
invisible
Bjorner DRAFT May 2013

Domain Analysis: Endurants

An Analysis & Description Process Model

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

DTU∗ Compute†, DK-2800 Kgs. Lyngby, Denmark
E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

May 30, 2013: 19:35

Abstract

We present a summary, Sect. 2, of a rather complex structure of domain analysis &1 de-
scription concepts: techniques and tools. And we link, in Sect. 3, these concepts, embodied
in domain analysis prompts and domain description prompts, in a model of how a diligent
domain analyser cum describer would use them. We claim that both sections, Sects. 2–3
are contributions to a methodology of software engineering. This paper is based on that
of [7].

Contents

1 Introduction 4
1.1 A Preamble . 4

1.2 Proper Introduction . 4

2 A Summary of The TripTychTripTych@TripTych Domain Analysis Approach 5
2.1 Hierarchical versus Compositional Analysis & Description . 5

2.2 Domains . 5

2.3 Sorts, Types and Domain Analysis . 5

2.4 Entities and Qualities . 5

2.4.1 Entities . 5

2.4.2 Qualities . 6

2.5 Endurants and Perdurants . 6

2.5.1 Endurants . 6

2.5.2 Perdurants . 6

2.6 Discrete and Continuous Endurants . 6

2.6.1 Discrete Endurants . 6

2.6.2 Continuous Endurants . 7

2.7 Discrete and Continuous Perdurants . 7

2.8 Atomic and Composite Discrete Endurants . 7

2.8.1 Atomic Endurants . 7

2.8.2 Composite Endurants . 7

2.9 Part Observers . 7

2.9.1 Composite Sorts . 8

2.9.2 Sort Models . 8

∗DTU: Technical University of Denmark
†The former DTU Informatics was renamed, by Jan.1, 2013, into DTU Compute. It now consists of

the former Departments of Mathematics, Computer Science & Engineering and Mathematical Modeling (i.a.,
Applied Math.). Its English long name is: Department of Mathematics and Computer Science.

1We use the empersand ‘&’ between two terms a and b to emphasize that the term a&b is one.

1

invisible
Bjorner DRAFT May 2013

2 Domain Analysis: Endurants

2.10 Material Observers . 8

2.11 Endurant Properties . 9

2.11.1 External and Internal Qualities . 9

2.12 Unique Identifiers . 9

2.13 Mereology . 9

2.14 Attributes . 10

2.14.1 Shared Attributes . 10

2.15 Discussion . 10

3 A Prompt & Description ‘Method’ 10

3.1 A Summary of Prompts . 10

3.2 Preliminaries . 11

3.3 Initialising the Domain Analysis & Description Process . 11

3.4 A Domain Analysis & Description State . 11

3.5 Analysis & Description of Endurants . 12

3.5.1 Analysis & Description of Part Sorts . 13

3.5.2 Analysis & Description of Part Materials . 14

3.5.3 Analysis & Description of Material Parts . 15

3.5.4 Analysis & Description of Composite Endurants . 15

3.5.5 Analysis & Description of Concrete Sort Types . 15

3.5.6 Analysis & Description of Abstract Sorts . 17

3.5.7 Analysis & Description of Unique Identifiers . 17

3.5.8 Analysis & Description of Mereologies . 17

3.5.9 Analysis & Description of Part Attributes . 18

3.6 Discussion of The Model . 18

3.6.1 Termination . 18

3.6.2 Axioms and Proof Obligations . 18

3.6.3 Order of Analysis & Description: A Meaning of ‘⊕’ . 19

3.6.4 Laws of Description Prompts . 19

4 Conclusion 19

4.1 Comparison to Other Work . 19

4.1.1 Domain Analysis . 19

4.1.2 Methodology . 20

4.2 What Have We Achieved . 20

4.2.1 Domain Analysis . 20

4.2.2 Methodology . 20

4.3 Future Work . 20

4.4 Acknowledgements . 21

5 Bibliography 21

5.1 Bibliographical Notes . 21

5.2 References . 21

A Pipeline Endurants 22

A.1 Parts . 22

A.2 Part Identification and Mereology . 24

A.2.1 Unique Identification . 24

A.2.2 Unique Identifiers . 24

A.2.3 Mereology . 24

A.3 Part Concepts . 25

A.3.1 Pipe Routes . 25

A.3.2 Well-formed Routes . 26

A.3.3 Embedded Routes . 27

A.3.4 A Theorem . 27

A.4 Materials . 28

A.5 Attributes . 28

A.5.1 Part Attributes . 28

A.5.2 Flow Laws, I . 29

B Indexes 30

B.1 Index of Definitions . 30

B.2 Index of Concepts . 33

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 2Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 3

1 Introduction

1.1 A Preamble

We bring the introductory lines from a recent four page position statement of Don Batory2:
Why (Meta-)Theories of Automated Software Design Are Essential: A Personal Perspective, for
the SEMAT workshop on a General Theory of Software Engineering, San Francisco, May 26,
2013, http://semat.org/?page id=632:

“Consider the first two definitions of ‘science’ from dictionary.com:

1. a branch of knowledge or study dealing with a body of facts or truths system-
atically arranged and showing the operation of general laws: the mathematical
sciences.

2. systematic knowledge of the physical or material world gained through observa-
tion and experimentation.

The dominant paradigm today in Software Engineering (SE) is for referees to insist on
a rigorous hypothesis evaluation of a proposed technique. A set of tests (observations)
must be conducted by an author and a careful analysis of one or more hypotheses must
be presented. This is the scientific method. It closely matches Definition 2 and the
intended use of experimental methods in SE. To me, these are ‘pre-theory’ activities.

To put this into perspective, a colleague once told me: “Empirical studies helped
design spacecraft, but it was the theory of gravity that took us to the moon”. Theories
are the big ideas in science, not empirical studies. Empirical studies help shape and
determine the validity of laws. There are examples of Definition 1 in SE, although
most software engineers would never recognize them as such.”

I wish to take Don Batory’s lines as also mine !
Please keep that in mind should you read this paper further.

1.2 Proper Introduction

Before software can be designed we must have a reasonably good grasp of its requirements.
Before requirements can be prescribed we must have a reasonably good grasp of the domain
in which the software is to reside. So we turn to domain analysis & description as a means to
obtain and record that ‘grasp’. In this paper we summarise an approach to domain analysis
& description recorded in more detail in [7]. Thus this paper is based on [7]. This paper is
one in a series of papers on domain science & engineering. In [3] we present techniques related
to the analysis and description of domain facets. In [1] we investigate some research issues of
domain science. And in [2] we show how to systematically “transform” domain descriptions into
requirements prescriptions. The paper [9] examines possible contributions of domain science &
engineering th computation for the humanities. It is expected that the present paper may be
followed by respective (“spin-off”) papers on Perdurants [8], A Formal Model of Prompts [5],
Domain Facets (cf. [3]) [6], and On Deriving Requirements From Domain Descriptions (cf.
[2]) [10]. The structure of this paper is as follows: First, Sect. 2 we present a terse summary

2Department of Computer Science, University of Texas at Austin, Austin, Texas, USA, ba-
tory@cs.utexas.edu

Domain Analysis: Endurants — Domain Analysis: Endurants 3 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

4 Domain Analysis: Endurants

of a system of domain analysis & description concepts focused on endurants. This summary
is rather terse, and is a “tour de force”. Section 2 is one of the two main sections of this
paper. Section 3 suggest a formal-looking model of the structure of domain analysis prompts
and domain description prompts introduced in Sect. 2. It is not a formalisation of domains,
but of the domain analysis & description process. Domains are usually not computationally
tractable. Less so is the domain analysis & description processes. Finally, Sect. 4 concludes
this paper. An appendix, AppendixA, presents a domain description of a [class of] pipeline

systems. Some seminars over the underlying paper may start by a brief presentation of this
model. The reader is invited to browse this pipeline system model before, during and/or after
reading Sects. 2–3.

2 A Summary of The TripTych Domain Analysis Approach

2.1 Hierarchical versus Compositional Analysis & Description

In this paper we choose, what we shall call, a ‘hierarchical analysis’ approach which is was
based on decomposing an understanding of a domain from the “overall domain” into its
components, and these, if not atomic, into their subcomponents •. In contrast we could have
chosen a ‘compositional analysis’ approach which starts with an understanding of a domain
from its atomic endurants and composes these into composite ones, finally ending up with an
“overall domain” description •.

2.2 Domains

A ‘domain’ is characterised by its observable, i.e., manifest entities and their qualities •. 3

Example 1. Domains: a road net, a container line, a pipeline, a hospital . 4

2.3 Sorts, Types and Domain Analysis

By a ‘sort’ (or ‘type’ which we take to be the same) we shall understand the largest set of
entities all of which have the same qualities5 •. Example 2. Sorts: Links of any road net form
a sort. So does hubs. The largest set of (well-formed) collections of links form a sort. So does
similar collections of hubs. The largest set of road nets (containing well-formed collections of
hubs and links) form a sort .

By ‘domain analysis’ we shall understand a process whereby a domain analyser groups
entities of a domain into sorts (and types) •. The rest of this paper will outline a class of
domain analysis principles, techniques and tools.

2.4 Entities and Qualities

2.4.1 Entities

By an ‘entity’ we shall understand a phenomenon that can be observed, i.e., be seen or touched
by humans, or that can be conceived as an abstraction of an entity •. The method can thus be

3Definitions start with a single quoted ‘term’ and conclude with a •.
4Examples conclude with a .
5Taking a sort (type) to be the largest set of entities all of which have the same qualities reflects Ganter &

Wille’s notion of a ‘formal concept’ [11].

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 4Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 5

said to provide the domain analysis prompt: is entity where is entity(θ) holds if θ is an
entity. Example 3. Entities: (a) a road net, (b) a link6 of a road net, (c) a hub7 of a road net;
and (d) insertion of a link in a road net, (e) disappearance of a link of a road net, and (f) the
movement of a vehicle on a road net .

2.4.2 Qualities

By a ‘quality’ of an entity we shall understand a property that can be given a name and
precisely measured by physical instruments or otherwise identified •. Example 4. Quality
Names: cadestral location of a hub, hub state8, hub state space9, etcetera . Example 5.
Quality Values: the name of a road net, the ownership of a road net, the length of a link, the
location of a hub, etcetera .

2.5 Endurants and Perdurants

Entities are either endurants or are perdurants.

2.5.1 Endurants

By an ‘endurant entity’ (or just, an endurant) we shall understand that can be observed
or conceived, as a “complete thing”, at no matter which given snapshot of time. Were we
to “freeze” time we would still be able to observe the entire endurant •. Thus the method
provides a domain analysis prompt: is endurant where is endurant(e) holds if entity e is an
endurant. Example 6. Endurants: Items (a–b–c) of Example 2.4.1 are endurants; so are the
pipes, valves, and pumps of a pipeline.

2.5.2 Perdurants

By a ‘perdurant entity’ (or just, an perdurant) we shall understand for which only a fragment
exists if we look at or touch them at any given snapshot in time, that is, where we to freeze
time we would only see or touch a fragment of the perdurant •. Thus the method provides a
domain analysis prompt: is perdurant where is perdurant(e) holds if entity e is a perdurant.
Example 7. Perdurants: Items (d–e–f) of Example 2.4.1 are perdurants; so are the insertion
of a hub, removal of a link, etcetera .

2.6 Discrete and Continuous Endurants

Entities are either discrete or are continuous.

2.6.1 Discrete Endurants

By a ‘discrete endurant’ we shall understand something which is separate or distinct in form
or concept, consisting of distinct or separate parts •. We use the term ‘part’ for discrete en-
durants, that is: is part(p)≡is endurant(p)∧is discrete(p)•. Thus the method provides
a domain analysis prompt: is discrete where is discrete(e) holds if entity e is discrete.

6A link: a street segment between two adjacent hubs
7A hub: an intersection of street segments
8From which links can one reach which links at a given time.
9Set of all hub states over time.

Domain Analysis: Endurants — Domain Analysis: Endurants 5 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

6 Domain Analysis: Endurants

Example 8. Discrete Endurants: The examples of Example 2.5.1 on the facing page are all
discrete endurants .

2.6.2 Continuous Endurants

By a ‘continuous endurant’ we shall understand something which is prolonged without
interruption, in an unbroken series or pattern •. We use the term ‘material’ for continuous
endurants •. Thus the method provides a domain analysis prompt: is continuous where is -

continuous(e) holds if entity e is continuous. Example 9. Continuous Endurants: The pipes,
valves, pumps, etc., of Example 2.5.1 on the preceding page may contain oil; water of a hydro
electric power plant is also a material (i.e., a continuous endurant) .

2.7 Discrete and Continuous Perdurants

We are not covering perdurants in this paper.

2.8 Atomic and Composite Discrete Endurants

Discrete endurants are either atomic or are composite.

2.8.1 Atomic Endurants

By an ‘atomic endurant’ we shall understand a discrete endurant which in a given context,
is deemed to not consist of meaningful, separately observable proper sub-parts •. The method
can thus be said to provide the domain analysis prompt: is atomic where is atomic(p)

holds if p is an atomic part. Example 10. Atomic Parts: Examples of atomic parts of the
above mentioned domains are: aircraft (of air traffic), demand/deposit accounts (of banks),
containers (of container lines), documents (of document systems), hubs, links and vehicles
(of road traffic), patients, medical staff and beds (of hospitals), pipes, valves and pumps (of
pipeline systems), and rail units and locomotives (of railway systems) .

2.8.2 Composite Endurants

By a ‘composite endurant’ we shall understand a discrete endurant which in a given context,
is deemed to indeed consist of meaningful, separately observable proper sub-parts •. The
method can thus be said to provide the domain analysis prompt: is composite where is -

composite(p) holds if p is an a composite part. Example 11. Composite Parts: Examples of
atomic parts of the above mentioned domains are: airports and air lanes (of air traffic), banks
(of a financial service industry), container vessels (of container lines), dossiers of documents (of
document systems), routes (of road nets), medical wards (of hospitals), pipelines (of pipeline
systems), and trains, rail lines and train stations (of railway systems) .

2.9 Part Observers

From atomic parts we cannot observe any sub-parts. But from composite parts we can.

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 6Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 7

2.9.1 Composite Sorts

For composite parts, p, the domain description prompt observe parts(p) yields some formal
description text according to the followig schema: type P1, P2, ..., Pn; value obs P1: P→P1,
obs P2: P→P2,...,obs Pn: P→Pn; where sorts P1, P2, ..., Pn must be disjoint. A proof
obligation may need be discharged to secure disjointness.

2.9.2 Sort Models

A part sort is an abstract type. Some part sorts, Ps, may have a concrete type model. Here
we consider only two such models: one model is as sets of parts of sort Ps. the other model
has parts being of either of two or more alternative, disjoint sorts. The domain analysis
prompt: has concrete type(p) holds if part p has a concrete type. In this case the domain
description prompt observe concrete type(p) yields some formal description text according to
the followig schema, either type A, B, ..., C, T = E(A,B,...,C); value obs T: P → T; where
A,B,...,C are either (new) part sorts or are auxiliary (abstract or concrete) types10; or: type T
= P1|P2|...|PN, P1,P2,...,Pn, P1::mkP1(s p:P1),P2::mkP1(s p:P2),...,PN::mkP1(s p:Pn);
value obs T: P→T;

2.10 Material Observers

Some parts p of sort P may contain material. The domain analysis prompt has material(p)
holds if composite part p contains one or more materials. The domain description prompt ob-
serve material sorts(p) yields some formal description text according to the followig schema:
type M1, M2, ..., Mm; value obs M1: P → M1, obs M2: P → M2, ..., obs Mm: P →
Mm; where values, mi, of type Mi satisfy is material(m) for all i; and where M1, M2, ...,
Mm must be disjoint sorts. Example 12. Part Materials: The pipeline parts p pipes, valves,
pumps, etc., contains some either liquid material, say crude oil. or gaseous material, say
natural gas .

Some material m of sort M may contain parts. The domain analysis prompt has parts(m)
holds if material m contains one or more parts. The domain description prompt observe -

part sorts(m) yields some formal description text according to the followig schema: type

P1, P2, ..., Pn; value obs P1: M→P1, obs P2: M→P2,...,obs Pm: M→Pm; where values,
pi, of type Pi satisfy is part(pi) for all i; and where P1, P2, ..., Pn must be disjoint sorts.
Example 13. Material and Part Relations: A global transport system can, for example, be
described as primarily containing navigable waters, land areas and air — as three major
collections of parts. Navigable waters contain a number of “neighbouring” oceans, channels,
canals, rivers and lakes reachable by canals or rivers from other navigable waters (all of which
are parts). The part sorts of navigable waters has water materials. All water materials has
(zero or more) parts such as vessels and sea-ports. Land areas contain continents, some of
which are neighbouring (parts), while some are isolated (that is, being islands not “border–
”connected to other continents). Some land areas contain harbour. Harbours and seaports
are overlapping parts sharing many attributes. And harbours and seaports are connected to
road and rail nets. Etcetera, etcetera . The above example, Example 2.10, help motivate the
concept of mereology (see below).

10The domain analysis prompt: sorts of(t) yields a subset of {A,B,...,C}.

Domain Analysis: Endurants — Domain Analysis: Endurants 7 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

8 Domain Analysis: Endurants

2.11 Endurant Properties

2.11.1 External and Internal Qualities

We have already, above, treated the following properties of endurants: is discrete, is continuous,
is atomic, is composite and has material. We may think of those properties as external
qualities. In contrast we may consider the following internal qualities: has unique identifier

(parts), has mereology (parts) and has attributes (parts and materials).

2.12 Unique Identifiers

Without loss of generality we can assume that every part has a unique identifier11. A
‘unique part identifier’ (or just unique identifier) is a further undefined, abstract quantity.
If two parts are claimed to have the same unique identifier then they are identical, that is,
their possible mereology and attributes are (also) identical •. The domain description prompt:
observe unique identifier(p) yields some formal description text according to the followig
schema: type PI; value uid P: P → PI; Example 14. Unique Identifiers: A road net consists
of a set of hubs and a set of links. Hubs and links have unique identifiers. That is: type HI,
LI; value uid H: H→HI, uid L: L→LI; .

2.13 Mereology

By ‘mereology’ [13] we shall understand the study, knowledge and practice of parts, their
relations to other parts and “the whole” •.

Part relations are such as: two or more parts being connected, one part being embed-
ded within another part, and two or more parts sharing (other) attributes. Example 15.
Mereology: The mereology of a link of a road net is the set of the two unique identifiers
of exactly two hubs to which the link is connected. The mereology of a hub of a road net
is the set of zero or more unique identifiers of the links to which the hub is connected .
The domain analysis prompt: has mereology(p) holds if the part p is related to some others
parts (pa, pb, . . . , pc). The domain description prompt: observe mereology(p) can then be
invoked and yields some formal description text according to the followig schema: type MT
= E(PIA,PIB,...,PIC); value mereo P: P → MT; where E(...) is some type expression over
unique identifier types of one or more part sorts. Mereologies are expressed in terms of struc-
tures of unique part identifiers. Usually mereologies are constrained. Constraints express
that a mereology’s unique part identifiers must indeed reference existing parts, but also that
these mereology identifiers “define” a proper structuring of parts. Example 16. Mereology
Constraints: We continue our line of examples of road net endurants, cf. Example 2.4.1 on
Page 6 but now a bit more systematically: A road net, n:N, contains a pair, (HS,LS), of sets
Hs of hubs h:H and sets Ls of links. The mereology of links must identify exactly two hubs
of the road net, the mereology of hubs must identify links of the road net, so connected hubs
and links must have commensurate mereologies . Two parts, pi:Pi and pj:Pj , of possibly
the same sort (i.e., Pi≡Pj) are said to ‘refer one to another’ if the mereology of pi contains
the unique identifier of pj and vice-versa •. The parts pi and pj are then said to enjoy ‘part
overlap’ •. We refer to the concept of shared attributes covered at the very end of this section.

11That is, has unique identifier(p) for all parts p.

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 8Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 9

2.14 Attributes

Attributes are what really endows parts with qualities. The external properties12 are far from
enough to distinguish one sort of parts from another. Similarly with unique identifiers and
the mereology of parts. We therefore assume, without loss of generality, that every part,
whether discrete or continuous, whether, when discrete, atomic or composite, has at least one
attributes.

By a ‘part attribute’, or just an ‘attribute’, we shall understand a property that is associ-
ated with a part p of sort P , and if removed from part p, that part would no longer be part p

but may be a part of some other sort P ′; and where that property itself has no physical extent
(i.e., volume), as the part may have, but may be measurable by physical means •. Example 17.
Attributes: Some attributes of road net hubs are location, hub state13, hub state space14, and
of road net links are location, length, link state15, link state space16, etcetera . The domain
description prompt observe attributes(p) yields some formal description text according to the
followig schema: type A1, A2, ..., An, ATTR; value attr A1:P→A1, attr A2:P→A2, ...,
attr An:P→An, attr ATTR:P→ATTR; where for ∀ p:P, attr Ai(attr ATTR(p)) ≡ attr Ai(p).

2.14.1 Shared Attributes

A final quality of endurant entities is that they may share attributes. Two parts, pi:Pi, pj :Pj ,
of different sorts are said to enjoy ‘shared attributes’ if Pi and Pj have at least one attribute
name in common •. In such cases the mereologies of pi and pj are expected to refer to one
another, i.e., be ‘commensurable’.

2.15 Discussion

We have left out any coverage of perdurant entities. For the time we refer to Sect. 5 of [7],
hoping to further develop that section’s understanding into a forthcoming study [8].

3 A Prompt & Description ‘Method’

3.1 A Summary of Prompts

In the previous section we outlined two classes of prompts: the domain analysis prompts:

attribute names [XII], 16
has concrete type [XI], 10
has materials [XIV], 25
has mereology [XIII], 22
is atomic [VIII], 7
is composite [IX], 7
is continuous [V], 6

is discrete [IV], 6
is endurant [II], 6
is entity [I], 5
is material [VII], 7
is part [VI], 7
is perdurant [III], 6
observe parts [X], 8

and the domain description prompts:

12
is discrete, is continuous, is atomic, is composite and has material.

13Hub state: a set of pairs of unique identifiers of actually connected links.
14Hub state space: a set of hub states that a hub states may range over.
15Link state: a set of pairs of unique identifiers of actually connected hubs.
16Link state space: a set of link states that a link state may range over.

Domain Analysis: Endurants — Domain Analysis: Endurants 9 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

10 Domain Analysis: Endurants

observe attributes [4], 16
observe material sorts [6], 25
observe mereology [5], 22

observe part sorts [1], 8
observe part type [2], 10
observe unique identifier [3], 14

These prompts are imposed upon the domain analyser cum describer. They are “figuratively”
applied to the domain. Their orderly, sequenced application follows the method hinted at in
the previous section and expressed in a pseudo-formal notation in this section. The notation
looks formal but since we have not formalised these prompts it is only pseudo-formal. In [5]
we shall formalise these prompts.

3.2 Preliminaries

Let P be a sort, that is, a collection of endurants. By ηP we shall understand a syntactic
quantity: the name of P. By ιp:P we shall understand the semantic quantity: an (arbitrarily
selected) endurant in P. And by η−1ηP we shall understand P. To guide our analysis &
description process we decompose it into steps. Each step “handles” a sort p:P or a material
m:M. Steps handling discovery of composite sorts generates a set of sort names ηP1, ηP2, . . . ,
ηPn and ηM1, ηM2, . . . , ηMn. These are put in a reservoir for sorts to be inspected. The
handled sort ηP or ηM is removed from that reservoir. Handling of material sorts concerns
only their attributes. Each domain description prompt results in domain specification text
(here we show only the formal texts) being deposited in the domain description reservoir, a
global variable τ . The clause: domain description prompt(p) : τ := τ ⊕ [”text ; ”] means
that the formal text ”text ; ” is joined to the global variable τ where that ”text ; ” is prompted
by domain description prompt(p). The meaning of ⊕ will be discussed at the end of this
section.

3.3 Initialising the Domain Analysis & Description Process

We remind the reader that we are dealing only with endurant domain entities. The domain
analysis approach covered in Sect. 2 was based on decomposing an understanding of a domain
from the “overall domain” into its components, and these, if not atomic, into their subcom-
ponents. So we need to initialise the domain analysis & description by selecting (or choosing)
the domain ∆.

Here is how we think of that “initialisation” process. The domain analyser[s] & describer[s]
spends some time focusing on the domain, maybe at the “white board”17, rambling, perhaps
in an un-structured manner, across its domain, ∆, and its sub domains. Informally jotting
down more-or-less final sort names, building, in the domain analysers’ & describers’ mind
an image of that domain. After some time doing this the domain analyser[s] & describer[s]
is/are ready. An image of the domain in the form of “a domain” endurant, δ:∆. Those are
the quantities, η∆ (name of ∆) [Item 1] and ιp:P (for (δ:∆)) [Item 8 on the following page],
referred to below.

Thus this initialisation process is truly a creative one.

3.4 A Domain Analysis & Description State

1. A global variable αps will accumulate all the sort names being discovered.

17Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow “post-it” stickers, or it
could be an electronic conference “gadget”.

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 10Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 11

2. A global variable νps will hold names of sorts yet to be analysed and described.

3. A global variable τ will hold the (so far) generated (in this case only) formal domain
description text.

variable

1. αps := [η∆] ηP-set or ηP∗

2. νps := [η∆] (ηP|ηM)-set or (ηP|ηM)∗

3. τ := [] Text-set or Text∗

We shall explain the use of [...]s and the operations of \ and ⊕ on the above variables in
Sect. 3.6.3 on Page 19.

3.5 Analysis & Description of Endurants

4. To analyse and describe endurants means to first

5. examine those endurant which have yet to be so analysed and described

6. by selecting (and removing from νps) a yet unexamined sort (by name);

7. then analyse and describe an endurant entity (ιp:P) of that sort — this analysis, when
applied to composite parts, leads to the insertion of zero18 or more sort names19;

8. then to analyse and describe the mereology of each part sort,

9. and finally to analyse and describe the attributes of each sort.

value

4. analyse and describe endurants: Unit → Unit

4. analyse and describe endurants() ≡
5. while ∼is empty(νps) do

6. let ηS = select and remove ηS() in

7. analyse and describe endurant sort(ιs:S) end end ;
8. for all ηP • ηP ∈ αps do analyse and describe mereology(ιp:P) end

9. for all ηP • ηP ∈ αps do analyse and describe attributes(ιp:P) end

The ι of Items 7, 8 and 9 are crucial. The domain analyser is focused on sort S (and P)
and is “directed” (by those items) to choose (select) an endurant ιs (ιp) of that sort. The
ability of the domain analyser to find such an entity is a measure of that person’s professional
creativity.

As was indicated in Sect. 2, the mereology of a part may involve unique identifiers of
any part sort, hence must be done after all such part sort unique identifiers have been iden-
tified. Similarly for attributes which also may involve unique identifiers Each iteration of
analyse and describe endurant sort(ιp:P) involves the selection of a sort (by name) (which is
that of either a part sort or a material sort) with this sort name then being removed.

18If the sub-parts of p are all either atomic or already analysed, then no new sort names are added to the
repository νps).

19These new sort names are then “picked-up” for sort analysis &c. in a next iteration of the while loop.

Domain Analysis: Endurants — Domain Analysis: Endurants 11 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

12 Domain Analysis: Endurants

10. The selection occurs from the global state (hence: ()) and changes that (hence Unit).

11. The affected global state component is that of the reservoir, νps.

value

10. select and remove ηS: Unit → ηP
10. select and remove ηS() ≡
11. let ηS • ηS ∈ νps in νps := νps \ {ηS} ; ηS end

The analysis and description of all sorts also performs an analysis and description of their
possible unique identifiers (if part sorts) and attributes. The analysis and description of
sort mereologies potentially requires the unique identifiers of any set of sorts. Therefore the
analysis and description of sort mereologies follows that of analysis and description of all
sorts.

12. To analyse and describe an endurant

13. is to find out whether it is a part.

14. If so then it is to analyse and describe it as a part,

15. else it is to analyse and describe it as a material.

12. analyse and describe endurant sort: (P|M) → Unit

12. analyse and describe endurant sort(e:(P|M)) ≡
13. if is part(e)
13. assert: is part(e) ≡ is endurant(e)∧is discrete(e)
14. then analyse and describe part sort(e:P)
15. else analyse and describe material parts(e:M)
12. end

3.5.1 Analysis & Description of Part Sorts

16. The analysis and description of a part sort

17. is based on there being a set, ps, of parts20 to analyse —

18. of which an archetypal one, p′, is arbitrarily selected.

19. analyse and describe part p′

16. analyse and describe part sort: P → Unit

16. analyse and describe part sort(p:P) ≡
17. let ps = observe parts(p) in

18. let p′:P • p′ ∈ ps in

19. analyse and describe part(p′)
16. end end

20We can assume that there is at least one element of that set. For the case that the sort being analysed is
a domain ∆, say “The Transport Domain”, p

′ is some representative “transport domain” δ. Similarly for any
other sort for which ps is now one of the sorts of δ.

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 12Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 13

20. The analysis (&c.) of a part

21. first analyses and describes its unique identifiers.

22. If atomic

23. and

24. if the part embodies materials,

25. we analyse and describe these.

26. If not atomic then the part is composite

27. and is analysed and described as such.

20. analyse and describe part: P → Unit

20. analyse and describe part(p) ≡
21. analyse and describe unique identifier(p) ;
22. if is atomic(p)
23. then

24. if has materials(p)
25. then analyse and describe part materials(p) end

26. else assert: is composite(p)
27. analyse and describe composite endurant(p) end

20. pre: is discrete(p)

We do not associate materials with composite parts.

3.5.2 Analysis & Description of Part Materials

28. The analysis and description of the material part sorts, one or more, of atomic parts p
of sort P containing such materials,

29. simply observes the material sorts of p,

30. that is generates the one or more continuous endurants

31. and the corresponding observer function text.

32. The reservoir of sorts to be inspected is augmented by the material sorts — except if
already previously entered (the \ αps clause).

28. analyse and describe part materials: P → Unit

28. analyse and describe part materials(p) ≡
29. observe material sorts(p) :
30. τ := τ ⊕ [”type M1,M2,...,Mm;
31. value obs M1:P→M1,obs M2:P→M2,...,obs Mm:P→Mm;”]
32. νps := νps ⊕ ([M1,M2,...,Mm] \ αps)
28. pre: has materials(p)

Domain Analysis: Endurants — Domain Analysis: Endurants 13 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

14 Domain Analysis: Endurants

3.5.3 Analysis & Description of Material Parts

33. To analyse and describe materials, m, i.e., continuous endurants,

34. is only necessary if m has parts.

35. Then we observe the sorts of these parts.

36. The identified part sort names update both name reservoirs.

33. analyse and describe material parts: M → Unit

33. analyse and describe material parts(m:M) ≡
34. if has parts(m)
35. then observe part sorts(m):
35. τ := τ ⊕ [” type P1,P2,...,PN ;
35. value obs Pi: M→Pi i:{1..N};”]
36. ‖ νps := νps ⊕ ([ηP1,ηP2,...,ηPN]\ αps)
36. ‖ αps := αps ⊕ [ηP1,ηP2,...,ηPN]
33. end

33. assert: is continuous(m)

3.5.4 Analysis & Description of Composite Endurants

37. To analyse and describe a composite endurant of sort P

38. is to (we choose first) to analyse and describe the unique identifier of that composite
endurant,

39. then to analyse and describe the sort. If the sort has a concrete type

40. then we analyse and describe that concrete sort type

41. else we analyse and describe the abstract sort.

37. analyse and describe composite endurant: P → Unit

37. analyse and describe composite endurant(p) ≡
38. analyse and describe unique identifier(p) ;
39. if has concrete type(p)
40. then analyse and describe concrete sort(p)
41. else analyse and describe abstract sort(p)
39. end

3.5.5 Analysis & Description of Concrete Sort Types

42. The concrete sort type being analysed and described is

43. either

44. expressible by some compound type expression

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 14Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 15

43. or is

45. expressible by some alternative type expression.

42. analyse and describe concrete sort: P → Unit

42. analyse and describe concrete sort(p:P) ≡
44. analyse and describe concrete compound type(p)
43. ⌈⌉
45. analyse and describe concrete alternative type(p)
42. pre: has concrete type(p)

46. The concrete compound sort type

47. is expressible by some simple type expression, T=E(Q,R,...,S) over either concrete types
or existing or new sorts Q, R, ..., S.

48. The emerging sort types are identified

49. and assigned to both νps

50. and αps.

44. analyse and describe concrete compound type: P → Unit

44. analyse and describe concrete compound type(p:P) ≡
46. observe part type(p):
46. τ := τ ⊕ [”type Q,R,..,S, T = E(Q,R,...,S);
46. value obs T: P → T ;”] ;
47. let {Pa,Pb,...,Pc} = sorts of({Q,R,...,S})
48. assert: {Pa,Pb,...,Pc} ⊆ {Q,R,...,S} in

49. νps := νps ⊕ [ηPa, ηPb, ..., ηPc] ‖
50. αps := αps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) end

44. pre: has concrete type(p)

51. The concrete alternative sort type expression

52. is expressible by an alternative type expression T=P1|P2|...|PN where each of the alter-
native types is made disjoint wrt. existing types by means of the description language
Pi::mkPi(su:Pi) construction.

53. The emerging sort types are identified and assigned

54. to both νps

55. and αps.

45. analyse and describe concrete alternative type: P → Unit

45. analyse and describe concrete alternative type(p:P) ≡
51. observe part type(p):
52. τ := τ ⊕ [”type T=P1 | P2 | ... | PN, Pi::mkPi(s u:Pi) (1≤i≤N);

Domain Analysis: Endurants — Domain Analysis: Endurants 15 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

16 Domain Analysis: Endurants

52. value obs T: P→T ;”] ;
53. let {Pa,Pb,...,Pc} = sorts of({Pi|1≤i≤n})
53. assert: {Pa,Pb,...,Pc} ⊆ {Pi|1≤i≤n} in

54. νps := νps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) ‖
55. αps := αps ⊕ [ηPa, ηPb, ..., ηPc] end

42. pre: has concrete type(p)

3.5.6 Analysis & Description of Abstract Sorts

56. To analyse and describe an abstract sort

57. amounts to observe part sorts and to

58. update the sort name repositories.

56. analyse and describe abstract sort: P → Unit

56. analyse and describe abstract sort(p:P) ≡
57. observe part sorts(p):
57. τ := τ ⊕ [”type P1, P2, ..., Pn;
57. value obs Pi:P→Pi (0≤i≤n);”]
58. ‖ νps := νps ⊕ ([ηP1, ηP2, ..., ηPn] \ αps)
58. ‖ αps := αps ⊕ [ηP1, ηP2, ..., ηPn]

3.5.7 Analysis & Description of Unique Identifiers

59. To analyse and describe the unique identifier of parts of sort P is

60. to observe the unique identifier of parts of sort P

61. where we assume that all parts have unique identifiers.

59. analyse and describe unique identifier: P → Unit

59. analyse and describe unique identifier(p) ≡
60. observe unique identifier(p):
60. τ := τ ⊕ [”type PI; value uid P:P→PI;”]
61. assert: has unique identifier(p)

3.5.8 Analysis & Description of Mereologies

62. To analyse and describe a part mereology

63. if it has one

64. amounts to observe that mereology

65. and otherwise do nothing.

66. The analysed quantity must be a part.

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 16Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 17

62. analyse and describe mereology: P → Unit

62. analyse and describe mereology(p) ≡
63. if has mereology(p)
64. then observe mereology(p) :
64. τ := τ ⊕ ”type MT = E(PIa,PIb,...,PIc) ;
64. value mereo P: P→MT ;”
65. else skip end

62. pre: is part(p)

3.5.9 Analysis & Description of Part Attributes

67. To analyse and describe the attributes of parts of sort P is

68. to observe the attributes of parts of sort P

69. where we assume that all parts have attributes.

67. analyse and describe part attributes: P → Unit

67. analyse and describe part attributes(p) ≡
68. observe attributes(p):
68. τ := τ ⊕ [”type A1, A2,..., Am ;
68. value attr A1:P→A1,attr A2:P→A2,...,attr Am:P→Am;”]
69. assert: has attributes(p)

3.6 Discussion of The Model

The above model lacks a formal understanding of the individual prompts as listed in Sect. 3.1;
such an understanding is attempted in [5].

3.6.1 Termination

The sort name reservoir νps is “reduced” by one name in each iteration of the while loop
of the analyse and describe endurants, cf. Item 6 on Page 12, and is augmented by new part
and material sort names in some iterations of that loop, cf. formula Items 32 on Page 14, 36
on Page 15, 49 on Page 16, 54 on Page 16 and 49 on Page 16. It remains to prove that the
analysis & description process terminates.

3.6.2 Axioms and Proof Obligations

We have omitted from the above (and also in Sect. 2) treatment of axioms concerning well-
formedness of parts, materials and attributes and proof obligations concerning disjointness
of observed part and material sorts and attribute types. A more proper treatment would
entail adding a line of proof obligation text right after Item lines 65 on the preceding page
and 68. and of axiom text right after Item lines 31 (Page 14), 35 (Page 15), 46 (Page 16), 48
(Page 16), 60 (Page 17) and 68 (Page 18). No axiom is needed in connection with Item line 52
on Page 16.

[7] covers axioms and proof obligations in some detail.

Domain Analysis: Endurants — Domain Analysis: Endurants 17 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

18 Domain Analysis: Endurants

3.6.3 Order of Analysis & Description: A Meaning of ‘⊕’

The variables αps, νps and τ are defined to hold either sets or lists. The operator ⊕ can be
thought of as either set union (∪ and [,]≡{, }) — in which case the domain description text
in τ is a set of domain description texts or as list concatenation (̂ and [,]≡〈,〉) of domain
description texts. The operator ℓ1 ⊕ ℓ2 now has at least two interpretations: either ℓ1̂ℓ2 or
ℓ2̂ℓ1. In the case of lists the ⊕ (i.e., ̂) does not (suffix or prefix) append ℓ2 elements already
in ℓ1. The select and remove ηP function on Page 13 applies to the set interpretation. A list
interpretation is:

value

6. select and remove ηP: Unit → ηP
6. select and remove ηP() ≡
6. let ηP = hd νps in νps := tl νps; ηP end

In the first case (ℓ1̂ℓ2) the analysis and description process proceeds from the root, breadth
first, In the second case (ℓ2̂ℓ1) the analysis and description process proceeds from the root,
depth first. .

3.6.4 Laws of Description Prompts

The domain ‘method’ outlined in the previous section suggests that many different orders of
analysis & description may be possible. But are they ? That is, will they all result in “similar”
descriptions ? That is, if Da and Db are two domain description prompts where Da and Db

can be pursued in any order will that yield the same description ? And what do we mean by
‘can be pursued in any order’, and ‘same description’ ? Let us assume that sort P decomposes
into sorts Pa and Pb (etcetera). Let us assume that the domain description prompt Da is
related to the description of Pa and Db to Pb. Here we would expect Da and Db to commute,
that is Da;Db yields same result as does Db;Da. In [4] we made an early exploration of such
laws of domain description prompts.

To answer these questions we need a reasonably precise model of domain prompts. We
attempt such a model in [5].

4 Conclusion

It is time to conclude.

4.1 Comparison to Other Work

4.1.1 Domain Analysis

In [7] we give, in its Sect. 6.3, a 3+ page comparison to the broader concept of ‘domain
analysis’ as covered in almost 30 literature references. We claim, on this background, that
our concept of domain analysis, as treated in Sect. 2, is sufficiently different (i.e., novel) as to
warrant your attention !

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 18Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 19

4.1.2 Methodology

We are not aware of any publications (other other than [4]) that attempt for “formalise” core
concepts of the notion of ‘method’. See below.

4.2 What Have We Achieved

4.2.1 Domain Analysis

In Sect. 2 we have presented a terse, five+ page, summary of a novel approach to domain
analysis. That this approach is different from other ‘domain analysis’ approaches is argued
in [7, Sect. 6.2]. The new aspects are: the distinction between parts and materials, the
distinction between external and internal properties (Sect. 2.11.1), the introduction of the
concept of mereologies and the therefrom separate treatment of attributes. It seems to us
that “conventional” domain analysis treated all endurant qualities as attributes. The many
concepts, endurants and perdurants, discrete and continuous, hence parts and materials,
atomic and composite, uniqueness of parts, mereology, and shared attributes, we claim,
are forced upon the analysis by the nature of domains: existing in some not necessarily
computable reality. In this way the proposed domain analysis & description approach is new.

4.2.2 Methodology

By a ‘method’ we shall understand a set of principles for selecting and applying techniques
and tools in order to analyse and construct an artifact. Clearly Sect. 3 presents a partially
instantiated framework for a formal model of a ‘method’: Some principles are abstraction
(sorts in preference for concrete types), separation of concerns (tackling endurants before
perdurants), commensurate narratives and formalisations, tackling domain analysis either
“top-down”, hierarchically from composite endurants, or “bottom-up”, compositionally, from
atomic endurants, or in some orderly combination of these; Etcetera. Some techniques are
expressing axioms concerning well-formedness of mereologies and attribute values; stating
(and discharging) proof obligations securing disjointness of sorts; etcetera. And some tools
are the domain analysis prompts, the domain description prompts and the description language
(here RSL [12]). We claim that we have sketched a formalisation of a method for domain
analysis and description.

What is really new here is, as for domain analysis, that the analysis & description process
is applied to a domain, that is, to our image of that domain, something not necessarily
computable, and that our description therefore must not reduce the described domain to a
computable artefact.

4.3 Future Work

There remains to conclude studies of, to document and publish treatments of the following
related topics: (i) domain analysis of perdurants (actions, events and behaviours [7, Sect. 5])
— including related domain analysis prompts and domain description prompts21, (ii) model(s)
of prompts22, (iii) domain facets, cf. [3]23, and (iv) derivation of requirements from domain

21See forthcoming [8]
22See forthcoming [5]
23See forthcoming [6]

Domain Analysis: Endurants — Domain Analysis: Endurants 19 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

20 Domain Analysis: Endurants

descriptions, cf. [2]24. .

4.4 Acknowledgements

5 Bibliography

5.1 Bibliographical Notes

The citations of this paper are seriously skewed. Concerning Sect. 2, A Summary of TripTych
Domain Analysis Approach: the 30+ citations, given in [7], of papers relating to domain analysis
have here been left out. Concerning Sect. 3, A Prompt and Description ‘Method’: and we could
not find — and were therefore not influenced or inspired by — publications of formalised
process models for domain analysis & description.

5.2 References

[1] D. Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics.
In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock
et al.), pages 1–17, Heidelberg, September 2007. Springer.

[2] D. Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture
Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer),
pages 1–30, Heidelberg, May 2008. Springer.

[3] D. Bjørner. Domain Engineering. In P. Boca and J. Bowen, editors, Formal Methods: State
of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London,
UK, 2010. Springer.

[4] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Infor-

matics Part II of II: The Science Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.

[5] D. Bjørner. Domain Analysis: A Model of Prompts (paper25, slides26). Research Report
2013-6, DTU Compute, Summer 2013. A first draft of this document will be written over
the summer of 2013.

[6] D. Bjørner. Domain Analysis: Facets (paper27, slides28). Research Report 2013-7, DTU
Compute, Summer 2013. A first draft of this document might be written late summer of
2013.

[7] D. Bjørner. Domain analysis (paper29 slides30). Research Report 2013-1, DTU Compute,
April 2013.

24See forthcoming [10]
25http://www.imm.dtu.dk/˜dibj/da-mod-p.pdf
26http://www.imm.dtu.dk/˜dibj/da-mod-s.pdf
27http://www.imm.dtu.dk/˜dibj/da-facets-p.pdf
28http://www.imm.dtu.dk/˜dibj/da-facets-s.pdf
29http://www.imm.dtu.dk/˜dibj/da-p.pdf
30http://www.imm.dtu.dk/˜dibj/da-s.pdf

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 20Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 21

[8] D. Bjørner. Domain Analysis: Perdurants (paper31, slides32). Research Report 2013-5, DTU
Compute, Spring 2013. A first draft of this document will be written over the summer of
2013.

[9] D. Bjørner. Domain Science and Engineering as a Foundation for Computation for Human-
ity, chapter 7, pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic
Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[10] D. Bjørner. On Deriving Requirements from Domain Specifications (paper33, slides34). Re-
search Report 2013-8, DTU Compute, Summer 2013. A first draft of this document might
be written late summer of 2013.

[11] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations. Springer-
Verlag, January 1999. ISBN: 3540627715, 300 pages, Amazon price: US $ 44.95.

[12] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn, and
K. R. Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

[13] E. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The Netherlands,
1962.

A Pipeline Endurants

Our example is an abstraction of pipeline system endurants. The presentation of the example
reflects a rigorous use of the domain analysis & description method outlined in Sect. 2, but is
relaxed with respect to not showing all — one could say — intermediate analysis steps and
description texts, but following stoichiometry ideas from chemistry makes a few short-cuts
here and there. The use of the “stoichiometrical” reductions, usually skipping intermediate
endurant sorts, ought properly be justified in each step — and such is adviced in proper,
industry-scale analyses & descriptions.

To guide your intuition with respect to what a pipeline system might be we suggest some
diagrams and some pictures. See Figs. 1 on the next page and 2 on the facing page.

The description only covers a few aspects of endurants.

A.1 Parts

70. A pipeline system contains a set of pipeline units and a pipeline system monitor.

71. The well-formedness of a pipeline system depends on its mereology (cf. Sect. A.2.3) and
the routing of its pipes (cf. Sect. A.3.2).

72. A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a join, or a sink unit.

73. We consider all these units to be distinguishable, i.e., the set of wells, the set pipe, etc.,
the set of sinks, to be disjoint.

31http://www.imm.dtu.dk/˜dibj/da-perd-p.pdf
32http://www.imm.dtu.dk/˜dibj/da-perd-s.pdf
33http://www.imm.dtu.dk/˜dibj/da-fac-p.pdf
34http://www.imm.dtu.dk/˜dibj/da-fac-s.pdf

Domain Analysis: Endurants — Domain Analysis: Endurants 21 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

22 Domain Analysis: Endurants

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Figure 1: Oil or gas pipelines

Figure 2: Some oil pipeline system units: pump, pipe, valve

type

70. PLS′, U, M
71. PLS = {| pls:PLS′

•wf PLS(pls) |}
value

71. wf PLS: PLS → Bool

71. wf PLS(pls) ≡ wf Mereology(pls) ∧ wf Routes(pls)
70. obs Us: PLS → U-set

70. obs M: PLS → M
type

72. U = We | Pi | Pu | Va | Fo | Jo | Si
73. We :: Well
73. Pi :: Pipe
73. Va :: Valv
73. Fo :: Fork
73. Jo :: Join
73. Si :: Sink

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 22Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 23

A.2 Part Identification and Mereology

A.2.1 Unique Identification

74. Each pipeline unit is uniquely distinguished by its unique unit identifier.

type

74. UI
value

74. uid UI: U → UI
axiom

74. ∀ pls:PLS,u,u′:U•{u,u′}⊆obs Us(pls)⇒u 6=u′⇒uid UI(u)6=uid UI(u′)

A.2.2 Unique Identifiers

75. From a pipeline system one can observe the set of all unique unit identifiers.

value

75. xtr UIs: PLS → UI-set
75. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

76. We can prove that the number of unique unit identifiers of a pipeline system equals that
of the units of that system.

theorem:

76. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

A.2.3 Mereology

77. Each unit is connected to zero, one or two other existing input units and zero, one or
two other existing output units as follows:

a. A well unit is connected to exactly one output unit (and, hence, has no “input”).

b. A pipe unit is connected to exactly one input unit and one output unit.

c. A pump unit is connected to exactly one input unit and one output unit.

d. A valve is connected to exactly one input unit and one output unit.

e. A fork is connected to exactly one input unit and two distinct output units.

f. A join is connected to exactly two distinct input units and one output unit.

g. A sink is connected to exactly one input unit (and, hence, has no “output”).

type

77. MER = UI-set × UI-set
value

77. mereo U: U → MER
axiom

Domain Analysis: Endurants — Domain Analysis: Endurants 23 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

24 Domain Analysis: Endurants

77. wf Mereology: PLS → Bool

77. wf Mereology(pls) ≡
77. ∀ u:U•u ∈ obs Us(pls)⇒
77. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
77. case (u,(card uius,card ouis)) of

77a.. (mk We(we),(0,1)) → true,
77b.. (mk Pi(pi),(1,1)) → true,
77c.. (mk Pu(pu),(1,1)) → true,
77d.. (mk Va(va),(1,1)) → true,
77e.. (mk Fo(fo),(1,1)) → true,
77f.. (mk Jo(jo),(1,1)) → true,
77g.. (mk Si(si),(1,1)) → true,
77. → false end end

A.3 Part Concepts

An aspect of domain analysis & description that was not covered in Sect. 2 was that of
derived concepts. Example pipeline concepts are routes, acyclic or cyclic, circular, etcetera.
In expressing well-formedness of pipeline systems one often has to develop subsidiary concepts
such as these by means of which well-formedness is then expressed.

A.3.1 Pipe Routes

78. A route (of a pipeline system) is a sequence of connected units (of the pipeline system).

79. A route descriptor is a sequence of unit identifiers and the connected units of a route
(of a pipeline system).

type

78. R′ = Uω

78. R = {| r:Route′•wf Route(r) |}
79. RD = UIω

axiom

79. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

79. descriptor: R → RD
79. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

80. Two units are adjacent if the output unit identifiers of one shares a unique unit identifier
with the input identifiers of the other.

value

80. adjacent: U × U → Bool

80. adjacent(u,u′) ≡
80. let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in

80. ouis ∩ iuis 6= {} end

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 24Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 25

81. Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.

a. The empty sequence, 〈〉, is a route of pls.

b. Let u, u′ be any units of pls, such that an output unit identifier of u is the same
as an input unit identifier of u′ then 〈u, u′〉 is a route of pls.

c. If r and r′ are routes of pls such that the last element of r is the same as the first
element of r′, then r̂tlr′ is a route of pls.

d. No sequence of units is a route unless it follows from a finite (or an infinite) number
of applications of the basis and induction clauses of Items 81a.–81c..

value

81. Routes: PLS → RD-infset

81. Routes(pls) ≡
81a.. let rs = 〈〉 ∪
81b.. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
81c.. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}
81d.. in rs end

A.3.2 Well-formed Routes

82. A route is acyclic if no two route positions reveal the same unique unit identifier.

value

82. acyclic Route: R → Bool

82. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i6=j ∧ r[i]=r[j]

83. A pipeline system is well-formed if none of its routes are circular (and all of its routes
embedded in well-to-sink routes).

value

83. wf Routes: PLS → Bool

83. wf Routes(pls) ≡
83. non circular(pls) ∧ are embedded in well to sink Routes(pls)

83. non circular PLS: PLS → Bool

83. non circular PLS(pls) ≡
83. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

84. We define well-formedness in terms of well-to-sink routes, i.e., routes which start with
a well unit and end with a sink unit.

Domain Analysis: Endurants — Domain Analysis: Endurants 25 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

26 Domain Analysis: Endurants

value

84. well to sink Routes: PLS → R-set

84. well to sink Routes(pls) ≡
84. let rs = Routes(pls) in

84. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

85. A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

85. are embedded in well to sink Routes: PLS → Bool

85. are embedded in well to sink Routes(pls) ≡
85. let wsrs = well to sink Routes(pls) in

85. ∀ r:R • r ∈ Routes(pls) ⇒
85. ∃ r′:R,i,j:Nat •

85. r′ ∈ wsrs
85. ∧ {i,j}⊆inds r′∧i≤j
85. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

A.3.3 Embedded Routes

86. For every route we can define the set of all its embedded routes.

value

86. embedded Routes: R → R-set

86. embedded Routes(r) ≡
86. {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

A.3.4 A Theorem

87. The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes

theorem:

87. ∀ pls:PLS •

87. let rs = Routes(pls),
87. wsrs = well to sink Routes(pls) in

87a.. rs =
87b.. wsrs ∪
87c.. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
86. end

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 26Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 27

A.4 Materials

88. The only material of concern to pipelines is the gas35 or liquid36 which the pipes trans-
port37.

type

88. GoL
value

88. obs GoL: U → GoL

A.5 Attributes

A.5.1 Part Attributes

89. These are some attribute types:

a. estimated current well capacity (barrels of oil, etc.),

b. pipe length,

c. current pump height,

d. current valve open/close status and

e. flow (e.g., volume/second).

type

89a.. WellCap
89b.. LEN
89c.. Height
89d.. ValSta == open | close
89e.. Flow

90. Flows can be added (also distributively) and subtracted, and

91. flows can be compared.

value

90. ⊕,⊖: Flow×Flow → Flow
90. ⊕: Flow-set → Flow
91. <,≤,=,6=,≥,>: Flow × Flow → Bool

92. Properties of pipeline units include

a. estimated current well capacity (barrels of oil, etc.),

b. pipe length,

35Gaseous materials include: air, gas, etc.
36Liquid materials include water, oil, etc.
37The description of this document is relevant only to gas or oil pipelines.

Domain Analysis: Endurants — Domain Analysis: Endurants 27 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

28 Domain Analysis: Endurants

c. current pump height,

d. current valve open/close status,

e. current Laminar in-flow at unit input,

f. current Laminar in-flow leak at unit input,

g. maximum Laminar guaranteed in-flow leak at unit input,

h. current Laminar leak unit interior,

i. current Laminar flow in unit interior,

j. maximum Laminar guaranteed flow in unit interior,

k. current Laminar out-flow at unit output,

l. current Laminar out-flow leak at unit output,

m. maximum guaranteed Laminar out-flow leak at unit output.

value

92a.. attr WellCap: We → WellCap
92b.. attr LEN: Pi → LEN
92c.. attr Height: Pu → Height
92d.. attr ValSta: Va → VaSta
92e.. attr In FlowL: U → UI → Flow
92f.. attr In LeakL: U → UI → Flow
92g.. attr Max In LeakL: U → UI → Flow
92h.. attr body FlowL: U → Flow
92i.. attr body LeakL: U → Flow
92j.. attr Max FlowL: U → Flow
92k.. attr Out FlowL: U → UI → Flow
92l.. attr Out LeakL: U → UI → Flow
92m.. attr Max Out LeakL: U → UI → Flow

A.5.2 Flow Laws, I

93. “What flows in, flows out !”. For Laminar flows: for any non-well and non-sink unit the
sums of input leaks and in-flows equals the sums of unit and output leaks and out-flows.

Law:

93. ∀ u:U\We\Si •

93. sum in leaks(u) ⊕ sum in flows(u) =
93. attr body LeakL(u) ⊕
93. sum out leaks(u) ⊕ sum out flows(u)

value

sum in leaks: U → Flow
sum in leaks(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 28Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 29

sum in flows: U → Flow
sum in flows(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

94. “What flows out, flows in !”. For Laminar flows: for any adjacent pairs of units the
output flow at one unit connection equals the sum of adjacent unit leak and in-flow at
that connection.

Law:

94. ∀ u,u′:U•adjacent(u,u′) ⇒
94. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in

94. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

94. attr Out FlowL(u)(uid U(u′)) =
94. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u′)(uid U(u)) end

B Indexes

B.1 Index of Definitions

abstract

type, 8

action

discrete, 38

active

attribute, 18

actor, 37

analysis

domain

prompt, 3

prompt

domain, 3

Atomic

part, 7

attribute

active, 18

autonomous, 18

biddable, 18

continuous, 17

discrete, 17

dynamic, 17

inert, 17

programmable, 18

reactive, 18

shared, 19

static, 17

autonomous

attribute, 18

behaviour

continuous, 40

discrete, 38

Domain Analysis: Endurants — Domain Analysis: Endurants 29 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

30 Domain Analysis: Endurants

biddable
attribute, 18

Composite
part, 7

concept
formal, 5

concrete
type, 8

confusion, 28
context

formal, 4
continuous

attribute, 17
behaviour, 40
endurant, 6

derived, 11
description

domain, 2
prompt, 3, 22

prompt
domain, 3, 22

discrete
action, 38
attribute, 17
behaviour, 38
endurant, 6

domain, 2
analysis

prompt, 3
description, 2

prompt, 3, 22
facet, 49
prompt

analysis, 3
description, 3, 22

dynamic
attribute, 17

endurant, 6
continuous, 6
discrete, 6
external

quality, 13
internal

quality, 13
quality

external, 13
internal, 13

entity, 5

event, 38
expression

function

type, 40
type

function, 40

extent, 5
external

endurant

quality, 13
quality

endurant, 13

facet
domain, 49

human behaviour, 50

intrinsics, 49
organisation & management, 49

script, 50

support technology, 49
support technology behaviour, 50

formal

concept, 5
context, 4

function

expression

type, 40
signature, 40

type

expression, 40

has concrete type

prerequisite

prompt, 10
prompt

prerequisite, 10

has mereology
prerequisite

prompt, 23

prompt
prerequisite, 23

has unique identifier

prerequisite
prompt, 14

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 30Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 31

prompt

prerequisite, 14

head

pump, 40

human behaviour

facet, 50

inert

attribute, 17

intent, 5

internal

endurant

quality, 13

quality

endurant, 13

intrinsics, 49

facet, 49

is composite

prerequisite

prompt, 8

prompt

prerequisite, 8

is discrete

prerequisite

prompt, 7

prompt

prerequisite, 7

is entity

prerequisite

prompt, 5, 6

prompt

prerequisite, 5, 6

junk, 28

material, 6, 7, 25

mereology, 21

type, 22

observe part type

prerequisite

prompt, 10

prompt

prerequisite, 10

ontological engineering, 46

organisation & management

facet, 49

part, 6, 7
Atomic, 7
Composite, 7
qualities, 13

perdurant, 6, 37
prerequisite

has concrete type
prompt, 10

has mereology
prompt, 23

has unique identifier
prompt, 14

is composite
prompt, 8

is discrete
prompt, 7

is entity
prompt, 5, 6

observe part type
prompt, 10

prompt
has concrete type, 10
has mereology, 23
has unique identifier, 14
is composite, 8
is discrete, 7
is entity, 5, 6
observe part type, 10

programmable
attribute, 18

prompt
analysis

domain, 3
description

domain, 3, 22
domain

analysis, 3
description, 3, 22

has concrete type
prerequisite, 10

has mereology
prerequisite, 23

has unique identifier
prerequisite, 14

is composite
prerequisite, 8

is discrete

Domain Analysis: Endurants — Domain Analysis: Endurants 31 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

32 Domain Analysis: Endurants

prerequisite, 7
is entity

prerequisite, 5, 6
observe part type

prerequisite, 10
prerequisite

has concrete type, 10
has mereology, 23
has unique identifier, 14
is composite, 8
is discrete, 7
is entity, 5, 6
observe part type, 10

pump
head, 40

qualities
part, 13
semantic, 13
syntactic, 13

quality
endurant

external, 13
internal, 13

external
endurant, 13

internal
endurant, 13

reactive
attribute, 18

regulation, 50
rule, 50

script
facet, 50

semantic
qualities, 13

share, 19
shared

attribute, 19
signature

function, 40
sort, 8
state, 37
static

attribute, 17
support technology

facet, 49
support technology behaviour

facet, 50
syntactic

qualities, 13

type, 8
abstract, 8
concrete, 8
expression

function, 40
function

expression, 40
mereology, 22

B.2 Index of Concepts

abstract

type, 4

value, 14

abstraction, 5

action, 2, 37

algorithmic

engineering, 46

analyser

domain, 2

analysis

development stage

domain, 49

domain, 2, 5, 47–49

development stage, 49

prompt, 3, 5–8, 10, 15, 22, 25, 36, 37

problem

world, 48

product line, 47

prompt

domain, 3, 5–8, 10, 15, 22, 25, 36, 37

world

problem, 48

architecture

software, 48

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 32Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 33

atomic, 2
atomicity, 4
attribute, 4
attributes, 2
axiom

sort
well-formedness, 28

well-formedness
sort, 28

bases
knowledge, 46

behaviour, 2, 37

change
state, 40

class
diagram, 49

component
reusable

software, 47
software, 48

reusable, 47
composite, 2

part, 4
compositionality, 4
conceive, 5
concept

formal, 5
concrete

part
type, 4

type
part, 4

confusion, 29
constructor

function
type, 40

type
function, 40

context, 5
continuous, 2

endurant, 6
time, 40

criminal human behaviour, 50

delinquent human behaviour, 50
demo

domain, 2
describer

domain, 2
description

development
domain, 48

domain, 2, 47–49
development, 48
facet, 49
prompt, 3, 10, 14, 16, 22, 25, 36, 37

facet
domain, 49

prompt
domain, 3, 10, 14, 16, 22, 25, 36, 37

descriptions
domain, 48, 49

design
software, 2, 48

development
description

domain, 48
domain

description, 48
model-oriented

software, 47
requirements, 48
software, 2

model-oriented, 47
development stage

analysis
domain, 49

domain
analysis, 49

diagram
class, 49

diligent human behaviour, 50
discrete, 2

endurant, 2, 6, 7
domain, 48, 49

analyser, 2
analysis, 2, 5, 47–49

development stage, 49
prompt, 3, 5–8, 10, 15, 22, 25, 36, 37

demo, 2
describer, 2
description, 2, 47–49

development, 48

Domain Analysis: Endurants — Domain Analysis: Endurants 33 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

34 Domain Analysis: Endurants

facet, 49
prompt, 3, 10, 14, 16, 22, 25, 36, 37

descriptions, 48, 49

development
description, 48

development stage

analysis, 49
engineer, 2, 48

engineering, 2, 47, 48
facet

description, 49

language
specific, 47

modelling, 27, 47, 48
prompt

analysis, 3, 5–8, 10, 15, 22, 25, 36, 37

description, 3, 10, 14, 16, 22, 25, 36, 37
regulation, 50

rule, 50
science, 2
scientist, 2

simulator, 2
software

specific, 2, 48
specific

language, 47

software, 2, 48
stake-holder, 45

endurant, 2
continuous, 6
discrete, 2, 6, 7

entities, 4
external

quality, 13
internal

quality, 13

quality
external, 13

internal, 13
engineer

domain, 2, 48

requirements, 48
software, 2, 48

engineering
algorithmic, 46
domain, 2, 47, 48

knowledge, 46
ontological, 46

product line

software, 47
requirements, 2, 47

software

product line, 47
entities, 2

endurant, 4

entity, 2
event, 2, 37

expression

function
type, 40

type, 40

function, 40
external

endurant

quality, 13
quality

endurant, 13

facet
description

domain, 49

domain
description, 49

formal

concept, 5

formal concept analysis, 5
frame

problem, 48

frames
problem, 48

function

constructor
type, 40

expression

type, 40
name, 40

type

constructor, 40
expression, 40

hardware, 48

has concrete type
prerequisite

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 34Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 35

prompt, 10
prompt

prerequisite, 10

has mereology
prerequisite

prompt, 23

prompt
prerequisite, 23

has unique identifier
prerequisite

prompt, 14

prompt
prerequisite, 14

head, 40
human behaviour

criminal, 50

delinquent, 50
diligent, 50

sloppy, 50

identification
unique, 2

identifier
unique, 14

identity, 4
imperative

language

programming, 46
programming

language, 46
internal

endurant

quality, 13
quality

endurant, 13
interval

time, 38

is composite
prerequisite

prompt, 8
prompt

prerequisite, 8

is discrete
prerequisite

prompt, 7
prompt

prerequisite, 7

is entity
prerequisite

prompt, 5, 6
prompt

prerequisite, 5, 6

join

lattice, 13
junk, 28

knowledge
bases, 46
engineering, 46
representation, 46

language
domain

specific, 47
imperative

programming, 46

programming
imperative, 46

specific
domain, 47

lattice

join, 13

machine, 48
manifest

phenomena, 1
material, 2, 4
mereology, 2, 4

observer, 22
type, 22

method, 2
methodology, 2
model-oriented

development
software, 47

software
development, 47

modelling

domain, 27, 47, 48
requirements, 27

name
function, 40

non-manifest

Domain Analysis: Endurants — Domain Analysis: Endurants 35 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

36 Domain Analysis: Endurants

qualities, 1

obligation

proof, 29
observable

phenomena, 2

phenomenon, 2

observe, 5
observe part type

prerequisite

prompt, 10
prompt

prerequisite, 10

observer
mereology, 22

ontological

engineering, 46
ontology

upper, 46

part, 2, 4, 7
composite, 4

concrete

type, 4
sort, 8

type

concrete, 4
perdurant, 2

phenomena

manifest, 1
observable, 2

phenomenon

observable, 2
prerequisite

has concrete type

prompt, 10

has mereology
prompt, 23

has unique identifier

prompt, 14
is composite

prompt, 8

is discrete
prompt, 7

is entity

prompt, 5, 6
observe part type

prompt, 10
prompt

has concrete type, 10
has mereology, 23
has unique identifier, 14
is composite, 8
is discrete, 7
is entity, 5, 6
observe part type, 10

prescription
requirements, 2, 47–49

problem
analysis

world, 48
frame, 48
frames, 48
world, 48

analysis, 48
process

schema, 49
product line

analysis, 47
engineering

software, 47
software, 47

engineering, 47
programming

imperative
language, 46

language
imperative, 46

prompt, 3
analysis

domain, 3, 5–8, 10, 15, 22, 25, 36, 37
description

domain, 3, 10, 14, 16, 22, 25, 36, 37
domain

analysis, 3, 5–8, 10, 15, 22, 25, 36, 37
description, 3, 10, 14, 16, 22, 25, 36, 37

has concrete type
prerequisite, 10

has mereology
prerequisite, 23

has unique identifier
prerequisite, 14

is composite
prerequisite, 8

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 36Domain Analysis: Endurants — An Analysis & Description Process Model

invisible
Bjorner DRAFT May 2013

Science & Engineering 37

is discrete
prerequisite, 7

is entity

prerequisite, 5, 6
observe part type

prerequisite, 10

prerequisite
has concrete type, 10

has mereology, 23

has unique identifier, 14
is composite, 8

is discrete, 7

is entity, 5, 6
observe part type, 10

proof

obligation, 29

qualities, 2, 4

non-manifest, 1

spatiotemporal, 15
quality, 2

endurant

external, 13
internal, 13

external

endurant, 13
internal

endurant, 13

regulation
domain, 50

representation

knowledge, 46
requirements, 48, 49

development, 48

engineer, 48

engineering, 2, 47
modelling, 27

prescription, 2, 47–49

reusable
component

software, 47

software
component, 47

reuse, 47

rule
domain, 50

schema
process, 49

science
domain, 2

scientist
domain, 2

sharing, 13, 14
simulator

domain, 2
sloppy human behaviour, 50
software, 48

architecture, 48
component, 48

reusable, 47
design, 2, 48
development, 2

model-oriented, 47
domain

specific, 2, 48
engineer, 2, 48
engineering

product line, 47
model-oriented

development, 47
product line, 47

engineering, 47
reusable

component, 47
specific

domain, 2, 48
sort, 4

axiom
well-formedness, 28

part, 8
well-formedness

axiom, 28
spatiotemporal

qualities, 15
specific

domain
language, 47
software, 2, 48

language
domain, 47

software
domain, 2, 48

stake-holder

Domain Analysis: Endurants — Domain Analysis: Endurants 37 c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35

invisible
Bjorner DRAFT May 2013

38 Domain Analysis: Endurants

domain, 45
state, 37

change, 40
sub-part, 7
subpart, 2, 4

time, 37, 38
continuous, 40
interval, 38

TripTych, 2, 5, 46–49
type, 5

abstract, 4
concrete

part, 4
constructor

function, 40
expression, 40

function, 40
function

constructor, 40
expression, 40

mereology, 22
part

concrete, 4

Unified Modelling Language

UML, 48, 49

unique
identification, 2

identifier, 14
upper

ontology, 46

value
abstract, 14

well-formedness

axiom
sort, 28

sort
axiom, 28

world

analysis
problem, 48

problem, 48
analysis, 48

c© Dines Bjørner 2013, DTU Informatics, Techn.Univ.of Denmark – May 30, 2013: 19:35 38Domain Analysis: Endurants — An Analysis & Description Process Model

