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Abstract. In this “40 years of formal methods” essay we shall first delin-
eate, Sect. 1, what we mean by method, formal method, computer sci-
ence, computing science, software engineering, and model-oriented and
algebraic methods. Based on this we shall characterise a spectrum
from specification-oriented methods to analysis-oriented methods. Then,
Sect. 2, we shall provide a “survey”: which are the ‘prerequisite works’
that have enabled formal methods, Sect. 2.1; and which are, to us, the,
by now, classical ‘formal methods’, Sect. 2.2. We then ask ourselves the
question: Have formal methods for software development, in the sense of
this paper been successful ? Our answer is, regretfully, no ! We motivate
this answer, in Sect. 3.2, by discussing eight obstacles or hindrances to the
proper integration of formal methods in university research and educa-
tion as well as in industry practice. This “looking back” is complemented,
in Sect. 3.4, by a “looking forward” at some promising developments —
besides the alleviation of the (eighth or more) hindrances !

1 Introduction

It is all too easy to use terms colloquially. That is, without proper definitions.

1.1 Some Delineations

Method: By a method we shall understand a set of principles for selecting and
applying techniques and tools for analysing and/or synthesizing an artefact.
In this paper we shall be concerned with methods for analysing and synthesizing

software artefacts.

0 The work of second author was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

1



We consider the code, or program, components of software to be mathemat-

ical artefacts.1 That is why we shall only consider such methods which we call
formal methods.

Formal Method: By a formal method we shall understand a method whose
techniques and tools can be explained in mathematics. If, for example, the
method includes, as a tool, a specification language, then that language has a
formal syntax, a formal semantics, and a formal proof system. The techniques
of a formal method help construct a specification, and/or analyse a specification,
and/or transform (refine) one (or more) specification(s) into a program. The
techniques of a formal method, (besides the specification languages) are typically
software packages.

Formal, Rigorous or Systematic Development: The aim of developing software,
either formally or rigorously or systematically2 is to [be able to] reason about
properties of what is being developed. Among such properties are correctness
of program code with respect to requirements and computing resource usage.

Computer Science, Computing Science and Software Engineering: By com-
puter science we shall understand the study of and knowledge about the math-
ematical structures that “exist inside” computers.

By computing science we shall understand the study of and knowledge about
how to construct those structures. The term programming methodology is here
used synonymously with computing science.

By engineering we shall understand the design of technology based on sci-
entific insight and the analysis of technology in order to assess its properties
(including scientific content) and practical applications.

By software engineering we shall understand the engineering of domain
descriptions (D), the engineering of requirements prescriptions (R), the en-
gineering of software designs (S), and the engineering of informal and for-
mal relations (|=3) between domain descriptions and requirements prescriptions
(D |= R), and domain descriptions & requirements prescriptions and software
designs (D,S |= R). This delineation of software engineering is based (i) on
treating all specifications as mathematical structures4, and (ii) by [additional
to these programming methodological concerns] also considering more classical
engineering concerns [16].
1 Major “schools” of software engineering seem to not take this view.
2 We may informally characterise the spectrum of “formality”. All specifications are

formal.

– in a formal development all arguments are formal;

– in a rigorous development some arguments are made and they are formal;

– in a systematic development some arguments are made, but they are not necessarily
formal, although on a form such that they can be made formal.

Boundary lines are, however, fuzzy.
3

B|=A reads: B is a refinement of A.
4 In that sense “our” understanding of software engineering differs fundamentally from

that of for example [114].

2



Model-oriented and Algebraic Methods: By a model-oriented method we shall
understand a method which is based on model-oriented specifications, that is,
specifications whose data types are concrete, such as sets, Cartesians, lists, maps.

By an algebraic method, or as we shall call it, property-oriented method we
shall understand a method which is based on property-oriented specifications,
that is, specifications whose data types are abstract, that is, postulated abstract
types, called carrier sets, together with a number of postulated operations defined
in terms of axioms over carrier elements and operations.

1.2 Specification versus Analysis Methods

We here introduce the reader to the distinction between specification-oriented
methods and analysis-oriented methods. Specification-oriented methods, also re-
ferred to as specification methods, and typically amongst the earliest formal
methods, are primarily characterized by a formal specification language, and
include for example VDM [18, 72, 19, 73, 45, 46], Z [121] and RAISE/RSL [52,
51, 12–14]. The focus is mostly on convenient and expressive specification lan-
guages and their semantics. The main challenge is considered to be how to write
simple, easy to understand and elegant/beautiful specifications. These systems,
however, eventually got analysis tools and techniques. Analysis-oriented meth-
ods, also referred to as analysis methods, on the other hand, are born with focus
on analysis, and include for example Alloy [69], Astrée [23], Event B [2], PVS
[112, 98, 97, 113], Z3 [22] and SPIN [66]. Some of these analysis-oriented meth-
ods, however, offer very convenient specification languages, PVS [97] being an
example.

2 A Syntactic Status Review

Our focus is on model-oriented specification and development approaches. We
shall, however, briefly mention the property-oriented, or algebraic approaches
also.

By a syntactic review we mean a status that focuses on publications, formal
methods (“by name”), conferences and user groups.

2.1 A Background for Formal Methods

The formal methods being surveyed has a basis, we think, in a number of seminal
papers and in a number of seminar textbooks.

Seminal Papers: What has made formal software development methods pos-
sible ? Here we should like to briefly mention some of the giant contributions
which are the foundation for formal methods. There is John McCarthy’s work,
for example [88, 89]: Recursive Functions of Symbolic Expressions and Their
Computation by Machines and Towards a Mathematical Science of Compu-
tation. There is Peter Landin’s work, for example [83, 84, 25]: The Mechanical
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Evaluation of Expressions, Correspondence between ALGOL 60 and Church’s
Lambda-notation and Programs and their Proofs: an Algebraic Approach.
There is Robert Floyd’s work, for example [48]: Assigning Meanings to Pro-
grams. There is John Reynold’s work, for example [105]: Definitional Inter-
preters for Higher-order Programming Languages. There is Dana Scott and
Christopher Strachey’s work, for example [110]: Towards a Mathematical Se-
mantics for Computer Languages. There is Edsger Dijkstra’s work, for example
[42]: A Discipline of Programming. And there is Tony Hoare’s work, for ex-
ample [62, 63]: An Axiomatic Basis for Computer Programming and Proof of
Correctness of Data Representations. Finally there are the dual concepts of ab-
stract interpretation and partial evaluation. Beginning with Cousot & Cousots’
computer science work [35–40] (etc.) abstract interpretation is at the foundation
of not only static program analysers but well-nigh any form of program inter-
pretation. The seminal work of Neil Jones et al., [74], beautifully illustrates the
power of considering programs as formal, mathematical objects.

Some Supporting Text Books: Some monographs or text books “in line” with
formal development of programs, but not “keyed” to specific notations, are: The
Art of Programming [78–80, Donald E. Knuth, 1968–1973], A Discipline of
Programming [42, Edsger W. Dijkstra, 1976], The Science of Programming
[53, David Gries, 1981], The Craft of Programming [106, John C. Reynolds,
1981] and The Logic of Programming [61, Eric C.R. Hehner, 1984].

2.2 A Brief Technology and Community Survey

We remind the reader of our distinction between formal specification methods
and formal analysis methods.

A List of Formal, Model-oriented Specification Methods: The foremost specifi-

cation and model-oriented formal methods are, chronologically listed: VDM 5 [18,
72, 19, 73, 45, 46] 1974, Z6 [121] 1980, RAISE/RSL7,8 [52, 51, 12–14] 1992, and
B9 [1] 1996. The foremost analysis and model-oriented formal methods (chrono-
logically listed) are: Event-B [2] 2009 and Alloy [69] 2000. The main focus is on
the development of specifications, one or more. Of these VDM, Z and RAISE
originated as rather “purist” specification methods, Event-B and Alloy from
their conception focused strongly on analysis.

A List of Formal, Algebraic Methods: The foremost property-oriented formal
methods (alphabetically listed) are: CafeOBJ [50], CASL10 [32] and Maude
[29]. The definitive text on algebraic semantics is [107]. It is a characteristic of
algebraic methods that their specification logics are analysis friendly, usually in
terms of rewriting.
5 VDM: Vienna Development Method
6 Z: Zermelo
7 RAISE: Rigorous Approach to Software Engineering
8 RSL: RAISE Specification Language
9 B: Bourbaki

10 CASL: Common Algebraic Specification Language

4



A List of Formal Analysis Methods: The foremost analysis methods11 can
be roughly “classified” into three classes: Abstract Interpretation, for exam-
ple: Astrée [23]; Theorem Proving, for example: ACL2 [77, 76], Coq [8], Is-
abelle/HOL [94], STeP [21], PVS [113] and Z3 [22]. Model-Checking, for
example: SMV [28] and SPIN/Promela [66]. Shallow program analysis is
provided by static analysis tools such as Semmle12, Coverity13, CodeSonar14

and KlocWork [115]15. These abstract interpretation, and sometimes unsound
static analyzers scale extremely well to very large programs, unlike most other
formal methods tools; they are a real success from an industrial adoption point
of view. However, this is at the prize of the limited properties they can check;
they can usually not check functional properties: that a program satisfies its
requirements.

Mathematical Notations: Why not use “good, old-fashioned” mathematics as
a specification language ? W. J. Paul [93, 99, 34] has done so. Y. Gurevitch has
put a twist to the use of mathematics as a specification language in his ‘Evolving
Algebras’ known now as Abstract Algebras [102].

Related Formal Notations: Among formal notations for describing reactive
systems we mention: CSP16 [64] and CCS17 [91] for textually modelling con-
currency, DC18 [123] for modelling time-continuous temporal properties, MSC19

[68] for graphically modelling message communication between simple processes,
Petri Nets [103, 104] for modelling arbitrary synchronisation of multiple pro-
cesses, Statecharts [54] for modelling hierarchical systems, and TLA+20 [82]
and STeP21 [86, 87] for modelling temporal properties.

Workshops, Symposia and Conferences: An abundance of regular workshops,
symposia and conferences have grown up around formals methods. Along (rough-
ly) the specification-orientation we have: VDM, FM and FME22 symposia [17];
Z, B, ZB, ABZ, etc. meetings, workshops, symposia, conferences, etc. [24];
SEFM23 [81]; and ICFEM24 [67]. One could wish for some consolidation of
these too numerous events. Although some of these conferences started out
as specification-oriented, today they are all more or less analysis-oriented. The
main focus of research today is analysis.

11 in addition to those of formal algebraic methods
12 www.semmle.com
13 www.coverity.com
14 www.grammatech.com/codesonar
15 www.klocwork.com
16 CSP: Communicating Sequential Processes
17 CCS: Calculus of Communicating Systems
18 DC: Duration Calculus
19 MSC: Message Sequence Charts
20 TLA+: Temporal Logic of Actions
21 STeP: Stanford Temporal Prover
22 FM: Formal Methods and FME: FM Europe
23 SEFM: Software Engineering and Formal Methods
24 ICFEM: Intl.Conf. of Formal Engineering Methods
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And along the pure analysis-orientation we have the annual: CAV25, CADE26,
TACAS27, etcetera conferences.

User Groups: The advent of the Internet has facilitated method-specific “home
pages”: Alloy: alloy.mit.edu/alloy/, ASM: www.eecs.umich.edu/gasm/ and
rotor.di.unipi.it/AsmCenter/, B: en.wikipedia.org/wiki/B-Method, Event-
B: www.event-b.org/, RAISE: en.wikipedia.org/wiki/RAISE, VDM: www.vdm-
portal.org/twiki/bin/view and Z: formalmethods.wikia.com/wiki/Z notation.

Formal Methods Journals: Two journals emphasize formal methods: Formal
Aspects of Computing28 and Formal Methods in System Design29 both pub-
lished by Springer.

2.3 Shortcomings

The basic, model-oriented formal methods are sometimes complemented by some
of “the related” formal notations. RSL includes CSP and some restricted notion
of object-orientedness and a subset of RSL has been extended with DC [59,
57]. VDM and Z has each been extended with some (wider) notion of object-
orientedness: VDM++ [44], respectively object Z [119].

A general shortcoming of all the above-mentioned model-oriented formal
methods is their inability to express continuity in the sense, at the least, of
first-order differential calculus. The IFM conferences [4] focus on such “integra-
tions”. [Haxthausen, 2000] outlines integration issues for model-oriented spec-
ification languages [58]. Hybrid CSP [60, 122] is CSP + differential equations +
interrupt !

2.4 A Success Story ?

With all these books, publications, conferences and user-groups can we claim
that formal methods have become a success — an integral part of computer
science and software engineering ? and established in the software industry ?
Our answer is basically no ! Formal methods30 have yet to become an integral
part of computer science & software engineering research and education, and the
software industry. We shall motivate this answer in Sect. 3.2.

25 CAV: Computer Aided Verification
26 CADE: Computer Aided Deduction
27 TACAS: Tools and Algorithms for the Construction and Analysis of Systems
28 link.springer.com/journal/165
29 link.springer.com/journal/10703
30 An exception is the static analysis tools mentioned earlier, which can check whether

programs are well formed. These tools have been widely adopted by industry, and
must be termed as a success. However, these tools cannot check for functional correct-
ness: that a program satisfies the functional requirements. When we refer to formal
methods here we are thinking of systems that can check functional correctness.
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3 More Personal Observations

As part of an analysis of the situation of formal methods with respect to research,
education and industry are we to (a) either compare the various methods,
holding them up against one another ? (b) or to evaluate which application areas
each such method are best suited for, (c) or to identity gaps in these methods,
(d) or “something else” ! We shall choose (d): “something else” ! (a) It is far too
early — hence risky — to judge as to which methods will survive, if any ! (b) It is
too trivial — and therefore not too exciting — to make statements about “best
application area” (or areas). (c) It is problematic — and prone to prejudices —
to identify theoretical problems and technical deficiencies in specific methods. In
a sense “survivability” and “applicability” (a–c) are somewhat superficial issues
with respect to what we shall instead attempt. It may be more interesting, (d), to
ruminate over what we shall call deeper issues — “hindrances to formal methods”

— such which seems common to all formal methods.

3.1 The DDC Ada “Story”

In 1980 a team of six just-graduated MScs started the industrial development of a
commercial Ada compiler. Their (MSc theses) semantics description (in VDM+CSP)
of Ada were published in [20, Towards a Formal Description of Ada]. The project
took some 44 man years in the period 1 Jan. 1980 to 1 Oct. 1984 – when the
US Dod, in Sept. 1984, had certified the compiler. The six initial developers
were augmented by 3 also just-graduated MScs in 1981 and 1982. The “formal
methods” aspects of the development approach was first documented in [10,
ICS’77] – and is outlined in [20, Chapter 1]. The project staff were all properly
educated in formal semantics and compiler development in the style of [10], [18]
and [19]. The completed project was evaluated in [30] and in [96].

Now, 30 years later, mutations of that 1984 Ada compiler are still around !
From having taken place in Denmark, a core DDC Ada compiler product group
was moved to the US in 199031 — purely based on marketing considerations.
Several generations of Ada has been assimilated into the 1981–1984 design. Sev-
eral generations of less ‘formal methods’ trained developers have worked and are
working on the DDC-I Inc. Legacy Ada compiler systems. For the first 10 years
of the 1984 Ada compiler product less than one man month was spent per year
on corrective maintenance – dramatically below industry “averages” !

The DDC Ada development was systematic: it had roughly up to eight (8)
steps of “refinement”: two (2) steps of domain description of Ada (approx. 11.000
lines), via four (4) steps of requirements prescription for the Ada compiler (ap-
prox. 55.000 lines), and two (2) steps of design (approx. 6.000 lines) and coding
of the compiler itself. Throughout the emphasis was on (formal) specification.
No attempt was really made to express, let alone prove, formal properties of any
of these steps nor their relationships. The formal/systematic use of VDM must

31 Cf. DDC-I Inc., Phoenix, Arizona http://www.ddci.com/
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be said to be an unqualified formal methods success story.32 Yet the published
literature on Formal Methods fails to recognize this [120].

• • •

The following personal observations can be seen in the context of the more than
30 years old DDC Ada compiler project.

3.2 Eight Obstacles to Formal Methods

If we claim “obstacles”, then it must be that we assume on the background of,
for example, the “The DDC Ada Story” that formal methods are worthwhile, in
fact, that formal methods are indispensable in the proper, professional pursuit of
software development. That is, that not using formal methods in software devel-
opment, where such methods are feasible33, is a sign of a immature, irresponsible
industry.

Summarising, we see the following 8 obstacles to the research, teaching and
practice of formal methods: 1. A History of Science and Engineering “Obstacle”,

2. A Not-Yet-Industry-scaled Tool Obstacle, 3. An Intra-Departmental Obstacle, 4.

A Not-Invented-Here Obstacle, 5. A Supply and Demand Obstacle, 6. A Slide in

Professionalism Obstacle, 7. A Not-Yet-Industry-attuned Engineering Obstacle and
8. An Education Gap Obstacle. These obstacles overlap to a sizable extent. Rather
than bringing an analysis built around a small set of “independent hindrances”
we bring a somewhat larger set of “related hindrances” that may be more familiar
to the reader.

1. A History of Science and Engineering Obstacle: There is not enough re-
search and teaching of formal methods. Amongst other reasons because there is
a lack of belief that they scale — that it is worthwhile.

It is worthwhile researching formal software development methods. We must
strive for correct software. Since it is possible to develop software formally and
such that it is correct, etcetera, one must study such formal methods. It is
worthwhile teaching & learning formal software development methods. Since it
is possible to develop software formally and such that it is correct, etcetera,
one ought teach & learn such formal methods. Do not bother as to whether the
students then proceed to actually practice formal methods.

Just because a formal method may be judged not yet to be industry-scale is
no hindrance to it being researched taught and learned — we must prepare our
students properly. The science (of formal methods) must precede industry-scale
engineering.

This obstacle is of “history-of-science-and-engineering” nature. It is not really
an ‘obstacle’, merely a fact of life, something that time may make less of a
“problem”.

32 The 1980s Ada compiler “competitors” each spent well above 100 man years on their
projects – and none of them are “in business” today (2014).

33 ‘Feasibility’ is then a condition that may be subject to discussion !
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2. A Not-Yet-Industry-scaled Tool Obstacle: The tool support for formal meth-
ods is not sufficient for large scale use of these methods.

The advent of the first formal specification languages, VDM [18] and Z [121],
were not “accompanied” by any tool support: no syntax checkers, nothing ! Aca-
demic programming was done by individuals. The mere thought that three or
more programmers need collaborate on code development occurred much too late
in those circles. As a result propagation of formal methods appears to have been
significantly stifled. The first software tools appear to not having been “industry
scale”.

It took many years before this problem was properly recognised. Peter Gorm
Larsen’s DTU and IFAD development of The VDM Toolset was significant.34

The European Community’s research programmers have helped somewhat, cf.
RAISE35, Overture36 and Deploy37. The VSTTE: Verified Software: Theories,

Tools and Experiments38 initiative aims to advance the state of the art in the

science and technology of software verification through the interaction of theory

development, tool evolution, and experimental validation.

It seems to be a fact that industry will not use a formal method unless it is
standardised and “supported” by extensive tools. Most formal method specifica-
tion languages are conceived and developed by small groups of usually university
researchers. This basically stands in the way of preparing for standards and for
developing and later maintaining tools.

This ‘obstacle’ is of less of a ‘history of science and engineering’, more of a
‘maturity of engineering’ nature. It was originally caused by, one could say, the
näıvety of the early formal methods researchers: them not accepting that tools
were indeed indispensable. The problem should eventually correct “itself” !

3. An Intra-Departmental Obstacle: There are two facets to this obstacle.
Fields of computer science and software engineering are not sufficiently explained
to students in terms of mathematics, and formal methods, for example, speci-
fied using formal specifications; and scientific papers on methodology are either
not written, or, when written and submitted are rejected by referees not un-
derstanding the difference between computer sciences and computing science —
methodology papers do not create neat “little theories”, with clearly identifiable
and provable propositions, lemmas and theorems.

It is claimed that most department of computer science &39 software engi-
neering staff are unaware of the science & engineering aspects of each others’
individual sub-fields. That is, we often see software engineering researchers and
teachers unaware of the discipline of, for example, Automata Theory & For-
mal Languages, and abstraction and modelling (i.e., formal methods). With the

34 http://www.vdmtools.jp/en/
35 spd-web.terma.com/Projects/RAISE/
36 www.overturetool.org/
37 www.deploy-project.eu/
38 https://sites.google.com/site/vstte2013/
39 We single quote the ampersand: ‘&’ between A and B to emphasize that A & B is

one subhect field.
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unawareness manifesting itself in the lack of use of cross-discipline techniques
and tools. Such a lack of unawareness of intra-department disciplines seems rare
among mathematicians.

Whereas mathematics students see their advisors freely use the specialised,
though standard mathematics of relevant fields of their colleagues, computer
science & software engineering students are usually “robbed” of this cross-
disciplinarity. What a shame !

Whereas mathematics is used freely across a very wide spectrum of classical
engineering disciplines, formal specification is far from standard in “classical”
subjects such as programming languages and their compilers, operating systems,
databases and their management systems, protocol designs, etcetera. Our field
(of informatics) is not mature, we claim, before formal specifications are used in
all relevant sub-fields.

4. A Not-Invented-Here Obstacle: There are too many formal methods be-
ing developed, causing the “believers” of each method to focus on defining the
method ground up, hence focusing on foundations, instead of stepping on the
shoulders of others and focus on the how to use these methods.

Are there too many formal specification languages ? It is probably far too
early to entertain this question. The field of formal methods is just some 45
years old. Young compared to other fields.

But what we see as “a larger” hindrance to formal methods, whether for spec-
ification or for analysis, is that, because of this “proliferation” of especially spec-
ification methods, their more widespread use, as was mentioned above, across
“the standard CS&SE courses” is hindered.

5. A Supply and Demand Obstacle: There is not a sufficiently steady flow of
software engineering students all educated in formal methods from basically all
the suppliers.

There are software houses, “out there”, on several continents, in several coun-
tries, which use formal methods in one form or another. A main problem of theirs
is twofold: the lack of customers which demand “provably correct” software, and
the lack of candidates from universities properly educated in formal methods. A
few customers, demanding “provably correct” software can make a “huge” dif-
ferent. In contrast, there must be a steady flow of “more-or-less” “unified formal
methods”-educated educated graduates. It is a “catch-22” situation.

In other fields of classical engineering candidates emerge from varieties of
universities with more-or-less “normalised”, easily comparable, educations. Not
so in informatics: Most universities do not offer courses based on formal methods.
If they do, they either focus on specification or on analysis; few covers both.

We can classify this obstacle as one of a demand/supply conflict.

6. A Slide in Professionalism Obstacle: Todays masters in computing science
and software engineering are not as well educated as were those of 30 years ago.

The project mentioned in Sect. 3.1 cannot be carried out, today (2014), by
students from my former university. From three, usually 50 student, courses,
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over 18 months, there is now only one, and usually a 25 student, one semester
course in ‘formal methods’, cf. [12–14]. At colleague departments around Eu-
rope I see a similar trend: A strong center for partial evaluation [74] existed for
some 25 years and there is now no courses and hardly any research taking place
at Copenhagen University in that subject. Similarly another strong center for
foundations of functional programming has been reduced to basically a one person
activity at another Danish university. The “powers that be” has, in their infinite
wisdom apparently decided that courses and projects around Internet, Web de-
sign and collaborative work, courses that are presented as having no theoretical
foundations, are more important: “relevant to industry”.

It seems that many university computer science departments have become
mere college IT groups. Research and educational courses in methodology sub-
jects are replaced by “research” into and training courses in current technology
trends — often dictated by so-called industry concerns. The course curriculum
is crowded by training in numerous “trendy” topics at the expense of education
in fewer topics. Many “trendy” courses have replaced fewer foundational ones.

I would classify this obstacle as one of university and department manage-
ment failure, kow-towing to perceived, popular industry-demands.

7. A Not-Yet-Industry-attuned Engineering Obstacle: Tools are missing for
handling version and configuration control, typically for refinement relationships
in the context of using formal methods.

Software engineering usually treats software development artefacts not as
mathematical objects, but as “textual” documents. And software development
usually entail that such documents are very large (cf. Sect. 3.1) and must be han-
dled as computer data. Whereas academic computing science may have provided
tools for the handling of formal development documents reasonably adequately, it
seems not to have provided tools for the interface to (even commercial) software
version control packages [41, CVS]. Similarly for “build” configuration manage-
ment, etcetera.

Even for stepwise developed formal documents there are basically no support
tools available for linking pairs of abstract and refined formalisations.

Thus there is a real hindrance for the use of formal methods in industry when
its practical tools are not attunable to those of formal methods [16].

8. An Education Gap Obstacle: When students educated in formal methods
enter industry, the majority of other colleagues will not have been educated in
formal methods, causing the new employee to be over-ruled in their wishes to
apply formal methods.

3.3 A Preliminary Summary Discussion

Many of the academic and industry obstacles can be overcome. Still, a main
reason for formal methods not being picked up, and hence “more” successful, is
the lack of scalable and practical tool support.
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3.4 The Next 10 Years ?

No-one can predict the future. However, we shall provide some guesses/hopes.
We try to stay somewhat realistic and avoid hopes such as solving N =? NP, and
making it possible to prove real sized programs fully correct within practical
time frames. The main observation is that programmers today seldom write
specifications at all, and if they do, the specifications are seldom verified against
code. An exception is of course assertions placed in code, although not even this is
so commonly practiced. Even formal methods people usually do not apply formal
methods to their own code, although it can be said that formal methods people
do apply mathematics to develop theories (automata theory, proof theory, etc.)
before these theories are implemented in code. However, these formalizations
are usually written in ad hoc (although often elegant and neat) mathematical
notation, and they are not related mechanically to the resulting software. Will
this situation change in any way in the near future?

We see two somewhat independent trends, which on the one hand are easy
to observe, but, on the other hand, perhaps deserve to be pointed out. The first
trend is an increased focus on providing verification support for programming
languages (in contrast to a focus on pure modeling languages). Of course early
work on program correctness, such as Hoare’s [62, 63] and Dijkstra’s work [42],
did indeed focus on correctness of programs, but this form of work mostly formed
the underlying theories and did not immediately result in tools. The trend we
are pointing out is a tooling trend. The second trend is the design of new pro-
gramming languages that look like the earlier specification languages such as VDM
and RSL – and also Alloy. We will elaborate some on these two trends below.
We will argue that we are moving towards a point of singularity, where specifi-
cation and programming will be done within the same language and verification
tooling framework. This will help break down the barrier for programmers to
write specifications.

Verification Support for Programming Languages: We have in the past seen
many verification systems created with specialized specification and modeling
languages. Theorem proving systems, for example, typically offer functional spec-
ification languages (where functions have no side effects) in order to simplify the
theorem proving task. Examples include ACL2 [77, 76], Isabelle/HOL [94], Coq
[8], and PVS [112, 98, 97, 113].

The PVS specification language [97] stands out by putting a lot of emphasis
on the convenience of the language, although it is still a functional language.
The model checkers, such as SPIN [66] and SMV [28] usually offer notations
being somewhat limited in convenience when it comes to defining data types,
in contrast to control, in order make the verification task easier. Note that in
all these approaches, specification is considered as a different activity than
programming.

Within the last decade or so, however, there has been an increased focus on
verification techniques centered around real programming languages. This in-
cludes model checkers such as the Java model checker JPF (Java PathFinder)
[56, 118], the C model checkers SLAM/SDV [5], CBMC [27], BLAST [9], and
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the C code extraction and verification capability Modex of SPIN [65], as well
as theorem proving systems, for C, such as VCC [33], VeriFast [70], and the
general analysis framework Frama-C [49]. The ACL2 theorem prover should
be mentioned as a very early example of a verification system associated with
a programming language, namely LISP. Experimental simplified programming
languages have also lately been developed with associated proof support, includ-
ing Dafny [85], supporting SMT-based verification, and AAL [47] supporting
static analysis, model checking, and testing.

The Advancement of High-level Programming Languages: At the same time,
programming languages have become increasingly high level, with examples such
as ML [92] combining functional and imperative programming; and its derivatives
CML (Concurrent ML) [31] and Ocaml [95], integrating features for concurrency
and message passing, as well as object-orientation on top of the already existing
module system; Haskell [117] as a pure functional language; Java [111], which
was one of the first programming languages to support sets, list and maps as
built-in libraries — data structures which are essential in model-based speci-
fication; Scala [108], which attempts to cleanly integrate object-oriented and
functional programming; and various dynamically typed high-level languages
such as Python [101] combining object-orientation and some form of functional
programming, and built-in succinct notation for sets, lists and maps, and itera-
tors over these, corresponding to set, list and map comprehensions, which are key
to for example VDM, RSL and Alloy. Some of the early specification languages,
including VDM and RSL, were indeed so-called wide-spectrum specification lan-
guages, including programming constructs as well as specification constructs.
However, these languages were still considered specification languages and not
programming languages. The above mentioned high-level programming trend
may help promote the idea of writing down high-level designs — it will just be
another program. Some programming language extensions incorporate specifica-
tions, usually in a layered manner where specifications are separated from the
actual code. EML (Extended ML) [75] is an extension of the functional program-
ming language SML (Standard ML [100]) with algebraic specification written in
the signatures. ECML (Extended Concurrent ML [55]) extends CML (Concurrent ML)
[75] with a logic for specifying CML processes in the style of EML. Eiffel [90] is
an imperative programming language with design by contract features (pre/post
conditions and invariants). Spec# [6] extends C# with constructs for non-null
types, pre/post conditions, and invariants. JML [26] is a specification language
for Java, where specifications are written in special annotation comments [which
start with an at-sign (@)].

The Point of Singularity for Formal Methods: It seems evident that the trend
seen above where verification technology is developed around programming lan-
guages will continue. Verification frameworks will be part of programming IDEs
and be available for programmers without additional efforts. Testing will, how-
ever, still appear to be the most practical approach to ensure the correctness
of real-sized applications, but likely supported with more rigorous techniques.
Wrt. the development in programming languages, these do move towards what
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would be called wide-spectrum programming languages, to turn the original term
‘wide-spectrum specification languages’ on its head. The programming language
is becoming your specification language as well. Your first prototype may be
your specification, which you may refine and later use as a test oracle. Formal
specification, prototyping, and agile programming will become tightly integrated
activities. It is, however, important to stress, that languages will have to be able
to compete with for example C when it comes to efficiency, assuming one stays
within an efficient subset of the language. It should follow the paradigm: you
pay only for what you use. It is time that we try to move beyond C for writing
for example embedded systems, while at the same time allow high-level concepts
as found in early wide-spectrum specification languages. There is no reason why
this should not be possible.

There are two other directions that we would like to mention: visual languages
and DSLs (Domain Specific Languages). Formal methods have an informal com-
panion in the model-based programming community, represented for example
most strongly by UML [71] and its derivations. This form of modeling is graphical
by nature. UML is often criticized for lack of formality, and for posing a link-
age problem between models and code. However, visual notations clearly have
advantages in some contexts. The typical approach is to create visual artifacts
(for example class diagrams and state charts), and then derive code from these.
An alternative view would be to allow graphical rendering of programs using
built-in support for user-defined visualization, both of static structure as well as
of dynamic behavior. This would tighten connection between lexical structure
and graphical structure. One would, however, not want to define UML as part of a
programming language. Instead we need powerful and simple-to-use capabilities
of extending programming languages with new DSLs. Such are often referred
to as internal DSLs, in contrast to external DSLs which are stand-alone lan-
guages. This will be critical in many domains, where there are needs for defining
new DSLs, but at the same time a desire to have the programming language
be part of the DSL to maintain expressive power. The point of singularity is
the point where specification, programming and verification is performed in an
integrated manner, within the same language framework, additionally supported
by visualization and meta-programming.

4 Conclusion

We have surveyed facets of formal methods, discussed eight obstacles to their
propagation and discussed three possible future developments. We do express a,
perhaps not too vain hope, that formal methods, both specification- and analysis-
oriented, will overcome the eight obstacles — and others !

We have seen many exciting formal methods emerge. The first author has
edited two double issues of journal articles on formal methods [11] (ASM, B,

CafeOBJ, CASL, DC, RAISE, TLA+, Z) and [15] (Alloy, ASM, Event-B, DC,

CafeOBJ, CASL, RAISE, VDM, Z), and, based on [11] a book [43].
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Several of the originators of VDM are still around [7]. The originator of Z, B

and Event B is also still around [3]. And so are the originators of Alloy, RAISE,

CASL, CafeOBJ and Maude. And so is the case for the analytic methods too ! How
many of the formal methods mentioned in this paper will still be around and
“kicking” when their originators are no longer active ?
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