
Domain Science & Engineering 1

From Computer Science to The Sciences of Informatics

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Denmark

bjorner@gmail.com -- www.imm.dtu.dk/~db

14 February 2010: Compiled: March 13, 2010: 00:00 ECT

Abstract
2

In this paper we wish to advocate (i) that schools, institutes and departments of
computer science, software engineering, informatics, cybernetics, and the like, re-

orient themselves along two lines: (i.1) more emphasis on teaching programming
and software engineering based on formal methods; and (i.2) more emphasis on re-

search into formal methods for the trustworthy development of software that meets
customers’ expectations and is correct, that is, the right software and that the soft-
ware is right. We also wish to advocate (ii) that the concepts of domain science 3

and domain engineering become an indispensable part of the science of informatics

and of software engineering. And we finally wish to advocate (iii) that informatics 4

research centers embark on path-finder projects which research and experimentally

develop domain models for infra-structure components, for example, (iii.1) financial

service industries (banks, stock exchanges, etc.), (iii.2) health-care (hospitals, clin-
ics, private physicians, etc.) (iii.3) pipeline systems (oil, gas), (iii.4) transportation

(such as railways, shipping, air traffic, etc.).

1 Introduction 5

The background postulates of this paper are the following: (i) half a century of computer
science research may very well have improved our understanding of computing devices (au-
tomata etc.), but it has yet to contribute significantly to the quality of software products;
(ii) our students, the future leading software engineers, those of them who go into industry
rather than “remaining” in academia, are being mislead by too many foundational courses
to believe that these are relevant for the practice of software engineering; (iii) a significant 6

re-orientation of university teaching and research into both ‘computer science’ and software
engineering must occur if we are to improve the relevance of ‘computer science’ to software
engineering. In this paper we shall, unabashedly, suggest the kind of re-orientation that
we think will rectify the situation alluded to in Items (i–iii).

1

2 Domain Science & Engineering

1.1 Some Definitions of Informatics Topics 7

Let us first delineate our field of study. It first focuses on computer science, computing

science, software and software engineering.8

Definition 1 – Computer Science: By computer science we shall understand the study
and knowledge of the properties of the ‘things’ that can ‘exist’ inside computers: data and
processes.

Examples of computer science disciplines are: automata theory (studying automata [finite
or otherwise] and state machines [without or with stacks]), formal languages (studying,
mostly the syntactic the “foundations” and “recognisability” of abstractions of of computer
programming and other “such” languages), complexity theory, type theory, etc.9

Some may take exception to the term ‘things’1 used in the above and below definition.
They will say that it is imprecise. That using the germ conjures some form of reliance on
Plato’s Idealism, on his Theory of Forms. That is, “that it is of Platonic style, and thus,

is disputable. One could avoid this by saying that these definitions are just informal rough

explanations of the field of study and further considerations will lead to more exact defi-

nitions.”2 Well, it may be so. It is at least a conscious attempt, from this very beginning,
to call into dispute and discuss “those things”. Section 4 of this paper (“A Specification
Ontology and Epistemology”) has as one of its purposes to encircle the problem.10

Definition 2 – Computing Science: By computing science we shall understand the
study and knowledge of the how to construct the ‘things’ that can ‘exist’ inside computers:
the software and its data.

Conventional examples of computing science disciplines are: algorithm design, imperative
programming, functional programming, logic programming, parallel programming, etc. To
these we shall add a few in this paper.11

Definition 3 – Software: By software we shall understand not only the code intended for
computer execution, but also its use, i.e., programmer manuals: installation, education, user
and other guidance documents, as well all as its development documents: domain models,
requirements models, software designs, tests suites, etc. “zillions upon zillions” of documents.

12

The fragment description of the example Pipeline System of this paper exhibits, but a tiny
part of a domain model.

Definition 4 – Software Engineering: By software engineering we shall understand the
methods (analysis and construction principles, techniques and tools) needed to carry out, man-
age and evaluate software development projects as well as software product marketing, sales

1and also to the term ‘exist’.
2Cf. personal communication, 12 Feb., 2010, with Prof. Mikula Nikitchenko, Head of the Chair of

Programming Theory of Shevchenko Kyiv National University, Ukraine

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 3

and service — whether these includes only domain engineering, or requirements engineering, or
software design, or the first two, the last two or all three of these phases. Software engineering,
besides documents for all of the above, also includes all auxiliary project information, stake-
holder notes, acquisition units, analysis, terminology, verification, model-checking, testing, etc.
documents

1.2 The Triptych Dogma 13

Dogma 1 – Triptych: By the triptych dogma we shall understand a dogma which insists
on the following: Before software can be designed one must have a robust understanding of its
requirements; and before requirements can be prescribed one must have a robust understanding
of their domain.

14

Dogma 2 – Triptych Development: By triptych development we shall understand a
software development process which starts with one or more stages of domain engineering
whose objective it is to construct a domain description, which proceeds to one or more stages
of requirements engineering whose objective it is to construct a requirements prescription, and
which ends with one or more stages of software design whose aim it is to construct the software.

1.3 Structure of This Paper 15

In Sect. 2 we present a non-trivial example. It shall serve to illustrate the new concepts
of domain engineering, domain description and domain model. In Sect. 3 we shall then
discuss ramifications of the triptych dogma. Then we shall follow-up, Sect. 4, on what we
have advocated above, namely a beginning discussion of our logical and linguistic means
for description, of “the kind of ‘things’ that can ‘exists’ or the things (say in the domain,
i.e., “real world”) that they reflect”.

2 Example: A Pipeline System 16

The example is to be read “hastily”. That is, emphasis, by the reader, should be on
the narrative, that is, on conveying what a domain model describes, rather than on the
formulas.

The example is that of domain modelling an pipeline system Figure 1 on the following
page show the planned Nabucco pipeline system. 17

2.1 Pipeline Basics 18

Figure 2 on page 5 conceptualises an example pipeline. Emphasis is on showing a pipeline
net consisting of units and connectors (•). 19

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

4 Domain Science & Engineering

Figure 1: The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

These are some non-temporal aspects of pipelines. nets and units: wells, pumps, pipes,
valves, joins, forks and sinks; net and unit attributes; and units states, but not state
changes. We omit consideration of “pigs” and “pig”-insertion and “pig”-extraction units. 20

Pipeline Nets and Units:

1. We focus on nets, n : N , of pipes, π : Π, valves,
v : V , pumps, p : P , forks, f : F , joins, j : J ,
wells, w : W and sinks, s : S.

2. Units, u : U , are either pipes, valves, pumps,
forks, joins, wells or sinks.

3. Units are explained in terms of disjoint types
of PIpes, VAlves, PUmps, FOrks, JOins, WElls
and SKs.

type

1 N, PI, VA, PU, FO, JO, WE, SK
2 U = Π | V | P | F | J | S| W
2 Π == mkΠ(pi:PI)
2 V == mkV(va:VA)
2 P == mkP(pu:PU)
2 F == mkF(fo:FO)
2 J == mkJ(jo:JO)
2 W == mkW(we:WE)
2 S == mkS(sk:SK)

21

Unique Identifiers:

4. We associate with each unit a unique identifier,
ui : UI.

5. From a unit we can observe its unique identifier.

6. From a unit we can observe whether it is a pipe,
a valve, a pump, a fork, a join, a well or a sink
unit.

type

4 UI
value

5 obs UI: U → UI
6 is Π: U → Bool

is Π(u) ≡
case u of mkPI()→true, →false end

6 is V: U → Bool

is V(u) ≡
case u of mkV()→true, →false end

6 ...

6 is S: U → Bool

is S(u) ≡
case u of mkS()→true, →false end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 5

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Figure 2: An oil pipeline system

A connection is a means of juxtaposing units. A connection may connect two units in
which case one can observe the identity of connected units from “the other side”. 22

23
Pipe Unit Connectors:

7. With a pipe, a valve and a pump we associate
exactly one input and one output connection.

8. With a fork we associate a maximum number
of output connections, m, larger than one.

9. With a join we associate a maximum number
of input connections, m, larger than one.

10. With a well we associate zero input connections
and exactly one output connection.

11. With a sink we associate exactly one input con-
nection and zero output connections.

value

7 obs InCs,obs OutCs: Π|V|P → {|1:Nat|}
8 obs inCs: F → {|1:Nat|}
8 obs outCs: F → Nat

9 obs inCs: J → Nat

9 obs outCs: J → {|1:Nat|}
10 obs inCs: W → {|0:Nat|}
10 obs outCs: W → {|1:Nat|}
11 obs inCs: S → {|1:Nat|}
11 obs outCs: S → {|0:Nat|}

axiom

8 ∀ f:F • obs outCs(f) ≥ 2
9 ∀ j:J • obs inCs(j) ≥ 2

24

If a pipe, valve or pump unit is input-connected [output-connected] to zero (other) units,
then it means that the unit input [output] connector has been sealed. If a fork is input-
connected to zero (other) units, then it means that the fork input connector has been
sealed. If a fork is output-connected to n units less than the maximum fork-connectability,
then it means that the unconnected fork outputs have been sealed. Similarly for joins:
“the other way around”. 25

Observers and Connections:

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

6 Domain Science & Engineering

12. From a net one can observe all its units.

13. From a unit one can observe the the pairs of
disjoint input and output units to which it is
connected:

a) Wells can be connected to zero or one
output unit — a pump.

b) Sinks can be connected to zero or one
input unit — a pump or a valve.

c) Pipes, valves and pumps can be con-
nected to zero or one input units and to
zero or one output units.

d) Forks, f , can be connected to zero or
one input unit and to zero or n, 2 ≤
n ≤obs Cs(f) output units.

e) Joins, j, can be connected to zero or n,

2 ≤ n ≤obs Cs(j) input units and zero
or one output units.

value

12 obs Us: N → U-set

13 obs cUIs: U → UI-set × UI-set
wf Conns: U → Bool

wf Conns(u) ≡
let (iuis,ouis)=obs cUIs(u) in

iuis ∩ ouis={}∧
case u of

13a mkW() →
card iuis ∈{0}∧card ouis ∈{0,1},

13b mkS() →
card iuis ∈{0,1}∧card ouis ∈{0},

13c mkΠ() →
card iuis ∈{0,1}∧card ouis ∈{0,1},

13c mkV() →
card iuis ∈{0,1}∧card ouis ∈{0,1},

13c mkP() →
card iuis ∈{0,1}∧card ouis ∈{0,1},

13d mkF() →
card iuis ∈{0,1}∧
card ouis ∈{0}∪{2..obs inCs(j)},

13e mkJ() →
card iuis ∈{0}∪{2..obs inCs(j)}∧
card ouis ∈{0,1}

end end

26

Wellformedness:

14. The unit identifiers observed by the obs cUIs
observer must be identifiers of units of the net.

axiom

14 ∀ n:N,u:U • u ∈ obs Us(n) ⇒

14 let (iuis,ouis) = obs cUIs(u) in

14 ∀ ui:UI • ui ∈ iuis ∪ ouis ⇒
14 ∃ u′:U •

14 u′ ∈ obs Us(n)∧u′6=u∧obs UI(u′)=ui
14 end

2.2 Routes 27

Routes:

15. By a route we shall understand a sequence of
units.

16. Units form routes of the net.

type

15 R = UIω

value

16 routes: N → R-infset

16 routes(n) ≡
16 let us = obs Us(n) in

16 let rs = {〈u〉|u:U•u ∈ us}
16 ∪ {r̂r′|r,r′:R• {r,r′}⊆rs∧adj(r,r′)} in

16 rs end end

28

Adjacent Routes:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 7

17. A route of length two or more can be decom-
posed into two routes

18. such that the last unit of the first route “con-
nects” to the first unit of the second route.

value

17 adj: R × R → Bool

17 adj(fr,lr) ≡
17 let (lu,fu)=(fr(len fr),hd lr) in

18 let (lui,fui)=(obs UI(lu),obs UI(fu)) in

18 let ((,luis),(fuis,)) =
18 (obs cUIs(lu),obs cUIs(fu)) in

18 lui ∈ fuis ∧ fui ∈ luis end end end

29

No Circular Routes:

19. No route must be circular, that is, the net must
be acyclic.

value

19 acyclic: N → Bool

19 let rs = routes(n) in

19 ∼∃ r:R•r ∈ rs ⇒
19 ∃ i,j:Nat•{i,j}⊆inds r∧
19 i 6=j∧r(i)=r(j) end

30

Wellformed Nets, Special Pairs, wfN SP:

20. We define a “special-pairs” well-formedness
function.

a) Fork outputs are output-connected to
valves.

b) Join inputs are input-connected to valves.

c) Wells are output-connected to pumps.

d) Sinks are input-connected to either
pumps or valves.

value

20 wfN SP: N → Bool

20 wfN SP(n) ≡
20 ∀ r:R • r ∈ routes(n) in

20 ∀ i:Nat • {i,i+1}⊆inds r ⇒
20 case r(i) of

20a mkF() → ∀ u:U•adj(〈r(i)〉,〈u〉)
20a ⇒ is V(u),
20a →true end ∧
20 case r(i+1) of

20b mkJ() → ∀ u:U•adj(〈u〉,〈r(i)〉)
20b ⇒ is V(u),
20b →true end ∧
20 case r(1) of

20c mkW() → is P(r(2)),
20c →true end ∧
20 case r(len r) of

20d mkS() → is P(r(len r−1))
20d ∨ is V(r(len r−1)),
20d →true end

The true clauses may be negated by other case dis-
tinctions’ is V or is V clauses.

2.2.1 Special Routes, I 31

21. A pump-pump route is a route of length two or more whose first and last units are
pumps and whose intermediate units are pipes or forks or joins.

22. A simple pump-pump route is a pump-pump route with no forks and joins.

23. A pump-valve route is a route of length two or more whose first unit is a pump,
whose last unit is a valve and whose intermediate units are pipes or forks or joins.

24. A simple pump-valve route is a pump-valve route with no forks and joins.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

8 Domain Science & Engineering

25. A valve-pump route is a route of length two or more whose first unit is a valve, whose
last unit is a pump and whose intermediate units are pipes or forks or joins.

26. A simple valve-pump route is a valve-pump route with no forks and joins.

27. A valve-valve route is a route of length two or more whose first and last units are
valves and whose intermediate units are pipes or forks or joins.

28. A simple valve-valve route is a valve-valve route with no forks and joins.
32

value
21-28 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R → Bool

pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr}(n): len n≥2

21 ppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
22 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
23 pvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is V(r(len r)) ∧ is πfjr(ℓ)
24 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
25 vpr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
26 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
27 vvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is V(lu) ∧ is πfjr(ℓ)
28 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

is πfjr,is πr: R → Bool
is πfjr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)∨is F(u)∨is J(u)
is πr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)

2.2.2 Special Routes, II 33

Given a unit of a route,

29. if they exist (∃),

30. find the nearest pump or valve unit,

31. “upstream” and

32. “downstream” from the given unit.
34

value
29 ∃UpPoV: U × R → Bool
29 ∃DoPoV: U × R → Bool

31 find UpPoV: U × R
∼
→ (P|V), pre find UpPoV(u,r): ∃UpPoV(u,r)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 9

32 find DoPoV: U × R
∼
→ (P|V), pre find DoPoV(u,r): ∃DoPoV(u,r)

29 ∃UpPoV(u,r) ≡
29 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧{is V|is P}(r(i))∧u=r(j)
29 ∃DoPoV(u,r) ≡
29 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧u=r(i)∧{is V|is P}(r(j))
31 find UpPoV(u,r) ≡
31 let i,j:Nat•{i,j}⊆indsr∧i≤j∧{is V|is P}(r(i))∧u=r(j) in r(i) end
32 find DoPoV(u,r) ≡
32 let i,j:Nat•{i,j}⊆indsr∧i≤j∧u=r(i)∧
32 {is V|is P}(r(j))
32 in r(j) end

2.3 State Attributes of Pipeline Units 35

By a state attribute of a unit we mean either of the following three kinds: (i) the open/close
states of valves and the pumping/not pumping states of pumps; (ii) the maximum (laminar)
oil flow characteristics of all units; and (iii) the current oil flow and current oil leak states
of all units. 36

Unit Attributes:

33. Oil flow, φ : Φ, is measured in volume per time
unit.

34. Pumps are either pumping or not pumping, and
if not pumping they are closed.

35. Valves are either open or closed.

36. Any unit permits a maximum input flow of oil
while maintaining laminar flow. We shall as-
sume that we need not be concerned with tur-
bulent flows.

37. At any time any unit is sustaining a current in-
put flow of oil (at its input(s)).

38. While sustaining (even a zero) current input
flow of oil a unit leaks a current amount of oil
(within the unit).

type

33 Φ
34 PΣ == pumping | not pumping

34 VΣ == open | closed
value

−,+: Φ × Φ → Φ,
<,=,>: Φ × Φ → Bool

34 obs PΣ: P → PΣ
35 obs VΣ: V → VΣ
36–38 obs LamiΦ.obs CurrΦ,obs LeakΦ: U → Φ
is Open: U → Bool

case u of

mkΠ()→true,
mkF()→true,
mkJ()→true,
mkW()→true,
mkS()→true,
mkP()→obs PΣ(u)=pumping,
mkV()→obs VΣ(u)=open

end

accept LeakΦ,excess LeakΦ: U → Φ
axiom

∀ u:U • excess LeakΦ(u) > accept LeakΦ(u)

37

The sum of the current flows into a unit equals the the sum of the current flows out of
a unit minus the (current) leak of that unit. This is the same as the current flows out of a
unit equals the current flows into a unit minus the (current) leak of that unit. The above
represents an interpretation which justifies the below laws. 38

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

10 Domain Science & Engineering

Flow Laws (I):

39. When, in Item 37, for a unit u, we say that
at any time any unit is sustaining a current in-
put flow of oil, and when we model that by
obs CurrΦ(u) then we mean that obs CurrΦ(u)
- obs LeakΦ(u) represents the flow of oil from
its outputs.

value

39 obs inΦ: U → Φ
39 obs inΦ(u) ≡ obs CurrΦ(u)
39 obs outΦ: U → Φ

law:

39 ∀ u:U • obs outΦ(u) =
39 obs CurrΦ(u)−obs LeakΦ(u)

39

Flow Laws (II):

40. Two connected units enjoy the following flow
relation, if

a) two pipes, or

b) a pipe and a valve, or

c) a valve and a pipe, or

d) a valve and a valve, or

e) a pipe and a pump, or

f) a pump and a pipe, or

g) a pump and a pump, or

h) a pump and a valve, or

i) a valve and a pump

are immediately connected

41. then

a) the current flow out of the first unit’s con-
nection to the second unit

b) equals the current flow into the second
unit’s connection to the first unit

law:

40 ∀ u,u′:U •

40 {is Π,is V,is P,is W}(u′|u′′)
40 ∧ adj(〈u〉,〈u′〉)
40 ∧ is Π(u)∨is V(u)∨is P(u)∨is W(u)
40 ∧ is Π(u′)∨is V(u′)∨is P(u′)∨is S(u′)
41 ⇒ obs outΦ(u)=obs inΦ(u′)

40

A similar law can be established for forks and joins. For a fork output-connected to,
for example, pipes, valves and pumps, it is the case that for each fork output the out-
flow equals the in-flow for that output-connected unit. For a join input-connected to, for
example, pipes, valves and pumps, it is the case that for each join input the in-flow equals
the out-flow for that input-connected unit. We leave the formalisation as an exercise.

2.4 Pipeline Actions 41

Simple Pump and Valve Actions:

42. Pumps may be set to pumping or reset to not
pumping irrespective of the pump state.

43. Valves may be set to be open or to be closed
irrespective of the valve state.

44. In setting or resetting a pump or a valve a de-
sirable property may be lost.

value

42 to pump, to not pump: P→N→N
43 vlv to op, vlv to clo: V→N→N
42 to pump(p)(n) as n′

42 pre p ∈ obs Us(n)
42 post let p′:P•obs UI(p)=obs UI(p′) in

42 obs PΣ(p′)=pumping

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 11

42 ∧ else equal(n,n′)(p,p′) end

42 to not pump(p)(n) as n′

42 pre p ∈ obs Us(n)
42 post let p′:P•obs UI(p)=obs UI(p′) in

42 obs PΣ(p′)=not pumping
42 ∧ else equal(n,n′)(p,p′) end

43 vlv to op(v)(n) as n′

42 pre v ∈ obs Us(n)
43 post let v′:V•obs UI(v)=obs UI(v′) in

42 obs VΣ(v′)=open
42 ∧ else equal(n,n′)(v,v′) end

43 vlv to clo(v)(n) as n′

42 pre v ∈ obs Us(n)
43 post let v′:V•obs UI(v)=obs UI(v′) in

42 obs VΣ(v′)=close

42 ∧ else equal(n,n′)(v,v′) end

else equal: (N×N) → (U×U) → Bool

else equal(n,n′)(u,u′) ≡
obs UI(u)=obs UI(u′)

∧ u ∈ obs Us(n) ∧ u′ ∈ obs Us(n′)
∧ omit Σ(u) = omit Σ(u′)
∧ obs Us(n)\{u} = obs Us(n) \ {u′}
∧ ∀ u′′:U•u′′ ∈ obs Us(n)\{u}

≡ u′′ ∈ obs Us(n′) \ {u′}
omit Σ: U → Uno state — ”magic” function
=: Uno state × Uno state → Bool

axiom

∀ u,u′:U•omit Σ(u)=omit Σ(u′)
≡ obs UI(u)=obs UI(u′)

42

Unit Handling Events:

45. Let n be any acyclic net.

45. If there exists p, p′, v, v′, pairs of distinct pumps
and distinct valves of the net,

45. and if there exists a route, r, of length two or
more of the net such that

46. all units, u, of the route, except its first and last
unit, are pipes, then

47. if the route “spans” between p and p′ and the
simple desirable property, sppr(r), does not hold
for the route, then we have a possibly undesir-
able event — that occurred as soon as sppr(r)
did not hold;

48. if the route “spans” between p and v and the
simple desirable property, spvr(r), does not hold
for the route, then we have a possibly undesir-
able event;

49. if the route “spans” between v and p and the
simple desirable property, svpr(r), does not hold
for the route, then we have a possibly undesir-
able event; and

50. if the route “spans” between v and v′ and the
simple desirable property, svvr(r), does not hold
for the route, then we have a possibly undesir-
able event.

events:

45 ∀ n:N • acyclic(n) ∧
45 ∃ p,p′:P,v,v′:V • {p,p′,v,v′}⊆obs Us(n)⇒
45 ∧ ∃ r:R • r ∈ routes(n) ∧
46 ∀ u:U•u ∈ elems(r)\{hd r,r(len r)}⇒
47 is Π(i) ⇒
47 p=hd r∧p′=r(len r) ⇒ ∼sppr prop(r) ∧
48 p=hd r∧v=r(len r) ⇒ ∼spvr prop(r) ∧
49 v=hd r∧p=r(len r) ⇒ ∼svpr prop(r) ∧
50 v=hd r∧v′=r(len r) ⇒ ∼svvr prop(r)

43

Wellformed Operational Nets:

51. A well-formed operational net

52. is a well-formed net

a) with at least one well, w, and at least one
sink, s,

b) and such that there is a route in the net
between w and s.

value

51 wf OpN: N → Bool

51 wf OpN(n) ≡
52 satisfies axiom 14 on page 6
52 ∧ acyclic(n): Item 19 on page 7
52 ∧ wfN SP(n): Item 20 on page 7
52 ∧ satisfies 39 on the preceding page and 40 on the facing page
52a ∧ ∃ w:W,s:S • {w,s}⊆obs Us(n)
52b ⇒ ∃ r:R• 〈w〉̂r̂〈s〉 ∈ routes(n)

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

12 Domain Science & Engineering

44

Initial Operational Net:

53. Let us assume a notion of an initial operational
net.

54. Its pump and valve units are in the following
states

a) all pumps are not pumping, and

b) all valves are closed.

value

53 initial OpN: N → Bool

54 initial OpN(n) ≡ wf OpN(n) ∧
54a ∀ p:P • p ∈ obs Us(n) ⇒ obs PΣ(p)=not pumping ∧
54b ∀ v:V • v ∈ obs Us(n) ⇒ obs VΣ(p)=closed

45

Oil Pipeline Preparation and Engagement:

55. We now wish to prepare a pipeline from some
well, w : W , to some sink, s : S, for flow.

a) We assume that the underlying net is op-
erational wrt. w and s, that is, that there
is a route, r, from w to s.

b) Now, an orderly action sequence for en-
gaging route r is to “work backwards”,
from s to w

c) setting encountered pumps to pumping
and valves to open.

In this way the system is well-formed wrt. the desirable
sppr, spvr, svpr and svvr properties. Finally, setting
the pump adjacent to the (preceding) well starts the
system.

value

55 prepare and engage: W × S → N
∼

→ N
55 prepare and engage(w,s)(n) ≡
55a let r:R • 〈w〉̂r̂〈s〉 ∈ routes(n) in

55b act seq(〈w〉̂r̂〈s〉)(len〈w〉̂r̂〈s〉)(n) end

55 pre ∃ r:R • 〈w〉̂r̂〈s〉 ∈ routes(n)
55c act seq: R → Nat → N → N
55c act seq(r)(i)(n) ≡
55c if i=1 then n else

55c case r(i) of

55c mkV()→
55c act seq(r)(i−1)(vlv to op(r(i))(n)),
55c mkP()→
55c act seq(r)(i−1)(to pump(r(i))(n)),
55c →act seq(r)(i−1)(n)
55c end end

2.5 Connectors 46

The interface , that is, the possible “openings”, between adjacent units have not been
explored. Likewise the for the possible “openings” of “begin” or “end” units, that is, units
not having their input(s), respectively their “output(s)” connected to anything, but left
“exposed” to the environment. We now introduce a notion of connectors: abstractly you
may think of connectors as concepts, and concretely as “fittings” with bolts and nuts, or
“weldings”, or “plates” inserted onto “begin” or “end” units.47

Connectors:

56. There are connectors and connectors have
unique connector identifiers.

57. From a connector one can observe its unique
connector identifier.

58. From a net one can observe all its connectors

59. and hence one can extract all its connector iden-
tifiers.

60. From a connector one can observe a pair of “op-
tional” (distinct) unit identifiers:

a) An optional unit identifier is

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 13

b) either a unit identifier of some unit of the
net

c) or a ‘‘nil’’ “identifier”.

61. In an observed pair of “optional” (distinct) unit
identifiers

• there can not be two ‘‘nil’’ “identi-
fiers”.

• or the possibly two unit identifiers must
be distinct

type

56 K, KI

value

57 obs KI: K → KI
58 obs Ks: N → K-set

59 xtr KIS: N → KI-set
59 xtr KIs(n) ≡ {obs KI(k)|k:K•k ∈ obs Ks(n)}

type

60 oUIp′ = (UI|{|nil|})×(UI|{|nil|})
60 oUIp = {|ouip:oUIp′•wf oUIp(ouip)|}

value

60 obs oUIp: K → oUIp
61 wf oUIp: oUIp′ → Bool

61 wf oUIp(uon,uon′) ≡
61 uon=nil⇒uon′6=nil
61 ∨ uon′=nil⇒uon 6=nil ∨ uon 6=uon′

48

Connector Adjacency:

62. Under the assumption that a fork unit cannot
be adjacent to a join unit

63. we impose the constraint that no two distinct
connectors feature the same pair of actual (dis-
tinct) unit identifiers.

64. The first proper unit identifier of a pair of “op-
tional” (distinct) unit identifiers must identify a
unit of the net.

65. The second proper unit identifier of a pair of
“optional” (distinct) unit identifiers must iden-
tify a unit of the net.

axiom

62 ∀ n:N,u,u′:U•{u.u′}⊆obs Us(n)∧adj(u,u′)
⇒ ∼(is F(u)∧is J(u′))

63 ∀ k,k′:K•obs KI(k)6=obs KI(k′)⇒
case (obs oUIp(k),obs oUIp(k′)) of

((nil,ui),(nil,ui′)) → ui 6=ui′,
((nil,ui),(ui′,nil)) → false,
((ui,nil),(nil,ui′)) → false,
((ui,nil),(ui′,nil)) → ui 6=ui′,

→ false

end

∀ n:N,k:K•k ∈ obs Ks(n) ⇒
case obs oUIp(k) of

64 (ui,nil) → ∃UI(ui)(n)
65 (nil,ui) → ∃UI(ui)(n)
64-65 (ui,ui′) → ∃UI(ui)(n)∧∃UI(ui′)(n)

end

value

∃UI: UI → N → Bool

∃UI(ui)(n) ≡ ∃ u:U•u ∈ obs Us(n)∧obs UI(u)=ui

2.6 A CSP Model of Pipelines 49

We recapitulate Sect. 2.5 — now adding connectors to our model:

Connectors: Preparation for Channels:

66. From an oil pipeline system one can observe
units and connectors.

67. Units are either well, or pipe, or pump, or valve,
or join, or fork or sink units.

68. Units and connectors have unique identifiers.

69. From a connector one can observe the ordered
pair of the identity of the two from-, respec-
tively to-units that the connector connects.

type

66 OPLS, U, K
68 UI, KI
value

66 obs Us: OPLS → U-set

66 obs Ks: OPLS → K-set

67 is WeU, is PiU, is PuU, is VaU,
67 is JoU, is FoU, is SiU: U → Bool [mut. excl.]
68 obs UI: U → UI, obs KI: K → KI
69 obs UIp: K → (UI|{nil}) × (UI|{nil})

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

14 Domain Science & Engineering

50

Above, we think of the types OPLS, U, K, UI and KI as denoting semantic entities. Below,
in the next section, we shall consider exactly the same types as denoting syntactic entities !

51

CSP Behaviours, Channels, etc.:

70. There is given an oil pipeline system, opls.

71. To every unit we associate a CSP behaviour.

72. Units are indexed by their unique unit
identifiers.

73. To every connector we associate a CSP channel.

Channels are indexed by their unique
”k”onnector identifiers.

74. Unit behaviours are cyclic and over the state
of their (static and dynamic) attributes, repre-
sented by u.

75. Channels, in this model, have no state.

76. Unit behaviours communicate with neighbour-
ing units — those with which they are con-
nected.

77. Unit functions, Ui, change the unit state.

78. The pipeline system is now the parallel compo-
sition of all the unit behaviours.

value

70 opls:OPLS
channel

73 {ch[obs KI(k)]|k:K•k ∈ obs Ks(opls)} M
value

78 pipeline system: Unit → Unit

78 pipeline system() ≡
71 ‖{unit(obs UI(u))(u)|u:U•u ∈ obs Us(opls)}
72 unit: ui:UI → U →
76 in,out {ch[obs KI(k)]|k:K•k ∈ obs Ks(opls)∧
76 let (ui′,ui′′)=obs UIp(k) in

76 ui ∈{ui′,ui′′}\{nil} end} Unit

74 unit(ui)(u) ≡ let u′ = Ui(ui)(u) in unit(ui)(u′) end

77 Ui: ui:UI → U →
77 in,out {ch[obs KI(k)]|k:K•k ∈ obs Ks(opls)∧
77 let (ui′,ui′′)=obs UIp(k) in

77 ui ∈{ui′,ui′′}\{nil} end} Unit

3 Issues of Domains and Software Engineering 53

3.1 Domain Description Observations

The domain model of the previous section was supposed to have been read in a hasty
manner, one which emphasised what the formulas were intended to model, rather than
going into any details on modelling choice and notation.

What can we conclude from such a hastily read example ?

3.1.1 Syntax 54

We describe and formalise some of the syntax of nets of pipeline units: not the syntactical,
physical design of units, but the conceptual “abstract structure” of nets. how units are
connected, and notions like routes and special property routes.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 15

3.1.2 Semantics 55

We hint at and formalise some of the semantics of nets of pipeline units, not a “full”
semantics, just “bits and pieces”: the flow of liquids (oil) or gasses (has), the opening and
closing of valves, the pumping or not pumping of pumps, and how all of these opened
or closed valves and pumping or not pumping pumps conceptually interact, concurrently,
with other units.

3.1.3 Domain Laws 56

We also hint at some laws that pipelines must satisfy. Laws of physical systems (such as
pipelines) are properties that hold irrespectively of how we model these systems. They are,
for physical systems, “laws of nature”. For financial service systems, such as the branch
offices of a bank, a law could be:

The amount of cash in the bank immediately before the branch office opens in
the morning (for any day) minus the amount of cash withdrawn from the branch
during its opening hours (that day) plus the amount of cash deposited into the
branch during its opening hours (that day) equals the amount of cash in the bank
immediately after the branch office closes for the day !

This law holds even though the branch office staff steals money from the bank or criminals
robs the bank. The law is broken if (someone in) the bank prints money !

3.1.4 Description Ontology 57

The pipeline description focuses on entities such as the composite entity, the pipeline net,
formed, as we have treated them in this model, from atomic entities such as forks, joins,
pipes, pumps, valves and wells; operations such as opening and closing valves, setting
pumps to pump and resetting them to not pump, etc.; events, not illustrated in this
model, but otherwise such as a pipe exploding, that is, leaking more than acceptable, etc.;
and behaviours — which are only hinted at in the CSP model of nets. Where nets were
composite so is the net process: composed from “atomic” unit processes, all cyclic, that
is, never-ending.

3.1.5 Modelling Composite Entities 58

We have not modelled pipeline nets as the graphs, as they are normally seen, using
standard mathematical models of graphs. Instead we have made use of the uniqueness of
units, hence of unit identifiers, to endow any unit with the observable attributes of the
other units to which they are connected. We shall later, in Sect. 4 on page 18 [Mereology],
comment on how we utilise the concept of unique identifiers of entities (such as pipeline
units) to abstractly model how such system components form parts of wholes (including
parts of parts).

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

16 Domain Science & Engineering

3.2 Domain Modelling 59

Physicists model Mother Nature, that is, such natural science phenomena such as classical
mechanics, thermodynamics, relativity and quantum mechanics. And physicists rely on
mathematics to express their models and to help them predict or discover properties of
Mother Nature.60

Physicists research physics, classically, with the sôle intention of understanding, that
is, not for the sake of constructing new mechanical, thermodynamical, nuclear, or other
gadgets.61

Software engineers now study domains, such as air traffic, banking, health care,
pipelines, etc. for the sake of creating software requirements from which to create software.

3.3 Current and Possible Practices of Software Development 62

3.3.1 Todays Common, Commercial Software Development

A vast majority of todays practice lets software development (2) start with UML-like software
design specifications, (3) followed by a “miraculous” stage of overall code design, and (4)
ending with coding — with basically no serious requirements prescription and no attempts
to show that (3) relates to (2) and (4) to (3) ! 40 years of Hoare Logics has had basically
no effect. Hoare Logics may be taught at universities, but !?

3.3.2 Todays “Capability Maturity Model” Software Development 63

In “a few hundred” software houses software development (1) starts with more proper,
still UML-like, but now requirements prescription, (2) continues with more concrete UML-like
software design specifications, (3) still followed by a “miraculous” stage of overall code
design, (4) and ending with coding — with basically all these (1–4) phases being process
assessed and process improved [29] based on rather extensive, cross-correlated documents
and more-or-less systematic tests.

3.3.3 Todays Professional Software Development 64

In “a few dozen” software houses software development phases and stages within (1–4)
above are pursued (a) in a systematic (b) or a rigorous (c) or a formal manner and (a)
where specifications of (1–4) are also formalised, where properties of individual stages (b-
c) are expressed and (b) sometimes or (c) or always proved or model-checked or formally
tested, and where correctness of relations between phases (1↔2, 2↔3 and 3↔4) are likewise
expressed etc. (b–c–d) ! Now 40 years of computing science is starting to pay off, but only
for such a small fraction of the industry !

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 17

3.4 Tomorrows Software Development 65

3.4.1 The Triptych Dogma

The dogma expresses that before software can be designed we must have a robust under-
standing of the requirements; and before requirements can be prescribed we must have a
robust understanding of the domain.

An “ideal” consequence of the dogma is that software development is pursued in three
phases: first (0) one of domain engineering, then (1) one of requirements engineering and
finally (2–4) one of software design.

3.4.2 Triptych Software Development 66

In domain engineering (i) we liaise with clearly identified groups of all relevant domain

stakeholders, far more groups and far more liaison that you can imagine; (ii) acquiring

and analysing knowledge about the domain; (iii) creating a domain terminology; (iv)
rough-describing the business processes; (v) describing: narratively and formally, “the”
domain; (vi) verifying (proving, model checking, formally testing) properties (laws etc.)
about the described domain; (vi) validating the domain description; and, all along, (vii)
creating a domain theory — all this in iterative stages and steps 67

In requirements engineering we (i) “derive”, with clearly identified groups of all rele-
vant requirements stakeholders, domain, interface and machine requirements; (ii) rough-
describing the re-engineered business processes; (iii) creating a domain terminology;
(iv) prescribing: narratively and formally, “the” requirements (based on the “deriva-
tions”); (v) verifying (proving, model checking, formally testing) properties (laws etc.)
about the prescribed requirements; and thus (vi) establishing the feasibility and satisfia-

bility of the requirements — all this in iterative stages and steps, sometimes bridging back
to domain engineering. 68

In software design we refine, in stages of increasing concretisation, the requirements
prescription into components and modules — while model-checking, formally testing

and proving correctness of refinements as well as properties of components and modules. 69

Thus formal specifications, phases, stages and steps of refinement, formal tests,

model checks, and proofs characterise tomorrows software development.

A few companies are doing just this: Altran Praxis (UK) — throughout all projects;
Chess Consulting (NL), — consulting on formal methods; Clearsy Systems Engineering
(F) — throughout most projects; CSK Systems (J) — in some, leading edge projects;
ISPRAS (RU) — in some projects; and Microsoft (US) — in a few projects.

But none of them are, as yet, including domain engineering.

3.4.3 Justification 70

How can we then argue that domain engineering is a must ? We do so in three ways.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

18 Domain Science & Engineering

The Right Software and Software That Is Right

First we must make sure that the customers get the right software. A thorough study of
the domain and a systematic “derivation” of requirements from the domain description are
claimed to lead to software that meets customers’ expectations.71

Then we must make sure that the software is right. We claim that carefully expressed
and analysed specifications, of domains, of requirements and of software designs, together
with formal verifications, model checks and tests — all based also on formalisations — will
result in significantly less error-prone software.

Professional Engineering 72

Classical engineering is based on the natural sciences and proceeds on the basis of their
engineers having a deep grasp of those sciences.

Aeronautical engineers have deep insight into aerodynamics and celestial mechanics
and understands and exploits their mathematical models.73

Mobile radio-telephony engineers understands Maxwell’s equations and can “massage”
these while designing new Mobile telephony radio towers.

Control engineers designing automation for paper mills, power plants, cement factories,
etc., are well-versed in stochastic and adaptive control theories and rely on these to design
optimal systems.

Practicing software engineers, in responsible software houses, must now specialise in
domain-specific developments — documented domain models become corporate assets —
and are increasingly forced to formalise these models.

4 A Specification Ontology and Epistemology3

4.1 A Twofold Problem

The twofold problem is the following. (1) There is a dichotomy between what an informal
description, a narrative, and what a formal description, a formalisation, refers to. (2) And
which are our means of description?74

Problem (1) is indicated in Fig. 3 on the facing page. A narrative, which is expressed
in some national, that is, informal language, designates some (i.e., “the”) domain. A
formalisation (supposedly of some (i.e., “the”) domain) denotes a mathematical model.
One can claim, as we shall, that a formalisation designates a number of narratives, including

3Webster Collegiate Dictionary explanation of philosophical terms:

(i–ii) Ontology: (i) a branch of metaphysics concerned with the nature and relations of being; (ii) a
particular theory about the nature of being or the kinds of things that have.

(iii) Epistemology: the study or a theory of the nature and grounds of knowledge especially with
reference to its limits and validity

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 19

Narrative"The" Domain Formalisation Model

Mathematical
Semantics

DenotationDesignation Designation

is_a_model_of

Pragmatics

Linguistics

Figure 3: Formal and Informal Relations

“the one” given. One can “narrate” a formalisation. The “beauty” of a formalisation, if
any, is its ability to “inspire” designated formalisations that are worth reading, that exhibit
clear a clear, didactic understanding of the domain, and is pedagogical, that is, introduces
domain phenomena and notions, gently, one-by-one. (1.1) In Sect. 2 on page 3 we presented 75

a pair of descriptions — purportedly — of a domain of (a class of) pipeline systems. In
the narrative part of the pair such terms as type, value, entity, function and behaviour
were intended to “point to”, to refer to phenomena and concepts of the domain, that is,
to sets of such phenomena and concepts formed, basically, from these phenomena. (1.2) 76

In the formal part of the pair of domain descriptions the corresponding, formal textual
phrases, i.e., the syntactic sentences of the formulas, have a semantics, and that semantics,
as in RSL, is usually, for formal specifications, some mathematical structures. Therein, 77

in (1.1–1.2), lies the first problem: The relation between narrative texts and the domain,
“the real world”, can only be an informal one. The relation between the formal texts
and their semantics is a formal one. “And never the twain shall meet!”4 One can not
establish a formal relation between the informal world of domains and the formal world of
mathematical specifications. The above is an essence of abstract models. 78

(2.) Then we outline the “describability” problem. What, of actual domains, can be

modelled ? That is, what, of a[ny] domain, on one hand, can be narrated, all or some ?
and on the other hand, can be formalised, all or some ? This double question is one of
ontology and of epistemology. This section shall discuss issues related to Item (i–ii) of
Footnote 3 on the facing page.

4.1.1 Russell’s Problem 79

Bertrand Russell, in [50] and in several other writings, brought the following example
(abbreviated): “The present King of France”. At present there is no designation in any

4Rudyard Kipling, Barrack-room Ballads, 1892: “Oh, East is East, and West is West, and never the

twain shall meet.”

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

20 Domain Science & Engineering

domain of such a person. Thus the sentence does not make sense. In a formalisation we
would express this as:

type
DOMAIN, DESIGNATION

value
obs DESIGNATIONs: DOMAIN → DESIGNATION-infset

designation: Sentence → DOMAIN
∼
→ DESIGNATION

existance: Sentence → DOMANI → Bool
designation(s)(ω) ≡ if existance(s)(ω) then ... else chaos end

I claim that Russell’s “problem” lies in the green dashed [rounded edge] box of the left side
of Fig. 3 on the previous page. The simpler-minded computer/computing science problem
of syntax and semantics is then that of (the brown rectangular box of) the right side of
Fig. 3 on the preceding page.

4.1.2 The Problem of This Paper 80

The problem of this paper should now be a little more clear: It is that of “reconciling”
of what is indicated by the two “boxes” of Fig. 3 on the previous page: the classical
epistemological universe of discourse of the left side of that figure, and the domain science
universe of discourse of the right side of that figure.

Put in different terms: We would somehow like to establish that the horisontal, non-
dashed double arrows expresses that the model (to the extreme right) “is a model” of the
domain (to the extreme left).

4.2 What Is An Ontology ? 81

4.2.1 Some Remarks

By a specification ontology we shall understand a set of mathematical concepts to be used
in specifying “something”. By a domain description ontology we shall understand a set
of concepts to be used in describing a domain. We shall choose a textual, rather than a
diagrammatic (graphical) form for expressing descriptions. The description ontology there-
fore hinges on a number of textual (i.e., non-diagrammatic) syntactic constructs. These
will be covered in Sects. 4.3–4.6 and 4.8–4.9. The pragmatics of description designations82

(using these syntactic constructs) are, of course, phenomena of the domain. The seman-
tics of description designations are, of course, mathematical constructs. Thus we have
a duality here: On one hand we have that the pragmatics, that is, the intention of our
use of descriptions, is that they designate phenomena of an actual world, whereas, on the
other hand, the semantics, that is, the formal meaning of descriptions, is that they denote
mathematical concepts.

Is there a problem here ?
And: what can we describe ?83

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 21

Yes, there is a “slight problem”? We cannot, in fact never, establish a formal relation-
ship between the pragmatics and the semantics.

And: On one hand there is a world, that is, a set of domains, to be described. And,
on the other hand, there are some syntactic constructs that can be used in providing such
descriptions. Are the latter sufficient to describe all that we wish to describe? Well, we
shall never know. So it is a conjecture, not a theory of description ontologies. 84

The above remarks, naturally, influence the rest of this more “theoretical/philosophical”
part of the paper.

That is, we thus hint at, but do not present, a more thorough philosophy of science
reasoning, arguments that should support our description ontology.

4.2.2 Description Ontology Versus Ontology Description 85

According to Wikipedia: Ontology is the philosophical study of (i) the nature of being,

existence or reality in general, (ii) as well as of the basic categories of being and their

relations.

Section 3.1.4 emphasized the need for describing domain phenomena and concepts.
This section puts forward a description ontology — (i) which “natures of being, existence

or reality” and (ii) which “categories of being and their relations” — that we shall apply
in the description of domain phenomena and concepts. 86

Yes, we do know that the term ‘description ontology’ can easily be confused with
‘ontology description’ — a term used very much in two computing related communities:
AI (artificial intelligence) and WWW (World Wide Web). These communities use the term
‘ontology’ as we use the term ‘domain’ [3, 13, 15, 22, 23, 24, 25, 52].

By [domain] ‘description ontology’ we shall mean a set of notions that are used in
describing a domain. So the ontology is one of the description language not of the domain
that is being described.

4.3 Categories, Predicates and Observers for Describing Domains 87

It is not the purpose of this paper to motivate the categories, predicates and observer
functions for describing phenomena and concepts. This is done elsewhere [4, 5, 7, 8, 9].
Instead we shall more-or-less postulate one approach to the analysis of domains. We
do so by postulating a number of meta-categories, meta-predicates and meta-observer
functions. They characterise those non-meta categories, predicates and observer functions
that the domain engineer cum researcher is suggested to make use of. There may be other
approaches [51, John Sowa, 1999] than the one put forward in this paper.

4.3.1 An Aside on Notation 88

In this entire section we shall be using two kinds of notation. Both may look like uses of
RSL, but they are not. A notation which involves the use of THIS FONT. And a notation
which, in some form of mathematics, explain the former.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

22 Domain Science & Engineering

Please note that these meta-functions, those “partially spelled” with THIS FONT are
not RSL functions but are mental functions applied by the domain modeller in the analysis
of domains.

4.3.2 The Hypothetical Nature of Categories, Predicates and Observers 89

In the following we shall postulate some categories of phenomena5, that is, some meta-
types:

categories
ALPHA, BETA, GAMMA

What such a clause as the above means is that we postulate that there are the categories
ALPHA, BETA, GAMMA of “things” (phenomena and concepts) in the world of domains.
That is, there is no proof that such “things” exists. It is just our way of modelling domains.90

If that way is acceptable to other domain science researchers or domain engineers, fine.
In the end, which we shall never reach, those aspects of a, or the domain science, may
“survive”. If not, well, then they will not ”survive” !

4.3.3 Predicates and Observers 91

With the categories just introduced we then go on to postulate some predicate and observer
functions. For example:

predicate signatures
is ALPHA: “Things” → Bool
is BETA: “Things” → Bool
is GAMMA: “Things” → Bool

observer signatures

obs ALPHA: “Things”
∼
→ ALPHA

obs BETA: ALPHA
∼
→ BETA

obs GAMMA: ALPHA
∼
→ GAMMA

So we are “fixing” a logic !92

The “Things” clause is a reference to the domain under scrutiny. Some ‘things’ in
that domain are of category6 ALPHA, or BETA, or GAMMA. Some are not. It is then
postulated that from such things of category ALPHA one can observe things of categories
BETA or GAMMA. Whether this is indeed the case, i.e., that one can observe these things
is a matter of conjecture, not of proof.

5These observable phenomena or abstract concepts are, in general, entities, more specifically either
simple entities, actions, events or behaviours.

6We use the term ‘category’ in lieu of either of the term ‘type’, ‘class’, ‘set’. By here using the term
‘category’ we do not mean category in the mathematical sense of category theory.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 23

4.3.4 Uncertainty 93

The function signature:

value

fct: A
ℜ
→B

expresses a relation, fctℜ, which one may think of as:

type
FCTℜ = (A × B)-infset.

Applying fct to an argument a, that is, f(a), may then either “always” result in some
specific b, in which case fct is a function; or result in chaos, that is, fct is not defined for
that argument a, that is: a 6∈fctℜ; or sometimes result in some b, sometimes in another b′,
etc., that is, fctℜ={(a,b), (a,b′), (a,b′′), . . . }.

4.3.5 Meta-Conditions 94

Finally we may sometimes postulate the existence of a meta-axiom:

meta condition:
Predicates over ALPHA, BETA and GAMMA

Again, the promulgation of such logical meta-expressions are just conjectures, not the
expression of “eternal” truths.

4.3.6 Discussion 95

So, all in all, we suggest four kinds of meta-notions:

• categories,

• is Category and obs Property predicates,

• obs Category and obs Attribute observers, and

• meta-conditions, i.e., axioms.

The category [type] A, B, ..., is A, is B, ... obs A, obs B, ... meta-condition [axiom]
predicate notions derive from McCarthy’s analytic syntax [35].

Discussion: Thus the formal specification and the high level programming languages’
use, that is, the software designers’ use of type clauses, predicate functions and observer
(in the form of selector) functions shall be seen in the context of specifications, respectively
program code dealing with computable quantities and decomposing and constructing such
quantities.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

24 Domain Science & Engineering

The proposal here, of suggesting that the domain engineer cum researcher makes us of
categories, predicates, observers and meta-conditions is different. In domain de-
scriptions an existing “universe of discourse” is being analysed. Perhaps the categories,
predicates, observers and meta-conditions makes sense, perhaps the domain engineer
cum researcher can use these descriptional “devices” to “compose” a consistent and rela-
tive complete “picture”, i.e., description, of the domain under investigation.

Either the software designers’ use of formal specification or programming language con-
structs is right or it is wrong, but the domain engineer cum researchers’ use is just an
attempt, a conjecture. If the resulting domain description is inconsistent, then it is wrong.
But it can never be proven right. Right in the sense that it is the right description. As in
physics, it is just a conjecture. There may be refutations of domain models.

4.4 Entities 96

What we shall describe is what we shall refer to as entities. In other words, there is a
category and meta-logical predicate ENTITY, is ENTITY. The is ENTITY predicate
applies to “whatever” in the domain, whether an entity or not, and “decides”, i.e., is
postulated to analyse whether that “thing” is an entity or not:

predicate signature:
is ENTITY: “Thing” → Bool

meta condition:
∀ e:ENTITY • is ENTITY(e)

Discussion: When we say “things”, or entities, others may say ‘individuals’, ‘objects’, or
use other terms.

The meta-predicate is ENTITY provides a rather “sweeping” notion, namely that some-
one, the domain engineer, an oracle or other, can decide whether “something” is to be
described as a phenomenon or concept of the domain.97

• • •

By introducing the predicate is ENTITY we have put the finger on what this section is
all about, namely “what exists ?” and “what can be described ?” We are postulating a
description ontology. It may not be an adequate one. It may have flaws. But, for the
purposes of raising some issues of epistemological and ontological nature, it is adequate.

4.4.1 Entity Categories 98

We postulate four entity categories:

category:
SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 25

Some phenomena or concepts are simple entities. Simple entity phenomena are the
things we can point to, touch and see. They are manifest. Other phenomena, for example
those we can hear, smell, taste, or measure by physics (including chemistry) apparatus
are properties (attributes) of simple entity phenomena. Concepts are abstractions about
phenomena and/or other concepts. 99

A subset of simple domain entities form a state. Actions are the result of applying
functions to simple domain entities and changing the state. What is changed are the
attribute values of simple (state) entities. Actions are observable through the observation
of the occurrence of the ‘before’ and ‘after’ states. The functions or relations that relate
before and after states are not observable. They are our way of “explaining” the actions.
If you wish to consider them as simple entities then they are atomic have no name, but do
have a type, the function signature. Actions are caused by domain behaviours. 100

Events are state changes that satisfy a predicate on the ‘before’ and ‘after states’.
Events are observable through their “taking place”, that is, by observing, as if they were
actions, their ‘before’ and ‘after states’. but also by, somehow, observing that they are not
caused by domain behaviours, well, possibly then by behaviours “outside” the domain being
considered. The above represents a “narrow” concept of events. A less narrow concept
would characterise some domain actions as events; we might call them “interesting” action
events. 101

Behaviours are sets of sequences (of sets of) actions and events. Behaviours are ob-
servable — through the observation of the constituent actions and events.

Below we shall have “much more” to say about these four categories of entities. 102

category:
ENTITY = SIMPLE ENTITY ∪ ACTION ∪ EVENT ∪ BEHAVIOUR

Discussion: The four categories of entities may overlap.
With each of the four categories there is a predicate:

predicate signature:

is SIMPLE ENTITY “Thing”
ℜ
→ Bool

is ACTION “Thing”
ℜ
→ Bool

is EVENT “Thing”
ℜ
→ Bool

is BEHAVIOUR “Thing”
ℜ
→ Bool

Each of the above four predicates require that their argument t:“Thing” satisfies:

is ENTITY(t)

The use of
ℜ
→ shall illustrate the uncertainty that may befell the domain modeller. We

shall henceforth “boldly” postulate functionality, i.e., →, of the is SIMPLE ENTITY,
is ACTION, is EVENT and is BEHAVIOUR functions. 103

The ∪ “union” is inclusive:

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

26 Domain Science & Engineering

meta condition:
∀ t:̀ T̀hing′′•is ENTITY(t) ⇒

is SIMPLE ENTITY(t) ∨ is ACTION(t) ∨ is EVENT(t) ∨ is BEHAVIOUR(t)

4.5 Simple Entities 104

We postulate that there are atomic simple entities, that there are [therefrom distinct]
composite simple entities, and that a simple entity is indeed either atomic or composite.
That atomic simple entities cannot meaningfully be described as consisting of proper other
simple entities, but that composite simple entities indeed do consist of proper other simple
entities. It is us, the observers, who decide to abstract a simple entity as either being
atomic or as being composite.105

That is:

category:
SIMPLE ENTITY = ATOMIC ∪ COMPOSITE

observer signature:
is ATOMIC: SIMPLE ENTITY → Bool
is COMPOSITE: SIMPLE ENTITY → Bool

meta condition:
ATOMIC ∩ COMPOSITE = {}
∀ s: “Things”:SIMPLE ENTITY •

is ATOMIC(s) ≡ ∼is COMPOSITE(s)

Discussion: We put in brackets, in the text paragraph before the above formulas, [there-
from distinct]. One may very well discuss this constraint — are there simple entities that are
both atomic and composite ? — and that is done by Bertrand Russell in his ‘Philosophy of
Logical Atomism’ [50].

4.5.1 Discrete and Continuous Entities 106

We postulate two forms of SIMPLE ENTITIES: DISCRETE, such as a railroad net, a
bank, a pipeline pump, and a securities instrument, and CONTINUOUS, such as oil and
gas, coal and iron ore, and beer and wine.

category:
SIMPLE ENTITY = DISCRETE SIMPLE ENTITY ∪ CONTINUOUS SIMPLE ENTITY

predicate signatures:
is DISCRETE SIMPLE ENTITY: SIMPLE ENTITY → Bool
is CONTINUOUS SIMPLE ENTITY: SIMPLE ENTITY → Bool

meta condition:
[is it desirable to impose the following]
∀ s:SIMPLE ENTITY •

is DISCRETE SIMPLE ENTITY(s) ≡ ∼CONTINUOUS SIMPLE ENTITY(s) ?

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 27

Discussion: In the last lines above we raise the question whether it is ontologically possible
or desirable to be able to have simple entities which are both discrete and continuous.
Maybe we should, instead, express an axiom which dictates that every simple entity is at
least of one of these two forms.

4.5.2 Attributes 107

Simple entities are characterised by their attributes: attributes have name, are of type
and has some value; no two (otherwise distinct) attributes of a simple entity has the same
name.

category:
ATTRIBUTE, NAME, TYPE, VALUE

observer signature:
obs ATTRIBUTEs: SIMPLE ENTITY → ATTRIBUTE-set
obs NAME: ATTRIBUTE → NAME

obs TYPE: ATTRIBUTE → TYPE

obs VALUE: ATTRIBUTE → VALUE

meta condition:
∀ s:SIMPLE ENTITY •

∀ a,a′:ATTRIBUTE • {a,a′}⊆obs ATTRIBUTEs(s)
∧ a 6=a′ ⇒ obs NAME(a) 6=obs NAME(a′)

108

Examples of attributes of atomic simple entities are: (i) A pipeline pump usually has the fol-
lowing attributes: maximum pumping capacity, current pumping capacity, whether

for oil or gas, diameter (of pipes to which the valve connects), etc. (ii) At-
tributes of a person usually includes name, gender, birth date, central registration

number, address, marital state, nationality, etc. 109

Examples of attributes of composite simple entities are: (iii) A railway system usually
has the following attributes: name of system, name of geographic areas of location

of rail nets and stations, whether a public or a private company, whether fully,

partly or not electrified, etc. (iv) Attributes of a bank usually includes: name of

bank, name of geographic areas of location of bank branch offices, whether a

commercial portfolio bank or a high street, i.e., demand/deposit bank, etc.
We do not further define what we mean by attribute names, types and values. Instead

we refer to [37, Properties] and [20, Properties, Types and Meaning] for philosophical
discourses on attributes.

4.5.3 Atomic Simple Entities: Attributes 110

Atomic simple entities are characterised only by their attributes.
Discussion: We shall later cover a notion of domain actions, that is functions being
applied to entities, including simple entities. We do not, as some do for programming
languages, “lump” entities and functions (etc.) into what is there called ‘objects’.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

28 Domain Science & Engineering

4.5.4 Composite Simple Entities: Attributes, Sub-entities and Mereology

Composite simple entities are characterised by three properties: (i) their attributes, (ii) a
proper set of one or more sub-entities (which are simple entities) and (iii) a mereology of
these latter, that is, how they relate to one another, i.e., how they are composed.

Sub-entities 111

Proper sub-entities, that is simple entities properly contained, as immediate parts of a
composite simple entity, can be observed (i.e., can be postulated to be observable):

observer signature:
obs SIMPLE ENTITIES: COMPOSITE → SIMPLE ENTITY-set

Mereology 112

Mereology is the theory of part-hood relations: of the relations of part to whole and the
relations of part to part within a whole. Suffice it to suggest some mereological structures:

• Set Mereology: The individual sub-entities of a composite entity are “un-ordered”
like elements of a set. The obs SIMPLE ENTITIES function yields the set elements.

predicate signature:
is SET: COMPOSITE → Bool

113

• Cartesian Mereology: The individual sub-entities of a composite entity are “or-
dered” like elements of a Cartesian (grouping). The function obs ARITY yields the
arity, 2 or more, of the simple Cartesian entity. The function obs CARTESIAN yields
the Cartesian composite simple entity.

predicate signature:
is CARTESIAN: COMPOSITE → Bool

observer signatures:

obs ARITY: COMPOSITE
∼
→ Nat

pre: obs ARITY(s): is CARTESIAN(s)

obs CARTESIAN: COMPOSITE
∼
→

SIMPLE ENTITY × ... × SIMPLE ENTITY

pre obs CARTESIAN(s): is CARTESIAN(s)

114

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 29

meta condition:
∀ c:SIMPLE ENTITY•

is COMPOSITE(c)∧is CARTESIAN(c) ⇒
obs SIMPLE ENTITIES(c) = elements of obs CARTESIAN(c)

∧ cardinality of obs SIMPLE ENTITIES(c) = obs ARITY(c)

We just postulate the elements of and the cardinality of meta-functions. Although
one may have that distinct(ly positioned) elements of a Cartesian to be of the same
type and even the same value, they will be distinct — with distinctness “deriving”
from their distinct positions. 115

• List Mereology: The individual sub-entities of a composite entity are “ordered”
like elements of a list (i.e., a sequence). Where Cartesians are fixed arity sequences,
lists are variable length sequences.

predicate signature:
is LIST: COMPOSITE → Bool

observer signatures:

obs LIST: COMPOSITE
∼
→ list of SIMPLE ENTITY

pre obs LIST(s): is LIST(s)

obs LENGTH: COMPOSITE
∼
→ Nat

pre obs LENGTH(s): is LIST(s)

116

meta condition: ∧
∀ s:SIMPLE ENTITY•

is COMPOSITE(s)∧is LIST(s) ⇒
obs SIMPLE ENTITIES(s) = elements of obs LIST(s) ∧
cardinality of elements of obs LIST(s) = LENGTH(s) ∧
∀ e,e′ • {e,e′} ⊆ elements of ⇒

obs LIST(s) ⇒ obs TYPE(e)=obs TYPE(e′)

We also just postulate the list of, elements of and the cardinality of meta-
functions. Again, as for Cartesians, we shall postulate that although distinct elements
of a list (which are all of the same type) may have the same value — they are
distinct due to their distinct position in the list, that is, their adjacency to a possible
immediately previous and to a possibly immediately following element. 117

• Graph Mereology: The individual sub-entities of a composite entity are “or-
dered” like elements of a graph, i.e., a net, of elements. Trees, lattices, cycles
and other structures are just special cases of graphs. Any (immediate) sub-entity
of a composite simple entity of GRAPH mereology may be related to any number

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

30 Domain Science & Engineering

of (not necessarily other) (immediate) sub-entities of that same composite simple
entity GRAPH in a number of ways:it may immediately PRECEDE, or immedi-
ate SUCCEED or be BIDIRECTIONALLY LINKED with these (immediate) sub-
entities of that same composite simple entity. In the latter case some sub-entities
PRECEDE a SIMPLE ENTITY of the GRAPH, some sub-entities SUCCEED a
SIMPLE ENTITY of the GRAPH, some both.118

predicate signature:
is GRAPH: COMPOSITE → Bool

observer signatures:

obs GRAPH: COMPOSITE
∼
→ GRAPH

pre obs GRAPH(g): is GRAPH(g)
obs PRECEEDING SIMPLE ENTITIES:

COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set
pre obs PRECEEDING SIMPLE ENTITIES(c,s):

is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)
obs SUCCEEDING SIMPLE ENTITIES:

COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set
pre obs PRECEEDING SIMPLE ENTITIES(c,s):

is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)
meta condition:

∀ c:SIMPLE ENTITY • is COMPOSITE(c) ∧ is GRAPH(c)
⇒ let ss = SIMPLE ENTITIES(c) in

∀ s′:SIMPLE ENTITY • s′ ∈ ss
⇒ obs PRECEEDING SIMPLE ENTITIES(c)(s′) ⊆ ss

∧ obs SUCCEEDING SIMPLE ENTITIES(c)(s′) ⊆ ss
end

119

4.5.5 Discussion

Given a “thing”, s, which satisfies is SIMPLE ENTITY(s), the domain engineer can now
systematically analyse this “thing” using any of the is ATOMIC(s), is COMPOSITE(s),
is SET(s), is CARTESIAN(s), is LIST(s), is GRAPH(s), etcetera. predicates and using
also the observer functions sketched above.120

Given any SIMPLE ENTITY the domain engineer can now analyse it to find out
whether it is an ATOMIC or a COMPOSITE entity. An, in either case, the domain
engineer can analyse it to find out about its ATTRIBUTES. If the SIMPLE ENTITY

is COMPOSITE then its SIMPLE ENTITIES and their MEREOLOGY can be addi-
tionally ascertained. In summery: If ATOMIC then ATTRIBUTES can be analysed.121

If COMPOSITE then ATTRIBUTES, SIMPLE ENTITIES and MEREOLOGY can be
analysed.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 31

Please note that these meta-functions, those “partially spelled” with THIS FONT, are
not RSL functions but are mental functions applied, conceptually, i.e., “by the brain” of
the domain modeller in the analysis of domains.

4.5.6 Practice 122

How do we interpret this section, Sect. 4.5, on simple entities? We practice it by analysing
the domain according to the principles laid down in this section, Sect. 4.5, by discovering sim-
ple entities of the domain, by discovering and writing down, for example in RSL, their sorts (i.e.,
abstract types) or their concrete types, by possibly also discovering (postulating, conjecturing)
and writing down constraints, that is axioms or well-formedness predicates over these sorts and
types. That is, we are not using these “funny” names, such as SIMPLE ENTITY, ATOMIC, 123

COMPOSITE, DISCRETE SIMPLE ENTITY, CONTINUOUS SIMPLE ENTITY, ATTRIBUTE,
NAME, TYPE, VALUE, CARTESIAN, ARITY, LIST, LENGTH, GRAPH, PRECEDING SIMPLE ENTITIES

SUCCEEDING SIMPLE ENTITIES, etc., nor their is or obs forms. The example of
Sect. 2 has given several examples of sort and type definitions as well as of constraint defini-
tions.

4.6 Actions 124

4.6.1 Definition

By a STATE we mean a set of one or more SIMPLE ENTITIES. By an ACTION we
shall understand the application of a FUNCT ION to (a set of, including the state of)
SIMPLE ENTITIES such that a STATE change occurs.

4.6.2 Non-Observables 125

The mathematical concept of a function, explained as “that thing which when applied to
something(s) called its arguments yields (i.e., results) in something called its results that
concept is an elusive one. No-one has ever “seen”, “touched”, “heard” or otherwise sensed
a function. Functions are purely a mathematical construction, possessing a number of
properties and introduced here in order to explain what is going on in a(ny) domain. We
shall not be able to observe functions. To highlight this point we use this SPELLING
OF FUNCT IONS.

4.6.3 Observers &c. 126

We postulate that the domain engineer can indeed decide, that is, conjecture, whether a
“thing”, which is an ENTITY is an ACTION.

category:
ACTION, FUNCT ION , STATE

predicate signature:
is ACTION: ENTITY → Bool

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

32 Domain Science & Engineering

127 Given an ENTITY of category ACTION one can observe, i.e., conjecture the FUNCT ION
(being applied), the ARGUMENT CARTESIAN of SIMPLE ENTITIES to which the
FUNCT ION is being applied, and the resulting change STATE change. Not all elements
of the CARTESIAN ARGUMENT are SIMPLE STATE ENTITIES.128

category:
STATE = SIMPLE ENTITY

FUNCT ION = SIMPLE ENTITY × STATE → STATE

ARGUMENT = {|s:SIMPLE ENTITY•is CARTESIAN(s)|}
observer signatures:

obs ACTION: ENTITY → ACTION

obs ARGUMENT: ACTION → ARGUMENT

obs INPUT STATE: ACTION → STATE

obs RESULT STATE: ACTION → STATE

4.6.4 Practice 129

How do we interpret this section, Sect. 4.6, on actions? We practice it by analysing the
domain according to the principles laid down in this section, Sect. 4.6, by discovering actions
of the domain, by discovering and writing down, for example in RSL, their signatures, by possibly
also discovering (postulating, conjecturing) and writing down their definitions. That is, we are
not using these “funny” names, such as ACTION, STATE, ARGUMENT, INPUT STATE,
RESULTSTATE nor their is or obs forms. The earlier example of Sect. 2 has given several
examples of action signatures and definitions.

4.7 “Half-way” Discussion7
130

Some pretty definite assertions were made above: We postulate that the domain engineer
can indeed decide whether a “thing”, which is an ENTITY is an ACTION And that one can
observe the FUNCT ION , the ARGUMENT and the RESULT of an ACTION. We do
not really have to phrase it that deterministically. It is enough to say: One can speak of
actions, functions, their arguments and their results. Ontologically we can do so. Whether,
for any specific simple entity we can decide whether it is an actions is, in a sense, immaterial:
we can always postulate that it is an action and then our analysis can be based on that
hypothesis. This discussion applies inter alia to all of the entities being introduced here,
together with their properties.

The domain engineer cum researcher can make such decisions as to whether an entity
is a simple one, or an action, or an event or a behaviour. And from such a decision
that domain engineer cum researcher can go on to make decisions as to whether a simple
entity is discrete or continuous, and atomic or composite, and then onto a mereology for

7“Halfway”: after simple entities and actions and before events and behaviours.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 33

the composite simple entities. Similarly the domain engineer cum researcher can make
decisions as to the function, arguments and results of an action. All these decisions does
not necessarily represent the “truth”. They hopefully are not “falsities”. At best they are
abstractions and, as such, they are approximations.

4.8 Events 131

Like we did for simple entities we distinguish between atomic composite events

4.8.1 Definition of Atomic Events 132

By an EVENT we shall understand A pair, (σ, σ′), of STATEs, a STIMULUS, s, (which
is like a FUNCT ION of an ACTION), and an EVENT PREDICATE, p : P, such that
p(σ, σ′)(s), yields true.

The difference between an ACTION and an EVENT is two things: the EVENT ACTION

need not originate within the analysed DOMAIN, and the EVENT PREDICATE is triv-
ially satisfied by most ACTIONs which originate within the analysed DOMAIN.

4.8.2 Examples of Atomic Events 133

Examples of atomic events, that is, of predicates are: a bank goes “bust” (e.g., looses all its
monies, i.e., bankruptcy), a bank account becomes negative, (unexpected) stop of gas flow
and iron ore mine depleted. Respective stimuli of these events could be: (massive) loan
defaults, a bank client account is overdrawn, pipeline breakage, respectively over-mining.

4.8.3 Composite Events 134

Definition

A Composite event is composed from a sequence of two or more events: The ‘after’ state
of one event becomes the ‘before’ event of the immediately subsequent event We

Examples of Composite Events 135

4.8.4 Observers &c. 136

We postulate that the domain engineer from an EVENT can observe the STIMULUS, the
BEFORE STATE, the AFTER STATE and the EVENT PREDICATE. As said before:
the domain engineer cum researcher can decide on these abstractions, these approximations. 137

category:
STIMULUS = SIMPLE ENTITY × STATE → STATE

P = STATE × STATE → Bool
observer signatures:

obs STIMULUS: EVENT → STIMULUS

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

34 Domain Science & Engineering

obs BEFORE STATE: EVENT → STATE

obs AFTER STATE: EVENT → STATE

obs EVENT PREDICATE: EVENT → P
meta condition:

∀ e:EVENT •

∃ s:STIMULUS •

INPUT STATE(e) = BEFORE STATE(s) ∧
RESULT STATE(e) = AFTER STATE(s) ∧
∃ p:P •p(s)(INPUT STATE(e),RESULT STATE(e))

4.8.5 Practice 138

How do we interpret this section, Sect. 4.8, on events? We practice it by analysing the
domain according to the principles laid down in this section, Sect. 4.8, by discovering events
of the domain, that is, by discovering and writing down, for example in RSL, the “defining”
pre/post condition predicates, by discovering and writing down, for example in RSL, their signa-
tures (as if they were domain actions), by possibly also discovering (postulating, conjecturing)
and writing down their definitions (as if they were domain actions). That is, we are not using139

these “funny” names, such as EVENT, STIMULUS, EVENT PREDICATE, BEFORE -
STATE AFTER STATE nor their is or obs forms. The example of Sect. 2 has not given
very many examples.

So we give some narrative examples, that is, without formalisations: an oil well runs
dry (atomic event); a valve gets stuck in closed position, causing further events; a gas pipe
breaks causing a fire causing gas to flow, etc. (composite event); etcetera.

4.9 Behaviours 140

4.9.1 A Loose Characterisation

By a BEHAVIOUR we shall understand a set of sequences of ACTIONs and EVENTs
one sequence of which designates the behaviour of the environment the remaining se-
quences designate behaviours of different “overlapping” or “disjoint” parts of the domain.
It may now be so that some EVENTs in two or more such sequences have their STATEs141

and PREDICATEs express, for example, mutually exclusive synchronisation and com-
munication EVENTs between these sequences which are each to be considered as simple
SEQUENTIAL BEHAVIOURs. Other forms than mutually exclusive synchronisation and
communication EVENTs, that “somehow link” two or more behaviours, can be identified.

4.9.2 Observers &c. 142

We abstract from the orderly example of synchronisation and communication given above
and introduce a further un-explained notion of behaviour (synchronisation and communi-
cation) BEHAVIOUR INTERACTION LABELs and allow BEHAVIOURs to now just be

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 35

sets of sequences of ACTIONs and BEHAVIOUR INTERACTION LABELs. such that
any one simple sequence has unique labels. 143

We can classify some BEHAVIOURs.
(i) SIMPLE SEQUENTIAL BEHAVIOURs are sequences of ACTIONs.
(ii) SIMPLE CONCURRENT BEHAVIOURs are sets of SIMPLE SEQUENTIAL BE-

HAVIOURs.
(iii) COMMUNICATING CONCURRENT BEHAVIOURs are sets of sequences of

ACTIONs and BEHAVIOUR INTERACTION LABELs. We say that two or more such
COMMUNICATING CONCURRENT BEHAVIOURs SYNCHRONISE & COMMUNI-
CATE when all distinct BEHAVIOURs “sharing” a (same) label have all reached that
label. 144

Many other composite behaviours can be observed. For our purposes it suffice with
having just identified the above.

SIMPLE ENTITIES, ACTIONs and EVENTs can be described without reference to
time. BEHAVIOURs, in a sense, take place over time.8 It will bring us into a rather long 145

discourse if we are to present some predicates, observer functions and axioms concerning
behaviours — along the lines such predicates, observer functions and axioms were present,
above, for SIMPLE ENTITIES, ACTIONs and EVENTs. We refer instead to Johan van
Benthem’s seminal work on the The Logic of Time [53]. In addition, more generally, we
refer to A.N. Prior’s [43, 44, 45, 46, 42] and McTaggart’s works [36, 17, 49]. The paper by
Wayne D. Blizard [11] proposes an axiom system for time-space.

4.9.3 Practice 146

How do we interpret this section, Sect. 4.9, on behaviours? We practice it by analysing
the domain according to the principles laid down in this section, Sect. 4.9, by discovering
behaviours of the domain, that is, by discovering and writing down, for example in RSL, the
signatures of these behaviours (e.g., as CSP processes), by possibly also discovering (postu-
lating, conjecturing) and writing down their definitions (as sequences of domain actions and
events — the latter modelled as CSP communications between behaviours). That is, we are 147

not using all these “funny” names such as: BEHAVIOUR, SEQUENTIAL BEHAVIOUR,
SIMPLE SEQUENTIAL BEHAVIOUR, CONCURRENT BEHAVIOUR, COMMUNICA-
TING CONCURRENT BEHAVIOUR, BEHAVIOUR INTERACTION LABELs, etcetera.

4.10 Mereology 148

Simple entities — when composite — are said to exhibit a mereology. Thus composition of
simple entities imply a mereology. We discussed mereologies of behaviours: simple sequen-
tial, simple concurrent, communicating concurrent, etc. Above we did not treat actions and
events as potentially being composite. But we now relax that seeming constraint. There

8If it is important that ACTIONs take place over time, that is, are not instantaneous, then we can just
consider ACTIONs as very simple SEQUENTIAL BEHAVIOURs not involving EVENTs.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

36 Domain Science & Engineering

is, in principle, nothing that prevents actions and events from exhibiting mereologies. An149

action, still instantaneous, can, for example, “fork” into a number of concurrent actions,
all instantaneous, on “disjoint” parts of a state; or an instantaneous action can “dribble”
(not little-by-little, but one-after-the-other. still instantaneously) into several actions as if
a simple sequential behaviour, but instantaneous. Two or more events can occur simulta-150

neously: two or more (up to four, usually) people become grandparents when a daughter
of theirs give birth to their first grandchild; or an event can — again a “dribble” (not
little-by-little, but instantaneously) — “rapidly” sequence through a number of instanta-
neous sub-events (with no intervening time intervals): A bankruptcy events immediately
causes the bankruptcy of several enterprises which again causes the immediate bankruptcy
of several employes, etcetera.151

The problems of compositionality of entities, whether simple, actions, events or be-
haviours, is was studied, initially, in [9, Bjørner and Eir, 2008]

4.11 Impossibility of Definite Mereological Analysis of Seemingly Com-

posite Entities 152

It would be nice if there was a more-or-less obvious way of “deciphering” the mereology
of an entity. In the many • (bulleted) items above (cf. Set, Cartesian, List, Map, Graph)
we may have left the impression with the reader that is a more-or-less systematic way of
uncovering the mereology of a composite entity. That is not the case: there is no such
obvious way. It is a matter of both discovery and choice between seemingly alternative
mereologies, and it is also a matter of choice of abstraction.

4.12 What Exists and What Can Be Described ? 153

In the previous section we have suggested a number of categories9 of entities, a number of
predicate10 and observer11 functions and a number of meta conditions (i.e., axioms). These
concepts and their relations to one-another, suggest an ontology for describing domains. It
is now very important that we understand these categories, predicates, observers and axioms
properly.

5 Description Versus Specification Languages 154

Footnotes 9–11 (Page 36) summarised a number of main concepts of an ontology for de-
scribing domains. The categories and predicate and observer function signatures are not

9Some categories: ENTITY, SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR, ATOMIC, COMPOSITE, DISCRETE, CONTINUOUS, ATTRIBUTE,

NAME, TYPE, VALUE, SET, CARTESIAN, LIST, MAP, GRAPH, FUNCT ION , STATE, ARGUMENT, STIMULUS, EVENT PREDICATE, BEFORE STATE,

AFTER STATE, SEQUENTIAL BEHAVIOUR, BEHAVIOUR INTERACTION LABEL, SIMPLE SEQUENTIAL BEHAVIOUR, SIMPLE CONCURRENT BEHAVIOUR,

COMMUNICATING CONCURRENT BEHAVIOUR, etc.

10Some predicates: is ENTITY, is SIMPLE ENTITY, is ACTION, is EVENT, is BEHAVIOUR, is ATOMIC, is COMPOSITE,

is DISCRETE SIMPLE ENTITY, is CONTINUOUS SIMPLE ENTITY, is SET, is CARTESIAN, is LIST, is MAP, is GRAPH, etc.

11Some observers: obs SIMPLE ENTITY, obs ACTION, obs EVENT, obs BEHAVIOUR, obs ATTRIBUTE, obs NAME, obs TYPE, obs VALUE,

obs SET, obs CARTESIAN, obs ARITY, obs LIST, obs LENGTH, obs DEFINITION SET, obs RANGE, obs IMAGE, obs GRAPH, obs PRECEDING SIMPLE ENTITIES,

obs SUCCEEDING SIMPLE ENTITIES, obs MEREOLOGY, obs INPUT STATE, obs ARGUMENT, obs RESULT STATE, obs STIMULUS, obs EVENT PREDICATE,

obs BEFORE STATE, obs AFTER STATE, etc.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 37

part of a formal language for descriptions. The identifiers used for these categories are
intended to denote the real thing, classes of entities of a domain. In a philosophical dis-
course about describability of domains one refers to the real things. That alone prevents
us from devising a formal specification language for giving (syntax and) semantics to a
specification, in that language, of what these (Footnote 9–11) identifiers mean.

5.1 Formal Specification of Specific Domains 155

Once we have decided to describe a specific domain then we can avail ourselves of using
one or more of a set of formal specification languages. But such a formal specification
does not give meaning to identifiers of the categories and predicate and observer functions;
they give meaning to very specific subsets of such categories and predicate and observer
functions. And the domain specification now ascribes, not the real thing, but usually some
form of mathematical structures as models of the specified domain.

5.2 Formal Domain Specification Languages 156

There are, today, 2010, a large number of formal specification languages. Some or tex-
tual, some are diagrammatic. The textual specification languages are like mathematical
expressions, that is: linear text, often couched in an abstract “programming language”
notation. The diagrammatic specification languages provide for the specifier to draw two-
dimensional figures composed from primitives. Both forms of specification languages have
precise mathematical meanings, but the linear textual ones additionally provide for proof
rules. 157

Examples of textual, formal specification languages are

• Alloy [31]: model-oriented,

• B, Event-B [1]: model-oriented,

• CafeOBJ [19]: property-oriented (algebraic),

• CASL [16]: property-oriented (algebraic),

• CSP [28]: communicating sequential processes,

• DC (Duration Calculus) [55]: temporal logic,

• Maude [14, 38, 12]: property-oriented (algebraic),

• RAISE, RSL [21]: property and model-oriented,

• TLA+ [32]: temporal logic and sets,

• VDM, VDM-SL [18]: model-oriented and

• Z [54]: model-oriented.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

38 Domain Science & Engineering

DC and TLA+ are often used in connection with either a model-oriented specification lan-
guages or just plain old discrete mathematics notation !158

But the model-oriented specification languages mentioned above do not succinctly ex-
press concurrency. CSP does. The diagrammatic, formal specification languages, listed
below, all do that:

• Petri Nets [48],

• Message Sequence Charts (MSC) [30],

• Live Sequence Charts (LSC) [27] and

• Statecharts [26].

5.3 Discussion: “Take-it-or-leave-it !” 159

With the formal specification languages, not just those listed above, but with any con-
ceivable formal specification language, the issue is: you can basically only describe using
that language what it was originally intended to specify, and that, usually, was to specify
software ! If, in the real domain you find phenomena or concepts, which it is somewhat
clumsy and certainly not very abstract or, for you, outright impossible, to describe, then,
well, then you cannot formalise them !

6 Conclusion 160

6.1 What Have We done ?

We have emphasised the crucial rôles that computing science plays in software engineering
and that formalisation plays in software devdlopment. We have focused on domain engi-
neering as a set of activities preceding those of requirements engineering and hence those of
software design. We have given a concise description of pipeline systems emphasising the
close, but “forever” informal relations between narrative, informal, but concise descriptions
and formalisions.161

The example pipeline systems description was primarly, in this paper intended to illus-
trate

• that one can indeed describe non-trivial aspects of domains and the challenges that
domain descriptions pose

– to software engineering,

– to computing science and

– to computer science.

We have discussed one of these challenges the foundations of description; albeit for a
postulated set of description primitives:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 39

categories (sorts and types), observers, axioms, actions, events and behaviours.

6.2 Discussion 162

The chosen description primitives are not necessarily computable, but then domains ap-
pears to be characterised also by such, incomputable phenomena and concepts.

The, by now “classical”, formal specification languages

Alloy, ASM,
CafeOBJ, CASL,

CSP, DC, Event

B, Maude, MSCs,
Petri Nets, RSL,
Statecharts, TLA+,

VDM, Z, etcetera.

need be further explored, formal interfaces of satisfaction established, and new, formal,
or at least mathematical specification languages be developed. 163

Domain engineering gives rise to a number of exciting computer and comouting science
as well as software engineering research problems.

6.3 Acknowledgements 164

In response to my paper on Mereologies in Computing Science [6] for Tony Hoare’s 75
anniversary Festschrift April 2009 (Springer Series on Hisotry of Computing) where I fo-
cused on mereologies and a relation between mereologies and CSP [28], Tony brought up,
in private communication, Bertrand Russell’s concept of Logical Atomism [50]. I am Tony
very grateful for bringing this topic into my considerations. I am also grateful to Stephen 165

Linton of the University of St. Andrews, Scotland for inviting me to present a paper from
which the present one is quite a revision.12 I am likewise grateful to Alan Bundy of the
University of Edinburgh, Scotland, for a six week distinguished CISA guest Rresearcher
invitation where I had time to write the first version of this paper.

Finally I am grateful to Profs. Alexander Letichevsky and Nikolaj Nikitchenko of
Glushkov Institute of Cybernetics, Institute of Program Systems, for inviting me to this
workshop and to Ukraine.

7 Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of domain and
requirements specification, refinement and verification, are dealt with in Alloy: [31], ASM:
[47], B/event B: [1], CafeOBJ: [19], CSP [28], DC [55] (Duration Calculus), Live Sequence
Charts [27], Message Sequence Charts [30], RAISE [21] (RSL), Petri nets [48], Statecharts
[26], Temporal Logic of Reactive Systems [33, 34, 39, 40], TLA+ [32] (Temporal Logic of
Actions), VDM [18], and Z [54]. Techniques for integrating “different” formal techniques
are covered in [2].

12I expect the present paper to be further revised between its submisson, early march 2010, and its
presentation, mid May 2010.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

40 Domain Science & Engineering

The recent book on Logics of Specification Languages [10] covers ASM, B/event B,

CafeObj, CASL, DC, RAISE, TLA+, VDM and Z.

References

[1] J.-R. Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B:
System and Software Engineering. Cambridge University Press, Cambridge, England, 1996
and 2009.

[2] K. Araki et al., editors. IFM 1999–2009: Integrated Formal Methods, volume 1945, 2335,
2999, 3771, 4591, 5423 (only some are listed) of Lecture Notes in Computer Science.
Springer, 1999–2009.

[3] P. Bernus and L. Nemes, editors. Modelling and Methodologies for Enterprise Integration,
International Federation for Information Processing, London, UK, 1996 1995. IFIP TC5,
Chapman & Hall. Working Conference, Queensland, Australia, November 1995.

[4] D. Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006. Republished
in English by Qinghua Univ. Press, Peking, China, 2009 – and translated into Chinese (by
Dr. Liu Bo Chao), and also published by Qinghua Univ. Press, 2010.

[5] D. Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research
Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P.
Woodcock et al.), pages 1–17, Heidelberg, September 2007. Springer.

[6] D. Bjørner. On Mereologies in Computing Science. In Festschrift for Tony Hoare, History
of Computing (ed. Bill Roscoe), London, UK, 2009. Springer.

[7] D. Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes in Computer
Science, the BCS FAC Series (eds. Paul Boca and Jonathan Bowen), pages 1–42, London,
UK, 2010. Springer.

[8] D. Bjørner. Domain Engineering: Technology Management, Research and Engi-
neering. JAIST Press, March 2009. JAIST Research Monograph #4, 536 pages:
http://www2.imm.dtu.dk/˜db/jaistmono.pdf.

[9] D. Bjørner and A. Eir. Compositionality: Ontology and Mereology of Domains. Some
Clarifying Observations in the Context of Software Engineering in July 2008, eds. Martin
Steffen, Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de
Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture Notes in
Computer Science, pages 22–59, Heidelberg, July 2010. Springer.

[10] D. Bjørner and M. C. Henson, editors. Logics of Specification Languages. EATCS Series,
Monograph in Theoretical Computer Science. Springer, Heidelberg, Germany, 2008.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 41

[11] W. D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic
Logic, 55(1):74–89, March 1990.

[12] R. Bruni and J. Meseguer. Generalized Rewrite Theories. In Jos C. M. Baeten and Jan Karel
Lenstra and Joachim Parrow and Gerhard J. Woeginger, editor, Automata, Languages and
Programming. 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands,
June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Computer Science,
pages 252–266. Springer-Verlag, 2003.

[13] W. Clancey. The knowledge–level reinterpreted: modeling socio–technical systems. Inter-
national Journal of Intelligent Systems, 8:33–49, 1993.

[14] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. The
Maude 2.0 System. In Robert Nieuwenhuis, editor, Rewriting Techniques and Applications
(RTA 2003), number 2706 in Lecture Notes in Computer Science, pages 76–87. Springer-
Verlag, June 2003.

[15] N. Cocchiarella. Formal Ontology. In H. Burkhardt and B. Smith, editors, Handbook in
Metaphysics and Ontology, pages 640–647. Philosophia Verlag, Munich, Germany, 1991.

[16] CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2960 of
Lecture Notes in Computer Science (IFIP Series). Springer–Verlag, 2004.

[17] D. J. Farmer. Being in time: The nature of time in light of McTaggart’s paradox. University
Press of America, Lanham, Maryland, 1990. 223 pages.

[18] J. Fitzgerald and P. G. Larsen. Modelling Systems – Practical Tools and Techniques
in Software Development. Cambridge University Press, Cambridge, UK, Second edition,
2009.

[19] K. Futatsugi, A. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic
Formal Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The
Netherlands, 2000. Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

[20] B. H. P. Gennaro Chierchia and R. Turner, editors. Properties, Types and Meaning. Kluwer
Academic, 15 December 1988. Vol. I: Foundational Issues, Vol. II: Semantic Issues.

[21] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen.
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1995.

[22] T. R. Gruber and G. R. Olsen. An Ontology for Engineering Mathematics. In J. Doyle,
P. Torasso, and E. Sandewall, editors, Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann, 1994. Fourth International Conference. Gustav Stresemann
Institut, Bonn, Germany.13.

13http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

42 Domain Science & Engineering

[23] M. Gruninger and M. Fox. The Logic of Enterprise Modelling. In Modelling and Method-
ologies for Enterprise Integration, see [3], pages 141–157, November 1995.

[24] N. Guarino. Formal Ontology, Conceptual Analysis and Knowledge Representation. Intl.
Journal of Human–Computer Studies, 43:625–640, 1995.

[25] N. Guarino. Some Organising Principles for a Unified Top–level Ontology. Int.rept., Italian
National Research Council (CNR), LADSEB–CNR, Corso Stati Uniti 4, I–35127 Padova,
Italy. guarino@ladseb.pd.cnr.it, 1997.

[26] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[27] D. Harel and R. Marelly. Come, Let’s Play – Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag, 2003.

[28] T. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/-
cspbook.pdf (2004).

[29] W. Humphrey. Managing The Software Process. Addison-Wesley, 1989. ISBN 0201180952.

[30] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996,
1999.

[31] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[32] L. Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA, 2002.

[33] Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Specifications. Addison
Wesley, 1991.

[34] Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Safety. Addison
Wesley, 1995.

[35] J. McCarthy. Towards a Mathematical Science of Computation. In C. Popplewell, editor,
IFIP World Congress Proceedings, pages 21–28, 1962.

[36] J. M. E. McTaggart. The Unreality of Time. Mind, 18(68):457–84, October 1908. New
Series. See also: [41].

[37] D. H. Mellor and A. Oliver. Properties. Oxford Readings in Philosophy. Oxford Univ Press,
, May 1997. ISBN: 0198751761, 320 pages.

[38] J. Meseguer. Software Specification and Verification in Rewriting Logic. NATO Advanced
Study Institute, 2003.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

From Computer Science to The Sciences of Informatics 43

[39] B. C. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press,
Cambridge, England, 1986.

[40] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, IEEE CS FoCS, pages 46–57. Providence, Rhode
Island, IEEE CS, 1977. .

[41] R. L. Poidevin and M. MacBeath, editors. The Philosophy of Time. Oxford University
Press, 1993.

[42] A. Prior. Changes in Events and Changes in Things, chapter in [41]. Oxford University
Press, 1993.

[43] A. N. Prior. Logic and the Basis of Ethics. Clarendon Press, Oxford, UK, 1949.

[44] A. N. Prior. Time and Modality. Oxford University Press, Oxford, UK, 1957.

[45] A. N. Prior. Past, Present and Future. Clarendon Press, Oxford, UK, 1967.

[46] A. N. Prior. Papers on Time and Tense. Clarendon Press, Oxford, UK, 1968.

[47] W. Reisig. Logics of Specification Languages, chapter Abstract State Machines for the
Classroom, pages 15–46 in [10]. Springer, 2008.

[48] W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. In-
stitut für Informatik, Humboldt Universität zu Berlin, Unter den Linden 6,
10099 Berlin, Germany, 1 Oktober 2009. 276 pages. http://www2.informatik.hu-
berlin.de/top/pnene buch/pnene buch.pdf.

[49] G. Rochelle. Behind time: The incoherence of time and McTaggart’s atemporal replace-
ment. Avebury series in philosophy. Ashgate, Brookfield, Vt., USA, 1998. vii + 221
pages.

[50] B. Russell. The Philosophy of Logical Atomism. The Monist: An International Quarterly
Journal of General Philosophical Inquiry,, xxxviii–xxix:495–527, 32–63, 190–222, 345–380,
1918–1919.

[51] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations. Pws Pub Co, August 17, 1999. ISBN: 0534949657, 512 pages, Amazon price:
US $ 70.95.

[52] S. Staab and R. Stuber, editors. Handbook on Ontologies. International Handbooks on
Information Systems. Springer, Heidelberg, 2004.

[53] J. van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Episte-
mology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer
Academic Publishers, P.O.Box 17, NL 3300 AA Dordrecht, The Netherlands, second edi-
tion, 1983, 1991.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

44 Domain Science & Engineering

[54] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, 1996.

[55] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real–time
Systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer–
Verlag, 2004.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00

