
1

Formal Methods for Software-based Systems Engineering

Dines Bjørner, Professor Emeritus

Technical University of Denmark

Forum Academique AFIS’2007

Programme du pré-Forum Academique
Rencontre “Université – Industrie”

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



2

Abstract

•We analyse the two composite terms of the title of this talk:

⋆ Formal Software Development Methods (FM)

⋆ Systems Engineering (SE)
(SE does here not stand for Software Engineering)

• Then we look at their composition:

⋆What does it mean to do
Formal Methods Software-based Systems Engineering ?
(FMS2E)

⋆Why would one want to do FMS2E ?

⋆Who, how and where should engineers for FMS2E be educated ?

⋆ Can we today do FMS2E ?

• Finally we conclude.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



3

Formal Software Development Methods (FM)
What Is a Method ?

• A method

⋆ is a set of principles

⋆ for selecting and applying

⋆ a number of techniques and tools

⋆ in order to construct an artifact.

• Some methods are better than other methods:

⋆ lead more effectively to the final product,

⋆ and/or lead to trustworthy, believable products.

• Formal (software development) methods are claimed — and have,
in many cases, led to

⋆ shorter, lower cost production times,

⋆ of products that are safe and reliable, correct and usable.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



4

What Is a Formal Software Development Method ?

• A formal software development method is one which

⋆ offers techniques and tools

⋄ for the specification of software requirements and abstract
designs and concrete code

⋄ and for the proof of correctness of formally specified designs
with respect to formally specified requirements;

⋆ tools (like specification languages) that have

⋄ a formal syntax,

⋄ a formal semantics,

⋄ a formal proof system and

⋄ software to support specification construction and proofs.

⋆ techniques like

⋄ specification refinement and proof techniques.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



5

What Is a Formal Syntax ?
• What Is a Syntax ? •

• A syntax is a set of rules for how to form sentences from ground
terms (characters, keywords, literals, mathematical and other
symbols).

⋆ A syntax defines what a syntactically correct sentence is; thus we
can use syntax

⋄ generatively, to generate sentences, and

⋄ analytically, to analyse sequences of ground terms.

• What Is a Formal Syntax ? •

• A formal syntax is a syntax expressed, basically in a mathematical
notation that can be given a precise meaning.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



6

What Is a Formal Semantics ?

• A formal semantics of a
specification language is a
mathematical definition

⋆ which to every proper,

⋆ i.e., syntactically well-formed
specification,

⋆ typically, ascribes a set of
mathematical values.

⋆ Any element of this set

⋆ is a model of the specification.

What Is a Proof System ?

• A proof system for a
specification language

⋆ is a set of axiom schemes,

⋆ a set of rules of inference,

⋆ and a set of theorems derivable
from these,

⋆ such that proofs of properties

⋆ claimed (in some predicates) of a
specification

⋆ can be made.

• A specification language formal semantics and proof system should
be related:

⋆ Specification models must be interpretations of the proof system.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



7

What Does it Mean to Do Formal Software Development ?

• There are, to paraphrase, two approaches to formal development of
software:

⋆ In one, the oldest (since late 1960s) approach

⋄ one first develops an algorithm for some software

⋄ and then one proves it correct with respect to some assertions.

We shall call this The Assertion Method.

⋆ In the other, the more modern (since early 1970s) approach

⋄ one first develops a formal specification of the algorithm (etc.)

⋄ and then one “derives” — refines — the algorithm (etc.) from
the specification.

We shall call this The Refinement Method.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



8

The Assertion Approach

• An assertion

⋆ is a predicate

⋆ (i.e., a true/false statement)

⋆ placed in a program

⋆ to indicate that the developer

⋆ thinks that the predicate is always true at that place.

{P} skip {P}

{P [x/E]} x := E {P}

{P} S {Q} , {Q} T {R}

{P} S;T {R}

{B ∧ P} S {Q} , {¬B ∧ P} T {Q}

{P} if B then S else T endif {Q}

{P ∧B} S {P}

{P} while B do S done {¬B ∧ P}

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



9

The Refinement Approach

• In the refinement approach

⋆ an abstract model

⋆ is refined in perhaps several steps

⋆ into a concrete model, i.e., the code.

On Refinement Calculi

• Refinement calculus is a formalized approach to stepwise
refinement for program construction.

• The required behaviour of the final executable program is specified
as an abstract and perhaps non-executable “program”,

• which is then refined by a series of correctness-preserving
transformations

• into an efficiently executable program.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



10

Are There Several Formal Software Development Method ? Yes !

• There are several formal specification languages several with
own proof and model checking tools:

⋆ Petri Nets (1963) Concurrency [40, 39, 41]

⋆ VDM-SL (1974) State Systems [12, 18, 17]

⋆ CSP (1978) Concurrency [29, 44, 45]

⋆ Z (1980) State Systems [46, 27, 28]

⋆ Statecharts (1987) Concurrency [24, 25]

⋆ RAISE, RSL (1989) State Systems,

Concurrency [20, 22, 21, 19]

⋆ DC (1990) Temporal Logic [47, 23]

⋆ MSCs, LSCs (1992, 2001) Timing [30, 26]

⋆ TLA+ (1994) Temporal Logic:

Nancy Center [32, 35, 36]

⋆ B, Event-B (1996, 2005) State Systems:

Nancy Center [1, 2]

⋆ Alloy (1997) State Systems [31]

• and there are several additional tools:

Theorem Proving

⋄ NqThm, ACL2 (1971, 1995) [48]

⋄ Isabelle/HOL (.../1987) [49]

⋄ PVS (1992) [50]

⋄ STeP (1997) [33, 34, 51]

Model Checking

⋄ SPIN (1991) [52]

⋄ SMV (1994) [53]

The fields are expanding !

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



11

The Software Engineering Triptych
The Triptych Dogma

• Before software

⋆ (in general: the machines, i.e., systems of computers and
communication and of sensors and actuators etcetera connected
to them)

⋆ can be designed

⋆ we must understand “the” requirements.

• Before requirements,

⋆ that is, prescriptions for the machine,

⋆ what it should do, not how,

⋆ can be prescribed

⋆ we must understand the domain.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



12

The Triptych Doctrine Consequences

• In consequence we prefer to develop software professionally, that is:

⋆ First we study an available — or develop ourselves an as
“complete” as possible —

⋄ domain description;

⋆ then we develop, from such a domain description, the

⋄ requirements prescription;

and

⋆ from the requirements prescription we carry out the

⋄ software design.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



13

Narrative versus Formal Specifications
Three Forms of Specification

• By a specification we shall here (a bit narrowly) mean

⋆ a narrated and a formal description of a
domain,

⋆ a narrated and a formal prescription of a (set of)
requirements, or

⋆ a narrated and a formal design (document[ation]) of some
software.

• So the term ‘specification’ has three instantiations:

⋆ description,

⋆ prescription and

⋆ design (document[ation]).

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



14

Interlude

•We have surveyed answers to:

⋆What is a Method ?

⋆What is a Formal Software Development Method ?

⋄What is Syntax ?

⋄What is Semantics ?

⋄What is a Proof System ?

⋆What Do We Mean By a Formal Software Development
Method ?

⋄What is the Assertion Approach ?

⋄What is the Refinement Approach ?

⋆ Are There Several Formal Software Development Methods ?

⋆What is the Triptych Approach ?
Domains, Requirements, Design; Narratives, Formalisations

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



15

• Now we can turn to the other compound term in the title of this
talk:

⋆ Formal Methods for Software-based Systems Engineering

Systems Engineering (SE)

• First we analyse the term: System

⋆ with respect to software for such systems;

• then we analyse the term: Engineering

⋆ with respect to how software engineers develop such software.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



16

What is a System ?

•We shall make the distinction between

⋆ Human systems, possibly with IT, and

⋆ IT, that is: computer and communication systems, possibly
without humans,

⋄ but with hardware ⋄ and software.

• Software-based systems are IT systems,

⋆ that are to be developed,

⋆ inserted in existing human systems,

⋆ and include

⋄ the right software and ⋄ software that is right.

• Therefore we are concerned about

⋆ ‘Formal Methods for Software-based Systems Engineering’

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



17

Human Systems
A Characterisation

• By a human system we shall, in this talk, mean

⋆ a collection of people,

⋆ a collection of resources,

⋆ interacting with one another:

⋄ carrying out tasks

⋄ in single actions

⋄ subject to external events

⋆ exhibiting various behaviours,

⋆ subject to rules & regulations
and

⋆ achieving or not achieving
goals.

Examples of Human Systems

⋆ airports,
⋆ air traffic,
⋆ banking,
⋆ consumers/retailers/wholesaler,
⋆ distribution chains,

⋆ insurance,
⋆ manufacturing,
⋆ stock brokerage and exchange,
⋆ railways,
⋆ etcetera.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



18

Description of Human (etc.) Systems
Domain Description

• Before we can establish requirements

⋆ for an IT system which

⋆ should support activities

⋆ in the human system

• we must first understand it:

⋆ tell the story, informally (the narrative), but concisely, and

⋆ formally,

• all entities, functions, events and behaviours.

• So first we do domain engineering.

⋆We do so in order to achieve the right software.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



19

Domain Description

• To describe the domain, as it is, is to describe the domain

⋆ first rough sketch the
“business” processes,

⋆ then

⋄ intrinsics,

⋄ support technologies,

⋄ management &
organisation,

⋄ rules & regulations,

⋄ scripts and

⋄ human behaviour —

• as much as possible,

• much more than is thought needed for the requirements.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



20

Requirements for IT for Human (etc.) Systems
Different Requirements Parts

• The requirements is for a machine:

⋆ hardware and ⋆ software.

• The requirements prescription consists of

⋆ domain,

⋆ interface and

⋆machine requirements

• These requirements are those which can be expressed

⋆ (for domain reqs.:) sôlely using terms from the domain,

⋆ (for interface reqs.:) using terms from both the domain and the
machine, resp.

⋆ (for machine reqs.:) sôlely using terms from the machine.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



21

Requirements for IT for Human (etc.) Systems (Continued)
How To Develop Domain Requirements

•Domain requirements are “derived” from the domain
description:

⋆ by projection,

⋆ by instantiation,

⋆ by determination,

⋆ by extension, and

⋆ by fitting

of the domain description and, for fitting, with other requirements.

• These domain-to-requirements refinements are done

⋆ together with the requirements stakeholders

⋆ by “interpreting” the domain description line-by-line.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



22

How To Develop Domain Requirements (Continued)

⋆ By carefully relating (validating, verifying, model checking)
and documenting

⋄ domain requirements,

⋄ line-by-line,

⋄ to the domain description

⋆ and by both

⋄ narrating and

⋄ formalising

the domain requirements prescriptions

⋆ we can help guarantee that the requirements

⋄ lead to the right software

⋄ and that the software is right.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



23

How To Develop Interface Requirements

• Interface requirements are “derived” from the domain
description:

⋆ identifying all shared

⋄ entities,

⋄ functions,

⋄ events and

⋄ behaviours

⋆ and then prescribing what is to be shared:

⋄ data (entities)

◦ initialisation,

◦ refresment and

◦ display,

⋄ short term interactive computation (functions),

⋄ event handling (events) and

⋄ long term man/machine interaction (behaviours).

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



24

How To Develop Interface Requirements (Continued)

⋆ By carefully relating (validating, verifying, model checking)
and documenting

⋄ interface requirements,

⋄ line-by-line,

⋄ to both

◦ the domain description and

◦ specifications of machine facilities

⋆ and by both

⋄ narrating and

⋄ formalising

the interface requirements prescriptions

⋆ we can help guarantee that the requirements

⋄ lead to the right software

⋄ and that the software is right.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



25

How To Develop the Machine Requirements

• Machine requirements cover

⋆ Performance

⋄ storage, ⋄ time and ⋄ other resources.

⋆ Dependability

⋄ availability,

⋄ accessability,

⋄ reliability,

⋄ security,

⋄ etc.

⋆ Maintainability

⋄ adaptive, ⋄ corrective,

⋄ perfective and

⋄ preventive.

⋆ Platform

⋄ development,

⋄ testing,

⋄ execution,

⋄ maintenance and

⋄ demonstration.

⋆ Documentation ⋆ Etcetera

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



26

How To Develop the Machine Requirements (Continued)

• By carefully relating (validating, verifying, model checking)
and documenting

⋆ machine requirements

⋆ to specifications of machine (hardware and software) facilities

• and by both

⋆ narrating and

⋆ formalising

the machine requirements prescriptions

• we can help guarantee that the requirements

⋆ lead to the right software

⋆ and that the software is right.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



27

Software for Human (etc.) Systems
Design: Refinements, Implementations, Transformations

• Software is now designed, in stages and steps, as were the
Domain description and Requirements prescriptions.

⋆ From higher level (system) abstract design, SA,

⋆ via intermediate level of increasing less abstract, more
concrete designs, SIi, to final code, SC.

• A stage of development is one in which an entire specification is
subject to many steps of development.

• A step of development is one in which different parts of a design is
subject to

⋆ refinements (hand-made transformations),

⋆ implementations (posit and assertion proved), and/or

⋆ transformations (“automatic” transformations).

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



28

Software for Human (etc.) Systems (Continued)
Verification, Model-checking and Formal Testing

• The abstract design is, SA, proven, model-checked and formally
tested

⋆ to show that: D,SA |= R

⋆ that is, that the abstract design is correct wrt. Requirements
and in the context of the Domain.

• At each level

⋆ we can prove, model-check and formally test the designs
and relations between stages of design:

SA → SI1, ..., SIi → SIi+1, ..., SIn → SC

•We do this to help guarantee that the design

⋆ lead to the right software

⋆ and that the software is right.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



29

What is Engineering. ?
From Science to Technology — and Back !

• The engineer walks the bridge between science and technology

⋆ to construct artifacts based on scientific insight and

⋆ to analyse technology for scientific properties.

• The software engineer walks the bridge between computing
science and information technology

⋆ to construct software based on computing science

⋆ and to verify, model-check and formally test that software.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



30

From Ideals to Reality

• An extreme interpretation of the Triptych paradigm is ideal:

⋆ first extensive, generic and wide-coverage domain engineering,

⋆ then specific requirements engineering,

⋆ finally software design —

⋆ all this with verification, model-cheking and formal testing.

• It may very well not be feasible.

• The engineers are the persons who make approximations to the
ideal. Who decides

⋆ how much of a domain to describe,

⋆ how to follow the domain-to-requirements transformations,

⋆ adherence to refinement, implementation and formal testing,

⋆ which tools to use, and many related matters.

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



31

What is Systems Engineering. ?

•What distinguishes systems engineering from software engineering ?

⋆ The software engineer, strictly speaking, is concerned “only”
about software development, from domains via requirements.

⋆ The systems engineer, broadly speaking, is concerned about both
the hardware and the software systems development:

⋄ its integration into the domain,

⋄ business process re-engineering, with all that entails:

◦ new intrinsics, new support technologies, new mgt. & org.,

◦ new rules & regs., new scripts, changed human behaviours,

◦ new sensors, actuators and IT equipment,

⋄ etc.

⋆ But the professional systems engineer
uses formal techniques.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



32

Conclusion: Formal Methods for Software-based Systems Engineering

•We have answered the questions implied in the title of this talk:

⋆What is a Method ?

⋆What is a Formal Method ?

⋆What is a Software Development ?

⋆What is a Formal Software Development ?

⋆What is are Systems ?

⋆What is Engineering ?

⋆What is Systems Engineering ?

⋆ And: Why Formal Methods for Software-based Systems
Engineering ?

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



33

Conclusion (Continued)

• Of course, the answers have been mere indications.

• It is now up to those industries who are not following the advice to
do so:

⋆ by hiring MSc and PhD candidates who know how,

⋆ to integrate them into perfor,ing development teams,

⋆ and to offer the right systems — that are right !

• It is great fun !

⋆ Yoy can sleep at night.

⋆ Your industry can say: overtime is a failure of management.

⋆ You can deliver on time, at cost estimate.

⋆ Your staff is continuously being reeducated through own work.

Any Questions ?

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



34

Please Buy My Book !

[3, 4, 5]

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering



BIBLIOGRAPHY 35

Bibliography
In [9, to appear] I give a concise overview of domain engineering; in [8, to appear] one of domain and requirements engineering as they relate; and in [7, to appear] I
relate domain enginering, requirements engineering and software design to software management. In [6] I present a number of domain engineering research challenges.
In [10, to appear] — which also covers research challenges of domain engineering — I additionally present a rather large example of the container line industry domain.

Bibliography

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge,
England, 1996.

[2] C. Métayer, J.-R. Abrial and L. Voisin Event-B Language, ETH Zürich,
Switzerland and ClearSy, Marseille, France, 31st May 2005, IST-511599, EU
Information Society Technologies; RODIN Deliverable 3.2

[3] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

[4] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and
Languages. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

[5] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

[6] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible
Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer
Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September
2007. Springer.

[7] Dines Bjørner. Believable Software Management. Encyclopedia of Software
Engineering, 1(1):1–32, 2008. Taylor & Francis, New York and London.

[8] Dines Bjørner. Deriving Requirements from Domains. In Festschrift for Ugo
Montanari, to appear, Lecture Notes in Computer Science (eds. Nico de
Rocola et al.), page 30, Heidelberg, May 2008. Springer.

[9] Dines Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes
in Computer Science, the BCS FAC Series (eds. Paul Boca and Jonathan
Bowen), pages 1–42, London, UK, 2008. Springer. To appear.

[10] Dines Bjørner. Domain Engineering. In The 2007 Lipari PhD Summer
School, Lecture Notes in Computer Science (eds. E. Börger and A. Ferro),
pages 1–102, Heidelberg, Germany, 2008. Springer. To appear. To appear.

[11] Dines Bjørner and Martin C. Henson, editors. Logics of Specification
Languages — see [43, 15, 23, 19, 36, 17, 28]. EATCS Monograph in
Theoretical Computer Science. Springer, Heidelberg, Germany, December 12,
2007.

[12] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of LNCS. Springer–Verlag, 1978.

[13] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software
Development. Prentice-Hall, 1982.

[14] Dominique Cansell and Dominique Méry. Logical Foundations of the B
Method. Computing and Informatics, 22(1–2), 2003.

[15] Dominique Cansell and Dominique Méry. Logics of Specification Languages,
chapter The event-B Modelling Method: Concepts and Case Studies, pages
in [11], 47–152. Springer, December 12, 2007.

[16] Werner Damm and David Harel. LSCs: Breathing life into Message Sequence
Charts. Formal Methods in System Design, 19:45–80, 2001.

[17] John S. Fitzgerald. Logics of Specification Languages, chapter The Typed
Logic of Partial Functions and the Vienna Development Method, pages in
[11], 453–487. Springer, December 12, 2007.

[18] John S. Fitzgerald and Peter Gorm Larsen. Developing Software using
VDM-SL. Cambridge University Press, The Edinburgh Building, Cambridge
CB2 1RU, England, 1997.

[19] Chris George and Anne E. Haxthausen. Logics of Specification Languages,
chapter The Logic of the RAISE Specification Language, pages in [11],
349–399. Springer, December 12, 2007.

[20] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen,
Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner.
The RAISE Specification Language. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1992.

[21] Chris W. George and Anne E. Haxthausen. The Logic of the RAISE
Specification Language. Computing and Informatics, 22(1–2), 2003.

Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark. November 26, 2007, 09:16



36 BIBLIOGRAPHY

[22] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne,
Søren Prehn, and Jan Storbank Pedersen. The RAISE Method. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

[23] Michael R. Hansen. Logics of Specification Languages, chapter Duration
Calculus, pages in [11], 299–347. Springer, December 12, 2007.

[24] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[25] David Harel. On visual formalisms. Communications of the ACM, 33(5),
514–530 1988.

[26] David Harel and Rami Marelly. Come, Let’s Play – Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[27] Martin C. Henson, Steve Reeves, and Jonathan P. Bowen. Z Logic and its
Consequences. Computing and Informatics, 22(1–2), 2003.

[28] Martin C. Henson, Moshe Deutsch, and Steve Reeves. Logics of Specification
Languages, chapter Z Logic and Its Applications, pages in [11], 489–596.
Springer, December 12, 2007.

[29] Tony Hoare. Communicating Sequential Processes. Published electronically:
http://www.usingcsp.com/cspbook.pdf, 2004.

[30] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC),
1999.

[31] Daniel Jackson. Software Abstractions Logic, Language, and Analysis. The
MIT Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[32] Leslie Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA,
2002.

[33] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems:
Specifications. Addison Wesley, 1991.

[34] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems:
Safety. Addison Wesley, 1995.

[35] Stephan Merz. On the Logic of TLA+. Computing and Informatics, 22(1–2),
2003.

[36] Stephan Merz. Logics of Specification Languages, chapter The Specification
Language TLA+, pages in [11], 401–451. Springer, December 12, 2007.

[37] Ben C. Moszkowski. Executing Temporal Logic Programs. Cambridge
University Press, Cambridge, England, 1986.

[38] Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut für
Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962.

[39] Wolfang Reisig. A Primer in Petri Net Design. Springer Verlag, March 1992.

[40] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS
Monographs in Theoretical Computer Science. Springer Verlag, May 1985.

[41] Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis
with Petri Nets. Springer Verlag, December 1998.

[42] Wolfgang Reisig. The Expressive Power of Abstract State Machines.
Computing and Informatics, 22(1–2), 2003.

[43] Wolfgang Reisig. Logics of Specification Languages, chapter Abstract State
Machines for the Classroom, pages in [11], 15–46. Springer, December 12,
2007.

[44] A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in
Computer Science. Prentice-Hall, 1997.

[45] Steve Schneider. Concurrent and Real-time Systems — The CSP Approach.
Worldwide Series in Computer Science. John Wiley & Sons, Ltd., Baffins
Lane, Chichester, West Sussex PO19 1UD, England, January 2000.

[46] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and
Refinement. Prentice Hall International Series in Computer Science, 1996.

[47] Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal
Approach to Real–time Systems. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2004.

Additional Tools

[48] NqThm/ACL2: http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html

[49] Isabelle/Hol: http://www4.informatik.tu-muenchen.de/˜nipkow/LNCS2283/

[50] PVS: http://pvs.csl.sri.com/

[51] STeP: http://rodin.stanford.edu/

[52] SPIN: http://spinroot.com/spin/whatispin.html

[53] SMV: http://www.cs.cmu.edu/%7Emodelcheck/

c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark, November 26, 2007, 09:16 Forum Academique AFIS’07: Formal Methods for Software-based Systems Engineering


