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Abstract

•We analyse the two composite terms of the title of this talk:

⋆ Formal Software Development Methods (FM)

⋆ Systems Engineering (SE)
(SE does here not stand for Software Engineering)

• Then we look at their composition:

⋆What does it mean to do
Formal Methods Software-based Systems Engineering ?
(FMS2E)

⋆Why would one want to do FMS2E ?

⋆Who, how and where should engineers for FMS2E be educated ?

⋆ Can we today do FMS2E ?

• Finally we conclude.
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Formal Software Development Methods (FM)
What Is a Method ?

• A method

⋆ is a set of principles

⋆ for selecting and applying

⋆ a number of techniques and tools

⋆ in order to construct an artifact.

• Some methods are better than other methods:

⋆ lead more effectively to the final product,

⋆ and/or lead to trustworthy, believable products.

• Formal (software development) methods are claimed — and have,
in many cases, led to

⋆ shorter, lower cost production times,

⋆ of products that are safe and reliable, correct and usable.
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What Is a Formal Software Development Method ?

• A formal software development method is one which

⋆ offers techniques and tools

⋄ for the specification of software requirements and abstract
designs and concrete code

⋄ and for the proof of correctness of formally specified designs
with respect to formally specified requirements;

⋆ tools (like specification languages) that have

⋄ a formal syntax,

⋄ a formal semantics,

⋄ a formal proof system and

⋄ software to support specification construction and proofs.

⋆ techniques like

⋄ specification refinement and proof techniques.
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What Is a Formal Syntax ?
• What Is a Syntax ? •

• A syntax is a set of rules for how to form sentences from ground
terms (characters, keywords, literals, mathematical and other
symbols).

⋆ A syntax defines what a syntactically correct sentence is; thus we
can use syntax

⋄ generatively, to generate sentences, and

⋄ analytically, to analyse sequences of ground terms.

• What Is a Formal Syntax ? •

• A formal syntax is a syntax expressed, basically in a mathematical
notation that can be given a precise meaning.
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What Is a Formal Semantics ?

• A formal semantics of a
specification language is a
mathematical definition

⋆ which to every proper,

⋆ i.e., syntactically well-formed
specification,

⋆ typically, ascribes a set of
mathematical values.

⋆ Any element of this set

⋆ is a model of the specification.

What Is a Proof System ?

• A proof system for a
specification language

⋆ is a set of axiom schemes,

⋆ a set of rules of inference,

⋆ and a set of theorems derivable
from these,

⋆ such that proofs of properties

⋆ claimed (in some predicates) of a
specification

⋆ can be made.

• A specification language formal semantics and proof system should
be related:

⋆ Specification models must be interpretations of the proof system.
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What Does it Mean to Do Formal Software Development ?

• There are, to paraphrase, two approaches to formal development of
software:

⋆ In one, the oldest (since late 1960s) approach

⋄ one first develops an algorithm for some software

⋄ and then one proves it correct with respect to some assertions.

We shall call this The Assertion Method.

⋆ In the other, the more modern (since early 1970s) approach

⋄ one first develops a formal specification of the algorithm (etc.)

⋄ and then one “derives” — refines — the algorithm (etc.) from
the specification.

We shall call this The Refinement Method.
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The Assertion Approach

• An assertion

⋆ is a predicate

⋆ (i.e., a true/false statement)

⋆ placed in a program

⋆ to indicate that the developer

⋆ thinks that the predicate is always true at that place.

{P} skip {P}

{P [x/E]} x := E {P}

{P} S {Q} , {Q} T {R}

{P} S;T {R}

{B ∧ P} S {Q} , {¬B ∧ P} T {Q}

{P} if B then S else T endif {Q}

{P ∧B} S {P}

{P} while B do S done {¬B ∧ P}
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The Refinement Approach

• In the refinement approach

⋆ an abstract model

⋆ is refined in perhaps several steps

⋆ into a concrete model, i.e., the code.

On Refinement Calculi

• Refinement calculus is a formalized approach to stepwise
refinement for program construction.

• The required behaviour of the final executable program is specified
as an abstract and perhaps non-executable “program”,

• which is then refined by a series of correctness-preserving
transformations

• into an efficiently executable program.
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Are There Several Formal Software Development Method ? Yes !

• There are several formal specification languages several with
own proof and model checking tools:

⋆ Petri Nets (1963) Concurrency [40, 39, 41]

⋆ VDM-SL (1974) State Systems [12, 18, 17]

⋆ CSP (1978) Concurrency [29, 44, 45]

⋆ Z (1980) State Systems [46, 27, 28]

⋆ Statecharts (1987) Concurrency [24, 25]

⋆ RAISE, RSL (1989) State Systems,

Concurrency [20, 22, 21, 19]

⋆ DC (1990) Temporal Logic [47, 23]

⋆ MSCs, LSCs (1992, 2001) Timing [30, 26]

⋆ TLA+ (1994) Temporal Logic:

Nancy Center [32, 35, 36]

⋆ B, Event-B (1996, 2005) State Systems:

Nancy Center [1, 2]

⋆ Alloy (1997) State Systems [31]

• and there are several additional tools:

Theorem Proving

⋄ NqThm, ACL2 (1971, 1995) [48]

⋄ Isabelle/HOL (.../1987) [49]

⋄ PVS (1992) [50]

⋄ STeP (1997) [33, 34, 51]

Model Checking

⋄ SPIN (1991) [52]

⋄ SMV (1994) [53]

The fields are expanding !
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The Software Engineering Triptych
The Triptych Dogma

• Before software

⋆ (in general: the machines, i.e., systems of computers and
communication and of sensors and actuators etcetera connected
to them)

⋆ can be designed

⋆ we must understand “the” requirements.

• Before requirements,

⋆ that is, prescriptions for the machine,

⋆ what it should do, not how,

⋆ can be prescribed

⋆ we must understand the domain.
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The Triptych Doctrine Consequences

• In consequence we prefer to develop software professionally, that is:

⋆ First we study an available — or develop ourselves an as
“complete” as possible —

⋄ domain description;

⋆ then we develop, from such a domain description, the

⋄ requirements prescription;

and

⋆ from the requirements prescription we carry out the

⋄ software design.
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Narrative versus Formal Specifications
Three Forms of Specification

• By a specification we shall here (a bit narrowly) mean

⋆ a narrated and a formal description of a
domain,

⋆ a narrated and a formal prescription of a (set of)
requirements, or

⋆ a narrated and a formal design (document[ation]) of some
software.

• So the term ‘specification’ has three instantiations:

⋆ description,

⋆ prescription and

⋆ design (document[ation]).
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Interlude

•We have surveyed answers to:

⋆What is a Method ?

⋆What is a Formal Software Development Method ?

⋄What is Syntax ?

⋄What is Semantics ?

⋄What is a Proof System ?

⋆What Do We Mean By a Formal Software Development
Method ?

⋄What is the Assertion Approach ?

⋄What is the Refinement Approach ?

⋆ Are There Several Formal Software Development Methods ?

⋆What is the Triptych Approach ?
Domains, Requirements, Design; Narratives, Formalisations
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• Now we can turn to the other compound term in the title of this
talk:

⋆ Formal Methods for Software-based Systems Engineering

Systems Engineering (SE)

• First we analyse the term: System

⋆ with respect to software for such systems;

• then we analyse the term: Engineering

⋆ with respect to how software engineers develop such software.
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What is a System ?

•We shall make the distinction between

⋆ Human systems, possibly with IT, and

⋆ IT, that is: computer and communication systems, possibly
without humans,

⋄ but with hardware ⋄ and software.

• Software-based systems are IT systems,

⋆ that are to be developed,

⋆ inserted in existing human systems,

⋆ and include

⋄ the right software and ⋄ software that is right.

• Therefore we are concerned about

⋆ ‘Formal Methods for Software-based Systems Engineering’

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



17

Human Systems
A Characterisation

• By a human system we shall, in this talk, mean

⋆ a collection of people,

⋆ a collection of resources,

⋆ interacting with one another:

⋄ carrying out tasks

⋄ in single actions

⋄ subject to external events

⋆ exhibiting various behaviours,

⋆ subject to rules & regulations
and

⋆ achieving or not achieving
goals.

Examples of Human Systems

⋆ airports,
⋆ air traffic,
⋆ banking,
⋆ consumers/retailers/wholesaler,
⋆ distribution chains,

⋆ insurance,
⋆ manufacturing,
⋆ stock brokerage and exchange,
⋆ railways,
⋆ etcetera.
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Description of Human (etc.) Systems
Domain Description

• Before we can establish requirements

⋆ for an IT system which

⋆ should support activities

⋆ in the human system

• we must first understand it:

⋆ tell the story, informally (the narrative), but concisely, and

⋆ formally,

• all entities, functions, events and behaviours.

• So first we do domain engineering.

⋆We do so in order to achieve the right software.
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Domain Description

• To describe the domain, as it is, is to describe the domain

⋆ first rough sketch the
“business” processes,

⋆ then

⋄ intrinsics,

⋄ support technologies,

⋄ management &
organisation,

⋄ rules & regulations,

⋄ scripts and

⋄ human behaviour —

• as much as possible,

• much more than is thought needed for the requirements.
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Requirements for IT for Human (etc.) Systems
Different Requirements Parts

• The requirements is for a machine:

⋆ hardware and ⋆ software.

• The requirements prescription consists of

⋆ domain,

⋆ interface and

⋆machine requirements

• These requirements are those which can be expressed

⋆ (for domain reqs.:) sôlely using terms from the domain,

⋆ (for interface reqs.:) using terms from both the domain and the
machine, resp.

⋆ (for machine reqs.:) sôlely using terms from the machine.
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Requirements for IT for Human (etc.) Systems (Continued)
How To Develop Domain Requirements

•Domain requirements are “derived” from the domain
description:

⋆ by projection,

⋆ by instantiation,

⋆ by determination,

⋆ by extension, and

⋆ by fitting

of the domain description and, for fitting, with other requirements.

• These domain-to-requirements refinements are done

⋆ together with the requirements stakeholders

⋆ by “interpreting” the domain description line-by-line.
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How To Develop Domain Requirements (Continued)

⋆ By carefully relating (validating, verifying, model checking)
and documenting

⋄ domain requirements,

⋄ line-by-line,

⋄ to the domain description

⋆ and by both

⋄ narrating and

⋄ formalising

the domain requirements prescriptions

⋆ we can help guarantee that the requirements

⋄ lead to the right software

⋄ and that the software is right.
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How To Develop Interface Requirements

• Interface requirements are “derived” from the domain
description:

⋆ identifying all shared

⋄ entities,

⋄ functions,

⋄ events and

⋄ behaviours

⋆ and then prescribing what is to be shared:

⋄ data (entities)

◦ initialisation,

◦ refresment and

◦ display,

⋄ short term interactive computation (functions),

⋄ event handling (events) and

⋄ long term man/machine interaction (behaviours).
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How To Develop Interface Requirements (Continued)

⋆ By carefully relating (validating, verifying, model checking)
and documenting

⋄ interface requirements,

⋄ line-by-line,

⋄ to both

◦ the domain description and

◦ specifications of machine facilities

⋆ and by both

⋄ narrating and

⋄ formalising

the interface requirements prescriptions

⋆ we can help guarantee that the requirements

⋄ lead to the right software

⋄ and that the software is right.
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How To Develop the Machine Requirements

• Machine requirements cover

⋆ Performance

⋄ storage, ⋄ time and ⋄ other resources.

⋆ Dependability

⋄ availability,

⋄ accessability,

⋄ reliability,

⋄ security,

⋄ etc.

⋆ Maintainability

⋄ adaptive, ⋄ corrective,

⋄ perfective and

⋄ preventive.

⋆ Platform

⋄ development,

⋄ testing,

⋄ execution,

⋄ maintenance and

⋄ demonstration.

⋆ Documentation ⋆ Etcetera
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How To Develop the Machine Requirements (Continued)

• By carefully relating (validating, verifying, model checking)
and documenting

⋆ machine requirements

⋆ to specifications of machine (hardware and software) facilities

• and by both

⋆ narrating and

⋆ formalising

the machine requirements prescriptions

• we can help guarantee that the requirements

⋆ lead to the right software

⋆ and that the software is right.
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Software for Human (etc.) Systems
Design: Refinements, Implementations, Transformations

• Software is now designed, in stages and steps, as were the
Domain description and Requirements prescriptions.

⋆ From higher level (system) abstract design, SA,

⋆ via intermediate level of increasing less abstract, more
concrete designs, SIi, to final code, SC.

• A stage of development is one in which an entire specification is
subject to many steps of development.

• A step of development is one in which different parts of a design is
subject to

⋆ refinements (hand-made transformations),

⋆ implementations (posit and assertion proved), and/or

⋆ transformations (“automatic” transformations).
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Software for Human (etc.) Systems (Continued)
Verification, Model-checking and Formal Testing

• The abstract design is, SA, proven, model-checked and formally
tested

⋆ to show that: D,SA |= R

⋆ that is, that the abstract design is correct wrt. Requirements
and in the context of the Domain.

• At each level

⋆ we can prove, model-check and formally test the designs
and relations between stages of design:

SA → SI1, ..., SIi → SIi+1, ..., SIn → SC

•We do this to help guarantee that the design

⋆ lead to the right software

⋆ and that the software is right.
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What is Engineering. ?
From Science to Technology — and Back !

• The engineer walks the bridge between science and technology

⋆ to construct artifacts based on scientific insight and

⋆ to analyse technology for scientific properties.

• The software engineer walks the bridge between computing
science and information technology

⋆ to construct software based on computing science

⋆ and to verify, model-check and formally test that software.
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From Ideals to Reality

• An extreme interpretation of the Triptych paradigm is ideal:

⋆ first extensive, generic and wide-coverage domain engineering,

⋆ then specific requirements engineering,

⋆ finally software design —

⋆ all this with verification, model-cheking and formal testing.

• It may very well not be feasible.

• The engineers are the persons who make approximations to the
ideal. Who decides

⋆ how much of a domain to describe,

⋆ how to follow the domain-to-requirements transformations,

⋆ adherence to refinement, implementation and formal testing,

⋆ which tools to use, and many related matters.
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What is Systems Engineering. ?

•What distinguishes systems engineering from software engineering ?

⋆ The software engineer, strictly speaking, is concerned “only”
about software development, from domains via requirements.

⋆ The systems engineer, broadly speaking, is concerned about both
the hardware and the software systems development:

⋄ its integration into the domain,

⋄ business process re-engineering, with all that entails:

◦ new intrinsics, new support technologies, new mgt. & org.,

◦ new rules & regs., new scripts, changed human behaviours,

◦ new sensors, actuators and IT equipment,

⋄ etc.

⋆ But the professional systems engineer
uses formal techniques.
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Conclusion: Formal Methods for Software-based Systems Engineering

•We have answered the questions implied in the title of this talk:

⋆What is a Method ?

⋆What is a Formal Method ?

⋆What is a Software Development ?

⋆What is a Formal Software Development ?

⋆What is are Systems ?

⋆What is Engineering ?

⋆What is Systems Engineering ?

⋆ And: Why Formal Methods for Software-based Systems
Engineering ?
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Conclusion (Continued)

• Of course, the answers have been mere indications.

• It is now up to those industries who are not following the advice to
do so:

⋆ by hiring MSc and PhD candidates who know how,

⋆ to integrate them into perfor,ing development teams,

⋆ and to offer the right systems — that are right !

• It is great fun !

⋆ Yoy can sleep at night.

⋆ Your industry can say: overtime is a failure of management.

⋆ You can deliver on time, at cost estimate.

⋆ Your staff is continuously being reeducated through own work.

Any Questions ?
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Please Buy My Book !

[3, 4, 5]
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