® KlocWork.

e These static analyzers scale extremely well to very large programs.

& This 1s unlike most other formal methods tools.

®» They are a real success from an industrial adoption point of view.
e However, this is at the prize ot

& the limited properties they can check:;
» they can usually not check functional properties:

» that a program satisfies its requirements.

8 Obstacles and 3 Possibilities 25 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



26

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.4 Mathematical Notations
e Why not use “good, old-fashioned” mathematics as a specification
language 7

& W. J. Paul has done so.

e Y. Gurevitch has put a twist to the use of mathematics as a
specification language in his Evolving Algebras known now as
Abstract Algebras.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 26 40 Years of Formal Methods



27

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.5 Related Formal Notations

e Among formal notations for describing reactive systems we list:

» CSP’ 'Hoare, 1978
and CCS® [Milner, 1980
for textually modelling concurrency;,

o DC? [Zhou, Hansen, et.al., 1992, 2004]
for modelling time-continuous temporal properties,

o MSC1Y [C.C.I.T.T., 1992-1999]

for graphically modelling message communication between
simple processes,

‘CSP: Communicating Sequential Processes
«CCS: Calculus of Communicating Systems
"D C: Duration Calculus

wMSC: Message Sequence Charts

27 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



28

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

o Petri Nets [Petri 1963, Reisig 2013]
for modelling arbitrary synchronisation of multiple processes,

» Statecharts [Harel, 1987
for modelling hierarchical systems, and

o TLA+! [Lamport, 2002]
and STeP!? [Manna & Pnueli, 199141995

for modelling discrete time temporal properties.

v TLA+: Temporal Logic of Actions
=2§STeP: Stanford Temporal Prover

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 28 40 Years of Formal Methods



29

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.6 Workshops, Symposia and Conferences

e An abundance of regular workshops, symposia and conferences
have grown up around formals methods.

o Along (roughly) the specification-orientation we have:

o VDM, FM and FME! symposia;

o Z, B, ZB, ABZ, etc. meetings, workshops, symposia.,
conferences, etc.;

o SEFM: and

o ICFEM™.

< One could wish for some consolidation of these too numerous
events.

sF'M: Formal Methods and FME: FM Europe
sSEFM: Software Engineering and Formal Methods
s|CFEM: Intl.Conf. of Formal Engineering Methods

29 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



30

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

o Although some of these conferences started out as
specification-oriented,

o today they are all more or less analysis-oriented.
o The main focus of research today is analysis.

» And along the pure analysis-orientation we have the annual:
o CAV10
» CADE!".
o TACAS!®

o etcetera

conferences.

I6CAV: Computer Aided Verification
"CADE: Computer Aided Deduction
I8TACAS: Tools and Algorithms for the Construction and Analysis of Systems

© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 30 40 Years of Formal Methods



31

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.7 User Groups

e The advent of the Internet has facilitated method-specific “home
pages’

o Alloy: alloy.mit.edu/alloy/,
» ASM: www.eecs.umich.edu/gasm/.
» B: en.wikipedia.org/wiki/B-Method,
» Event-B: www.event-b.org/,
» RAISE: en.wikipedia.org/wiki/RAISE,
» VDM: www.vdmportal.org/twiki/bin/view and

o Z: formalmethods.wikia.com /wiki/Z notation.

31 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Hol Denmark — May 1, 2014: 11:2



32

2. A Syntactic Status Review 2.2. A Brief Technology and Community Survey

2.2.0.8 Formal Methods Journals

e T'wo journals emphasize formal methods:

» Formal Aspects of Computing!” and
» Formal Methods in System Design?

both published by Springer.

ulink.springer.com /journal /165
=link.springer.com /journal /10703

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 32

40 Years of Formal Methods



33

2. A Syntactic Status Review 2.3. Shortcomings

2.3. Shortcomings

e The basic, model-oriented formal methods are sometimes
complemented by some of “the related” formal notations.

@ RSL includes CSP and some restricted notion of
object-orientedness and a subset of RSL has been extended
with DC [Haxthausen et al., 2000).

» VDM and Z has each been extended with some (wider) notion
of object-orientedness:

o VDM++4, respectively
o object Z.

33 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



34

2. A Syntactic Status Review 2.3. Shortcomings

e A general shortcoming of all the above-mentioned model-oriented
formal methods

& 18 their inability to express continuity

@ 1n the sense, at the least, of first-order differential calculus.
e The IFM conferences focus on such “integrations”.

e [Haxthausen, 2000] outlines integration issues for
model-oriented specification languages.

e Hybrid CSP is CSP + differential equations + interrupt !

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 34 40 Years of Formal Methods



35

2. A Syntactic Status Review 2.4. A Success Story?

2.4. A Success Story?

e With all these books, publications, conferences and user-groups
can we claim that formal methods have become a success —

% an integral part of computer science and software engineering 7 and

% established in the software industry 7
e Our answer is basically no!
e Formal methods have yet to become an integral part of

% computer science & software engineering research and education,

% and the software industry:.

e We shall motivate this answer next.

8 Obstacles and 3 Possibilities 35 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



36

3. A Syntactic Status Review

3. More Personal Observations

e As part of an analysis of the

& situation of formal methods with respect to

@ research, o education and o industry

® are we to
® (a) either compare the various methods,
holding them up against one another.

o (b) or to evaluate which application areas
each such method are best suited for,

@ (c) or to identity gaps in these methods,
o (d) or “something else” 7

e We shall choose (d): “something else” !

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 36 40 Years of Formal Methods



3. More Personal Observations 3.1. The DDC Ada “Story” 37

3.1. The DDC Ada “Story”

e In 1980 a team of six just-graduated MScs started the industrial
development of a commercial Ada compiler.

& Their (MSc theses) semantics description (in VDM+CSP) of Ada were published

in |Towards a Formal Description of Ada LNCS 98, 1980)].

% The project took some 44 man years in the period 1 Jan. 1980 to 1 Oct. 1984
— when the US Dod, in Sept. 1984, had certified the compiler.

% The six initial developers were augmented by 3 also just-graduated MScs in
1981 and 1982.

& The “formal methods™ aspects was outlined in [Chapter 1 of LNCS 98].

¢ The project staff were all properly educated in formal semantics and compiler

development in the style of [ICS’77], [LNCS 81, 1978] and [FS&SD, 1982].

& The completed project was evaluated in [Formal Specification and
Development of an Ada Compiler — A VDM Case Study, ICSE 84] and in

[Oest, IFTP’86].

8 Obstacles and 3 Possibilities 37 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



38 3

. More Personal Observations 3.1. The DDC Ada “Story”

e Now, 30 vears later, mutations of that 1984 Ada compiler are still
around !

@ From having taken place in Denmark, a core DDC Ada compiler
product group was moved to the US in 199021 — purely based
on marketing considerations.

@ Several generations of Ada has been assimilated into the
1981-1984 design.

@ Several generations of less ‘formal methods’ trained developers
have worked and are working on the DDC-I Inc. Legacy Ada
compiler systems.

@ For the first 10 years of the 1984 Ada compiler product less than
one man month was spent per year on corrective maintenance —
dramatically below industry “averages” !

2Cf. DDCHl Inc., Phoenix, Arizona http://www.ddci.com/

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 38 40 Years of Formal Methods



3. More Personal Observations 3.1. The DDC Ada “Story”

39

e The DDC Ada development was systematic:

» it had roughly up to eight (8) steps of “refinement”:
o two (2) steps of domain description of Ada (approx. 11.000
lines),
o via four (4) steps of requirements prescription for the Ada
compiler (approx. 55.000 lines),

o and two (2) steps of
+ design (approx. 6.000 lines) and
x coding
of the compiler itself.
o Throughout the emphasis was on (formal) specification.
» No attempt was really made to

@ express, let alone prove, formal properties
@ of any of these steps nor their relationships.

39 (© Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



4
0 3. More Personal Observations 3.1. The DDC Ada “Story”

e The formal /systematic use of VDM

& must be said to be an unqualified formal methods success story.?

@ Yet the published literature on Formal Methods fails to
recognize this.

=The 1980s Ada compiler “competitors” each spent well above 100 man years on
their projects — and none of them are “in business” today (2014).

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 40 40 Years of Formal Methods



41

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2. Eight Obstacles to Formal Methods

e If we claim “obstacles”, then it must be that we assume

@ on the background of, for example, the “The DDC Ada Story”
that

& formal methods are worthwhile, in fact, that
o formal methods are indispensable
@ in the proper, professional pursuit
o of software development.
¢ That 1s, that
@ not using formal methods in software development,

o where such methods are feasible,
@ is a sign of a immature, irresponsible industry:.

8 Obstacles and 3 Possibilities 41 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



42

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e Summarising, we see the following 8 obstacles to
the research, teaching and practice of formal methods:
@ 1. A History of Science and Engineering “Obstacle”,
@ 2. A Not-Yet-Industry-scaled Tool Obstacle,
® 3. An Intra-Departmental Obstacle,
@ 4. A Not-Invented-Here Obstacle,
» 5. A Supply and Demand Obstacle,
» 6. A Slide in Professionalism Obstacle,
@ /. A Not-Yet-Industry-attuned Engineering Obstacle and
® 8. An Education Gap Obstacle.




43

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.1 A History of Science and Engineering Obstacle

e There is not enough research of and teaching of formal methods.

e Amongst other things because there is a lack of belief that they
scale — that it is worthwhile.

8 Obstacles and 3 Possibilities 43 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



44
3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e [t is worthwhile researching tormal software development methods.

& We must strive for correct software.
@ Since it is possible to develop software

o formally and such that it is correct, etcetera,
o one must study such formal methods.

e [t is worthwhile teaching & learning formal software development
methods.
@ Since it is possible to develop software

o formally and such that it is correct, etcetera,
o one ought teach & learn such formal methods.

e Do not bother as to whether the students then proceed to actually
practice formal methods.




45

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.2 A Not-Yet-Industry-scaled Tool Obstacle

e The tool support for formal methods
is not sufficient for large scale use of these methods.

e The advent of the first formal specification languages, VDM and Z,
e were not “accompanied”’ by any tool support:

@ no syntax checkers,

@ nothing !

8 Obstacles and 3 Possibilities 45 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



46

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e Academic programming was done by individuals.

» The mere thought that three or more programmers
need collaborate on code development
occurred much too late in those circles.

@ As a result propagation of formal methods appears to have been
significantly stifled.

» The first software tools appear
to not having been “industry scale”.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 46 40 Years of Formal Methods



47

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.3 An Intra-Departmental Obstacle

e There are two facets to this obstacle.

» Fields of computer science and software engineering
o are not sufficiently explained to students
o in terms of mathematics, and formal methods,
o for example, specified using formal specifications;

8 Obstacles and 3 Possibilities 47 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



48

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

@ and scientific papers on methodology

@ are either not written, or,
o when written and submitted are rejected by

+ referees not understanding the difference between computer
sciences and computing science —

+ methodology papers do not create neat “little theories”,

+ with clearly identifiable and provable propositions, lemmas
and theorems.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 48 40 Years of Formal Methods



49

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e It is claimed that most department of computer science &2
software engineering staff

@ are unaware of the science & engineering aspects
@ of each others’ individual sub-fields.
@ That 1s, we often see SE researchers and teachers

o unaware of the discipline of, for example,
+ Automata Theory & Formal Languages, and
+ abstraction and modelling (i.e., formal methods).

o With the unawareness manifesting itself in
the lack of use of cross-discipline techniques and tools.

e Such a lack of unawareness of intra-department disciplines
seems rare among mathematicians.

=\We single quote the ampersand: ‘&’ between A and B to emphasize that A & B is
one subhect field.

8 Obstacles and 3 Possibilities 49 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



20

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.4 A Not-Invented-Here Obstacle

e There are too many formal methods being developed.

@ causing the “believers” of each method

® to focus on defining the method ground up,
@ hence focusing on foundations,

» instead of stepping on the shoulders of others

& and focus on the how to use these methods.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 50 40 Years of Formal Methods



o1

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e Are there too many formal specification languages ?

® It is probably far too early to entertain this question.
@ The field of formal methods is just some 45 years old.

& Young compared to other fields.
e But what we see as “a larger” hindrance to formal methods,

@ whether for specification or for analysis, is that,

@ because of this “proliferation” of especially specification
methods,

¢ their more widespread use, as was mentioned above, across “the

standard CS&SE courses” is hindered.

8 Obstacles and 3 Possibilities 51 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



52

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.5 A Supply and Demand Obstacle

e There is not a sufficiently steady flow

» of software engineering students
» all educated in formal methods

® from basically all the suppliers.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 52 40 Years of Formal Methods



23

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e There are software houses, “out there”.

& on several continents, in several countries,

& which use formal methods in one form or another.
e A main problem of theirs is twofold:

» the lack of customers which
demand “provably correct” software, and

» the lack of candidates from universities
properly educated in formal methods.

8 Obstacles and 3 Possibilities 53 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



54

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.6 A Slide in Professionalism Obstacle

e Todays masters in computing science and software engineering

@ are not as well educated as were those of 30 years ago.

e The Ada project mentioned earlier cannot be carried out, today
(2014), by students from my former university.
¢ From three,
o usually 50 student. courses, over 18 months,
& there i1s now only one,

o and usually a 25 student,
@ one semester course in ‘formal methods’.

@ At colleague departments around Europe I see a similar trend:

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 54 40 Years of Formal Methods



25

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

o A strong center for partial evaluation existed for some 25 years
and there is now no courses and hardly any research taking
place at Copenhagen University in that subject.

o Similarly another strong center for foundations of functional
programming has been reduced to basically a one person
activity at another Danish university:.

o The “powers that be” has, in their infinite wisdom apparently
decided that courses and projects around Internet, Web design
and collaborative work, courses that are presented as having
no theoretical foundations, are more important: “relevant to
industry”.

e [t seems that many university computer science departments
have become mere college I'T groups.

8 Obstacles and 3 Possibilities 55 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



26

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

e Research and educational courses in

» methodology subjects

@ are replaced by “research” into and training courses in
& current technology trends —

» often dictated by so-called industry concerns.

& The course curriculum

o 18 crowded by training in numerous “trendy” topics
o at the expense of education in fewer topics.

» Many “trendy” courses have replaced fewer foundational ones.

e | would classify this obstacle as one of

& university and department management failure,

& kow-towing to perceived, popular industry-demands.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 56 40 Years of Formal Methods



27

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.7 A Not-Yet-Industry-attuned Engineering Obstacle

e Tools are missing

» for handling version and configuration control,
» typically for refinement relationships

@ in the context of using formal methods.

8 Obstacles and 3 Possibilities 57 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



o8

3. More Personal Observations 3.2. Eight Obstacles to Formal Methods

3.2.0.8 An Education Gap Obstacle

e When students educated in formal methods enter industry,

e the majority of other colleagues
will not have been educated in formal methods,

e causing the new employee to be over-ruled
in their wishes to apply formal methods.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 58 40 Years of Formal Methods



29

3. More Personal Observations 3.3. A Preliminary Summary Discussion

3.3. A Preliminary Summary Discussion

e Many of the academic and industry obstacles can be overcome.

» Still, a main reason for formal methods not being picked up,
@ and hence “more” successful,

» 1s the lack of scalable and practical tool support.

8 Obstacles and 3 Possibilities 59 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



60

3. More Personal Observations 3.4. The Next 10 Years ?

3.4. The Next 10 Years?

e We see two somewhat independent trends,
which on the one hand are easy to observe,
but, on the other hand, perhaps deserve to be pointed out.

e The first trend is an increased focus on providing verification
support for programming languages (in contrast to a focus on
pure modeling languages).

@ Of course early work on program correctness,

o such as Hoare’s and Dijkstra’s work,
o did indeed focus on correctness of programs,

@ but this form of work
mostly formed the underlying theories
and did not immediately result in tools.

¢ The trend we are pointing out is a tooling trend.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 60 40 Years of Formal Methods



1
3. More Personal Observations 3.4. The Next 10 Years ? 6

e The second trend

® 1s the design of new programming languages
» that look like the earlier specification languages such as VDM and
RSL — and also Alloy.

e We will elaborate some on these two trends below.

» We will argue that we are moving towards a point of singularity.
@ where specification and programming will be done
within the same language and verification tooling framework.

e This will help break down the barrier for
programmers to write specifications.

8 Obstacles and 3 Possibilities 61 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



2
6 3. More Personal Observations 3.4. The Next 10 Years ?

3.4.0.1 Verification Support for Programming Languages

e We have in the past seen many verification systems created with
specialized specification and modeling languages.

e Theorem proving systems, for example, typically offer functional
specification languages (where functions have no side effects) in
order to simplify the theorem proving task.

¢ Examples include

o ACL2, o Isabelle/HOL, @ Coq, and o PVS.




63

3. More Personal Observations 3.4. The Next 10 Years ?

e The PVS specification language stands out

@ by putting a lot of emphasis on the convenience of the language.,

» although it is still a functional language.

e The model checkers, such as
@ SPIN and » SMV

e usually offer notations

@ being somewhat limited in convenience when it comes to defining
data types, in contrast to control,

& 1n order make the verification task easier.
e Note that in all these approaches,

& specification is considered as a
different activity than programming.

8 Obstacles and 3 Possibilities 63 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



4
6 3. More Personal Observations 3.4. The Next 10 Years ?

e Within the last decade or so, however, there has been an increased focus on
verification techniques centered around real programming languages.

e This includes model checkers such as the Java model checker

& JPF (Java PathFinder),

& the C model checkers SLAM /SDV,

© CBMC,

< BLAST, and the

% C code extraction and verification capability Modex of SPIN,

as well as theorem proving systems, for C, such as

< VCC,
¢ VeriFast,

% and the general analysis framework Frama-C.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 64 40 Years of Formal Methods



3. More Personal Observations 3.4. The Next 10 Years? 65

e The ACL2 theorem prover should be mentioned as a very early
example of a verification system associated with a programming
language, namely LISP.

e Experimental simplified programming languages have also lately
been developed with associated proof support, including

» Dafny, supporting SMT-based verification,
» and AAL supporting static analysis, model checking, and testing.

65 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



66 3. More Personal Observations 3.4. The Next 10 Years ?

3.4.0.2 The Advancement of High-level Programming Languages

e At the same time, programming languages have become
increasingly high level, with examples such as

< ML
o combining functional and imperative programming;

and 1ts derivatives

o CML (Concurrent ML) and

@ Jcaml,
+ Integrating features for concurrency and message passing,
+ as well as object-orientation
+ on top of the already existing module system:;

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 66 40 Years of Formal Methods



67

3. More Personal Observations 3.4. The Next 10 Years ?

» Haskell as a pure functional language:;
® Java,

o which was one of the first programming languages to support
sets, list and maps as built-in libraries —

o data structures
which are essential in model-based specification;
® Scala,

o which attempts to cleanly integrate
@ object-oriented and functional programming:

8 Obstacles and 3 Possibilities 67 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



68

3. More Personal Observations 3.4. The Next 10 Years ?

e and various dynamically typed high-level languages such as

¢ Python

o combining object-orientation and some form of functional
programming,

o and built-in succinct notation for sets, lists and maps, and
iterators over these,

o corresponding to set, list and map comprehensions,
which are key to for example VDM, RSL and Alloy.
e Some of the early specification languages, including VDM and RSL.,
were indeed
» so-called wide-spectrum specification languages,
® including programming constructs

& as well as specification constructs.

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 68 40 Years of Formal Methods



69

3. More Personal Observations 3.4. The Next 10 Years ?

e However, these languages were still considered specification
languages and not programming languages.

» The above mentioned high-level programming trend may help
promote the idea of writing down high-level designs — it will
just be another program.

@ Some programming language extensions incorporate

o specifications, usually in a layered manner where specifications
are separated from the actual code.

o EML (Extended ML)

@ is an extension of the functional programming language SML
(Standard ML)

o with algebraic specification written in the signatures.
o ECML (Extended Concurrent ML)

o extends CML (Concurrent ML)
o with a logic for specifying CML processes in the style of EML.

69 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



70

3. More Personal Observations 3.4. The Next 10 Years ?

o®kEiffel
@ IS an imperative programming language
o with design by contract features (pre/post conditions and
invariants).
® SpecH#

o extends C# with constructs for non-null types,
o pre/post conditions,
o and invariants.

¢ JML

@ is a specification language for Java.,

o where specifications are written in special annotation
comments [which start with an at-sign (@Q)].

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 70 40 Years of Formal Methods



3. More Personal Observations 3.4. The Next 10 Years ? 71

3.4.0.3 The Point of Singularity for Formal Methods

e There are two other directions that we would like to mention:

® visual languages and

o DSLs (Domain Specific Languages).

e The point of singularity is the point where

@ specification,
@ programming and
& verification
e is performed in an integrated manner,

e within the same language framework,

e additionally supported by visualization and meta-programming.

8 Obstacles and 3 Possibilities 71 © Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20



72

4. More Personal Observations

4. Conclusion

e We have

& surveyed facets of formal methods,
& discussed eight obstacles to their propagation and

@ discussed three possible future developments.
e We do express a, perhaps not too vain hope,

» that formal methods,
& both specification- and analysis-oriented.,
@ will overcome the eight obstacles

& and others!

(© Dines Bjgrner 2014; Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:20 72 40 Years of Formal Methods



4. Conclusion

73

e We have seen many exciting formal methods emerge.
e The first author has edited

@ two double issues of journal articles on formal methods
o [Computing and Informatics, SKAS]
© (ASM, B, CafeOBJ, CASL, DC, RAISE, TLA+, Z) and
o [Intl. Journ. Informatics and Computing, CAS]
© (Alloy, ASM, Event-B, DC, Cafe(0OBJ, CASL, RAISE,
VDM, Z),

o and, based on |Computing and Informatics, SKAS] a book .

73 (© Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



74

4. Conclusion

e Several of the originators of VDM are still around.
e The originator of Z, B and Event B is also still around.

e And so are the originators of
Alloy, RAISE, CASL, CafeOBJ and Maude.

e And so is the case for the analytic methods too!

e How many of the formal methods mentioned in this talk will still be
around and “kicking” when their originators are no longer active ?

74 40 Years of Formal Methods



5. Conclusion

75

5. Acknowledgements

e We dedicate this to our colleague of many years, Chris George.

& Chris is a main co-developer of RAISE.

@ From the early 1980s Chris has contributed to both the
industrial and the academic progress of formal methods.

& We have learned much from Chris —

@ and expect to learn more!

75 (© Dines Bjgrner 2014, Fredsvej 11, DK-2840 Holye, Denmark — May 1, 2014: 11:2



