
1

Domain Engineering
A Basis for Safety Critical Software

Dines Bjørner

Fredsvej 11, DK–2840 Holte, Denmark

March 18, 2014: 08:22

A Basis for Safety Critical Software 1 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

2

0. Summary

• A Software Development Triptych:

⋄⋄ Before software can be designed

◦◦ we must have a reasonable grasp

◦◦ of the requirements

◦◦ that the software is supposed to fulfil.

⋄⋄ And before requirements can be prescribed

◦◦ we must have a reasonable grasp

◦◦ of the “underlying” application domain.

A Basis for Safety Critical Software 2 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

3

• A Dogma:

⋄⋄ Domain engineering now becomes
a software engineering development phase

◦◦ in which a precise description,

◦◦ desirably formal,

◦◦ of the domain

◦◦ within which the target software is to be embedded.

⋄⋄ Requirements engineering then becomes a phase of software
engineering

◦◦ in which one systematically derives requirements prescriptions

◦◦ from the domain description.

⋄⋄ (Software design is then the software engineering phase
which (also) results in code.)

A Basis for Safety Critical Software 3 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

4

• We illustrate the first element, D, of this triptych (D,R,S) by an
example in which we show a description of a pipeline domain where,
for example, the operations of pumps and valves are safety critical.

• We then summarise the methodological stages and steps of domain
engineering.

• We finally weave considerations of system safety criticality into a
section on domain facets.

A Basis for Safety Critical Software 4 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

5

• We believe this aspect of safety criticality is new:

⋄⋄ We here connect safety criticality to domain engineering.

⋄⋄ The study presented here need be deepened.

⋄⋄ Similar connections need be made to

◦◦ requirements engineering such as it can be “derived” from
domain engineering, and to

◦◦ the related software design.

⋄⋄ That is, three distinct “layers” of safety engineering.

A Basis for Safety Critical Software 5 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

6
1.

1. Introduction

• A Software Development Triptych:

⋄⋄ Before software can be designed

◦◦ we must have a reasonable grasp

◦◦ of the requirements

◦◦ that the software is supposed to fulfil.

⋄⋄ And before requirements can be prescribed

◦◦ we must have a reasonable grasp

◦◦ of the “underlying” application domain.

A Basis for Safety Critical Software 6 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

7
1. Introduction

• Domain engineering now becomes
a software engineering development phase

⋄⋄ in which a precise description,

⋄⋄ desirably formal,

⋄⋄ of the domain

⋄⋄ within which the target software is to be embedded.

A Basis for Safety Critical Software 7 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

8
1. Introduction

• Requirements engineering then becomes
a phase of software engineering

⋄⋄ in which one systematically derives

◦◦ requirements prescriptions

◦◦ from the domain description —

◦◦ carving out and extending, as it were, a subset of those

∗ domain properties that are computable and

∗ for which computing support is required.

A Basis for Safety Critical Software 8 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

9
1. Introduction

• Software design is then

⋄⋄ the software engineering phase

⋄⋄ which results in code (and further documentation).

A Basis for Safety Critical Software 9 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

101. Introduction

• We shall first

⋄⋄ give a fairly large example, approximately 30 Slides,

⋄⋄ of a postulated domain of (say, oil or gas) pipelines;

⋄⋄ the focus will be on endurants:

◦◦ the observable entities that endure,

◦◦ their mereology, that is, how they relate, and

◦◦ their attributes.

⋄⋄ Perdurants: actions, events and behaviours will be very
briefly mentioned.

A Basis for Safety Critical Software 10 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

11
1. Introduction

• We shall then

⋄⋄ on the background of this substantial example,

⋄⋄ outline the basical principles, techniques and tools

⋄⋄ for describing domains —

⋄⋄ focusig only on endurants.

A Basis for Safety Critical Software 11 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

12
1. Introduction

• We shall review notions of safety criticality:

⋄⋄ safety,

⋄⋄ failure,

⋄⋄ error,

⋄⋄ fault,
⋄⋄ hazard and

⋄⋄ risk.

• Other notions will also be briefly characterised:

⋄⋄ component and ⋄⋄ system

safety, and

⋄⋄ stake-holder,

⋄⋄ machine and

⋄⋄ requirements.

A Basis for Safety Critical Software 12 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

13
1. Introduction

• And, finally we shall detail the notion of domain facets.

⋄⋄ The various domain facets

◦◦ somehow reflect domain views —

◦◦ of logical or algebraic nature —

◦◦ views that are shared across stake-holder groups,

◦◦ but are otherwise clearly separable.

⋄⋄ It is in connection with
the summary explanation of respective domain facets
that we identify respective faults and hazards.

⋄⋄ The presentation is brief.

A Basis for Safety Critical Software 13 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

14
1. Introduction

• We consider the following ideas new:

⋄⋄ the idea of describing domains before prescribing requirements

⋄⋄ and the idea of enumerating faults and hazards

◦◦ as related to individual facets.

⋄⋄ For the latter “discovery” we thank the organisers of ASSC 2014,
notably Prof. Clive Victor Boughton.

A Basis for Safety Critical Software 14 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

15
2. Introduction

2. An Example

• Our example is an abstraction of pipeline system endurants.

⋄⋄ The presentation of the example

◦◦ reflects a rigorous use of the domain analysis & description
method outlined in Sect. 3,

◦◦ but is relaxed with respect to not showing all – one could say
intermediate – analysis steps and description texts,

∗ but following stoichiometry ideas from chemistry

∗ makes a few short-cuts here and there.

◦◦ The use of the “stoichiometrical” reductions,

∗ usually skipping intermediate endurant sorts,

∗ ought properly be justified in each step —

∗ and such is adviced in proper, industry-scale analyses &
descriptions.

A Basis for Safety Critical Software 15 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

16
2. An Example

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Figure 1: Pipelines. Flow is right-to-left in left figure, but left-to-right in right figure.

• The description only covers a few aspects of endurants.

A Basis for Safety Critical Software 16 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

17
2. An Example

Figure 2: Some oil pipeline system units: pump, pipe, valve

A Basis for Safety Critical Software 17 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

18
2. An Example 2.1. Parts

2.1. Parts

1. A pipeline system contains a set of pipeline units and a pipeline
system monitor.

2. The well-formedness of a pipeline system depends on its mereology
and the routing of its pipes.

3. A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a
join, or a sink unit.

4. We consider all these units to be distinguishable, i.e., the set of
wells, the set pipe, etc., the set of sinks, to be disjoint.

A Basis for Safety Critical Software 18 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

19
2. An Example 2.1. Parts

type

1. PLS′, US, U, M
2. PLS = {| pls:PLS′

•wf PLS(pls) |}
value

2. wf PLS: PLS → Bool

2. wf PLS(pls) ≡ wf Mereology(pls) ∧ wf Routes(pls)
1. obs Us: PS → U-set

1. obs M: PLS → M
type

3. U = We | Pi | Pu | Va | Fo | Jo | Si
4. We :: Well
4. Pi :: Pipe
4. Pu :: Pump
4. Va :: Valv
4. Fo :: Fork
4. Jo :: Join
4. Si :: Sink

A Basis for Safety Critical Software 19 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

202. An Example 2.2. Part Identification and Mereology

2.2. Part Identification and Mereology
2.2.1. Unique Identification

5. Each pipeline unit is uniquely distinguished by its unique unit
identifier.

type

5. UI
value

5. uid UI: U → UI
axiom

5. ∀ pls:PLS,u,u′:U•{u,u′}⊆obs Us(pls)⇒u 6=u′⇒uid UI(u)6=uid UI(u′)

-1uid UI is the unique identifier observer function for parts u:U. It is total. uid UI(u) yields the unique identifier of u.
0The axiom expresses that for all pipeline systems all two distinct units, u, u′ of such pipeline systems have distinct unique identifiers.

A Basis for Safety Critical Software 20 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

212. An Example 2.2. Part Identification and Mereology2.2.2. Unique Identifiers

2.2.2. Unique Identifiers

6. From a pipeline system one can observe the set of all unique unit
identifiers.

value

6. xtr UIs: PLS → UI-set
6. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

7. We can prove that the number of unique unit identifiers of a
pipeline system equals that of the units of that system.

theorem:

7. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

0xtr UIs is a total function. It extracts all unique unit identifiers of a pipeline system.

A Basis for Safety Critical Software 21 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

222. An Example 2.2. Part Identification and Mereology2.2.3. Mereology

2.2.3. Mereology

8. Each unit is connected to zero, one or two other existing (formula line 8x.) input
units and zero, one or two other existing (formula line 8x.) output units as
follows:

a. A well unit is connected to exactly one output unit (and, hence, has no
“input”).

b. A pipe unit is connected to exactly one input unit and one output unit.

c. A pump unit is connected to exactly one input unit and one output unit.

d. A valve is connected to exactly one input unit and one output unit.

e. A fork is connected to exactly one input unit and two distinct output units.

f. A join is connected to exactly two distinct input units and one output unit.

g. A sink is connected to exactly one input unit (and, hence, has no “output”).

A Basis for Safety Critical Software 22 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

232. An Example 2.2. Part Identification and Mereology2.2.3. Mereology

type

8. MER = UI-set × UI-set
value

8. mereo U: U → MER
axiom

8. wf Mereology: PLS → Bool

8. wf Mereology(pls) ≡
8. ∀ u:U•u ∈ obs Us(pls)⇒
8x. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls)∧
8. case (u,(card iuis,card ouis)) of

8a. (mk We(we),(0,1)) → true,
8b. (mk Pi(pi),(1,1)) → true,
8c. (mk Pu(pu),(1,1)) → true,
8d. (mk Va(va),(1,1)) → true,
8e. (mk Fo(fo),(1,2)) → true,
8f. (mk Jo(jo),(2,1)) → true,
8g. (mk Si(si),(1,0)) → true,
8. → false end end

A Basis for Safety Critical Software 23 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

242. An Example 2.3. Part Concepts

2.3. Part Concepts

• An aspect of domain analysis & description that was not covered in
Sect. 2 was that of derived concepts.

• Example pipeline concepts are

⋄⋄ routes,

⋄⋄ acyclic or cyclic,

⋄⋄ circular,

etcetera.

• In expressing well-formedness of pipeline systems

• one often has to develop subsidiary concepts such as these

• by means of which well-formedness is then expressed.

A Basis for Safety Critical Software 24 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

25
2. An Example 2.3. Part Concepts2.3.1. Pipe Routes

2.3.1. Pipe Routes

9. A route (of a pipeline system) is a sequence of connected units (of
the pipeline system).

10. A route descriptor is a sequence of unit identifiers and the
connected units of a route (of a pipeline system).

type

9. R′ = Uω

9. R = {| r:Route′

•wf Route(r) |}
10. RD = UIω

axiom

10. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

10. descriptor: R → RD
10. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

A Basis for Safety Critical Software 25 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

262. An Example 2.3. Part Concepts2.3.1. Pipe Routes

11. Two units are adjacent if the output unit identifiers of one shares a
unique unit identifier with the input identifiers of the other.

value

11. adjacent: U × U → Bool

11. adjacent(u,u′) ≡
11. let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in

11. ouis ∩ iuis 6= {} end

A Basis for Safety Critical Software 26 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

272. An Example 2.3. Part Concepts2.3.1. Pipe Routes

12. Given a pipeline system, pls, one can identify the (possibly infinite) set of
(possibly infinite) routes of that pipeline system.

a. The empty sequence, 〈〉, is a route of pls.

b. Let u, u′ be any units of pls, such that an output unit identifier of u is the
same as an input unit identifier of u′ then 〈u, u′〉 is a route of pls.

c. If r and r′ are routes of pls such that the last element of r is the same as the
first element of r′, then r̂tlr′ is a route of pls.

d. No sequence of units is a route unless it follows from a finite (or an infinite)
number of applications of the basis and induction clauses of Items 12a.–12c..

value

12. Routes: PLS → RD-infset

12. Routes(pls) ≡
12a.. let rs = 〈〉 ∪
12b.. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
12c.. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}
12d.. in rs end

A Basis for Safety Critical Software 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

282. An Example 2.3. Part Concepts2.3.2. Well-formed Routes

2.3.2. Well-formed Routes

13. A route is acyclic if no two route positions reveal the same unique
unit identifier.

value

13. acyclic Route: R → Bool

13. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i 6=j ∧ r[i]=r[j]

A Basis for Safety Critical Software 28 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

292. An Example 2.3. Part Concepts2.3.2. Well-formed Routes

14. A pipeline system is well-formed if none of its routes are circular
(and all of its routes embedded in well-to-sink routes).

value

14. wf Routes: PLS → Bool

14. wf Routes(pls) ≡
14. non circular(pls) ∧ are embedded in well to sink Routes(pls)

14. non circular PLS: PLS → Bool

14. non circular PLS(pls) ≡
14. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

A Basis for Safety Critical Software 29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

302. An Example 2.3. Part Concepts2.3.2. Well-formed Routes

15. We define well-formedness in terms of well-to-sink routes, i.e.,
routes which start with a well unit and end with a sink unit.

value

15. well to sink Routes: PLS → R-set

15. well to sink Routes(pls) ≡
15. let rs = Routes(pls) in

15. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

A Basis for Safety Critical Software 30 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

312. An Example 2.3. Part Concepts2.3.2. Well-formed Routes

16. A pipeline system is well-formed if all of its routes are embedded in
well-to-sink routes.

16. are embedded in well to sink Routes: PLS → Bool

16. are embedded in well to sink Routes(pls) ≡
16. let wsrs = well to sink Routes(pls) in

16. ∀ r:R • r ∈ Routes(pls) ⇒
16. ∃ r′:R,i,j:Nat •

16. r′ ∈ wsrs
16. ∧ {i,j}⊆inds r′∧i≤j
16. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

A Basis for Safety Critical Software 31 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

322. An Example 2.3. Part Concepts2.3.3. Embedded Routes

2.3.3. Embedded Routes

17. For every route we can define the set of all its embedded routes.

value

17. embedded Routes: R → R-set

17. embedded Routes(r) ≡
17. {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

A Basis for Safety Critical Software 32 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

332. An Example 2.3. Part Concepts2.3.4. A Theorem

2.3.4. A Theorem

18. The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes

theorem:

18. ∀ pls:PLS •

18. let rs = Routes(pls),
18. wsrs = well to sink Routes(pls) in

18a.. rs =
18b.. wsrs ∪
18c.. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
17. end

A Basis for Safety Critical Software 33 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

342. An Example 2.4. Materials

2.4. Materials

19. The only material of concern to pipelines is the gas1 or liquid2

which the pipes transport3.

type

19. GoL
value

19. obs GoL: U → GoL

1Gaseous materials include: air, gas, etc.
2Liquid materials include water, oil, etc.
3The description of this document is relevant only to gas or oil pipelines.

A Basis for Safety Critical Software 34 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

352. An Example 2.5. Attributes

2.5. Attributes
2.5.1. Part Attributes

20. These are some attribute types:

a. estimated current well capacity (barrels of oil, etc.),

b. pipe length,

c. current pump height,

d. current valve open/close status and

e. flow (e.g., volume/second).

A Basis for Safety Critical Software 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

362. An Example 2.5. Attributes2.5.1. Part Attributes

type

20a.. WellCap
20b.. LEN
20c.. Height
20d.. ValSta == open | close
20e.. Flow

21. Flows can be added (also distributively) and subtracted, and

22. flows can be compared.

value

21. ⊕,⊖: Flow×Flow → Flow
21. ⊕: Flow-set → Flow
22. <,≤,=, 6=,≥,>: Flow × Flow → Bool

A Basis for Safety Critical Software 36 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

372. An Example 2.5. Attributes2.5.1. Part Attributes

23. Properties of pipeline units include

a. estimated current well capacity (barrels of oil, etc.),

b. pipe length,

c. current pump height,

d. current valve open/close status,

e. current Laminar in-flow at unit input,

f. current Laminar in-flow leak at unit input,

g. maximum Laminar guaranteed in-flow leak at unit input,

h. current Laminar leak unit interior,

i. current Laminar flow in unit interior,

j. maximum Laminar guaranteed flow in unit interior,

k. current Laminar out-flow at unit output,

l. current Laminar out-flow leak at unit output,

m. maximum guaranteed Laminar out-flow leak at unit output.

A Basis for Safety Critical Software 37 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

38
2. An Example 2.5. Attributes2.5.1. Part Attributes

value

23a.. attr WellCap: We → WellCap
23b.. attr LEN: Pi → LEN
23c.. attr Height: Pu → Height
23d.. attr ValSta: Va → VaSta
23e.. attr In FlowL: U → UI → Flow
23f.. attr In LeakL: U → UI → Flow
23g.. attr Max In LeakL: U → UI → Flow
23h.. attr body FlowL: U → Flow
23i.. attr body LeakL: U → Flow
23j.. attr Max FlowL: U → Flow
23k.. attr Out FlowL: U → UI → Flow
23l.. attr Out LeakL: U → UI → Flow
23m.. attr Max Out LeakL: U → UI → Flow

A Basis for Safety Critical Software 38 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

392. An Example 2.5. Attributes2.5.2. Flow Laws

2.5.2. Flow Laws

24. “What flows in, flows out !”. For Laminar flows: for any non-well
and non-sink unit the sums of input leaks and in-flows equals the
sums of unit and output leaks and out-flows.

Law:

24. ∀ u:U\We\Si •

24. sum in leaks(u) ⊕ sum in flows(u) =
24. attr body LeakL(u) ⊕
24. sum out leaks(u) ⊕ sum out flows(u)

A Basis for Safety Critical Software 39 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

402. An Example 2.5. Attributes2.5.2. Flow Laws

value

sum in leaks: U → Flow
sum in leaks(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

sum in flows: U → Flow
sum in flows(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

A Basis for Safety Critical Software 40 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

412. An Example 2.5. Attributes2.5.2. Flow Laws

25. “What flows out, flows in !”. For Laminar flows: for any adjacent
pairs of units the output flow at one unit connection equals the
sum of adjacent unit leak and in-flow at that connection.

Law:

25. ∀ u,u′:U•adjacent(u,u′) ⇒
25. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in

25. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

25. attr Out FlowL(u)(uid U(u′)) =
25. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u′)(uid U(u)) end

A Basis for Safety Critical Software 41 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

422. An Example 2.5. Attributes2.5.3. Open Routes

2.5.3. Open Routes

26. A route, r, is open

a. if all valves, v, of the route are open and

b. if all pumps, p, of the route are pumping.

value

26. is open: R → Bool

26. is open(r) ≡
26a.. ∀ mkPu(p):Pu • mkPu(p) ∈ elems r ⇒ is pumping(p) ∧
26b.. ∀ mkVa(v):Va • mkVa(v) ∈ elems r ⇒ is open(v)

A Basis for Safety Critical Software 42 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

432. An Example 2.6. Domain Perdurants

2.6. Domain Perdurants

A Basis for Safety Critical Software 43 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

44
2. An Example 2.6. Domain Perdurants2.6.1. Actions

2.6.1. Actions

• We shall not formalise any specific actions.

• Informal examples of actions are:

⋄⋄ opening and closing a well,

⋄⋄ start and stop pumping,

⋄⋄ open and close valves,

⋄⋄ opening and closing a sink and

⋄⋄ sense current unit flow.

A Basis for Safety Critical Software 44 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

45
2. An Example 2.6. Domain Perdurants2.6.2. Events

2.6.2. Events

• We shall not formalise any specific events.

• Informal examples of events are:

⋄⋄ empty well,

⋄⋄ full sink,

⋄⋄ start pumping signal to pump with no liquid material,

⋄⋄ pump ignores start/stop pumping signal,

⋄⋄ valve ignores opening/closing signal,

⋄⋄ excessive to catastrophic unit leak, and

⋄⋄ unit fire or explosion.

A Basis for Safety Critical Software 45 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

46
2. An Example 2.6. Domain Perdurants2.6.3. Behaviours

2.6.3. Behaviours

• We shall not formalise any specific behaviours.

• Informal examples of behaviours are:

⋄⋄ start pumping and opening up valves across a pipeline system,
and

⋄⋄ stop pumping and closing down valves across a pipeline system.

A Basis for Safety Critical Software 46 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

47
3. An Example

3. Basic Domain Description

• In this section and the next we shall survey
basic principles of describing, respectively,

⋄⋄ domain intrinsics and other

⋄⋄ domain facets.

A Basis for Safety Critical Software 47 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

48
3. Basic Domain Description

• By an entity we shall understand a phenomenon

⋄⋄ that can be observed, i.e., be

◦◦ seen or

◦◦ touched

by humans,

⋄⋄ or that can be conceived

◦◦ as an abstraction

◦◦ of an entity •.

⋄⋄ Example: Pipeline systems, units and materials are entities
(Slide 18, Item 1.) .

A Basis for Safety Critical Software 48 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

49
3. Basic Domain Description

• The method can thus be said to provide the domain analysis
prompt:

⋄⋄ is entity

⋄⋄ where is entity(θ) holds if θ is an entity.

A Basis for Safety Critical Software 49 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

50
3. Basic Domain Description

• A domain is characterised by its

⋄⋄ observable, i.e., manifest entities

⋄⋄ and their qualities •.

• By a quality of an entity we shall understand

⋄⋄ a property that can be given a name and

⋄⋄ whose value can be

◦◦ precisely measured by physical instruments

◦◦ or otherwise identified •.

• Example: Unique identifiers (Slide 20, Item 5.), mereology (Slide 22,

Item 8.) and the well capacity (Slide 35, Item 20a..), pipe length (Slide 35,

Item 20b..), current pump height (Slide 35, Item 20c..), current valve
open/close status (Slide 35, Item 20d..) and flow (Slide 35, Item 20e..)

attributes are qualities .

A Basis for Safety Critical Software 50 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

51
3. Basic Domain Description

• By a sort (or type) we shall understand

⋄⋄ the largest set of entities

⋄⋄ all of which have the same qualities •.

• By an endurant entity (or just, an endurant) we shall understand

⋄⋄ anything that can be observed or conceived,

⋄⋄ as a “complete thing”,

⋄⋄ at no matter which given snapshot of time.

• Thus the method provides a domain analysis prompt:

⋄⋄ is endurant where

⋄⋄ is endurant(e) holds if entity e is an endurant.

A Basis for Safety Critical Software 51 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

523. Basic Domain Description

• By a perdurant entity (or just, an perdurant) we shall understand

⋄⋄ an entity

⋄⋄ for which only a fragment exists
if we look at or touch them
at any given snapshot in time, that is,

⋄⋄ were we to freeze time we would only see or touch
a fragment of the perdurant •.

• Thus the method provides a domain analysis prompt:

⋄⋄ is perdurant where

⋄⋄ is perdurant(e) holds if entity e is a perdurant.

A Basis for Safety Critical Software 52 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

533. Basic Domain Description

• By a discrete endurant we shall understand something which is

⋄⋄ separate or distinct in form or concept,

⋄⋄ consisting of distinct or separate parts •.

A Basis for Safety Critical Software 53 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

54
3. Basic Domain Description

• Thus the method provides a domain analysis prompt:

⋄⋄ is discrete where

⋄⋄ is discrete(e) holds if entity e is discrete.

A Basis for Safety Critical Software 54 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

553. Basic Domain Description

• By a continuous endurant

⋄⋄ we shall understand something which is

⋄⋄ prolonged without interruption,

⋄⋄ in an unbroken series or pattern •.

We use the term material for continuous endurants •.

A Basis for Safety Critical Software 55 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

56
3. Basic Domain Description

• Thus the method provides a domain analysis prompt:

⋄⋄ is continuous where

⋄⋄ is continuous(e) holds if entity e is a continuous entity.

A Basis for Safety Critical Software 56 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

573. Basic Domain Description

3.0.1. Endurant Entities
We distinguish between endurant and perdurant entities.

3.0.1.1 Parts and Materials

• The manifest entities, i.e., the endurants, are called

⋄⋄ parts, respectively

⋄⋄ materials.

• We use the term part for discrete endurants,

⋄⋄ that is: is part(p)≡ is endurant(p)∧is discrete(p) •.

• We use the term material for continuous endurants •.

A Basis for Safety Critical Software 57 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

58
3. Basic Domain Description

• Discrete endurants are

⋄⋄ either atomic

⋄⋄ or composite.

• By an atomic endurant we shall understand

⋄⋄ a discrete endurant which

⋄⋄ in a given context,

⋄⋄ is deemed to not consist of
meaningful, separately observable proper sub-parts •.

• The method can thus be said to provide the domain analysis
prompt:

⋄⋄ is atomic where is atomic(p) holds if p is an atomic part.

• Example: Pipeline units, U, and the monitor, M, are considered
atomic .

A Basis for Safety Critical Software 58 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

59
3. Basic Domain Description

• By a composite endurant we shall understand

⋄⋄ a discrete endurant which

⋄⋄ in a given context,

⋄⋄ is deemed to indeed consist of
meaningful, separately observable proper sub-parts •.

• The method can thus be said to provide the domain analysis
prompt:

⋄⋄ is composite where is composite(p) holds if p is an a
composite part.

• Example: The pipeline system, PLS, and the set, Us, of pipeline
units are considered composite entities .

A Basis for Safety Critical Software 59 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

60
3. Basic Domain Description

3.0.1.2 Part Observers

• From atomic parts we cannot observe any sub-parts.

• But from composite parts we can.

• For composite parts, p, the domain description prompt

⋄⋄ observe part sorts(p)

• yields some formal description text according to the following
schema:

type P1, P2, ..., Pn;4

value obs P1: P→P1, obs P2: P→P2,...,obs Pn: P→Pn;5

4This RSL type clause defines P1, P2, ..., Pn to be sorts.
5Thus RSL value clause defines n function values. All from type P into some type

Pi.

A Basis for Safety Critical Software 60 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

61
3. Basic Domain Description

• where

⋄⋄ sort names P1, P2, ..., Pn

⋄⋄ are chosen by the domain
analyser,

⋄⋄ must denote disjoint sorts, and

⋄⋄ may have been defined

already,

⋄⋄ but not recursively

⋄⋄ A proof obligation may need
be discharged to secure
disjointness of sorts.

• Example: Three formula lines (Slide 18, Items 1.) illustrate the basic
sorts (PLS′, US, U, M) and observers (obs US, obs M) of pipeline
systems .

A Basis for Safety Critical Software 61 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

62
3. Basic Domain Description

A Basis for Safety Critical Software 62 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

63
3. Basic Domain Description

3.0.1.3 Sort Models

• A part sort is an abstract type.

⋄⋄ Some part sorts, P, may have a concrete type model, T.

⋄⋄ Here we consider only two such models:

◦◦ one model is as sets of parts of sort A: T = A-set;

◦◦ the other model has parts being of either of two or more
alternative, disjoint sorts: T=P1|P2|...|PN.

• The domain analysis prompt:

⋄⋄ has concrete type(p)

• holds if part p has a concrete type.

• In this case the domain description prompt

⋄⋄ observe concrete type(p)

A Basis for Safety Critical Software 63 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

643. Basic Domain Description

⋄⋄ yields some formal description text according to the following schema,

* either

type P1, P2, ..., PN, T = E(P1,P2,...,PN)6

value obs T: P → T7

where E(...) is some type expression over part sorts and where P1,P2,...,PN
are either (new) part sorts or are auxiliary (abstract or concrete) types8;

* or:

type

T = P1 | P2 | ... | PN9

P1, P2, ..., Pn

P1 :: mkP1(P1), P2 :: mkP2(P2), ..., PN :: mkPN(Pn) 10

value

obs T: P → T11

6The concrete type definition T = E(P1,P2,...,PN) define type T to be the set of
elements of the type expressed by type expression E(P1,P2,...,PN).

7obs T is a function from any element of P to some element of T.
8 The domain analysis prompt: sorts of(t) yields a subset of {P1,P2,...,PN}.

A Basis for Safety Critical Software 64 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

653. Basic Domain Description

⋄⋄ Example: obs T: P → T
is exemplified by obs Us: PS → U-set (Slide 18, Item 1.),

⋄⋄ T = P1 | P2 | ... | PN
by We | Pu | Va | Fo | Jo | Si (Slide 18, Item 3.) and

⋄⋄ P1 :: mkP1(P1), P2 :: mkP2(P2), ..., PN :: mkPN(Pn)
by (Slide 18, Item 4.) .

9A|B is the union type of types A and B.
10Type definition A :: mkA(B) defines type A to be the set of elements mkA(b) where

b is any element of type B
11obs T is a function from any element of P to some element of T.

A Basis for Safety Critical Software 65 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

66
3. Basic Domain Description

3.0.1.4 Material Observers

• Some parts p of sort P may contain material.

⋄⋄ The domain analysis prompt

◦◦ has material(p)

⋄⋄ holds if composite part p contains one or more materials.

• The domain description prompt observe material sorts(p)

• yields some formal description text according to the following schema:

type M1, M2, ..., Mm;
value obs M1: P → M1, obs M2: P → M2, ..., obs Mm: P → Mm;

⋄⋄ where values, mi, of type Mi satisfy is material(m) for all i;

⋄⋄ and where M1, M2, ..., Mm must be disjoint sorts.

• Example: We refer to Slide 34, Item 19. .

A Basis for Safety Critical Software 66 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

673. Basic Domain Description

3.0.2. Endurant Qualities

• We have already, above, treated the following properties of
endurants:

⋄⋄ is discrete,

⋄⋄ is continuous,

⋄⋄ is atomic,

⋄⋄ is composite and

⋄⋄ has material.

• We may think of those properties as external qualities.

• In contrast we may consider the following internal qualities:

⋄⋄ has unique identifier (parts),

⋄⋄ has mereology (parts) and

⋄⋄ has attributes (parts and materials).

A Basis for Safety Critical Software 67 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

683. Basic Domain Description

3.0.2.1 Unique Part Identifiers

• Without loss of generality we can assume that every part has a
unique identifier12.

⋄⋄ A unique part identifier (or just unique identifier) is a further
undefined, abstract quantity.

⋄⋄ If two parts are claimed to have the same unique identifier then
they are identical •.

• The domain description prompt: observe unique identifier(p)

• yields some formal description text according to the following
schema:

type PI;
value uid P: P → PI;

• Example: We refer to Slide 20, Item 5. .

12That is, has unique identifier(p) for all parts p.

A Basis for Safety Critical Software 68 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

69
3. Basic Domain Description

3.0.2.2 Part Mereology

• By mereology [Lesniewski1] we shall understand

⋄⋄ the study, knowledge and practice of

⋄⋄ parts,

⋄⋄ their relations to other parts

⋄⋄ and “the whole” •.

• Part relations are such as:

⋄⋄ two or more parts being connected,

⋄⋄ one part being embedded within another part, and

⋄⋄ two or more parts sharing attributes.

A Basis for Safety Critical Software 69 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

70
3. Basic Domain Description

• The domain analysis prompt:

⋄⋄ has mereology(p)

• holds if the part p is related to some others parts (pa, pb, . . . , pc).

• The domain description prompt: observe mereology(p) can then
be invoked and

• yields some formal description text according to the following
schema:

type MT = E(PIA,PIB,...,PIC);
value mereo P: P → MT;

where E(...) is some type expression over unique identifier types of
one or more part sorts.

A Basis for Safety Critical Software 70 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

71
3. Basic Domain Description

• Mereologies are expressed in terms of structures of unique part
identifiers.

• Usually mereologies are constrained. Constraints express

⋄⋄ that a mereology’s unique part identifiers must indeed reference
existing parts, but also

⋄⋄ that these mereology identifiers “define” a proper structuring of
parts.

• Example: We refer to Items 8.–8g.. Slides 22–23 .

A Basis for Safety Critical Software 71 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

72
3. Basic Domain Description

3.0.2.3 Part and Material Attributes

• Attributes are what really endows parts with qualities.

⋄⋄ The external properties13

⋄⋄ are far from enough to distinguish one sort of parts from another.

⋄⋄ Similarly with unique identifiers and the mereology of parts.

• We therefore assume, without loss of generality, that

⋄⋄ every part, whether discrete or continuous,

⋄⋄ whether, when discrete, atomic or composite,

⋄⋄ has at least one attribute.

13

◦◦ is discrete,

◦◦ is continuous,

◦◦ is atomic,

◦◦ is composite

◦◦ has material.

A Basis for Safety Critical Software 72 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

73
3. Basic Domain Description

• By an endurant attribute, we shall understand

⋄⋄ a property that is associated with an endurant e of sort E,

◦◦ and if removed from endurant e,

◦◦ that endurant would no longer be endurant e

◦◦ (but may be an endurant of some other sort E′); and

⋄⋄ where that property itself has no physical extent (i.e., volume),

◦◦ as the endurant may have,

◦◦ but may be measurable by physical means •.

A Basis for Safety Critical Software 73 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

74
3. Basic Domain Description

• The domain description prompt observe attributes(p)

• yields some formal description text according to the following
schema:

type A1, A2, ..., An, ATTR;
value attr A1:P→A1, attr A2:P→A2, ..., attr An:P→An,

attr ATTR:P→ATTR;

• where for ∀ p:P, attr Ai(attr ATTR(p)) ≡ attr Ai(p).

• Example: We refer to Slides 35–38 .

A Basis for Safety Critical Software 74 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

75
3. Basic Domain Description

3.0.3. Perdurant Entities

• We shall not cover the principles, tools and techniques

⋄⋄ for “discovering”, analysing and describing

⋄⋄ domain actions, events and behaviours

⋄⋄ to anywhere the detail with which

⋄⋄ the “corresponding” principles, tools and techniques

⋄⋄ were covered for endurants.

A Basis for Safety Critical Software 75 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

76
3. Basic Domain Description

• But we shall summarise one essence for the description of
perdurants.

• There is a notion of state.

⋄⋄ Any composition of parts having dynamic qualities can form a
state.

⋄⋄ Dynamic qualities are qualities that may change.

⋄⋄ Examples of such qualities are

◦◦ the mereology of a part, and

◦◦ part attributes whose value may change.

A Basis for Safety Critical Software 76 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

77
3. Basic Domain Description

• There is the notion of function signature.

⋄⋄ A function signature, f: A (→|
∼
→) R,

◦◦ gives a name, say f , to a function,

◦◦ expresses a type, say TA, of the arguments of the function,

◦◦ expresses whether the function is total (→) or partial (
∼
→), and

◦◦ expresses a type, say TR, of the result of the function.

A Basis for Safety Critical Software 77 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

78
3. Basic Domain Description

• There is the notion of channels of synchronisation &
communication between behaviours.

⋄⋄ Channels have names, e.g., ch, chi, cho.

⋄⋄ Channel names appear in the signature of behaviour functions:
value b: A → in ch i out ch o R.

⋄⋄ in ch i indicates that behaviour b may express willingness to
communicate an input message over channel chi; and

⋄⋄ out ch o indicates that behaviour b may express an offer to
communicate an output message over channel cho.

A Basis for Safety Critical Software 78 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

79
3. Basic Domain Description

• There is a notion of function pre/post-conditions.

⋄⋄ A function pre-condition is a predicate over argument values.

◦◦

◦◦

⋄⋄ A function post-condition is a predicate over argument and
result values.

◦◦

◦◦

⋄⋄

A Basis for Safety Critical Software 79 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

80
3. Basic Domain Description

• Action signatures

⋄⋄ include states, Σ, in both

⋄⋄ arguments, A×Σ, and results, Σ:

⋄⋄ f: A×Σ→Σ;

⋄⋄ f denotes a function in the function space A×Σ→Σ.

• Action pre/post-conditions:

value f(a,σ) as σ′; pre: Pf(a,σ); post: Qf (a,σ,σ′)

⋄⋄ have predicates Pf and Qf

⋄⋄ delimit the value of f within that function space;

⋄⋄ Pf

⋄⋄ Qf

A Basis for Safety Critical Software 80 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

813. Basic Domain Description

• Event signatures

⋄⋄ are typically predicates from pairs of before and after states:

⋄⋄ e: Σ×Σ→Bool.

• Event pre/post-conditions

value e: Σ×Σ→Bool; e(σ,σ′) ≡ Pe(σ) ∧ Qe(σ,σ′)

⋄⋄ have predicates Pe and Qe

⋄⋄ delimit the value of e within the Σ×Σ→Bool function space;

⋄⋄ Pe characterises states leading to event e;

⋄⋄ Qe characterises states, σ′, resulting from the event caused by σ.

A Basis for Safety Critical Software 81 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

82
3. Basic Domain Description

• In principle we can associate a behaviour with every part of a
domain.

⋄⋄ Parts, p, are characterised by their unique identifiers, pi:PI and a
state, attrs:ATTRS.

⋄⋄ We shall, with no loss of generality, assume part behaviours to
be never-ending.

⋄⋄ The unique part identifier, pi:PI, and its the part mereology, say
{pi1,pi2,...,pin}, determine a number of channels

⋄⋄ {chs[pi,pij]|j:{1,2,...,n}}

⋄⋄ able to communicate messages of type M.

A Basis for Safety Critical Software 82 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

833. Basic Domain Description

• Behaviour signatures:

b: pi:PI × ATTR → in in chs out out chs Unit

⋄⋄ then have

◦◦ input channel expressions in chs and

◦◦ output channel expressions out chs

◦◦ be suitable predicates over

◦◦ {chs[pi,pij]|j:{1,2,...,n}}.

⋄⋄ Unit designate that b denote a never-ending process.

• We omit dealing with behaviour pre-conditions and invariants.

A Basis for Safety Critical Software 83 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

84
4. Basic Domain Description

4. Interlude

• We have covered one aspect of the modelling of one set of domain
entities, the intrinsic facets of endurants.

⋄⋄ For the modelling of perdurants we refer to a forthcoming report.

• In the next section we shall survey the modelling of further domain
facets.

• We shall accompany this survey to a survey of safety issues.

• To do so in a reasonably coherent way we need establish a few
concepts:

⋄⋄ the safety notions of

◦◦ failure, ◦◦ error and ◦◦ fault;

⋄⋄ the notion of stakeholder and

⋄⋄ the notion of requirements.

A Basis for Safety Critical Software 84 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

85
4. Interlude 4.1. Safety-related Concepts

4.1. Safety-related Concepts
Some characterisations are:

4.1.0.1 Safety
By safety, in the context of a domain being dependable, we mean

• some measure of continuous delivery of service of

⋄⋄ either correct service,

⋄⋄ or incorrect service after benign failure,

• that is: measure of time to catastrophic failure.

A Basis for Safety Critical Software 85 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

86
4. Interlude 4.1. Safety-related Concepts

4.1.0.2 Failure

• A domain failure occurs

• when the delivered service

• deviates from fulfilling the domain function,

• the latter being what the domain is aimed at.

A Basis for Safety Critical Software 86 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

87
4. Interlude 4.1. Safety-related Concepts

4.1.0.3 Error

• An error

• is that part of a domain state

• which is liable to lead to subsequent failure.

• An error affecting the service

• is an indication that a failure occurs or has occurred.

A Basis for Safety Critical Software 87 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

88
4. Interlude 4.1. Safety-related Concepts

4.1.0.4 Fault

• The adjudged (i.e., the ‘so-judged’)

• or hypothesised cause of an error

• is a fault.

A Basis for Safety Critical Software 88 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

89
4. Interlude 4.1. Safety-related Concepts

4.1.0.5 Hazard

• A hazard is

⋄⋄ any source of potential damage, harm or adverse health effects

⋄⋄ on something or someone under certain conditions at work.

A Basis for Safety Critical Software 89 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

90
4. Interlude 4.1. Safety-related Concepts

4.1.0.6 Risk

• A risk is

⋄⋄ the chance or probability that a person

⋄⋄ will be harmed or experience an adverse health effect

⋄⋄ if exposed to a hazard.

⋄⋄ It may also apply to situations with property or equipment loss.

A Basis for Safety Critical Software 90 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

91
4. Interlude 4.1. Safety-related Concepts

4.1.0.7 Faults and Hazards

• The concept of hazard is not the same as the concept of fault.

• “System safety takes a larger view of hazards than just failures14:

⋄⋄ Hazards are not always caused by failures,
and all failures do not cause hazards.

⋄⋄ Serious accidents have occurred

◦◦ while system components

◦◦ were all functioning exactly as specified,

◦◦ that is, without failure.

⋄⋄ If failures only are considered in a safety analysis,
many potential accidents will be missed.

⋄⋄ In addition, the engineering approaches to preventing failures
(increasing reliability)
and preventing hazards
(increasing safety)
are different and sometimes conflict.”

14Leveson: [White Paper on Approaches to Safety Engineering]

A Basis for Safety Critical Software 91 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

92
4. Interlude 4.2. System and Component Safety

4.2. System and Component Safety

• There appears to be a number of safety concepts 15:

⋄⋄ component safety,

⋄⋄ industrial safety,

⋄⋄ reliability, and

⋄⋄ system safety.

• We shall focus on component and system safety.

15Leveson: [White Paper on Approaches to Safety Engineering]

A Basis for Safety Critical Software 92 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

93
4. Interlude 4.2. System and Component Safety

4.2.0.1 Component

• By a component we shall understand

⋄⋄ basically the same as an atomic part

⋄⋄ together with actions, events and behaviours

◦◦ whose state is anchored

◦◦ in one or more attributes of that part,

⋄⋄ such that these actions, etc.,
do nor involve other component or [sub]system states.

⋄⋄ That is, “componentry”
excludes considerations of shared attributes.

A Basis for Safety Critical Software 93 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

94
4. Interlude 4.2. System and Component Safety

4.2.0.2 System

• By a system or sub-system we shall understand

⋄⋄ basically the same as a composite part

⋄⋄ together with actions, events and behaviours

◦◦ whose state is anchored

◦◦ in one or more attributes

∗ of that part

∗ as well as of one or more other parts.

⋄⋄ That is, “system-hood”
presumes considerations of shared attributes.

A Basis for Safety Critical Software 94 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

95
4. Interlude 4.2. System and Component Safety

4.2.0.3 System Safety

• “The primary concern of system safety 16

⋄⋄ is the management of hazards:

◦◦ their identification,

◦◦ evaluation,

◦◦ elimination, and

◦◦ control

through

◦◦ analysis, ◦◦ design and ◦◦ management
procedures.”

16Leveson: [White Paper on Approaches to Safety Engineering]

A Basis for Safety Critical Software 95 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

96
4. Interlude 4.2. System and Component Safety

• “System safety deals with systems as a whole rather than with
subsystems or components 17:

⋄⋄ Safety is an emergent property of systems,

⋄⋄ not a component property.

⋄⋄ One of the principle responsibilities of system safety is

⋄⋄ to evaluate the interfaces between the system components

⋄⋄ and determine the effects of component interaction,

⋄⋄ where the set of components includes

◦◦ humans, ◦◦ machines, and ◦◦ the environment.”

• The system interfaces are given by the mereology.

17Leveson: [White Paper on Approaches to Safety Engineering]

A Basis for Safety Critical Software 96 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

97
4. Interlude 4.2. System and Component Safety

4.2.0.4 Component Safety

• For a component,

• that is, an atomic part,

• we can, at most, speak of faults

• when considering safety.18

18The borderline between hazards that are not faults and faults is too vague.

A Basis for Safety Critical Software 97 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

98
4. Interlude 4.3. Stake-holder

4.3. Stake-holder

• By a domain stake-holder we shall understand

⋄⋄ a person, or a group of persons, “united” somehow in their
common interest in, or dependency on the domain; or

⋄⋄ an institution, an enterprise, or a group of such, (again)
characterised (and, again, loosely) by their common interest in,
or dependency on the domain •.

A Basis for Safety Critical Software 98 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

99
4. Interlude 4.3. Stake-holder

• Examples: The following are examples of pipeline stake-holders:

⋄⋄ the owners of the pipeline,

⋄⋄ the oil or gas companies using the pipeline,

⋄⋄ the pipeline managers and workers,

⋄⋄ the owners and neighbours of the lands occupied by the pipeline,

⋄⋄ the citizens possibly worried about gas- or oil pollution,

⋄⋄ the state authorities regulating and overseeing pipelining,

⋄⋄ etcetera .

A Basis for Safety Critical Software 99 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

100
4. Interlude 4.4. Machines and Requirements

4.4. Machines and Requirements
4.4.1. Machine

• By the machine we shall understand

⋄⋄ the combination of

⋄⋄ hardware, say computers and communication, and

⋄⋄ software.

A Basis for Safety Critical Software 100 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

101
4. Interlude 4.4. Machines and Requirements4.4.2. Requirements

4.4.2. Requirements

• By a requirements we understand (cf. IEEE Standard 610.12):

⋄⋄ “A condition or capability needed by a user to solve a

problem or achieve an objective” •.

• We shall think only of requirements as requirements to a machine.

• We can now “repeat” the definitions

⋄⋄ of safety, failure, error and fault given above,

⋄⋄ but now with the term

◦◦ ‘domain’ replaced by the term ‘machine’

◦◦ (sometimes with the term ‘domain+machine’).

• This then becomes the context in which most safety criticality is
discussed.

A Basis for Safety Critical Software 101 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

102
4. Interlude 4.4. Machines and Requirements4.4.2. Requirements

• We shall not cover requirements in this talk.

• We refer to
[Bjørner: From Domains to Requirements, 2008].

⋄⋄ That paper describes how to “derive”

⋄⋄ systematically, but, of course, not automatically

⋄⋄ major parts of requirements prescriptions from a domain
descriptions.

• Thus we shall not cover the classical approach to safety analysis.

⋄⋄ Instead we shall cover what we think is
a novel approach to safety analysis.

⋄⋄ One in which first get an as complete as possible
overview of “all” safety aspects of a domain.

A Basis for Safety Critical Software 102 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

103
5. Interlude

5. Domain Facets and Safety Criticality
5.1. Introductory Notions

5.1.1. Facet

• By a domain facet we shall understand

⋄⋄ one amongst a finite set of generic ways

⋄⋄ of analysing a domain:

⋄⋄ a view of the domain,

⋄⋄ such that the different facets cover conceptually different views,

⋄⋄ and such that these views together cover the domain •.

A Basis for Safety Critical Software 103 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

104
5. Domain Facets and Safety Criticality 5.1. Introductory Notions5.1.1. Facet

• We shall in this talk distinguish between the following facets:

⋄⋄ intrinsics,

⋄⋄ support technologies,

⋄⋄ human behaviour,

⋄⋄ rules &19 regulations and

⋄⋄ organisation & management.

19We use the ampersand ‘&’ between terms A and B to emphasize that we mean to
refer to one subject, the conjoint A&B

A Basis for Safety Critical Software 104 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

105
5. Domain Facets and Safety Criticality 5.1. Introductory Notions5.1.2. Safety Criticality

5.1.2. Safety Criticality

• Safety critical systems

⋄⋄ are those systems whose failure may result in

⋄⋄ the loss of life,

⋄⋄ significant property damage or

⋄⋄ damage to the environment.20

20John C. Knight: Safety Critical Systems: Challenges and Directions http://www.-
cs.virginia.edu/˜jck/publications/knight.state.of.the.art.summary.pdf

A Basis for Safety Critical Software 105 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

106
5. Domain Facets and Safety Criticality 5.1. Introductory Notions5.1.2. Safety Criticality

• For each of the domain facet categories we shall look for a
corresponding, domain-specific category of hazards.

⋄⋄ That is, we shall view safety criticality in potentially three steps:

◦◦ from the point of view of the domain in which a computing
system is to be inserted, hence first developed,

◦◦ from the point of view of the requirements prescribed for such
a system, and

◦◦ from the point of view of the machine (i.e., hardware +
software) design of that system.

⋄⋄ In this talk we shall only consider the first step.

A Basis for Safety Critical Software 106 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

107
5. Domain Facets and Safety Criticality 5.2. Intrinsics

5.2. Intrinsics

• By domain intrinsics we shall understand

⋄⋄ those phenomena and concepts of a domain
which are basic to any of the other facets
(listed earlier and treated, in some detail, below),

⋄⋄ with such domain intrinsics initially covering
at least one specific, hence named, stake-holder view •.

• Example: The introductory example focused on

⋄⋄ the intrinsics of pipeline systems as well as

⋄⋄ some derived concepts (routes etc.) .

A Basis for Safety Critical Software 107 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

1085. Domain Facets and Safety Criticality 5.2. Intrinsics

• Hazards: The following are examples of hazards
based sôlely on the intrinsics of the domain:

⋄⋄ environmental hazards:

◦◦ destruction of one or more pipeline units due to

◦◦ an earth quake, an explosion, a fire or something “similar”

◦◦ occurring in the immediate neighbourhood of these units;

⋄⋄ design faults:

◦◦ the pipeline net is not acyclic;

⋄⋄ etcetera .

A Basis for Safety Critical Software 108 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

109
5. Domain Facets and Safety Criticality 5.2. Intrinsics

• Intrinsics hazards are such which violate
the well-formedness of the domain.

⋄⋄ A “domain description” is presented,
but it is not a well-formed domain description.

⋄⋄ One could claim that

◦◦ whichever (event) falls outside
the intrinsics domain description,

◦◦ whether it violates well-formedness criteria for domain parts

◦◦ or action, event or behaviour pre/post-conditions,

◦◦ is a hazard.

⋄⋄ In the context of system safety we shall take the position that

◦◦ explicitly identified hazards

◦◦ must be described,

◦◦ also formally.21

A Basis for Safety Critical Software 109 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

110
5. Domain Facets and Safety Criticality 5.2. Intrinsics

20

∗ We refer to the main example.

∗ More specifically to the well-formedness of pipeline systems as expressed in wf PLS

(Slide 18, Item 2.).

∗ We express hazards of the intrinsics of pipeline systems by named
predicates over PLS′ and not PLS.

A Basis for Safety Critical Software 110 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

111
5. Domain Facets and Safety Criticality 5.3. Support Technologies

5.3. Support Technologies

• By domain support technology we shall understand

⋄⋄ technological ways and means of implementing

⋄⋄ certain observed phenomena or

⋄⋄ certain conceived concepts •.

• The facet of support technology, as a concept,

⋄⋄ is related to actions of specific parts;

⋄⋄ that is, a part may give rise to one or more support technologies,

⋄⋄ and we say that the support technologies ‘reside’ in those parts.

A Basis for Safety Critical Software 111 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

112
5. Domain Facets and Safety Criticality 5.3. Support Technologies

• Examples:

⋄⋄ wells are, in the intrinsics facet description abstracted as atomic
units but in real instances they are complicated (composite)
entities of pumps, valves and pipes;

⋄⋄ pumps are similarly, but perhaps not as complicated complex
units;

⋄⋄ valves likewise; and

⋄⋄ sinks are, in a sense, the inverse of wells .

A Basis for Safety Critical Software 112 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

113
5. Domain Facets and Safety Criticality 5.3. Support Technologies

• Faults:

⋄⋄ a pump may fail to respond to a stop pump signal; and

⋄⋄ a valve may fail to respond to an open valve signal .

• I think it is fair to say that

⋄⋄ most papers on the design of safety critical software are on

⋄⋄ software for the monitoring & control of support technology.

A Basis for Safety Critical Software 113 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

114
5. Domain Facets and Safety Criticality 5.3. Support Technologies

• Describing causes of errors is not simple.

⋄⋄ With today’s formal methods tools and techniques21

⋄⋄ quite a lot can be formalised — but not all !

21These tools and techniques typically include

◦◦ two or more formal specification languages, for example:

∗ VDM,

∗ DC,

∗ Event-B,

∗ RAISE/RSL,

∗ TLA+ and

∗ Alloy;

◦◦ one or more theorem proving tools, for example:

∗ ACL,

∗ Coq,

∗ Isabelle/HOL,

∗ STeP,

∗ PVS and

∗ Z3;

◦◦ a model-checker, for example:

∗ SMV and ∗ SPIN/Promela;

◦◦ and other such tools and techniques.

A Basis for Safety Critical Software 114 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

115
5. Domain Facets and Safety Criticality 5.4. Human Behaviour

5.4. Human Behaviour

• A proper domain description includes humans as both

⋄⋄ (usually atomic) parts and

⋄⋄ the behaviours that we (generally) “attach” to parts.

• Examples: The human operators that

⋄⋄ operate wells, valves, pumps and sinks;

⋄⋄ check on pipeline units;

⋄⋄ decide on the flow of material in pipes,

⋄⋄ etcetera .

A Basis for Safety Critical Software 115 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

116
5. Domain Facets and Safety Criticality 5.4. Human Behaviour

• By domain human behaviour we shall understand

⋄⋄ any of a quality spectrum of humans22 carrying out assigned
work:

◦◦ from (i) careful, diligent and accurate,

via

◦◦ (ii) sloppy dispatch, and

◦◦ (iii) delinquent work,

to

◦◦ (iv) outright criminal pursuit •.

22— in contrast to technology

A Basis for Safety Critical Software 116 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

1175. Domain Facets and Safety Criticality 5.4. Human Behaviour

• Typically human behaviour focus on actions and behaviours
that are carried out by humans.

⋄⋄ The intrinsics description of actions and behaviours

⋄⋄ focus sôlely on intended, careful, diligent and accurate
performance.

• Hazards: This leaves “all other behaviours” as hazards !

• Proper hazard analysis, however, usually

⋄⋄ explicitly identifies failed human behaviours,

⋄⋄ for example, as identified deviations from

⋄⋄ described actions etc.

• Hazard descriptions thus follows from
“their corresponding” intrinsics descriptions .

A Basis for Safety Critical Software 117 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

118
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations

5.5. Rules & Regulations

• Rules and regulations come in pairs (Ru,Re).

5.5.1. Rules

• By a domain rule we shall understand some text

⋄⋄ which prescribes how people are, or equipment is,

⋄⋄ “expected” (for “. . . ” see below) to behave

⋄⋄ when dispatching their duty,

⋄⋄ respectively when performing their function •.

• Example: There are rules for operating pumps. One is:

⋄⋄ A pump, p, on some well-to-sink route r = r′̂〈p〉̂r′′,

⋄⋄ may not be started

⋄⋄ if there does not exist an open, embedded route r′′′ such that
〈p〉̂r′′′

⋄⋄ ends in an open sink .

A Basis for Safety Critical Software 118 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

119
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.1. Rules

• Hazards: when stipulating “expected” (as above)

⋄⋄ the rules more or less implicitly

⋄⋄ express also the safety criticality:

⋄⋄ that is, when people are, or equipment is,

⋄⋄ behaving erroneously .

• Example: A domain rule which states, for example,

⋄⋄ that a pump, p, on some well-to-sink route r = r′̂〈p〉̂r′′,

⋄⋄ may be started even

⋄⋄ if there does not exist an open, embedded route r′′′ such that
〈p〉̂r′′′

⋄⋄ ends in an open sink

is a hazardous rule .

A Basis for Safety Critical Software 119 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

120
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.1. Rules

• Modelling Rules:

⋄⋄ We can model a rule by giving it

◦◦ both a syntax

◦◦ and a semantics.

⋄⋄ And we can choose to model the semantics of a rule, Ru,

◦◦ as a predicate, P , over pairs of states: P : Σ×Σ→Bool.

◦◦ That is, the meaning, M, of Ru is P .

∗ An action or an event has changed a state σ into a state σ′.

∗ If P(σ, σ′) is true

it shall mean that the rule as been obeyed.

∗ If it is false it means that the rule has been violated.

A Basis for Safety Critical Software 120 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

121
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.2. Regulations

5.5.2. Regulations

• By a domain regulation we shall understand

⋄⋄ some text which “prescribe” (“. . . ”, see below)

⋄⋄ the remedial actions that are to be taken

⋄⋄ when it is decided

⋄⋄ that a rule has not been followed

⋄⋄ according to its intention •.

A Basis for Safety Critical Software 121 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

122
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.2. Regulations

• Example: There are regulations for operating pumps and valves:

⋄⋄ Once it has been discovered that a rule is hazardous

◦◦ there should be a regulation which

∗ starts an administrative procedure
which ensures that the rule is replaced; and

∗ starts a series of actions which somehow brings
the state of the pipeline into one which poses no danger
and then applies a non-hazard rule .

A Basis for Safety Critical Software 122 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

123
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.2. Regulations

• Hazards: when stipulating “prescribe”

⋄⋄ regulations express requirements

⋄⋄ to emerging hardware and software .

A Basis for Safety Critical Software 123 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

124
5. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.2. Regulations

• Modelling Regulations:

⋄⋄ We can model a regulation by giving it

◦◦ both a syntax

◦◦ and a semantics.

⋄⋄ And we can choose to model the semantics of a regulation, Re,

◦◦ as a state-transformer, S, over pairs of states: S : Σ×Σ→Σ.

◦◦ That is, the meaning, M, of Re is S.

◦◦ A state-transformation S(σ, σ′)

◦◦ for rule Ru

◦◦ results in a state σ′′ where:

∗ if P(σ, σ′) is true

∗ then σ′ = σ′′,

∗ else σ′′ is a corrected state such that P(σ, σ′′) is true.

A Basis for Safety Critical Software 124 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

1255. Domain Facets and Safety Criticality 5.5. Rules & Regulations5.5.3. Discussion

5.5.3. Discussion

• Where do rules & regulations reside ?” That is,

⋄⋄ “Who checks that rules are obeyed ?” and

⋄⋄ “Who ensures that regulations are applied when rules fail ?”

• Are some of these checks and follow-ups relegated

⋄⋄ to humans (i.e., parts) or

⋄⋄ to machines (i.e., “other” parts) ?

• that is, to the behaviour of part processes ?

• The next section will basically answer those questions.

A Basis for Safety Critical Software 125 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

126
5. Domain Facets and Safety Criticality 5.6. Organisation & Management

5.6. Organisation & Management

• To properly appreciate this section we need remind the reader of
concepts introduced earlier in this talk.

⋄⋄ With parts we associate

◦◦ mereologies, ◦◦ attributes and ◦◦ behaviours.

⋄⋄ Support technology

◦◦ is related to actions and ◦◦ these again focused on parts.

⋄⋄ Humans are often modelled

◦◦ first as parts,

◦◦ then as their associated behaviour.

A Basis for Safety Critical Software 126 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

127
5. Domain Facets and Safety Criticality 5.6. Organisation & Management

• It is out of this seeming jigsaw puzzle of

⋄⋄ parts,

⋄⋄ mereologies,

⋄⋄ attributes,

⋄⋄ humans,

⋄⋄ rules and

⋄⋄ regulations

that we shall now form and model the concepts of

⋄⋄ organisation and ⋄⋄ management.

A Basis for Safety Critical Software 127 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

128
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.1. Organisation

5.6.1. Organisation

• By domain organisation we shall understand

⋄⋄ one or more partitionings of resources

◦◦ where resources are usually representable as parts and
materials and

◦◦ where usually a resource belongs to exactly one partition;

⋄⋄ such that n such partitionings typically reflects

◦◦ strategic (say partition πs),

◦◦ tactical (say partition πt), respectively

◦◦ operational (say partition πo)

concerns (say for n = 3),

⋄⋄ and where “descending” partitions,

◦◦ say πs, πt, πo,

◦◦ represents coarse, medium and fine partitions, respectively •.

A Basis for Safety Critical Software 128 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

129
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.1. Organisation

• Examples: This example only illustrates production aspects.

⋄⋄ At the strategic level one may partition a pipeline system into
◦◦ just one component:

the entire collection of all pipeline units, π.

⋄⋄ At the tactical level one may further partition the system into
◦◦ the partition of all wells, πws,

◦◦ the partition of all sinks, πss, and

◦◦ a partition of all pipeline routes, πℓs, that

∗ πℓs, is the set of all routes of π

∗ excluding wells and sinks.

⋄⋄ At the organisational level may further partition the system into
◦◦ the partitions of individual wells, πwi

(πwi
∈ πws),

◦◦ the partitions of individual sinks, πsj
(πsi

∈ πws) and

◦◦ the partitions of individual pipeline routes, πrk
(πℓi ∈ πℓs) .

A Basis for Safety Critical Software 129 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

1305. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.1. Organisation

• A domain organisation serves

⋄⋄ to structure management and non-management staff levels and

⋄⋄ the allocation of

◦◦ strategic,

◦◦ tactical and

◦◦ operational

concerns across all staff levels;

⋄⋄ and hence the “lines of command”:

◦◦ who does what, and

◦◦ who reports to whom,

∗ administratively and

∗ functionally.

A Basis for Safety Critical Software 130 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

131
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.1. Organisation

• Organisations are conceptual parts, that is,

⋄⋄ partitions are concepts,

⋄⋄ they are conceptual parts

⋄⋄ in addition, i.e., adjoint to physical parts.

• They serve as “place-holders” for management.

A Basis for Safety Critical Software 131 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

132
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.1. Organisation

• Modelling Organisations:

⋄⋄ We can normally model an organisation as an attribute of some,
usually composite, part.

◦◦ Typically such a model would be in terms of the one or more
partitionings of unique identifiers, π:Π, of domain parts, p:P.

◦◦ For example:

type

ORG = Str × Tac × Ope × ...

Str, Tac, Ope = (Π-set)-set
value

attr ORG: P → ORG
axiom

P : ORG → ... → Bool

where we leave the details of the partitionings Str, Tac, Org, ... and the axiom governing

the individual partitionings and their relations for further analysis.

A Basis for Safety Critical Software 132 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

133
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.1. Organisation

• Faults and Hazards:

⋄⋄ There are erroneous and there are risky organisations.

⋄⋄ An erroneous organisation is, for example, one in which

◦◦ one or more partitions are left isolated

◦◦ with respect to there being no management “tow-holder”.

⋄⋄ A hazardous organisation is, for example, one

◦◦ that consists of too many partitionings,

◦◦ whereby related management becomes confused .

A Basis for Safety Critical Software 133 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

134
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

5.6.2. Management

• By domain management we shall understand such people who
(such decisions which)

⋄⋄ determine, formulate and set standards concerning

◦◦ strategic, ◦◦ tactical and ◦◦ operational

decisions;

⋄⋄ who ensure that these decisions are passed on to (lower) levels of
management, and to floor staff;

⋄⋄ who make sure that such orders, as they were, are indeed carried
out;

⋄⋄ who handle undesirable deviations in the carrying out of these
orders cum decisions;

⋄⋄ and who “backstops” complaints from lower management levels
and from floor staff •.

A Basis for Safety Critical Software 134 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

135
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

• Example: [Cf. examples on Slide 129].

⋄⋄ At the strategic level there is the

◦◦ overall management of the pipeline system.

⋄⋄ At the tactical level there may be the management of

◦◦ all wells;

◦◦ all sinks;

◦◦ specific (disjoint) routes.

⋄⋄ At the operational there may then be the management of

◦◦ individual wells,

◦◦ individual sinks, and

◦◦ individual groups of valves and pumps .

A Basis for Safety Critical Software 135 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

136
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

• Modelling Management:

⋄⋄ Some parts are associated with strategic management.

◦◦ They will have their unique identifiers, π : Π, belong to some
partition in an str:Str.

⋄⋄ Other parts are associated with tactical management.

◦◦ They will have their unique identifiers, π : Π, belong to some
partition in a corresponding tac:Tac.

⋄⋄ Yet other parts are associated with operational management.

◦◦ They will have their unique identifiers, π : Π, belong to some
partition in the corresponding ope:Ope.

A Basis for Safety Critical Software 136 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

137
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

⋄⋄ The “management” parts have their attributes form
corresponding states (σ:Σ).

type

ΣSTR, ΣTAC , ΣOPE,

⋄⋄ An idealised rendition of management actions is:

value

actionStrategic: ΣSTR→ΣTAC→ΣOPE→ΣSTR

actionTactical: ΣSTR→ΣTAC→ΣOPE→ΣTAC

actionOperational: ΣSTR→ΣTAC→ΣOPE→ΣOPE

A Basis for Safety Critical Software 137 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

1385. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

⋄⋄ actionStrategic expresses that strategic management considers
the “global” state (ΣSTR×ΣTAC×ΣOPE) but potentially
changes only the “strategy” state.

⋄⋄ actionTactical expresses that tactical management considers the
“global” state (ΣSTR×ΣTAC×ΣOPE) but potentially changes
only the “tactical” state.

⋄⋄ actionOperational expresses that tactical management considers
the “global” state (ΣSTR×ΣTAC×ΣOPE) but potentially
changes only the “operational” state.

A Basis for Safety Critical Software 138 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

139
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

⋄⋄ We can normally model management as part of the behavioural
model of some, usually composite part.

◦◦ Typically such a model would be in terms
communication procedures between managers, p:P, and their
immediate subordinates, {p1:P1,p2:P2,. . . ,pn:PN}:

◦◦ For example:

A Basis for Safety Critical Software 139 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

140
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

channel mgt:{{π,πj}|πj:PIj •πj ∈ ...}:M
value

p: π:Π × pt:P → in,out {{π,πj}|πj:PIj •πj ∈ ...} Unit

p(π,pt) ≡ ...

[management orders staff]
⌈⌉ let (πj,m) = queryboss(p) in

m ! mgt[{π,πj}]!m ;
p(π,actiondowns(pt,m)) end

[management “listens” to staff]
⌈⌉ let (πj,m) = ⌈⌉⌊⌋ {mgt[{π,πj}]? | ... } in

p(π,actiondownr(pt,m)) end

[management reports to boss]
⌈⌉ let (πboss,m) = querystaff(pt) in

m ! mgt[{π,πboss}]!m ;
p(π,actionups(pt,m)) end

[management “listens” to boss]
⌈⌉ let (πboss,m) = ⌈⌉⌊⌋ {mgt[{π,πboss}]? | ... } in

p(π,actionups(pt,m)) end ...

A Basis for Safety Critical Software 140 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

1415. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

• Hazards: [Cf. faults and hazards, Slide 133.]

⋄⋄ Faults and hazards of organisations & management
come about also as the result of “mis-management”:

◦◦ Strategic management updates tactical and operational
management states.

◦◦ Tactical management updates strategic and operational
management states.

◦◦ Operational management updates strategic and tactical
management states.

◦◦ That is: these states are not clearly delineated,

◦◦ Etcetera !

A Basis for Safety Critical Software 141 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

142
5. Domain Facets and Safety Criticality 5.6. Organisation & Management5.6.2. Management

5.6.2.1 Discussion

• This section on organisation & management

⋄⋄ is rather terse;

⋄⋄ in fact it covers a whole, we should think,

⋄⋄ novel and interesting theory
of business organisation & management

A Basis for Safety Critical Software 142 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

143
5. Domain Facets and Safety Criticality 5.7. Discussion

5.7. Discussion

• There may be other facets

⋄⋄ but our point has been made:

⋄⋄ that an analysis of hazards (including faults)

⋄⋄ can, we think, be beneficially structured

⋄⋄ by being related to reasonably distinct facets.

• A mathematical explanation of the concept of facet is needed.

⋄⋄ One that helps partition the domain phenomena and concepts

⋄⋄ into disjoint descriptions.

⋄⋄ We are thinking about it.

A Basis for Safety Critical Software 143 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

144
6. Domain Facets and Safety Criticality

6. Conclusion
6.1. The Author’s Scientific & Engineering Background

• The present author’s research has since the early 1970s focused on

⋄⋄ programming methodology:

◦◦ how to develop software

◦◦ such that it was correct

◦◦ with respect to some specification —

◦◦ call it requirements.

⋄⋄ The emphasis was on

◦◦ abstract software specifications and their

◦◦ refinement or transformation into code.

A Basis for Safety Critical Software 144 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

145
6. Conclusion 6.1. The Author’s Scientific & Engineering Background

⋄⋄ Programming language semantics

◦◦ and the stage- and step-wise development of compilers,

◦◦ in many, up to nine stages and steps,

◦◦ became a highlight of the 1980s.

⋄⋄ The step from programming language semantics to domain
descriptions followed:

◦◦ Domain descriptions, in a sense, specified

◦◦ the language inherent in the described domain —

◦◦ that is: “spoken” by its actors, etc.

A Basis for Safety Critical Software 145 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

146
6. Conclusion 6.1. The Author’s Scientific & Engineering Background

• Since the early 1990s I therefore additionally
focused on domain descriptions.

⋄⋄ Now an additional goal of software development
might be achieved:

⋄⋄ securing that the software met customers’ expectations.

• With the observation that

⋄⋄ requirements prescriptions
can be systematically
— but, of course, not automatically —
“derived” from domain descriptions

⋄⋄ a bridge was established:
from domains via requirements to software.

A Basis for Safety Critical Software 146 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

147
6. Conclusion 6.2. What Have We Achieved ?

6.2. What Have We Achieved ?

• When Dr Clive Victor Boughton, on November 4, 2013, approached
me on the subject of

⋄⋄ “Software Safety: New Challenges and Solutions”,

⋄⋄ I therefore, naturally questioned:

◦◦ can one stratify the issues of safety criticality into three phases:

◦◦ searching for sources of faults and hazards in domains,

◦◦ elaborating on these while “discovering” further sources
during requirements engineering, and,

◦◦ finally, during early stages of software design.

⋄⋄ I believe we have answered that question partially

◦◦ with there being good hopes for further stratification.

A Basis for Safety Critical Software 147 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

148
6. Conclusion 6.2. What Have We Achieved ?

• Yes, I would indeed claim that

⋄⋄ we have contributed to the “greater” issues of
safety critical systems

⋄⋄ by suggesting a discipline framework for
of faults “discovery”and hazards:

⋄⋄ investigate the domains, the requirements and the design.

6.3. Further Work

• But, clearly, that work has only begun.

A Basis for Safety Critical Software 148 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

149
7. Conclusion

7. Acknowledgements

• I thank Dr Clive Victor Boughton of aSSCa &c.

⋄⋄ for having the courage to convince his colleagues to invite me,

⋄⋄ for having inspired me to observe that
faults and hazards can be “discovered”
purely in the context of domain descriptions,

⋄⋄ for his support in answering my many questions,

⋄⋄ and for otherwise arranging my visit.

Thanks

A Basis for Safety Critical Software 149 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – March 18, 2014: 08:22

