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Preface

General

The present volume is but the third of three textbooks on the engineering
principles and techniques of software engineering. With these three volumes
we claim that we show how formal techniques, also known as formal methods,
can be exploited to their fullest in industry-scale development projects. We
risk our reputation by going further: We can now justifiably claim that there
is no longer any excuse for not using formal techniques throughout all phases,
stages and steps of development. Usually such excuses are claimed due to a
lack of a fully comprehensive guide on the use of formal methods in even very-
large-scale software developments. Here is a set of books that tells you how
to do most of it in minute detail!

Surely not all development facets are today clarified down to the level of
formal techniques that we would wish were available. But to refrain from using
what there is is — in our perhaps not so humble opinion — outright criminal!
As these volumes, and many excellent monographs, show: there is so much
already now available that the arrogance of not using these techniques boils
down to, yes, criminal neglect.

Some so-called software engineering practitioners “hang on” to the lack of
management guidance. To them I say: Once you have understood the prin-
ciples and techniques of these volumes, and if you are otherwise a sensible
person with some management experience, the rest follows. You, as well as I,
can “fill in” the management principles and techniques.

Appendix B of Vol. 1 contains an extensive glossary, and Appendix A of
Vol. 2 contains an overview of our naming convention.

Brief Guide to Volume 3

This volume can be studied in a number of ways. Any path — through chap-
ters, that is, nodes of the graph of Fig. 2 — from the input node, labelled 1,



VI

to the output node, labelled 32, can form a course. Let us elaborate briefly on
Fig. 2:

Base course on SE: A minimum course covers Chaps. 1, 2, 5, 8, 11, 16, 17,
19, 24–26, 30–32. That is, all the left column chapters of Fig. 2.

Domain engineering: A course focusing on domain engineering would ad-
ditionally cover Chaps. 9, 10 and 12–15.

Requirements engineering: A course focusing, instead, on requirements
engineering would in addition to the base course cover Chaps. 18 and
20–23.

Software design: A course focusing on software design would in addition to
the base course cover Chaps. 27–29.

Any of the four courses outlined above can be given in either of two ways:

Informal: In this way of studying this volume the reader can skip the for-
malisation bits and focus just on the informal material. That is, one can
study this volume in principle and in reality without first having studied
Vol. 1 or Vols. 1 and 2.

Formal: In this way of studying this volume the reader covers all the informal
material as well as the formal material – and thus a study of at least Vol. 1
is a prerequisite for studying the present volume.

Requirements Engineering

Domain Engineering

Software Design

BC + 18, 20−23

BC + 9,10,12−15

BC + 27−29

Formal
Version

Informal
Version

   

   

Base Course on SE

BC: 1,2,5,8,11,16,17,19,24−26,30−32

Fig. 1. Course alternatives
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8

Overview of Domain Engineering

• The prerequisite for studying this chapter is that you are ready now to
embark on the long journey of getting to understand the first of the three
core phases of software development. You have understood the material of
previous chapters, and, preferably also the (formal) abstraction and mod-
elling principles and techniques of Vols. 1 and 2 of this series of textbooks
on software engineering

• The aims are to present a capsule view of stages and steps of domain
engineering, and to present a capsule view of the documents that result
from domain engineering.

• The objective is to make you feel at ease with the very many stages
and steps of domain development, and the very many parts of resulting
documents.

• The treatment is informal and systematic.

8.1 Introduction

In this part, starting with the present chapter and going on for eight more
chapters, we shall cover one of the three main software development activi-
ties: domain engineering. The other main activities are those of requirements
engineering (Part ??) and computing systems design (Part ??). They are con-
sidered main phases of software development in that everything else, i.e., all
tools and management activities, group themselves around these three main
sets of activities.

In this introductory chapter we shall briefly identify and briefly explain a
number of issues that enter into domain engineering. Each of these issues will
be dealt with in more detail in following chapters.

As has been argued before:

• Before we can design the software, we must understand its requirements.
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• And before we can develop requirements, we must understand the appli-
cation domain.

In Chap. ?? we reviewed domain engineering. Now we give a more systematic
and comprehensive treatment. We shall emphasize principles, techniques and
tools of domain engineering.

8.2 A Review of Why Domain Engineering?

Characterisation. By a domain model we understand the meaning of a
domain description.

Characterisation. By a domain description we mean a document (or a set of
documents) which describes what the domain is, its entities, functions, events
and behaviours.

Characterisation. By a domain theory we mean a set of theorems that are
claimed to hold of the domain model.

Characterisation. By domain engineering we mean the processes overviewed
in this chapter and otherwise detailed in this part (Part ??).

Just as physicists have researched and developed models of Mother Nature
for at least 500 years, and just as classical engineers have designed artifacts
based on the theories of the natural sciences, so we shall advocate research into
and the development of theories of the man-made domains in which human
activities, rather than nature, play the major role. Then we can develop the
requirements for and the designs of software in a more trustworthy and in a
scientifically more believable manner.

To research and develop domain theories is a new activity. But many
present software engineering processes already touch upon domain engineer-
ing. In these volumes we bring domain engineering more out into the open,
thus simplifying many past concerns of software engineering, especially those
of requirements engineering. That is, we strongly think that many previously
— by other authors — advocated issues of requirements engineering become
far easier to handle (or they outright “disappear”) once we have done our
domain engineering job! So we claim, at least!

8.3 Overview of Part and Chapter

Proper domain engineering, i.e., the proper development of a domain model,
proceeds in stages:

• identification of domain stakeholders, Sect. 8.4 and Chap. ??
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• domain acquisition, Sect. 8.5 and Chap. ??
• domain analysis and concept formation, Sect. 8.6 and Chap. ??
• domain modelling, Sect. 8.7 and Chaps. ??–11
• domain validation and verification, Sect. 8.5 and Chap. ??
• domain theory formation, Chap. ??

The reader may observe that we are presenting principles and techniques for
each of these stages in not quite the order in which they are listed above. The
reason is given now and is further elaborated upon later.

Domain Model and Domain Theory
The most important outcome of domain engineering is a domain model and
its associated domain theory.

Without knowing what domain models contain one cannot know how to go
about constructing them. Chapter 11 presents principles and techniques for
what domain models contain. Chapters ??–?? outline how to gather material
for domain model construction (domain acquisition) and how to analyse and
understand such material (analysis and concept formation). But the issue,
the role of stakeholders, is so important and often forgotten (or, at least,
“minimised”) that we have decided to present principles and techniques for
identification of and liaison with stakeholders first, in Chap. ??. Chap. ?? is
a preamble for Chap. 11.

8.4 Domain Stakeholders and Their Perspectives

Characterisation. By a domain stakeholder we shall understand a person,
or a group of persons, united somehow in their common interest in, or de-
pendency on the domain; or an institution, an enterprise or a group of such,
(again) characterised (and, again, loosely) by their common interest in or
dependency on the domain.

Identification of domain stakeholders embodies development principles, tech-
niques and tools. These will be surveyed in Chap. ??.

Characterisation. By a domain stakeholder perspective we understand the,
or an, understanding of the domain shared by the specifically identified stake-
holder group — a view that may differ from one stakeholder group to another
stakeholder group of the same domain.

Identification of stakeholder perspectives (i.e., views) embodies development
principles, techniques and tools. These will be surveyed in Sect. ??.

Domain Stakeholders
Without clearly identifying and liaising with all relevant domain stakeholders
one cannot hope to construct a believable domain model.
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We shall return to the concept of stakeholders in Chap. ??.

8.5 Domain Acquisition and Validation

Characterisation. By domain acquisition we understand the gathering,
from domain stakeholders, from literature and from our observations, of
knowledge about the domain. This knowledge includes phenomenological enti-
ties, functions, events and behaviours, with this “gathering” being manifested
in terms of rough statements (i.e., fragments of sketches).

Domain acquisition embodies many development principles, techniques and
tools. These will be surveyed in Chap. ??.

Characterisation. By domain validation we understand the assurance, with
stakeholders, notably clients, that the domain descriptions produced as a re-
sult of domain acquisition, domain analysis, concept formation and domain
modelling (the latter including the description) is commensurate with how
the stakeholders view the domain.

Domain validation embodies many development principles, techniques and
tools. These will be surveyed in Sect. ??.

8.6 Domain Analysis and Concept Formation

Characterisation. By domain analysis we understand a study of domain
acquisition (rough) statements, with the aim of discovering inconsistencies,
conflicts and incompletenesses within, as well as with the aim of forming
concepts from, these domain acquisition statements.

Domain analysis embodies many development principles, techniques and tools.
These will be surveyed in sections of Chap. ??.

Characterisation. By domain concept formation we understand the ab-
straction of domain phenomena, as hinted at by domain acquisition (rough)
statements, into concepts.

Domain concept formation embodies development principles, techniques and
tools. These will be surveyed in sections of Chap. ??.
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8.7 Domain Facets

Characterisation. By a domain facet we understand one amongst a finite
set of generic ways of analysing a domain, that is, a view of the domain such
that the different facets cover conceptually different views, and such that these
views together cover the domain.

We list the main categories of domain facets:

• business procedure facets
• intrinsic facets
• support technology facets
• management and organisation facets
• rules and regulations facets
• script facets
• human behaviour

These facets will be covered in Chap. 11.

Domain Model ≡ Model of Domain Facets

So by a domain model we mean a set of one or more commensurate models
of domain facets — these may possibly be rewritten (and reformalised) into
one consolidated model.

8.8 Auxiliary Stages of Domain Development

Earlier we used the prefix design when enumerating some stages of develop-
ment. Now we use the term auxiliary. Why we do this will transpire from the
immediately following text.

The auxiliary stages of development include the following:

• domain (knowledge) acquisition
• domain (knowledge) analysis and concept formation
• domain (knowledge) verification
• domain (knowledge) validation
• domain theory formation.

We shall cover these in later sections. Suffice it for now to say that they
“adorn” the major stages of domain facet modelling: to model a domain facet
we must first acquire it; then we must analyse what has been acquired, and
form concepts from what has been analysed; then we can describe it: (a)
roughly, (b) terminologise it, (c) narrate and (d) possibly formalise the facet.
Stages (a–d) form the major stages. In between these latter descriptive ac-
tivities, we verify properties of the domain model, validate the domain facet
description (i.e., the model), and possibly we build up elements of a theory of
the domain.
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8.9 The Domain Model Document

8.9.1 A Preview of Things to Come

The aim of domain engineering is to create informative, descriptive and an-
alytic documents about and constituting the domain model. Therefore it is
important to always keep in mind what a possible contents listing could be
of such a complete set of documents. We shall therefore outline, in “capsule”
form, what a possible, and, to us, desirable table of contents structure could
be of such a set of domain documents. The aim of Part ?? is, therefore, to
present the principles, techniques and tools for creating, i.e., developing, such
sets of domain documents.

8.9.2 Contents of a Domain Model Document

We list a comprehensive, desirable table of contents structure for a typical set
of domain documents. We refer to Chap. 2 for an overview of these kinds of
documents, and especially for the first category of informative documents.

A Generic Domain Documentation Contents Listing

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

2. Descriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Terminology

(d) Business Processes
(e) Facets:

i. Intrinsics
ii. Support Technologies
iii. Management and

Organisation
iv. Rules and Regulations
v. Scripts
vi. Human Behaviour

(f) Consolidated Description
3. Analyses

(a) Domain Analysis and
Concept Formation
i. Inconsistencies
ii. Conflicts
iii. Incompletenesses
iv. Resolutions

(b) Domain Validation
i. Stakeholder Walkthroughs
ii. Resolutions

(c) Domain Verification
i. Model Checkings
ii. Theorems and Proofs
iii. Test Cases and Tests

(d) (Towards a) Domain Theory



8.12 Exercises 7

8.10 Further Structure of This Part

We start with a brief analysis of the stakeholder concept (Chap. ??). To know
how to properly acquire domain knowledge we believe that it is important to
know what the end result of domain engineering should be. We therefore de-
tail two core aspects of a domain model: the attributes of the phenomena and
concepts modelled (Chap. ??), and the facets of domain phenomena and con-
cepts (Chap. 11). Thus we present principles and techniques for those aspects
of domain models. And we do so before we treat principles and techniques for
domain acquisition (Chap. ??). Then we cover domain analysis and concept
formation (Chap. ??) — on which the domain models build. Once domain
models are believed ready, they can be validated (Section ??), and stages and
steps of domain modelling work can be verified (Sect. ??) — often during do-
main modelling. Chapters ?? and ?? end this part: They deal with thoughts
(very briefly) on domain theories, and summarise the domain engineering pro-
cess model.

We emphasise, to the reader, that the order of chapters of this part does
not follow the order of the work to be done in domain development. We repeat:
Before we can do proper domain acquisition (Chap. ??), concept analysis and
formation work (Chap. ??), we must understand what the form and contents
of proper domain models should desirably be (Chaps. ?? and 11). Hence
Chaps. ?? and 11 come before Chaps. ?? and ??. It is to keep our tongues
and fingers straight that we presented the table of contents structure for a
typical set of domain documents in Sect. 8.9.2.

8.11 Bibliographical Notes

Our approach to domain engineering possesses some rather novel features.
That is, we bring new principles and techniques into software engineering
— namely the entire concept of domain engineering — that are not covered
elsewhere in the currently available literature on software engineering [?,?,?,
?,?].

8.12 Exercises

The exercises of this chapter are closed book exercises. That means that you
are to try write down a few lines of your solution before you check with the
appropriate section for our answer to the questions.

Exercise 8.1 Why Domain Engineering? Without consulting chapter texts
in this volume, recapitulate, in a few lines of informal text, how this book
motivates domain engineering.
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Exercise 8.2 Stages of Domain Engineering. Without consulting chapter
texts in this volume, recapitulate, in some six or so lines of informal text,
the ordered stages of domain engineering.

Exercise 8.3 Substages of Domain Modelling. Without consulting chapter
texts in this volume, recapitulate, in some seven or so lines of informal text,
the ordered stages of domain facet modelling.

Exercise 8.4 Domain Acquisition. Without consulting chapter texts in this
volume, characterise, in a few lines, how this chapter defines domain acquisi-
tion.

Exercise 8.5 Domain Validation. Without consulting chapter texts in this
volume, characterise, in a few lines, how this chapter defines domain valida-
tion.

Exercise 8.6 Domain Analysis. Without consulting chapter texts in this vol-
ume, characterise, in a few lines, how this chapter defines domain analysis.

Exercise 8.7 Domain Concept Formation. Without consulting chapter texts
in this volume, characterise, in a few lines, how this chapter defines domain
concept formation.

Exercise 8.8 Stakeholder. Without consulting chapter texts in this volume,
characterise, in a few lines, how this chapter defines the concept of a domain
stakeholder.

Exercise 8.9 Stakeholder Perspective. Without consulting chapter texts in
this volume, characterise, in a few lines, how this chapter defines the concept
of domain stakeholder perspective.

Exercise 8.10 Domain Documentation. Without consulting chapter texts in
this volume, list, in as exhaustive and structured a fashion as possible, generic
domain documentation table of contents.
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Domain Facets

• The prerequisite for studying this chapter is that you, as a domain en-
gineer, need to know: which are the constituents of a proper model of a
domain?

• The aims are to introduce the concept that a proper domain description
is made up from most of the following constituent descriptions, i.e., facets:
domain-facilitating business processes, domain intrinsics, domain support
technologies, domain management and organisation, domain rules and reg-
ulations, domain scripts, human behaviour, etc., and to present principles,
techniques and tools for the description of these facets.

• The objective is to ensure that you will become a thoroughly professional
domain engineer.

• The treatment is from systematic to formal.

11.1 Introduction

Let us remind ourselves of what it is all about. Software development is all
about getting software to the market, software that can and will be sold.
Hence it must be software whose use pleases people, software which solves
problems, that is, software which fits, hand in glove, the application domain
in which it is to serve.

Therefore describing the domain is important. If we cannot describe the
domain, then we are not trustworthy. We simply cannot be trusted to develop
software for that domain. Describing the domain is thus of utmost impor-
tance. And hence it is of primary importance to know and to practice what a
description consists of.

This chapter is all about that: to identify the various facets of a domain
that are describable, and, hence, most likely, are parts of a proper domain
description. So, in this chapter we will identify those facets, and we will present
principles, techniques and tools for their proper description.



10 11 Domain Facets

The present chapter constitutes a first high point of the present volume,
because in this chapter we present principles and techniques of software de-
velopment that are not otherwise available in any other textbook on software
engineering. So take your time to become thoroughly familiar with the con-
tents of the present chapter.

Characterisation. By a domain facet we understand one amongst a finite
set of generic ways of analysing a domain: a view of the domain, such that the
different facets cover conceptually different views, and such that these views
together cover the domain.

In this section we identify a number of domain facets and we survey principles
and techniques for modelling, relative to identified domain stakeholder classes,
each of the identified facets. So far we have been able to identify the following
facets:

• (i) intrinsics,
• (ii) support technology,
• (iii) management and organisation,
• (iv) rules and regulations including
• (v) script facets, and
• (vi) human behaviour.

We enlarge upon the above enumeration using the following brief characteri-
sations:

• (i) Domain intrinsics: That which is common to all facets (Sect. 11.3).
• (ii) Domain support technologies: That in terms of which several other

facets (intrinsics, business processes, management and organisation, and
rules and regulations) are implemented (Sect. 11.4).

• (iii) Domain management and organisation: That which primarily
determines and constrains communication between enterprise stakeholders
(Sect. 11.5).

• (iv–v) Domain rules, regulations and scripts: That which guides the
work of enterprise stakeholders, their interaction, and the interaction with
non-enterprise stakeholders (Sects. 11.6–11.7).

• (vi) Domain human behaviour: The way in which domain stakehold-
ers dispatch their actions and interactions wrt. the enterprise: dutifully,
forgetfully, sloppily, yes, even criminally (Sect. 11.8).

To help us identify parts of the above facets we suggest that rough sketch
descriptions first be made of what we shall call the domain business process
facilitators:

• Domain business process facilitators: Those processes — carried out
primarily by people — in terms of which the intrinsics (and so on) are
implemented (Sect. 11.2).
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11.1.1 Separation of Concerns

We shall now treat each of these facets in some detail. For each we venture
to express some specification pattern that most closely captures the essence
of the facet. Separating the treatment of each of these (and possibly other)
facets reflects the following principle:

Principle. Separation of Facets: When possible, one should identify distin-
guishable facets and, when appropriate, i.e., if feasible and pleasing, treat
them separately.

We believe that the facets we shall present can be treated separately in most
developments — but not necessarily always. Separation or not is a matter of
development as well as of presentation style.

11.1.2 Discussion of the Separation Principle

The separation, in more generality, of computing systems development into
the triptych of domain engineering, requirements engineering and machine
(hardware + software) design is also a result of separation of concerns. So are
the separations of domain requirements, interface requirements and machine
requirements (within requirements engineering), as well as the separation of
software architecture and component and module design.

11.1.3 Structure of Chapter

Before we cover each of the facets individually (Sects. 11.3–11.8) we cover the
concept of business process facilitators (Sect. 11.2). The material of Sect. 11.2,
in addition to helping the domain describer to identify the various facets of
a domain, also covers the important notion of business processes. Describing
business processes is not only the responsibility of a software developer, but
also of managers in any business enterprise. Before having, even superficially,
understood current business processes how could a business manager mandate
the reengineering of these processes? Section 11.2 therefore also serves as
a prerequisite for the section on business process reengineering (a domain
requirements facet, Sect. 19.3).

11.2 Domain Facilitators: Business Processes

A domain is often known to its stakeholders by the various actions they play
in that domain. That is, the domain is known by the various sequences of
entities, functions and events the stakeholders are exposed to, are performing
and are influenced by. Such sequences are what we shall here understand as
business processes.
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In our ongoing example, that of railway systems, informal examples of
business processes are: for a potential passenger to plan, buy tickets for, and
undergo a journey. For the driver of the locomotive the sequence of undergoing
a briefing of the train journey plan, taking possession of the train, checking
some basic properties of that train, negotiating its start, driving it down
the line, obeying signals and the plan, and, finally entering the next station,
stopping at a platform, and concluding a trip of the train journey — all
that constitutes a business process. For a train dispatcher, the monitoring
and control of trains and signals during a work shift constitutes a business
process.

Describing domain intrinsics focuses on the very essentials of a domain.
It can sometimes be a bit hard for a domain engineer, in collaboration with
stakeholders, to decide which are the domain intrinsics. It can often help (the
process of identifying the domain intrinsics) if one alternatively, or hand in
hand analyses and describes what is known as the business processes. From a
description of business processes one can then analyse which parts of such a
description designate, i.e., are about or relate to, which facets.

Principle. Describing Domain Business Process Facets: As part of under-
standing any (at least human-made) domain it is important to delineate and
describe its business processes. Initially that should preferably be done in the
form of rough sketches. These rough sketches should — again initially — fo-
cus on identifiable entities, functions, events and behaviours. Naturally, being
business processes, identification of behaviours comes first. Then be prepared
to rework these descriptions as other facets are being described in depth.

11.2.1 Business Processes

Characterisation. By a business process we understand the procedurally
describable aspects, of one or more of the ways in which a business, an en-
terprise, a factory, etc., conducts its yearly, quarterly, monthly, weekly and
daily processes, that is, regularly occurring chores. The processes may in-
clude strategic, tactical and operational management and workflow planning
and decision activities; and the administrative, and where applicable, the mar-
keting, the research and development, the production planning and execution,
the sales and the service (workflow) activities — to name some.

Example 11.1 Some Business Processes:
(i) A Business Plan Business Process: The board of any company instructs

its chief executive officer (CEO) to formulate revised business plans.1 Briefly,
a business plan is a plan for how the company strategically, tactically and, to
some extent, operationally wishes to conduct its business: what it strives for,

1 A business plan is not the same as a description of the business’s processes.
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productwise, imagewise, market-share-wise, financially, etc. The CEO devel-
ops a business plan in consultation with executive layers of (i.e., with strategic)
management. Strategic management (in-between) discusses the plan (which
the CEO wishes to submit to the Board) with tactical management, etc. Once
generally agreed upon, the CEO submits the plan to the Board.

(ii) A Purchase Regulation Business Process: In our “example company”,
purchase of equipment must adhere to the following — roughly sketched —
process: Once the need for acquisition of one or more units of a certain equip-
ment, or a related set of equipment, has been identified, the staff most relevant
to take responsibility for the use of this equipment issues a purchase inquiry re-
quest. The purchase inquiry request is sent to the purchasing department. The
purchasing department investigates the market and reports back to the person
who issued the request with a purchase inquiry report containing facts about
zero, one or more possible equipment choices, their prices, and their purchase
(i.e., payment), delivery, service and guarantee conditions. The person who
issued the purchase inquiry request may now proceed to issue a purchase request
order, attach the purchase inquiry report and send this to the relevant budget
controlling manager for acceptance. If purchase is approved then the purchas-
ing department is instructed to issue, to the chosen supplier, a purchase request
order. Once the supplier delivers the ordered equipment, the purchasing de-
partment inspects the delivery and issues an equipment inspection report. An
invoice from the supplier for the above-mentioned equipment is only paid if
the equipment inspection report recommends to do so. Otherwise the delivered
equipment is returned to the supplier. The above is but a rough sketch. Much
more precision is needed, as are descriptions of exceptions, etc.

Example 11.2 Some More Business Processes: The University of California
at Irvine (UCI), had their Administrative and Business Services department
suggest, as a learning example, the description of a number of business processes.
The “learning” had to do, actually, with business process reengineering (BPR).
So we really should bring the below example into Sect. 19.3 instead of here!
We quote from their home page [?]:

• Human Resources: “Examine the hiring business process of the Uni-
versity, including the applicant process. Special emphasis should be given
to simplifying the process, identifying those parts where there is no value
added — i.e., where those parts of the process which one considers sim-
plifying “away” add no value. Increase speed of response to applicant and
units, and reduce process costs while achieving high quality.”

• Renovation: “Review the campus’ remodelling and alterations business
process, and develop recommendations to improve Facilities Management
services to UCI departments for small projects (under $50,000) and minor
capital projects (up to $250,000). Special emphasis should be given to sim-
plifying the process, identifying those parts where there is no value added
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to the customer’s product; to increase speed and flexibility of response;
and to reduce process costs while achieving high quality.”

• Procurement: “Review the campus procurement business process and
develop recommendations/solutions for process improvement. The re-
designed process should provide “hassle-free” purchasing, give a quick
response time to the purchaser, be economical in terms of all costs, be
reasonably error-free and be compliant with (US) Federal procurement
standards.”

• Travel: “Study the travel business process from the beginning stage when
a faculty/staff member identifies the need to travel to the time when re-
imbursement is received. Analyze and redesign the process through a six
step program based on the following business process improvement (BPI)
principles: (i) simplify the process, (ii) identify those parts where there is
no value added to the customer, increase (iii) speed and (iv) flexibility of
response, (v) improve clarity for responsibilities and (vi) reduce process
costs while meeting customer expectations from travel services. The re-
design should reflect customer needs, service, economy of operation and
be in compliance with applicable regulations.”

• Accounts payable: “Redesign the accounts payable business process to
meet the following functional objectives (in addition to BPI measures):
Payment for goods and services must assure that vendors receive remit-
tance in a timely manner for all goods and services provided to the Uni-
versity. Significantly improve the operation’s ability to serve campus cus-
tomers while maintaining financial solvency and adequate internal con-
trols.”

• Parking: “Review how parking permits2 are sold to students, faculty and
staff with the intent of omitting unnecessary steps and redundant data
collection. The redesigned process should achieve a dramatic reduction in
time spent by people standing in line to purchase a permit, and reduce
administrative time (and cost) in recording and tracking permit sales.”

Please observe that the above examples illustrate requests for possible business
process reengineering — but that they also give rough-sketch glimpses of
underlying business processes.

Characterisation. By business process engineering we understand the iden-
tification of which business processes should be subject to precise description,
describing these and securing their general adoption (acceptance) in the busi-
ness, and enacting these business process descriptions.

2 We here assume that the company is a very large company with extensive, but
still limited, parking facilities.
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Example 11.3 Example Business Process Engineering:
(i) Business plans: We assume, about our example company, that — up

to a certain time — there was no set procedure wrt. the creation, etc., of
business plans. As the company grows, a need is felt for “stricter” procedures
wrt. business plans. Therefore the CEO and/or the board drafts the business
plan very implicitly hinted at in Example 11.1 (i). The last two sentences,
above, portray an example business process engineering.

(ii) Purchase regulations: We assume, about our example company, that
— up to a certain time — there was no set procedure wrt. purchase of equip-
ment. As the company grows, a need is felt for “stricter” procedures wrt.
procurement. Therefore some (say, operations) manager drafts the purchase
process roughly sketched in Example 11.1 item (ii). The previous two sen-
tences portray an example business process engineering.

11.2.2 Overall Principles

We summarise:

Principles. Human-made universes of discourse3 entail the concept of busi-
ness processes. The principle of business processes states that the description
of business processes is indispensable in any description of a human-made
universe of discourse. The principle of business processes also states that de-
scribing these is not sufficient: all facets must be described.

Techniques. Business Processes: The basic technique of describing a human-
made universe of discourse involves: (i) identification and description of a
suitably comprehensive set of behaviours: the behaviours of interest and the
environment; (ii) identification and description, for each behaviour, of the
entities characteristic of this behaviour; (iii) identification and description, for
each entity, of the functions that apply to entities, or from which entities are
yielded; (iv) identification and description, for each behaviour, of the events
that it shares — either with other specifically identified behaviours of interest,
or with a further, abstract, environment.

Tools. Business Processes: Further techniques and the basic tools for de-
scribing business processes include: (1) RSL/CSP definition of processes, where
one suitably defines their input/output signatures, associated channel names
and types, and their process definition bodies;4 (2) Petri nets;5 (3) message

3 Examples of human-made universes of discourse are: public administration, man-
ufacturing industries (mechanical, chemical, medical, woodworking, etc.), trans-
portation, the financial service industry (banks, insurance companies, securities
instrument brokers, traders and exchanges, portfolio management, etc.), agricul-
ture, fisheries, mining, etc.

4
RSL/CSP [?,?,?,?] was covered in detail in Vol. 1, Chap. 21.

5 Petri Nets [?,?,?,?,?] were covered in detail in Vol. 2, Chap. 12.
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and live sequence charts for the definition of interaction between behaviours;6

(4) statecharts for the definition of highly complex, typically interwoven be-
haviours;7 and (5) the usual, full complement of RSL’s type, function value,
and axiom constructs and their abstract techniques for modelling entities and
functions.

11.2.3 Informal and Formal Examples

We rough-sketch a number of examples. In each example we start, according to
the principles and techniques enunciated above, with identifying behaviours,
events, and hence channels and the type of entities communicated over chan-
nels, i.e. participating in events. Hence we shall emphasise, in these examples,
the behaviour, or process diagrams. We leave it to other examples to present
other aspects, so that their totality yields the principles, the techniques and
the tools of domain description.
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Fig. 11.1. An air traffic behavioural system abstraction

Example 11.4 Air Traffic Business Processes: The main business process
behaviours of an air traffic system are the following: (i) the aircraft, (ii) the
ground control towers, (iii) the terminal control towers, (iv) the area control
centres and (v) the continental control centres (Fig. 11.1).

We describe each of these behaviours separately:

6 Message [?,?,?] and live sequence charts [?,?,?] were covered in detail in Vol. 2,
Chap. 13.

7 Statecharts [?,?,?,?,?] were covered in detail in Vol. 2, Chap. 14.



11.2 Domain Facilitators: Business Processes 17

(i) Aircraft get permission from ground control towers to depart; proceed
to fly according to a flight plan (an entity); keep in contact with area control
centres along the route, (upon approach) contacting terminal control towers
from which they, simplifying, get permission to land; and upon touchdown,
changing over from terminal control tower to ground control tower guidance.

(ii) The ground control towers, on one hand, take over monitoring and
control of landing aircraft from terminal control towers; and, on the other
hand, hand over monitoring and control of departing aircraft to area control
centres. Ground control towers, on behalf of a requesting aircraft, negotiate
with destination ground control tower and (simplifying) with continental con-
trol centres when a departing aircraft can actually start in order to satisfy
certain “slot” rules and regulations (as one business process). Ground control
towers, on behalf of the associated airport, assign gates to landing aircraft,
and guide them from the spot of touchdown to that gate, etc. (as another
business process).

(iii) The terminal control towers play their major role in handling air-
craft approaching airports with intention to land. They may direct these to
temporarily wait in a holding area. They — eventually — guide the aircraft
down, usually “stringing” them into an ordered landing queue. In doing this
the terminal control towers take over the monitoring and control of landing
aircraft from regional control centres, and pass their monitoring and control
on to the ground control towers.

(iv) The area control centres handle aircraft flying over their territory:
taking over their monitoring and control either from ground control towers,
or from neighbouring area control centres. Area control centres shall help en-
sure smooth flight, that aircraft are allotted to appropriate air corridors, if
and when needed (as one business process), and are otherwise kept informed
of “neighbouring” aircraft and weather conditions en route (other business
processes). Area control centres hand over aircraft either to terminal con-
trol towers (as yet another business process), or to neighbouring area control
centres (as yet another business process).

(v) The continental control centres monitor and control, in collaboration
with regional and ground control centres, overall traffic in an area comprising
several regional control centres (as a major business process), and can thus
monitor and control whether contracted (landing) slot allocations and sched-
ules can be honoured, and, if not, reschedule these (landing) slots (as another
major business process).

From the above rough sketches of behaviours the domain engineer then
goes on to describe types of messages (i.e., entities) between behaviours, types
of entities specific to the behaviours, and the functions that apply to or yield
those entities.

Example 11.5 Freight Logistics Business Processes: The main business pro-
cess behaviours of a freight logistics system are the following: (i) the senders of
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freight, (ii) the logistics firms which plan and coordinate freight transport, (iii)
the transport companies on whose conveyors freight is being transported, (iv)
the hubs between which freight conveyors “ply their trade”, (v) the conveyors
themselves and (vi) the receivers of freight (Fig. 11.2). A detailed description
for each of the freight logistics business process behaviours listed above should
now follow. We leave this as an exercise to the reader to complete.
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Fig. 11.2. A freight logistics behavioural system abstraction

Example 11.6 Harbour Business Processes: The main business process be-
haviours of a harbour system are the following: (i) the ships who seek harbour
to unload and load cargo at a harbour quay, (ii) the harbourmaster who al-
locates and schedules ships to quays, (iii) the quays at which ships berth and
unload and load cargo (to and from a container area) and (iv) the container
area which temporarily stores (“houses”) containers (Fig. 11.3). There may be
other parts of a harbour: a holding area for ships to wait before being allowed
to properly enter the harbour and be berthed at a buoy or a quay, or for ships
to rest before proceeding; as well as buoys at which ships may be anchored
while unloading and loading. We shall assume that the reader can properly
complete an appropriate, realistic harbour domain.
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A detailed description for each of the harbour business process behaviours
listed above should now follow. We leave this as an exercise to the reader to
complete.
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Fig. 11.3. A harbour behavioural system abstraction

Example 11.7 Financial Service Industry Business Processes: The main
business process behaviours of a financial service system are the following:
(i) clients, (ii) banks, (iii) securities instrument brokers and traders, (iv) port-
folio managers, (v) (the, or a, or several) stock exchange(s), (vi) stock incor-
porated enterprises and (vii) the financial service industry “watchdog”. We
rough-sketch the behaviour of a number of business processes of the financial
service industry.

(i) Clients engage in a number of business processes: (i.1) they open, de-
posit into, withdraw from, obtain statements about, transfer sums between
and close demand/deposit, mortgage and other accounts; (i.2) they request
brokers to buy or sell, or to withdraw buy/sell orders for securities instruments
(bonds, stocks, futures, etc.); and (i.3) they arrange with portfolio managers
to look after their bank and securities instrument assets, and occasionally they
reinstruct portfolio managers in those respects.

(ii) Banks engage with clients, portfolio managers, and brokers and traders
in exchanges related to client transactions with banks, portfolio managers, and
brokers and traders, as well as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio
managers and the stock exchange(s) in exchanges related to client transactions
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with brokers and traders, and, for traders, as well as with the stock exchange(s)
on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders
in exchanges related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog,
with brokers and traders, and with the stock listed enterprises, reinforcing
trading practices, possibly suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They
send reports, according to law, of possible major acquisitions, business devel-
opments, and quarterly and annual stockholder and other reports.

(vii) The financial industry watchdog engages with banks, portfolio man-
agers, brokers and traders and with the stock exchanges.
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Fig. 11.4. A financial behavioural system abstraction

11.2.4 Discussion

The reader is to be properly warned.
An essence of the examples is not the specific diagrams shown, but that one

can indeed draw such behavioural rough sketches. These can include square
or rounded boxes designating behaviours; single- or, as here shown, double-
ended arrows, designating the possibility of typed communication of messages
(say over channels); the (entity) typing of these messages; and so on.
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Another essence of the examples is hence that there is a diagrammatic
language of behaviours, and that this language has textual counterparts — say
in the form of CSP or RSL/CSP. Other diagrammatic forms might be chosen,
depending on properties not revealed in the above examples. These other
forms might be Petri nets, message or live sequence charts, or, for example,
statecharts.

Furthermore, the examples are sketchy, but they provide an immediate,
constructive start to the arduous task of carefully and painstakingly describing
a domain.

In all examples we have sketched the suggested arrays of channels and their
types (as sorts). These are just suggestions. Interactions between behaviours
are then modelled in terms of messages communicated over these channels.
But such models are just that: there is no obligation on the part of any,
subsequent software design to implement channels as something anywhere
similar to channels!

The reader should understand that to describe domains fully satisfactorily
requires at least the full complement of principles, techniques and tools covered
in all chapters of Vols. 1 and 2, as well as in all the chapters up to and including
all of the present chapter in this volume!

11.2.5 Summary

The purpose of first rough-sketching a number, not necessarily all, identifiable
business processes is to use these descriptions to identify

• entities,
• functions,

• events and
• behaviours,

as well as to classify these into their “facethood”:

• intrinsics,
• support technologies,
• management and organisation,

• rules and regulations,
• scripts and
• human behaviour.

11.2.6 Reminder

We remind the reader of the principle stated at the outset of this section on
domain business process facets.

Principle. Describing Domain Business Process Facets: As part of under-
standing any (at least human-made) domain it is important to delineate and
describe its business processes. Initially that should preferably be done in the
form of rough sketches. These rough sketches should — again initially — fo-
cus on identifiable entities, functions, events and behaviours. Naturally, being
business processes, identification of behaviours comes first. Then be prepared
to rework these descriptions as other facets are being described in depth.
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A main reason for initially describing the business processes of a domain is
to discover, identify and capture entities, functions, events and behaviours of
that domain. Another good reason is to get the process of description started
— somewhere!

11.3 Domain Intrinsics

Railways, although they have many “players and actors” revolve around some
core notions: the rail net and trains on these. Overlapping groups of players
and actors (i.e., stakeholders), hence different perspectives, in general, have a
core of common entities and phenomena. We refer to this core as the intrinsics
of the domain.

Principles. Domain Intrinsics: From the outset of describing a domain: Anal-
yse it with respect to its intrinsic phenomena and concepts. Focus on describ-
ing these first. Make sure that the descriptions of subsequently described
domain facets are subordinated descriptions of the domain facets.

Principle. Describing the Domain Intrinsics Facets: So from the outset of
describing a domain analyse it with respect to its intrinsic phenomena and
concepts. Focus on describing these first, and make sure that the descriptions
of all other (subsequently described) domain facets are subordinated descrip-
tions of the domain intrinsics.

11.3.1 Overall Principles

Each stakeholder group typically has its view of a domain. Different stake-
holder groups may thus have different views of their — otherwise shared —
domain. In developing a description of the domain intrinsics we must first
develop one description per stakeholder group. Then, in some step of devel-
opment, reconcile possible domain description inconsistencies and conflicts.
To do so systematically we first need to form a basis, the intrinsics, which is
common to all subsequent facets.

Characterisation. By domain intrinsics we shall understand those phenom-
ena and concepts of a domain which are basic to any of the other facets (listed
earlier and treated, in some detail, below), with such domain intrinsics initially
covering at least one specific, hence named, stakeholder view.

In the next many examples we show typical fragments of rough-sketch or
narrative descriptions — such as the software developer has to construct when
creating a domain description.
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Example 11.8 Railway Net Intrinsics: We narrate and formalise three rail-
way net intrinsics.

• From the view of potential train passengers a railway net consists of lines,
stations and trains. A line connects exactly two distinct stations.

• From the view of actual train passengers a railway net — in addition to the
above — allows for several lines between any pair of stations and, within
stations, provides for one or more platform tracks from which to embark
or alight a train.

• From the view of train operating staff a railway net — in addition to the
above — has lines and stations consisting of suitably connected rail units.
A rail unit is either a simple (i.e., linear, straight) unit, or is a switch unit,
or is a simple crossover unit, or is a switchable crossover unit, etc. Simple
units have two connectors. Switch units have three connectors. Simple and
switchable crossover units have four connectors. A path (through a unit)
is a pair of connectors of that unit. A state of a unit is the set of paths, in
the direction of which a train may travel. A (current) state may be empty:
The unit is closed for traffic. A unit can be in either one of a number of
states of its state space.

Formal Presentation: Railway Net Intrinsics

A summary formalisation of the three narrated railway net intrinsics could
be:

• Potential train passengers:

scheme N0 =
class

type
N, L, S, Sn, Ln

value
obs Ls: N → L-set, obs Ss: N → S-set
obs Ln: L → Ln, obs Sn: S → Sn
obs Sns: L → Sn-set, obs Lns: S → Ln-set

axiom
...

end

N, L, S, Sn and Ln designate nets, lines, stations, station names and line
names. One can observe lines and stations from nets, line and station
names from lines and stations, pair sets of station names from lines, and
lines names (of lines) into and out from a station from stations. Axioms
ensure proper graph properties of these concepts.

• Actual train passengers:



24 11 Domain Facets

scheme N1 = extend N0 with
class

type
Tr, Trn

value
obs Trs: S → Tr-set, obs Trn: Tr → Trn

axiom
...

end

The only additions are that of track and track name sorts, related ob-
server functions and axioms.

• Train operating staff:

scheme N2 = extend N1 with
class

type
U, C
P′ = U × (C×C)
P = {| p:P′

• let (u,(c,c′))=p in (c,c′)∈ ∪ obs Ω(u) end |}
Σ = P-set
Ω = Σ-set

value
obs Us: (N|L|S) → U-set
obs Cs: U → C-set
obs Σ: U → Σ
obs Ω: U → Ω

axiom
...

end

Unit and connector sorts have been added as have concrete types for paths,
unit states, unit state spaces and related observer functions, including unit
state and unit state space observers.

The reader is invited to compare the three narrative descriptions with the
three formal descriptions, line by line.

Different stakeholder perspectives, not only of intrinsics, as here, but of any
facet, leads to a number of different models. The name of a phenomenon of one
perspective, that is, of one model, may coincide with the name of a “similar”
phenomenon of another perspective, that is, of another model, and so on. If
the intention is that the “same” names cover comparable phenomena, then
the developer must state the comparison relation.
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Example 11.9 Comparable Intrinsics: We refer to Example 11.8. We claim
that the concept of nets, lines and stations in the three models of Example 11.8
must relate. The simplest possible relationships are to let the third model be
the common “unifier” and to mandate

• that the model of nets, lines and stations of the potential train passengers
formalisation is that of nets, lines and stations of the train operating staff
model; and

• that the model of nets, lines, stations and tracks of the actual train pas-
sengers formalisation is that of nets, lines, stations of the train operating
staff model.

Thus the third model is seen as the definitive model for the stakeholder views
initially expressed.

In general the relationships to be expressed between different stakeholder mod-
els require more elaborate expressions. To express these formally, in RSL, we
make use of RSL’s scheme facility. We refer to Vol. 2, Chap. 10 (Modularisa-
tion) in which we cover the scheme concept of RSL (Sect. 10.2 (RSL Classes,
Objects and Schemes) of that volume). More elaborate stakeholder schemes
can be expressed by extending basic (i.e., intrinsic) schemes with additional
types, values and axioms. The hiding facility of schemes can likewise be used
to express different, but commensurate models.

The comparison relations are in this case quite simple, namely those of
conservative algebra inclusions. One algebra is conservatively included in an-
other algebra if all the entities and operations (etcetera) of the former are
included in the latter, and hence if all theorems true of the former algebra
hold in the latter.

In the above description such things as lines, stations and units, including
their particular kind (linear, switch, etc.) are phenomena, that is, they can be
pointed to. Such things as connectors and paths could be considered either
phenomena or concepts. Unit states and unit state spaces, including the idea
of open and closed units, will here be considered concepts. The above example
is only indicative. Much care must be taken to ensure that a description is
consistent and complete. Care must also be taken to not describe phenomena
or concepts that more properly belong to some other facets, as covered next.
Identifying and describing intrinsics is also an art!

Example 11.10 Intrinsics of Switches: The intrinsic attribute of a rail switch
is that it can take on a number of states. A simple switch (

c|
Y

c/

c
) has three

connectors: {c, c|, c/}. c is the connector of the common rail from which one
can either “go straight” c|, or “fork” c/ (Fig. 11.5). So we have that a possible
state space of such a switch could be ωgs :
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{{},
{(c, c|)}, {(c|, c)}, {(c, c|), (c|, c)},
{(c, c/)}, {(c/, c)}, {(c, c/), (c/, c)}, {(c/, c), (c|, c)},
{(c, c|), (c|, c), (c/, c)}, {(c, c/), (c/, c), (c|, c)}, {(c/, c), (c, c|)}, {(c, c/), (c|, c)}}

The above models a general switch ideally. Any particular switch ωps may
have ωps⊂ωgs . Nothing is said about how a state is determined: who sets and
resets it, whether determined solely by the physical position of the switch
gear, or also by visible or virtual (i.e., invisible, intangible) signals up or down
the rail, away from the switch.
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C/C/C/C/
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Fig. 11.5. Possible states of a rail switch

11.3.2 Conceptual Versus Actual Intrinsics

In order to bring an otherwise seemingly complicated domain across to the
reader, one may decide to present it piecemeal:8 First, one presents the very
basics, the fewest number of inescapable entities, functions and behaviours.
Then, in a step of enrichment, one adds a few more (intrinsic) entities, func-
tions and behaviours. And so forth. In a final step one adds the last (intrinsic)
entities, functions and behaviours. In order to develop what initially may seem
to be a complicated domain, one may decide to develop it piecemeal: We ba-
sically do as for the presentation steps: Steps of enrichments — from a big lie,
via increasingly smaller lies, till one reaches a truth!

8 That seemingly complicated domain may seem very complicated, containing hun-
dreds of entities, functions and behaviours. Instead of presenting all the entities,
functions, events and behaviours in one “fell swoop”, one presents them in stages:
first, around seven such (entities, functions, events and behaviours), then seven
more, etc.
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Example 11.11 Conceptual Intrinsics: Freight Transport: The very essence
of freight transport is: Entities: Senders, freight, “the system of transport”,
and receivers. Functions: submitting an item of freight for transport, and
receiving an item of freight having been transported. Behaviour: Being trans-
ported.

Formal Presentation: Freight Transport

type
Sndr, Frei, Rcvr

value
submit: Sndr × Frei → System → System
receiv: Rcvr → System → System × Frei
transport: System → System

Observe that we have said nothing, really, about “the system of transport.

Example 11.12 Actual Intrinsics: Freight Logistics: We now elaborate on
“the system of transport” alluded to in Example 11.11. The system entities
are: harbours, bills of lading, ships and ship routes (from harbours to har-
bours). We assume that there is no need to detail what are harbours, ships
and ship routes. A bill of lading is a document, say attached to a piece of
freight, which stipulates properties of the freight (sender, receiver, origin of
transport, destination of transport and route of transport: sequence of har-
bours and ships, sailing times, etc.). The system functions are: submit a piece
of freight to a harbour (of origin) indicating a receiver and a harbour of desti-
nation, and obtaining a bill of lading; load a piece of freight from a harbour to
a ship, as prescribed by that freight’s bill of lading; unload a piece of freight
from a ship to a harbour, as prescribed by that freight’s bill of lading; fetch-
ing, by a receiver, a piece of freight from a destination harbour, as prescribed
by that freight’s bill of lading. A system behaviour could be the sequence of
one submission, one or more pairs of loadings and unloadings, ended by one
fetch. The above behaviour has abstracted “away” any notion of sailings, i.e.,
of actual movement!

Formal Presentation: Freight Logistics

type
Sndr, Sndr Na, Frei, Rcvr, Rcvr Na,
Harb, H Na, Ship, S Na, System, BoL
Dest = H Na

value
obs Harbs: System → Harb-set
obs HNa: Harb → H Na
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obs Route : BoL → (H Na × S Na)∗

obs Dest : BoL → HNa
obs RcvrNa : BoL → Rcvr Na
obs RcvrNa : Rcvr → Rcvr Na

submit: Sndr × Frei × Dest → System → BoL
load: Frei × BoL × Ship × Harb → Ship × Harb
unload: BoL × Ship × Harb → Ship × Harb × Frei
receiv: Rcvr → Harb → System → Frei × BoL
transp: System → System

The formalisation, as does the narrative, only rough-sketches some intrinsics
of freight logistics.

We leave the two versions, the virtual and the “more realistic”, further unde-
fined. Both descriptions were kept in the form of rough sketches. The latter
can take being further refined, i.e., made more precise.

11.3.3 Methodological Consequences

Principles. In any modelling one first forms and describes intrinsic facets.

Techniques. The intrinsics model of a domain is a partial specification. As
such, it involves the use of well-nigh all description principles. Typically we
resort to property-oriented models, i.e., sorts and axioms.

11.3.4 Discussion

Thus the intrinsics become part of every one of the next facets. From an
algebraic semantics point of view these latter are extensions of the above. We
have presented a story of intrinsics as truthfully as we could. To decide on
what is intrinsics and what is not is an art — it is a matter of choice, hence
of style. There is no clear-cut criterion according to which a line of separation
between intrinsics and nonintrinsics can be drawn.

11.3.5 Utter Barebones Intrinsics

It was implied above that an absolute barebones intrinsics of railways was the
atomic trains and the rail net abstracted to atomic lines and atomic stations.
Similarly one could claim that an absolute barebones intrinsics of a hospital
system was the atomic patients, atomic medical staff and atomic beds. With-
out the beds the first two kinds of entities would pass only for a physician’s
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office. And similarly one could claim that an absolute barebones intrinsics for
air traffic would be the aircraft, the airports and the air space. And so on.

The reason we bring this concept of utter barebones intrinsics up is three-
fold. First, the domain engineer must “think very hard” in trying to isolate,
identify and capture the, or an utter barebones intrinsics of a domain. Sec-
ondly, the “more frugal” the domain engineer has been in selecting the utter
barebones entities, functions, events and behaviours, the more time that do-
main engineer has to care about properly extending that utter barebones in-
trinsics with the remaining domain facets covered next. Thirdly, by “forcibly”
trying to isolate an utter barebone intrinsics the domain engineer is actually
trying to establish a scientific basis for the domain. The domain describer is
more of a researcher than an engineer. This is basically untrodden land: few
have tried to formulate domain descriptions let alone intrinsics, and very few,
if any may have attempted to identify the utter barebones of a domain. We
claim that it is a prerequisite for good domain descriptions to have tried to
discover utter barebones intrinsics.

11.3.6 Reminder

We remind the reader of the principle stated at the outset of this section on
domain intrinsics:

Principle. Describing the Domain Intrinsics Facets: So from the outset of
describing a domain analyse it with respect to its intrinsic phenomena and
concepts. Focus on describing these first, and make sure that the descriptions
of all other (subsequently described) domain facets are subordinated descrip-
tions of the domain intrinsics.

11.4 Domain Support Technologies

Technology is meant to support human activities. Usually technology replaces
human actions one to one, i.e., rather directly. (That is, for one human action
kind there is usually a substitute technology.) In other instances technology
radically transforms the ways in which things are done. Hence:

Principle. Describing the Domain Support Technologies Facets: When de-
scribing a domain analyse it with respect to its support technology phenomena
and concepts, focus on possibly describing these separately, and make sure
that descriptions of other described domain facets are commensurate with
possibly multiple, alternative descriptions of domain support technologies.
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11.4.1 Overall Principles

In Example 11.8, we implied that a switch may take on a number of states:
linking, into paths, suitable pairs of connectors, or none. But how such states
came about was abstracted (away).

Characterisation. By domain support technology we shall understand ways
and means of implementing certain observed phenomena.

The above characterisation is deliberately loose. It is so, so that we are not,
later, constrained by a too tight characterisation. Therefore it is important to
illustrate the idea, so as to aid the reader’s intuition, and thus enable proper
identification and description of support technologies.

Example 11.13 Railway Support Technology: We give a rough sketch de-
scription of possible rail unit switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e.,
by railway staff assigned to and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers9

(and steel wires), switches were made to change state by means of “throwing”
levers in a cabin tower located centrally at the station (with the lever then
connected through wires etc., to the actual switch).

(iii) This partial mechanical technology then emerged into electromechan-
ics, and cabin tower staff was “reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a
station track, or from a station track to a station departure point, are set
and reset by means also of electronics, by what is known as interlocking (for
example, so that two different routes cannot be open in a station if they cross
one another).10

It must be stressed that Example 11.13 is just a rough sketch. In a proper
narrative description the software (cum domain) engineer must describe, in
detail, the subsystem of electronics, electromechanics and the human operator
interface (buttons, lights, sounds, etc.).

An aspect of supporting technology includes recording the state-behaviour
in response to external stimuli. We give an example.

Example 11.14 Probabilistic Rail Switch Unit State Transitions: Fig-
ure 11.6 indicates a way of formalising this aspect of a supporting technology.

9 For pulley see: http://www.walter-fendt.de/ph11e/pulleysystem.htm. For lever
see: http://www.edhelper.com/ReadingComprehension 24 90.html.

10 In Vol. 2, Chap. 12, Petri nets, in Sect. 12.3.4 we exemplified this concept of
interlocking by specifying a software design based on place transition nets. See
also: http://irfca.org/faq/faq-signal4.html.
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Figure 11.6 intends to model the probabilistic (erroneous and correct) be-
haviour of a switch when subjected to settings (to switched (s) state) and
resettings (to direct (d) state). A switch may go to the switched state from
the direct state when subjected to a switch setting s with probability psd.

sed

sw/esd sw/ess

di/edd di/eds

di/1-pdd-edd

sw/psd

di/pds

sw/1-psd-esd

di/pdd

sw/pss

di/1-pds-eds

sw/1-pss-ess

Input stimuli:
sw: Switch to switched state

di: Revert to direct state

Probabilities:
pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

 0 <= p.. <= 1

States:
s: Switched state

d: Direct (reverted) state

e: Error state

Fig. 11.6. Probabilistic state switching

Another example shows another aspect of support technology: Namely that
the technology must guarantee certain of its own behaviours, so that software
designed to interface with this technology, together with the technology, meets
dependability requirements.

Example 11.15 Railway Optical Gates: Train traffic (itf:iTF), intrinsically,
is a total function over some time interval, from time (t:T) to continuously
positioned (p:P) trains (tn:TN).

Conventional optical gates sample, at regular intervals, the intrinsic train
traffic. The result is a sampled traffic (stf:sTF). Hence the collection of all
optical gates, for any given railway, is a partial function from intrinsic to
sampled train traffics (stf).

We need to express quality criteria that any optical gate technology should
satisfy — relative to a necessary and sufficient description of a closeness pred-
icate. The following axiom does that:
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For all intrinsic traffics, itf, and for all optical gate technologies, og, the
following must hold: Let stf be the traffic sampled by the optical gates.
For all time points, t, in the sampled traffic, those time points must
also be in the intrinsic traffic, and, for all trains, tn, in the intrinsic
traffic at that time, the train must be observed by the optical gates,
and the actual position of the train and the sampled position must
somehow be checkable to be close, or identical to one another.

Since units change state with time, n:N, the railway net, needs to be part of any
model of traffic. We have defined railway nets in Example 11.8 (Sect. 11.3.1).

Formal Presentation: Railway Optical Gate Technology Requirements

type
T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

[ close ] c: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom
∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt •

t ∈ D itt ∧ ∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

D is not an RSL operator. It is a mathematical way of expressing the defini-
tion set of a general function. Hence it is not a computable function.

Checkability is an issue of testing the optical gates when delivered for confor-
mance to the closeness predicate, i.e., to the axiom.

The next example shows another aspect of the technology support facet. Ex-
ample 11.15 relates any support technology to an intrinsics whose entity val-
ues that support technology was supposed to monitor. The next example, i.e.,
Example 11.16, again shows the relativeness of support technologies, as did
Example 11.13.

Example 11.16 Air Traffic Control: We first refer to Example 11.4. Then
we make the following remarks: The particular decomposition of air traffic
control into the domain described, the ground, terminal, area and continental
(monitoring and) control centres, represents but one composition of technolo-
gies. The pragmatics, i.e., the assumptions underlying that combined ground,
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terminal, area and continental control centre support technology is that all
monitoring and control was to take place from the ground. Future technolo-
gies, easily implementable today, facilitate the following alternative “sum to-
tal” technologies: Most, if not all, of the human guidance that today takes
place at these control centres can be automated and physically moved ei-
ther to fixed space-positioned satellites, or to each aircraft itself. Intermediate
support technologies shall then feature solutions that are intermediary to the
present and the future support technologies.

11.4.2 Methodological Consequences

Techniques. The support technologies model of a domain is a partial speci-
fication, hence all the usual abstraction and modelling principles, techniques
and tools apply. More specifically, support technologies (st:ST) “implement”
intrinsic contexts and states: θi : Θi in terms of “actual” contexts and states:
θa : Θa:

type
Θi, Θa

ST = Θi → Θa

axiom
∀ sts:ST-set, st:ST • st ∈ sts ⇒ ∀ θi:Θi, ∃ θa:Θa • st(θi) = θa

The formal requirements can be narrated: Let Θi and Θa designate the spaces
of intrinsic and actual-world configurations (contexts and states).11 For each
intrinsic configuration model — that we know is support technology assisted
— there exists a support technology solution, that is, a total function from all
intrinsic configurations to corresponding actual configurations. If we are not
convinced that there is such a function then there is little hope that we can
trust this technology.

Support technology is not a refinement, but an extension. Support technology
typically introduces considerations of technology accuracy, reliability, fault
tolerance, availability, accessability, safety, and so on. Axioms characterise
members of the set of support technologies (sts). An example axiom was given
in the optical gate example (Example 11.15). We shall have much (more) to
say about support technologies, and the above dependability (etc.) issues, as
we — much later in these volumes — move into machine requirements.

Principles. The support technology principle is relative to all other domain
facets. It expresses that one must first describe essential intrinsics. Then it
expresses that support technology is any means of implementing concrete in-
stantiations of some intrinsics, of some management and organisation, and/or
of some rules and regulations, and so on.

11 The concept of configurations, in terms of contexts and states, was treated in
detail in Vol. 2, Chap. 4.
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Generally the principle states that one must always be on the look out for and
inspire new support technologies. The most abstract form of the principle is:
What is a support technology one day becomes part of the domain intrinsics
a future day.

11.4.3 Discussion

Skakkebæk et al. [?] exemplify the use of the duration calculus [?,?] in describ-
ing supporting technologies that help achieve safe operation of a road-rail level
crossing. This was exemplified very extensively in Vol. 2, Chap. 15, Sect. 15.3.6
(the road-rail level crossing example).

Chapters 12–15 of Vol. 2 cover a somewhat extensive variety of princi-
ples, techniques and tools for formally modelling support technologies. The
support technology descriptions reappear in the requirements definitions: as
projected, instantiated, extended and initialised (see Chap. 19). In the domain
description we only record our understanding of aspects of support technology
failures. In the requirements definition we then follow up and make decisions
as to which kinds of breakdowns the computing system, the machine, is to
handle, and what is to be achieved by such handling.

11.4.4 Reminder

We remind the reader of the principle stated at the outset of this section on
domain support technologies:

Principle. Describing the Domain Support Technologies Facets: When de-
scribing a domain analyse it with respect to its support technology phenomena
and concepts, focus on possibly describing these separately, and make sure
that descriptions of other described domain facets are commensurate with
possibly multiple, alternative descriptions of domain support technologies.

11.5 Domain Management and Organisation

It is a basic characteristic of human-made systems that they are managed
by humans and that their management and the managed are structured in
organisational structures. This section is about how we model this facet.

Principle. Describing the Domain Management and Organisation Facets:
When describing a domain analyse it with respect to its management and or-
ganisation phenomena and concepts. Focus on possibly describing these sep-
arately, and make sure that descriptions of other described domain facets
are commensurate with possibly multiple, alternative descriptions of domain
management and organisation.
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11.5.1 Overall Principles

Activities of some (application) domains are made up by the actions of many
people. It is therefore common to organise these into levels of management
and many groups of “floor”, i.e., nonmanagement staff.

Railway systems are usually characterised by highly structured manage-
ment organisations, and rules and regulations set up by upper echelons of
management to be followed by lower levels and by ground staff and users.

Example 11.17 Train Monitoring, I: In China, as an example, rescheduling
of trains occurs at stations and involves telephone negotiations with neigh-
bouring stations (“up and down the lines”). Such rescheduling negotiations,
by phone, imply reasonably strict management and organisation (M&O). This
kind of M&O reflects the geographical layout of the rail net.

Characterisation. By domainmanagement we shall understand such people
(such decisions) (i) who (which) determine, formulate and thus set standards
(cf. rules and regulations, Sect. 11.6) concerning strategic, tactical and opera-
tional decisions; (ii) who ensure that these decisions are passed on to (lower)
levels of management, and to floor staff; (iii) who make sure that such orders,
as they were, are indeed carried out; (iv) who handle undesirable deviations
in the carrying out of these orders cum decisions; and (v) who “backstop”
complaints from lower management levels and from floor staff.

In Example ?? (Chap. ??, Sect. ??) we illustrated the distinctions indicated
in the above characterisation of management (item (i)) between strategies,
tactics and operations.

Characterisation. By domain organisation we shall understand the struc-
turing of management and nonmanagement staff levels; the allocation of
strategic, tactical and operational concerns to within management and non-
management staff levels; and hence the “lines of command”: who does what,
and who reports to whom, administratively and functionally.

Example 11.18 Railway Management and Organisation: Train Monitoring,
II:We single out a rather special case of railwaymanagement and organisation.
Certain (lowest-level operational and station-located) supervisors are respon-
sible for the day-to-day timely progress of trains within a station and along
its incoming and outgoing lines, and according to given timetables. These su-
pervisors and their immediate (middle-level) managers (see below for regional
managers) set guidelines (for local station and incoming and outgoing lines)
for the monitoring of train traffic, and for controlling trains that are either
ahead of or behind their schedules. By an incoming and an outgoing line we
mean part of a line between two stations, the remaining part being handled
by neighbouring station management. Once it has been decided, by such a
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manager, that a train is not following its schedule, based on information mon-
itored by nonmanagement staff, then that manager directs that staff: (i) to
suggest a new schedule for the train in question, as well as for possibly affected
other trains, (ii) to negotiate the new schedule with appropriate neighbouring
stations, until a proper reschedule can be decided upon, by the managers at
respective stations, (iii) and to enact that new schedule.12 A (middle-level
operations) manager for regional traffic, i.e., train traffic involving several
stations and lines, resolves possible disputes and conflicts.

The above, albeit rough-sketch description, illustrated the following manage-
ment and organisation issues: There is a set of lowest-level (as here: train
traffic scheduling and rescheduling) supervisors and their staff. They are or-
ganised into one such group (as here: per station). There is a middle-level
(as here: regional train traffic scheduling and rescheduling) manager (possibly
with some small staff), organised with one such per suitable (as here: railway)
region. The guidelines issued jointly by local and regional (...) supervisors and
managers imply an organisational structuring of lines of information provision
and command.

11.5.2 A Conceptual Analysis, I

People staff enterprises, the components of infrastructures with which we are
concerned, i.e., for which we develop software. The larger these enterprises
— these infrastructure components — the more need there is for manage-
ment and organisation. The role of management is roughly, for our purposes,
twofold: first, to perform strategic, tactical and operational work, to set strate-
gic, tactical and operational policies (cf. Example ??) — and to see to it that
they are followed. The role of management is, second, to react to adverse con-
ditions, that is, to unforeseen situations, and to decide how they should be
handled, i.e., conflict resolution.

Policy setting should help nonmanagement staff operate normal situations
— those for which no management interference is thus needed. And manage-
ment “backstops” problems: management takes these problems off the shoul-
ders of nonmanagement staff.

To help management and staff know who’s in charge wrt. policy setting
and problem handling, a clear conception of the overall organisation is needed.
Organisation defines lines of communication within management and staff,
and between these. Whenever management and staff has to turn to others for
assistance they usually, in a reasonably well-functioning enterprise, follow the
command line: the paths of organigrams — the usually hierarchical box and
arrow/line diagrams.

12 That enactment may possibly imply the movement of several trains incident upon
several stations: the one at which the manager is located, as well as possibly at
neighbouring stations.
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11.5.3 Methodological Consequences, I+II

Techniques. The management and organisation model of a domain is a par-
tial specification; hence all the usual abstraction and modelling principles,
techniques and tools apply. More specifically, management is a set of predi-
cates, observer and generator functions which either parameterise other, the
operations functions, that is, determine their behaviour, or yield results that
become arguments to these other functions.

Organisation is thus a set of constraints on communication behaviours. Hier-
archical, rather than linear, and matrix structured organisations can also be
modelled as sets (of recursively invoked sets) of equations. This was illustrated
in Example ??.

11.5.4 Conceptual Analysis, II

To relate classical organigrams to formal descriptions we first show such an
organigram (Fig. 11.7), and then we show schematic processes which — for a
rather simple scenario — model managers and the managed!
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Fig. 11.7. Organisational structures

Based on such a diagram, and modelling only one neighbouring group of
a manager and the staff working for that manager we get a system in which
one manager, mgr, and many staff, stf, coexist or work concurrently, i.e., in
parallel. The mgr operates in a context and a state modelled by ψ. Each staff,
stf(i) operates in a context and a state modelled by sσ(i).

Formal Presentation: Conceptual Model of a Manager-Staff Relation, I

type
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Msg, Ψ , Σ, Sx
SΣ = Sx →m Σ

channel
{ ms[ i ]:Msg | i:Sx }

value
sσ:SΣ, ψ:Ψ

sys: Unit → Unit
sys() ≡ ‖ { stf(i)(sσ(i)) | i:Sx } ‖ mgr(ψ)

In this system the manager, mgr, (1) either broadcasts messages, msg, to all
staff via message channel ms[i]. The manager’s concoction, mgr out(ψ), of
the message, msg, has changed the manager state. Or (2) is willing to receive
messages, msg, from whichever staff i the manager sends a message. Receipt of
the message changes, mgr in(i,msg)(ψ), the manager state. In both cases the
manager resumes work as from the new state. The manager chooses — in this
model — which of the two things (1 or 2) to do by a so-called nondeterministic
internal choice (⌈⌉).

Formal Presentation: Conceptual Model of a Manager-Staff Relation, II

mgr: Ψ → in,out { ms[ i ] | i:Sx } Unit
mgr(ψ) ≡

(1) (let (ψ′,msg) = mgr out(ψ) in
‖ { ms[ i ]!msg | i:Sx } ; mgr(ψ′) end)

⌈⌉
(2) (let ψ′ = ⌈⌉⌊⌋ {let msg = ms[ i ]? in

mgr in(i,msg)(ψ) end | i:Sx } in mgr(ψ′) end)

mgr out: Ψ → Ψ × MSG,
mgr in: Sx × MSG → Ψ → Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message,
msg, from the manager, and then to change, stf in(msg)(σ), state accordingly,
or (2) to concoct, stf out(σ), a message, msg (thus changing state) for the
manager, and send it ms[i]!msg. In both cases the staff resumes work as from
the new state. The staff member chooses — in this model — which of the two
“things” (1 or 2) to do by a nondeterministic internal choice (⌈⌉).

Formal Presentation: Conceptual Model of a Manager-Staff Relation, III

stf: i:Sx → Σ → in,out ms[ i ] Unit
stf(i)(σ) ≡

(1) (let msg = ms[ i ]? in stf(i)(stf in(msg)(σ)) end)
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⌈⌉
(2) (let (σ′,msg) = stf out(σ) in ms[ i ]!msg; stf(i)(σ′) end)

stf in: MSG → Σ → Σ,
stf out: Σ → Σ × MSG

Both manager and staff processes recurse (i.e., iterate) over possibly changing
states. The management process nondeterministically, external choice, “al-
ternates” between “broadcast”-issuing orders to staff and receiving individ-
ual messages from staff. Staff processes likewise nondeterministically, external
choice, alternate between receiving orders from management and issuing in-
dividual messages to management.

The conceptual example also illustrates modelling stakeholder behaviours
as interacting (here CSP-like [?, ?, ?, ?]) processes.13

11.5.5 Methodological Consequences, III

The strategic, tactical and operations resource management example of Ex-
ample ?? (Sect. ??) illustrated another management and organisation descrip-
tion pattern. It is based on a set of, in this case, recursive equations. Any way
of solving these equations, finding a suitable fix point, or an approximation
thereof, including just choosing and imposing an arbitrary “solution”, reflects
some management communication. The syntactic ordering of the equations
— in this case a linear passing of enterprise results from upper equations onto
lower equations — reflects some organisation.

Principles. The management and organisation principle expresses that re-
lations between resources, and decisions to acquire and dispose resources, to
deschedule, reschedule and schedule resources, to deallocate, reallocate and al-
locate resources and to deactivate, reactivate and activate resources, are the
prerogatives of well-functioning management, reflect a functioning organisa-
tion and imply invocation of procedures that are modelled as actions that “set
up” and “take down” contexts and change states. As such, these principles
tell us which subproblems of development to tackle.

Techniques. Management and Organisation: We have already, under tech-
niques for modelling stakeholder and stakeholder perspectives, mentioned
some of the techniques (cf. Sect. ??). Two extremes were shown: Earlier we
modelled individual management groups by their respective functions (strm,
trm, orm), and their interaction (i.e., organisation) by solutions to a set of
recursive equations! Presently we modelled management and organisation, es-
pecially the latter, by communicating sequential behaviours.

13 We covered the use of CSP in Vol. 1, Chap. 21.
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11.5.6 Discussion

The domain models of management and organisation eventually find their
way into requirements and, hence, the software design — for those cases in
which the requirements are about computing support of management and its
organisation. Support in the solution of the recursive equations of the earlier
stakeholder example (Example ?? Resource Management) may be offered in
the form of constraint-satisfaction solvers [?]. These may partially handle logic
characterisations of the strategic and tactical management functions. They
might then do so in the form of computerised support of message passing
between the various management groups (of, for example, that stakeholder
example), as well as of the generic example of the present part.

11.5.7 Reminder

We remind the reader of the principle stated at the outset of this section on
domain management and organisation:

Principle. Describing the Domain Management and Organisation Facets:
When describing a domain analyse it with respect to its management and or-
ganisation phenomena and concepts. Focus on possibly describing these sep-
arately, and make sure that descriptions of other described domain facets
are commensurate with possibly multiple, alternative descriptions of domain
management and organisation.

11.6 Domain Rules and Regulations

Railway systems, for example, are characterised by large varieties of rules
for appropriate behaviour of: trains, train dispatch, monitoring and control,
supporting technology, and hence of humans at all levels. This is also true for
most other systems that we might care to consider.

When rules are broken regulations take effect: Humans may be disciplined,
and activities of the domain may be adjusted.

Principle. Describing the Domain Rules and Regulations Facets: When de-
scribing a domain analyse it with respect to its rules and regulations phenom-
ena and concepts. Focus on possibly describing these separately, and make
sure that the descriptions of other domain facets are commensurate with pos-
sibly multiple, alternative descriptions of domain rules and regulations.
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11.6.1 Overall Principles

Earlier, when we dealt with management and organisation, it was hinted that
management may issue certain guidelines. We now look at a special class of
these.

Characterisation. By a domain rule we shall understand some text (in the
domain) which prescribes how people or equipment are expected to behave
when dispatching their duty, respectively when performing their function.

Characterisation. By a domain regulation we shall understand some text
(in the domain) which prescribes what remedial actions are to be taken when
it is decided that a rule has not been followed according to its intention.

Rules are like one part of a law: Thou shalt! Regulations are like another part
of a law: If you break this law “thou” can expect the following punishment!

Rules and regulations are set by enterprises, by equipment manufacturers,
by enterprise associations, by [government] regulatory agencies, and by society
(the latter in the form of laws). Adherence to rules is likewise monitored by
these or similar institutions. Enforcement of (i.e., the imposition of what is
specified in) regulations is similarly ensured by these or similar institutions.

Example 11.19 Trains at Stations:

• Rule: In China the arrival and departure of trains at, respectively from,
railway stations is subject to the following rule:

In any three-minute interval at most one train may either arrive to
or depart from a railway station.

• Regulation: If it is discovered that the above rule is not obeyed, then there
is some regulation which prescribes administrative or legal management
and/or staff action, as well as some correction to the railway traffic.

Example 11.20 Trains Along Lines:

• Rule: In many countries railway lines (between stations) are segmented into
blocks or sectors. The purpose is to stipulate that if two or more trains
are moving along the line, then:

There must be at least one free sector (i.e., without a train) between
any two trains along a line.14

• Regulation: If it is discovered that the above rule is not obeyed, then there
is some regulation which prescribes administrative or legal management
and/or staff action, as well as some correction to the railway traffic.
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It is, as for all other domain facets, crucially important that rules and reg-
ulations are captured and precisely described — as we often shall find that
requirements of software either assume these rules to hold, or expect such
rules to be enforced.15

11.6.2 Methodological Consequences

Techniques. Rules and Regulations: At a metalevel, i.e., explaining the gen-
eral framework for describing the syntax and semantics of the human-oriented
domain languages for expressing rules and regulations, we can say the follow-
ing: There are, abstractly speaking, usually three kinds of languages involved
wrt. (i.e., when expressing) rules and regulations (respectively when invok-
ing actions that are subject to rules and regulations). Two languages, Rules
and Reg, exist for describing rules, respectively regulations; and one, Stimulus,
exists for describing the form of the [always current] domain action stimuli.

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from
any configuration to a next configuration, where configurations are those of the
system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands
for, i.e., has as its semantics, its meaning, rul:RUL, a predicate over current
and next configurations, (Θ × Θ) → Bool, where these next configurations
have been brought about, i.e., caused, by the stimuli. These stimuli express: If
the predicate holds then the stimulus will result in a valid next configuration.

Formal Explication: Conceptual Model of Rules, 1

type
Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value
meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool
valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool
valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for,
i.e., has as its semantics, its meaning, a semantic regulation, se reg:REG,

14 In Vol. 2, Chap. 14, Sect. 14.4.1, an example, Automatic Line Blocking, illustrates
how one might implement this rule.

15 As, for example, in Sect. 14.4.1 of Vol. 2, Chap. 14.
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which is a pair. This pair consists of a predicate, pre reg:Pre REG, where
Pre REG = (Θ × Θ) → Bool, and a domain configuration-changing func-
tion, act reg:Act REG, where Act REG = Θ → Θ, that is, both involving
current and next domain configurations. The two kinds of functions express:
If the predicate holds, then the action can be applied.

The predicate is almost the inverse of the rules functions. The action func-
tion serves to undo the stimulus function.

Formal Explication: Conceptual Model of Regulations, 2

type
Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool
Act REG = Θ → Θ

value
interpret: Reg → REG

The idea is now the following: Any action of the system, i.e., the application
of any stimulus, may be an action in accordance with the rules, or it may not.
Rules therefore express whether stimuli are valid or not in the current con-
figuration. And regulations therefore express whether they should be applied,
and, if so, with what effort.

More specifically, there is usually, in any current system configuration,
given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such
pair. Let sy sti be any possible stimulus. And let θ be the current config-
uration. Let the stimulus, sy sti, applied in that configuration result in a
next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′ violate the
rule, ∼valid(sy sti,sy rul)(θ), then if predicate part, pre reg, of the mean-
ing of the regulation, sy reg, holds in that violating next configuration,
pre reg(θ,(meaning(sy sti))(θ)), then the action part, act reg, of the meaning
of the regulation, sy reg,must be applied, act reg(θ), to remedy the situation.

Formal Explication: Conceptual Model of Rules and Regulations, 3

axiom
∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ,(meaning(sy sti))(θ))



44 11 Domain Facets

⇒ ∃ nθ:Θ • act reg(θ)=nθ ∧ se rul(θ,nθ)
end

It may be that the regulation predicate fails to detect applicability of regula-
tions actions. That is, the interpretation of a rule differs, in that respect, from
the interpretation of a regulation. Such is life in the domain, i.e., in actual
reality.

We have given an outline of the basic conditions under which a set of rules
and regulations must be designed. Whether they are, in actual life, designed,
by people, and to be interpreted and followed by people, as described here is
not for us to decide. Such concerns are the prerogatives of business process
reengineering and domain requirements (Sects. 19.3 and 19.4).

11.6.3 Rules and Regulation Languages

We have outlined the basic properties any set of rules and regulations must
imply in a properly functioning organisation. The axioms prescribed above
are abstract. They also apply, inter alia, to natural language expressions of
rules and regulations.

It would be nice if rules and regulations could be formalised. Then, given an
appropriate model of the domain, one might be able to analyse the consistency
and completeness of rules and regulations with respect to the domain model.

It is inside the scope, but outside the span of this book to bring in — as of
2006 — research material on this subject. In other words: Expect it to come,
one day, probably couched in terms of some modal logics of knowledge and
belief, and/promise and commitment, etc. We refer to the nice book by Fagin,
Halpern, Moses and Vardi: Reasoning About Knowledge [?].

Essentially, the issues are: first, to design and use languages (one or more,
Rul, Reg), with proper, possibly modal constructs, for expressing rules and
regulations. Second, we need to compile such expressions of rules and regula-
tions. Finally, we need to let a computer check “all the time” whether stimuli
(whether human or otherwise generated) might cause transitions that may
result in violations of the rules.

11.6.4 Principles and Techniques

Principle. Rules and Regulations: Domains are governed by rules and regu-
lations: by laws of nature or edicts by humans. Laws of nature can be part of
intrinsics, or can be modelled as rules and regulations constraining the intrin-
sics. Edicts by humans usually change, but are normally considered part of
an irregularly changing context, not a recurrently changing state. Modelling
techniques follow these principles.
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Techniques. Rules and regulations, in the domain, are therefore domain-
modelled by abstract or concrete syntaxes of syntactic rules, by abstract types
of denotations and by semantics definitions, usually in the form of axioms or
denotation-ascribing functions. Such rules and regulations modelling must al-
low for conflicts between rule and regulation interpretations: that rules are
interpreted to state that a next configuration is not valid, while a regula-
tion (applicability) predicate does not hold. Stimuli, without here going into
details, may be modelled by nondeterministic external events, i.e., CSP-like
inputs.

11.6.5 Reminder

We remind the reader of the principle stated at the outset of this section on
domain rules and regulations:

Principle. Describing the Domain Rules and Regulations Facets: When de-
scribing a domain analyse it with respect to its rules and regulations phenom-
ena and concepts. Focus on possibly describing these separately, and make
sure that the descriptions of other domain facets are commensurate with pos-
sibly multiple, alternative descriptions of domain rules and regulations.

11.7 Domain Scripts

Usually rules and regulations form a contract between levels of staff in an
enterprise. We may call these intrainstitutional rules and regulations. Rules
that pertain to contracts between, say, a private enterprise and its customers,
or a government and its citizens, often need be far more stringently phrased
than intrainstitutional rules and regulations. We may call such rules legal rules
and regulations. Legal rules and regulations often need be scripted.

Principle. Describing the Domain Script Facets: When describing a domain
analyse it with respect to its script phenomena and concepts. Focus on pos-
sibly describing these separately, and make sure that descriptions of other
described domain facets are commensurate with possibly multiple, alterna-
tive descriptions of domain scripts.

11.7.1 The Description of Scripts

Characterisation. By a domain script we shall understand the structured,
almost, if not outright, formally expressed, wording of a rule or a regulation
that has legally binding power, that is, which may be contested in a court of
law.
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Scripts are like programs. They are expected to prescribe step-by-step actions
to be applied in order to determine whether a rule should be applied, and, if
so, exactly how it should be applied.

Example 11.21 A Casually Described Bank Script, I: We deviate, momen-
tarily, from our line of railway examples, to exemplify one from banking. Our
formulation amounts to just a (casual) rough sketch. It is followed by a series
of four large examples. Each of these elaborate on the theme of (bank) scripts.

The problem area is that of how repayments of mortgage loans are to be
calculated. At any one time a mortgage loan has a balance, a most recent
previous date of repayment, an interest rate and a handling fee. When a
repayment occurs, then the following calculations shall take place: (i) the
interest on the balance of the loan since the most recent repayment, (ii) the
handling fee, normally considered fixed, (iii) the effective repayment — being
the difference between the repayment and the sum of the interest and the
handling fee — and the new balance, being the difference between the old
balance and the effective repayment.

We assume repayments to occur from a designated account, say a de-
mand/deposit account. We assume that bank to have designated fee and in-
terest income accounts.

(i) The interest is subtracted from the mortgage holder’s demand/deposit
account and added to the bank’s interest (income) account. (ii) The han-
dling fee is subtracted from the mortgage holder’s demand/deposit account
and added to the bank’s fee (income) account. (iii) The effective repayment
is subtracted from the mortgage holder’s demand/deposit account and also
from the mortgage balance. Finally, one must also describe deviations such as
overdue repayments, too large, or too small repayments, and so on.

The idea about scripts is that they can somehow be objectively enforced:
that they can be precisely understood and consistently carried out by all
stakeholders, eventually leading to computerisation. But they are, at all times,
part of the domain.

In the next example we systematically describe a bank, informally and
formally. The formal description is in the classical style of semantics. Each
formal description is followed by an informal, almost rough-sketch descrip-
tion. You may consider the latter to be in some casual script language. Ex-
ample 11.23 then attempts a formalisation of the rough-sketch scripts into a
“bank-friendly” script.

Example 11.22 Bank Scripts, II: Without much informal explanation, i.e.,
narrative, we define a small bank, small in the sense of offering but a few
services. One can open and close demand/deposit accounts. One can obtain
and close mortgage loans, i.e., obtain loans. One can deposit into and withdraw
from demand/deposit accounts. And one can make payments on the loan. In
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this example we illustrate informal rough-sketch scripts while also formalising
these scripts.

In the following we first give the formal specification, then a rough-sketch
script. You may prefer to read the pairs, formal specification and rough-sketch
script, in the reverse order.

Bank State

Formal Presentation: Bank State

type
C, A, M
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

There are clients (c:C), account numbers (a:A), mortgage number
(m:M), account yields (ay:AY), and mortgage interest rates (mi:MI). The
bank registers, by client, all accounts (ρ:A Register) and all mortgages
(µ:M Register). To each account number there is a balance (α:Accounts).
To each mortgage number there is a loan (ℓ:Loans). To each loan is attached
the last date that interest was paid on the loan.

State Well-formedness

Formal Presentation: State Well-formedness

value
ay:AY, mi:MI

wf Bank: Bank → Bool
wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ

axiom
ai<mi

We assume a fixed yield, ai, on demand/deposit accounts, and a fixed in-
terest, mi, on loans. A bank is well-formed if all accounts named in the
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accounts register are indeed accounts, and all loans named in the mortgage
register are indeed mortgages. No accounts and no loans exist unless they
are registered.

Client Transactions

Formal Presentation: Syntax of Client Transactions

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

The client can issue the following commands: Open Account, Close Account,
Deposit monies (p:P), Withdraw monies (p:P), Obtain loans (of size p:P)
and Pay installations on loans (by transferring monies from an account).
Loans can be Closed when paid down.

Open Account Transaction

Formal Presentation: Semantics of Open Account Transaction

value
int Cmd: Cmd → Bank → Bank × Reply

int Cmd(mkOA(c))(ρ,α,µ,ℓ) ≡
let a:A • a 6∈ dom α in
let as = if c ∈ dom ρ then ρ(c) else {} end ∪ {a} in
let ρ′ = ρ † [ c 7→as ],

α′ = α ∪ [ a 7→0 ] in
((ρ′,α′,µ,ℓ),a) end end end

When opening an account the new account number is registered and the
new account set to 0. The client obtains the account number.
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Close Account Transaction

Formal Presentation: Semantics of Close Account Transaction

int Cmd(mkCA(c,a))(ρ,α,µ,ℓ) ≡
let ρ′ = ρ † [ c 7→ρ(c)\{a} ],

α′ = α \ {a} in
((ρ′,α′,µ,ℓ),α(a)) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

When closing an account the account number is deregistered, the account
is deleted, and its balance is paid to the client. It is checked that the client
is a bona fide client and presents a bona fide account number. The well-
formedness condition on banks secures that if an account number is regis-
tered then there is also an account of that number.

Deposit Transaction

Formal Presentation: Semantics of Deposit Transaction

int Cmd(mkD(c,a,p))(ρ,α,µ,ℓ) ≡
let α′ = α † [ a 7→α(a)+p ] in
((ρ,α′,µ,ℓ),ok) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

When depositing into an account that account is increased by the amount
deposited. It is checked that the client is a bona fide client and presents a
bona fide account number.

Withdraw Transaction
Withdrawing monies can only occur if the amount is not larger than that
deposited in the named account. Otherwise the amount, p:P, is subtracted
from the named account. It is checked that the client is a bona fide client
and presents a bona fide account number.

Formal Presentation: Semantics of Withdraw Transaction

int Cmd(mkW(c,a,p))(ρ,α,µ,ℓ) ≡
if α(a)≥p

then
let α′ = α † [ a 7→α(a)−p ] in
((ρ,α′,µ,ℓ),p) end

else
((ρ,α,µ,ℓ),nok)
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end
pre c ∈ dom ρ ∧ a ∈ dom α

Open Mortgage Account Transaction

Formal Presentation: Semantics of Open Mortgage Account Transaction

int Cmd(mkOM(c,p))(ρ,α,µ,ℓ) ≡
let m:M • m 6∈ dom ℓin
let ms = if c ∈ dom µ then µ(c) else {} end ∪ {m} in
let mu′ = µ † [ c 7→ms ],

α′ = α † [ aℓ 7→α(aℓ)−p ],
ℓ′ = ℓ ∪ [ m7→p ] in

((ρ,α′,µ′,ℓ′),m) end end end

To obtain a loan, p:P, is to open a new mortgage account with that loan
(p:P) as its initial balance. The mortgage number is registered and given to
the client. The loan amount, p, is taken from a specially designated bank
capital acount, aℓ. The bank well-formedness condition should be made to
reflect the existence of this account.

Close Mortgage Account Transaction

Formal Presentation: Semantics of Close Mortgage Account Transaction

int Cmd(mkCM(c,m))(ρ,α,µ,ℓ) ≡
if ℓ(m) = 0

then
let µ′ = ρ † [ c 7→µ(c) \ {m} ],

ℓ′ = ℓ \ {m} in
((ρ,α,µ′,ℓ′),ok) end

else
((ρ,α,µ,ℓ),nok)

end
pre c ∈ dom µ ∧ m ∈ µ(c)

One can only close a mortgage account if it has been paid down (to 0 bal-
ance). If so, the loan is deregistered, the account removed and the client
given an OK. If not paid down the bank state does not change, but the
client is given a NOT OK. It is checked that the client is a bona fide loan
client and presents a bona fide mortgage account number.
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Loan Payment Transaction

Formal Presentation: Semantics of Loan Payment Transaction

To pay off a loan is to pay the interest on the loan since the last time
interest was paid. That is, interest, i, is calculated on the balance, b, of the
loan for the period d′−d, at the rate of mi. (We omit defining the interest
computation.) The payment, p, is taken from the client’s demand/deposit
account, a; i is paid into a bank (interest earning account) ai and the loan
is diminished with the difference p−i. It is checked that the client is a bona
fide loan client and presents a bona fide mortgage account number. The
bank well-formedness condition should be made to reflect the existence of
account ai.

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,d′−d),

ℓ′ = ℓ † [ m7→ℓ(m)−(p−i) ]
α′ = α † [ a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)

This ends the first stage of the development of a script language.

Example 11.22 gave the formal description of banking transactions and their
informal, rough-sketch script counterparts. We now “derive”, without much
further ado, pseudo-formal “bank-friendly” scripts.

Example 11.23 Bank Scripts, III: From each of the informal/formal bank
script descriptions we systematically “derive” a script in a possible bank script
language. The derivation, for example, for how we get from the formal descrip-
tions of the individual transactions to the scripts in the “formal” bank script
language is not formalised. In this example we simply propose possible scripts
in the formal bank script language.
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Open Account Transaction

Formal Presentation: Open Account Transaction

value
int Cmd(mkOA(c))(ρ,α,µ,ℓ) ≡

let a:A • a 6∈ dom α in
let as = if c ∈ dom ρ then ρ(c) else {} end ∪ {a} in
let ρ′ = ρ † [ c 7→as ],

α′ = α ∪ [ a 7→0 ] in
((ρ′,α′,µ,ℓ),a) end end end

Derived Bank Script: Open Account Transaction

routine open account(c in ′′client′′,a out ′′account′′) ≡
do

register c with new account a ;
return account number a to client c

end

Close Account Transaction

Formal Presentation: Close Account Transaction

int Cmd(mkCA(c,a))(ρ,α,µ,ℓ) ≡
let ρ′ = ρ † [ c 7→ρ(c)\{a} ],

α′ = α \ {a} in
((ρ′,α′,µ,ℓ),α(a)) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

Derived Bank Script: Close Account Transaction

routine close account(c in ′′client′′,a in ′′account′′ out ′′monies′′) ≡
do

check that account client c is registered ;
check that account a is registered with client c ;
if

checks fail

then

return NOT OK to client c
else

do

return account balance a to client c ;
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delete account a
end

fi

end

Deposit Transaction

Formal Presentation: Deposit Transaction

int Cmd(mkD(c,a,p))(ρ,α,µ,ℓ) ≡
let α′ = α † [ a 7→α(a)+p ] in
((ρ,α′,µ,ℓ),ok) end
pre c ∈ dom ρ ∧ a ∈ ρ(c)

Derived Bank Script: Deposit Transaction

routine deposit(c in ′′client′′,a in ′′account′′,ma in ′′monies′′) ≡
do

check that account client c is registered ;
check that account a is registered with client c ;
if

checks fail

then

return NOT OK to client c
else

do

add ma to account a ;
return OK to client c

end

fi

end

Withdraw Transaction

Formal Presentation: Withdraw Transaction

int Cmd(mkW(c,a,p))(ρ,α,µ,ℓ) ≡
if α(a)≥p

then
let α′ = α † [ a 7→α(a)−p ] in
((ρ,α′,µ,ℓ),p) end

else
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((ρ,α,µ,ℓ),nok)
end
pre c ∈ dom ρ ∧ a ∈ dom α

Derived Bank Script: Withdraw Transaction

routine withdraw(c in ′′client′′,a in ′′account′′,
ma in ′′amount′′ out ′′monies′′) ≡

do

check that account client c is registered ;
check that account a is registered with client c ;
check that account a has ma or more balance;
if

checks fail

then

return NOT OK to client c
else

do

subtract ma from account a ;
return ma to client c

end

fi

end

Obtain Loan Transaction

Formal Presentation: Obtain Loan Transaction

int Cmd(mkOM(c,p))(ρ,α,µ,ℓ) ≡
let m:M • m 6∈ dom ℓin
let ms = if c ∈ dom µ then µ(c) else {} end ∪ {m} in
let mu′ = µ † [ c 7→ms ],

α′ = α † [ aℓ 7→α(aℓ)−p ],
ℓ′ = ℓ ∪ [ m7→p ] in

((ρ,α′,µ′,ℓ′),m) end end end

Derived Bank Script: Obtain Loan Transaction

routine get loan(c in ′′client′′,p in ′′amount′′,m out ′′loan number′′) ≡
do

register c with loan m amount p;
subtract p from account bank’s loan capital
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return loan number m to client c
end

Close Loan Transaction

Formal Presentation: Close Loan Transaction

int Cmd(mkCM(c,m))(ρ,α,µ,ℓ) ≡
if ℓ(m) = 0

then
let µ′ = ρ † [ c 7→µ(c)\{m} ],

ℓ′ = ℓ \ {m} in
((ρ,α,µ′,ℓ′),ok) end

else
((ρ,α,µ,ℓ),nok)

end
pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Close Loan Transaction

routine close loan(c in ′′client′′,m in ′′loan number′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that loan m has 0 balance;
if

checks fail

then

return NOT OK to client c
else

do

close loan m
return OK to client c

end

fi

end
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Loan Payment Transaction

Formal Presentation: Loan Payment Transaction

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,d′−d),

ℓ′ = ℓ † [ m7→ℓ(m)−(p−i) ]
α′ = α † [ a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Loan Payment Transaction

routine pay loan(c in ′′client′′,m in ′′loan number′′,p in ′′amount′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that account a is registered with client c ;
check that account a has p or more balance ;
if

checks fail

then

return NOT OK to client c
else

do

compute interest i for loan m on date d ;
subtract p−i from loan m ;
subtract p from account a ;
add i to account bank’s interest

return OK to client c ;
end

fi

end

This ends the second stage of the development of a script language.
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From the sketch attempts of bank-friendly scripts we establish, in the next
example, a syntax for the bank-friendly script language.

Example 11.24 Bank Scripts, IV: We now examine the proposed scripts.
Our objective is to design a syntax for the language of bank scripts. First, we
list the statements as they appear in Example 11.23, except for the first two
statements.

Routine Headers

We first list all routine “headers”:

open account(c in ′′client′′,a out ′′account′′)
close account(c in ′′client′′,a in ′′account′′ out ′′monies′′)
deposit(c in ′′client′′,a in ′′account′′,ma in ′′monies′′)
withdraw(c in ′′client′′,a in ′′account′′,ma in ′′amount′′ out ′′monies′′)
get loan(c in ′′client′′,p in ′′amount′′,m out ′′loan number′′)
close loan(c in ′′client′′,m in ′′loan number′′)
pay loan(c in ′′client′′,m in ′′loan number′′,p in ′′amount′′)

We then schematise a routine “header”:

routine name(v1 io ′′t′′,v2 io ′′t2′′,...,vn io ′′tn′′) ≡

where:

io = in | out

and:

ti is any text

Example Statements

do stmt list end
if test expr then stmt else stmt fi

register c with new account a
register c with loan m amount p

add p to account a
subtract p from account a
subtract p−i from loan m
add i to account bank’s interest

subtract p from account bank’s loan capital



58 11 Domain Facets

add p to account bank’s loan capital

compute interest i for loan m on date d

delete account a
close loan m

return ret expr to client c
check that check expr

The interest variable i is a local variable. The date variable d is an “oracle”
(see below), but will be treated as a local variable.

Example Expressions

test expr:

checks fail

ret expr:

account number a
account balance a
NOT OK
OK
p
loan number m

check expr:

account client c is registered

account a is registered with client c
account a has p or more balance

loan client c is registered

loan m is registered with client c
loan m has 0 balance

Abstract Syntax for Syntactic Types

We analyse the above concrete schemas (i.e., examples). Our aim is to find a
reasonably simple syntax that allows the generation of the scripts of Exam-
ple 11.23. After some experimentation we settle on the syntax shown next.

Formal Presentation: Bank Script Language Syntax

type
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RN, V, C, A, M, P, I, D

Routine = Header × Clause

Header == mkH(rn:RN,vdm:(V →m (IOL × Text)))
IOL == in | out | local

Clause = DoEnd | IfThEl | Return | RegA | RegL | Check
| Add | Sub | 2Sub | DelA | DelM | ComI | RetE |

DoEnd == mkDE(cl:Clause∗)
IfThEl == mkITE(tex:Test Expr,cl:Clause,cl:Clause)

Return == mkR(rex:Ret Expr,c:V)
RegA == mkRA(c:V,a:V)
RegL == mkRL(c:V,m:V,p:V)
Chk = mkC(cex:Chk Expr)
Add == mkA(p:V,t:(V|BA))
Sub == mkS(p:V,t:(V|BA))
2Sub == mk2S(p:V,i:V,t:(AN|MN|BA))

AN == mkAN(a:V)
MN == mkMN(m:V)
BA == bank i | bank c

DelA == mkDA(c:V,a:V)
DelM == mkDM(c:V,m:V)
Comp == mkCP(m:V,fn:Fn,argl:(V|D)∗)

Fn == interest | ...

Test Expr = mkTE()

Chk Expr == CisAReg(c:V) | AisReg(a:V,c:V) | AhasP(a:V,p:V)
| CisMReg(c:V) | MisReg(m:V,c:V) | Mhas0(m:V)

RetE == mkAN(a:V)|mkAB(a:V)|ok|nok|mkP(p:V)|mkMN(m:V)

Finally, in the next example, we establish a formal semantics of the bank-
friendly script language. The reader is asked to compare the semantic types
of the bank-friendly script language of Example 11.25 with the semantic types
of Example 11.22.
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Example 11.25 Bank Scripts, V:

Formal Presentation: Semantics of Bank Script Language

We now give semantics to the bank script language of Example 11.24.

Semantic Types Abstract Syntax

type
V, C, A, M, P, I

type
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat
Σ = (V →m (C|A|M|P|I))

⋃
(Fn →m FCT)

FCT = (...|Date)∗ → Bank → (P|...)
value

aℓ,ai:A
axiom

∀ (ρ,α,µ,ℓ):B {aℓ,ai} ⊆ dom α

The only difference between the above semantics types and those of Exam-
ple 11.23 is the Σ state. The purpose of this auxiliary bank state component
is to provide (i) a binding between the (always fixed) formal parameters of
the script routines and the actual arguments given by the bank client or bank
clerk when invoking any one of the routines, and (ii) a binding of a variety
of “primitive”, fixed, banking functions, FCT, named Fn, like computing the
interest on loans, etc.

Semantic Functions

channel
k:(C|A|M|P|Text), d:Date

There is, in this simplifying example, one channel, k, between the bank and
the client. It transfers text messages from the bank to the client, and client
names (c:C), client account numbers (a:A), client mortgage numbers (m:M),
and amount requests and monies (p:P) from the client to the bank. There
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is also a “magic”, a demonic channel, d, which connects the bank to a date
“oracle”.

value
date: Date → out d Unit
date(da) ≡ (d!da ; date(da+∆))

Each routine has a header and a clause. The purpose of the header is to
initialise the auxiliary state component σ to appropriate bindings of formal
routine parameters to actual, client-provided arguments. Once initialised,
interpretation of the routine clause can take place.

int Routine: Routine → Bank → out k Bank×Σ
int Routine(hdr,cla)(β) ≡

let σ = initialise(hdr)([ ]) in
Int Clause(cla)(σ)(true)(β) end

For each formal parameter used in the body, i.e., in the clause, of the routine,
there is a formal parameter definition in the header, and only for such. We
have not expressed the syntactic well-formedness condition — but leave it as
an exercise to the reader. And for each such formal parameter of the header
a binding has now to be initially established. Some define input arguments,
some define local variables and the rest define, i.e., name, output results.
For each input argument the meaning of the header therefore specifies that
an interaction is to take place, with the environment, as here designated by
channel k, in order to obtain the actual value of that argument.

initialise: Header → Σ → out,in k Σ
initialise(hdr)(σ) ≡

if hdr = [ ]
then σ
else

let v:V • v ∈ dom hdr in
let (iol,txt) = hdr(v) in
let σ′ =

case iol of
in → k!txt ; σ ∪ [ v 7→ k? ],

→ σ ∪ [ v 7→ undefined ]
end in

initialise(hdr\{v})(σ′)
end end end end

In general, a clause is interpreted in a configuration consisting of three parts:
(i) the local, auxiliary state, σ : Σ, which binds routine formal parameters to
their values; (ii) the current ‘check’ state, tf:Check, which records the “sum
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total”, i.e., the conjunction status of the check commands so far interpreted,
i.e., initially tf = true; and (iii) the proper bank state, β:Bank, exactly as
also defined and used in Example 11.23. The result of interpreting a clause
is a configuration: (Σ×Check×Bank).

type
Check = Bool

value
Int Clause: Clause→Σ→Check→Bank→out k,in d (Σ×Check×Bank)

A do ... end clause is interpreted by interpreting each of the clauses within
the clauses in the do ... end clause list, and in their order of appearance.
The result of a check clause is “anded” (conjoined) to the current tf:Check
status.

Int Clause(mkDE(cll))(σ)(tf)(β) ≡
if cll = 〈〉

then (σ,tf,β)
else

let (σ′,tf′,β′) = Int Clause(hd cl)(σ)(tf)(β) in
Int Clause(mkDE(tl cll))(σ′)(tf∧tf′)(β′)

end end

if ... then ... else fi clauses only test the current check status (and propa-
gate this status).

Int Clause(mkITE(tex,ccl,acl))(σ)(tf)(β) ≡
if tf

then
Int Clause(ccl)(σ)(true)(β)

else
Int Clause(acl)(σ)(false)(β)

end

Interpretation of a return clause does not change the configuration “state”.
It only leads to an output, to the environment, via channel k, of a return
value, and as otherwise directed by any of the six return expressions (rex).

Int Clause(mkRet(rex))(σ)(tf)(ρ,α,µ,ℓ) ≡
k!(case rex of

mkAN(a)
→ ′′Your new account number:′′ σ(a),

mkAB(a)
→ ′′Your account balance paid out:′′ α(a),

mkP(p)
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→ ′′Monies withdrawn:′′ σ(p),
mkMN(m)

→ ′′Your loan number:′′ σ(m),
OK

→ ′′Transaction was successful′′,
NOK

→ ′′Transaction was not successful′′

end);
(σ,true,(ρ,α,µ,ℓ))

Interpretation of a register account clause is as you would expect from
Example 11.23 — anything else would “destroy” the whole purpose of having
a bank script. That purpose is, of course, to effect basically the same as the
not yet “script-ised” semantics of Example 11.23.

Int Clause(mkRA(c,a))(σ)(tf)(ρ,α,µ,ℓ) ≡
let av:A • av 6∈ dom α in
let σ′ = σ † [ a 7→ av ],

as = if c ∈ dom ρ then ρ(c) else {} end,
ρ′ = ρ † [ c 7→ as ∪ {av} ],
α′ = α ∪ [ av 7→ 0 ] in

(σ′,tf,(ρ′,α′,µ,ℓ))
end end

The same holds for the register loan clause (as for the register account
clause).

Int Clause(mkRL(c,m,p))(σ)(tf)(ρ,α,µ,ℓ) ≡
let mv:M • mv 6∈ dom ℓin
let σ′ = σ † [ m 7→ mv ],

ms = if c ∈ dom µ then µ(c) else {} end,
µ′ = µ † [ c 7→ ms ∪ {mv} ],
ℓ′ = ℓ ∪ [ mv 7→ p ] in

(σ′,tf,(ρ,α,µ′,ℓ′))
end end

It can be a bit hard to remember the “meaning” of the mnemonics, so we
repeat them here in another form:

• CisAReg: Client named in c is registered:
σ(c) ∈ dom ρ.

• AisReg: Client named in c has account named in a:
σ(c) ∈ domρ∧σ(σ(a)) ∈ρ(σ(c)).

• AhasP: Account named in a has at least the balance given in p:
α(σ(a))≥σ(p).
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• CisMReg: Client named in c has a mortgage:
σ(c) ∈ dom µ.

• MisReg: Client named in c has mortgage named in m:
σ(c) ∈ domµ∧σ(m) ∈µ(σ(c)).

• Mhas0: Mortgage named in m is paid up fully:
ℓ(σ(m))=0.

Then it should be easier to “decipher” the logics:

Int Clause(mkChk(cex))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ,case cex of

CisAReg(c) → σ(c) ∈ dom ρ,
AisReg(a,c) → σ(c) ∈ domρ∧σ(σ(a)) ∈ρ(σ(c)),
AhasP(a,p) → α(σ(a))≥σ(p),
CisMReg(c) → σ(c) ∈ dom µ,
MisReg(m,c) → σ(c) ∈ domµ∧σ(m) ∈µ(σ(c)),
Mhas0(m) → ℓ(σ(m))=0

end,(ρ,α,µ,ℓ))

There are a number of ways of adding amounts, designated in p, to accounts
and mortgages:

• mkAN(a): to account named in a
• mkMN(m): to mortgage named in m
• bank i: to the bank’s own interest account
• bank c: to the bank’s own capital account

Int Clause(mkA(p,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
case t of

mkAN(a) → (σ,true,(ρ,α†[ a 7→α(σ(a))+σ(p) ],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))+σ(p) ]))
bank i → (σ,true,(ρ,α†[ ai 7→α(ai)+σ(p) ],µ,ℓ))
bank c → (σ,true,(ρ,α†[ aℓ 7→α(aℓ)+σ(p) ],µ,ℓ))

end

The case, as above for adding, also holds for subtraction.

Int Clause(mkS(p,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
case t of

mkAN(a) → (σ,true,(ρ,α†[σ(a)7→α(σ(a))−σ(p) ],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))−σ(p) ]))
bank i → (σ,true,(ρ,α†[ ai 7→α(ai)−σ(p) ],µ,ℓ))
bank c → (σ,true,(ρ,α†[ aℓ 7→α(aℓ)−σ(p) ],µ,ℓ))

end
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And it holds as for subtraction, but subtracting two amounts, of values
designated in p and i.

Int Clause(mk2S(p,i,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
let pi = σ(p)−σ(i) in
case t of

mkAN(a) → (σ,true,(ρ,α†[σ(a)7→α(σ(a))−pi ],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))−pi ]))
bank i → (σ,true,(ρ,α†[ ai 7→α(ai)−pi ],µ,ℓ))
bank c → (σ,true,(ρ,α†[ aℓ 7→α(aℓ)−pi ],µ,ℓ))

end end

To delete an account is to remove it from both the account register and the
accounts.

Int Clause(mkDA(c,a))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ\{a},true,(ρ†[σ(c)7→α(σ(c))\{σ(a)} ],α\{σ(a)},µ,))

Similarly, to delete a mortgage is to remove it from both the mortgage
register and the mortgages.

Int Clause(mkDM(c,m))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ\{m},true,(ρ,α,µ†σ(c)[ 7→µ(σ(c))\{σ(m)} ],ℓ\{β(m)}))

To compute a special function requires a place, i, to put, i.e., to store, the
resulting, the yielded, value. It also requires the name, fn, of the function,
and the actual argument list, aal, i.e., the list of values to be applied to the
named function, fct. As an example we illustrate the “built-in” function of
computing the interest on a loan, a mortgage.

Int Clause(mkCP(i,fn,aal))(σ)(tf)(ρ,α,µ,ℓ) ≡
let fct = σ(fn) in
let val = case fn of

′′interest′′ →
let 〈m,d〉 = aal in fct(〈µ(σ(m)),d?〉) end

... → ...
end in

(σ†[σ(i)7→val ],true,(ρ,α,µ,ℓ)) end end

This ends the last stage of the development of a script language.

11.7.2 Methodological Consequences

We have already covered techniques for, and principles of describing (i.e.,
modelling) rules and regulations (Sects. 11.6.2 and 11.6.4). These carry over,
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but in stricter forms, to the description (incl. modelling) of scripts. Design-
ing script languages is basically like designing small programming languages.
Vol. 2, Chaps. 3, 6–9 and 16–19 outlined a long series of principles, techniques
and tools for designing such languages, including specifying their syntax, se-
mantics and pragmatics.

11.7.3 Reminder + More

We remind the reader of the principle stated at the outset of this section on
domain scripts.

Principle. Describing the Domain Script Facets: When describing a domain
analyse it with respect to its script phenomena and concepts. Focus on pos-
sibly describing these separately, and make sure that descriptions of other
described domain facets are commensurate with possibly multiple, alterna-
tive descriptions of domain scripts.

Techniques. Domain Scripts: To properly develop domain scripts, the full
force of the semiotic concepts of pragmatics, semantics and syntax, and the
techniques of language definition as covered extensively in Vol. 2, apply.

Tools. Domain Scripts:Many tools exist for language design and compiler im-
plementation. Some deal with analysis of syntactic and semantic descriptions.
Others deal with the automatic generation of lexical scanners, error-correcting
parser generators, and yet others with interpreter and compiler generation.
We refer to standard textbooks on compiler implementation [?,?,?]. Search
the Internet and you will find many references to downloadable compiler con-
struction tools.

11.8 Domain Human Behaviour

Let us consider the staff of any enterprise, any place of work, whether private
or public. Some go about doing their job conscientiously: diligently carrying
out tasks as expected. Other staff unconsciously sometimes forget: are some-
times a bit sloppy in the dispatch of duties. Yet other staff set themselves
lower standards for the pursuit of their assignments: they are slovenly delin-
quent in completing their work. Finally it may be that some staff are outright
criminal in doing their work: They misappropriate funds or steal from the
warehouse, etc. A whole spectrum of quality thus characterises human work.

Principles. Describing the Domain Human Behaviour Facets:When describ-
ing a domain, analyse it with respect to its human behaviour phenomena and
concepts. Focus on possibly describing these separately. Make sure that de-
scriptions of other described domain facets are commensurate with possibly
multiple, alternative descriptions of domain human behaviours.
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11.8.1 Overall Principles

Characterisation. By domain human behaviour we shall understand any
of a quality spectrum of carrying out assigned work: from careful, diligent
and accurate, via sloppy dispatch, and delinquent work, to outright criminal
pursuit.

In describing a domain it is important to try capture salient features of what
it means to be a human worker: being careful, diligent and accurate, being
unintentionally sloppy, being intentionally delinquent, being outright criminal
and, if describable, any shade in-between.

How one describes that, and how one, i.e., the software developer, utilises
such descriptions are covered in more detail below.

Example 11.26 Banking — or Programming — Staff Behaviour: Let us as-
sume a bank clerk, “in ye olde” days, when calculating, say mortgage repay-
ments, as illustrated in Example 11.21: We would characterise such a clerk
as being diligent, etc., if that person carefully follows the mortgage calcula-
tion rules, and checks and double-checks that calculations “tally up”, or lets
others do so. We would characterise a clerk as being sloppy if that person oc-
casionally forgets the checks alluded to above. We would characterise a clerk
as being delinquent if that person systematically forgets these checks. And we
would call such a person a criminal if that person intentionally miscalculates
in such a way that the bank (and/or the mortgage client) is cheated out of
funds which, instead, may be diverted to the cheater.

Let us, instead of a bank clerk, assume a software programmer charged
with implementing an automatic routine for effecting mortgage repayments
along the lines illustrated in Example 11.21: We would characterise the pro-
grammer as being diligent if that person carefully follows the mortgage cal-
culation rules, and throughout the development verifies and tests that the
calculations are correct with respect to the rules. We would characterise the
programmer as being sloppy if that person forgets certain checks and tests
when otherwise correcting the computing program under development. We
would characterise the programmer as being delinquent if that person sys-
tematically forgets these checks and tests. And we would characterise the
programmer as being a criminal if that person intentionally provides a pro-
gram which miscalculates the mortgage interest, etc., in such a way that the
bank (and/or the mortgage client) is cheated out of funds.

Example 11.27 Shopping — Overall Consumer Behaviour: A consumers
goods market consists of consumers, retailers, wholesalers, producers and de-
livery services. We focus just on possible consumer behaviours: (i) a consumer
inquires, with a retailer, as to availability, price, and delivery terms, of some
merchandise. (ii) The retailer responds with zero, one or more offers. (iii) The
consumer may decide to ignore the offers, or the consumer may select one of
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the offers, or the consumer may order something that was not in the set of
offers. (iv) The retailer may confirm an order, whereupon delivery takes place
and an invoice is sent. (v) The consumer may decide to return the merchan-
dise unpaid, or even paid! (vi) Or the consumer may keep the merchandise
and may ignore the invoice, or may pay it, or may pay some other “fictive”
(i.e., nonexisting) invoice. (vii) The consumer may then decide to return the
merchandise for repair or for claims.

Formal Presentation: Shopping — Overall Consumer Behaviour

We formalise the above. The .. parts indicate “open” parts of the specifica-
tion, that is, those parts which we believe can be left schematised without
loss of basic understanding on the part of the reader.

type
Σ
Choice == inq | ord | acc | ret | pay | cla | ign
CR == Inq(..)|Ord(..)|Acc(..)|Pay(..)|Cla(..)|Ign(..)
RC == Ofr(..)|Del(..)|Inv(..)|..

channel
cr:CR, rc:RC

value
consumer: Σ → out cr in rc Unit
consumer(σ) ≡

c0 (let cho == inq⌈⌉ord⌈⌉acc⌈⌉ret⌈⌉pay⌈⌉cla⌈⌉ign in
c1 let σ′ =
c2 case cho of
c3 inq → let (σ′′,i) = .. in cr!i ; σ′′ end
c4 ord → let order = .. in cr!order end
c5 acc → if .. then let (σ′′,a) .. in cr!a ; σ′′ end else σ end
c6 ret → if .. then let (σ′′,r) = .. in cr!r ; σ′′ end else σ end
c7 pay → if .. then let (σ′′,p) = .. in cr!c ; σ′′ end else σ end
c8 cla → if .. then let (σ′′,c) = .. in cr!c ; σ′′ end else σ end
c9 ign → σ
c10 end
c11 consumer(σ′) end end)

⌈⌉
s1 (let res = rc ? in
s2 let σ′ =
s3 case res of
s4 Ofr(..) → handle ofr(res)(σ),
s5 Del(..) → handle del(res)(σ),
s6 Inv(..) → handle inv(inv)(σ),
s7 .. → ..
s8 end in
s9 consumer(σ′) end end)
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We explain the above formalisation, or, to put it differently, we narrate in
more detail the informal points (i–vii) above.

The consumer function has two internally nondeterministically chosen al-
ternatives. Either the initiative is on the side of the consumer (i.e., ‘client’
mode, shown using “c” prefixed line labels); or the consumer “passively”
awaits response from the retailer (i.e., ‘server’ mode, shown using “s” pre-
fixed line labels).

(c) As a client the consumer nondeterministically internally, i.e., of her
own free will,16 chooses (c0) between doing any of the actions (c3) inquire
about merchandise (..), (c4) order merchandise (..), (c5) accept delivery of
merchandise (..) believed to have been delivered (hence the if .. then .. else
.. end), (c6) return merchandise (..) believed to have been delivered (hence
the if .. then .. else .. end), (c7) pay for merchandise (..) believed to have
been delivered (hence the if .. then .. else .. end), (c8) claim refund on
supposedly faulty merchandise (..) believed to have been delivered (hence the
if, then, else), or (c9) ignore whatever goes on! Any of these actions (the
last is, in effect, a nonaction) does, indeed, leave a side effect, a remembrance,
in the mind of the consumer, hence a state change, from state to state′ ((c1)).

(s) As a server the consumer awaits a response from the retailer. If none is
forthcoming, the consumer “deadlocks”! This models that the consumer has
gotten “stuck” and stubbornly refuses to take her own initiative, just waits and
waits. If a response is forthcoming, it is either (s4) an offer, possibly prompted
by an earlier consumer inquiry — but not necessarily. It could be an “own
initiative” by the retailer, or (s5) a delivery (etc.), (s6) an invoice (etc.), (s7)
or other! In any case, a new state (s2) results. The consumer resumes being
a consumer in a new state resulting from either her own initiatives, or from
externally prompted actions (c11), resp. (s9).

In the above example we are deliberately leaving many things unspecified
(..). The point is that we are not so much interested — in this section — in
those (..) things. We are interested in modelling, in describing, the vagaries
of consumers. These uncertainties, these unpredictable wanderings, were fully
described by the nondeterministic choice (c0) and by the fact that after the
outputs (!) the consumer “recursed” being a consumer without awaiting re-
sponses from the retailer. It was also shown in our not defining, yet, the
handle xyz(..) clauses.

Example 11.28 Shopping — Detailed Consumer Behaviour: We continue
Example 11.27. We left some open points in the earlier example. We shall use
these to illustrate other aspects of human behaviour, its informal and formal
descriptions.

16 We tacitly assume that such a concept as “free will” exists in connection with
consumer behaviour!
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We start by singling out the treatment of a consumer-initiated initiative,
like making an inquiry (c3).

Formal Presentation: Shopping — Detailed Consumer Behaviour

c3 inq → let (σ′′,i) = .. in cr!i ; σ′′ end

To (c3) we add the “missing” information about how we form (i.e., “compute”)
the information (i.e., data) that goes into an inquiry: ‘..’:

Formal Presentation: Shopping — Detailed Consumer Behaviour

c3 inq → let (σ′′,i) = mki(σ) in cr!i ; σ′′ end

and

value
mki: Σ → Inq Σ

In the formula above we have referred to the action of human “gathering”
the information that goes into an inquiry by the cryptic function name mki.
To make an inquiry we assume that the consumer refers to whatever sense
impressions that person may have, and we model that (“whatever sense im-
pressions that person may have”) as part of that person’s state. Hence the
gathering action operates on the state and updates it with the fact that the
person (whose state it is) has contemplated and formed an inquiry. We leave
the description of mki open. Leaving it open also leaves it open to interpre-
tation. Anything is allowed that forms an inquiry and possibly changes the
state. This “openness” models the vagaries of human behaviour. The case for
all other consumer-initiated actions directed at the retailer is similar to that of
the inquiry action in respect of acting upon and communicating information.
We now treat the case of retailer-initiated interactions. Let us consider the
consumer’s reaction to a retailer offer response.

Formal Presentation: Shopping — Detailed Consumer Behaviour

s4 Ofr(..) → handle ofr(res)(σ)

We refer to this reaction by handle ofr. As for the making of an inquiry (etc.),
this action is not being further described, other than saying: It is any action
that somehow records, in the consumer’s state, i.e., mind, or jotted down on a
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piece of paper, say stuck to a kitchen notice board, the fact that approximately
“such and such” an offer was received.

Formal Presentation: Shopping — Detailed Consumer Behaviour

value
handle ofr: Ofr → Σ → Σ

No further action is described. In particular, the perhaps expected reaction
of the consumer “immediately firing off” an order, or a declination of the
offer is not described. Any such possible reaction is modelled by the internal
nondeterministic choices of the client actions of the consumer: The consumer
may, sooner or later or even never select or choose an order reply. And that
order reply may relate, “through” the mko action (c4, not shown), to the Offer
response (s4).

11.8.2 Methodological Consequences

Techniques. Human Behaviour: (I) We often model the “arbitrariness” of
human behaviour by internal nondeterminism. There are two concepts to keep
clear of one another: the user choosing to perform an arbitrary action, act i,
from a set Act, of alternative actions, and the interpretation, by the user, or
by a system, of that action, b x, that is, the resulting behaviour.

Formal Explication: Conceptual Model of Human Behaviour, I

type
Act == act 1 | act 2 | ... | act n | ...

value
f(...) ≡ ... b p ⌈⌉ b s ⌈⌉ b d ⌈⌉ b c ...

Act denotes a type of action. f defines a function which nondeterministically,
under no influence from an, or the, environment (i.e., arbitrarily), selects one
of the behaviours b p, b s, b d or b c. The, possibly deterministic, meaning
of each of the alternatives can then be separately described. Proper actions,
act i: some actually perceivable fruitful action, as illustrated in the examples
above through the use of the signature-only functions (mkx and handley);
and (or versus) action qualities: (i) b p: professional, (ii) b s: sloppy, (iii)
b d: delinquent, or (iv) b c: criminal. We prefer to merge the latter into the
former, that is, to assume that the definitions of the actions (mkx and handley)
embody both intended actions as well as their quality.
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Techniques. Human Behaviour: (II) Alternatively we can model human be-
haviour by the arbitrary selection of elements from sets and of subsets of
sets:

Conceptual Model of Human Behaviour, II

type
X

value
hb i: X-set ...→... , hb i(xs,...) ≡ let x:X • x ∈ xs in ... end
hb j: X-set ...→... , hb j(xs,...) ≡ let xs′:X-set • xs′ ⊆ xs in ... end

The above shows just fragments of formal descriptions of those parts which
reflect human behaviour. Similar, loose descriptions are used when describing
faulty supporting technologies, or the “uncertainties” of the intrinsic world.

Techniques. Human Behaviour (III): Commensurate with the above, hu-
mans interpret rules and regulations differently, and not always “consistently”
— in the sense of repeatedly applying the same interpretations.

Our final specification pattern is therefore:

Formal Explication: Conceptual Model of Human Behaviour, III

type

Action = Θ
∼
→ Θ-infset

value
hum int: Rule → Θ → RUL-infset
action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post
θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some rules. A human, in carrying out an action, interprets
applicable rules and chooses one which that person believes suits some (pro-
fessional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies
the intent, i.e., yields true on the pre/post-configuration pair, when the ac-
tion is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate
regulation is applied or not.
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The above-stated axioms express how it is in the domain, not how we would
like it to be. For that we have to establish requirements. This is the subject
of Part ??.

11.8.3 Human Behaviour and Knowledge Engineering

We refer to Sect. ?? for a first, albeit very brief coverage of the concept of
knowledge engineering.

Domain engineering aims at making precise our understanding of the en-
tities, functions, events and behaviours of the observable phenomena and the
intellectual concepts of the domain. By knowledge we shall, in the narrow
context of knowledge engineering, understand that which a human (or a ma-
chine, i.e., an agent) knows or believes or assumes or commits with respect to
(knowledge, beliefs, promises or commitments of) another agent. By knowl-
edge engineering we shall understand the formulation (whether informal or
formal) of such knowledge. Knowledge engineering is thus concerned with un-
derstanding relations between two or more agents’ knowledge (etcetera) about
one another with respect to the following issues: what does an agent know
about what another agent knows or believes; which (things) does an agent
promise another agent who may then commit or promise other or similar
things to yet other agents; and so on. The subject of knowledge engineering is
of importance when we model human behaviour but we shall not in this book
venture into this very important field of computer and computing science. We
refer to the seminal treatise on the subject [?].

11.8.4 Discussion

Please observe the difference between the version of meaning under the rules
and regulations facet, Sect. 11.6.2, and the present version. The former re-
flected the semantics as intended by the stakeholder who issued the rules and
regulations. The latter reflects the professional or the sloppy or the delinquent
or the criminal semantics as intended by the similarly “qualified” staff which
carries out the rule-abiding or rule-violating actions. Please also observe that
we do not here exemplify any regulations.

11.8.5 Reminder

We remind the reader of the principle stated at the outset of this section on
domain human behaviour:

Principles. Describing the Domain Human Behaviour Facets:When describ-
ing a domain, analyse it with respect to its human behaviour phenomena and
concepts. Focus on possibly describing these separately. Make sure that de-
scriptions of other described domain facets are commensurate with possibly
multiple, alternative descriptions of domain human behaviours.
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11.9 Other Domain Facets?

We have exemplified and formalised some aspects of human behaviour in the
domain. And we have informally and formally described how we model some
aspects of some facets (rules and regulations, respectively human behaviour).
The latter form some initial contributions to a more proper theory of what
we mean by domain facets. The domain facets that we have covered included:
intrinsics, support technologies, management and organisation, rules and reg-
ulations, domain scripts and human behaviour. The question now is obvious:
Are there other domain facets? We refrain, at present, from an answer. But we
would be surprised if there were not! In other words, we expect further practice
and further exploratory and experimental research to yield additional facets.
Thus the reader should be on the look out for whether the facets covered here
suffice. More generally we must accept the next principle:

Principle. Domain Facets: When modelling, informally or formally, a do-
main, analyse the domain phenomena with respect to whether one or another,
or a combination of currently identified domain facets suffice to model the do-
main, or whether you, the developer, have to discover, i.e., identify, define and
otherwise find a suitable set of one or more principles, techniques and tools
with which to model the domain.

11.10 Composition of Domain Models

From the various facet descriptions the domain engineer now has to weave a
fabric, and Sect. 11.10.1 is about that. The domain engineer may also have to
formalise the full description, and Sect. 11.10.2 is about that.

11.10.1 Collating Domain Facet Descriptions

General

The various domain facets can be described more or less individually. It is a
good idea to try identify and describe these separate facets individually —
in other words applying the principle of separate concerns. But, in doing so
the describer may be repeating some descriptive material unnecessarily. Such
duplicate material may differ in details and may thus create inconsistencies
as well as doubts in the minds of the readers. But analysing the domain and
describing it on a per facet basis may yield insight and lead to discoveries
about the domain not otherwise attainable.
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A Comprehensive Narrative

Describing the domain on a per facet basis may lead to a fragmented, staccato
(abrupt, disjointed) description. To avoid this it may be a good idea to take
all the bits and pieces of the various facet descriptions and write them into
one whole comprehensive narrative. In merging the various facets into one
structured narrative the domain engineer may discover possible inconsistencies
— and thus will have an early opportunity to correct such. The possibly
revised (for example corrected) “bits and pieces” should not be thrown away.
They can serve as possibly clarifying study material.

From Big Lies via Smaller Lies to the Truth

A Golden Rule of Comprehension
Develop your domain understanding — and hence the first round of domain
descriptions — by analysing and describing the domain facet-by-facet (in-
cluding formalisation), then by consolidating this into a more pedagogical
and didactical17 flow of narration (with edited formalisation).

One typical way of structuring a comprehensive narrative, as well as its ac-
companying formalisations, is to formulate the full narrative as a sequence of
narratives. Initially the narratives pretend to cover the entire domain, start-
ing, obviously with some intrinsics. But steps of subsequent narratives enlarge
upon the scope, choosing pedagogically further domain aspects — be they of
intrinsic, of support technology, of management and operation, or of the na-
ture of some other domain facets. The order chosen is determined by what
the writer judges is good didactics and good pedagogics. Many such orders
are possible. We can phrase this unfolding of a narrative as follows:

Principles. The principle of From Big Lies via Smaller Lies to the Truth. To
achieve a smooth, pedagogically and didactically sound presentation of some
universe of discourse, start by narrating a suitable lie, call it a big lie, a gross
simplification. Proceed by adorning the (“false”) narration with smaller lies,
that is, with less gross simplifications. In doing this you have to accommodate
it so that the smaller lies fit nicely onto the big lie, that is, that you do not
have to change anything in your presentation, only, so to speak, “refine” it.
Then go on to detail the less gross simplifications, i.e., tell tiny lies while still
adhering to the “accommodation principle”. Finally you have added so much
detail that you have told “the truth”, that is, what we abstract of the universe
of discourse as our truthful abstraction of that universe. Thus “the limit of
all the lies is the truth”.

17 Pedagogical: of the art and science of teaching. Didactic: intended to convey
instruction and information as well as pleasure and entertainment [?].
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11.10.2 Technical Issues

We saw, in Sect. 11.3.1, the need for composing intrinsic descriptions from
intrinsic description parts. We have now seen, in this chapter, through its
coverage of many facets, the need for composing from descriptions of sep-
arate facets of a domain a comprehensive and consistent description. As in
Sect. 11.3.1, we refer to the use, for example, of RSL’s scheme facility. We
refer to Vol. 2, Chap. 10 (Modularisation) in which we cover the scheme con-
cept of RSL (Sect. 10.2 (RSL Classes, Objects and Schemes) of that volume).
Non-intrinsic facet schemes can be expressed by extending basic (e.g., intrin-
sic) schemes with additional types, values and axioms. The hiding facility of
schemes can likewise be used to express different, but commensurate models.

11.11 Exercises

11.11.1 A Preamble

We refer to Sect. ?? for the list of ?? running domain (requirements and soft-
ware design) examples; and we refer to the introductory remarks of Sect. ??
concerning the use of the term “selected topic”.

11.11.2 The Exercises

Exercise 11.1 Intrinsics. For the fixed topic, selected by you, identify and
describe

1. some intrinsic entities,
2. some intrinsic functions,
3. some intrinsic events and
4. some intrinsic behaviours.

Exercise 11.2 Business Processes. For the fixed topic, selected by you, iden-
tify and describe two (“as different as is reasonable”) business processes.

Exercise 11.3 Support Technologies. For the fixed topic, selected by you,
identify and describe two (“as different as is reasonable”) support technologies.

Exercise 11.4 Management and Organisation.

1. For the fixed topic, selected by you, identify and describe management
entities, functions, events and behaviours.

2. Identify and describe a possible organisational structure of your chosen
domain.

Exercise 11.5 Rules and Regulations. For the fixed topic, selected by you,
identify and describe three to four rules and corresponding regulations.
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Exercise 11.6 Scripts. For the fixed topic, selected by you, identify and de-
scribe a possible script language (hint at a syntax, and rough sketch or narrate
a semantics).

Exercise 11.7 Human Behaviour. For the fixed topic, selected by you, iden-
tify and describe:

1. specifically desirable human behaviours, and
2. specifically undesirable human behaviours.

Exercise 11.8 A Comprehensive Domain Description. For the fixed topic,
selected by you, collate the descriptions that you have produced in answers
to Exercises 11.1–11.7 into one comprehensive domain description.





17

Overview of Requirements Engineering

• The prerequisites for studying this chapter are that you are ready to con-
tinue the long journey of gaining understanding of the second of the three
core phases of software development. You have understood the material of
previous chapters, including those on domain engineering, and, preferably,
also the (formal) abstraction and modelling principles and techniques of
Vols. 1 and 2 of this series of volumes on software engineering.

• The aims are to present a capsule view of stages and steps of requirements
engineering, and to present a capsule view of the documents that result
from requirements engineering.

• The objective is to make you feel at ease with the very many stages and
steps of requirements development, and the very many parts of resulting
documents.

• The treatment is informal and systematic.

IEEE Definition of ‘Requirements’
By a requirements we understand (cf. IEEE Standard 610.12 [?]): “A con-
dition or capability needed by a user to solve a problem or achieve an ob-
jective”.

The above definition1 is adequate for our purposes. It stresses what require-
ments are. It is not operational, and that is good. It does not define the thing,
the requirements, by how they look, or how you construct them. That, the
“how”, is the purpose of this and the next seven chapters.

Example 17.1 First ‘Requirements’ Examples: We give a few examples of
requirements. The examples are very brief, hence they are far from represen-
tative of comprehensive requirements prescriptions. The examples below are

1 We shall mostly be using the term ‘requirements’ in its plural form, but think of
it as “one body” of such!
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meant to give some very first hints as to what requirements prescriptions may
look like. Take them as rough sketches.

1. Administrative forms processing: Office managers shall be able to de-
sign forms, aggregations of forms and routines for extracting information
from forms and their aggregations.

2. Airport: Boarding cards shall be electronic cards that automatically reg-
ister where in, or near an airport, or in an aircraft the card is located.

3. Air traffic: The aircraft tracking system shall alert the terminal control
centre operator responsible for handling certain aircraft if any of these
deviate significantly from their planned routes.

4. Container terminal: The barcode system which registers each and every
container subject to unloading or loading shall fail at most once in every
200,000 registrations.

5. Document system: Each and every (electronic) document shall contain
its entire history: from some original as first created, via all intervening
editing and/or copying, etc., including the location, time and person re-
sponsible for creation, copying and editing.

6. Freight logistics: The freight logistics system, relying on each freight
item being suitably equipped with a GPS system responder, is allowed to
miss at most one in every 300,000 traced items.

7. Financial service system: The stock exchange (system) shall be able to
trace all buy and sell orders, as well as all withdrawn such, and all actual
transactions, by buyer and seller identification.

8. Hospital: The hospitalisation system which to every actual and scheduled
patient provides a (flowchart-like) hospitalisation plan, shall be able, at
any moment, to estimate and plan for (allocate and schedule) current,
immediate and longer-term resource needs: beds, staff (of all categories),
medicine, food and beverages, and operating theatres.

9. Manufacturing company: For each production cell its current, imme-
diate and longer-term uses, supply of production parts, preventive main-
tenance schedules, as well as staffing, shall be computable (hence dis-
playable) at any moment.

10. Market: Retailer orders with wholesalers, and wholesaler orders with
producers (i.e., distributors) shall be automatically issued subject to pre-
cisely stated script constraints, and as prompted by “low stock” of certain
composites of merchandise.

11. Metropolitan area tourism: The MetaTourism system shall enable any
suitably equipped (home PC + special GPS, display screen + software
controlled mobile phone) person to plan and execute a sequence of visits
to places (hotels, restaurants, shops, museums, etc.) and the transport
between these.

12. Railways: The train monitoring and control system, RaCoSy, being re-
quired, shall be able to monitor trains and, if needed, reschedule train
traffic, and to do so continuously, and thus to set signals, switches and
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train speeds accordingly, and to inform all relevant stakeholders (passen-
gers, train driver, and line and station staff) of any such changes.

The above examples were presented, at this early stage, just to give you a first
“feel” for what we are talking about

The “Golden Rule” of Requirements Engineering

Principle. Requirements Engineering: Prescribe only those requirements
that can be objectively shown to hold for the designed software.

“Objectively shown” means that the designed software can either be proved
(verified), or be model checked, or be tested, to satisfy the requirements.

An “Ideal Rule” of Requirements Engineering

Principle. Requirements Engineering:When prescribing (including formal-
ising) requirements, also formulate tests (theorems, properties for model
checking) whose actualisation should show adherence to the requirements.

The rule is labelled “ideal” since such precautions will not be shown in this
volume. It ought be shown, but either we would show one, or a few instances,
and they would “drown” in the mass of material otherwise presented. Or they
would, we claim, trivially take up too much space. The rule is clear. It is a
question for proper management to see that it is adhered to.

Example 17.1 gave 12 examples of requirements. They all illustrated the
need for having a precise description of underlying domains.

Example 17.2 Analysis of First ‘Requirements’ Examples: We analyse the
examples of Example 17.1. Our analysis merely consists in listing the domain-
specific terms that need to have been precisely described in a prior domain
description:

1. Administrative forms processing: (i) office managers, (ii) design, (iii)
forms, (iv) aggregations of forms, (v) routines (scripts) for extracting in-
formation from forms and their aggregations.

2. Airport: (i) boarding cards, (ii) where (i.e., airport and aircraft loca-
tions).

3. Air traffic: (i) terminal control centre operator, (ii) responsible for han-
dling certain aircraft, (iii) aircraft, (iv) deviate significantly, (v) planned
route.

4. Container terminal: (i) bar-code system, (ii) register, (iii) container,
(iv) unloading, (v) loading, (vi) registration.
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5. Document system: (i) document (ii) [document] history, (iii) original,
(iv) created, (v) editing, (vi) copying, (vii) location, (viii) time, (ix) per-
son, (x) responsible.

6. Freight logistics: (i) freight logistics system, (ii) freight item, (iii) GPS
system responder, (iv) trace.

7. Financial service system: (i) stock exchange, (ii) trace, (iii) buy order,
(iv) sell order, (v) withdrawals, (vi) actual transactions, (vii) buyer and
seller identification.

8. Hospital: (i) hospitalisation system, (ii) actual patient, (iii) scheduled
patient, (iv) hospitalisation plan, (v) allocate and schedule resources, (vi)
current, immediate and longer-term resources, (vii) bed, (viii) staff, (ix)
medicine, (x) food and beverages, (xi) operating theatre.

9. Manufacturing company: (i) production cell, (ii) current, immediate
and longer-term use, (iii) use, (iv) supply, (v) production part, (vi) pre-
ventive maintenance schedules, (vii) staffing.

10. Market: (i) Retailer, (ii) orders, (iii) wholesaler, (iv) producer, (v) dis-
tributors, (vi) ordering (“issued”), (vii) ordering constraint, (viii) “low
stock”, (ix) composite of merchandise.

11. Metropolitan area tourism: (i) person (i.e., potential or actual tourist),
(ii) plan, (iii) execute, (iv) visit, (v) place, (vi) hotels, (vii) restaurant,
(viii) shop, (ix) museum, etc. (. . . ), (x) transport.

12. Railways: (i) monitor train, (ii) reschedule, (iii) train traffic, (iv) set, (v)
signal, (vi) switch, (vii) train speed, (viii) inform, (ix) relevant stakehold-
ers, (x) passenger, (xi) train driver, (xii) line staff, (xiii) station staff, (xiv)
change.

The above examples were presented, at this early stage, to let you see why we
need a precise domain description.

17.1 Introduction

To express requirements is a crucial aspect of overall software development. If
we get it even “slightly wrong”, the resulting software may be “deadly wrong”.
The “pitfalls” are legion.2

Principle. Requirements Adequacy:Make sure that requirements cover what
users expect.

That is, do not express a requirement for which you have no users, but make
sure that all users’ requirements are represented or somehow accommodated.
In other words: the requirements gathering process needs to be like an ex-
tremely “fine-meshed net”: One must make sure that all possible stakeholders

2 That is, many, numerous, basically “uncountable”.
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have been involved in the requirements acquisition process, and that possible
conflicts and other inconsistencies have been obviated.

Principle. Requirements Implementability: Make sure that requirements are
implementable.

That is, do not express a requirement for which you have no assurance that it
can be implemented. In other words, although the requirements phase is not a
design phase, one must tacitly assume, perhaps even indicate, somehow, that
an implementation is possible. But the requirements in and by themselves,
stay short of expressing such designs.

Principle. Requirements Verifiability and Validability: Make sure that re-
quirements are verifiable and can be validated.

That is, do not express a requirement for which you have no assurance that
it can be verified and validated. In other words, once a first-level software
design has been proposed, one must show that it satisfies the requirements.
Thus specific parts of even abstract software designs are usually provided with
references to specific parts of the requirements that they are (thus) claimed
to implement.

17.1.1 Further Characterisation of ‘Requirement’

From Sect. ?? we repeat — slightly edited:

Characterisation. By requirements we shall understand a document which
prescribes desired properties of a machine: (i) what entities the machine shall
“maintain”, and what the machine shall (must; not should) offer of (ii) func-
tions and of (iii) behaviours (iv) while also expressing which events the ma-
chine shall “handle”.

17.1.2 The “Machine”

By a machine that “maintains” entities we shall mean: a machine which,
“between” users’ use of that machine, “keeps” the data that represents these
entities. Also from Sect. ?? we repeat:

Characterisation. By machine we shall understand a, or the, combination
of hardware and software that is the target for, or result of the required
computing systems development.

So this, then, is a main objective of requirements development: to start to-
wards the design of the hardware + software for the computing system.

Principle. Requirements: To specify the machine.
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When we express requirements and wish to “convert” such requirements to
a realisation, i.e., an implementation, then we find that some requirements
(parts) imply certain properties to hold of the hardware on which the software
to be developed is to “run”, and, obviously, that remaining — probably the
larger parts of the — requirements imply certain properties to hold of that
software. So we find that although we may believe that our job is software
engineering, important parts of our job are to also “design the machine”!

We shall keep this in mind, and later treat the above implications in
Part ??: “Computing Systems Design”.

17.2 Why Requirements, and for What?

Some questions now come to mind:
Why do we wish to express requirements? On what basis do we express

requirements? How are requirements expressed? How do we gather require-
ments? From whom do we gather requirements? How might we know whether
we have the right requirements? How are we sure that what we have expressed
as requirements are feasible, i.e., implementable desiderata?

These and other questions will be answered in this chapter.

17.2.1 Why Requirements?

Before we can design the software for the hardware — that we also have to
“design” (i.e., configure) — we must know what that software + hardware,
i.e., the machine, shall do. Expression of that ‘what’ is that which we call
the requirements. We take as a dogma, i.e., as a metarequirement, or as a
requirement to software development itself, that we must somehow understand
these requirements reasonably well, before we start the software design itself.

17.2.2 Requirements for What?

So, summarising, requirements express properties, some parts of which are to
be implemented by hardware, and some parts of which are to be implemented
by software, such that the ‘whole’ implements all of the requirements. That
is, requirements express properties of entities, functions, and behaviours that
one wishes a (or the) machine to exhibit — and events that the machine needs
to handle.

17.2.3 What Does ‘Implements’ Mean?

What do we mean when we say that a computing systems design, S, imple-
ments the requirements, R? It shall mean that one can argue — can reason,
can prove, can check, and can test — that under assumptions, D, about the
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domain, the design S has the functions, entities and behaviours expressed in
the requirements R.

We can express this mathematically:

D,S |= R

where we read |= as “models”.

17.3 Getting Started on Requirements Development

Let us “reset” our thinking about requirements. Somehow we have to get
started. Example 17.1 showed just an incomplete glimpse. So what do we do?
How do we get started?

17.3.1 Initial Informative Documentation

We first refer to Chap. ??’s coverage of informative documents. We refer
to the informative “Current Situation”, “Needs and Ideas”, “Concepts and
Facilities”, “Scope and Span”, and “Design Brief” document parts. According
to our “dogma” (on documentation, especially informative documentation) we
must somehow gather our thoughts — we being the requirements development
possible partners and stakeholders — around these topics.

We must find out what in the current situation somehow generates, in
the minds of some of the stakeholders, some needs and ideas concerning com-
puting. We must also find out which computing concepts and facilities they
lead onto, and what scope and span these needs, ideas, concepts, and facilities
thereby help set. Finally, we need to determine what design brief may then
transpire from all this.

Example 17.3 Informative Requirements Document: Document System Do-
main: We continue our line of examples: Examples 17.1 and 17.2, focusing now
on the document system domain.

• Current situation: The context is that of public administration. The
current situation, as perceived, is that there is almost no control as to
(i) where the manifest, i.e., the paper, documents are, in other words,
their current location; (ii) which are originals, which are copies and which
are edited versions of originals or copies; and (iii) which persons created,
edited and/or copied individual documents, i.e., are responsible for these
documents and possibly their distribution (confidentiality, whereabouts).

• Needs and ideas: There is therefore perceived a need for bringing order
into this domain. The idea is to do so by gradually switching to a paperless,
fully electronic document regime.
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• Concepts and facilities: More specifically each document produced,
copied and/or edited, is thought to be electronic, to be provided with refer-
ence to location, time and (the) person(s) involved in the creation, editing,
copying and possible “destruction” (shredding or deletion) of (electronic)
documents.

• Scope and Span: Thus the scope is that of a public administration’s
entire document handling, while the span focuses on the computerised
support of document creation, distribution (hence copying), editing, de-
struction and tracing.

• Design brief: Based on an existing domain description for the, or a, docu-
ment system domain, there is to be developed a requirements prescription
for the computerisation of parts of that domain, and as follows:
⋆ The desired (i.e., required) machine is to support the coexistence of

manifest paper, i.e., old, documents and electronic, i.e., new, docu-
ments.

⋆ No electronic document shall ever by copied onto paper.
⋆ Old paper documents may be scanned into electronic form, and only

if all such copies and edited versions from the same original are so
scanned and thus moved to the electronic document system.

⋆ Otherwise the electronic document system shall support the creation
of original documents, the editing and copying of documents — re-
sulting in documents (edited versions, respectively copies of “prior”
documents).

⋆ The sum total of all documents shall have each document traceable
“back”, via all intermediary documents (edited versions and/or copies),
to respective originals.

⋆ Each document, and each stage in any trace, shall record the location,
the time and the person(s) involved in the creation, the editing, or the
copying, whichever is relevant.

You are, based on the detailed domain description, and in collaboration
with relevant stakeholders, to acquire requirements, to analyse these, to
develop a requirements prescription, to verify, where needed, to validate,
and to evaluate satisfiability and feasibility of the requirements prescrip-
tion.

With the “informative bits and pieces” being settled, a first beginning has
been made. The developers’ minds have been focused. It is time for the de-
veloper, possibly before requirements acquisition, to try sketch a first draft
requirements prescription.
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17.3.2 Requirements Eurekas

But how do the ideas, concepts and facilities that are recorded in the infor-
mative documentation of a requirements development form an initial albeit
very rudimentary set of requirements, how do these ideas, first arise? We shall
refer to these “arisals” as eurekas, as, Oh, I’ve seen it! We now discuss the
arisal of these eurekas.

Initial Eureka of Requirements

The idea, concepts and facilities part of the informative documents are the
first places in the documentation of the requirements phase in which specific
requirements appear. How did they get there?

Well think of a situation in which there is nothing “there”! (There may
not even be a domain description!) Now play out the following alternative
scenarios. A client, that is, a potential user of computing, has a problem (the
“current situation”) and deduces from that some “needs”, and hence comes
up with the “idea”, perhaps even some “concepts and facilities” — all aimed
at solving the problem. The client decides, as perhaps already implied in the
ideas, concepts and facilities, to contact a software house. Or a developer, a
software house, before approaching a potential client, discerns that some such
clients are in a current situation involving some needs, ideas, concepts and
facilities that all lead up to and entail requirements for software. The software
house contacts the, or some such client. We could call those scenarios for the
initial sources of the eureka.

Ongoing Eureka of Requirements

A client and a software house engages in a dialogue whose purpose it is to
“come up with” requirements. How is that dialogue to be managed and or-
ganised, that is, monitored and controlled? Either there is a plan or there is
no plan — and we assume that both parties are interested in there being a
good plan. Either a plan makes logical sense or it does not really make logical
sense— and we assume that both parties are interested in an objective plan.
The aim of this part of this volume is to provide such a logical, objective plan
for requirements engineering.

A Systematic Source of Requirements Eurekas

The pivotal axis around which our logical and objective plan for requirements
engineering evolves is the existence of a domain description. If an appropriate
domain description does not exist, then we assume that sufficient parts of a
domain description are developed together with, that is, at the same time as
the requirements prescription is developed. So the domain description is to
be the “standard” source of requirements “eurekas”! Literally speaking the
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client and the developers, that is, the requirements engineers, read through
the domain description. For every described phenomenon or concept, whether
an entity, a function, an event or a behaviour, a number of questions are
asked. Is this domain phenomenon or concept part of the requirements also?
(If yes then it is projected onto the requirements.) If so, is the selected do-
main phenomenon or concept too nondeterminate? Must the machine reflect
the projected phenomenon or concept less nondeterministically? For any pro-
jected phenomenon or concept is it too generically described and must it be
more specific, that is, instantiated? And so on. The above questioning and
answering process thus takes a domain description and turns it increasingly
into a (domain) requirement prescription.

Placement of Initial Requirements Eurekas

So the process of developing requirements starts with some initial eurekas.
The very first ones are recorded in the informative documentation as part of
the ideas, concepts and facilities. A first more comprehensive presentation of
these and, perhaps a few more, are then recorded in the informative documen-
tation’s synopsis part. Finally the bulk of requirements, including repeating
the initial requirements eurekas, usually in more clarified and refined form,
are to be placed in the second part of the documentation of the results of
the requirements development phase — the requirements prescription part —
usually first as a reasonably comprehensive rough sketch, followed by a very
much more systematic presentation. The rest of this part, this chapter and
Chaps. ??–??, deals with this “systematics”.

17.3.3 Pragmatic Prescriptive Documentation

We now refer to Chap. ??’s coverage of descriptive, here prescriptive, docu-
ments. We, in particular, refer to the concept of rough sketches. A first, good
step of development of a requirements prescription, based on the design brief,
and possibly based also on first attempts of requirements acquisition, is to
write a reasonably extensive rough-sketch requirements prescription. We shall
refer to such a document as a requirements pragmatics.

Example 17.4 A Requirements Pragmatics: The Administrative Forms
Handling Domain: We choose this time another of our example cases: that
of administrative document handling. A rough sketch — which assumes some
domain description of administrative forms handling — may be as follows: the
documents of our administrative forms handling system are of three kinds:
Templates of forms and aggregations, Forms, i.e., partially or fully filled-in
template forms, and Aggregations, i.e., partially or fully computed aggrega-
tion templates. We refer to these as TFA.

TFA shall support the following functions: the design of uniquely identified
form templates and their handling in a reservoir of commonly, or selectively
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available form templates; the design of uniquely identified aggregation tem-
plates, and their handling in a reservoir of commonly, or selectively available
aggregation templates; the filling in of form templates (to create uniquely
identified forms); the aggregating of forms and aggregations, according to
some aggregation template (to create uniquely identified aggregations); and
the distribution of templates, forms and aggregations. Form filling is usually
a human action. Aggregation is usually a computerised function.

A form template has a unique form identifier, and usually prescribes named
and typed template fields. Some template fields are atomic, i.e., consist of no
template subfields, and other template fields are like form templates, i.e., are
composite.

An aggregation template has a unique aggregation identifier, and usually
prescribes from which number of forms, identified by their form template iden-
tifiers, and from which number of aggregations, identified by their aggregation
template identifiers, the aggregation is to be computed. The aggregation tem-
plate then prescribes which, more specific (“spreadsheet”-like) computation
rules are to be involved in the aggregation.

And so forth!

With a pragmatics (i.e., rough sketch) of what might evolve into a reasonable
and proper requirements narrative, a beginning has been made. The develop-
ers’ minds have been focused. Planning can begin.

17.3.4 Planning Requirements Development

Once you know what it takes to construct a full requirements documentation,
that is, once you have been through all the stages and steps, you will be in a
reasonable position to also plan requirements development for future projects.
The purpose of the examples of this section (i.e., Examples 17.1–17.4) has been
to make a number of claims, i.e., a number of “dogmas”, plausible. The next
section will now overview the stages of requirements development.

17.4 On Domains, Requirements and the Machine

One way of looking at the process of developing software from requirements
based on domain models is informally illustrated in Fig. 17.1. There is the
given domain, shown as a curved corner box in order to indicate that the
domain is not sharply delineated and cannot be fully formalised. The do-
main engineer (DE) creates a domain model (DM) from an understanding
of the domain. Based on the domain model the requirements engineer (RE)
transforms the domain model into and creates the requirements model (RM).
Based on the requirements model the software designer (SD) transforms the
requirements model into and creates software (S).
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DE: Domain Engineer
RE: Requirements Engineer
SD: Software Designer
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Fig. 17.1. A picture of a development process

Another way of looking at the process of developing software from require-
ments based on domain models is informally illustrated in Fig. 17.2. Assume
that we have a domain (D) and a domain model (DM). We may then say (or
claim) that the domain model is a model of the domain (among many pos-
sible). Assume similarly that we have some software (S) and a requirements
model (RM). We may then say (or claim) that the requirements model is a
model of the software (among many possible). In the first case (D, DM) we
may visualise the situation as someone, i.e., the DM, standing where DM is
placed on Fig. 17.2, and looking at the D.

"The Domain"

"The Software"

Domain Model (DM)

Requirements Model (RM)

View: DM > D D > DM

DM > RM

RM > SView: RM > S

DM > RM

Fig. 17.2. Another picture of the development process
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In the second case (RM, S) we may visualise the situation as someone, i.e.,
the RM, standing where RM is placed on Fig. 17.2, and looking at the S.

Now the requirements model, as we shall see in this part of the book, is
more or less derived from the domain model. That is: The two models, the
domain model and the requirements model have very many things in common,
but one is a model of some actual world (“out there”), whereas the other is
(to be) a model of some virtual world (“in there”) effected by the software.

Now to some sort of conclusion of this gedankenexperiment. The domain
description models some domain. The requirements prescription models some
software. The transformation from a domain description to a requirements
prescription is really one of turning around 180o: From considering properties
of a, or the domain to considering properties of the desired software, yet the
two models are very similar! Keep this in mind: although one is “massaging”
domain descriptions into requirements, one is really focusing on the software
— not how it performs, but what properties any performance of the software
ought have.

17.5 Overview: Requirements Engineering Stages

Requirements engineering starts with stakeholder identification, which is cov-
ered in Chap. ??. Requirements engineering then goes on with requirements
acquisition in Chap. ??. Then we move on to requirements analysis and con-
cept formation in Chap. ??. Once a set of consistent and a set of relatively
complete requirements have been gathered and analysed, proper requirements
facet modelling can take place. Requirements facet modelling is a major un-
dertaking and its result forms a main result of requirements engineering. This
is covered in Chap. 19. During requirements modelling we may usually find
that requirements verification may be needed, Chap. ??, Sect. ??. At the end
of requirements modelling we shall perform a requirements validation, which
serves to make sure that the requirements development phase has achieved
the right requirements, covered in Chap. ??, Sect. ??. A final stage of require-
ments satisfiability and feasibility is needed to complete a full and proper
requirements development, see Chap. ??. Some of the satisfiability and feasi-
bility study may be performed “in line” with the acquisition and/or analysis
of requirements (Chaps. ?? or ??), or “in line” with the modelling of require-
ments (Chap. 19).

Please observe that we first present the domain (facet) modelling princi-
ples, techniques and tools in Chap. 19 before presenting the (“prior”) domain
acquisition (Chap. ??) and domain analysis and concept formation techniques
(Chap. ??). The reason is simple: we, i.e., you, the practicing requirements
engineer, must be thoroughly familiar with “what kinds of ‘things’ go into the
requirement model” (documents) before we ask stakeholders.
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17.6 The Requirements Document

We say: the requirements document. But we may as well mean the set of
requirements documents.

17.6.1 A Preview of Things to Come

The aim of requirements engineering is to create informative, descriptive and
analytic documents about and constituting the requirements. Therefore it is
important to always keep in mind what a possible contents listing could be
of such a complete set of documents. We shall therefore outline, in “capsule”
form, what a possible, and, to us, desirable structure could be of such a set of
requirements documents. The aim of Part is then to present the principles,
techniques and tools for creating, i.e., developing, such sets of requirements
documents.

17.6.2 Contents of a Requirements Document

We bring in, so far without comments, a schematic, “sample” contents listing
of a possible, complete requirements documentation.

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas (Eurekas, I)
(e) Concepts and Facilities (Eurekas,

II)
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis (Eurekas, III)
(j) Standards Compliance
(k) Contracts, with Design Brief
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

2. Prescriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Rough Sketches (Eurekas, IV)

(d) Terminology

(e) Facets:

i. BPR

• Sanctity of Intrinsics

• Support Technology

• Management and Or-
ganisation

• Rules and Regulations

• Human Behaviour

• Scripting

ii. Domain Requirements

• Projection

• Determination

• Instantiation

• Extension

• Fitting

iii. Interface Requirements

• Shared Phenomena and
Concept Identification

• Shared Data Initialisa-
tion

• Shared Data Refresh-
ment

• Man-Machine Dialogue

• Physiological Interface
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• Machine-Machine Dia-
logue

iv. Machine Requirements
• Performance

⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessibility
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance
⋆ Adaptive
⋆ Corrective
⋆ Perfective
⋆ Preventive

• Platform (P)
⋆ Development P
⋆ Demonstration P
⋆ Execution P
⋆ Maintenance P

• Documentation Require-
ments

• Other Requirements
v. Full Requirements

Facets Documentation
3. Analyses

(a) Requirements Analysis and
Concept Formation
i. Inconsistencies
ii. Conflicts
iii. Incompletenesses
iv. Resolutions

(b) Requirements Validation
i. Stakeholder Walkthroughs
ii. Resolutions

(c) Requirements Verification
i. Theorem Proofs
ii. Model Checks
iii. Test Cases and Tests

(d) Requirements Theory
(e) Satisfiability and Feasibility

i. Satisfaction: correctness, un-
ambiguity, completeness,
consistency, stability, verifi-
ability, modifiability, trace-
ability

ii. Feasibility: technical, eco-
nomic, BPR

17.6.3 Comments on Requirements Documents

The requirements document contents listing is but an example. Other forms
could be thought of. We shall comment on those later, in Sect. ??.

17.7 The Structure of the Rest of the Part

In the next chapters, we do not present the principles and techniques for
carrying out the requirements engineering stages and steps in the same order
as their preferred approach. In order to do requirements acquisition we must
first know, we claim, what makes up a properly structured and “contented”
requirements description.

So we treat the four “cornerstones” of a requirements model first (Chap. 19).
Then we treat requirements acquisition (Chap. ??), followed by requirements
analysis and concept formation (Chap. ??). Finally, we treat requirements
validation (Chap. ??), and ideas on studying the satisfiability and feasibility
of requirements (Chap. ??). We start with discussing the concept of require-
ments stakeholders (Chap. ??).
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17.8 Bibliographical Notes

As for the entire phase of domain engineering, our approach to requirements
engineering possesses some rather novel features. That is, we bring in new
principles and techniques into requirements engineering: These methodolog-
ical concepts are not covered elsewhere in today’s available literature on re-
quirements engineering [?, ?, ?, ?, ?].

17.9 Exercises

17.9.1 A Preamble

The exercises of this chapter are a bit “loose” in that not much detailed sub-
stance about requirements engineering has been said so far, in this chapter on
requirements engineering. And thus we really cannot ask for detailed, objec-
tive answers. Most of the exercises below are slightly edited repeats of exercises
of Sect. 8.12. From there the term domain has basically been replaced by the
term requirements. And, since many of the basic issues of the questions of
the present chapter, i.e., the questions below, are similar to those of domain
engineering, you are therefore asked to venture your guesses as answers.

17.9.2 The Exercises

The exercises of this chapter are all closed book exercises.

Exercise 17.1 Why Requirements Engineering? Without consulting the chap-
ter text, try to recapitulate, in a few lines of informal text, how this chapter
motivates ‘Why Requirements Engineering?’.

Exercise 17.2 Machine. Without consulting the chapter text, characterise
what is meant by ‘the machine’.

Exercise 17.3 A Main Objective of Requirements Development. Without
consulting the chapter text, express very briefly what a main objective of
requirements development might be.

Exercise 17.4 Stages of Requirements Engineering. Without consulting the
chapter text, try to recapitulate, in some six or so lines of informal text, the
ordered stages of requirements engineering.

Exercise 17.5 Requirements Acquisition. Without consulting the chapter
text, try to characterise, in a few lines, how this chapter defines requirements
acquisition.

Exercise 17.6 Requirements Validation. Without consulting the chapter
text, try to characterise, in a few lines, how this chapter defines requirements
validation.
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Exercise 17.7 Requirements Analysis. Without consulting the chapter text,
try to characterise, in a few lines, how this chapter defines requirements anal-
ysis.

Exercise 17.8 Requirements Documentation. Without consulting the chap-
ter text, try to list, as exhaustively and in as structured a fashion as possible,
a possible, generic domain requirements table of contents listing.
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Requirements Facets

• The prerequisite for studying this chapter is that you, as a requirements
engineer, need to know: what are the constituents of a proper model of
requirements?

• The aims are to introduce the concept that a proper requirements pre-
scription is made up from most of the following constituent prescriptions,
i.e., facets: (i) domain, (ii) interface and (iii) machine requirements, and,
within each of these three groups of facets, of (i) projections, determi-
nations, instantiations, extensions and fittings, respectively of (ii) shared
data intialisation and refreshment, computational data and control, man-
machine dialogues, man-machine physiological, and machine-machine di-
alogues, and of (iii) performance, dependability, maintenance, platform,
and documentation requirements respectively; and to present principles,
techniques and tools for the prescription of these facets.

• The objective is to ensure that you will become a thoroughly professional
requirements engineer.

• The treatment is from systematic to formal.

Throughout requirements engineering remember to adhere to:

The “Golden Rule” of Requirements Engineering

Prescribe only those requirements that can be objectively shown to hold for
the designed software.

“Objectively shown” means that the designed software can either be proved
(verified), or be model checked, or be tested, to satisfy the requirements. Recall
also:

An “Ideal Rule” of Requirements Engineering

When prescribing (incl. formalising) requirements, also formulate tests (the-
orems, properties for model checking) whose actualisation should show ad-
herence to the requirements.
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The rule is labelled ideal since such precautions will not be shown in this
volume. It ought be shown, but either we would show one, or a few instances,
and they would “drown” in the mass of material otherwise presented. Or they
would, we claim, trivially take up too much space. The rule is clear. It is a
question of proper management to see that it is adhered to.

19.1 Introduction

As is the case with Chap. 11, “Domain Facets”, this chapter constitutes a
second “high point” of the present volume. It is in this chapter that we present
principles and techniques of requirements engineering which are not, today,
otherwise available in any other textbook on software engineering. So take
your time to become thoroughly familiar with the contents of the present
chapter.

The chapter is structured as follows: First we rough-sketch, with little or
no consideration of the carefully worked out domain descriptions, an initial
set of (eureka) requirements — such as they may emerge from a more or
less undigested requirements acquisitions process (Sect. 19.2). On the basis of
the rough (eureka requirements) sketch we create a requirements terminology
and install the first terms into that terminology. Then we decompose the
further requirements development into the four major facets, which are then
covered in the next sections: “Business Process Reengineering” (Sect. 19.3),
“Domain Requirements” (Sect. 19.4), “Interface Requirements” (Sect. 19.5)
and “Machine Requirements” (Sect. 19.6). As an ongoing effort, during the
requirements facets development stages, we use and maintain, that is, revise
and install, additional terms into the terminology.

19.2 Rough Sketching and Terminology

The aim of this section is to remind the reader that in order to come up
with a proper model of requirements we must first have performed proper
identification of and requirements acquisition from stakeholders. After such
a requirements acquisition stage we can analyse the acquired requirements
prescription units. And after such an analysis we are ready to rough sketch,
i.e., to make a first attempt at constructing, some requirements document,
while, at the same time, establishing a terminology document. In this section
we shall overview these two aspects of “Requirements Engineering”.

19.2.1 Initial Requirements Modelling

In Example 17.1 we illustrated examples of “one”, or “two”, or “three liner”
requirements description units. Once, as a result of requirements acquisition
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(Chap. ??), you have gathered what you may think of as a sufficient number
of such analysed requirements description units, you are ready to rough sketch
a requirements prescription.

19.2.2 Rough-Sketch Requirements

A rough-sketch requirements prescription is (thus) based on a number of par-
tially “digested”, i.e., partially analysed and conceptualised, requirements de-
scription units. The requirements engineer is encouraged to try to formulate
a reasonably complete and consistent rough-sketch requirements prescription,
in order to do a more thorough requirements analysis and concept formation.

The requirements description units, in a sense, only express the stakehold-
ers’ views on requirements. These units may reflect a somewhat incoherent
“total view”. After a reasonably proper requirements analysis and concept for-
mation stage, the requirements engineer (i.e., the analyst), is able to formulate
a more coherent total view. Rough-sketching these requirements thus affords
a first opportunity for the requirements engineer to express the requirements.

Example 19.1 A Rough-Sketch Container Terminal Domain: To illustrate a
rough-sketch requirements we need first be able to refer to a domain descrip-
tion. In this case we present a rough-sketch domain description.

Entities

We itemize list entities of container harbours, in no particular order, only as
they come to mind:

• Container terminal: A container terminal is a composite entity. It con-
sists of a harbour basin of water, of one or more quays, of one or more
container pools, and of zero, one or more container freight stations. The
harbour water basin connects on one side to the open sea, and on the
other side to one or more quays. Attributes of a container terminal are: its
name, its maritime location (latitude and longitude), its number of quays,
number of pools, etc.

• Quay: A quay is a composite entity. A quay is like a straight road: The
quays connect on one side to the harbour basin, and on the other side,
possibly via a container terminal internal road net, to one or more con-
tainer pools, and, possibly via these, to the possible container freight sta-
tions. The quay also consists of one or more cranes. Quays have attributes:
length, width, number of cranes, position within the container terminal,
possibly a name, etc.

• Container: A container is a composite entity. It consists of (i) the con-
tainer box (which has length [say 20 or 40 feet], height, width, owner, etc.,
attributes), (ii) its contents (which may be empty, and which we choose to
abstract from, i.e., to not consider (in other words: disregard)), and (iii)



100 19 Requirements Facets

its bill of lading. The latter has attributes such as: contents listing, which
agent (i.e., merchant) is sending this container, which agent (merchant) is
to receive the container, from where, via where, and to where, etc.

• Bill of Lading (BoL): A document which evidences a contract of carriage
by sea. The document has the following functions:

1. A receipt for goods, signed by a duly authorised person on behalf of
the carriers.

2. A document of title to the goods described therein.

3. Evidence of the terms and conditions of carriage agreed upon between
the two parties.

At the moment three different models are used:

1. A document for either combined transport or port-to-port shipments,
depending on whether the relevant spaces for place of receipt and/or
place of delivery are indicated on the face of the document.

2. A classic marine BoL in which the carrier is also responsible for the
part of the transport actually performed by himself.

3. Sea waybill: A nonnegotiable document, which can only be made out
to a named consignee. No surrender of the document by the consignee
is required.

• Container ship: A container ship is a composite entity. It consists of one
or more locations which can each hold, or which actually hold a container.
So the container ship also consists of these containers. Container locations
are called cells, and cells are laid out in bays, rows and tiers (like an x, y, z
coordinate system). Thus containers are stacked. The container ship is
further so arranged as to have these columns (i.e., stacks) of containers be
accessible from the top, through what is called a hatchway, an opening,
that can be covered by what is called a hatch cover. This hatch cover is
removed when unloading and loading containers to the appropriate stacks
that it covers. Ship attributes have to do with the exact arrangement of
bays, rows and tiers, and thus as to how many containers the ship can,
and at any moment, actually carry. Ships can berth at a quay. They then
occupy a certain length of that quay.

• Ship/quay crane: A crane, either aboard the ship, or positioned at quay-
side, can lift (unload) containers out of hatchways and onto (a truck on) the
quay, or, the other way around (load containers). Cranes have attributes:
operating area (along a quay), possibly a unique name (identifier), carry-
ing (lifting) weight, handling speed (capacity), etc. For any ship there is a
maximum number of such cranes that can serve the ship at any one time.

• Container truck: A truck is a composite entity. It consists of a chassis
and usually zero or one container. The chassis may be considered either
composite or atomic. Whatever is chosen, the chassis enables the container
truck to move. Container trucks have attributes: carrying (load) capacity,
service speed, etc.
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• (Un)Loading plan: A load plan for a container ship is a document which
specifies the sequences of stacking and unstacking of containers, as that
container ship calls on a succession of container harbours. Since contain-
ers can only be removed from or added onto the top of the cell position
stacks on a container ship, the order in which these stacks are loaded and
unloaded determines is crucial. No container is ever to be temporarily un-
loaded in order to get at containers “below” it — whereupon, once these
containers have been unloaded, the temporarily unloaded containers are
again loaded. No Towers of Hanoi puzzles here!

• Pool: A pool is a composite entity. It consists of one or more areas where
a stack of containers may be, as well as the containers actually positioned
there. Some pools can receive and (can thus) handle refrigerated contain-
ers (reefers). Stacks within a pool are usually ordered by row and column.
Pools have attributes: location (name and position) within the container
terminal, capacity (number and height of stacks), whether reefer or ordi-
nary containers, etc.

• Pool crane: A pool crane, like a quay/ship crane, can move containers,
one at a time, between container trucks/chassis and pool stacks.

Functions

• Calling: A container ship contacts, i.e., calls, a container terminal to
advise it of its intended arrival, giving its call sign. The ‘calling may, or
may not imply a request for permission to go to a previously scheduled
quay position.

• Unloading movement: This is a simple function and could be regarded
as an atomic function. Often it is called a movement. The function concerns
the unloading of a single container from a cell position aboard the container
ship by a designated crane onto a container truck or a container chassis.

• Loading movement: See the above, since it is basically the reverse move-
ment.

These two movements reflect the fact that container truck and container chas-
sis can only move one container at a time.

• Chassis/truck movement: We also consider this a simple, atomic func-
tion: Moving, by motor driven vehicle, one container from a crane at a
quay to a crane at a pool, or vice versa.

• Hatch cover removal (opening): An atomic function which opens up
for the hatchway so that containers can be loaded or unloaded.

• Hatch cover replacement (closure): An atomic function which closes
the hatchway.

Events

We rough-sketch some possible events:
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• The arrival of a container vessel to a quay position
• The departure of a container vessel from a quay position
• The failure to remove (to open) a hatch cover
• The failure to replace (to close) a hatch cover
• The failure of a crane to grip a container
• The failure of a crane to release a container
• The failure of a container truck/chassis to move
• The failure of a container vessel to move
• The outbreak of an epidemic disease

Behaviours

• A ship visit: A normal, “uneventful” ship visit behaviour starts with the
ship calling (action) and proceeds to the arrival of the container vessel
at a quay position (event). Some hatch covers may be opened. It then
continues with one or more concurrent sequences of container unloadings
and loadings (actions). It ends (possibly) with the closing of hatch covers
(actions) and the departure of the container vessel from the quay position.

• A merchant freight truck visit: A freight truck usually carries just one
(say a 40-foot) container, or, in cases, two (20-foot) containers. A merchant
freight truck is a freight truck which carries one merchant’s container(s),
overland, to or from a container terminal. Its visit is for three purposes:
to deliver one or two containers, to fetch one or two containers, or both.
Its behaviour wrt. the container terminal is: arrival (an event) at the con-
tainer terminal, registration (a function) at the container terminal gate
(statement of purpose, showing of papers (waybills, bill of loadings), etc.),
unloading and/or loading of containers (either at a special area, called the
container yard (or, in certain cases, at the container freight station), or
directly to a pool area, or, even, directly on the quay, for immediate ship
loading or unloading).

• A 24-hour crane behaviour: We encourage the reader to try complete
this item as an exercise (Exercise 19.15).

• A 24-hour container truck/chassis behaviour: We encourage the
reader to try complete this item as an exercise (Exercise 19.16).

Please note that Exercises 19.15–19.16 asks you to both consider describing
actual domain behaviours and prescribing desirable requirements.

Now, on the background of the above rough domain sketch, we are ready to
express a rough requirements sketch.

Example 19.2 A Rough-Sketch Requirements for Container Stowage: After
some discussion with stakeholders we arrive at the following base requirements
for a ship and pool areas container loading plan computing system. (What we
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here name ship and pool area container loading plans are, more colloquially,
called stowage plans.)

1. Container: Every container c (that is to be involved in the planning of
loading plans, and hence subject to actual loading and unloading) shall
possess the following attributes: (i) length and (ii) BoL, b.

2. Bill of Lading: The BoL states the route which the container, c, is to
take, or is taking or has taken. It is a requirement that the system shall
establish and maintain BoLs for all relevant containers.

3. [Ship sailing] route: A route is here considered a sequence of two or
more container terminal visits. A container terminal visit is a pair: the
name of a container terminal (T ) and the name of a container ship (s) or,
for the last in such a sequence, say nil. The ship S takes the container C
from container terminal t. Let r : < (t1, s1), . . . , (ti, si), (ti+1, si+1), . . . ,
(tn,nil) > designate a route for some container. It expresses that that
container is transported from container terminal ti to container terminal
ti+1 by container ship si. It is a requirement that the system shall establish
and maintain ship sailing routes, for all of a ship owner’s relevant container
ships.

4. Ship container stack layout (‘context’): For every relevant container
ship (say, in the ship owner’s fleet of such), full information shall be
maintained of how each ship is laid out wrt. container stacks (this is
called contextual information).

5. Ship container stack ‘state’: For every container ship being consid-
ered, we further require that a state shall be maintained. The state is
information about the location of all current containers: where, aboard,
i.e., in which stack and cell position, they are stored. A well-formedness
about this state expresses that each container has a BoL which states that
it should indeed be aboard that ship at the moment the state is recorded.

6. Pool area container stack layouts (‘context’): For every relevant
container terminal, and for every container pool area (that is relevant to
the ship owner for which these requirements are to be developed, and
within these container terminals), information about the topological lay-
out and pool area stacks, whether for ordinary containers, or for reefers,
whether for 20-foot or for 40-foot (etc.) containers, shall be kept and reg-
ularly updated to reflect any changes in pool area layouts, etc.

7. Pool area container stack ‘states’: For every pool area container stack
being (thus) considered, we further require that a state shall be main-
tained. The state is information about all current containers being stored
in that pool area stack and their location, that is, BoLs and where (i.e.,
bay, row, cell position), etc.

8. Shipping orders: There shall at any moment be a latest set of shipping
orders. By shipping orders we understand a current set of outstanding
orders for the shipping of containers.
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(a) Pragmatics: Outstanding (container shipping) order. By an
outstanding (container shipping) order we mean an order for a con-
tainer transport, i.e., an order whose transport is being requested, but
for which no acknowledgement of its precise shipping has yet been
given.

(b) Syntax: Outstanding (container shipping) order. The order
document specifies (i.e., restates) the BoL of the container and a se-
quence of one or more container terminals.

(c) Semantics: Outstanding (container shipping) order. The
meaning of an outstanding (container shipping) order is, if it is ac-
cepted, that it enters the allocation and scheduling process of the
relevant shipowner(s), and thus, eventually, is confirmed.

9. Confirmed (container) shipping order: By a confirmed (container)
shipping order we mean a shipping order which is no longer outstanding:
Its syntax has been understood, and its semantics has been implemented.
That is, it has been used in the construction of one or more ship container
loading plans (and possibly also in one or more container pool area loading
plans). Whether the container in question is actually en route is here left
open.

10. Ship container loading plans: Based on the above forms of informa-
tion, i.e., items 1–9, the required computing system shall generate two
kinds of reasonably optimal ship container loading plans (i.e., documents):
static and dynamic.

11. Static ship container loading plan: A static ship container loading
plan is a plan that prescribes which containers are loading and unloading
at which container terminals, for a given ship, i.e., for a given route that
this ship is to follow, and for a given set of outstanding shipping orders.
The plan also states where each container is to be located aboard the ship.

12. Dynamic ship container loading plan: Given a static ship container
loading plan, and given a container terminal (i.e., the name of a terminal
at which the ship for that loading plan is berthed), the dynamic ship
container loading plan specifies the sequences in which containers are to
be unloaded and loaded.

• As an example of the issues involved in loading and unloading, let us
consider the following:
⋆ Let container ci be loaded on stack s in terminal ti.
⋆ Let container ci+1 be loaded on stack s in terminal ti or ti+1 (i.e.,

immediately “on top of” ci).
⋆ Now container ci+1 can be unloaded from stack s in terminal ti+2.
⋆ Container ci can be unloaded from stack s in terminal ti+2, or some

suitable later terminal.
• That is, a stack push and pop discipline must be adhered to.

13. [Reasonably] optimal static ship container loading plan: A static
loading plan is said to be [reasonably] optimal if no other such plan can
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be found which “fills” all stacks of a ship to their (almost) fullest capacity
while adhering to the stacking discipline.

14. [Reasonably] optimal dynamic ship container loading plan: A
dynamic loading plan is said to be [reasonably] optimal if no other such
plan can be found which generates the longest sequences of ship crane
container movements with respect to the same ship stack.

15. The generation of plans: The intent of any dynamic ship container
loading plan is that actual unloadings and loadings shall be commensurate
with, i.e., “follow”, that plan.

16. Container pool area loading plan: And so on; this plan will not be
prescribed.

17. Container ship loadings and unloadings: By container ship loadings
and unloadings we understand the sequences of ship crane positions, along
the quay, next to, i.e., servicing, a given ship, as well as the movement,
for each ship crane position, of containers to and from the ship (i.e., from
and to the quay). Since translocating a ship crane (from one quay/ship
position to another) takes time we wish to minimise the number of ship
crane translocations.

Lest you have lost sight of what the rough-sketch requirements really were,
we here summarise these:

2. Initialisation and refreshment of container BoLs
3. Initialisation and refreshment of ship sailing routes
4. Initialisation and refreshment of ship container stack layouts
5. Initialisation and refreshment of ship container stack states
6. Initialisation and refreshment of pool area container stack layouts
7. Initialisation and refreshment of pool area container stack states
8. Storage and reference to shipping orders, includes securing item 9
11. Generation of static ship container loading plan, securing item 13
12. Generation of dynamic ship container loading plan, securing item 14
16. Generation of container pool area loading plan (prescription omitted)
17. Minimise ship crane translations, securing item 15

We remind the reader that the above constitutes a set of rough-sketched re-
quirements and that we likewise presented only rough-sketched descriptions
of some aspects of the domain of container terminals in Example 19.1.

So the above gave you some kind of rough-sketch example of what require-
ments may entail. The example was not that small. It had to be “semi-large”.
You have to see, with your “own eyes”, that rough sketches are not small. In
fact, they are much larger than the above example.

Before we proceed to the main material of this chapter on requirements
facets, let us take a brief look at the interaction between rough-sketching and
terminologisation.
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19.2.3 Requirements Terminology

We briefly covered, in Chap. ??, the topic of terminology. We do this to put
that topic in a more proper context, that is, to hint at the size and complexity,
of a realistic terminology.

Example 19.3 An Incomplete Container Terminal Terminology:
This terminology section is (i) far from complete, (ii) and much too long.

And it only covers the domain, not the requirements. We bring in a rather
extensive extract so that the reader can see what it takes to construct a termi-
nology. Namely that it takes quite a lot. The sheer size of the example, albeit
just a minor part of the real list, should indicate to the reader the serious-
nees with which we press the issue of constructing realistic terminologies. The
terms are culled from the Internet [?] (a list of terms from the P&O Nedlloyd
shipping company). We stress that we have copied freely from [?] and that we
encourage the reader, as Exercise 19.1, to rephrase and formalise part of this
terminology.

1. Actual voyage number: A code for identification purposes of the voyage
and vessel which actually transports the container/cargo.

2. Agency fee: Fee payable by a ship owner or ship operator to a port agent.
3. Agent:

(a) A person or organization authorised to act for or on behalf of another
person or organization.

(b) In P&O Nedlloyd, an Agent is a corporate body with which there is
an agreement to perform particular functions on behalf of them for
an agreed payment. An Agent is either a part of the P&O Nedlloyd
organization or an independent body. The following functions and
responsibilities may apply to the activities of an agent.
i. Sales: Marketing, acquisition of cargo, issuing quotations, conclud-

ing contracts in coordination with P&O Nedlloyd. Basically the
agent is the first point of entry into the P&O Nedlloyd organiza-
tion for a shipper.

ii. Bookings: Booking of cargo in accordance with allotments as-
signed to the agent for a certain voyage by P&O Nedlloyd.

iii. Customs: Dealing with the national customs administration for
cargo declarations, manifest alterations and cargo clearance on
behalf of P&O Nedlloyd.

iv. Documentation: Responsible for timeliness and correctness of all
documentation required, regarding the carriage of cargo.

v. Handling: Taking care of all procedures connected with physical
handling of cargo.

vi. Equipment control: Managing of all equipment stock in a partic-
ular area.
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vii. Issuing: Authorised to sign and issue Bills of Lading and other
transport documents.

viii. Collecting: Authorised to collect freight and charges on behalf of
P&O Nedlloyd.

ix. Delivery: The agent who releases the cargo and is responsible for
its delivery to the consignee.

x. Handling of cargo claims: Handling of cargo claims as per agency
contract.

xi. Husbanding: Handling non-cargo-related operations of a vessel as
instructed by the master, owner or charterer.

4. Area code: A code for the area where a container is situated.

5. Area off hire lease: Geographical area where a leased container becomes
off hire.

6. Area off hire sublease: Geographical area where a subleased container
becomes off hire.

7. Area on hire lease: Geographical area where a leased container becomes
on hire.

8. Area on hire sublease: Geographical area where a subleased container
becomes on hire.

9. Arrival date: The date on which goods or a means of transport is due to
arrive at the delivery site of the transport.

10. Arrival notice: A notice sent by a carrier to a nominated notify party
advising of the arrival of a certain shipment or consignment.

11. Auto container: Container equipped for the transportation of vehicles.

12. Automated guided vehicle system: Unmanned vehicles equipped with au-
tomatic guidance equipment which follow a prescribed path, stopping at
each necessary station for automatic or manual loading or unloading.

13. Automatic identification: A means of identifying an item, e.g., a product,
parcel or transport unit, by a machine (device) entering the data auto-
matically into a computer. The most widely used technology at present
is barcode; others include radio frequency, magnetic strips and optical
character recognition.

14. BoL: See Bill of Lading.

15. Barcoding: A method of encoding data for fast and accurate electronic
readability. Barcodes are a series of alternating bars and spaces printed or
stamped on products, labels, or other media, representing encoded infor-
mation which can be read by electronic readers, used to facilitate timely
and accurate input of data to a computer system. Barcodes represent
letters and/or numbers and special characters like +, /, −, etc.

16. Barge: Flat-bottomed inland cargo vessel for canals and rivers with or
without own propulsion for the purpose of transporting goods.

17. Bay: A vertical division of a vessel from stem to stern, used as a part of the
indication of a stowage place for containers. The numbers run from stem
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to stern; odd numbers indicate a 20-foot position, even numbers indicate
a 40-foot position.

18. Bay plan: A stowage plan which shows the locations of all the containers
on the vessel.

19. Berth: A location in a port where a vessel can be moored, often indicated
by a code or name.

20. Bill of Lading: Abbreviation: BoL. A document which evidences a contract
of carriage by sea. The document has the following functions:

(a) A receipt for goods, signed by a duly authorised person on behalf of
the carriers.

(b) A document of title to the goods described therein.
(c) Evidence of the terms and conditions of carriage agreed upon between

the two parties.

At the moment 3 different models are used:
(d) A document for either Combined Transport or Port-to-Port shipments

depending on whether the relevant spaces for place of receipt and/or
place of delivery are indicated on the face of the document.

(e) A classic marine Bill of Lading in which the carrier is also responsible
for the part of the transport actually performed by himself.

(f) Sea Waybill: A non-negotiable document, which can only be made out
to a named consignee. No surrender of the document by the consignee
is required.

21. Bill of Lading clause: A particular article, stipulation or single proviso in
a Bill of Lading. A clause can be standard and can be preprinted on the
BoL.

22. Bill of Material: A list of all parts, subassemblies and raw materials that
constitute a particular assembly, showing the quantity of each required
item.

23. Boat: A small open-decked craft carried aboard ships for a specific pur-
pose, e.g., lifeboat, workboat.

24. Bonded: The storage of certain goods under charge of customs viz. customs
seal until the import duties are paid or until the goods are taken out of
the country.
(a) Bonded warehouse (place where goods can be placed under bond).
(b) Bonded store (place on a vessel where goods are placed behind seal

until the time that the vessel leaves the port or country again).
(c) Bonded goods (dutiable goods upon which duties have not been paid,

i.e., goods in transit or warehoused pending customs clearance).
25. Box: Colloquial name for container (e.g., Box-club).
26. Bulk container: A container designed for the carriage of free-flowing dry

cargo, loaded through hatchways in the roof of the container and dis-
charged through hatchways at one end of the container.

27. Business process: A business process is the action taken to respond to
particular events, convert inputs into outputs, and produce particular re-
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sults. Business processes are what the enterprise must do to conduct its
business successfully.

28. Business process model: The business process model provides a breakdown
(process decomposition) of all levels of business processes within the scope
of a business area. It also shows process dynamics, lower-level process
interrelationships. In summary it includes all diagrams related to a process
definition, allowing for understanding what the business process is doing
(and not how).

29. Business process redesign (BPR): The process of redesigning business
practice models including the exchange of data and services amongst
the stakeholders (i.e., finance, merchandising, production, distribution)
involved in the life cycle of a client’s product.

30. Call: The visit of a vessel to a port.
31. Call sign: A code published by the International Telecommunication Union

in its annual List of Ships’ Stations to be used for the information inter-
change between vessels, port authorities and other relevant participants in
international trade. Note: The code structure is based on a three-digit des-
ignation series assigned by the ITU and one digit assigned by the country
of registration. (PDHP = P&O Nedlloyd Rotterdam)

32. Cargo:
(a) Goods transported or to be transported, all goods carried on a ship

covered by a BoL.
(b) Any goods, wares, merchandise, and articles of every kind whatsoever

carried on a ship, other than mail, ship’s stores, ship’s spare parts,
ship’s equipment, stowage material, crew’s effects and passengers’ ac-
companied baggage.

(c) Any property carried on an aircraft, other than mail, stores and ac-
companied or mishandled baggage. Also referred to as ‘goods’.

33. Carrier: The party undertaking transport of goods from one point to an-
other.

34. Cell: Location aboard a container vessel where one container can be
stowed.

35. Cell position: The location of a cell aboard of a container vessel identified
by a code for, successively, the bay, the row and the tier, indicating the
position of a container on that vessel.

36. Cellular vessel: A vessel, specially designed and equipped for the carriage
of containers.

37. Consignee: The party such as mentioned in the transport document by
whom the goods, cargo or containers are to be received.

38. Consignment: A separate identifiable number of goods (available to be)
transported from one consignor to one consignee via one or more than one
modes of transport and specified in one single transport document.

39. Consignment instructions: Instructions from either the seller/consignor or
the buyer/consignee to a freight forwarder, carrier or his agent, or other
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provider of a service, enabling the movement of goods and associated
activities. The following functions can be covered:

• Movement and handling of goods (shipping, forwarding and stowage).

• Customs formalities.

• Distribution of documents.

• Allocation of documents (freight and charges for the connected oper-
ations).

• Special instructions (insurance, dangerous goods, goods release, addi-
tional documents required).

40. Container: An item of equipment as defined by the International Organi-
zation for Standardization (ISO) for transport purposes. It must be:

(a) a permanent character and accordingly strong enough to be suitable
for repeated use;

(b) specially designed to facilitate the carriage of goods, by one or more
modes of transport, without intermediate reloading;

(c) fitted with devices permitting its ready handling, particularly from
one mode of transport to another;

(d) so designed as to be easy to fill and empty;

(e) having an internal volume of one cubic meter or more.

41. Container chassis: A vehicle specially built for the purpose of transport-
ing a container so that, when container and chassis are assembled, the
produced unit serves as a road trailer.

42. CFS: Container freight station: A facility at which (export) LCL (less than
container load) cargo is received from merchants for loading (stuffing) into
containers or at which (import) LCL cargo is unloaded (stripped) from
containers and delivered to merchants.

43. CLP: Container load plan: A list of items loaded in a specific container
and where appropriate, their sequence of loading.

44. Container logistics: The controlling and positioning of containers and
other equipment.

45. Container manifest: The document specifying the contents of particular
freight containers or other transport units, prepared by the party respon-
sible for their loading into the container or unit.

46. Container moves: The number of actions performed by one container crane
during a certain period.

47. Container pool: A certain stock of containers which is jointly used by
several container carriers and/or leasing companies.

48. Container ship: A vessel, i.e., a floating structure designed for the trans-
port of containers.

49. Container stack: Two or more containers, one placed above the other,
forming a vertical column.

50. Container terminal: Place where loaded and/or empty containers are
loaded or discharged into or from a means of transport.
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51. Container yard: Abbreviation: CY. A facility at which FCL traffic and
empty containers are received from or delivered to the Merchant by or on
behalf of the Carrier.

52. Fully cellular container ship: Abbreviation: FCC. A vessel specially de-
signed to carry containers, with cell-guides under deck and necessary fit-
tings and equipment on deck.

53. Full container load: Abbreviation: FCL.
(a) A container stuffed or stripped under risk and for account of the ship-

per and/or the consignee.
(b) A general reference for identifying container loads of cargo loaded

and/or discharged at merchants’ premises.
54. Grid number: An indication of the position of a container in a bay plan

by means of a combination of page number, column and line. The page
number often represents the bay number.

55. Hatch cover: Watertight means of closing the hatchway of a vessel.
56. Hatch way: Opening in the deck of a vessel through which cargo is loaded

into, or discharged from the hold and which is closed by means of a hatch
cover.

57. LCL: Less than container load.
58. Merchant: For cargo carried under the terms and conditions of the Car-

rier’s Bill of Lading and of a tariff, it means any trader or persons (e.g.,
Shipper, Consignee) and including anyone acting on their behalf, owning
or entitled to possession of the goods.

59. Reefer container: A thermal container with refrigerating appliances (me-
chanical compressor unit, absorption unit, etc.) to control the temperature
of cargo.

60. Etcetera!

We again refer to [?] for full details.

The “moral” of the above three examples is the composite of: a real domain
description is long; a real requirements prescription is long; and a real termi-
nology is long. In a textbook we can only hint at, but not illustrate, the real
size of our descriptions, prescriptions and specifications.

19.2.4 Systematic Narration

From the rough sketches of requirements to a properly expressed, consistent,
relatively complete and well-structured requirements document, there is still
a long way to go in order to cover all relevant aspects, here called facets, of
the requirements. It is the purpose of the next sections to overview proper
structures, proper principles and proper prescription techniques, for attaining
such well-designed requirements documents.
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19.3 Business Process Reengineering Requirements

We remind the reader of Section 11.2.1.

Characterisation. By business process reengineering we understand the re-
formulation of previously adopted business process descriptions, together with
additional business process engineering work.

Business process reengineering (BPR) is about change, and hence BPR is also
about change management. The concept of workflow is one of these “hyped” as
well as “hijacked” terms: They sound good, and they make you “feel” good.
But they are often applied to widely different subjects, albeit having some
phenomena in common. By workflow we shall, very loosely, understand the
physical movement of people, materials, information and “centre (‘locus’) of
control” in some organisation (be it a factory, a hospital or other). We have,
in Vol. 1, Chap. 12 (Petri Nets), in Sect. 12.5.1 covered the notion of work
flow systems.

19.3.1 Michael Hammer’s Ideas on BPR

Michael Hammer, a guru of the business process reengineering “movement”,
states [?]:

1. Understand a method of reengineering before you do it for serious.

So this is what this chapter is all about!

2. One can only reengineer processes.
3. Understanding the process is an essential first step in reengineering.

And then he goes on to say: “but an analysis of those processes is a waste
of time. You must place strict limits, both on time you take to develop this
understanding and on the length of the description you make.” Needless to
say we question this latter part of the third item.

4. If you proceed to reengineer without the proper leadership, you are making
a fatal mistake. If your leadership is nominal rather than serious, and isn’t
prepared to make the required commitment, your efforts are doomed to
failure.

By leadership is basically meant: “upper, executive management”.

5. Reengineering requires radical, breakthrough ideas about process design.
Reengineering leaders must encourage people to pursue stretch goals1 and
to think out of the box; to this end, leadership must reward creative
thinking and be willing to consider any new idea.

1 A ‘stretch goal’ is a goal, an objective, for which, if one wishes to achieve that
goal, one has to stretch oneself.
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This is clearly an example of the US guru, “new management”-type ‘speak’ !

6. Before implementing a process in the real world create a laboratory version
in order to test whether your ideas work. . . . Proceeding directly from idea
to real-world implementation is (usually) a recipe for disaster.

Our careful both informal and formal description of the existing domain pro-
cesses, as covered in Chap. 11, as well as the similarly careful prescription of
the reengineered business processes shall, in a sense, make up for this other-
wise vague term “laboratory version”.

7. You must reengineer quickly. If you can’t show some tangible results within
a year, you will lose the support and momentum necessary to make the
effort successful. To this end “scope creep” must be avoided at all cost.
Stay focused and narrow the scope if necessary in order to get results fast.

We obviously do not agree, in principle and in general, with this statement.

8. You cannot reengineer a process in isolation. Everything must be on the
table. Any attempts to set limits, to preserve a piece of the old system,
will doom your efforts to failure.

We can only agree. But the wording is like mantras. As a software engineer,
founded in science, such statements as the above are not technical, are not
scientific. They are “management speak”.

9. Reengineering needs its own style of implementation: fast, improvisational,
and iterative.

We are not so sure about this statement either! Professional engineering work
is something one neither does fast nor improvisational.

10. Any successful reengineering effort must take into account the personal
needs of the individuals it will affect. The new process must offer some
benefit to the people who are, after all, being asked to embrace enormous
change, and the transition from the old process to the new one must be
made with great sensitivity as to their feelings.

This is nothing but a politically correct, pat statement! It would not pass the
negation test: Nobody would claim the opposite. Real benefits of reengineering
often come from not requiring as many people, i.e., workers and management,
in the corporation as before reengineering. Hence: What about the “feelings”
of those laid off?

19.3.2 What Are BPR Requirements?

Two “paths” lead to business process reengineering:

• A client wishes to improve enterprise operations by deploying new comput-
ing systems (i.e., new software). In the course of formulating requirements
for this new computing system a need arises to also reengineer the human
operations within and without the enterprise.
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• An enterprise wishes to improve operations by redesigning the way staff
operates within the enterprise and the way in which customers and staff
operate across the enterprise-to-environment interface. In the course of for-
mulating reengineering directives a need arises to also deploy new software,
for which requirements therefore have to be enunciated.

One way or the other, business process reengineering is an integral component
in deploying new computing systems.

19.3.3 Overview of BPR Operations

We suggest six domain-to-business process reengineering operations:

1. introduction of some new and removal of some old intrinsics;
2. introduction of some new and removal of some old support technologies;
3. introduction of some new and removal of some old management and or-

ganisation substructures;
4. introduction of some new and removal of some old rules and regulations;
5. introduction of some new and removal of some old work practices (relating

to human behaviours); and
6. related scripting.

19.3.4 BPR and the Requirements Document

Requirements for New Business Processes

The reader must be duly “warned”: The BPR requirements are not for a
computing system, but for the people who “surround” that (future) system.
The BPR requirements state, unequivocally, how those people are to act, i.e.,
to use that system properly. Any implications, by the BPR requirements, as
to concepts and facilities of the new computing system must be prescribed
(also) in the domain and interface requirements.

Place in Narrative Document

We shall thus, in Sects. 19.3.5–19.3.10, treat a number of BPR facets. Each of
whatever you decide to focus on, in any one requirements development, must
be prescribed. And the prescription must be put into the overall requirements
prescription document.

As the BPR requirements “rebuilds” the business process description part
of the domain description2, and as the BPR requirements are not directly
requirements for the machine, we find that they (the BPR requirements texts)
can be simply put in a separate section.

2 — Even if that business process description part of the domain description is
“empty” or nearly so!
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There are basically two ways of “rebuilding” the domain description’s busi-
ness process’s description part (DBP ) into the requirements prescription part’s
BPR requirements (RBPR). Either you keep all of D as a base part in RBPR,
and then you follow that part (i.e., RBPR) with statements, R′

BPR, that ex-
press the new business process’s “differences” with respect to the “old” (DBP ).
Call the result RBPR. Or you simply rewrite (in a sense, the whole of) DBP

directly into RBPR, copying all of DBP , and editing wherever necessary.

Place in Formalisation Document

The above statements as how to express the “merging” of BPR requirements
into the overall requirements document apply to the narrative as well as to
the formalised prescriptions.

Formal Presentation: Documentation

We may assume that there is a formal domain description, DBP , (of business
processes) from which we develop the formal prescription of the BPR require-
ments. We may then decide to either develop entirely new descriptions of the
new business processes, i.e., actually prescriptions for the business reengi-
neered processes, RBPR; or develop, from DBP , using a suitable schema
calculus, such as the one in RSL, the requirements prescription RBPR, by
suitable parameterisation, extension, hiding, etc., of the domain description
DBP .

19.3.5 Intrinsics Review and Replacement

Characterisation. By intrinsics review and replacement we understand an
evaluation as to whether current intrinsics stays or goes, and as to whether
newer intrinsics need to be introduced.

Example 19.4 Intrinsics Replacement: A railway net owner changes its busi-
ness from owning, operating and maintaining railway nets (lines, stations and
signals) to operating trains. Hence the more detailed state changing notions
of rail units need no longer be part of that new company’s intrinsics while the
notions of trains and passengers need be introduced as relevant intrinsics.

Replacement of intrinsics usually point to dramatic changes of the business
and are usually not done in connection with subsequent and related software
requirements development.

19.3.6 Support Technology Review and Replacement

Characterisation. By support technology review and replacement we un-
derstand an evaluation as to whether current support technology as used in
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the enterprise is adequate, and as to whether other (newer) support technology
can better perform the desired services.

Example 19.5 Support Technology Review and Replacement: Currently the
main information flow of an enterprise is taken care of by printed paper, copy-
ing machines and physical distribution. All such documents, whether originals
(masters), copies, or annotated versions of originals or copies, are subject to
confidentiality. As part of a computerised system for handling the future in-
formation flow, it is specified, by some domain requirements, that document
confidentiality is to be taken care of by encryption, public and private keys,
and digital signatures. However, it is realised that there can be a need for
taking physical, not just electronic, copies of documents. The following busi-
ness process reengineering proposal is therefore considered: Specially made
printing paper and printing and copying machines are to be procured, and
so are printers and copiers whose use requires the insertion of special signa-
ture cards which, when used, check that the person printing or copying is
the person identified on the card, and that that person may print the desired
document. All copiers will refuse to copy such copied documents — hence the
special paper. Such paper copies can thus be read at, but not carried outside
the premises (of the printers and copiers). And such printers and copiers can
register who printed, respectively who tried to copy, which documents. Thus
people are now responsible for the security (whereabouts) of possible paper
copies (not the required computing system). The above, somewhat construed
example, shows the “division of labour” between the contemplated (required,
desired) computing system (the “machine”) and the “business reengineered”
persons authorised to print and possess confidential documents.

It is implied in the above that the reengineered handling of documents
would not be feasible without proper computing support. Thus there is a
“spill-off” from the business reengineered world to the world of computing
systems requirements.

19.3.7 Management and Organisation Reengineering

Characterisation. By management and organisation reengineering we un-
derstand an evaluation as to whether current management principles and or-
ganisation structures as used in the enterprise are adequate, and as to whether
other management principles and organisation structures can better monitor
and control the enterprise.

Example 19.6 Management and Organisation Reengineering: A rather com-
plete computerisation of the procurement practices of a company is being con-
templated. Previously procurement was manifested in the following physically
separate as well as designwise differently formatted paper documents: requi-
sition form, order form, purchase order, delivery inspection form, rejection
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and return form, and payment form. The supplier had corresponding forms:
order acceptance and quotation form, delivery form, return acceptance form,
invoice form, return verification form, and payment acceptance form. The cur-
rent concern is only the procurement forms, not the supplier forms. The pro-
posed domain requirements are mandating that all procurer forms disappear
in their paper version, that basically only one, the procurement document,
represents all phases of procurement, and that order, rejection and return no-
tification slips, and payment authorisation notes, be effected by electronically
communicated and duly digitally signed messages that represent appropriate
subparts of the one, now electronic procurement document. The business pro-
cess reengineering part may now “short-circuit” previous staff’s review and
acceptance/rejection of former forms, in favour of fewer staff interventions.

The new business procedures, in this case, subsequently find their way into
proper domain requirements: those that support, that is monitor and control
all stages of the reengineered procurement process.

19.3.8 Rules and Regulations Reengineering

Characterisation. By rules and regulations reengineering we understand an
evaluation as to whether current rules and regulations as used in the enterprise
are adequate, and as to whether other rules and regulations can better guide
and regulate the enterprise.

Here it should be remembered that rules and regulations principally stipulate
business engineering processes. That is, they are — i.e., were — usually not
computerised.

Example 19.7 Rules and Regulations Reengineering: Our example contin-
ues that of Example 11.19. We kindly remind the reader to restudy that ex-
ample. Assume now, due to reengineered support technologies, that interlock
signalling can be made magnitudes safer than before, without interlocking.
Thence it makes sense to reengineer the rule of Example 11.19 from: In any
three-minute interval at most one train may either arrive to or depart from a
railway station into: In any 20-second interval at most two trains may either
arrive to or depart from a railway station.

This reengineered rule is subsequently made into a domain requirements,
namely that the software system for interlocking is bound by that rule.

19.3.9 Human Behaviour Reengineering

Characterisation. Human Behaviour Reengineering: By human behaviour
reengineering we understand an evaluation as to whether current human be-
haviour as experienced in the enterprise is acceptable, and as to whether
partially changed human behaviours are more suitable for the enterprise.
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Example 19.8 Human Behaviour Reengineering: A company has experi-
enced certain lax attitudes among members of a certain category of staff.
The progress of certain work procedures therefore is reengineered, implying
that members of another category of staff are henceforth expected to follow
up on the progress of “that” work.

In a subsequent domain requirements stage the above reengineering leads
to a number of requirements for computerised monitoring of the two groups
of staff.

19.3.10 Script Reengineering

On one hand, there is the engineering of the contents of rules and regulations,
and, on another hand, there are the people (management, staff) who script
these rules and regulations, and the way in which these rules and regulations
are communicated to managers and staff concerned.

Characterisation. By script reengineering we understand evaluation as to
whether the way in which rules and regulations are scripted and made known
(i.e., posted) to stakeholders in and of the enterprise is adequate, and as
to whether other ways of scripting and posting are more suitable for the
enterprise.

Example 19.9 Script Reengineering: We refer to Examples 11.22–11.25.
They illustrated the description of a perceived bank script language. One
that was used, for example, to explain to bank clients how demand/deposit
and mortgage accounts, and hence loans, “worked”.

With the given set of “schematised” and “user-friendly” script commands,
such as they were identified in the referenced examples, only some banking
transactions can be described. Some obvious ones cannot, for example, merge
two mortgage accounts, transfer money between accounts in two different
banks, pay monthly and quarterly credit card bills, send and receive funds
from stockbrokers, etc.

A reengineering is therefore called for, one that is really first to be done in
the basic business processes of a bank offering these services to its customers.
We leave the rest as an exercise, cf. Exercise 19.13.

19.3.11 Discussion: Business Process Reengineering

Who Should Do the Business Process Reengineering?

It is not in our power, as software engineers, to make the kind of business
process reengineering decisions implied above. Rather it is, perhaps, more the
prerogative of appropriately educated, trained and skilled (i.e., gifted) other
kinds of engineers or business people to make the kinds of decisions implied
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above. Once the BP reengineering has been made, it then behooves the client
stakeholders to further decide whether the BP reengineering shall imply some
requirements, or not.

Once that last decision has been made in the affirmative, we, as software
engineers, can then apply our abstraction and modelling skills, and, while
collaborating with the former kinds of professionals, make the appropriate
prescriptions for the BPR requirements. These will typically be in the form
of domain requirements, which are covered extensively in Sect. 19.4.

General

Business process reengineering is based on the premise that corporations must
change their way of operating, and, hence, must “reinvent” themselves. Some
corporations (enterprises, businesses, etc.) are “vertically” structured along
functions, products or geographical regions. This often means that business
processes “cut across” vertical units. Others are “horizontally” structured
along coherent business processes. This often means that business processes
“cut across” functions, products or geographical regions. In either case ad-
justments may need to be made as the business (i.e., products, sales, markets,
etc.) changes. We otherwise refer to currently leading books on business pro-
cess reengineering: [?,?,?,?].

19.4 Domain Requirements

Characterisation. By domain requirements we understand requirements
which are expressed solely in terms of domain phenomena and concepts.

So in setting out, initially, acquiring (that is, eliciting or “extracting”) re-
quirements, the requirements engineer naturally starts “in” or “with” the
domain. That is, the requirements engineer asks questions, of the stakehold-
ers, that eventually should lead to the formulation of domain requirements.
The structuring of these questions — it is strongly suggested — should follow
the structuring and contents of the domain facets description of the domain
model, Sects. 11.3–11.8, and the five kinds of domain-to-requirements opera-
tions outlined next and treated in some depth in the following.

19.4.1 Domain-to-Requirements Operations

Characterisation. By a domain-to-requirements operation we shall under-
stand a transformation of domain description documents into requirements
description documents.
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These document transformation operations are carried out by the require-
ments engineer. They follow as the result of the requirements engineer working
closely with possibly alternating groups of stakeholders.

We suggest the following five domain-to-requirements operations covered
in depth in five subsections below (Sects. 19.4.4–19.4.8).

1. domain projection
2. domain determination
3. domain instantiation
4. domain extension
5. domain fitting

19.4.2 Domain Requirements and the Requirements Document

Some remarks need to be made before we go into details of domain require-
ments modelling techniques.

Requirements for Functionalities

Domain requirements are about “operating” part of the domain “inside” the
machine. Domain requirements engineering is about which parts to leave out,
i.e., which parts to “emulate”, and then in what “shape, forms and contents”.

Place in Narrative Document

In Sects. 19.4.4–19.4.8 we shall treat a number of domain requirements facets.
Each of whichever you decide to focus on, in any one requirements develop-
ment, must be prescribed.

The domain requirements all take their “departure point”, that is, are
based upon, the entire domain description. That is, the domain require-
ments represent a kind of “rewrite” of the domain description. Whether this
“rewrite” is done one way, or another way, for that we cannot really state
any hard principles. It all depends, so much, on the subject domain and the
subject requirements. There are basically two ways of doing the “rebuilding”
of the domain description’s non-business process description part (D3) into
the requirements prescription part’s domain requirements (RDR), and that is
as follows:

Either you keep all of D as a base part (R′
DR) in RDR, and then you follow

that part (i.e., R′
DR) with statements, R′′

DR, that express the new business
process’s “differences” with respect to the “old” (D). Call the result RDR. Or
you simply rewrite (in a sense, the whole of) D directly into RDR, copying all
of D, and editing wherever necessary.

3 Here D stands for the (i) intrinsics, the (ii) support technology, the (iii) manage-
ment and organisation, the (iv) rules and regulations, the (v) script, and the (vi)
human behaviour parts
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Place in Formalisation Document

The above statements as how to express the “rewrite” of requirements into
the overall requirements document applies, in particular, to narrative pre-
scriptions. But as we shall see, it also applies to formal prescriptions.

Formal Presentation: Documentation

We may assume that there is a formal domain description, D, from which we
develop the formal prescription of the domain requirements. We may then
decide to either develop entirely new descriptions of the new “domain”, i.e.,
actually prescriptions for the domain requirements, RDR; or develop, from
D, using a suitable schema calculus, such as the one in RSL, the requirements
prescription, RDR, by suitable parameterisation, extension, hiding, etc., of
the domain description D.

19.4.3 A Domain Example

The bulk of this, the domain requirements section, is “carried” by a num-
ber of examples, one each, basically, for each of the domain-to-requirements
transformation schemes. To place these transformations in a proper context
we first present a rather simple-minded domain description.

Example 19.10 A Simple Domain Example: A Timetable System: We
choose a very simple domain: that of a traffic timetable, say flight timetable.
In the domain you could, in “ye olde days”, hold such a timetable in your
hand, you could browse it, you could look up a special flight, you could tear
pages out of it, etc. There was no end as to what you could do to such a
timetable. So we will just postulate a sort, TT, of timetables.

Airline customers, clients, in general, only wish to inquire a timetable (so
we will here omit treatment of more or less “malicious” or destructive acts).
But you could still count the number of digits “7” in the timetable, and other
such ridiculous things. So we postulate a broadest variety of inquiry functions,
qu:QU, that apply to timetables, tt:TT, and yield values, val:VAL.

Specifically designated airline staff may, however, in addition to what a
client can do, update the timetable. But, recalling human behaviours, all we
can ascertain for sure is that update functions, up:UP, apply to timetables and
yield two things: another, replacement timetable, tt:TT, and a result, res:RES,
such as: “your update succeeded”, or “your update did not succeed”, etc. In
essence this is all we can say for sure about the domain of timetable creations
and uses.
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We can view the domain of the timetable, clients and staff as a behaviour
which nondeterministically alternates (⌈⌉) between the client querying the
timetable client 0(tt), and the staff updating the same staff 0(tt).

Formal Presentation: A Timetable Domain

scheme TI TBL 0 =
class

type
TT, VAL, RES
QU = TT → VAL
UP = TT → TT × RES

value
client 0: TT → VAL, client 0(tt) ≡ let q:QU in q(tt) end
staff 0: TT → TT × RES, staff 0(tt) ≡ let u:UP in u(tt) end

tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

end

The timetable function, tim tbl, is here seen as a never ending process, hence
the type Unit. It nondeterministically4 alternates between “serving” the
clients and the staff. Either of these two nondeterministically4 chooses from
a possibly very large set of queries, respectively updates.

19.4.4 Domain Projection

Usually the span of the requirements is far “narrower” than the scope of the
domain. That is, the conceived or actually described domain covers phenom-
ena and concepts that will not be of concern when constructing requirements
for some particular application. We shall therefore have to explicitly express
a “projection”.

Characterisation. By domain projection we understand an operation that
applies to a domain description and yields a domain requirements prescription.
The latter represents a projection of the former in which only those parts of
the domain are present that shall be of interest in the ongoing requirements
development.

4 The nondeterminism referred to is internal in the sense that no outside behaviour
influences the choice.
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In a sense, of course, the document resulting from a domain projection is still
a domain description, but — for pragmatic reasons — we shall refer to it as
a domain requirements prescription.

A Specific Example

Example 19.11 Projection of Airline Timetable and Air Space:
We start out by formulating a rough-sketch domain description for the

subdomain of airline timetables: There are airports, and one can fly between
certain airports. There are airlines, and an airline offers flight services between
such airports and at certain times. These services are recorded in an airline
timetable. It lists for every flight offered its flight number and flight days,
and a list of two or more airport visits: names of airports, and arrival and
departure times.

There is the air space. It consists of airports, of air corridors (zero, one
or more between pairs of airports), and of controlled areas around airports
where the flight of aircraft is specially monitored (and partly controlled) by
air traffic control centres.

Formal Presentation: Projection of Airline Timetable and Air Space, I

scheme AIR TT SPACE =
extend TI TBL 0 with
class

type
AS, Airport, Air Corridor, Controlled Area, ATC

...
end

Now to a rough-sketch domain projection prescription: From the above we
leave out any description of the air space. That is, we project “away” air
corridors, controlled areas and air traffic control centres. We leave the details
to the reader.

Formal Presentation: Projection of Airline Timetable and Air Space, II

scheme TI TBL 1 = TI TBL 0

We have taken the liberty, above, in AIR TT SPACE, not to model the details
of timetables and the air space.

You may rightfully claim that the above example was construed so as to fit
the idea of projection. That may be so. But the idea has been demonstrated,
has it not?
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A General Example

It is typical to have sorts in a domain description. Once these are projected
onto the requirements they change from being abstractions of phenomena to
being concepts of these. The former are descriptions, informal or formal, of
“things out there”, in the domain. The latter are prescriptions, informal or
formal, of “things in there”, in the software to be built! Whereas observer
(and functions defined on the basis of observer) functions are just postulated,
the projected observer (etc.) functions prescribe functions that must be im-
plemented. To make that distinction clear we may choose to rename these
functions.

Example 19.12 From Domain Sorts to Requirements Sorts, I: A transport
net consists of segments and junctions such that every segment is connected
to exactly two distinct junctions and such that to every junction there is
connected one or more segments. Thus from a transport net one may observe
its segments (e.g., street segments) and junctions (e.g., street intersections).
To achieve a proper, consistent and complete net description we will, most
likely, have introduced the concepts of segment and junction identifications
— and related, via axioms, segments, junction and their identifiers.

Formal Presentation: A Transport Net Domain Description

type
N, S, J, Si, Ji

value
obs Ss: N → S-set
obs Js: N → J-set
obs Si: S → Si
obs Ji: J → Ji
obs Jis: S → Ji-set
obs Sis: J → Si-set

axiom
∀ s:S • card obs Jis(s)=2 ∧
∀ n:N, s,s′:S •

{s,s′} ⊆ obs Ss(n) ∧ s 6=s′ ⇒ obs Si(s)6=obs Si(s′) ∧
s ∈ obs Ss(n) ⇒

let {ji,ji′} = obs Jis(s) in
∃ j,j′:J • {j,j′} ⊆ obs Js(n) ∧ ji=obs Ji(j) ∧ ji′=obs Ji(j′) end ∧

∀ j:J • card obs Sis(j)≥1 ∧
∀ n:N, j,j′:J •

{j,j′} ⊆ obs Js(n) ∧ j6=j′ ⇒ obs Ji(j)6=obs Ji(j′) ∧
j ∈ obs Js(n) ⇒

let sis = obs Sis(j) in
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∀ si:Si • si ∈ sis ⇒ ∃ s:S • s ∈ obs Ss(n) ∧ si=obs Si(s) end

We can annotate the above axioms, line by line: (1) Each segment is con-
nected to exactly two distinct junctions. (3) Two segments of a net, if dis-
tinct, have distinct segment identifications. (4–6) For every segment of a net
one can observe the identifications of two junctions — and these identifica-
tions must be those of junctions of the net. (7) Each junction is connected
to one or more distinct segments. (9) Two junctions of a net, if distinct,
have distinct junction identifications. (10–12) For every junction of a net
one can observe the identifications of one or more segments — and these
identifications must be those of segments of the net.

The annotation of the formalisation is really part also of the informal narrative
description.

Domain projection now considers which entities: sorts and values, axioms
relating these, functions: observer functions, etc., events and behaviours are
to be represented, somehow, in the required software.

Example 19.13 From Domain Sorts to Requirements Sorts, II: We continue
Example 19.12. In this example we may decide to project all that is described
in Example 19.12. This means that nets, their segments and junctions shall
be represented in the required software. This also means that segment and
junction identifiers shall be represented in the required software. Whereas the
nets, segments and junctions (i.e., their descriptions) were (models of) real
phenomena in the domain, the net, segment and junction prescriptions are
models of the required software. Observer functions become functions that
must now be implemented. As such we may choose to rename them. Axioms
are no longer axioms. They become invariants that must hold of any data
structure representation of nets, segments and junctions.

Formal Presentation: A Transport Net Domain Requirements Prescription

type
N, S, J, Si, Ji

value
xtr Ss: N → S-set
xtr Js: N → J-set
xtr Si: S → Si
xtr Ji: J → Ji
xtr Jis: S → Ji-set
xtr Sis: J → Si-set

wf N: N → Bool
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wf N(n) ≡
∀ s:S•s ∈ xtr Ss(n)⇒card xtr Jis(s)=2 ∧
∀ s,s′:S •

{s,s′}⊆xtr Ss(n)∧s 6=s′ ⇒ xtr Si(s)6=xtr Si(s′) ∧
s ∈ xtr Ss(n) ⇒

let {ji,ji′}=xtr Jis(s) in
∃ j,j′:J•{j,j′}⊆xtr Js(n)∧ji=xtr Ji(j)∧ji′=xtr Ji(j′) end ∧

∀ j:J•j ∈ xtr Js(n)⇒card xtr Sis(j)≥1 ∧
∀ j,j′:J •

{j,j′}⊆xtr Js(n)∧j6=j′ ⇒ xtr Ji(j)6=xtr Ji(j′) ∧
j ∈ xtr Js(n) ⇒
let sis=xtr Sis(j) in
∀ si:Si•si ∈ sis⇒∃ s:S•s ∈ xtr Ss(n)∧si=xtr Si(s) end

At most a mere renaming, you may say. Yes, but the restatement of the
projected domain onto the domain requirements means that from the domain
is “such and such” we have now required the software shall implement “such
and such”.

The projection of domain observer functions to requirements extraction func-
tions usually are implemented in terms of queries of a relational database.
The various attributes of sorts (as above: segment and junction identifiers
(and whatever other attributes one might associate with segments and junc-
tions (length, average cost of traversal, state-of-repair, etc.))) then become
attributes of relation tuples. We refer to Sect. ?? for the story on relational
databases.

From Concepts to Phenomena

The projection of the domain description of Example 19.12 onto the domain
requirements prescription of Example 19.13 reflects a subtlety: We may claim
that the segment and junction identifications of Example 19.12 were mere
concepts. There may not have been any physically recognisable phenomena
amounting to these identifications other than the — almost “law of nature”
— fact that the mere manifestations of two distinct segments and two distinct
junctions amount to the unique identifications of all such segments and junc-
tions. There may thus not be any physically discoverable junction identifiers
associated with segments (and segment identifiers associated with junctions).
But it is clear that from junctions one can identify connected segments, and
from segments one can identify the “end” junctions.

Conceptual segment and junction identifiers of Example 19.13 now become
eventually physically discoverable phenomena of the required software. As
such the segment and junction identifications of Example 19.13 are models of
phenomena.
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19.4.5 Domain Determination

Often a domain exhibits nondeterminism, that is: A function result or a be-
haviour can either be such and such or it can be such and such (different
from the first such and such), or it can be such and such (different from the
first two such and suches!). Or a function result or a behaviour can be loose
(i.e., loosely described): not all possible outcomes of a function application,
or not all possible behaviours of a phenomenon may have been described, or
even knowable. Sometimes, for a requirements, the stakeholders may wish to
remove such seeming uncertainty — nondeterminism, or looseness — as to
some function results or some behaviours.

Characterisation. By domain determination we understand an operation
that applies to a (projected) domain description, i.e., a requirements pre-
scription, and yields a domain requirements prescription, where the latter has
made deterministic, or specific, some function results or some behaviours of
the former.

Certainly the result of domain determination represents, not a domain descrip-
tion (any longer), but a requirements prescription. The point of requiring some
software is to exactly make certain behaviours, certain function outcomes, de-
terminate — predictable.

Example 19.14 Determination of Airline Timetable Queries: To exemplify
this rough-sketch domain (to) requirements operation we first present a rough
domain description, then the “more deterministic” domain requirements pre-
scription. (i) A rough-sketch timetable-querying domain description is: There
is given a further undefined notion of timetables. There is also given a concept
of querying a timetable. A timetable query, abstractly speaking, denotes (i.e.,
stands for) a function from timetables to results. Results are not further de-
fined. (i) A rough-sketch timetable querying domain requirements description
is: There are given notions of departure and arrival times, and of airports,
and of airline flight numbers.

Formal Presentation: Determination of Airline Timetable Queries, I

scheme TI TBL 2 =
extend TI TBL 1 with

class
type

T, An, Fn
end

A timetable consists of a number of air flight journey entries. Each entry has a
flight number, and a list of two or more airport visits. an airport visit consists
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of three parts: An airport name, and a pair of (gate) arrival and departure
times.

Formal Presentation: Determination of Airline Timetable Queries, II

scheme TI TBL 3 =
extend TI TBL 2 with

class
type

JR′ = (T × An × T)∗

JR = {| jr:JR′
• len jr ≥ 2 ∧ ... |}

TT = Fn →m JR
end

We illustrate just one, simple form of airline timetable queries. A simple airline
timetable query either just browses all of an airline timetable, or inquires of
the journey of a specific flight. The simple browse query thus need not provide
specific argument data, whereas the flight journey query needs to provide a
flight number. A simple update query inserts a new pairing of a flight number
and a journey to the timetable, whereas a delete query need just provide the
number of the flight to be deleted.

The result of a query is a value: the specific journey inquired, or the entire
timetable browsed. The result of an update is a possible timetable change and
either an “OK” response if the update could be made, or a “Not OK” response
if the update could not be made: Either the flight number of the journey to
be inserted was already present in the timetable, or the flight number of the
journey to be deleted was not present in the timetable.

That is, we assume above that simple airline timetable queries only des-
ignate simple flights, with one aircraft. For more complex air flights, with
stopovers and changes of flights, see Example 19.16.

You may skip the rest of the example, its formalisation, if your reading of
these volumes does not include the various formalisations. First, we formalise
the syntactic and the semantic types:

Formal Presentation: Determination of Airline Timetable Queries, III

scheme TI TBL 3Q =
extend TI TBL 3 with

class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

end
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Then we define the semantics of the query commands:

Formal Presentation: Determination of Airline Timetable Queries, IV

scheme TI TBL 3U =
extend TI TBL 3 with

class
value

Mq: Query → QU
Mq(qu) ≡

case qu of
mk brow() → λtt:TT•tt,
mk jour(fn)

→ λtt:TT • if fn ∈ dom tt
then [ fn7→tt(fn) ] else [ ] end

end end

And, finally, we define the semantics of the update commands:

Formal Presentation: Determination of Airline Timetable Queries, V

scheme TI TBL 3U =
extend TI TBL 3 with

class
Mu: Update → UP
Mu(up) ≡

case qu of
mk inst(fn,jr) → λtt:TT •

if fn ∈ dom tt
then (tt,not ok) else (tt ∪ [ fn7→jr ],ok) end,

mk delt(fn) → λtt:TT •

if fn ∈ dom tt
then (tt \ {fn},ok) else (tt,not ok) end

end end

We can “assemble” the above into the timetable function — calling the new
function the timetable system, or just the system function. Before we had:

Formal Presentation: Determination of Airline Timetable Queries, VI

value
tim tbl 0: TT → Unit
tim tbl 0(tt) ≡
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(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

Now we get:

value
system: TT → Unit
system() ≡

(let q:Query in let v = Mq(q)(tt) in system(tt) end end)
⌈⌉ (let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end)

Or, for use in Example 19.32:

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡

let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end

We remind the reader that the above example can be fully understood by just
reading the rough-sketch texts, that is, without reading their formalisations.

19.4.6 Domain Instantiation

Domain descriptions are usually “lifted” to cover several instances of domains:
A railway system domain description may cover railways in several — or be
claimed to cover them in “all” — countries! The similar situation holds true
for a domain description of “the” financial service industry, “the” healthcare
sector, etc. Usually software is being requested for specific instances of such
application domains: the railway software of a specific region, the banking soft-
ware for a specific bank, the hospital software for a specific region’s healthcare
system, and so on.

Characterisation. By domain instantiation we understand an operation
that applies to a (projected and possibly determined) domain description,
i.e., a requirements prescription, and yields a domain requirements prescrip-
tion, where the latter has been made more specific, usually by constraining a
domain description.
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Example 19.15 Instantiation: Local Region Railway Nets: The domain de-
scription to be (rough-sketch) requirements instantiated is provided by the
rough sketch of Example 11.8- We also refer to Fig. 19.1. The constraints
are: There are exactly n stations (where n is given). The n stations have
the following names: s1, s2, . . . , sn. These stations can be linearly ordered
(< s1, s2, . . . , sn >) such that if two stations are connected by a line, as are
si, si+1 for i ∈ {1..n − 1}, then they are connected by exactly two lines,
lfi,i+1

, lfi+1,i , one permitting traffic in one direction (lfi,i+1
from si to si+1),

the other in the other direction (lfi+1,i from si+1 to si). Each station has
exactly one platform, with tracks on either side. Both tracks can be reached
from any line incident upon the station. Any line emanating from the station
can be reached from both station tracks. We refer to Exercise 19.2 which asks
for a formalisation of the above.

Station s1 Station s2 Station snPlatform

Line Lf1−2

Line Lf2−1

Fig. 19.1. A schematic local region railway net

We leave as an exercise, Exercise 19.2, to formalise Example 19.15.

19.4.7 Domain Extension

We make a distinction between genuine domain extensions and “domain ex-
tensions” due to “forgotten” domain facets. The distinction, as are the two
kinds of extensions, are pragmatic notions.

Genuine Extensions

Certain phenomena in a domain are conceivable “in theory”, but occur rarely
in reality — like someone counting to a trillion! But with computing, comput-
ers can do your counting! So, although these phenomena, in a sense, “belong”
to the domain, they are really only believably feasible when spoken of in
connection with computing, hence requirements.

Characterisation. By domain extension we understand an operation that
applies to a (projected and possibly determined and instantiated) domain
description, i.e., a (domain) requirements prescription, and yields a (domain)
requirements prescription. The latter prescribes that a software system is to
support, partially or fully, an operation that is not only feasible but also
computable in reasonable time.
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Example 19.16 Extension: n-Transfer Travel Inquiry: We assume a pro-
jected and instantiated timetable (see Example 19.14).

A query of a timetable may, syntactically, specify an airport of origin, ao,
an airport of destination, ad, and a maximum number, n, of intermediate
stops. The query semantically designates the set of all those trips of one up to
n direct air journeys between ao and ad, i.e., trips where the passenger may
change flights (up to n− 1 times) at intermediate airports.

Formal Presentation: Extension: n-Transfer Travel Inquiry

scheme TI TBL 3C =
extend TI TBL 3 with

class
type

Query′ == Query | mk conn(fa:An,ta:An,n:Nat)
VAL′ = VAL | CNS
CNS = (JR∗)-set

value
Mq(mk conn(fa,ta,n)) ≡ ...

end

Here we leave it to the reader to define the “connections” function! At present
you need not be concerned with the fact that TI TBL 3C does not include
the timetable initialisation command. To secure that we need to “juggle” some
of the previously defined TI TBL x schemes. We omit showing this.

The point about this example is that for n being just 4 or above, a hand
calculation is infeasible. But a Prolog program of less than a dozen lines, when
the basis for executions, will start producing results after very few seconds on
most PCs, for example for n=5.

“Forgotten” Domain Descriptions

Sometimes one forgets to describe some domain facet. The discovery that
one (might) have forgotten such a facet is usually made during domain re-
quirements prescription. A stakeholder requirements is such that the domain
requirements engineer lacks a “socket”, some text and possibly formulas in the
domain description which can serve as a basis for projection, instantiation,
determination and extension. An example may serve to focus the idea.

Example 19.17 A “Forgotten” Transport Net Domain Description: We con-
tinue Examples 19.12–19.13.

We have not equipped segments with attributes (such as lengths, geode-
tic (cadastral) coordinates, segment state of fitness (i.e., “need of repair”),
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or other). And we have therefore not described any functions that observe
attributes, attribute values for given attributes, and, for example, those seg-
ments of a net which possess attributes (A) of specified values (VAL).

We “discover” this general omission during the requirements gathering
stage when stakeholders, for one set of requirements, express the requirement
to offer travellers shortest routes in nets, or, for another set of requirements,
express the requirement to maintain a high level of fitness of segments.

So we extend the domain description of Example 19.12. With every seg-
ment we associate a finite, usually small number of attributes (that is, at-
tribute names, a : A). And with every attribute we associate a set of attribute
values (v1, v2, . . . : V ). Thus we are able to observe which attributes are asso-
ciated with a given segment, and, for that segment and an attribute of that
segment, we are able to observe the associated attribute value.

Now we can express the further extensions: Assume ordering relations,�ai ,
one per attribute ai : A, on attribute values. Now we shall require a function
which, from a net, extracts all those segments which for a given attribute have
attribute values within a given range.

Formal Presentation: “Extended” Domain Description

type
/∗ N, S, J, Si, and Ji as in Example 19.12 ∗/
A, VAL

value
obs As: S → A-set

obs A VAL: S × A
∼
→ VAL

pre obs A VAL(s,a): a ∈ obs As(s)

�a: VAL × VAL → Bool

is in range: S × (A × (VAL × VAL)) → Bool
is in range(s,(a,(v,v′))) ≡

v�aobs A VAL(s,a)�av
′

extract Ss: N × (A × (VAL × VAL)) → S-set
extract Ss(n,(a,(v,v′))) ≡

{s|s:S•s ∈ obs Ss(n)∧a ∈ obs As(s)∧v�aobs A VAL(s,a)�a v′}

The reader can extend the above to also cover junctions.

Once identified, “repairing” the description of a “forgotten” domain facet can
either be thought of as a domain extension — and that is why we have placed
the issue of “forgetfulness” in this section on domain extension — or it may
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prompt the requirements engineer to have the “original” domain description
updated.

To keep in line with our treatment of the omission, we decide to handle
the “repair” in the extension part of our domain requirements engineering.

Thus we have obviously decided to project the repaired domain facet onto
the domain requirements prescription. This first part of the domain extension
is then to be followed by possibly further domain to requirements operations.

19.4.8 Domain Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in
some areas with, another domain: transportation with logistics, healthcare
with insurance, banking with securities trading and/or insurance, and so on.

Characterisation. By domain requirements fitting we understand an oper-
ation that applies to two or more, say m, projected and possibly determined,
instantiated and extended domain descriptions, i.e., to two or more, say m,
original domain requirements prescriptions, and yields m + n (resulting, re-
vised original plus new, shared) domain requirements prescriptions. The m
revised original domain requirements prescriptions resulting from the fitting
prescribe most of the original (m) domain requirements. The n (new, shared)
domain requirements prescriptions resulting from the fitting prescribe require-
ments that are shared between two or more of the m revised original domain
requirements.

Example 19.18 Shared Domain Requirements: Let the domain be that of
multi-modal transportation nets: A multi-modal transportation net has seg-
ments (roads, rail lines, air lanes and shipping lanes) and junctions (street
intersections, train stations, airports and harbours). Segments and junctions
are uniquely identified. Segments possess attributes: to which two junctions
they are connected, length, standard traversal time, standard traversal cost,
wear-and-tear (relevant for rail lines and roads), modality (whither road, rail,
air lane or shipping lane), and possibly other attributes. Junctions also pos-
sess attributes: to which one or more segments they are connected, standard
traversal time, standard traversal cost (which is a function of the entry and
exit segments: if of the same segment modality then maybe the cost is zero
whereas if of different segment modalities then it reflects the cost of transfer
(unloading and loading), and the set of one or more modalities of the con-
nected segments. One can speak of paths, from junction via a segment to a
connected junction, and routes — as sequences of connected paths. Hence one
can speak of the longest route(s) and the shortest standard traversal time be-
tween two junctions. One can also speak of best wear-and-tear quality route(s)
also between two junctions.

We outline two rough text original domain requirements.
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A transportation net maintenance support system: The software package
for this support system shall help rail line maintenance planners to identify
segments (i.e., lines) in need of immediate repair (that is, corrective mainte-
nance) or scheduled preventive maintenance (that is inspection), and, when
such has been effected to record the (new) wear-and-tear status of main-
tained segments. These requirements imply further determination of segment
attributes. Etcetera.

A transportation net logistics support system: The software package for
this support system shall help combined road-rail travel planners to identify
combinations of one or more of shortest length route(s), shortest traversal time
route(s), least costly route traversal(s), and/or route(s) with fewest transfers
between transport modalities. Etcetera.

The shared domain requirements are the following: Nets consisting of seg-
ments and junctions, thus also identification of segments and junctions; provi-
sion for segment attributes; and ability to select segments of a given modality.

We leave it to the reader to formulate what is specific to the two revised
original domain requirements.

Exercise 19.3 asks that you provide formal models of the domain, the
two original requirements, and the 2+1 revised original + shared domain
requirements outlined above.

Another example:

Example 19.19 Fitting of Passenger Transfers Between Busses and Trains:
We assume that there are two domain requirements prescriptions, one for
metropolitan bus systems of bus lines, bus stops, etc., and one for railway
systems of rail lines and stations. We further assume that one of the prescrip-
tions has been in existence for some time — maybe even that an existing
product is based on those requirements — and that the other prescription is
currently being developed.

Rough sketches are as follows:
The bus system consists of a set of bus lines, each being numbered and

otherwise designated in a bus timetable, where this bus timetable, modulo
“every” hour, for every bus line, specifies at which minutes (“past the hour”)
the bus stops at each stop of the line. After this there follow a number of
other entity, function and possibly behaviour descriptions.

Formal Presentation: Fitting of Passenger Transfers, I

scheme BUS =
class

type
BSn, BLn, Min
BTT′ = BLn →m (BSn × Min)∗

BTT = {| btt:BTT′
• wf BTT(btt) |}
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value
wf BTT: BTT′ → Bool
...

end

The railway system consists of a set of train lines, each being numbered and
otherwise designated in a train timetable, where this timetable, modulo “ev-
ery” hour, for every train line specifies at which minutes (“past the hour”) the
train stops at stations of the line. After this there follow a number of other
entity, function and possibly behaviour descriptions.

Formal Presentation: Fitting of Passenger Transfers, II

scheme RAIL =
class

type
Sn, RLn, Min
RTT′ = RLn →m (Sn × Min)∗

RTT = {| rtt:RTT′
• wf RTT(rtt) |}

value
wf RTT: RTT′ → Bool
...

end

Now the “fitting”: Certain stations (bus stops) are to be designated as bus
(train) transfer stations (bus stops). Passenger travel routes may include
transfers at such stations (bus stops) between buses and trains. After this
there follows a number of other entity, function and possibly behaviour pre-
scriptions.

Formal Presentation: Fitting of Passenger Transfers, III

scheme BUS RAIL =
extend BUS with extend RAIL with
class

type
Transfer′ = Bsn →m Sn
Transfer = {| tr:Transfer′ • card dom tr = card rng tr |}

value
...

end
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End of Example 19.19

19.4.9 Discussion: Domain Requirements

We have outlined five reasonably distinguishable operations that the require-
ments engineer may need perform in order to construct a domain require-
ments prescription. There may be other such operations. The above five have
been found useful in several development projects. Knowing about them, their
underlying principles, and their techniques and tools should help the require-
ments engineer to more efficiently acquire domain requirements prescriptions,
and to document them, i.e., to structure their documentation logically.

19.5 Interface Requirements

Characterisation. By interface requirements we understand those require-
ments that are expressed solely in terms of such phenomena and concepts
that are shared between the domain and the machine. The machine is the
hardware to be prescribed and the software to be developed.

The term ‘shared’ is crucial. For “something” to be shared between the domain
and the machine, that “something” must be present in the domain. It must
be en entity, a function, an event or a behaviour which has been projected, in-
stantiated, possibly made more deterministic, possibly extended and possibly
fitted. And that “something” must be present in the machine: Its attributes,
including value, if an entity, must “somehow” be more or less regularly mon-
itored by (read in from the domain, or set by, output from the) machine.
Its functionality, if a function, must somehow replace that “present” in, or
“co-opted”, taken over from the domain, and its behaviour, if a behaviour,
must somehow “simulate” the behaviour of the domain, or its occurrence, if
an event, must somehow be replicated: If in the domain, then recorded by the
machine, and if in the machine, then signaled to the domain.

The “something” is said to be a shared phenomenon cum concept. We
use the “somehow” hedge to indicate to the reader that the interface require-
ments shall stipulate, shall prescribe that ‘somehow’! Shared phenomena cum
concepts is what this section (Sect. 19.5) is all about! The shared “things”
are usually phenomena in the domain, but always concepts in the machine.
Domain concepts can also be shared.

Example 19.20 Shared Phenomena:We may think of a train traffic monitor-
ing and control system being interface requirements developed. The following
phenomena are identified as among those being shared: rail units, signals, road
level crossing gates, train sensors (optical sensor sensing passing trains) and
trains.
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Example 19.21 Shared Concepts: We continue Example 19.20. The follow-
ing train traffic concepts are among those being identified as being shared:
state of units, including whether a unit is open, closed, reserved, occupied,
etc., routes (a route is, in general, not humanly visible (being often geograph-
ically widespread)), and hence open routes.

19.5.1 Shared Phenomena and Concept Identification

A crucial step of requirements development is therefore that of identifying,
from among the many phenomena and concepts of the projected (etc.) domain
which of these are shared. Examples 19.20 and 19.21 gave informal, rough-
sketch examples. Whether and how to categorise these shared phenomena and
concepts is what the rest of this section on interface requirements is about.

Suffice it to state that we here expect that the requirements engineers
— in close collaboration with requirements stakeholders — list these shared
“things”, and, along the road, while individually pursuing any one of the
interface requirements facets, annotate this list with classifiers (whither one
of the six interface requirements facets treated next, “where used”, etc.).

19.5.2 Interface Requirements Facets

We shall consider six kinds of interface requirements:

• shared data initialisation requirements,
• shared data refreshment requirements,
• computational data and control requirements,
• man-machine dialogue requirements,
• man-machine physiological interface requirements, and
• machine-machine dialogue requirements.

We foresee further identification of (i.e., other) interface requirements facets
than the six so far listed. And we foresee an analysis, in the future, of some
of the six listed facets into a more finely granulated set of (more or less)
orthogonal interface requirements facets. Suffice it now, for the purposes of this
part of this volume, namely that of presenting basic principles and techniques
of requirements engineering, to bring in just these six facets.

The first three interface requirements facets motivate the need for the
last three interface requirements facets. Shared data generally reside in the
domain and in the machine. Computational data and control typically (but do
not exclusively) reside in the human users who may interface with the machine
during its computations, i.e., may interact with the machine. These first three
interface requirements facets prescribe what information shall (need to) be
shared, as well as some abstract principles according to which the external
domain information shall be communicated into internal machine data and
vice versa. The dialogue requirements facets prescribe how that information
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concretely shall be communicated between humans and/or other machines
(and equipment in general) and the machine being requirements prescribed.
We now explain these six facets of interface requirements. But first we bring
in a brief aside.

19.5.3 Interface Requirements and the Requirements Document

Some remarks need to be made before we go into details of domain require-
ments modelling techniques.

Requirements for “Input/Output”

Interface requirements are about: “putting” part of the domain “inside” the
machine. Interface requirements engineering is about how to get parts of the
domain into a machine (to become part of its state), from the domain, or
from other machines; and how to reflect [new, computed] states back into the
domain, or onto other machines. Thus interface requirements are about shared
(usually entity) phenomena and concepts.

Place in Narrative Document

In Sects. 19.5.4–19.5.9 we shall treat a number of interface requirements facets.
Each of whichever you decide to focus on, in any one requirements develop-
ment, must be prescribed. The interface requirements all take their “departure
point”, that is are based upon, the entire domain description, as well as po-
tentially available machine input/output technology.

That is, the interface requirements represent a kind of “merging” of some
form of the domain description, with descriptions of relevant, i.e., chosen, in-
put/output technology. The two “merged” descriptions become a prescription,
the interface requirements prescription. Since that “merge” was not present in
the domain, the interface requirements prescription becomes an entirely new
document part.

Place in Formalisation Document

The above statements on how to express the interface requirements also apply
to formal interface requirements prescriptions.

Formal Presentation: Documentation

We may assume that there is a formal domain description, D (from which we
develop parts of the formal prescription of the interface requirements), and
narrative descriptions of the input/output technologies. We further assume
that there are formal descriptions, DIO, of these input/output technolo-
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gies. We then develop an entirely new document, the interface requirements,
RI/F . It somehow “merges” parts of D with parts of DIO into the resulting
RI/F .

This section on interface requirements is about the “merge” principles and
techniques.

19.5.4 Shared Data Initialisation

Information that is shared between the domain and the machine is often
nontrivial in its structure and extent. Special care must be taken to introduce
such information to the machine.

Characterisation. By shared data initialisation we understand an operation
that creates a shared data structure in the machine.

Thus a shared data initialisation requirements is an operation on requirements
documents. It applies to a (projected and possibly determined, instantiated,
extended and fitted) domain description, i.e., a domain requirements pre-
scription, and yields an interface requirements prescription, where the latter
prescribes that certain information of the domain is to be represented as a
shared data structure in the machine, and generally how such data is initially
to be set up by the machine.

Example 19.22 Shared Data Initialisation of Railway Net: We rough-sketch
illustrate a case of shared data initialisation based on the rough sketch of
Example 11.8 (Page 23). The software system shall start in an initial state
which — rough-sketching— represents an empty rail net, and “ends” in a state
which includes a representation of an “entire” rail net, i.e., a representation
of all static and dynamic properties of each and every rail unit. In addition
— as will be seen from other parts of these domain requirements5 — it shall
be possible to simply relate rail units to their physical surroundings: whether
the rail runs along a platform, in a tunnel, up/down hill, is curved, etc.; the
pertinent electric train power line segment; etc. A special software subsystem
shall handle the initial establishment of this start state as follows: . . . , etc.

We refer to Exercise 19.11 which asks that you complete the “. . . , etc.”
and provide a formalisation of the above.

The ellipses, . . . , indicate that a longer narrative follows. The whole thing can
furthermore be formalised on the basis of formalisation of the projected, deter-
minate, instantiated, and possibly extended and fitted domain requirements.
We leave that as an exercise (cf. Exercise 19.2).

5 This is not illustrated in these examples.
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19.5.5 Shared Data Refreshment

Shared data, once initialised, usually need be kept updated. The domain —
usually — changes, irrespective of any computing system inserted into it.

Characterisation. By shared data refreshment we understand a machine
operation which, at prescribed intervals, or in response to prescribed events,
updates an (originally initialised) shared data structure.

Thus a shared data refreshment requirements is an operation on requirements
documents. It applies to an interface requirements prescription, where the
latter prescribes that certain information of the domain is to be represented
as a shared data structure in the machine. The shared data refreshment re-
quirements then prescribe how often, and by which means, that shared data
structure is to be refreshed (i.e., updated).

Example 19.23 Shared Data Refreshment of Railway Net: We continue Ex-
ample 19.22 by providing a rough sketch of a shared data refreshment require-
ments. Regular inspections of the wear and tear of the rail net units, signals,
optical gates (and other sensors), road level crossings, etc., shall lead to sim-
ilarly updating of that equipment’s shared data structure, and such regular
inspections shall be prompted by the machine and as prescribed by the re-
quired software. Inspections, with resulting updates, may take place before
the usual expiry of inspection interval. And so on.

We refer to Exercise 19.12 which asks that you complete the “And so on”
and to provide a formalisation of the above.

The ellipses, . . . , indicate that a longer narrative follows. The whole thing
can furthermore be formalised on the basis of formalisation of the interface
requirements resulting from shared data initialisation. We leave that as an
exercise (cf. Exercise 19.11).

19.5.6 Computational Data and Control Interface Requirements

For many applications it is the case that the flow of computations that may be
desired by the users, i.e., the stakeholders, shall be influenced by interaction
between the machine and these users. That is: It is often to be prescribed how
such interaction shall take place, whether by users interrupting the machine,
or the machine polling the users, and what it shall entail, i.e., which com-
putational consequences the user interference shall have. It is this, perhaps
“grey-zone” facet that we call the computational data and control interface.

Characterisation. By computational data and control interface require-
ments we understand requirements which prescribe that certain forms of input
be provided over the user-machine interface, in order to help control the flow
of computation: when to start or stop certain subcomputations, and/or with
which argument data such subcomputations should be carried out, etc.
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The argument data may characterise certain “boundary” conditions, or initial
program points, or other, for such subcomputations.

Example 19.24 Computational Data and Control Interface: We continue
Example 19.22. In that example reference (. . . ) was made to a software sub-
system. It is this software subsystem which, such as we (now) requirements
specify it, needs frequent computational data and control directives from the
person or persons who monitor the input of the mass data. The railway net
is represented, in the machine (database), by geographical area (i.e., area by
area). Input of rail unit data is, in batches, by such areas. Hence a compu-
tational data input specifies that “until further notice” the next many future
unit inputs are intended to “belong” to that area. Another computational
data input (i.e., the “further notice”) specifies “the end” of such a series of
area-specific unit data. Occasionally, during unit data input, that and past
input may need be checked (“vetted”). Hence a computational data input may
specify that such vetting is to be performed,6 and other, immediately subse-
quent computational data input may be prompted as to the specific nature of
the desired checks. Finally, prompts may inquire as to whether further checks
need to be done, or the check series terminated. (We do not here specify the
vetting procedures.)

The computational data and control interface is typically specified, semifor-
mally, by means of message or live sequence charts (MSCs [?,?,?], respectively
LSCs [?, ?, ?]), or by formal RSL/CSP specifications. RSL/CSP was covered in
Vol. 1, Chap. 21. MSC and LSC were covered in Vol. 2, Chap. 13.

19.5.7 Man-Machine Dialogue

Characterisation. By man-machine dialogue requirements we understand
the prescription of the syntax (including sequential structure) and semantics
of the communications (i.e., messages) transferred, in either direction, over
the interface between man and machine, whether communicated textually
through a keyboard (by the human) or on the screen (by machine), by a
mouse or other tactile means (by human), or by voice (by human) or sound
(by machine).

It must be stressed that the man-machine dialogue referred to above sub-
sumes the physiological interfaces mentioned next, but that it emphasises the
sequencing of possibly alternative events and messages. Thus man-machine di-
alogue is “overall” wrt. the individual man-machine physiological events and
messages.

6 We envisage that certain kinds of checks cannot be performed concurrently with
the unit input.
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Example 19.25 Man-Machine Dialogue Requirements: We continue Exam-
ple 19.23.

When, for any rail unit, its wear and tear information becomes older than
six months, a message is to be displayed on the console (screen) of the rail-
way net maintenance group responsible for that rail unit (this is an interface
requirement). This group must respond within 72 hours with the requested
update information (this is a business process reengineering requirement).

Man-machine dialogues are typically specified, semiformally, by means of mes-
sage or live sequence charts (MSCs [?, ?, ?], respectively LSCs [?, ?, ?]), or by
formal RSL/CSP specifications.

19.5.8 Man-Machine Physiological Interface

Humans can, “thanks” to a variety of technological “gadgets”, communicate
with computers in various ways. (i) Besides the conventional keyboard, they
can also communicate by other tactile means: (ii) the “mouse”; (iii) “pointing
with fingers at the screen”; “pressing, with, for example, fingers”, fields of the
screen; etc.; (v) possibly by voice, etc. These technological “gadgets” imply the
man-machine physiological interface. Computers can likewise communicate
with humans by means of graphics and sound.

Characterisation. By man-machine physiological interface we understand
the possibly combined use of three forms of man-machine interfaces: (A)
graphical (visual) user interface, (B) audio (voice, sound) interface and (C)
tactile (keyboard, touch, “point”, button, etc.) interface.

Example 19.26 Man-Machine Physiological Interface Requirements of Rail-
way Net Status Input: We continue Example 19.25. If no update of a rail unit’s
wear and tear status has occurred within 72 hours of its visual display request,
then a series of alarm bells shall sound (...) with one-hour intervals in desig-
nated offices of the railway groups responsible for recording this status, and,
synchronised with this, bright red alarm lamps shall blink in line and station
management offices.

By a graphical user interface (GUI) we understand a visual display unit (VDU,
e.g., a colour screen). Typically the VDU screen can be programmed to dis-
play various “windows”, icons, scroll-down “curtains”, etc., with these being
possibly labelled, and/or providing fields for text (keyboard) input.

Example 19.27 Man-Machine Physiological Interface Requirementsof GUIs
and Databases: Assume that a database records the data which reflects the
topology of some railway net, or that records the contents of a timetable.
Also assume that some graphical user interface (GUI) windows represent the
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interface between man and machine such that items (fields) of the GUI are
indeed “windows” into the underlying database. We prescribe and model, as
an interface requirements, such GUIs and databases, the latter in terms of a
relational, say a SQL, database:

Formal Presentation: GUIs and Databases, I

type
Nm, Pos, Rn, An, Txt
GUI = Nm →m (Item × Pos)
Item = Txt × Imag
Imag = Icon | Curt | Tabl | Wind
Icon == mk Icon(val:Val)
Curt == mk Curt(vall:Val∗)
Tabl == mk Tabl(rn:Rn,tbl:TPL-set)
Wind == mk Wind(gui:GUI)

Annotations:

• A gui:GUI item, irrespective of the position, pos:Pos, of that item on the
screen,

• maps distinct item names, Nm, into items, item:Item.
• An item has some “labeling” text, txt:Txt, and an image, imag:Imag.
• An image, imag:Imag, is either an icon, icon:Icon, a curtain, curt:Curt, a

table, tabl:Tabl, or a window, wind:Wind.
• An icon has a value, mk Icon(val:Val).
• A curtain consists of a list of values, mk Curt(vall:Val∗).
• A table, mk Tabl(rn:Rn,tbl:TPL-set), names the relation, rn:Rn, from

which the set tuples, tbl:TPL-set, of the table are queried.
• A window, mk Wind(gui:GUI), is, hence recursively, a graphical user in-

terface.

Formal Presentation: GUIs and Databases, II

Val = VAL | REF | GUI
VAL = mk Intg(i:Intg) | mk Bool(b:Bool)

| mk Text(txt:Text) | mk Char(c:Char)

Annotations:

• A value (val:Val) is
⋆ either a proper value (in VAL),
⋆ or a reference (to a database entry),
⋆ or a graphical user interface (gui:GUI).
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• A proper value (val:VAL) is
⋆ either an integer (mk Intg(i:Intg)),
⋆ or a Boolean truth (mk Bool(b:Bool)) value,
⋆ or a text string mk Text(txt:Text) value,
⋆ or a character mk Char(c:Char) value.

Formal Presentation: GUIs and Databases, III

RDB = Rn →m TPL-set
TPL = An →m VAL
REF == mk Ref(rn:Rn,an:An,sel:SEL)
SEL = An →m OptVal
OptVal == null | mk Val(val:VAL)

Annotations:

• A relational database (rdb:RDB) maps unique relation names (rn:Rn) into
relations, and these are sets of tuples (tpls:TPL-set).

• A tuple (tpl:TPL) maps unique attribute names into proper values
(val:VAL).

• A reference (is a proper value and) consists of a relation name, (rn:Rn), an
attribute name (an:An) and a selection criterion (sel:SEL).

• A selection criterion (An →m OptVal) is a possibly empty map from at-
tribute names into possibly optional, proper values.

• An optional value is either nil, or is a proper value (mk Val(val:VAL)).

Further on database references: Wherever, in a GUI, there is a reference, it
is the value designated by that reference which is displayed. The reference
relation name designates a relation in the database. The reference attribute
name, an, designates an attribute of any tuple in the designated relation. If
there is a tuple in the relation whose values equal those expressed in the
selector, attribute by attribute, then that tuple’s value at an is the value
displayed; otherwise the optional (i.e., the so-called surrogate) value null is
displayed. That is, the reference is a hidden quantity.

Formal Presentation: GUIs and Databases, IV

value
de ref: REF × RDB → OptVAL
de ref(mk Ref(rn,an,sel))(rdb) ≡

if ∃ tpl:TPL • tpl ∈ rdb(rn)∧tpl/dom sel = sel
then

let tpl:TPL • tpl ∈ rdb(rn)∧tpl/dom sel = sel in
tpl(an) end

else null
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end
pre rn ∈ dom rdb ∧

∃ tpl:TPL•tpl ∈ rdb(rn) ∧ dom sel ∪{an}⊆dom tpl

Annotations:
Further on database references:

• To de reference a database reference
• consisting of a relation name, rn,
• an attribute name, an, and
• a selection criterion, sel,
• is to inquire whether there exists a tuple, tpl,
• in the name relation, rdb(rn),
• for which the selection criterion applies: tpl/dom sel = sel.
• If such a tuple is found, then it is the result of the dereferencing;
• if not, then the null value is yielded.

Icons effectively designate a system operator or a user-definable constant or
variable value, or a value that “mirrors” that found in a relation column
satisfying an optional value (OptVal), and similarly for curtains and tables.
Tables more directly reflect relation tuples (TPL). GUIs (windows) are defined
recursively.

If, for example, the names space values of Nm, Rn, and An, and the chosen
constant texts, Txt, suitably mirror names and phenomena of the domain, then
we may be on our way to satisfying a “classical” user interface requirement,
namely that “the system should be user friendly”.

Thus a definition, much like the one of GUI above, is, in a sense, pulled
out of the “thin” air and presented, without much further ado, as part of an
interface requirements. Where was its domain “counterpart”? Or one might
just be content with the reuse of the above definition.

For a specific interface requirements there now remains the task of relating
all shared phenomena and data to one another via the GUI. In a sense this
amounts to mapping concrete types onto primarily relations, and entities of
these (phenomena and data) onto the icons, curtains, and tables.

Example 19.28 Man-Machine Physiological Interface Requirements: A Spe-
cific GUI for Timetables: We exemplify a very simple GUI. We omit naming
the only three items: (i) the scroll-down curtain which displays (i.e., lists)
the client and staff commands — as well as the no command (nil); (ii) a
prompt field which initially is blank, i.e., nil, but which — depending on the
clicked command name of the scroll-down curtain — lists the command field
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Icon Prompt

CHI

. . .

init

add

delete

Result

Fig. 19.2. An example CHI: staff clicking icon

names for desired values, and for which the user (client or staff) is to provide
appropriate text values; (iii) finally, a result field.

Formal Presentation: Specific GUI of Timetable, I

type
GUI = Curt × Prompt × Result
Curt == browse | display | connection | init | add | delete | nil
Prompt = Query | Update | Conn | nil
Result = RES

Annotations:

• The graphical user interface, gui:GUI, consists of three items:
⋆ a scroll-down curtain, curt:Curt,
⋆ a prompt field, prompt:Prompt,
⋆ and a result field, result:Result.

• A scroll-down curtain in the concrete lists exactly the available query and
update commands possible on a timetable.

• These are designated by the keywords: browse, display, connection, init, add
and delete.

• At most one of these keywords can be selected, i.e., is therefore highlighted.
Thus the above model defines a curtain to be just one of these, or, when
none is selected, the nil option.

• The prompt field, prompt:Prompt, is to contain an appropriate query/up-
date command, as “selected” by the curtain highlight, or nil.

• The result field, res:Result, will contain a result value.

In Example 19.14 we defined the semantics of query and update commands.
We now use these definitions to define the requirements, namely that these
commands obtain their arguments, and, when subject to execution, deliver
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(deposit) their result into the user interface, that is, as part of the GUI. We
exemplify, perhaps rather too extensively, the resulting query and update
function semantics. First the query commands:

Formal Presentation: Specific GUI of Timetable, II

value
client: GUI → TT → GUI
client(,,)(tt) ≡

let icon = browse ⌈⌉ display ⌈⌉ connection in
case icon of:

browse → (browse,mk Brws(),Mq(mk Brws())(tt)),
display

→ let fn:Fn • fn ∈ dom tt ∨ ... in
(display,mk Disp(fn),Mq(mk Disp(fn))(tt)) end,

connection
→ let ℓ:Nat,da,ta:An•{da,ta}⊆Ans(tt) ∧ ... in

(connection,
mk Conn(ℓ,da,ta),

Mq(mk Conn(ℓ,da,ta))(tt)) end
end end

Annotations:

A client, by his own decision, either issues a browse, or a display, or a
connection query.

• If browse then

⋆ it means that the curtain alternative browse has been “clicked”, and is
hence highlighted,

⋆ that the prompt field shows an obviousmk Brws() command, requiring
no arguments,

⋆ and the result field shows the result, Mq(mk Brws())(tt), of interpret-
ing that command on the timetable.

• If display then

⋆ it means that the curtain alternative display has been “clicked”, and is
hence highlighted,

⋆ that a flight number is provided by the client, here shown as nondeter-
ministically selected,

⋆ that the prompt field shows the corresponding display command,
mk disp(fn),

⋆ and the result field shows the result, Mq(mk Disp(fn))(tt), of inter-
preting that command on the timetable.

• If connection then
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⋆ it means that the curtain alternative display has been “clicked”, and is
hence highlighted,

⋆ that the maximum number of flight changes, ℓ, and departure da and
destination ta airports are provided by the client, here shown as non-
deterministically selected,

⋆ that the prompt field shows the corresponding connection command
mk Conn(ℓ,da,ta),

⋆ and the result field shows the result of interpreting that command on
the timetable, Mq(mk Conn(ℓ,da,ta))(tt).

Formal Presentation: Specific GUI of Timetable, III

Then the semantics of update commands wrt. the graphical user interface:

value
staff: GUI → TT → GUI × TT
staff(,,)(tt) ≡

let icon = init ⌈⌉ add ⌈⌉ delete ⌈⌉ ... in
case icon of:

init → let (r,tt′) = Mu(mk init())(tt) in ((init,tt′,r),tt′) end,
add → let fn:Fn,j:Journey • fn 6∈ dom tt ∨ ... in

let (r,tt′) = Mu(mk add(fn,j))(tt) in
((add,mk add(fn,j),r),tt′) end end,

delete → let fn:Fn • fn ∈ dom tt ∨ ... in
let (r,tt′) = Mu(mk del(fn))(tt) in
((delete,mk del(fn),r),tt′) end end

end end

Annotations: We leave annotations as an exercise to the reader.
The semantics functions illustrate the internal nondeterministic choices

that the client, respectively the staff, makes — as seen from the point of view of
the semantics — of the parameters that go into the specific query, respectively
update commands. For the display query it is the choice of the flight number.
For the connection query it is the choice of the maximum number of changes
of flights, as well as the choice of the from (departure, or airport of origin)
and to (destination) airports. For the add journey update it is the choice of
the flight number and the journey (of that flight). For the delete flight update
it is the choice of the flight number.

We “reassemble” the above formula into the previously defined system
function, cf. Example 19.14. Before we had:

Formal Presentation: Specific GUI of Timetable, IV

value
system: TT → Unit
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(let q:Query in let v = Mq(q)(tt) in system(tt) end end)
⌈⌉ (let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end)

Annotations:

• The system nondeterministically (internally, ⌈⌉) chooses
• whether to engage in a q:Query behaviour,
• or in an u:Update behaviour.
• In either case a command is arbitrarily selected and interpreted on the

global timetable tt.
• The system then continues with a possibly updated timetable tt′.

Now we get:

Formal Presentation: Specific GUI of Timetable, V

value
system: GUI → TT → Unit

(let gui′ = client(gui)(tt) in system(gui′)(tt) end)
⌈⌉ (let (gui′,tt′) = staff(gui)(tt) in system(gui′)(tt′) end)

Annotations:

• The system, still nondeterministically (internally, ⌈⌉) chooses, but now be-
tween

• either the client behaviour
• or the staff behaviour.
• In both cases, the system “temporarily” hands either of these behaviours,

the timetable tt.

19.5.9 Machine-Machine Dialogue

The desired machine is usually serving in a context in which it has been fitted
to other machines or to supporting technologies. These may provide sensory
data or accept actuation (i.e., control) data. Some fitted machines may provide
for, or accept mass data transfers. Usually supporting technologies provide for,
or accept rather “small”, i.e., single (simple) data transfers.

Characterisation. By machine-machine dialogue requirements we under-
stand syntax (incl. sequential structure) and semantics (i.e., meaning) of the
communications (i.e., messages) transferred in either direction over the auto-
mated interface between machines (including supporting technologies).
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Example 19.29 Machine-Machine Dialogue Requirements: A Simple Cabin
Tower Rail Switch Monitoring and Control:

This example is from a rather outdated railway station. Today’s railway
stations provide for what is known as interlocking: The simultaneous setting
and resetting of several, i.e., groups of switches and signals.

Rail switches are assumed, upon request, to provide sensory signals, which
report on their state: “straight” or “turn-off”. And these rail switches will
respond to control signals which, within an assumed response time of their
being issued, set the switch to a desired state (“straight” or “turn-off”). The
cabin tower maintains a display which shows the states of all switches in its
associated station. Associated with this cabin tower display are two buttons:
Pressing either of these shall correspond to sending “straight” or “turn-off”
control signals. Only one of these buttons can be pressed in any one-minute
interval. At half-minute intervals each switch reports its status, and that status
shall be reflected in the cabin tower display. When a “straight” or “turn-off”
control button is depressed, then a signal shall be sent to the designated
switch, and that switch shall react accordingly within a 15-second time lapse.
The cabin tower switch display shall sound and flash appropriate alarms if
the switch status, within half a minute, is not the desired (control signalled)
one.

The above example admittedly provides only a very rough sketch indication.
It also “links” up to (that is, strongly depends on related) machine (including
support technology) requirements, as covered next.

Example 19.30 Machine-Machine Dialogue Requirements: Bulk Data Com-
munication: Suppose that an application calls for the massive transfer of data
over noisy distances. That is, the probability that transferred data may be
corrupted, i.e., change value during communication, is considerable. What is
known as a suitable data communication protocol therefore has to be pre-
scribed, one that helps ensure detection of corrupted data so as to enable re-
transmission until it has been decided that a correct, i.e., uncorrupted, transfer
has been completed.

These data communication protocols are of the kind that we would call
machine-machine dialogues. Other than treating this as a metaexample we
shall not go into detail in this book, but refer to, for example, [?] for a more
authoritative treatment.

19.5.10 Discussion: Interface Requirements

Dialogue Prescription Techniques and Tools

We have not, in this section on interface requirements, shown any examples
of, or formalised the dialogue aspects of interface requirements. The term
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interface implies at least two interacting behaviours. Therefore techniques and
tools (i.e., notations) for process modelling are used in such formalisations.
We refer to Vol. 1, Chap. 21 (Concurrent Specification Programming) and
Vol. 2, Chap. 13 (Message and Live Sequence Charts), where we cover formal
tools and techniques for modelling such interaction.

General

We have outlined six reasonably distinguishable facets that the requirements
engineer may need perform in order to construct an interface requirements
prescription. There may be other such facets. The above six have been found
useful in several development projects. Knowing about them, their underly-
ing principles, and their techniques and tools should help the requirements
engineer to more efficiently acquire interface requirements prescriptions, and
to document them, i.e., to structure their documentation logically.

Special Principles and Techniques

Interface requirements, in most people’s minds and expression, are concerned
with so-called “user-friendliness”. That is, interface requirements focus, very
much, on the form of the dialogues and the layout of GUIs. Much can be said
about this. We shall venture our definition of “user-friendliness”.

Characterisation. By a user-friendly man-machine interface we understand
one which somehow satisfies the following criteria:

• Faithful: The interface reflects only the shared phenomena and concepts,
and reflects “absolutely” no machine (i.e., hardware + software) concepts
(i.e., jargon). That is, the terminology used “across” the interface is that
of the domain.

• Didactic: The sequence of presentation of shared phenomena and con-
cepts reflects some clarified view on how these phenomena and concepts
relate, which are the more important ones, and which reflect current or
changing business processes, support technologies, managements and or-
ganisations, rules and regulations, etc.

• Pedagogic: The number of phenomena and concepts presented in any
one step of interaction is small, say from one to at most five. The order of
presentation is initially from core phenomena and concepts to increasingly
derived phenomena and concepts. That order may initially be pedantic,
but is accepted by novice users. For more experienced users means for
clear, logical “shortcuts” should be made available.

• Physiologic: The number of current and alternative physiologic “gad-
gets”7 needed to maintain interaction should be modest and be balanced
against simplicity or complexity of interaction.

7 Screen, keyboard, mouse, other tactile instruments (“pointing to”, pressure-
sensitive screens), audio (i.e., loudspeakers), microphone, etc.
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• Psychologic: Interaction response, incl. prompt times and texts should
not irritate8 or shame the users, or make these users feel inadequate, or
guilty (say, of “not knowing”).

• Artistic: And then it is certainly user-friendly, this author believes, if the
interface reflects some artistic ideas.

The above characterisation is only approximate. We also refer to Sect. ?? for
a discourse on “What Is Art?”.

If referring to special textbooks [?, ?] on the subject, we advise the reader
to pay strict attention to the issues we have raised: Make sure that interface
requirements, when referring to phenomena and concepts, refer “strictly” to
those that are well understood in the domain.

19.6 Machine Requirements

Characterisation. By machine requirements we understand those require-
ments that can be expressed solely in terms of (or with prime reference to)
machine concepts.

19.6.1 Machine Requirements Facets

We shall, in particular, consider the following five kinds of machine require-
ments: performance requirements, dependability requirements, maintenance
requirements, platform requirements and documentation requirements. There
may be other kinds of machine requirements, but these suffice to sharpen our
quest for comprehensive requirements. And there may be machine require-
ments which are “not quite” one or the other of the kinds listed above, or
which also contain (albeit minor) uses of terms of the domain without being
“typical” interface requirements.9 We now cover each of the main kinds of
machine requirements identified above.

19.6.2 Machine Requirements and the Requirements Document

Some remarks need to be made before we go into details of domain require-
ments modelling techniques.

8 The response to a user query, which took the user maybe a minute to prepare,
should not follow the submission of that query in the order of microseconds, rather
1.5–3 seconds is more pleasing, psychologically. For short, “click”-type “queries”,
response times of 100 milliseconds seem OK.

9 The use of domain terms, for us still to claim that the requirements are proper
machine requirements, must be of generic nature, that is, they can be substituted
by terms from other domains without changing the real nature of the machine
requirements.
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Requirements for “the Machine Only”

Machine requirements are about the machine only! They, the machine require-
ments, “in the extreme” contain no references to any specific aspect of the
domain.

But there may be general references, and they could be of the same nature
for whichever domain was the base, such as, such and such function invocations
shall terminate in less than m microseconds, whereas such and such function
invocations shall terminate in less than n seconds. Or, such and such data
shall be replicated for back-up reasons, or auxiliary storage for performing
such and such functions shall be less than 500 KB.

The machine requirements all take their “departure point”, that is, are
based upon, potentially available machine technology, whether central, or dis-
tributed, or input/output, or peripheral.

Place in Narrative and Formalisation Document

In Sects. 19.6.3–19.6.8 we shall treat a number of machine requirements facets.
Each of whichever you decide to focus on, in any one requirements develop-
ment, must be prescribed.

The machine requirements are really void of any (material) reference to
domain phenomena and concepts. Hence the machine requirements prescrip-
tions form a separate, “freestanding” document. That document must de-
scribe both the machine component (i.e., hardware, and software) interfaces
and functionalities (the latter, say, in pre/postcondition form).

19.6.3 Performance Requirements

Characterisation. By performance requirements we mean machine require-
ments that prescribe storage consumption, (execution, access, etc.) time con-
sumption, as well as consumption of any other machine resource: number of
CPU units (incl. their quantitative characteristics such as cost, etc.), number
of printers, displays, etc., terminals (incl. their quantitative characteristics),
number of “other”, ancillary software packages (incl. their quantitative char-
acteristics), of data communication bandwidth, etcetera.

Pragmatically speaking, performance requirements translate into financial re-
sources spent, or to be spent.

Example 19.31 Performance Requirements: Timetable System Users and
Staff — Narrative Prescription Unit: We continue Example 19.16. The ma-
chine shall serve 1000 users and 1 staff member. Average response time shall
be at most 1.5 seconds, when the system is fully utilised.
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Till now we may have expressed certain (functions and) behaviours as generic
(functions and) behaviours. From now on we may have to “split” a specified
behaviour into an indexed family of behaviours, all “near identical” save for
the unique index. And we may have to separate out, as a special behaviour,
(those of) shared entities.

Example 19.32 Performance Requirements: Timetable System Users and
Staff: We continue Example 19.14 and Example 19.31. In Example 19.14 the
sharing of the timetable between users and staff was expressed parametrically.

Formal Presentation: Timetable System Users and Staff, I

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡ let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) = Mu(u)(tt) in system(tt′) end end

We now factor the timetable entity out as a separate behaviour, accessible,
via indexed communications, i.e., channels, by a family of client behaviours
and the staff behaviour.

Formal Presentation: Timetable System Users and Staff, II

type
CIdx /∗ Index set of, say 1000 terminals ∗/

channel
{ ct[ i ]:QU,tc[ i ]:VAL | i:CIdx }
st:UP,ts:RES

value
system: TT → Unit
system(tt) ≡ time table(tt) ‖ (‖ {client(i)|i:CIdx}) ‖ staff()

client: i:CIdx → out ct[ i ] in tc[ i ] Unit
client(i) ≡ let qc:Query in ct[ i ]!Mq(qc) end tc[ i ]?;client(i)

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in {ct[ i ]|i:CIdx},st out {tc[ i ]|i:CIdx},ts Unit
time table(tt) ≡
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⌈⌉⌊⌋ {let qf = ct[ i ]? in tc[ i ]!qf(tt) end | i:CIdx}
⌈⌉⌊⌋ let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

Please observe the “shift” from using ⌈⌉ in system earlier in this example
to ⌈⌉⌊⌋ just above. The former expresses nondeterministic internal choice. The
latter expresses nondeterministic external choice. The change can be justified
as follows: The former, the nondeterministic internal choice, was “between”
two expressions which express no external possibility of influencing the choice.
The latter, the nondeterministic external choice, is “between” two expressions
where both express the possibility of an external input, i.e., a choice. The latter
is thus acceptable as an implementation of the former.

The next example, Example 19.33, continues the performance requirements
expressed just above. Those two requirements could have been put in one
phrase, i.e., as one prescription unit. But we prefer to separate them, as they
pertain to different kinds (types, categories) of resources: terminal + data
communication equipment facilities versus time and space.

Example 19.33 Performance Requirements of Storage and Speed for n-
Transfer Travel Inquiries: We continue Example 19.16. When performing the
n-Transfer Travel Inquiry (rough sketch) prescribed above, the first — of an
expected many — result shall be communicated back to the inquirer in less
than 5 seconds after the inquiry has been submitted, and, at no time dur-
ing the calculation of the “next” results must the storage buffer needed to
calculate these exceed around 100,000 bytes.

19.6.4 Dependability Requirements

To properly define the concept of dependability we need first introduce and
define the concepts of failure, error, and fault.

Characterisation. A machine failure occurs when the delivered service de-
viates from fulfilling the machine function, the latter being what the machine
is aimed at [?].

Characterisation. An error is that part of a machine state which is liable to
lead to subsequent failure. An error affecting the service is an indication that
a failure occurs or has occurred [?].

Characterisation. The adjudged (i.e., the ‘so-judged’) or hypothesised cause
of an error is a fault [?].

The term hazard is here taken to mean the same as the term fault.
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One should read the phrase: “adjudged or hypothesised cause” carefully:
In order to avoid an unending trace backward as to the cause,10 we stop at
the cause which is intended to be prevented or tolerated.

Characterisation. The service delivered by a machine is its behaviour as
it is perceptible by its user(s), where a user is a human, another machine or
a(nother) system which interacts with it [?].

Characterisation. Dependability is defined as the property of a machine
such that reliance can justifiably be placed on the service it delivers [?].

We continue, less formally, by characterising the above defined concepts [?].
“A given machine, operating in some particular environment (a wider system),
may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given
machine constitutes a failure”.

The concept of dependability can be simply defined as “the quality or
the characteristic of being dependable”, where the adjective ‘dependable’ is
attributed to a machine whose failures are judged sufficiently rare or insignif-
icant.

Impairments to dependability are the unavoidably expectable circum-
stances causing or resulting from “undependability”: faults, errors and fail-
ures. Means for dependability are the techniques enabling one to provide the
ability to deliver a service on which reliance can be placed, and to reach con-
fidence in this ability. Attributes of dependability enable the properties which
are expected from the system to be expressed, and allow the machine quality
resulting from the impairments and the means opposing them to be assessed.

Having already discussed the “threats” aspect, we shall therefore discuss
the “means” aspect of the dependability tree.

• Attributes:
⋆ Accessibility
⋆ Availability
⋆ Integrity
⋆ Reliability
⋆ Safety
⋆ Security

• Means:
⋆ Procurement

· Fault prevention

10 An example: “The reason the computer went down was the current supply did
not deliver sufficient voltage, and the reason for the drop in voltage was that
a transformer station was overheated, and the reason for the overheating was a
short circuit in a plant nearby, and the reason for the short circuit in the plant
was that . . . , etc.”
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· Fault tolerance
⋆ Validation

· Fault removal
· Fault forecasting

• Threats:
⋆ Faults
⋆ Errors
⋆ Failures

Despite all the principles, techniques and tools aimed at fault prevention,
faults are created. Hence the need for fault removal. Fault removal is itself
imperfect. Hence the need for fault forecasting. Our increasing dependence on
computing systems in the end brings in the need for fault tolerance. We refer
to special texts [?,?,?] on the above four topics.

Characterisation. By a dependability attribute we shall mean either one of
the following: accessibility, availability, integrity, reliability, robustness, safety
and security. That is, a machine is dependable if it satisfies some degree of
“mixture” of being accessible, available, having integrity, and being reliable,
safe and secure.

The crucial term above is “satisfies”. The issue is: To what “degree”? As we
shall see — in a later section — to cope properly with dependability require-
ments and their resolution requires that we deploy mathematical formula-
tion techniques, including analysis and simulation, from statistics (stochastics,
etc.).

In the next seven subsections we shall characterise the dependability at-
tributes further. In doing so we have found it useful to consult [?].

Accessibility

Usually a desired, i.e., the required, computing system, i.e., the machine, will
be used by many users — over “near-identical” time intervals. Their being
granted access to computing time is usually specified, at an abstract level, as
being determined by some internal nondeterministic choice, that is: essentially
by “tossing a coin”! If such internal nondeterminism was carried over, into an
implementation, some “coin tossers” might never get access to the machine.

Characterisation. A system being accessible — in the context of a machine
being dependable — means that some form of “fairness” is achieved in guar-
anteeing users “equal” access to machine resources, notably computing time
(and what derives from that).
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Example 19.34 Accessibility Requirements: Timetable Access: Based on
Examples 19.14 and 19.16, we can express: The timetable (system) shall be
inquirable by any number of users, and shall be updateable by a few, so au-
thorised, airline staff. At any time it is expected that up towards a thousand
users are directing queries at the timetable (system). And at regular times,
say at midnights between Saturdays and Sundays, airline staff are making
updates to the timetable (system). No matter how many users are “on line”
with the timetable (system), each user shall be given the appearance that that
user has exclusive access to the timetable (system).

Availability

Usually a desired, i.e., the required, computing system, i.e., the machine, will
be used by many users — over “near-identical” time intervals. Once a user has
been granted access to machine resources, usually computing time, that user’s
computation may effectively make the machine unavailable to other users —
by “going on and on and on”!

Characterisation. By availability — in the context of a machine being de-
pendable — we mean its readiness for usage. That is, that some form of
“guaranteed percentage of computing time” per time interval (or percentage
of some other computing resource consumption) is achieved — hence some
form of “time slicing” is to be effected.

Example 19.35 Availability Requirements: Timetable Availability: We con-
tinue Examples 19.14, 19.16, and 19.34: No matter which query composition
any number of (up to a thousand) users are directing at the timetable (sys-
tem), each such user shall be given a reasonable amount of compute time
per maximum of three seconds, so as to give the psychological appearance
that each user — in principle — “possesses” the timetable (system). If the
timetable system can predict that this will not be possible, then the system
shall so advise all (relevant) users.

Integrity

Characterisation. A system has integrity — in the context of a machine
being dependable — if it is and remains unimpaired, i.e., has no faults, errors
and failures, and remains so, without these, even in the situations where the
environment of the machine has faults, errors and failures.

Integrity seems to be a highest form of dependability, i.e., a machine having
integrity is 100% dependable! The machine is sound and is incorruptible.
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Reliability

Characterisation. A system being reliable — in the context of a machine
being dependable — means some measure of continuous correct service, that
is, measure of time to failure.

Example 19.36 Timetable Reliability: Mean time between failures shall be
at least 30 days, and downtime due to failure (i.e., an availability require-
ments) shall, for 90% of such cases, be less than 2 hours.

Safety

Characterisation. By safety — in the context of a machine being depend-
able — we mean some measure of continuous delivery of service of either
correct service, or incorrect service after benign failure, that is: Measure of
time to catastrophic failure.

Example 19.37 Timetable Safety: Mean time between failures whose result-
ing downtime is more than 4 hours shall be at least 120 days.

Security

We shall take a rather limited view of security. We are not including any
consideration of security against brute-force terrorist attacks. We consider
that an issue properly outside the realm of software engineering.

Security, then, in our limited view, requires a notion of authorised user,
with authorised users being fine-grained authorised to access only a well-
defined subset of system resources (data, functions, etc.). An unauthorised
user (for a resource) is anyone who is not authorised access to that resource.

A terrorist, posing as a user, should normally fail the authorisation crite-
rion. A terrorist, posing as a brute-force user, is here assumed to be able to
capture, somehow, some authorisation status. We refrain from elaborating on
how a terrorist might gain such status (keys, passwords, etc.)!

Characterisation. A system being secure — in the context of a machine
being dependable — means that an unauthorised user, after believing that he
or she has had access to a requested system resource: (i) cannot find out what
the system resource is doing, (ii) cannot find out how the system resource is
working and (iii) does not know that he/she does not know! That is, prevention
of unauthorised access to computing and/or handling of information (i.e.,
data).
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The characterisation of security is rather abstract. As such it is really no
good as an a priori design guide. That is, the characterisation gives no hints
as how to implement a secure system. But, once a system is implemented,
and claimed secure, the characterisation is useful as a guide on how to test
for security!

Example 19.38 Security Requirements: Timetable Security: We continue
Examples 19.14, 19.16, 19.34, and 19.35. Timetable users can be any air-
line client logging in as a user, and such (logged-in) users may inquire the
timetable. The timetable machine shall be secure against timetable updates
from any user. Airline staff shall be authorised to both update and inquire,
in a same session.

Example 19.39 Security Requirements: A Hospital Information System:
General access to (including copying rights of) specially designated parts of
a(ny) hospital patient’s medical journals is granted, in principle, only to cor-
respondingly specially designated hospital staff. In certain forms of (otherwise
well-defined) emergency situations any hospital paramedic, nurse or medical
doctor may “hit a panic button”, getting access to a hospital patient’s med-
ical journal, but with only viewing, not copying rights. Such incidents shall
be duly and properly recorded and reported, such that proper postprocessing
(i.e., evaluation) of such “panic button” accesses can take take place.

Robustness

Characterisation. A system is robust — in the context of dependability —
if it retains its attributes after failure, and after maintenance.

Thus a robust system is “stable” across failures and “across” possibly inter-
vening “repairs” and “across” other forms of maintenance.

• • •

Fault Analysis: In pursuing the formulation of requirements for dependable
systems it is often required that the requirements engineer perform what is
called fault analysis. A particular approach is called fault tree analysis. De-
pendable systems development is worth a whole study in itself. So we cut short
our mentioning of this very important subject by emphasising its importance
and otherwise referring the reader to the relevant literature. A good introduc-
tion to the issues of safety analysis in the context of formal techniques is [?].
We strongly recommend this source — also for references to “the relevant
literature”.
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19.6.5 Fault Tree Analysis

Source: Kirsten Mark Hansen

This example was kindly provided by Kirsten Mark Hansen. It is edited from
Chap. 4 of her splendid PhD Thesis [?].

Fault tree analysis is one of the most widely used safety analysis techniques.
It presumes a hazard analysis, which has revealed the catastrophic system
failures [?]. For each system failure, it deduces the possible combinations of
component failures which may cause this failure.

Fault tree analysis is a graphical technique, in which fault trees are drawn
using a predefined set of symbols. The graphic representation may be appeal-
ing, but it also causes the fault trees to be big and unmanageable.

A fault tree analysis is closely related to a system model, as the different
levels of system abstraction are reflected in the tree. The root corresponds
to a system failure, and the immediate causes of this failure are deduced as
logical combinations (conjunction and disjunction) of failures of the system
components.

Display

Buttons

Pulse

Generator

Electronics

Beeper

Fig. 19.3. Alarm clock

Figure 19.3 shows an alarm clock which is built from the components: A
display, some buttons, a pulse generator, some electronics, and a beeper. A
fault tree analysis of the failure of the alarm clock failing to activate the alarm
is presented in Fig. 19.4. The causes of this failure may either be the beeper
failing; the pulse generator not generating the right pulses; the electronics
failing, either by not activating the beeper or by not registering the buttons
pushed; or the buttons failing. We assume that the display has no impact on
this failure. Each of the components may again be considered as a system
consisting of components. The analysis stops when a component is considered
to be atomic.

A minimal cut set of a fault tree is the smallest combination of component
failures which, if they all occur, will cause the top event to occur. Smallest
means that if just one component failure is missing from the cut set, then the
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Alarm clock does not
activate the alarm

OR

Pulse generator fails Electronics failBeeper fails Button fails

OR

activate beeper
Electronics do not

button pushed
Electronics do not register

Fig. 19.4. Fault tree for an alarm clock

top event does not occur. The fault tree in Fig. 19.4 has five minimal cut sets,
each containing a leaf as its only element. Two fault trees are defined to be
equivalent if they have the same minimal cut sets.

A concept related to the minimal cut set is the minimal path set. A minimal
path set is the smallest combination of primary events whose non-occurrence
assures the non-occurrence of the top event. The fault tree in Fig. 19.4 has
one minimal path set containing all the leaves of the tree.

As fault trees are used to analyse safety-critical systems for safety, it is
important that they have an unambiguous semantics. We will later illustrate
that often this is not the case. The aim of this chapter is therefore to assign
a formal semantics to fault trees, and to illustrate how such a semantics may
be used in the formulation of system safety requirements. The main reference
in this chapter is the fault tree handbook [?], which has been used intensively
in defining the syntax and the semantics of fault trees.

Some of the nodes of a fault tree are called events by safety analysts. In
order to avoid confusion, we stress that we use the safety analysis meaning
of the term event, namely the occurrence of a system state, rather than the
computer science meaning of an event, namely a transition between two states.

Fault Tree Syntax

A fault tree analysis consists of building fault trees by connecting nodes from
a predefined set of node symbols by directed edges. Edges are directed in the
sense that for a given node the child nodes are called input nodes, and the
father node is called the output node. The node symbols are divided into three
groups: event symbols, gate symbols, and transfer symbols. We describe each
of the groups separately.
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Event Symbols

The event symbols are divided into primary event symbols and intermediate
event symbols, where the primary event symbols are the leaves of the tree.

Primary events: The primary event symbols are shown in Fig. 19.5.

Conditioning event Undeveloped eventBasic event External event

Fig. 19.5. Primary event symbols

• Basic event: A basic event contains an atomic component failure.
• Conditioning event: Conditioning events are most often used as input

to PRIORITY AND and to INHIBIT gates. When used as input to a
PRIORITY AND gate, the condition event is used to specify the order in
which the input events must occur.

• Undeveloped event: An undeveloped event contains a non-atomic com-
ponent failure. The fault tree is not developed further from this event due
to lack of time, money, interest, etc. The component is not atomic, so it is
possible later to develop the event further.

• External event: The content of an external event is not a failure, but
something that is expected to occur in the system environment.

Intermediate events: The intermediate events consist only of one symbol,
namely the intermediate event symbol, a rectangular box. Intermediate events
cannot be found in the leaves of a fault tree.

Gate Symbols

Gate symbols designate Boolean combinators. They are shown in Fig. 19.6.

... ... ......

PRIORITY
AND

INHIBITANDOR XOR

Fig. 19.6. Gate symbols

OR gate: The informal description of an OR gate is that the output event
occurs when at least one of the input events occur. An OR gate may have any
number of input events. Fig. 19.4 is an example of a fault tree with two OR
gates.
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AND gate: The informal description of an AND gate is that the output event
occurs only when all the input events occur. An AND gate may have any
number of input events. Fig. 19.7 is an example of a fault tree with an AND
gate. This fault tree states that all brakes on a bike have failed, when both
the foot brake “and” the hand brake have failed.

All brakes on bicycle failed

AND

Foot brake failed Hand brake failed

Fig. 19.7. Fault tree with AND gate

INHIBIT gate: An INHIBIT gate is a special case of an AND gate. An IN-
HIBIT gate has one input event and one condition. The output event occurs
when both the input event occurs and the condition is satisfied. In the fault
tree in Fig. 19.8, the chemical reaction goes to completion when all reagents
and the catalyst are present.

INHIBIT

goes to completion
Chemical reaction

All reagents
are present

Catalyst
is present

Fig. 19.8. Fault tree with INHIBIT gate

XOR (exclusive or) gate: The output event occurs only if exactly one of the
input events occurs. If more than one of the input events occur, the output
event does not occur. An XOR gate may have any number of input events.
Fig. 19.9 shows a fault tree with an XOR gate. This fault tree states that a
train is not at the platform, either if the train is ahead of the platform, or if
it is behind the platform. Since the (specific) train cannot be at both places
it is exactly at one or the other.

PRIORITY AND gate: The output event occurs only if all the input events
occur, and if they occur in a left to right order. A PRIORITY AND gate may
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XOR

Train is ahead
of the platform

Train is behind
the platform

at the platform
Train is not

Fig. 19.9. Fault tree with XOR gate

have any number of input events. The fault tree in Fig. 19.10 states that the
door is locked if the door is (first) closed and the key is (then) turned.

Door is closed Key is turned

Door is locked

AND
PRIORITY

Fig. 19.10. Fault tree with PRIORITY AND gate

Fault Tree Semantics

In our attempt to give fault trees a formal semantics, we discovered that
the accepted informal descriptions of fault tree gates are ambiguous, allowing
several very different interpretations. For instance, the semantics of an AND
gate is defined as [?]: “The output fault occurs only if all the input faults
occur”; but what does this mean? Does it mean that all input faults have to
occur at the same time, or does it mean that all input faults have to occur,
but that they need not overlap in time? Does the output fault necessarily
occur when the input faults occur? Clearly such uncertainty is not desirable
when dealing with safety-critical systems. In this section we therefore give
fault trees a formal semantics.

Primary Events

The first step in assigning a formal semantics to fault trees is to define a model
of the system on which the fault tree analysis is performed. Assume that we
have defined such a model and that it takes the form of system states evolving
over time. (This “system states evolving over time” model is the basis for the



19.6 Machine Requirements 167

duration calculus [?, ?]. We refer to Chap. 15, Vol. 2, for an introduction to
the duration calculus.) Using this model, we interpret the leaves of a fault
tree, i.e., the basic events, the undeveloped events, the conditioning events,
and the external events as duration calculus formulas. Such a formula may
for instance be:

• the constants true, false
• occurrence of a state P , i.e., ⌈P ⌉
• occurrence of a transition to state P , i.e., ⌈¬P ⌉; ⌈P ⌉
• lapse of a certain time, i.e., ℓ ≥ (30 + ǫ), or
• a limit of some duration, i.e.,

∫
P ≤ 4× ǫ.

We consider the distinction between the different types of leaves to be prag-
matic, describing why the fault tree has not been developed further from the
that leaf, and therefore we make no distinction between the types of the leaves
in the semantics.

Intermediate Events

The semantics of intermediate events is defined by the semantics of the leaves,
edges, and gates in the subtrees in which the intermediate events are the roots.
Intermediate events are merely names for the corresponding subtrees.

Edges

We now consider the meaning of the intermediate event, A, connected to an
event, B, by an edge, see Fig. 19.11.

A

B

Fig. 19.11. Fault tree with no gates

Assume that the semantics of B is B. We then define the semantics of A to
be

A = B,

i.e., as logical identity, meaning that the system failure A occurs when the
failure B occurs. This semantics is pessimistic in the sense that it assumes
that if something has a possibility of going wrong, then it does go wrong.
Informal readings of fault trees often state that it is not mandatory that A
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holds when B holds [?,?], which is formalised as A⇒ B. This semantics allows
an optimistic interpretation of fault trees in the sense that a system failure
may be avoided if the operator intervenes fast enough, has enough luck, etc.
In our opinion, speed, luck, and the like should not be parameters in safety-
critical systems, and we have therefore rejected this semantics. Another issue
is whether A and B occur at the same time or if there is some delay from the
occurrence of B to the occurrence of A. Often there will be such a delay, but
we have refrained from modelling it, as this again would give the impression
that once B has occurred there is a chance that A can be prevented.

Gates

We now consider the semantics of intermediate events connected to other
events through gates.

OR: For the fault tree in Fig. 19.12 assume that the semantics of B1, . . . , Bn

is B1, . . . , Bn. We define the semantics of A to be

.
.
.

...

A

B1 B2 Bn

OR

Fig. 19.12. Fault tree with OR gate

A = B1 ∨ . . . ∨Bn,

i.e., A holds iff either B1 or . . . or Bn holds. This interpretation shows that an
OR gate introduces single point failure. The failure occurs if just one of the
formulas holds.

AND: In the fault tree in Fig. 19.13 assume that the semantics of B1, . . . , Bn

is B1, . . . , Bn.
We then define the semantics of A to be

A = B1 ∧ . . . ∧Bn,

i.e., A holds iff B1, . . . , Bn hold simultaneously. We have considered a more
liberal interpretation of AND gates in which B1 to Bn need not hold simul-
taneously, namely A = ✸B1 ∧ . . . ∧ ✸Bn. This has been rejected since this
formula “remembers any occurrence of a Bi”, such that if B2 becomes true 1
year after B1, and B3 becomes true 3 years after B2, and . . . , then A holds.
This is clearly not the intended meaning of an AND gate.
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.
.
.

...

A

B1 B2 Bn

AND

Fig. 19.13. Fault tree with AND gate

INHIBIT: We only consider INHIBIT gates in which the condition is not a
probability statement. According to the fault tree handbook, [?], the fault tree

INHIBIT

A

B1

B2

Fig. 19.14. Fault tree with INHIBIT gate

in Fig. 19.14 reads: “If the output A occurs then the input B1 has occurred
in the past while condition B2 was true”. We interpret this to be if A holds,
then both B1 and B2 hold, i.e., as an AND gate with B1 and B2 as inputs.
Thus the semantics of an INHIBIT gate is

A = B1 ∧B2.

XOR: A fault tree with an XOR gate is given in Fig. 19.15 (left). According

A

B1 B2

A

B1 B2

XOR OR Not both B1 AND B2

Fig. 19.15. Fault trees. Left with XOR gate. Right with OR gate and Condition
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to the fault tree handbook, [?], this tree may be drawn as in the same figure
to the right, in which “Not both B1 AND B2” is a necessary condition for
the root formula to hold. As for the INHIBIT gate we interpret the condition
“Not both B1 AND B2” as a leaf which should also hold. By interpreting “Not
both B1 AND B2” as ¬(B1 ∧B2), we obtain the semantics

A = (B1 ∨B2) ∧ ¬(B1 ∧B2)

which may be rewritten to

A = (B1 ∧ ¬B2) ∨ (¬B1 ∧B2).

This generalises to

A = (B1 ∧ ¬(B2 ∨ . . . ∨Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨Bn−1)).

PRIORITY AND: A fault tree with a PRIORITY AND gate is given in
Fig. 19.16. The informal semantics states that the output event occurs if

.
.
.

...

A

B1 B2 Bn

PRIORITY
AND

Fig. 19.16. Fault tree with PRIORITY AND gate

all the input events occur in a left to right order. Assuming that B1, . . . , Bn

have the semantics B1, . . . , Bn, we define the semantics of A to be

A = B1 ∧✸(B2 ∧✸(B3 ∧ . . . ∧✸Bn) . . .).

Refinement

As we saw in the beginning of this section, fault trees are often used to model
system failures at different abstraction levels, Figs. 19.3 and 19.4.

If there is a shift in abstraction levels in a fault tree, we require that it
is indicated by a dashed line connecting a root in one tree (concrete model)
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to a leaf in another tree (abstract model) as in Fig. 19.17. (In that figure we
have “abstracted” the Boolean combinators: BCx, BCy, BCz are either of OR,
AND, PRIORITY AND, INHIBIT or XOR.)

A

A1 A2

B

B1 B2

C

C1 C2

BCx

BCy

BCz

Fig. 19.17. Fault tree with three abstraction levels

We consider such a dashed line to connect two fault trees, where each of
the fault trees is defined in one system model. For each of the fault trees,
the semantics of the tree is defined as described previously. The dashed line
indicates a refinement relation between the systems for which the fault tree
analysis is performed. Consider the simple fault tree in Fig. 19.18 in which A
has the semantics A and is defined by the state functions V ara, and B has
the semantics B and is defined by the state functions V arb.

Assume that V ara is a subset of V arb. As a fault tree describes the un-
desired system behaviours, i.e., ¬A for the abstract system, and ¬B for the
concrete system, the refinement relation between the two systems is given by

¬B ⇒ ¬A
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A

B

Fig. 19.18. Simple fault tree with refinement

where ¬A is interpreted over the domain V arb. It is equivalent to

A⇒ B.

If the state functions of the concrete system, B, relate to the state functions
of the abstract system, A, through a transformation φ, then the refinement
relation under transformation is interpreted over V ara ∪V arb and is given by

φ ∧ ¬B ⇒ ¬A

which is equivalent to

φ ∧ A⇒ B.

In Fig. 19.17, assume that A1 has the semantics A1, A2 has the semantics A2,
B1 has the semantics B1, etc., then it may be deduced from the semantics of
fault trees that A has the semantics A1∨A2, B has the semantics B1∧B2 and
C has the semantics C1 ∨ C2. Further assume that the fault tree containing
the A’s is defined in model 1, which has the state functions V ara; the fault
tree containing the B’s is defined in model 2, which has the state functions
V arb; and the fault tree containing the C’s is defined in model 3, which has
the state functions V arc. Further assume that V arb relates to V ara through
the transformation φ, and that V arb is a subset of V arc. The proof obligations
that arise from the fault tree are therefore

φ ∧ A2 ⇒ B1 ∧B2

which is interpreted over V ara ∪ V arb, and

B1 ⇒ C1 ∨ C2

in which B1 is interpreted over V arc.
In program development the chain of refinements is from true towards

false. For fault trees the refinements from the top towards the bottom are
from false towards true. The reason for this is that fault trees specify the
undesired system states, whereas program development specifies the desired
system states.
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Deriving Safety Requirements

Traditionally, fault trees are used to analyse existing system designs with
regard to safety. Instead of first developing a design, and then performing
a safety analysis, we propose that the design and the safety analysis should
be developed concurrently, thereby making it possible to let the fault tree
analysis influence the design. In order to do this, the fault tree analysis and
the system design must at each abstraction level use the same system model.
Given a common model, the system safety requirements may be deduced from
the fault tree analysis. Safety requirements derived in this way can be used
during system development in order to validate the design, but they can also
be used in a constructive way by influencing the design. We illustrate this
below.

For each fault tree in which the root is interpreted as S, the system should
be designed such that S never occurs, i.e., the safety commitment which the
system should implement is

✷¬S.

If we have n fault trees in which the roots are interpreted as S1, . . . , Sn, the
safety commitment which may be deduced from these fault trees is

✷¬S1 ∧ . . . ∧ ✷¬Sn,

i.e., the system should ensure that no top event in any fault tree ever holds.
This corresponds to combining the trees by an OR gate.

Deriving Component Requirements

Assume that we have a fault tree like the one in Fig. 19.11, and that the safety
commitment is ✷¬A. As the fault tree has the semantics A = B, ✷¬A must
be implemented by implementing ✷¬B. If the fault tree contains gates, the
derived specifications depend on the types of the gates.

OR gates: The fault tree in Fig. 19.12 has the semantics A = B1 ∨ . . . ∨Bn.
In order to make the system satisfy the safety commitment ✷¬A, we must
implement

✷¬(B1 ∨ . . . ∨Bn)

or equivalently

✷¬B1 ∧ . . . ∧ ✷¬Bn.

This formula expresses that the system only satisfies its safety commitments
if all its components satisfy their local safety commitments. Now suppose that
the designer cannot control the first component, i.e., it is outside the scope
of the design of that component whether it satisfies B1 or not. Making the
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safe choice of B1 being true causes ✷¬B1 to be false, which trivially implies
that the safety commitment is violated. Making the tacit assumption that B1

is false is a very poor judgment, which essentially ignores the results of the
safety analysis. The only reasonable option is to weaken the specification. We
assume that the behaviour of the first component never satisfies B1, i.e., that
✷¬B1 is true. To make the design team aware of this assumption, we add it to
the environment assumptions. So, if the design involved the assumptions Asm
before this design step, we have assumptions Asm ∧ ✷¬B1 afterwards. The
specification of the requirements Asm ⇒ Com has thus been weakened, to
Asm ∧✷¬B1 ⇒ Com, and the designer should alert the appropriate persons
as to this change in assumptions. Many design errors are located on interfaces.
The interface is made clearer and the likelihood of errors is reduced if one has
an explicit list of assumptions and adds to this list as the system development
progresses.

AND gates: Bear in mind that the fault tree in Fig. 19.13 has the semantics
A = B1 ∧ B2 ∧ . . . ∧ Bn and assume that the safety commitment is ✷¬A.
This safety commitment corresponds to specifying that the components never
satisfy their duration formulas at the same time, i.e.,

✷¬(B1 ∧B2 ∧ . . . ∧Bn).

One way to implement this is to implement the stronger formula

✷¬B1 ∨ ✷¬B2 ∨ . . . ∨ ✷¬Bn,

i.e., to design at least one of the components such that it always satisfies its
local safety commitment. Often, the designer does not control all the input
components of an AND gate. For such components a safe approach is to
assume the worst case, namely that the component is in a critical state and
thereby contributes to violation of the safety commitment. Let us for instance
assume in the case of the fault tree in Fig. 19.13 that the first component is
uncontrollable. The worst case is that the component satisfies B1, i.e., that

✷¬(true ∧B2 ∧ . . . ∧Bn)

meaning that the designer has to implement

✷¬(B2 ∧ . . . ∧Bn).

If it is not possible to make such an implementation, a final solution is to
assume that B1 always is false, and then see to it that this is implemented in
another component by adding it to the list of assumptions, i.e., if we had the
assumptions Asm before this design step, we have the assumptions Asm ∧
✷¬B1 afterwards. One should, at some point, arrive at a conjunction of Bi’s
which can be used in the design. Otherwise we must conclude that the system
is inherently unsafe. If the design relies on the absence of only one Bi, it is a
design which is vulnerable to single point failures.
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INHIBIT gates: As the semantics of INHIBIT gates are the same as for AND
gates, the derivations of safety requirements for INHIBIT gates are the same
as for AND gates.

XOR gates: An event A which is output from an XOR gate which has
B1, . . . , Bn as input events has the semantics

A = (B1 ∧ ¬(B2 ∨ . . . ∨Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨Bn−1)).

A safety commitment ✷¬A must be implemented by

✷¬ ((B1 ∧ ¬(B2 ∨ . . . ∨Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨Bn−1)))

which is equivalent to

✷ ((¬B1 ∨B2 ∨ . . . ∨Bn)
∧
...
∧
(¬Bn ∨B1 ∨ . . . ∨Bn−1)).

This means that the designer has to make the design such that for every
observation interval either all the input events are false, or at least two of the
input events are true at the same time, i.e.,

✷(All-false ∨Two-true)

where

All-false ≡ ¬(B1 ∨ . . . ∨Bn),

Two-true ≡ ((B1 ∧B2) ∨ . . . ∨ (B1 ∧Bn)
∨
...
∨
(Bn ∧B1) ∨ . . . ∨ (Bn ∧Bn−1)).

Now assume that one of the components is uncontrollable, i.e., the designer
cannot control whether, e.g., B1 is true or not. If the Exclusive Or (XOR)
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gate has more than two input events, then the design may be made such that
two of the other input events are always true. If this is not possible (perhaps
because the XOR gate only has two input events), the designer either has to
assume that B1 is false and then make the design such that the rest of the
B’s are always false, or assume that B1 is true and then make the design
such that one of the other input events is always true. In either case, he has
to make the rest of the design team aware of the assumption by adding it
to the list of assumptions about the environment. So, if the design involved
the assumptions, Asm, before this design step, and if the designer assumes
that B1 is always true, then the assumptions are Asm∧✷B1 after this design
step, and if he assumes that B1 is always false, then the assumptions are
Asm ∧ ✷¬B1. In principle the designer may also assume that whenever one
of the B’s which he can control is true then B1 is also true, and whenever all
the B’s he can control are false, then B1 is also false. As B1 is implemented in
another component than the rest of the B’s, and as A occurs if the components
are out of synchronization just once, we do not recommend this solution.

PRIORITY AND gates: The fault tree in Fig. 19.10 has the semantics A =
B1 ∧ ✸(B2 ∧ ✸(B3 ∧ . . . ∧ ✸Bn) . . .). If the safety commitment is ✷¬A, the
designer must implement

✷¬(B1 ∧✸(B2 ∧✸(B3 ∧ . . . ∧✸Bn) . . .)).

This may either be done by making the design such that the Bi’s do not occur
in the specified order or such that one of the Bi’s does not occur at all, i.e.,

✷¬B1 ∨ ✷¬B2 ∨ . . . ∨ ✷¬Bn.

If one of the Bi’s, e.g., B1 is uncontrollable, the worst case is that it does
not satisfy its local safety commitment, i.e., that B1 is true. The designer
therefore assume that B1 is true and attempts to make the design such that

✷¬(B2 ∧✸(B3 ∧ . . . ∧✸Bn) . . .)

holds. If it is not possible to make such a design, the last opportunity is to
assume that B1 always is false, and then to assure that this is implemented
in another component by adding it to the list of assumptions about the envi-
ronment, i.e., the assumptions become Asm ∧ ✷¬B1.

Refinement

Assume that we have a fault tree in which an event A, with the semantics
A, is refined by an event B, with the semantics B, see Fig. 19.18. Further,
assume that the refinement relation has been verified, and that the safety
commitment is ✷¬A. As part of the refinement relation is A⇒ B, then ✷¬A
must be implemented by implementing ✷¬B.
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Conclusion

In this section we have given fault trees a duration calculus semantics, and
we have defined how a fault tree analysis may be used to derive safety re-
quirements, both for systems and for system components. The semantics is
compositional such that the semantics of the root is expressed in terms of
the leaves. The derivation of safety requirements follows the structure of the
fault tree and results in safety requirements for the system’s components.
This derivation of safety requirements for components should stop when the
deduced requirements may be implemented using well-established methods,
e.g., formal program development techniques for software components.

As for all other techniques, this technique for deriving safety requirements
is no better than the people who use it. An error in the fault tree analysis
is reflected in the safety requirements, and the system failures for which a
safety analysis has not been performed are not extracted as requirements.
If, however, we compare this method to the existing ways of deriving safety
requirements, namely by more or less structured brainstorming, we think that
this method is an improvement.

In terms of safety requirements, a minimal cut set corresponds to the small-
est set of components which, if they do not fulfill their safety requirements,
will cause the system not to fulfill its safety requirements. If the minimal cut
set only contains one component, then the system is vulnerable to single point
failure.

A minimal path set corresponds to the smallest set of components which
must fulfill their safety requirements in order that the system fulfill its safety
requirements. If all components have to fulfill their safety requirements, i.e.,
the cardinality of the minimal path set equals the number of components,
then the system is unsafe, as it may fail if just one of the components fails.

We have defined the semantics in duration calculus, but other temporal
logics, like e.g., TLA+ [?,?,?] and linear temporal logic [?,?,?], could also have
been applied. The important thing is that the logic is capable of expressing
both the semantics of the intermediate events, based on the structure of the
fault tree, and the semantics of the leaves.

Fault trees are sometimes used in a probabilistic analysis of safety. We have
not given semantics to fault trees with probabilistic figures, as this requires
a deeper knowledge of stochastic processes than we have. The foundation for
assigning a formal semantics to such trees has been established in [?], in which
a probabilistic duration calculus based on discrete Markov chains [?] is defined
and in [?] which defines a conversion algorithm from fault trees to Markov
chains. The idea, in probabilistic duration calculus, is that, given an initial
probability distribution, i.e., the probability that the system is initially in
a state v, and a transition probability matrix, i.e., the probability that the
system enters state u, given that the system is in state v, then it is possible
to calculate the probability that the system is in a certain state at a discrete
time t.
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19.6.6 Maintenance Requirements

Characterisation. By maintenance requirements we understand a combina-
tion of requirements with respect to: (i) adaptive maintenance, (iii) corrective
maintenance, (ii) perfective maintenance, (iv) preventive maintenance and (v)
extensional maintenance.

Maintenance of building, mechanical, electrotechnical and electronic artifacts
— i.e., of artifacts based on the natural sciences — is based both on documents
and on the presence of the physical artifacts. Maintenance of software is based
just on software, that is, on all the documents (including tests) entailed by
software. We refer to the very beginning of Sect. ?? for a proper definition of
what we mean by software.

Adaptive Maintenance

Characterisation. By adaptive maintenance we understand such mainte-
nance that changes a part of that software so as to also, or instead, fit to
some other software, or some other hardware equipment (i.e., other software
or hardware which provides new, respectively replacement, functions).

Example 19.40 Adaptive Maintenance Requirements: Timetable System:
The timetable system is expected to be implemented in terms of a number of
components that implement respective domain and interface requirements, as
well as some (other) machine requirements. The overall timetable system shall
have these components connected, i.e., interfaced with one another — where
they need to be interfaced — in such a way that any component can later
be replaced by another component ostensibly delivering the same service, i.e.,
functionalities and behaviour.

Corrective Maintenance

Characterisation. By corrective maintenance we understand such mainte-
nance which corrects a software error.

Example 19.41 Corrective Maintenance Requirements: Timetable System:
Corrective maintenance shall be done remotely: from a developer site, via
secure Internet connections.

Perfective Maintenance

Characterisation. By perfective maintenance we understand such mainte-
nance which helps improve (i.e., lower) the need for hardware (storage, time,
equipment), as well as software.
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Example 19.42 Perfective Maintenance Requirements: Timetable System:
The system shall be designed in such a way as to clearly be able to monitor
the use of “scratch” (i.e., buffer) storage and compute time for any instance
of any query command.

Preventive Maintenance

Characterisation. By preventive maintenance we understand such main-
tenance which helps detect, i.e., forestall, future occurrence of software or
hardware errors.

Preventive maintenance — in connection with software — is usually mandated
to take place at the conclusion of any of the other three forms of (software)
maintenance.

Extensional Maintenance

Characterisation. By extensional maintenance we understand such main-
tenance which adds new functionalities to the software, i.e., which implements
additional requirements.

Example 19.43 Extensional Maintenance Requirements: Timetable System:
Assume a release of a timetable software system to implement a requirements
that, for example, expresses that shortest routes but not that fastest routes
be found in response to a travel query. If a subsequent release of that software
is now expected to also calculate fastest routes in response to a travel query,
then we say that the implementation of that last requirements constitutes
extensional maintenance.

• • •

Whenever a maintenance job has been concluded, the software system is to
undergo an extensive acceptance test: a predetermined, large set of (typically
thousands of) test programs has to be successfully executed.

19.6.7 Platform Requirements

Characterisation. By a [computing] platform is here understood a combi-
nation of hardware and systems software — so equipped as to be able to
execute the software being requirements prescribed — and ‘more’.

What the ‘more’ is should transpire from the next characterisations.
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Characterisation. By platform requirements we mean a combination of the
following: (i) development platform requirements, (ii) execution platform re-
quirements, (iii) maintenance platform requirements and (iv) demonstration
platform requirements.

Example 19.44 Platform Requirements: Space Satellite Software: Elsewhere
prescribed software for some space satellite function is to satisfy the following
platform requirements: shall be developed on a Sun workstation under Sun

UNIX, shall execute on the military MI1750 hardware computer running its
proprietary MI1750 Operating System, shall be maintained at the NASA
Houston, TX installation of MI1750 Emulating Sun Sparc Stations, and
shall be demonstrated on ordinary Sun workstations under Sun UNIX.

Development Platform

Characterisation. Development Platform Requirements: By development
platform requirements we shall understand such machine requirements which
detail the specific software and hardware for the platform on which the soft-
ware is to be developed.

Execution Platform

Characterisation. Execution Platform Requirements: By execution plat-
form requirements we shall understand such machine requirements which de-
tail the specific (other) software and hardware for the platform on which the
software is to be executed.

Maintenance Platform

Characterisation. Maintenance Platform Requirements: By maintenance
platform requirements we shall understand such machine requirements which
detail the specific (other) software and hardware for the platform on which
the software is to be maintained.

Demonstration Platform

Characterisation. Demonstration Platform Requirements: By demonstra-
tion platform requirements we shall understand such machine requirements
which detail the specific (other) software and hardware for the platform on
which the software is to be demonstrated to the customer — say for accep-
tance tests, or for management demos, or for user training.
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Discussion

Example 19.44 is rather superficial. And we do not give examples for each of
the specific four platforms. More realistic examples would go into rather exten-
sive details, listing hardware and software product names, versions, releases,
etc.

19.6.8 Documentation Requirements

We refer to Chap. ?? for a thorough treatment of the kind of documents that
normally should result from a proper software development project. And we
refer to overviews of these documents as they pertain to domain engineer-
ing (Sects. 8.9 and ??), requirements engineering (Sects. 17.6 and ??), and
software design (Sect. ??).

Characterisation. By documentation requirements we mean requirements
of any of the software documents that together make up software (cf. the very
first part of Section ??): (i) not only code that may be the basis for execu-
tions by a computer, (ii) but also its full development documentation: (ii.1)
the stages and steps of application domain description, (ii.2) the stages and
steps of requirements prescription, and (ii.3) the stages and steps of software
design prior to code, with all of the above including all validation and veri-
fication (incl., test) documents. In addition, as part of our wider concept of
software, we also include (iii) a comprehensive collection of supporting docu-
ments: (iii.1) training manuals, (iii.2) installation manuals, (iii.3) user manu-
als, (iii.4) maintenance manuals, and (iii.5–6) development and maintenance
logbooks.

We do not attempt, in our characterisation, to detail what such documentation
requirements could be. Such requirements could cover a spectrum from the
simple presence, as a delivery, of specific ones, to detailed directions as to their
contents, informal or formal.

19.6.9 Discussion: Machine Requirements

We have — at long last — ended an extensive enumeration, explication and,
in many, but not all cases, exemplification, of machine requirements. When
examples were left out it was because the reader should, by now, be able to
easily conjure up such examples.

The enumeration is not claimed exhaustive. But, we think, it is rather
representative. It is good enough to serve as a basis for professional software
engineering. And it is better, by far, than what we have seen in “standard”
software engineering textbooks.
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19.7 Composition of Requirements Models

19.7.1 General

In Sects. 19.3.4 (X = BPR), 19.4.2 (X = Domain Requirements), 19.5.3 (X
= Interface Requirements), and 19.6.2 (X = Machine Requirements) we have
briefly mentioned the topic of “X and the Requirements Document”.

We shall remind the reader to review these four subsections. They tell you
a lot about how to document the requirements, as basically a set of four more
or less separate subdocuments, whether informally, as a narrative, or formally,
as an annotated formal definition.

19.7.2 Collating Requirements Facet Prescriptions

Sections 11.10 and 11.10.1 have titles similar to this overall section and the
present section. We have done so in order to remind the reader that to analyse
requirements and to prescribe these is a bit also of an art. You are kindly
asked to review Sect. 11.10.1 and to carry forward its message to requirements
modelling.

19.8 Discussion: Requirements Facets

19.8.1 General

We have covered the three main facets of requirements models: domain re-
quirements, interface requirements and machine requirements. The reader
who studies this volume on the basis of emphasising the formal techniques
will have noted that there were rather few, if any, formalised examples. This
was especially true for the machine requirements.

This does not mean that one could not furnish such examples. We have
chosen not to show such examples for three reasons: First, the examples would
be somewhat long. Second, such examples have already been shown e.g., in
Vol. 2, Chap. 15. But, more important, we still, as of 2006, lack appropriate
formal techniques and tools. But we observe, today, steady and impressive
progress in formal techniques and tools for expressing machine requirements.

19.8.2 Principles, Techniques and Tools

Principle. Requirements Facets: “Divide and Conquer”: Adopt a “separation
of concerns” principle; hence model domain, interface and machine require-
ments separately, as near so as possible.
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Techniques. Requirements Facets: The techniques fall, as usual, into two
classes: the informal techniques, which cover all the so-far-covered informal
techniques of rough-sketching, terminologisation and narration; and the for-
mal techniques, which. likewise, cover all the so-far-covered formal techniques
of formal abstraction and modelling.

Tools. Requirements Facets: The tools, like the techniques, fall, as usual, into
two classes: the informal tools, which include ordinary text-processing tools
with extensive cross-referencing and database storage facilities; and the formal
tools, which include all the ones ordinarily used in connection with formal
specification: syntax editors, type checkers, verification, model checking and
test tools, and so on.

19.9 Bibliographical Notes

Section 19.3.1 relied almost exclusively on [?, ?, ?, ?]. Section 19.6.4 similarly
relied almost exclusively on the delightful [?] and [?]. Section 19.6.5 is a mere
editing of Chap. 4 of the splendid [?].

19.10 Exercises

19.10.1 A Preamble

We refer to Sect. ?? for the list of ?? running domain (requirements and soft-
ware design) examples. We refer also to the introductory remarks of Sect. ??
concerning the use of the term “selected topic”.

19.10.2 The Exercises

The use of the term ‘describe’ means to rough sketch and/or terminologise,
and to narrate. If you are studying this volume in its formal version, then the
term describe additionally means formalise.

Exercises 19.4–19.6 relate to the special topic that you are expected to have
chosen, and can be solved either informally or formally. Exercises 19.12–19.13
are expected to be solved formally.

Exercise 19.1 An Incomplete Container Terminal Terminology. We refer to
Example 19.3. There are two versions of this exercise: an informal version and
a formal version.

• Informal version: Please define all sorts, that is, the abstract types, and
please state signatures of all functions mentioned in Example 19.3. Then
rephrase a selection of some 10 terms.
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• Formal version: First, solve the above informal version exercise. Then,
formalise the chosen selection of terms.

Exercise 19.2 Domain Instantiation: Local Regional Railway Nets. We re-
fer to Example 19.15. Please read that example carefully. The problem is to
formalise that example’s description of a simple railway net. We ask for a
solution which simply takes the railway net formalisations shown in Vol. 2,
Chaps. 2 and 10, and imposes further, constraining axioms.

Exercise 19.3 Domain Requirements: Fitting. We refer to Example 19.18.
Please provide formal models of the domain, the two original requirements,
and the 2+1 revised original + shared domain requirements outlined in Ex-
ample 19.18.

Exercise 19.4 Domain Requirements. For the fixed topic, selected by you,
you are to suggest some two to three distinct domain requirements. Outline
(informally, and/or formally) for each of the distinct domain requirements
how they are projected, and/or made more deterministic, and/or instantiated,
and/or extended, and/or fitted (the latter with some other requirements that
you have to postulate) with respect to your narrative domain description given
earlier (as answers to Exercises 11.1–11.7.)

Exercise 19.5 Interface Requirements. For the fixed topic, selected by you,
and for the domain requirements that you have established in Exercise 19.4,
identify shared phenomena and shared concepts, and suggest at least four dis-
tinct interface requirements, one each from the possible set of six possibilities
covered in Sects. 19.5.4–19.5.9.

Exercise 19.6 Machine Requirements. For the fixed topic, selected by you,,
and for the domain requirements that you have established in Exercise 19.4,
suggest at least one machine requirement from each of the five kinds out-
lined in Sects. 19.6.3–19.6.4 and 19.6.6–19.6.8 (performance, dependability,
maintenance, platform and documentation, respectively).

Exercise 19.7 Container Terminals: A Preliminary (Flat) Formal Domain
Model. We refer to Example 19.1. Based on what is described in the referenced
example, please propose a formal model of container terminals. You may wish
to formulate the solution in flat RSL, i.e., without the use of the scheme,
class and object constructs of RSL. See Exercise 19.9.

Exercise 19.8 Container Terminals: A Preliminary (Flat) Formal Require-
ments Model. We refer to Example 19.2. Based on what is described in the
referenced example, please propose a formal model of indicated requirements
for software for ship container loading plans. If you chose to formulate the
solution to Exercise 19.7 in flat RSL, i.e., without the use of the scheme,
class and object constructs of RSL, then you may choose to do likewise for
the present exercise. (See Exercise 19.10.)
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Exercise 19.9 Container Terminals: Modular Formal Domain Model. We
refer to Exercise 19.7. If you already expressed the solution to that exercise
using the scheme, class and object constructs of RSL, then that could be a
solution to the present exercise. Otherwise, please rephrase your solution to
Exercise 19.7 using these modular constructs of RSL.

Exercise 19.10 Container Terminals: Modular Formal Requirements Model.
We refer to Exercise 19.8. If you already expressed the solution to that exercise
using the scheme, class and object constructs of RSL, then that could be a
solution to the present exercise. Otherwise, please rephrase your solution to
Exercise 19.8, based on your solution to Exercise 19.9, by, preferably, using
the schema calculus constructs of extension (with), hiding (hide), etc., of
RSL.

Exercise 19.11 Rail Net and Unit Data Structure Initialisation. We refer to
Example 19.22. Please read that example carefully. Suggest a context in which
the initialisation takes place: Awareness of the geography, through some car-
tographic and/or geodetic map representation. Then complete the narrative
and formalise what is indicated in Example 19.22.

Exercise 19.12 Rail Net and Unit Data Structure Refreshment. We refer
to Example 19.23. Please read that example carefully. Suggest a context in
which the refreshment takes place: awareness of the geography, through some
cartographic and/or geodetic map representation — as well as some already
existing state. Then complete the narrative and formalise what is indicated
in Example 19.23.

Exercise 19.13 Banking Script Language. We refer to Example 19.9 — and
all of the examples referenced initially in Example 19.9. Redefine, as suggested
there, the banking script language to allow such transactions as: (i) merge
two mortgage accounts, (ii) transfer money between accounts in two different
banks, (iii) pay monthly and quarterly credit card bills, (iv) send and receive
funds from stockbrokers, etc.

Exercise 19.14 Computational Data and Control Interface. We refer to Ex-
ample 19.24. You are to sketch, using RSL/CSP, a formalisation of that exam-
ple in terms of two processes: the user and the referenced software package. By
sketching we mean that basically only (i) the type of messages sent between
these processes, and (ii) the RSL/CSP input/output clauses that outline the
interaction, are defined. What leads the computation (based on the software
package) to decide when and where to interact with the user is not to be
specified, only that the interaction occurs.

Exercise 19.15 A 24-hour Crane Behaviour. We refer to Example 19.1. You
are to come up with a rough sketch, a description and a prescription of what
you can logically think of as a factual, respectively a desirable 24-hour be-
haviour of a ship/shore (i.e., quay) container crane.
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Exercise 19.16 A 24-hour Container Truck/Chassis Behaviour. We refer to
Example 19.1. You are to come up with a rough sketch, a description and
a prescription of what you can logically think of as a factual, respectively a
desirable 24-hour behaviour of a container truck/chassis.


