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Abstract

In this paper we solve the following problems:

• we give a formal model of a large class of mereologies, with simple entities
modelled as parts and their relations by connectors;

• we show that that class applies to a wide variety of societal infrastructure
component domains;

• we show that there is a class of CSP channel and process structures that
correspond to the class of mereologies where mereology parts become CSP

processes and connectors become channels; and where simple entity at-
tributes become process states.

We have yet to prove to what extent the models satisfy the axiom systems for
mereologies of, for example, [12] and a calculus of individuals [13]. Mereology
is the study, knowledge and practice of part-hood relations: of the relations
of part to whole and the relations of part to part within a whole. By parts we
shall here understand simple entities — of the kind illustrated in this paper.

Manifest simple entities of domains are either continuous (fluid, gaseous)
or discrete (solid, fixed), and if the latter, then either atomic or composite. It
is how the sub-entities of a composite entity are “put together” that “makes
up” a mereology of that composite entity — at least such as we shall study the
mereology concept. In this paper we shall study some ways of modelling the
mereology of composite entities. One way of modelling mereologies is using
sorts, observer functions and axioms (McCarthy style), another is using CSP.
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IFIP WG2.3: A Laudatio and a Memory

This paper is in honour of Sir Tony Hoare. And the paper is in memory of Douglas
Taylor Ross (1929–2007). The latter speculated quite a lot about mereologies
at many IFIP WG2.3 meetings; not quite all members and observers understood
everything; certainly not I. But I somehow knew it was a relevant issue. I think I
now understand what Doug was saying. Here then, in this paper, is my interpre-
tation of Doug’s discourses. The former, today’s celebrant, has given us many
deep, yet simple, hence elegant, concepts. CSP is one of them. Therefore CSP
will be applied, at the end of the paper, to express mereologies. IFIP WG 2.3
meetings in my days certainly weren’t boring. I think that today I present a
simple explanation of what then appeared as a not so simple concept. And I
think that I can relate it to CSP.

1 Introduction

1.1 Physics and Societal Infrastructures

Physicists study that of nature which can be measured within us, around us
and between ‘within’ and ‘around’ ! To make mathematical models of physics
phenomena, physics has helped develop and uses mathematics, notably cal-
culus and statistics.

Domain engineers primarily studies societal infrastructure components
which can be reasoned about, built and manipulated by humans. To make
domain models of infrastructure components, domain engineering makes use
of formal specification languages, their reasoning systems: formal testing,
model checking and verification, and their tools.

Physicists turns to algebra in order to handle structures in nature. Al-
gebra appears to be useful in a number of applications, to wit: the abstract
modelling of chemical compounds. But there seems to be many structures in
nature that cannot be captured in a satisfactory way by mathematics, includ-
ing algebra and when captured in discrete mathematical disciplines such as
sets, graph theory and combinatorics the “integration” of these mathemati-
cally represented — structures with calculus (etc.) — becomes awkward; it
seems so much so that I know of no successful attempts.

Domain engineers turns to discrete mathematics — as embodied in
formal specification languages and as “implementable” in programming lan-
guages — in order to handle structures in societal infrastructure components.
These languages allow (a) the expression of arbitrarily complicated struc-
tures, (b) the evaluation of properties over such structures, (c) the “building
& demolition” of such structures, and (d) the reasoning over such struc-
tures. They also allow the expression of dynamically varying structures —
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something mathematics is “not so good at” ! But the specification languages
have two problems: (i) they do not easily, if at all, handle continuity, that is,
they do not embody calculus, or, for example, statistical concepts, etc., and
(ii) they handle actual structures of societal infrastructure components and
attributes of atomic and composite entities of these – usually by identical
techniques thereby blurring what we think is an important distinction.

1.2 From Simple Entities to Processes

We shall first consider the structural components of societal infrastructures
as simple entities, without considering any operations on these entities. In
fact, in this paper we shall not consider operations on entities at all. This is
possible, we claim, and in a sense in clear defiance of algebraic approaches
— say as embodied in OO-methodologies — since, as we are claiming, that
“world” of societal infrastructure components can be understood to quite
some depth without considering their operations.

We shall then “map” parts and wholes into processes ! By an “ontological
trick” we re-interpret simple entities as processes and their connections, i.e.,
how they are put together, as channels between processes.

It is all very simple, or, at least, we need to first make it simple before we
complicate things. In this paper we will only present the easy picture.

1.3 Structure of This Paper

The rest of the paper is organised as follows. First, in Sect. 2, we give a
first main, a meta-example, of syntactic aspects of a class of mereologies. It
narrates and formalises an abstraction of what is here called ‘parts’: ‘assem-
blies’ and ‘units’. That is, structures of units with connectors that may be
used to provide connections between parts. So an assembly has a mereology
represented by units and sub-assemblies and their actual connections.

In Sect. 3 we informally show that the assembly/unit structures of Sect. 2
indeed model structures of a variety of infrastructure components.

Then, in Sect. 4, we discuss concepts of atomic and composite simple en-
tities. With atomic simple entities we associate attributes, and these may
exhibit conceptual structures, and with composite simple entities we asso-
ciate attributes, any number of simple sub-entities and their mereology. We
discuss notational and semantic means of expressing attributes and their pos-
sible structures, and sub-entities, and their mereologies. And we relate our
presentation to the wider concept of mereology.

Section 5 “performs” the ontological trick of mapping the assembly and
unit entities and their connections exemplified in Sect. 2 into CSP processes
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and channels, respectively — the second and last main — meta-example and
now of semantic aspects of a class of mereologies.

The paper does not discuss relations between what is presented here and
other approaches. As such we have renounced on the paper being a proper
attempt at a proper scientific paper. We apologise.

2 A Syntactic Model of a Class of Mereologies

2.1 Systems, Assemblies, Units

We speak of systems as assemblies. From an assembly we can immediately
observe a set of parts. Parts are either assemblies or units. We do not further
define what assemblies and units are.

type

S = A, A, U, P = A | U
value

obs Ps: (S|A) → P-set

Parts observed from an assembly are said to be immediately embedded in,
that is, within, that assembly. Two or more different parts of an assembly are
said to be immediately adjacent to one another.

"outermost" Assembly

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32

B2

C33

System = Environment

Fig. 1 Assemblies and Units “embedded” in an Environment
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A system includes its environment. And we do not worry, so far, about
the semiotics of all this !

Embeddedness and adjacency generalise to transitive relations.
Given obs Ps we can define a function, xtr Ps, which applies to an as-

sembly a and which extracts all parts embedded in a and including a. The
functions obs Ps and xtr Ps define the meaning of embeddedness.

value

xtr Ps: (S|A) → P-set

xtr Ps(a) ≡
let ps = {a} ∪ obs Ps(a) in ps ∪ union{xtr Ps(a′)|a′:A•a′ ∈ ps} end

union is the distributed union operator. Parts have unique identifiers. All
parts observable from a system are distinct.

type

AUI
value

obs AUI: P → AUI
axiom

∀ a:A •

let ps = obs Ps(a) in

∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′ 6=p′′ ⇒ obs AUI(p′)6=obs AUI(p′′) ∧
∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end

2.2 ‘Adjacency’ and ‘Within’ Relations

Two parts, p,p′, are said to be immediately next to, i.e., i next to(p,p′)(a),
one another in an assembly a if there exists an assembly, a′ equal to or
embedded in a such that p and p′ are observable in that assembly a′.

value

i next to: P × P → A
∼
→ Bool, pre i next to(p,p′)(a): p6=p′

i next to(p,p′)(a) ≡ ∃ a′:A • a′=a ∨ a′ ∈ xtr Ps(a) • {p,p′}⊆obs Ps(a′)

One part, p, is said to be immediately within another part, p′in an assembly
a if there exists an assembly, a′ equal to or embedded in a such that p is
observable in a′.

value

i within: P × P → A
∼
→ Bool

i within(p,p′)(a) ≡
∃ a′:A • (a=a′ ∨ a′ ∈ xtr Ps(a)) • p′=a′ ∧ p ∈ obs Ps(a′)
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We can generalise the immediate ‘within’ property. A part, p, is (transitively)
within a part p′, within(p,p′)(a), of an assembly, a, either if p, is immediately
within p′ of that assembly, a, or if there exists a (proper) part p′′ of p′ such
that within(p′′,p)(a).

value

within: P × P → A
∼
→ Bool

within(p,p′)(a) ≡
i within(p,p′)(a) ∨ ∃ p′′:P • p′′ ∈ obs Ps(p) ∧ within(p′′,p′)(a)

The function within can be defined, alternatively, using xtr Ps and i within
instead of obs Ps and within :

value

within′: P × P → A
∼
→ Bool

within′(p,p′)(a) ≡
i within(p,p′)(a) ∨ ∃ p′′:P • p′′ ∈ xtr Ps(p) ∧ i within(p′′,p′)(a)

lemma: within ≡ within′

We can generalise the immediate ‘next to’ property. Two parts, p, p′ of an
assembly, a, are adjacent if they are either ‘next to’ one another or if there
are two parts po, p′o such that p, p′ are embedded in respectively po and p′o
and such that po, p′o are immediately next to one another.

value

adjacent: P × P → A
∼
→ Bool

adjacent(p,p′)(a) ≡
i next to(p,p′)(a) ∨
∃ p′′,p′′′:P • {p′′,p′′′}⊆xtr Ps(a) ∧ i next to(p′′,p′′′)(a) ∧

((p=p′′)∨within(p,p′′)(a)) ∧ ((p′=p′′′)∨within(p′,p′′′)(a))

2.3 Mereology, Part I

So far we have built a ground mereology model, MGround. Let ⊑ denote
parthood, x is part of y, x ⊑ y.

∀x(x ⊑ x)1 (1)

∀x, y(x ⊑ y) ∧ (y ⊑ x) ⇒ (x = y) (2)

∀x, y, z(x ⊑ y) ∧ (y ⊑ z) ⇒ (x ⊑ z) (3)

1 Our notation now is not RSL but some conventional first-order predicate logic notation.
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Let < denote proper parthood, x is part of y, x < y. Formula 4 defines x < y.
Equivalence 5 can be proven to hold.

∀x < y =def x(x ⊑ y) ∧ ¬(x = y) (4)

∀∀x, y(x ⊑ y) ⇔ (x < y) ∨ (x = y) (5)

The proper part (x < y) relation is a strict partial ordering:

∀x¬(x < x) (6)

∀x, y(x < y) ⇒ ¬(y < x) (7)

∀x, y, z(x < y) ∧ (y < z) ⇒ (x < z) (8)

Overlap, •, is also a relation of parts: Two individuals overlap if they have
parts in common:

x • y =def ∃z(z < x) ∧ (z < y) (9)

∀x(x • x) (10)

∀x, y(x • y) ⇒ (y • x) (11)

Proper overlap, ◦, can be defined:

x ◦ y =def (x • x) ∧ ¬(x ⊑ y) ∧ ¬(y ⊑ x) (12)

Whereas Formulas (1-11) holds of the model of mereology we have shown so
far, Formula (12) does not. In the next section we shall repair that situation.

The proper part relation, <, reflects the within relation. The disjoint re-
lation,

∮
, reflects the adjacency relation.

x

∮
y =def ¬(x • y) (13)

Disjointness is symmetric:

∀x, y(x

∮
y) ⇒ (y

∮
x) (14)

The weak supplementation relation, Formula 15, expresses that if y is a proper
part of x then there exists a part z such that z is a proper part of x and z

and y are disjoint That is, whenever an individual has one proper part then
it has more than one.
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∀x, y(y < x) ⇒ ∃z(z < x) ∧ (z

∮
y) (15)

Formulas 1–3 and 15 together determine the minimal mereology, MMinimal.
Formula 15 does not hold of the model of mereology we have shown so far.
We shall comment on this in Sect. 4.2.

2.4 Connectors

So far we have only covered notions of parts being next to other parts or
within one another. We shall now add to this a rather general notion of parts
being otherwise related. That notion is one of connectors.

Connectors provide for connections between parts. A connector is an abil-
ity be be connected. A connection is the actual fulfillment of that ability.
Connections are relations between pairs of parts. Connections “cut across”
the “classical” parts being part of the (or a) whole and parts being related
by embeddedness or adjacency.

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

K2

B2

C33

K1

System = Environment

Fig. 2 Assembly and Unit Connectors: Internal and External

For now, we do not “ask” for the meaning of connectors !
Figure 2 “adds” connectors to Fig. 1 on page 4. The idea is that connectors

allow an assembly to be connected to any embedded part, and allow two
adjacent parts to be connected.
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In Fig. 2 on the facing page the environment is connected, by K2, (without,
as we shall later see, interfering with assemblies A and B1), to part C11; the
“external world” is connected, by K1, to B1; etcetera. Later we shall discuss
more general forms of connectors.

From a system we can observe all its connectors. From a connector we can
observe its unique connector identifier and the set of part identifiers of the
parts that the connector connects. All part identifiers of system connectors
identify parts of the system. All observable connector identifiers of parts
identify connectors of the system.

type

K
value

obs Ks: S → K-set

obs KI: K → KI
obs Is: K → AUI-set
obs KIs: P → KI-set

axiom

∀ k:K • card obs Is(k)=2,
∀ s:S,k:K • k ∈ obs Ks(s) ⇒

∃ p:P • p ∈ xtr Ps(s) ⇒ obs AUI(p) ∈ obs Is(k),
∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒

∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)

This model allows for a rather “free-wheeling” notion of connectors one that
allows internal connectors to “cut across” embedded and adjacent parts; and
one that allows external connectors to “penetrate” from an outside to any
embedded part.

We need define an auxiliary function. xtr∀KIs(p) applies to a system and
yields all its connector identifiers.

value

xtr∀KIs: S → KI-set
xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}

2.5 Mereology, Part II

We shall interpret connections as follows: A connection between parts pi and
pj that enjoy a pi adjacent to pj relationship, means pi ◦ pj , that is, although
parts pi and pj are adjacent they do share “something”, i.e., have something
in common. What that “something” is we shall comment on in Sect. 5.4. A
connection between parts pi and pj that enjoy a pi within pj relationship, does
not add other meaning than commented upon in Sect. 5.4 on page 22.
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With the above interpretation we may arrive at the following, perhaps
somewhat “awkward-looking” case: a connection connects two adjacent parts
pi and pj where part pi is within part pio

and part pj is within part pjo
where

parts pio
and pjo

are adjacent but not otherwise connected. How are we to
explain that ! Since we have not otherwise interpreted the meaning of parts,
we can just postulate that “so it is” ! We shall, in Sect. 5.4 on page 22, give
a more satisfactory explanation.

In Sect. 2.3 we introduced the following operators: ⊑, <, •, ◦, and
∮

In
some of the mereology literature [12–14] these operators are symbolised with
caligraphic letters: ⊑: P : part, <: PP : proper part, • : O: overlap and

∮
: U :

underlap.

2.6 Discussion

2.6.1 Summary

This ends our first model of a concept of mereology. The parts are those of
assemblies and units. The relations between parts and the whole are, on one
hand, those of embeddedness i.e. within, and adjacency, i.e., adjacent, and on
the other hand, those expressed by connectors: relations between arbitrary
parts and between arbitrary parts and the exterior.

2.6.2 Extensions

A number of extensions are possible: one can add “mobile” parts and “free”
connectors, and one can further add operations that allow such mobile parts
to move from one assembly to another along routes of connectors. Free con-
nectors and mobility assumes static versus dynamic parts and connectors:
a free connector is one which allows a mobile part to be connected to an-
other part, fixed or mobile; and the potentiality of a move of a mobile part
introduces a further dimension of dynamics of a mereology.

2.6.3 Comments

We shall leave the modelling of free connectors and mobile parts to another
time. Suffice it now to indicate that the mereology model given so far is
relevant: that it applies to a somewhat wide range of application domain
structures, and that it thus affords a uniform treatment of proper formal
models of these application domain structures.



On Mereologies in Computing Science 11

Environment

System =

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

External Connectors

K2

B2

K5 Ma

Mc

Mb

Mobile PartFree Connector

C33

K1

Fig. 3 Mobile Parts and Free Connectors

3 Discussion & Interpretation

Before a semantic treatment of the concept of mereology let us review what
we have done and let us interpret our abstraction (i.e., relate it to actual
societal infrastructure components).

3.1 What We have Done So Far ?

We have presented a model that is claimed to abstract essential mereological
properties of machine assemblies, railway nets, the oil industry, oil pipelines,
buildings and their installations, hospitals, etcetera.

3.2 Six Interpretations

Let us substantiate the claims made in the previous paragraph. We will do
so, albeit informally, in the next many paragraphs. Our substantiation is
a form of diagrammatic reasoning. Subsets of diagrams will be claimed to
represent parts, while Other subsets will be claimed to represent connectors.
The reasoning is incomplete.
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3.2.1 Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

Fig. 4 An air traffic system. Black boxes and lines are units; red boxes are connections

Figure 4 shows nine (9) boxes and eighteen (18) lines. Together they form
an assembly. Individually boxes and lines represent units. The rounded cor-
ner boxes denote buildings. The sharp corner box denote an aircraft. Lines
denote radio telecommunication. Only where lines touch boxes do we have
connections. These are shown as red horisontal or vertical boxes at both ends
of the double-headed arrows, overlapping both the arrows and the boxes. The
index ranges shown attached to, i.e., labelling each unit, shall indicate that
there are a multiple of the “single” (thus representative) unit shown. Notice
that the ‘box’ units are fixed installations and that the double-headed arrows
designate the ether where radio waves may propagate. We could, for example,
assume that each such line is characterised by a combination of location and
(possibly encrypted) radio communication frequency. That would allow us to
consider all line for not overlapping. And if they were overlapping, then that
must have been a decision of the air traffic system.

3.2.2 Buildings

Figure 5 on the facing page shows a building plan — as an assembly of two
neighbouring, common wall-sharing buildings, A and H, probably built at
different times; with room sections B, C, D and E contained within A, and
room sections I, J and K within H; with room sections L and M within K,
and F and G within C. Connector γ provides means of a connection between
A and B. Connection κ provides “access” between B and F. Connectors ι

and ω enable input, respectively output adaptors (receptor, resp. outlet) for
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A

H

I

J

L M

K

C

F

G

E

B
D

Door Connector

Door Connection

Installation Connector

(1 Unit)
Installation

Room
(1 Unit)

Sub−room of Room
Sharing walls
(1 Unit)

Adjacent Rooms
Sharing (one) wall
(2 Units)

κ

γ

ε

ι

ω

Fig. 5 A building plan with installation

electricity (or water, or oil), connection ǫ allow electricity (or water, or oil)
to be conducted through a wall. Etcetera.

3.2.3 Financial Service Industry

Figure 6 on the next page shows seven (7) larger boxes [6 of which are shown
by dashed lines] and twelve (12) double-arrowed lines. Where double-arrowed
lines touch upon (dashed) boxes we have connections (also to inner boxes).
Six (6) of the boxes, the dashed line boxes, are assemblies, five (5) of them
consisting of a variable number of units; five (5) are here shown as having
three units each with bullets “between” them to designate “variability”. Peo-
ple, not shown, access the outermost (and hence the “innermost” boxes, but
the latter is not shown) through connectors, shown by bullets, •.

3.2.4 Machine Assemblies

Figure 7 on the following page shows a machine assembly. Square boxes show
assemblies or units. Bullets, •, show connectors. Strands of two or three bul-
lets on a thin line, encircled by a rounded box, show connections. The full,
i.e., the level 0, assembly consists of four parts and three internal and three
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Clients
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Fig. 6 A financial service industry
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Connection

Part

Assembly, embedded Part

Adjacent Parts
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Air Load
Reservoir
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Assembly

System Assembly
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Unit

Unit Unit Unit

Unit

Unit

Unit

Units

Magnet

PumpPower Supply

Air Supply

Lever
UnitUnit

2 Parts, one
Assembly with

is an Assembly

Fig. 7 An air pump, i.e., a physical mechanical system

external connections. The Pump unit is an assembly of six (6) parts, five (5)
internal connections and three (3) external connectors. Etcetera. One con-
nector and some connections afford “transmission” of electrical power. Other
connections convey torque. Two connectors convey input air, respectively
output air.

3.2.5 Oil Industry

“The” Overall Assembly

Figure 8 on the next page shows an assembly consisting of fourteen (14) as-
semblies, left-to-right: one oil field, a crude oil pipeline system, two refineries
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Oil
Field

Pipeline
System

Refinery Port

Port Ocean

Port

Port

Port

Distrib.

Distrib.

Distrib.

Refinery

Distrib.

Assembly Connection (bound) Connection (free)

Fig. 8 A Schematic of an Oil Industry

and one, say, gasoline distribution network, two seaports, an ocean (with oil
and ethanol tankers and their sea lanes), three (more) seaports, and three,
say gasoline and ethanol distribution networks. Between all of the assem-
bly units there are connections, and from some of the assembly units there
are connectors (to an external environment). The crude oil pipeline system
assembly unit will be concretised next.

A Concretised Assembly Unit

fpb

vz
vx

fpa fpc

vwfpdvu

vy

p1

p2

p3

p4 p5

p7

p6

p10

p11

p12

p8

p9
p13

p14

p15

inj

inl

onr

ons

Connector       

Node unit

Connection (between pipe units and node units)

Pipe unit

ini

ink

may connect to refinery
onp

onq
may be left "dangling"

may be left dangling

may connect to oil field

Fig. 9 A Pipeline System

Figure 9 shows a pipeline system. It consists of 32 units: fifteen (15) pipe
units (shown as directed arrows and labelled p1–p15), four (4) input node
units (shown as small circles, ◦, and labelled ini–inℓ), four (4) flow pump
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units (shown as small circles, ◦, and labelled fpa–fpd), five (5) valve units
(shown as small circles, ◦, and labelled vx–vw), and four (4) output node
units (shown as small circles, ◦, and labelled onp–ons). In this example the
routes through the pipeline system start with node units and end with node
units, alternates between node units and pipe units, and are connected as
shown by fully filled-out red2 disc connections. Input and output nodes have
input, respectively output connectors, one each, and shown with green3

3.2.6 Railway Nets

Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Fig. 10 Four example rail units

Figure 10 diagrams four rail units, each with their two, three or four con-
nectors. Multiple instances of these rail units can be assembled as shown on
Fig. 11 on the facing page into proper rail nets.

Figure 11 on the next page diagrams an example of a proper rail net. It is
assembled from the kind of units shown in Fig. 10. In Fig. 11 consider just
the four dashed boxes: The dashed boxes are assembly units. Two designate
stations, two designate lines (tracks) between stations. We refer to to the
caption four line text of Fig. 10 for more “statistics”. We could have chosen
to show, instead, for each of the four “dangling’ connectors, a composition of
a connection, a special “end block” rail unit and a connector.

2 This paper is most likely not published with colours, so red will be shown as darker
colour.
3 Shown as lighter coloured connections.
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Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Fig. 11 A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 10 on the facing page.
There are 66 connections and four “dangling” connectors

3.3 Discussion

It requires a somewhat more laborious effort, than just “flashing” and com-
menting on these diagrams, to show that the modelling of essential aspects of
their structures can indeed be done by simple instantiation of the model given
in the previous section. We can refer to a number of documents which give
rather detailed domain models of air traffic [1], container line industry [9]4,
financial service industry (banks, credit card companies, brokers, traders and
securities and commodities exchanges, insurance companies, etc.)5, health-
care [16, Sects. 10.2.2 + 10.4.2], IT security [17], “the market” (consumers,
retailers, wholesalers, producers and distribution chains) [2], “the” oil in-
dustry6, transportation nets7, railways [3, 4, 32, 33, 39] and [16, Sect. 10.6]8,
etcetera, etcetera. Seen in the perspective of the present paper we claim that
much of the modelling work done in those references can now be considerably
shortened and trust in these models correspondingly increased.

4 http://www2.imm.dtu.dk/˜db/container-paper.pdf
5 http://www2.imm.dtu.dk/˜db/fsi.pdf
6 http://www2.imm.dtu.dk/˜db/pipeline.pdf
7 http://www2.imm.dtu.dk/˜db/transport.pdf
8 http://www.railwaydomain.org/
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4 Simple Entities

The reason for our interest in ‘simple entities’ is that assemblies and units
of systems possess static and dynamic properties which become contexts and
states of the processes into which we shall “transform” simple entities.

4.1 Observable Phenomena

We shall just consider ‘simple entities’.9 By a simple entity we shall here
understand a phenomenon that we can designate, viz. see, touch, hear, smell
or taste, or measure by some instrument (of physics, incl. chemistry). A simple
entity thus has properties. A simple entity is either continuous or is discrete,
and then it is either atomic or composite.

4.1.1 Attributes: Types and Values

By an attribute we mean a simple property of an entity. A simple entity
has properties pi, pj , . . . , pk. Typically we express attributes by a pair of a
type designator: the attribute is of type V , and a value: the attribute has
value v (of type V , i.e., v : V ). A simple entity may have many simple
properties. A continuous entity, like ‘oil’, may have the following attributes:
type: petroleum, kind: Brent-crude, amount: 6 barrels, price: 45US $/barrel.
An atomic entity, like a ‘person’, may have the following attributes: gender:
male, name: Dines Bjørner, birth date: 4. Oct. 1937, marital status: married.
A composite entity, like a railway system, may have the following attributes:
country: Denmark, name: DSB, electrified: partly, owner: independent public
enterprise owned by Danish Ministry of Transport.

4.1.2 Continuous Simple Entities

A simple entity is said to be continuous if, within limits, reasonably sizable
amounts of the simple entity, can be arbitrarily decomposed into smaller
parts each of which still remain simple continuous entities of the same simple
entity kind. Examples of continuous entities are: oil, i.e., any fluid, air, i.e.,
any gas, time period and a measure of fabric.

9 We use use the name ‘simple entities’ in contrast to ‘entities’ which we see as comprising
all of simple entities, functions, events and behaviours. “Interesting” functions and normal
events involve all forms of entities.
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4.1.3 Discrete Simple Entities

A simple entity is said to be discrete if its immediate structure is not contin-
uous. A simple discrete entity may, however, contain continuous sub-entities.
Examples of discrete entities are: persons, rail units, oil pipes, a group of
persons, a railway line and an oil pipeline.

Atomic Simple Entities

A simple entity is said to be atomic if it cannot be meaningfully decomposed
into parts where these parts has a useful “value” in the context in which
the simple entity is viewed and while still remaining an instantiation of that
entity. Thus a ‘physically able person’, which we consider atomic, can, from
the point of physical ability, not be decomposed into meaningful parts: a
leg, an arm, a head, etc. Other atomic entities could be a rail unit, an oil
pipe, or a hospital bed. The only thing characterising an atomic entity are
its attributes.

Composite Simple Entities

A simple entity, c, is said to be composite if it can be meaningfully decom-
posed into sub-entities that have separate meaning in the context in which
c is viewed. We exemplify some composite entities. (1) A railway net can be
decomposed into a set of one or more train lines and a set of two or more
train stations. Lines and stations are themselves composite entities. (2) An
Oil industry whose decomposition include: one or more oil fields, one or more
pipeline systems, one or more oil refineries and one or more one or more oil
product distribution systems. Each of these sub-entities are also composite.
Composite simple entities are thus characterisable by their attributes, their
sub-entities, and the mereology of how these sub-entities are put together.

4.2 Mereology, Part III

Formula 15 on page 8 expresses that whenever an individual has one proper
part then it has more than one. We mentioned there, Page 8, that we would
comment on the fact that our model appears to allow that assemblies may
have just one proper part. We now do so. We shall still allow assemblies to
have just one proper part — in the sense of a sub-assembly or a unit — but we
shall interpret the fact that an assembly always have at least one attribute.
Therefore we shall “generously” interpret the set of attributes of an assembly
to constitute a part. In Sect. 5 we shall see how attributes of both units and
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assemblies of the interpreted mereology contribute to the state components
of the unit and assembly processes.

4.3 Discussion

In Sect. 3.2 we interpreted the model of mereology in six examples. The units
of Sect. 2 which in that section were left uninterpreted now got individuality
— in the form of aircraft, building rooms, rail units and oil pipes. Similarly
for the assemblies of Sect. 2. They became pipeline systems, oil refineries,
train stations, banks, etc.In conventional modelling the mereology of an in-
frastructure component, of the kinds exemplified in Sect. 3.2, was modelled
by modelling that infrastructure component’s special mereology together, “in
line”, with the modelling of unit and assembly attributes. With the model of
Sect. 2 now available we do not have to model the mereological aspects, but
can, instead, instantiate the model of Sect. 2 appropriately. We leave that to
be reported upon elsewhere. In many conventional infrastructure component
models it was often difficult to separate what was mereology from what were
attributes.

5 A Semantic Model of a Class of Mereologies

5.1 The Mereology Entities ≡ Processes

The model of mereology presented in Sect. 2 (Pages 4–10) focused on the
following simple entities (i) the assemblies, (ii) the units and (iii) the connec-
tors. To assemblies and units we associate CSP processes, and to connectors
we associate a CSP channels, one-by-one [28, 29, 34, 36]. The connectors form
the mereological attributes of the model.

5.2 Channels

The CSP channels, are each “anchored” in two parts: if a part is a unit then
in “its corresponding” unit process, and if a part is an assembly then in “its
corresponding” assembly process. From a system assembly we can extract all
connector identifiers. They become indexes into an array of channels. Each of
the connector channel identifiers is mentioned in exactly two unit or assembly
processes.

value



On Mereologies in Computing Science 21

s:S
kis:KI-set = xtr∀KIs(s)

type

ChMap = AUI →m KI-set
value

cm:ChMap = [ obs AUI(p)7→obs KIs(p)|p:P•p ∈ xtr Ps(s) ]
channel

ch[ i|i:KI•i ∈ kis ] MSG

5.3 Process Definitions

value

system: S → Process

system(s) ≡ assembly(s)

assembly: a:A→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process

assembly(a) ≡
MA(a)(obs AΣ(a)) ‖
‖ {assembly(a′)|a′:A•a′ ∈ obs Ps(a)} ‖
‖ {unit(u)|u:U•u ∈ obs Ps(a)}

obs AΣ: A → AΣ

MA: a:A→AΣ→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process

MA(a)(aσ) ≡ MA(a)(AF(a)(aσ))

AF : a:A → AΣ → in,out {ch[ em(i) ]|i:KI•i ∈
cm(obs AUI(a))}×AΣ

unit: u:U → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process

unit(u) ≡ MU (u)(obs UΣ(u))
obs UΣ: U → UΣ

MU : u:U → UΣ → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process

MU (u)(uσ) ≡ MU (u)(UF(u)(uσ))

UF : U → UΣ → in,out {ch[ em(i) ]|i:KI • i ∈ cm(obs AUI(u))} UΣ

The meaning processes MA and MU are generic. Their sôle purpose is to
provide a never ending recursion. “In-between” they “make use” of assembly,
respectively unit specific functions here symbolised by UA, respectively UF .
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5.4 Mereology, Part III

A little more meaning has been added to the notions of parts and connec-
tions. The within and adjacent to relations between parts (assemblies and
units) reflect a phenomenological world of geometry, and the connected rela-
tion between parts (assemblies and units) reflect both physical and conceptual
world understandings: physical world in that, for example, radio waves cross
geometric “boundaries”, and conceptual world in that ontological classifica-
tions typically reflect lattice orderings where overlaps likewise cross geometric
“boundaries”.

5.5 Discussion

5.5.1 Partial Evaluation

The assembly function “first” “functions” as a compiler. The ‘compiler’ trans-
lates an assembly structure into three process expressions: the MA(a)(aσ)
invocation, the parallel composition of assembly processes, a′, one for each
sub-assembly of a, and the parallel composition of unit processes, one for
each unit of assembly a — with these three process expressions “being put in
parallel”. The recursion in assembly ends when a sub-. . . -assembly consists
of no sub-sub-. . . -assemblies. Then the compiling task ends and the many
generated MA(a)(aσ) and MU (u)(uσ) process expressions are invoked.

5.5.2 Generalised Channel Processes

We can refine the meaning of connectors. Each connector, so far, was modelled
by a CSP channel. CSP channels serve both as a synchronisation and as a
communication medium. We now suggest to model it by a process. A channel
process can be thought of as having four channels and a buffering process.
Connector, κ:K, may connect parts πi, πj . The four channels could be thought
of as indexed by (κ, πi), (πi, κ), (κ, πj) and (πj , κ). The process buffer could,
depending on parts pi, pj, be either queues, sets, bags, stacks, or other.
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6 Conclusion

6.1 Summary

We have proposed a simple model which we claim captures a large variety of
structures of societal infrastructure components (Sect. 2). The model focused
on parts, their within and next to one another relations as well as connections
between parts. We have, rather briefly, held that model up against a vari-
ety of diagrammatic renditions of specific societal infrastructure components
(Sect. 3) and claimed that the model is relevant for their formalisation. We
have then reviewed the concepts of continuous (fluid, gaseous) and discrete
(fixed, solid) simple entities and especially discussed the discrete atomic and
composite simple entities (Sect. 4) and their attributes and sub-entities. We
have done so in order first to [again] single out the topic of the mereology
of composite (discrete) entities, and then to prepare for the next section’s
process states (and environments) – modelled from simple entity attributes.
We have finally shown how one can relate simple entities to CSP processes
and connectors to CSP channels (Sect. 5).

6.2 What Have We Achieved ?

There is, as we indicated, in Sect. 3, a bewildering variety of from societal
infrastructure component to “gadget” structures – and these structures must
be modelled. We claim that the mereology model (of Sect. 2) provides a
common denominator for all of these: that the model is generic and can be
simply instantiated for each of the shown, and, we again claim, for many
other domain examples. We claim that the model (of Sect. 2) can serve as a
basis for investigating the axiom systems proposed for mereology [12, Casati
& Varzi] and a calculus of individuals [13, Bowman L. Clarke]. We thus claim
to have a simple model for the kind of mereologies presented in the literature.

6.3 Open Points

We have yet to carefully demonstrate two classes of things: (i) to properly
refine our mereology model into models for the sub-entity structures of spe-
cific societal infrastructure components etc.; and (ii) to identify the exact
relations between our model of mereology and the axiom systems presented
in the literature [12, 13].
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6.4 The Memorial and The Laudatio

On Douglas Taylor Ross:

It is possible his work in that direction became too pioneering or too advanced for

his colleagues, including us. Who knows, the future may prove him right. At any

rate, his reflections regularly made me think.
Michel Sintzoff, 2007

Fig. 12 Doug Taylor Ross and Sir Charles Anthony Richard Hoare
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7 Bibliographical Notes

The present paper uses the RAISE Specification Language [5–7, 25–27]. The
concept of mereology appears to have been first studied by Stanis law Leśniewski
[31,38]. Seminal mereology papers appears to be [12,13,30]. Since the present
paper was first written and presented, April 16, 2009, and its revision for
publication,I have thought more about the mereological issues and, at the
instigation of Tony Hoare, combined these with a study of Bertrand Russell’s
Philosophy of Logical Atomism [35] and [37, Vol. 8, Part III, Chap. 17, pp
157–244]. The outcome became [8].



On Mereologies in Computing Science 25

References

1. Dines Bjørner. Software Systems Engineering — From Domain Analysis to Require-
ments Capture: An Air Traffic Control Example. In 2nd Asia-Pacific Software En-
gineering Conference (APSEC ’95). IEEE Computer Society, 6–9 December 1995.
Brisbane, Queensland, Australia.

2. Dines Bjørner. Domain Models of “The Market” — in Preparation for E–Transaction
Systems. In Practical Foundations of Business and System Specifications (Eds.: Haim
Kilov and Ken Baclawski), The Netherlands, December 2002. Kluwer Academic Press.

3. Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control
and Software Engineering. In CTS2003: 10th IFAC Symposium on Control in Trans-
portation Systems, Oxford, UK, August 4-6 2003. Elsevier Science Ltd. Symposium
held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki.

4. Dines Bjørner. New Results and Trends in Formal Techniques for the Development of
Software for Transportation Systems. In FORMS2003: Symposium on Formal Meth-
ods for Railway Operation and Control Systems. Institut für Verkehrssicherheit und
Automatisierungstechnik, Techn.Univ. of Braunschweig, Germany, 15–16 May 2003.
Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder,
Germany.

5. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

6. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters
12–14 are primarily authored by Christian Krog Madsen.

7. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

8. Dines Bjørner. An Emerging Domain Science – A Rôle for Stanis law Leśniewski’s
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