
1

Domain Analysis

An Analysis Process Model

Dines Bjørner

Fredscej 11, DK-2849 Holte, Denmark

May 30, 2013

An Analysis Process Model 1 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

2

Summary

• We present a summary, Sect. 2., of a rather complex structure of
domain analysis &1 description concepts: techniques and tools.

• And we link, in Sect. 3., these concepts, embodied in domain

analysis prompts and domain description prompts, in a model of
how a diligent domain analyser cum describer would use them.

• We claim that both sections, Sects. 2.–3. are contributions to a
methodology of software engineering.

• This talk is based on that of [2013da].

1We use the empersand ‘&’ between two terms a and b to emphasize that the term a&b is one.

An Analysis Process Model 2 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

3
1.

1. Introduction

• Before software can be designed
we must have a reasonably good grasp of its requirements.

• Before requirements can be prescribed
we must have a reasonably good grasp of the domain in which the
software is to reside.

• So we turn to domain analysis & description as a means to obtain
and record that ‘grasp’.

• In this talk we summarise an approach to domain analysis &
description recorded in more detail in [2013da].

• Thus this talk is based on [2013da].

An Analysis Process Model 3 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

4
1. Introduction

• This talk is one in a series of talks on domain science & engineering.

⋄⋄ In [dines:facs:2008] we present techniques related to the
analysis and description of domain facets.

⋄⋄ In [dines:ictac:2007] we investigate some research issues of
domain science.

⋄⋄ And in [dines:ugo65:2008] we show how to systematically
“transform” domain descriptions into requirements prescriptions.

⋄⋄ The paper [dines:humanity:2012] examines possible
contributions of domain science & engineering th computation

for the humanities.

An Analysis Process Model 4 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

5
1. Introduction

• It is expected that the present talk may be followed by respective
(“spin-off”) talks on

⋄⋄ Perdurants [2013da-perd],

⋄⋄ A Formal Model of Prompts [2013da-prompts],

⋄⋄ Domain Facets (cf. [dines:facs:2008]) [2013da-facets],
and

⋄⋄ On Deriving Requirements From Domain Descriptions (cf.
[dines:ugo65:2008]) [2013da-reqs].

An Analysis Process Model 5 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

61. Introduction

• The structure of this paper is as follows:

⋄⋄ First, Sect. 2 we present a terse summary of a system of domain
analysis & description concepts focused on endurants.

◦◦ This summary is rather terse,

◦◦ and is a “tour de force”.

◦◦ Section 2 is one of the two main sections of this talk.

An Analysis Process Model 6 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

7
1. Introduction

⋄⋄ Section 3 suggest a formal-looking model of the structure of
domain analysis prompts and domain description prompts
introduced in Sect. 2.

◦◦ It is not a formalisation of domains, but of the domain analysis
& description process.

◦◦ Domains are usually not computationally tractable.

◦◦ Less so is the domain analysis & description processes.

An Analysis Process Model 7 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

8
1. Introduction

⋄⋄ Finally, Sect. 4 concludes this talk.

⋄⋄ An appendix, Appendix A, presents a domain description of a
[class of] pipeline systems.

◦◦ Some seminars over the underlying paper may start by a brief
presentation of this model.

◦◦ The reader is invited to browse this pipeline system model
before, during and/or after reading Sects. 2–3.

An Analysis Process Model 8 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

92. Introduction

2. A Summary of The TripTych Domain Analysis Approach
2.1. Hierarchical versus Compositional Analysis & Description

• In this talk we choose, what we shall call, a ‘hierarchical
analysis’ approach which is

⋄⋄ was based on decomposing an understanding of a domain

⋄⋄ from the “overall domain” into its components,

⋄⋄ and these, if not atomic, into their subcomponents •.

• In contrast we could have chosen a ‘compositional analysis’
approach

⋄⋄ which starts with an understanding of a domain

⋄⋄ from its atomic endurants

⋄⋄ and composes these into composite ones,

⋄⋄ finally ending up with an “overall domain” description •.

An Analysis Process Model 9 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

10
2. A Summary of The TripTych Domain Analysis Approach 2.2. Domains

2.2. Domains

• A ‘domain’ is characterised by its

⋄⋄ observable, i.e., manifest entities

⋄⋄ and their qualities •. 2

Example 1. Domains:

• a road net,

• a container line,

• a pipeline,

• a hospital . 3

2Definitions start with a single quoted ‘term’ and conclude with a •.
3Examples conclude with a .

An Analysis Process Model 10 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

11
2. A Summary of The TripTych Domain Analysis Approach 2.3. Sorts, Types and Domain Analysis

2.3. Sorts, Types and Domain Analysis

• By a ‘sort’ (or ‘type’) we shall understand

⋄⋄ the largest set of entities

⋄⋄ all of which have the same qualities4 •.

Example 2. Sorts:

• Links of any road net form a sort.

• So does hubs.

• The largest set of (well-formed) collections of links form a sort.

• So does similar collections of hubs.

• The largest set of road nets (containing well-formed collections of
hubs and links) form a sort .

4

◦◦ Taking a sort (type) to be the largest set of entities all of which have the same qualities

◦◦ reflects Ganter & Wille’s notion of a ‘formal concept’ [GanterWille:ConceptualAnalysis1999].

An Analysis Process Model 11 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

122. A Summary of The TripTych Domain Analysis Approach 2.3. Sorts, Types and Domain Analysis

• By ‘domain analysis’ we shall understand

⋄⋄ a process whereby a domain analyser

⋄⋄ groups entities of a domain

⋄⋄ into sorts (and types) •.

• The rest of this talk will outline a class of domain analysis

⋄⋄ principles,

⋄⋄ techniques and

⋄⋄ tools.

An Analysis Process Model 12 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

13
2. A Summary of The TripTych Domain Analysis Approach 2.4. Entities and Qualities

2.4. Entities and Qualities
2.4.1. Entities

• By an ‘entity’ we shall understand a phenomenon

⋄⋄ that can be observed, i.e., be

◦◦ seen or

◦◦ touched

by humans,

⋄⋄ or that can be conceived

◦◦ as an abstraction

◦◦ of an entity •.

• The method can thus be said to provide the domain analysis

prompt:

⋄⋄ is entity where is entity(θ) holds if θ is an entity.

An Analysis Process Model 13 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

14
2. A Summary of The TripTych Domain Analysis Approach 2.4. Entities and Qualities2.4.1. Entities

Example 3. Entities:

• a road net, a link5 of a road net, a hub6 of a road net; and

• insertion of a link in a road net, disappearance of a link of a road

net, and the movement of a vehicle on a road net .

5A link: a street segment between two adjacent hubs
6A hub: an intersection of street segments

An Analysis Process Model 14 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

15
2. A Summary of The TripTych Domain Analysis Approach 2.4. Entities and Qualities2.4.2. Qualities

2.4.2. Qualities

• By a ‘quality’ of an entity we shall understand

⋄⋄ a property that can be

⋄⋄ given a name and

⋄⋄ precisely measured by physical instruments

⋄⋄ or otherwise identified •.

An Analysis Process Model 15 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

16
2. A Summary of The TripTych Domain Analysis Approach 2.4. Entities and Qualities2.4.2. Qualities

• Example 4. Quality Names:

⋄⋄ cadestral location of a hub,

⋄⋄ hub state7,

⋄⋄ hub state space8,

⋄⋄ etcetera .

• Example 5. Quality Values:

⋄⋄ the name of a road net,

⋄⋄ the ownership of a road net,

⋄⋄ the length of a link,

⋄⋄ the location of a hub, etcetera .

7From which links can one reach which links at a given time.
8Set of all hub states over time.

An Analysis Process Model 16 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

17
2. A Summary of The TripTych Domain Analysis Approach 2.5. Endurants and Perdurants

2.5. Endurants and Perdurants

• Entities are either endurants or are perdurants.

2.5.1. Endurants

• By an ‘endurant entity’ (or just, an endurant) we shall
understand

⋄⋄ that can be observed or conceived,

⋄⋄ as a “complete thing”,

⋄⋄ at no matter which given snapshot of time.

Were we to “freeze” time

⋄⋄ we would still be able to observe the entire endurant •.

• Thus the method provides a domain analysis prompt:

⋄⋄ is endurant where

⋄⋄ is endurant(e) holds if entity e is an endurant.

An Analysis Process Model 17 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

182. A Summary of The TripTych Domain Analysis Approach 2.5. Endurants and Perdurants2.5.1. Endurants

Example 6. Endurants: Items (a–b–c) of Example on Slide 14 are
endurants; so are the pipes, valves, and pumps of a pipeline.

An Analysis Process Model 18 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

19
2. A Summary of The TripTych Domain Analysis Approach 2.5. Endurants and Perdurants2.5.2. Perdurants

2.5.2. Perdurants

• By a ‘perdurant entity’ (or just, an perdurant) we shall
understand

⋄⋄ for which only a fragment exists
if we look at or touch them
at any given snapshot in time, that is,

⋄⋄ where we to freeze time we would only see or touch
a fragment of the perdurant •.

• Thus the method provides a domain analysis prompt:

⋄⋄ is perdurant where

⋄⋄ is perdurant(e) holds if entity e is a perdurant.

An Analysis Process Model 19 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

202. A Summary of The TripTych Domain Analysis Approach 2.5. Endurants and Perdurants2.5.2. Perdurants

Example 7. Perdurants: Items (d–e–f) of Example on Slide 14 are
perdurants; so are the insertion of a hub, removal of a link, etcetera .

An Analysis Process Model 20 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

21
2. A Summary of The TripTych Domain Analysis Approach 2.6. Discrete and Continuous Endurants

2.6. Discrete and Continuous Endurants

• Entities are either discrete or are continuous.

2.6.1. Discrete Endurants

• By a ‘discrete endurant’ we shall understand something which is

⋄⋄ separate or distinct in form or concept,

⋄⋄ consisting of distinct or separate parts •.

We use the term ‘part’ for discrete endurants,

that is: is part(p)≡is endurant(p)∧is discrete(p) •.

• Thus the method provides a domain analysis prompt:

⋄⋄ is discrete where

⋄⋄ is discrete(e) holds if entity e is discrete.

An Analysis Process Model 21 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

222. A Summary of The TripTych Domain Analysis Approach 2.6. Discrete and Continuous Endurants2.6.1. Discrete Endurants

Example 8. Discrete Endurants: The examples of Example on
Slide 18 are all discrete endurants .

An Analysis Process Model 22 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

23
2. A Summary of The TripTych Domain Analysis Approach 2.6. Discrete and Continuous Endurants2.6.2. Continuous Endurants

2.6.2. Continuous Endurants

• By a ‘continuous endurant’ we shall understand something
which is

⋄⋄ prolonged without interruption,

⋄⋄ in an unbroken series or pattern •.

We use the term ‘material’ for continuous endurants •.

• Thus the method provides a domain analysis prompt:

⋄⋄ is continuous where

⋄⋄ is continuous(e) holds if entity e is continuous.

An Analysis Process Model 23 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

242. A Summary of The TripTych Domain Analysis Approach 2.6. Discrete and Continuous Endurants2.6.2. Continuous Endurants

Example 9. Continuous Endurants: The pipes, valves, pumps, etc., of
Example on Slide 18 may contain oil; water of a hydro electric power
plant is also a material (i.e., a continuous endurant) .

An Analysis Process Model 24 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

252. A Summary of The TripTych Domain Analysis Approach 2.7. Discrete and Continuous Perdurants

2.7. Discrete and Continuous Perdurants

• We are not covering perdurants in this talk.

An Analysis Process Model 25 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

26
2. A Summary of The TripTych Domain Analysis Approach 2.8. Atomic and Composite Discrete Endurants

2.8. Atomic and Composite Discrete Endurants

• Discrete endurants are

⋄⋄ either atomic

⋄⋄ or composite.

2.8.1. Atomic Endurants

• By an ‘atomic endurant’ we shall understand

⋄⋄ a discrete endurant which

⋄⋄ in a given context,

⋄⋄ is deemed to not consist of
meaningful, separately observable proper sub-parts •.

• The method can thus be said to provide the domain analysis

prompt:

⋄⋄ is atomic where is atomic(p) holds if p is an atomic part.

An Analysis Process Model 26 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

27
2. A Summary of The TripTych Domain Analysis Approach 2.8. Atomic and Composite Discrete Endurants2.8.1. Atomic Endurants

Example 10. Atomic Parts: Examples of atomic parts of the above
mentioned domains are:

• aircraft (of air traffic),

• demand/deposit accounts (of banks),

• containers (of container lines),

• documents (of document systems),

• hubs, links and vehicles (of road traffic),

• patients, medical staff and beds (of hospitals),

• pipes, valves and pumps (of pipeline systems), and

• rail units and locomotives (of railway systems) .

An Analysis Process Model 27 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

282. A Summary of The TripTych Domain Analysis Approach 2.8. Atomic and Composite Discrete Endurants2.8.2. Composite Endurants

2.8.2. Composite Endurants

• By a ‘composite endurant’ we shall understand

⋄⋄ a discrete endurant which

⋄⋄ in a given context,

⋄⋄ is deemed to indeed consist of
meaningful, separately observable proper sub-parts •.

• The method can thus be said to provide the domain analysis

prompt:

⋄⋄ is composite where is composite(p) holds if p is an a
composite part.

An Analysis Process Model 28 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

29
2. A Summary of The TripTych Domain Analysis Approach 2.8. Atomic and Composite Discrete Endurants2.8.2. Composite Endurants

Example 11. Composite Parts: Examples of atomic parts of the
above mentioned domains are:

• airports and air lanes (of air traffic),

• banks (of a financial service industry),

• container vessels (of container lines),

• dossiers of documents (of document systems),

• routes (of road nets),

• medical wards (of hospitals),

• pipelines (of pipeline systems), and

• trains, rail lines and train stations (of railway systems) .

An Analysis Process Model 29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

302. A Summary of The TripTych Domain Analysis Approach 2.9. Part Observers

2.9. Part Observers

• From atomic parts we cannot observe any sub-parts.

• But from composite parts we can.

2.9.1. Composite Sorts

• For composite parts, p, the domain description prompt

⋄⋄ observe parts(p)

• yields some formal description text according to the followig schema:

• type P1, P2, ..., Pn;
value obs P1: P→P1, obs P2: P→P2,...,obs Pn: P→Pn;

• where sorts P1, P2, ..., Pn must be disjoint.

⋄⋄ A proof obligation

⋄⋄ may need be discharged

⋄⋄ to secure disjointness.

An Analysis Process Model 30 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

31
2. A Summary of The TripTych Domain Analysis Approach 2.9. Part Observers2.9.2. Sort Models

2.9.2. Sort Models

• A part sort is an abstract type.

⋄⋄ Some part sorts, Ps, may have a concrete type model.

⋄⋄ Here we consider only two such models:

◦◦ one model is as sets of parts of sort Ps.

◦◦ the other model has parts being of either of two or more
alternative, disjoint sorts.

• The domain analysis prompt:

⋄⋄ has concrete type(p)

• holds if part p has a concrete type.

• In this case the domain description prompt

⋄⋄ observe concrete type(p)

An Analysis Process Model 31 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

322. A Summary of The TripTych Domain Analysis Approach 2.9. Part Observers2.9.2. Sort Models

⋄⋄ yields some formal description text according to the followig
schema,

◦◦ either

∗ type A, B, ..., C, T = E(A,B,...,C);
value obs T: P → T;
where A,B,...,C are either (new) part sorts or are auxiliary
(abstract or concrete) types9;

◦◦ or:
∗ type T = P1|P2|...|PN,

P1,P2,...,Pn,
P1::mkP1(s p:P1),P2::mkP1(s p:P2),...,PN::mkP1(s p:Pn);

value obs T: P→T;

9 The domain analysis prompt: sorts of(t) yields a subset of {A,B,...,C}.

An Analysis Process Model 32 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

33
2. A Summary of The TripTych Domain Analysis Approach 2.10. Material Observers

2.10. Material Observers

• Some parts p of sort P may contain material.

⋄⋄ The domain analysis prompt

◦◦ has material(p)

⋄⋄ holds if composite part p contains one or more materials.

• The domain description prompt

⋄⋄ observe material sorts(p)

• yields some formal description text according to the followig schema:

• type M1, M2, ..., Mm;
value obs M1: P → M1, obs M2: P → M2, ..., obs Mm: P
→ Mm;

• where values, mi, of type Mi satisfy is material(m) for all i;

• and where M1, M2, ..., Mm must be disjoint sorts.

An Analysis Process Model 33 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

34
2. A Summary of The TripTych Domain Analysis Approach 2.10. Material Observers

Example 12. Part Materials:

• The pipeline parts p

⋄⋄ pipes,

⋄⋄ valves,

⋄⋄ pumps,

etc., contains some

⋄⋄ either liquid material, say crude oil.

⋄⋄ or gaseous material, say natural gas .

An Analysis Process Model 34 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

35
2. A Summary of The TripTych Domain Analysis Approach 2.10. Material Observers

• Some material m of sort M may contain parts.

⋄⋄ The domain analysis prompt

◦◦ has parts(m)

⋄⋄ holds if material m contains one or more parts.

• The domain description prompt

⋄⋄ observe part sorts(m)

• yields some formal description text according to the followig schema:

• type P1, P2, ..., Pn;
value obs P1: M→P1, obs P2: M→P2,...,obs Pm: M→Pm;

• where values, pi, of type Pi satisfy is part(pi) for all i;

• and where P1, P2, ..., Pn must be disjoint sorts.

An Analysis Process Model 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

36
2. A Summary of The TripTych Domain Analysis Approach 2.10. Material Observers

Example 13. Material and Part Relations:

• A global transport system can, for example, be described as

⋄⋄ primarily containing

◦◦ navigable waters,

◦◦ land areas and

◦◦ air

— as three major collections of parts.

⋄⋄ Navigable waters contain a number of

◦◦ “neighbouring” oceans,

◦◦ channels,

◦◦ canals,

◦◦ rivers and

◦◦ lakes reachable by canals or rivers from other navigable waters

(all of which are parts).

An Analysis Process Model 36 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

372. A Summary of The TripTych Domain Analysis Approach 2.10. Material Observers

⋄⋄ The part sorts of navigable waters has water materials.

⋄⋄ All water materials has (zero or more) parts such as vessels and sea-ports.

⋄⋄ Land areas contain

◦◦ continents,
some of which are neighbouring (parts),

◦◦ while some are isolated
(that is, being islands not “border–”connected to other continents).

⋄⋄ Some land areas contain harbour.

◦◦ Harbours and seaports are overlapping parts sharing many attributes.

◦◦ And harbours and seaports are connected to road and rail nets.

⋄⋄ Etcetera, etcetera .

• The above example, Example 13, help motivate the concept of
mereology (see below).

An Analysis Process Model 37 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

382. A Summary of The TripTych Domain Analysis Approach 2.11. Endurant Properties

2.11. Endurant Properties
2.11.1. External and Internal Qualities

• We have already, above, treated the following properties of
endurants:

⋄⋄ is discrete,

⋄⋄ is continuous,

⋄⋄ is atomic,

⋄⋄ is composite and

⋄⋄ has material.

• We may think of those properties as external qualities.

• In contrast we may consider the following internal qualities:

⋄⋄ has unique identifier (parts),

⋄⋄ has mereology (parts) and

⋄⋄ has attributes (parts and materials).

An Analysis Process Model 38 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

392. A Summary of The TripTych Domain Analysis Approach 2.12. Unique Identifiers

2.12. Unique Identifiers

• Without loss of generality we can assume that every part has a
unique identifier10.

⋄⋄ A ‘unique part identifier’ (or just unique identifier) is a further
undefined, abstract quantity.

⋄⋄ If two parts are claimed to have the same unique identifier then
they are identical •.

• The domain description prompt:

⋄⋄ observe unique identifier(p)

• yields some formal description text according to the followig schema:

• type PI; value uid P: P → PI;

10That is, has unique identifier(p) for all parts p.

An Analysis Process Model 39 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

40
2. A Summary of The TripTych Domain Analysis Approach 2.12. Unique Identifiers

Example 14. Unique Identifiers:

• A road net consists of a set of hubs and a set of links.

• Hubs and links have unique identifiers.

• That is: type HI, LI; value uid H: H→HI, uid L: L→LI; .

An Analysis Process Model 40 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

41
2. A Summary of The TripTych Domain Analysis Approach 2.13. Mereology

2.13. Mereology

• By ‘mereology’ [Lesniewski1] we shall understand

⋄⋄ the study, knowledge and practice of

⋄⋄ parts,

⋄⋄ their relations to other parts

⋄⋄ and “the whole” •.

• Part relations are such as:

⋄⋄ two or more parts being connected,

⋄⋄ one part being embedded within another part, and

⋄⋄ two or more parts sharing (other) attributes.

An Analysis Process Model 41 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

422. A Summary of The TripTych Domain Analysis Approach 2.13. Mereology

Example 15. Mereology:

• The mereology of a link of a road net

⋄⋄ is the set of the two unique identifiers

⋄⋄ of exactly two hubs

⋄⋄ to which the link is connected.

• The mereology of a hub of a road net

⋄⋄ is the set of zero or more unique identifiers

⋄⋄ of the links

⋄⋄ to which the hub is connected .

An Analysis Process Model 42 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

43
2. A Summary of The TripTych Domain Analysis Approach 2.13. Mereology

• The domain analysis prompt:

⋄⋄ has mereology(p)

• holds if the part p is related to some others parts (pa, pb, . . . , pc).

• The domain description prompt:

⋄⋄ observe mereology(p)

can then be invoked and

• yields some formal description text according to the followig schema:

• type MT = E(PIA,PIB,...,PIC); value mereo P: P → MT;
where E(...) is some type expression over unique identifier types of
one or more part sorts.

An Analysis Process Model 43 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

44
2. A Summary of The TripTych Domain Analysis Approach 2.13. Mereology

• Mereologies are expressed in terms of structures of unique part
identifiers.

• Usually mereologies are constrained. Constraints express

⋄⋄ that a mereology’s unique part identifiers must indeed reference
existing parts, but also

⋄⋄ that these mereology identifiers “define” a proper structuring of
parts.

An Analysis Process Model 44 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

45
2. A Summary of The TripTych Domain Analysis Approach 2.13. Mereology

Example 16. Mereology Constraints:

• We continue our line of examples of road net endurants, but now a
bit more systematically:

⋄⋄ A road net, n:N, contains a pair, (HS,LS), of sets Hs of hubs h:H
and sets Ls of links.

⋄⋄ The mereology of links must identify exactly two hubs of the
road net,

⋄⋄ the mereology of hubs must identify links of the road net,

⋄⋄ so connected hubs and links must have commensurate
mereologies .

An Analysis Process Model 45 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

46
2. A Summary of The TripTych Domain Analysis Approach 2.13. Mereology

• Two parts, pi:Pi and pj:Pj, of possibly the same sort (i.e., Pi≡Pj)

⋄⋄ are said to ‘refer one to another’ if

◦◦ the mereology of pi contains the unique identifier of pj

◦◦ and vice-versa •.

⋄⋄ The parts pi and pj are then said to enjoy ‘part overlap’ •.

• We refer to the concept of shared attributes covered at the very end
of this section.

An Analysis Process Model 46 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

47
2. A Summary of The TripTych Domain Analysis Approach 2.14. Attributes

2.14. Attributes

• Attributes are what really endows parts with qualities.

⋄⋄ The external properties11

⋄⋄ are far from enough to distinguish one sort of parts from another.

⋄⋄ Similarly with unique identifiers and the mereology of parts.

• We therefore assume, without loss of generality, that

⋄⋄ every part, whether discrete or continuous,

⋄⋄ whether, when discrete, atomic or composite,

⋄⋄ has at least one attributes.

11

◦◦ is discrete,

◦◦ is continuous,

◦◦ is atomic,

◦◦ is composite and

◦◦ has material.

An Analysis Process Model 47 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

48
2. A Summary of The TripTych Domain Analysis Approach 2.14. Attributes

• By a ‘part attribute’, or just an ‘attribute’, we shall understand

⋄⋄ a property that is associated with a part p of sort P ,

◦◦ and if removed from part p,

◦◦ that part would no longer be part p

◦◦ but may be a part of some other sort P ′; and

⋄⋄ where that property itself has no physical extent (i.e., volume),

◦◦ as the part may have,

◦◦ but may be measurable by physical means •.

An Analysis Process Model 48 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

49
2. A Summary of The TripTych Domain Analysis Approach 2.14. Attributes

Example 17. Attributes: Some attributes

• of road net hubs are

⋄⋄ location, ⋄⋄ hub state12, ⋄⋄ hub state space13,

and

• of road net links are

⋄⋄ location,

⋄⋄ length,

⋄⋄ link state14,

⋄⋄ link state space15,

etcetera .

12Hub state: a set of pairs of unique identifiers of actually connected links.
13Hub state space: a set of hub states that a hub states may range over.
14Link state: a set of pairs of unique identifiers of actually connected hubs.
15Link state space: a set of link states that a link state may range over.

An Analysis Process Model 49 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

50
2. A Summary of The TripTych Domain Analysis Approach 2.14. Attributes

• The domain description prompt

⋄⋄ observe attributes(p)

• yields some formal description text according to the followig schema:

⋄⋄ type A1, A2, ..., An, ATTR;
value attr A1:P→A1, attr A2:P→A2, ..., attr An:P→An,
attr ATTR:P→ATTR;

⋄⋄ where for ∀ p:P, attr Ai(attr ATTR(p)) ≡ attr Ai(p).

An Analysis Process Model 50 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

512. A Summary of The TripTych Domain Analysis Approach 2.14. Attributes2.14.1. Shared Attributes

2.14.1. Shared Attributes

• A final quality of endurant entities is that they may share attributes.

• Two parts, pi:Pi, pj:Pj, of different sorts are said to enjoy ‘shared
attributes’ if

⋄⋄ Pi and Pj have at least one attribute name in common •.

• In such cases the mereologies of pi and pj are expected to refer to
one another, i.e., be ‘commensurable’.

An Analysis Process Model 51 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

52
2. A Summary of The TripTych Domain Analysis Approach 2.15. Discussion

2.15. Discussion

• We have left out any coverage of perdurant entities.

⋄⋄ For the time we refer to Sect. 5 of [2013da],

⋄⋄ hoping to further develop that section’s understanding

⋄⋄ into a forthcoming study [2013da-perd].

An Analysis Process Model 52 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

53
3. A Summary of The TripTych Domain Analysis Approach

3. A Prompt & Description ‘Method’
3.1. A Summary of Prompts

• In the previous section we outlined two classes of prompts:

⋄⋄ the domain analysis prompts:

attribute names [XII], 16

has concrete type [XI], 10

has materials [XIV], 25

has mereology [XIII], 22

is atomic [VIII], 7

is composite [IX], 7

is continuous [V], 6

is discrete [IV], 6

is endurant [II], 6

is entity [I], 5

is material [VII], 7

is part [VI], 7

is perdurant [III], 6

observe parts [X], 8

⋄⋄ and the domain description prompts:

observe attributes [4], 16

observe material sorts [6], 25

observe mereology [5], 22

observe part sorts [1], 8

observe part type [2], 10

observe unique identifier [3], 14

An Analysis Process Model 53 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

54
3. A Prompt & Description ‘Method’ 3.1. A Summary of Prompts

• These prompts are imposed upon the domain analyser cum
describer.

• They are “figuratively” applied to the domain.

• Their orderly, sequenced application

⋄⋄ follows the method hinted at in the previous section and

⋄⋄ expressed in a pseudo-formal notation in this section.

• The notation looks formal

⋄⋄ but since we have not formalised these prompts

⋄⋄ it is only pseudo-formal.

• In [2013da-prompts] we shall formalise these prompts.

An Analysis Process Model 54 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

55
3. A Prompt & Description ‘Method’ 3.2. Preliminaries

3.2. Preliminaries

• Let P be a sort, that is, a collection of endurants.

• By ηP we shall understand a syntactic quantity: the name of P.

• By ιp:P we shall understand the semantic quantity: an (arbitrarily
selected) endurant in P.

• And by η−1ηP we shall understand P.

An Analysis Process Model 55 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

56
3. A Prompt & Description ‘Method’ 3.2. Preliminaries

• To guide our analysis & description process we decompose it into
steps.

⋄⋄ Each step “handles” a sort p:P or a material m:M.

⋄⋄ Steps handling discovery of composite sorts generates a set of
sort names ηP1, ηP2, . . . , ηPn and ηM1, ηM2, . . . , ηMn.

⋄⋄ These are put in a reservoir for sorts to be inspected.

⋄⋄ The handled sort ηP or ηM is removed from that reservoir.

⋄⋄ Handling of material sorts concerns only their attributes.

⋄⋄ Each domain description prompt results in domain specification
text (here we show only the formal texts) being deposited in the
domain description reservoir, a global variable τ .

An Analysis Process Model 56 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

57
3. A Prompt & Description ‘Method’ 3.2. Preliminaries

• The clause:

⋄⋄ domain description prompt(p) : τ := τ ⊕ [”text ; ”]

• means that

⋄⋄ the formal text ”text ; ” is joined to the global variable τ

⋄⋄ where that ”text ; ” is prompted by
domain description prompt(p).

• The meaning of ⊕ will be discussed at the end of this section.

An Analysis Process Model 57 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

58
3. A Prompt & Description ‘Method’ 3.3. Initialising the Domain Analysis & Description Process

3.3. Initialising the Domain Analysis & Description Process

• We remind the audience that we are dealing only with endurant
domain entities.

• The domain analysis approach covered in Sect. 2

⋄⋄ was based on decomposing an understanding of a domain

⋄⋄ from the “overall domain” into its components,

⋄⋄ and these, if not atomic, into their subcomponents.

• So we need to initialise the domain analysis & description by
selecting (or choosing) the domain ∆.

An Analysis Process Model 58 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

593. A Prompt & Description ‘Method’ 3.3. Initialising the Domain Analysis & Description Process

• Here is how we think of that “initialisation” process.

⋄⋄ The domain analyser[s] & describer[s] spends some time focusing
on the domain,

⋄⋄ maybe at the “white board”,

⋄⋄ rambling, perhaps in an un-structured manner,

⋄⋄ across its domain, ∆, and its sub domains.

⋄⋄ Informally jotting down more-or-less final sort names,

⋄⋄ building, in the domain analysers’ & describers’ mind

⋄⋄ an image of that domain.

An Analysis Process Model 59 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

60
3. A Prompt & Description ‘Method’ 3.3. Initialising the Domain Analysis & Description Process

• After some time doing this

⋄⋄ the domain analyser[s] & describer[s] is/are ready.

⋄⋄ An image of the domain

⋄⋄ in the form of “a domain” endurant, δ:∆.

⋄⋄ Those are the quantities,

◦◦ η∆ (name of ∆) [Item 1 on the following slide] and

◦◦ ιp:P (for (δ:∆)) [Item 8 on Slide 62],

referred to below.

• Thus this initialisation process is truly a creative one.

An Analysis Process Model 60 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

61
3. A Prompt & Description ‘Method’ 3.4. A Domain Analysis & Description State

3.4. A Domain Analysis & Description State

1. A global variable αps will accumulate all the sort names being
discovered.

2. A global variable νps will hold names of sorts yet to be analysed
and described.

3. A global variable τ will hold the (so far) generated (in this case
only) formal domain description text.

variable

1. αps := [η∆] ηP-set or ηP∗

2. νps := [η∆] (ηP|ηM)-set or (ηP|ηM)∗

3. τ := [] Text-set or Text∗

• We shall explain the use of [...]s and the operations of \ and ⊕ on
the above variables in Sect. 4.10.5 Slide 85.

An Analysis Process Model 61 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

62
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants

3.5. Analysis & Description of Endurants

4. To analyse and describe endurants means to first

5. examine those endurant which have yet to be so analysed and
described

6. by selecting (and removing from νps) a yet unexamined sort (by
name);

7. then analyse and describe an endurant entity (ιp:P) of that sort —
this analysis, when applied to composite parts, leads to the
insertion of zero16 or more sort names17;

8. then to analyse and describe the mereology of each part sort,

9. and finally to analyse and describe the attributes of each sort.
16If the sub-parts of p are all either atomic or already analysed, then no new sort

names are added to the repository νps).
17These new sort names are then “picked-up” for sort analysis &c. in a next iteration

of the while loop.

An Analysis Process Model 62 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

63
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants

value

4. analyse and describe endurants: Unit → Unit

4. analyse and describe endurants() ≡
5. while ∼is empty(νps) do

6. let ηS = select and remove ηS() in

7. analyse and describe endurant sort(ιs:S) end end ;
8. for all ηP • ηP ∈ αps do analyse and describe mereology(ιp:P) end

9. for all ηP • ηP ∈ αps do analyse and describe attributes(ιp:P) end

• The ι of Items 7, 8 and 9 are crucial.

⋄⋄ The domain analyser is focused on sort S (and P)

⋄⋄ and is “directed” (by those items)

⋄⋄ to choose (select) an endurant ιs (ιp) of that sort.

⋄⋄ The ability of the domain analyser to find such an entity

⋄⋄ is a measure of that person’s professional creativity.

An Analysis Process Model 63 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

643. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants

• As was indicated in Sect. 2.,

⋄⋄ the mereology of a part may involve unique identifiers of any
part sort, hence must be done after all such part sort unique
identifiers have been identified.

⋄⋄ Similarly for attributes which also may involve unique identifiers

⋄⋄ Each iteration of analyse and describe endurant sort(ιp:P)

◦◦ involves the selection of a sort (by name)

◦◦ (which is that of either a part sort or a material sort)

◦◦ with this sort name then being removed.

10. The selection occurs from the global state (hence: ()) and
changes that (hence Unit).

11. The affected global state component is that of the reservoir, νps.

An Analysis Process Model 64 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

65
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants

value

10. select and remove ηS: Unit → ηP
10. select and remove ηS() ≡
11. let ηS • ηS ∈ νps in νps := νps \ {ηS} ; ηS end

• The analysis and description of all sorts

⋄⋄ also performs an analysis and description of their

⋄⋄ possible unique identifiers (if part sorts) and

⋄⋄ attributes.

• The analysis and description of sort mereologies potentially
requires the unique identifiers of any set of sorts. Therefore the
analysis and description of sort mereologies follows that of analysis
and description of all sorts.

An Analysis Process Model 65 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

66
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants

12. To analyse and describe an endurant

13. is to find out whether it is a part.

14. If so then it is to analyse and describe it as a part,

15. else it is to analyse and describe it as a material.

12. analyse and describe endurant sort: (P|M) → Unit

12. analyse and describe endurant sort(e:(P|M)) ≡
13. if is part(e)
13. assert: is part(e) ≡ is endurant(e)∧is discrete(e)
14. then analyse and describe part sort(e:P)
15. else analyse and describe material parts(e:M)
12. end

An Analysis Process Model 66 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

673. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.1. Analysis & Description of Part Sorts

3.5.1. Analysis & Description of Part Sorts

16. The analysis and description of a part sort

17. is based on there being a set, ps, of parts to analyse —

18. of which an archetypal one, p′, is arbitrarily selected.

19. analyse and describe part p′

16. analyse and describe part sort: P → Unit

16. analyse and describe part sort(p:P) ≡
17. let ps = observe parts(p) in

18. let p′:P • p′ ∈ ps in

19. analyse and describe part(p′)
16. end end

An Analysis Process Model 67 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

683. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.1. Analysis & Description of Part Sorts

20. The analysis (&c.) of a part

21. first analyses and describes its unique identifiers.

22. If atomic

23. and

24. if the part embodies materials,

25. we analyse and describe these.

26. If not atomic then the part is composite

27. and is analysed and described as such.

An Analysis Process Model 68 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

693. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.1. Analysis & Description of Part Sorts

20. analyse and describe part: P → Unit

20. analyse and describe part(p) ≡
21. analyse and describe unique identifier(p) ;
22. if is atomic(p)
23. then

24. if has materials(p)
25. then analyse and describe part materials(p) end

26. else assert: is composite(p)
27. analyse and describe composite endurant(p) end

20. pre: is discrete(p)

• We do not associate materials with composite parts.

An Analysis Process Model 69 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

70
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.2. Analysis & Description of Part Materials

3.5.2. Analysis & Description of Part Materials

28. The analysis and description of the material part sorts, one or more, of atomic
parts p of sort P containing such materials,

29. simply observes the material sorts of p,

30. that is generates the one or more continuous endurants

31. and the corresponding observer function text.

32. The reservoir of sorts to be inspected is augmented by the material sorts —
except if already previously entered (the \ αps clause).

28. analyse and describe part materials: P → Unit

28. analyse and describe part materials(p) ≡
29. observe material sorts(p) :
30. τ := τ ⊕ [”type M1,M2,...,Mm;
31. value obs M1:P→M1,obs M2:P→M2,...,obs Mm:P→Mm;”]
32. νps := νps ⊕ ([M1,M2,...,Mm] \ αps)
28. pre: has materials(p)

An Analysis Process Model 70 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

713. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.3. Analysis & Description of Material Parts

3.5.3. Analysis & Description of Material Parts

33. To analyse and describe materials, m, i.e., continuous endurants,

34. is only necessary if m has parts.

35. Then we observe the sorts of these parts.

36. The identified part sort names update both name reservoirs.

33. analyse and describe material parts: M → Unit

33. analyse and describe material parts(m:M) ≡
34. if has parts(m)
35. then observe part sorts(m):
35. τ := τ ⊕ [” type P1,P2,...,PN ;
35. value obs Pi: M→Pi i:{1..N};”]
36. ‖ νps := νps ⊕ ([ηP1,ηP2,...,ηPN]\ αps)
36. ‖ αps := αps ⊕ [ηP1,ηP2,...,ηPN]
33. end

33. assert: is continuous(m)

An Analysis Process Model 71 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

723. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.4. Analysis & Description of Composite Endurants

3.5.4. Analysis & Description of Composite Endurants

37. To analyse and describe a composite endurant of sort P

38. is to (we choose first) to analyse and describe the unique identifier of that
composite endurant,

39. then to analyse and describe the sort. If the sort has a concrete type

40. then we analyse and describe that concrete sort type

41. else we analyse and describe the abstract sort.

37. analyse and describe composite endurant: P → Unit

37. analyse and describe composite endurant(p) ≡
38. analyse and describe unique identifier(p) ;
39. if has concrete type(p)
40. then analyse and describe concrete sort(p)
41. else analyse and describe abstract sort(p)
39. end

An Analysis Process Model 72 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

733. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.5. Analysis & Description of Concrete Sort Types

3.5.5. Analysis & Description of Concrete Sort Types

42. The concrete sort type being analysed and described is

43. either

44. expressible by some compound type expression

43. or is

45. expressible by some alternative type expression.

42. analyse and describe concrete sort: P → Unit

42. analyse and describe concrete sort(p:P) ≡
44. analyse and describe concrete compound type(p)
43. ⌈⌉
45. analyse and describe concrete alternative type(p)
42. pre: has concrete type(p)

An Analysis Process Model 73 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

743. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.5. Analysis & Description of Concrete Sort Types

46. The concrete compound sort type

47. is expressible by some simple type expression, T=E(Q,R,...,S) over
either concrete types or existing or new sorts Q, R, ..., S.

48. The emerging sort types are identified

49. and assigned to both νps

50. and αps.

An Analysis Process Model 74 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

75
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.5. Analysis & Description of Concrete Sort Types

44. analyse and describe concrete compound type: P → Unit

44. analyse and describe concrete compound type(p:P) ≡
46. observe part type(p):
46. τ := τ ⊕ [”type Q,R,..,S, T = E(Q,R,...,S);
46. value obs T: P → T ;”] ;
47. let {Pa,Pb,...,Pc} = sorts of({Q,R,...,S})
48. assert: {Pa,Pb,...,Pc} ⊆ {Q,R,...,S} in

49. νps := νps ⊕ [ηPa, ηPb, ..., ηPc] ‖
50. αps := αps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) end

44. pre: has concrete type(p)

An Analysis Process Model 75 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

763. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.5. Analysis & Description of Concrete Sort Types

51. The concrete alternative sort type expression

52. is expressible by an alternative type expression T=P1|P2|...|PN
where each of the alternative types is made disjoint wrt. existing
types by means of the description language Pi::mkPi(su:Pi)
construction.

53. The emerging sort types are identified and assigned

54. to both νps

55. and αps.

An Analysis Process Model 76 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

77
3. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.5. Analysis & Description of Concrete Sort Types

45. analyse and describe concrete alternative type: P → Unit

45. analyse and describe concrete alternative type(p:P) ≡
51. observe part type(p):
52. τ := τ ⊕ [”type T=P1 | P2 | ... | PN, Pi::mkPi(s u:Pi) (1≤i≤N);
52. value obs T: P→T ;”] ;
53. let {Pa,Pb,...,Pc} = sorts of({Pi|1≤i≤n})
53. assert: {Pa,Pb,...,Pc} ⊆ {Pi|1≤i≤n} in

54. νps := νps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) ‖
55. αps := αps ⊕ [ηPa, ηPb, ..., ηPc] end

42. pre: has concrete type(p)

An Analysis Process Model 77 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

783. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.6. Analysis & Description of Abstract Sorts

3.5.6. Analysis & Description of Abstract Sorts

56. To analyse and describe an abstract sort

57. amounts to observe part sorts and to

58. update the sort name repositories.

56. analyse and describe abstract sort: P → Unit

56. analyse and describe abstract sort(p:P) ≡
57. observe part sorts(p):
57. τ := τ ⊕ [”type P1, P2, ..., Pn;
57. value obs Pi:P→Pi (0≤i≤n);”]
58. ‖ νps := νps ⊕ ([ηP1, ηP2, ..., ηPn] \ αps)
58. ‖ αps := αps ⊕ [ηP1, ηP2, ..., ηPn]

An Analysis Process Model 78 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

793. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.7. Analysis & Description of Unique Identifiers

3.5.7. Analysis & Description of Unique Identifiers

59. To analyse and describe the unique identifier of parts of sort P is

60. to observe the unique identifier of parts of sort P

61. where we assume that all parts have unique identifiers.

59. analyse and describe unique identifier: P → Unit

59. analyse and describe unique identifier(p) ≡
60. observe unique identifier(p):
60. τ := τ ⊕ [”type PI; value uid P:P→PI;”]
61. assert: has unique identifier(p)

An Analysis Process Model 79 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

803. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.8. Analysis & Description of Mereologies

3.5.8. Analysis & Description of Mereologies

62. To analyse and describe a part mereology

63. if it has one

64. amounts to observe that mereology

65. and otherwise do nothing.

66. The analysed quantity must be a part.

62. analyse and describe mereology: P → Unit

62. analyse and describe mereology(p) ≡
63. if has mereology(p)
64. then observe mereology(p) :
64. τ := τ ⊕ ”type MT = E(PIa,PIb,...,PIc) ;
64. value mereo P: P→MT ;”
65. else skip end

62. pre: is part(p)

An Analysis Process Model 80 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

813. A Prompt & Description ‘Method’ 3.5. Analysis & Description of Endurants3.5.9. Analysis & Description of Part Attributes

3.5.9. Analysis & Description of Part Attributes

67. To analyse and describe the attributes of parts of sort P is

68. to observe the attributes of parts of sort P

69. where we assume that all parts have attributes.

67. analyse and describe part attributes: P → Unit

67. analyse and describe part attributes(p) ≡
68. observe attributes(p):
68. τ := τ ⊕ [”type A1, A2,..., Am ;
68. value attr A1:P→A1,attr A2:P→A2,...,attr Am:P→Am;”]
69. assert: has attributes(p)

An Analysis Process Model 81 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

823. A Prompt & Description ‘Method’ 3.6. Discussion of The Model

3.6. Discussion of The Model

• The above model

⋄⋄ lacks a formal understanding of the individual prompts as listed
in Sect. 3.1;

⋄⋄ such an understanding is attempted in [2013da-prompts].

An Analysis Process Model 82 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

83
3. A Prompt & Description ‘Method’ 3.6. Discussion of The Model3.6.1. Termination

3.6.1. Termination

• The sort name reservoir νps

⋄⋄ is “reduced” by one name in each iteration of the while loop of
the analyse and describe endurants, cf. Item 6 on Slide 62,

⋄⋄ and is augmented by new part and material sort names in some
iterations of that loop, cf. formula Items

◦◦ 32 on Slide 70,

◦◦ 36 on Slide 71,

◦◦ 49 on Slide 74,

◦◦ 54 on Slide 76 and

◦◦ 49 on Slide 74.

⋄⋄ It remains to prove that the analysis & description process
terminates.

•

An Analysis Process Model 83 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

84
3. A Prompt & Description ‘Method’ 3.6. Discussion of The Model3.6.2. Axioms and Proof Obligations

3.6.2. Axioms and Proof Obligations

• We have omitted from the above (and also in Sect.) treatment of

⋄⋄ axioms concerning well-formedness of parts, materials and attributes and

⋄⋄ proof obligations concerning disjointness of observed part and material sorts
and attribute types.

• A more proper treatment would entail adding a line

⋄⋄ of proof obligation text right after Item lines

◦◦ 65 on Slide 80 and ◦◦ 68 on Slide 81.

⋄⋄ and of axiom text right after Item lines

◦◦ 31 (Slide 70),

◦◦ 35 (Slide 71),

◦◦ 46 (Slide 74),

◦◦ 48 (Slide 74),

◦◦ 60 (Slide 79) and

◦◦ 68 (Slide 81).

⋄⋄ No axiom is needed in connection with Item line 52 on Slide 76.

• [2013da] covers axioms and proof obligations in some detail.

An Analysis Process Model 84 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

853. A Prompt & Description ‘Method’ 3.6. Discussion of The Model3.6.3. Order of Analysis & Description: A Meaning of ‘⊕’

3.6.3. Order of Analysis & Description: A Meaning of ‘⊕’

• The variables αps, νps and τ are defined to hold either sets or lists.

• The operator ⊕ can be thought of

⋄⋄ as either set union (∪ and [,]≡{, }) — in which case the domain
description text in τ is a set of domain description texts

⋄⋄ or as list concatenation (̂ and [,]≡〈,〉) of domain description
texts.

⋄⋄ The operator ℓ1 ⊕ ℓ2 now has at least two interpretations:

◦◦ either ℓ1̂ℓ2

◦◦ or ℓ2̂ℓ1.

⋄⋄ In the case of lists the ⊕ (i.e., ̂) does not (suffix or prefix)
append ℓ2 elements already in ℓ1.

An Analysis Process Model 85 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

86
3. A Prompt & Description ‘Method’ 3.6. Discussion of The Model3.6.3. Order of Analysis & Description: A Meaning of ‘⊕’

• The select and remove ηP function on Slide 65 applies to the set
interpretation.

• A list interpretation is:

value

6. select and remove ηP: Unit → ηP
6. select and remove ηP() ≡
6. let ηP = hd νps in νps := tl νps; ηP end

• In the first case (ℓ1̂ℓ2) the analysis and description process
proceeds from the root, breadth first,

• In the second case (ℓ2̂ℓ1) the analysis and description process
proceeds from the root, depth first.

.

An Analysis Process Model 86 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

87
3. A Prompt & Description ‘Method’ 3.6. Discussion of The Model3.6.4. Laws of Description Prompts

3.6.4. Laws of Description Prompts

• The domain ‘method’ outlined in the previous section suggests that
many different orders of analysis & description may be possible.

• But are they ? That is, will they all result in “similar” descriptions ?

• That is, if Da and Db

⋄⋄ are two domain description prompts

⋄⋄ where Da and Db

⋄⋄ can be pursued in any order

⋄⋄ will that yield the same description ?

⋄⋄ And what do we mean by

◦◦ ‘can be pursued in any order’, and

◦◦ ‘same description’ ?

An Analysis Process Model 87 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

88
3. A Prompt & Description ‘Method’ 3.6. Discussion of The Model3.6.4. Laws of Description Prompts

• Let us assume that sort P decomposes into sorts Pa and Pb

(etcetera).

⋄⋄ Let us assume that the

◦◦ domain description prompt Da is related to the description of
Pa and

◦◦ Db to Pb.

⋄⋄ Here we would expect Da and Db to commute, that is

◦◦ Da;Db yields same result

◦◦ as does Db;Da.

⋄⋄ In [Kiev:2010ptII] we made an early exploration of such laws
of domain description prompts.

• To answer these questions we need a reasonably precise model of
domain prompts.

• We attempt such a model in [2013da-prompts].

An Analysis Process Model 88 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

89
4. A Prompt & Description ‘Method’

4. Conclusion

• It is time to conclude.

4.1. Comparison to Other Work
4.1.1. Domain Analysis

• In [2013da] we give, in its Sect. 6.3, a 3+ page comparison to the
broader concept of ‘domain analysis’ as covered in almost 30
literature references.

• We claim, on this background, that our concept of domain analysis,
as treated in Sect. 2, is sufficiently different (i.e., novel) as to
warrant your attention !

4.1.2. Methodology

• We are not aware of any publications (other other than
[Kiev:2010ptII]) that attempt for “formalise” core concepts of
the notion of ‘method’.

An Analysis Process Model 89 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

90
4. Conclusion 4.2. What Have We Achieved

4.2. What Have We Achieved
4.2.1. Domain Analysis

• In Sect. 2 we have

⋄⋄ presented a terse, five+ page, summary of a novel approach to
domain analysis.

⋄⋄ That this approach is different from other ‘domain analysis’
approaches is argued in [[]Sect. 6.2]2013da.

⋄⋄ The new aspects are:

◦◦ the distinction between parts and materials,

◦◦ the distinction between external and internal properties
(Sect. 2.11.1),

◦◦ the introduction of the concept of mereologies and

◦◦ the therefrom separate treatment of attributes.

◦◦ It seems to us that “conventional” domain analysis treated all
endurant qualities as attributes.

An Analysis Process Model 90 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

91
4. Conclusion 4.2. What Have We Achieved4.2.1. Domain Analysis

• The many concepts,

⋄⋄ endurants and perdurants,

⋄⋄ discrete and continuous,

⋄⋄ hence parts and materials,

⋄⋄ atomic and composite,

⋄⋄ uniqueness of parts,

⋄⋄ mereology, and

⋄⋄ shared attributes,

we claim,

• are forced upon the analysis

⋄⋄ by the nature of domains:

⋄⋄ existing in some not necessarily computable reality.

• In this way the proposed domain analysis & description approach is
new.

An Analysis Process Model 91 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

92
4. Conclusion 4.2. What Have We Achieved4.2.2. Methodology

4.2.2. Methodology

• By a ‘method’ we shall understand

⋄⋄ a set of principles for

⋄⋄ selecting and applying

⋄⋄ techniques and tools

⋄⋄ in order to analyse and construct

⋄⋄ an artifact.

An Analysis Process Model 92 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

93
4. Conclusion 4.2. What Have We Achieved4.2.2. Methodology

• Clearly Sect. 3 presents a partially instantiated framework for a
formal model of a ‘method’:

⋄⋄ Some principles are

◦◦ abstraction (sorts in preference for concrete types),

◦◦ separation of concerns (tackling endurants before perdurants),

◦◦ commensurate narratives and formalisations,

◦◦ tackling domain analysis

∗ either “top-down”, hierarchically from composite endurants,

∗ or “bottom-up”, compositionally, from atomic endurants,

∗ or in some orderly combination of these;

◦◦ Etcetera.

An Analysis Process Model 93 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

94
4. Conclusion 4.2. What Have We Achieved4.2.2. Methodology

⋄⋄ Some techniques are

◦◦ expressing axioms concerning well-formedness of mereologies
and attribute values;

◦◦ stating (and discharging) proof obligations securing
disjointness of sorts;

◦◦ etcetera.

An Analysis Process Model 94 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

95
4. Conclusion 4.2. What Have We Achieved4.2.2. Methodology

⋄⋄ And some tools are

◦◦ the domain analysis prompts,

◦◦ the domain description prompts and

◦◦ the description language (here RSL [RSL]).

• We claim that we have sketched a formalisation of a method for
domain analysis and description.

An Analysis Process Model 95 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

96
4. Conclusion 4.2. What Have We Achieved4.2.2. Methodology

• What is really new here is, as for domain analysis,

⋄⋄ that the analysis & description process is applied to a domain,

⋄⋄ that is, to our image of that domain,

⋄⋄ something not necessarily computable,

⋄⋄ and that our description therefore
must not reduce the described domain to a computable artefact.

An Analysis Process Model 96 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

97
4. Conclusion 4.3. Future Work

4.3. Future Work

• There remains

⋄⋄ to conclude studies of,

⋄⋄ to document and

⋄⋄ publish

treatments of the following related topics:

⋄⋄ domain analysis of perdurants (actions, events and behaviours
[[]Sect. 5]2013da) — including related domain analysis prompts
and domain description prompts18,

⋄⋄ model(s) of prompts19,

⋄⋄ domain facets, cf. [dines:facs:2008]20, and

⋄⋄ derivation of requirements from domain descriptions, cf.
[dines:ugo65:2008]21. .

18See forthcoming [2013da-perd]
19See forthcoming [2013da-prompts]
20See forthcoming [2013da-facets]
21See forthcoming [2013da-reqs]

An Analysis Process Model 97 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

98
4. Conclusion 4.4. Acknowledgements

4.4. Acknowledgements

An Analysis Process Model 98 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

99
5. Conclusion

5. Pipeline Endurants

• Our example is an abstraction of pipeline system endurants.

⋄⋄ The presentation of the example

◦◦ reflects a rigorous use of the domain analysis & description
method outlined in Sect. 2,

◦◦ but is relaxed with respect to not showing all — one could say
— intermediate analysis steps and description texts,

∗ but following stoichiometry ideas from chemistry

∗ makes a few short-cuts here and there.

◦◦ The use of the “stoichiometrical” reductions,

∗ usually skipping intermediate endurant sorts,

∗ ought properly be justified in each step —

∗ and such is adviced in proper, industry-scale analyses &
descriptions.

An Analysis Process Model 99 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

100
5. Pipeline Endurants

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Figure 1: Oil or gas pipelines

• The description only covers a few aspects of endurants.

An Analysis Process Model 100 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

101
5. Pipeline Endurants

Figure 2: Some oil pipeline system units: pump, pipe, valve

An Analysis Process Model 101 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

102
5. Pipeline Endurants 5.1. Parts

5.1. Parts

70. A pipeline system contains a set of pipeline units and a pipeline
system monitor.

71. The well-formedness of a pipeline system depends on its mereology
and the routing of its pipes.

72. A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a
join, or a sink unit.

73. We consider all these units to be distinguishable, i.e., the set of
wells, the set pipe, etc., the set of sinks, to be disjoint.

An Analysis Process Model 102 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

103
5. Pipeline Endurants 5.1. Parts

type

70. PLS′, U, M
71. PLS = {| pls:PLS′

•wf PLS(pls) |}
value

71. wf PLS: PLS → Bool

71. wf PLS(pls) ≡ wf Mereology(pls) ∧ wf Routes(pls)
70. obs Us: PLS → U-set

70. obs M: PLS → M
type

72. U = We | Pi | Pu | Va | Fo | Jo | Si
73. We :: Well
73. Pi :: Pipe
73. Va :: Valv
73. Fo :: Fork
73. Jo :: Join
73. Si :: Sink

An Analysis Process Model 103 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1045. Pipeline Endurants 5.2. Part Identification and Mereology

5.2. Part Identification and Mereology
5.2.1. Unique Identification

74. Each pipeline unit is uniquely distinguished by its unique unit
identifier.

type

74. UI
value

74. uid UI: U → UI
axiom

74. ∀ pls:PLS,u,u′:U•{u,u′}⊆obs Us(pls)⇒u 6=u′⇒uid UI(u)6=uid UI(u′)

An Analysis Process Model 104 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1055. Pipeline Endurants 5.2. Part Identification and Mereology5.2.2. Unique Identifiers

5.2.2. Unique Identifiers

75. From a pipeline system one can observe the set of all unique unit
identifiers.

value

75. xtr UIs: PLS → UI-set
75. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

76. We can prove that the number of unique unit identifiers of a
pipeline system equals that of the units of that system.

theorem:

76. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

An Analysis Process Model 105 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1065. Pipeline Endurants 5.2. Part Identification and Mereology5.2.3. Mereology

5.2.3. Mereology

77. Each unit is connected to zero, one or two other existing input units and zero,
one or two other existing output units as follows:

a. A well unit is connected to exactly one output unit (and, hence, has no
“input”).

b. A pipe unit is connected to exactly one input unit and one output unit.

c. A pump unit is connected to exactly one input unit and one output unit.

d. A valve is connected to exactly one input unit and one output unit.

e. A fork is connected to exactly one input unit and two distinct output units.

f. A join is connected to exactly two distinct input units and one output unit.

g. A sink is connected to exactly one input unit (and, hence, has no “output”).

An Analysis Process Model 106 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1075. Pipeline Endurants 5.2. Part Identification and Mereology5.2.3. Mereology

type

77. MER = UI-set × UI-set
value

77. mereo U: U → MER
axiom

77. wf Mereology: PLS → Bool

77. wf Mereology(pls) ≡
77. ∀ u:U•u ∈ obs Us(pls)⇒
77. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
77. case (u,(card uius,card ouis)) of

77a.. (mk We(we),(0,1)) → true,
77b.. (mk Pi(pi),(1,1)) → true,
77c.. (mk Pu(pu),(1,1)) → true,
77d.. (mk Va(va),(1,1)) → true,
77e.. (mk Fo(fo),(1,1)) → true,
77f.. (mk Jo(jo),(1,1)) → true,
77g.. (mk Si(si),(1,1)) → true,
77. → false end end

An Analysis Process Model 107 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1085. Pipeline Endurants 5.3. Part Concepts

5.3. Part Concepts

• An aspect of domain analysis & description that was not covered in
Sect. 2 was that of derived concepts.

• Example pipeline concepts are

⋄⋄ routes,

⋄⋄ acyclic or cyclic,

⋄⋄ circular,

etcetera.

• In expressing well-formedness of pipeline systems

• one often has to develop subsidiary concepts such as these

• by means of which well-formedness is then expressed.

An Analysis Process Model 108 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

109
5. Pipeline Endurants 5.3. Part Concepts5.3.1. Pipe Routes

5.3.1. Pipe Routes

78. A route (of a pipeline system) is a sequence of connected units (of
the pipeline system).

79. A route descriptor is a sequence of unit identifiers and the
connected units of a route (of a pipeline system).

type

78. R′ = Uω

78. R = {| r:Route′
•wf Route(r) |}

79. RD = UIω

axiom

79. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

79. descriptor: R → RD
79. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

An Analysis Process Model 109 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1105. Pipeline Endurants 5.3. Part Concepts5.3.1. Pipe Routes

80. Two units are adjacent if the output unit identifiers of one shares a
unique unit identifier with the input identifiers of the other.

value

80. adjacent: U × U → Bool

80. adjacent(u,u′) ≡
80. let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in

80. ouis ∩ iuis 6= {} end

An Analysis Process Model 110 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1115. Pipeline Endurants 5.3. Part Concepts5.3.1. Pipe Routes

81. Given a pipeline system, pls, one can identify the (possibly infinite) set of
(possibly infinite) routes of that pipeline system.

a. The empty sequence, 〈〉, is a route of pls.

b. Let u, u′ be any units of pls, such that an output unit identifier of u is the
same as an input unit identifier of u′ then 〈u, u′〉 is a route of pls.

c. If r and r′ are routes of pls such that the last element of r is the same as the
first element of r′, then r̂tlr′ is a route of pls.

d. No sequence of units is a route unless it follows from a finite (or an infinite)
number of applications of the basis and induction clauses of Items 81a.–81c..

value

81. Routes: PLS → RD-infset

81. Routes(pls) ≡
81a.. let rs = 〈〉 ∪
81b.. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
81c.. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}
81d.. in rs end

An Analysis Process Model 111 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1125. Pipeline Endurants 5.3. Part Concepts5.3.2. Well-formed Routes

5.3.2. Well-formed Routes

82. A route is acyclic if no two route positions reveal the same unique
unit identifier.

value

82. acyclic Route: R → Bool

82. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i 6=j ∧ r[i]=r[j]

An Analysis Process Model 112 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1135. Pipeline Endurants 5.3. Part Concepts5.3.2. Well-formed Routes

83. A pipeline system is well-formed if none of its routes are circular
(and all of its routes embedded in well-to-sink routes).

value

83. wf Routes: PLS → Bool

83. wf Routes(pls) ≡
83. non circular(pls) ∧ are embedded in well to sink Routes(pls)

83. non circular PLS: PLS → Bool

83. non circular PLS(pls) ≡
83. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

An Analysis Process Model 113 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1145. Pipeline Endurants 5.3. Part Concepts5.3.2. Well-formed Routes

84. We define well-formedness in terms of well-to-sink routes, i.e.,
routes which start with a well unit and end with a sink unit.

value

84. well to sink Routes: PLS → R-set

84. well to sink Routes(pls) ≡
84. let rs = Routes(pls) in

84. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

An Analysis Process Model 114 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1155. Pipeline Endurants 5.3. Part Concepts5.3.2. Well-formed Routes

85. A pipeline system is well-formed if all of its routes are embedded in
well-to-sink routes.

85. are embedded in well to sink Routes: PLS → Bool

85. are embedded in well to sink Routes(pls) ≡
85. let wsrs = well to sink Routes(pls) in

85. ∀ r:R • r ∈ Routes(pls) ⇒
85. ∃ r′:R,i,j:Nat •

85. r′ ∈ wsrs
85. ∧ {i,j}⊆inds r′∧i≤j
85. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

An Analysis Process Model 115 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1165. Pipeline Endurants 5.3. Part Concepts5.3.3. Embedded Routes

5.3.3. Embedded Routes

86. For every route we can define the set of all its embedded routes.

value

86. embedded Routes: R → R-set

86. embedded Routes(r) ≡
86. {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

An Analysis Process Model 116 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1175. Pipeline Endurants 5.3. Part Concepts5.3.4. A Theorem

5.3.4. A Theorem

87. The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes

theorem:

87. ∀ pls:PLS •

87. let rs = Routes(pls),
87. wsrs = well to sink Routes(pls) in

87a.. rs =
87b.. wsrs ∪
87c.. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
86. end

An Analysis Process Model 117 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1185. Pipeline Endurants 5.4. Materials

5.4. Materials

88. The only material of concern to pipelines is the gas22 or liquid23

which the pipes transport24.

type

88. GoL
value

88. obs GoL: U → GoL

22Gaseous materials include: air, gas, etc.
23Liquid materials include water, oil, etc.
24The description of this document is relevant only to gas or oil pipelines.

An Analysis Process Model 118 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1195. Pipeline Endurants 5.5. Attributes

5.5. Attributes
5.5.1. Part Attributes

89. These are some attribute types:

a. estimated current well capacity (barrels of oil, etc.),

b. pipe length,

c. current pump height,

d. current valve open/close status and

e. flow (e.g., volume/second).

An Analysis Process Model 119 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1205. Pipeline Endurants 5.5. Attributes5.5.1. Part Attributes

type

89a.. WellCap
89b.. LEN
89c.. Height
89d.. ValSta == open | close
89e.. Flow

90. Flows can be added (also distributively) and subtracted, and

91. flows can be compared.

value

90. ⊕,⊖: Flow×Flow → Flow
90. ⊕: Flow-set → Flow
91. <,≤,=, 6=,≥,>: Flow × Flow → Bool

An Analysis Process Model 120 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1215. Pipeline Endurants 5.5. Attributes5.5.1. Part Attributes

92. Properties of pipeline units include

a. estimated current well capacity (barrels of oil, etc.),

b. pipe length,

c. current pump height,

d. current valve open/close status,

e. current Laminar in-flow at unit input,

f. current Laminar in-flow leak at unit input,

g. maximum Laminar guaranteed in-flow leak at unit input,

h. current Laminar leak unit interior,

i. current Laminar flow in unit interior,

j. maximum Laminar guaranteed flow in unit interior,

k. current Laminar out-flow at unit output,

l. current Laminar out-flow leak at unit output,

m. maximum guaranteed Laminar out-flow leak at unit output.

An Analysis Process Model 121 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

122
5. Pipeline Endurants 5.5. Attributes5.5.1. Part Attributes

value

92a.. attr WellCap: We → WellCap
92b.. attr LEN: Pi → LEN
92c.. attr Height: Pu → Height
92d.. attr ValSta: Va → VaSta
92e.. attr In FlowL: U → UI → Flow
92f.. attr In LeakL: U → UI → Flow
92g.. attr Max In LeakL: U → UI → Flow
92h.. attr body FlowL: U → Flow
92i.. attr body LeakL: U → Flow
92j.. attr Max FlowL: U → Flow
92k.. attr Out FlowL: U → UI → Flow
92l.. attr Out LeakL: U → UI → Flow
92m.. attr Max Out LeakL: U → UI → Flow

An Analysis Process Model 122 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1235. Pipeline Endurants 5.5. Attributes5.5.2. Flow Laws, I

5.5.2. Flow Laws, I

93. “What flows in, flows out !”. For Laminar flows: for any non-well
and non-sink unit the sums of input leaks and in-flows equals the
sums of unit and output leaks and out-flows.

Law:

93. ∀ u:U\We\Si •

93. sum in leaks(u) ⊕ sum in flows(u) =
93. attr body LeakL(u) ⊕
93. sum out leaks(u) ⊕ sum out flows(u)

An Analysis Process Model 123 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1245. Pipeline Endurants 5.5. Attributes5.5.2. Flow Laws, I

value

sum in leaks: U → Flow
sum in leaks(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

sum in flows: U → Flow
sum in flows(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

An Analysis Process Model 124 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

1255. Pipeline Endurants 5.5. Attributes5.5.2. Flow Laws, I

94. “What flows out, flows in !”. For Laminar flows: for any adjacent
pairs of units the output flow at one unit connection equals the
sum of adjacent unit leak and in-flow at that connection.

Law:

94. ∀ u,u′:U•adjacent(u,u′) ⇒
94. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in

94. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

94. attr Out FlowL(u)(uid U(u′)) =
94. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u′)(uid U(u)) end

An Analysis Process Model 125 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 00:00

