
Informatics Models of Infrastructure Domains
∗

Dines Bjørner†

Informatics and Mathematical Modelling, Technical University of Denmark
Building 322, Richard Petersens Plads, DK–2800 Lyngby, Denmark

URI: www.imm.dtu.dk/˜db, E–Mail: db@imm.dtu.dk

May 18, 2001

Abstract

By infrastructure informatics we understand the confluence of mathematical mod-
elling, computing science and applications of computing in public administration, private
business and industry, and in semi–public utilities such as for example transport and
health–care.

In this invited paper we wish to alert the audience at the CSIT’01 held in Yerevan in
September 2001, and the readers of its proceedings, to some new avenues of computing
science, and some new demands for tighter relations between mathematical modelling and
computing science, and between these and software engineering.

We hope to achieve our aim by showing a number of sketch domain models of central
aspects or such large scale infrastructure components as railway systems, logistics, E–
business, health–care, and financial service industries (such as banks, insurance companies,
and the brokers, traders and exchanges of the securities industry).

The paper is quite long.
We have been careful in deciding this fact. In order to get the message across: Loud and

clearly, namely that we have something new, something different, to offer. A new approach
to software engineering, one that entails working out large, very large descriptions indeed,
of domains, and from these carefully developing the requirements — and finally software—
it is indeed necessary to bring large, believable, trustworthy “realistic” examples. Now,
since the domains are indeed very large scale infrastructure components, the examples
could be expected to be very much larger than they actually are in this paper. Hence we
achieve a secondary purpose: To show that even very large scale infrastructure components
can be comfortably described by a handful of professional software engineers.

∗This is the text of a paper invited for presentation at CSIT’01, Yerevan, Armenia, 17–21 September, 2001
†The occasion for the delivery of this paper is the induction, of its author, as a Member of the Yerevan

Branch of the Russian Academy of Natural Sciences

1

2 Informatics Models of Infrastructure Domains

Contents

1 Introduction 3

1.1 Infrastructure and Infrastructure Components . 3
1.2 Trustworthy Development of Computing Systems . 3
1.3 Informatics Collaboration . 4
1.4 Methodological Approach . 4
1.5 Structure of Paper . 4

2 A Triptych of Software Engineering 5

2.1 The Sciences and Engineering of Computer, Computing and Software 5
2.2 Software . 5
2.3 Domains . 5
2.4 Domain Engineering . 5
2.5 Requirements Engineering . 6
2.6 Software Design . 6
2.7 Discussion . 6

3 Examples of Domain Models 6

3.1 Railway Systems . 6
3.1.1 Set–oriented Description . 6
3.1.2 Cartesian–oriented Description . 10
3.1.3 List–oriented Description . 12
3.1.4 Map–oriented Description . 14
3.1.5 Function–oriented Description . 17
3.1.6 Discussion . 19

3.2 Logistics . 19
3.2.1 Rough Domain Sketches . 19
3.2.2 A Brief Domain Requirements Narrative . 24
3.2.3 Domain Requirements Formalisation . 24
3.2.4 Discussion . 28

3.3 E–Business . 29
3.3.1 Domain: “The Market” . 29
3.3.2 Requirements: An E–Market . 35
3.3.3 Discussion . 37

3.4 Health–care Systems . 37
3.4.1 Narrative: Flow of People, Material and Information . 37
3.4.2 Formalisation: Flow of People, Material and Information 38
3.4.3 Discussion . 41

3.5 Financial Service Industry . 42
3.5.1 Banking . 42
3.5.2 Securities Trading . 50
3.5.3 Discussion . 55

3.6 Discussion . 56

4 Conclusion 56

4.1 Informatics Collaboration . 56
4.1.1 Possibilities . 56
4.1.2 Discussion . 58

4.2 Continuity and Monotonicity . 58
4.3 Future Work . 59
4.4 Acknowledgements . 59
4.5 Bibliographical Notes . 59

CSIT’01, Yerevan, Armenia — September, 2001 3

1 Introduction

The aims & objectives of this paper is to alert the reader to some new possibilities for the
trustworthy development of indeed very large scale computing systems for indeed very large
societal infrastructure components. The developments alluded to would typically involve close
collaboration between computer & computing scientists, software engineers, mathematical
modellers, and the clients: Customers representing one or another infrastructure component.

The wording of some subsections below has been predicated by the assumption that this
paper reaches an audience rather different from the audiences reached through my other pa-
pers. The wording referred to may formulate certain attitudes towards current computer
science cum software engineering academic teachings and current software engineering prac-
tices in a part of the world with which its author is more familiar than most coming from
Europe, having travelled extensively in the Russias, and in the many republics that surround
Russia.

1.1 Infrastructure and Infrastructure Components

By a country’s infrastructure we mean all those component institutions, public utilities and
facilities that serve to help create social and economic conditions for the well–being of its
citizens. Examples of such components are: The transportation industry (roads, rails, air
and sea lanes; trucking companies, railway companies, airlines, shipping companies), the
health–care sector, the financial service industry, and the like. Infrastructure components
(and their subcomponents) are geographically widely distributed, each of its enterprises has
tens of thousands of concurrent (loosely or tightly control coupled, inter–communicating)
activities going on at any one time, and they represent very large enterprises indeed.

Computing and communications systems, of these infrastructure component enterprises,
when closely, minutely inspected, are very highly fragmented. Consists of many hundreds, if
not thousands, of independently developed and operating computer (etc.) applications which,
if they share anything, is some data on some hard disks — but with no assurance of a common
semantic understanding of these data.

It is for such kind of systems that the current paper suggests ways and means of tackling
their fragmentation. We believe, but it is, it must be stated, just a claim, merely a postulate,
but it seems, an obvious one — we believe — that significant economic and social gains
could be made when future systems are deployed, systems that embody infrastructure–wide
knowledge and sharing of processes and data. The domain models of this paper shows how
to start the development of such systems.

1.2 Trustworthy Development of Computing Systems

We have all too often heard about “EDP Scandals”: Software systems that took 200%–400%
more time and monies to develop, systems which, when deployed, brought about immense
disappointments: They simply did not deliver what was expected. Their understanding of
the application domain was appalling, their human computer user interfaces were dismal, and
they were, to top it off, full of bugs, failing again and again !

The triptych software development sketched in Section 2 reflects more than 25 years of
research, development and wide usage in Northern Europe. So—called “formal methods” are

4 Informatics Models of Infrastructure Domains

certainly being increasingly widely accepted, as standard topics in leading universities, and
in leading edge, high IT technology companies. In 1999 a world congress on Formal Methods
drew 530 participants from North America, Europe and The Far East.

The author is currently readying a number of papers, and a rather comprehensive Soft-
ware Engineering text book, summarising a quarter century’s work, incl. some 75 previously
published papers and around a dozen co–authored and co–edited books on the subject of
formal techniques in software development. We refer to these papers and the book for a more
full account of trustworthy software engineering [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

1.3 Informatics Collaboration

Informatics, to us, is the confluence of mathematical modelling (ie. the use of existing math-
ematics), computer & computing science, software engineering and computing applications.
For far too long have the teaching of software engineering (cum programming) been far too
isolated from mathematical modelling. As many examples of Section 3 will show: There are
“zillions” of fascinating needs for mature interplays between these disciplines.

A closing section Section 4.1 will review the examples of Section 3 in the light of these
postulated opportunities.

1.4 Methodological Approach

By a method we understand a set of principles for selecting and applying a set of tech-
niques, using a set of tools, in analysing a problem in order efficiently to construct an
efficient artifact (here software1).

By methodology we understand the study and knowledge of one or more methods.
Since the principles of a method are guidelines to be used by people they cannot be

formalised. A great number of techniques can. And tools based on such techniques likewise.
But to call the methods formal is unfortunate. Better would be to use such double terms as
formal techniques, precise techniques or logic techniques — as imprecise or illogic techniques
are probably not desired, but informal are !

1.5 Structure of Paper

The paper is long because of its Section 3’s many and long examples. We decided to break
all conventional traditions for standard length conference proceedings papers to deliver this
63 paper. We did so because it is important for the reader to see, in one place, ie. this paper,
a sufficient variety of examples, each with their different modelling approaches, yet with the
same aims: Models of what is indeed conceived of as very large scale actual life application
domains.

So, after Section 2’s capsule view of the three main engineerings of software, Section 3 will
illustrate five different domains: Railway systems, logistics, electronic commerce, health–care
systems and financial services. A final section will conclude.

The formal specifications of this paper makes free use of the RAISE Specification Language,
RSL [12, 13] but could as well have used combinations of CSP [14, 15, 16] with either of VDM-SL
[17, 18, 19, 20], or Z [21, 22, 23], or B [24].

1In general: computing & communication systems.

CSIT’01, Yerevan, Armenia — September, 2001 5

2 A Triptych of Software Engineering

Before software1 can be designed, their requirements must be engineered. And before require-
ments can be expressed, we must understand the domain.

2.1 The Sciences and Engineering of Computer, Computing and Software

By software engineering we understand a confluence of domain engineering (see Sect. 2.4),
requirements engineering (see Sect. 2.5), and software design (see Sect. 2.6).

By computer science we understand the study and knowledge of the properties (the what)
of entities that may exist inside computers.

By computing science we understand the study and knowledge of how to construct those
things that may exist inside computers.

The engineer “walks the bridge” between science and technology: Constructs technology
based on scientific insight, and analyses (typically somebody else’s) technology in order to
ascertain its possible scientific content.

2.2 Software

By software we understand not just so–called executable code, but also all the documentation
that went into its development: domain descriptions (Section 2.4), requirements definitions
(Section 2.5), and all the stages and steps of software design (Section 2.6); and not just that
(!), but also all the manuals that are necessary for their and its maintenance, installation,
and proper end–user training and use !

2.3 Domains

By domain we understand the application area, the “actual world” in which some desired (or
actual) software1 is to reside (resp. resides).

We shall illustrate a number of domains: Railway Systems (Section 3.1), Logistics (Sec-
tion 3.2), E–Commerce (Section 3.3), Health–care Systems (Section 3.4), and Financial Ser-
vice Industries (Section 3.5).

2.4 Domain Engineering

By domain engineering we understand a set of science–based engineering activities which
results in a set of models, ie. a set of documents informing about, describing, and analysing
“all” the phenomena of the “actual world” relevant to requirements engineering — and usually
more than that !

Which these phenomena are, how to identify them, how to inform about them, and how
to describe and analyse them, is the subject of a domain engineering methodology [4].

A domain description is indicative: Describes what there is. It makes no reference —
whatsoever ! — to any (subsequently) required software, let alone to any design of such
software1.

Domain engineering is both a science and an art ! Whether a domain description is
adequate (‘sufficient’), or not, can usually be somehow ascertained through a consensus of as
many relevant domain stake–holders as are feasible.

6 Informatics Models of Infrastructure Domains

2.5 Requirements Engineering

By requirements engineering we understand a set of science–based engineering activities which
results in a set of models, ie. a set of documents informing about, describing, and analysing
what is expected from software1 that is to support activities of the domain.

Which these requirements are, how to identify them, how to inform about them, and how
to describe and analyse them, is the subject of a requirements engineering methodology [5].

A requirements description is putative: Describes what software there shall be. It makes
no reference — whatsoever ! — to any design of such software1.

Requirements engineering is both a science and an art ! Crucial parts of a formal require-
ments description, the domain requirements description, must stand in a formal relation to
a similarly formal domain description. Whether a requirements description, additionally, is
adequate (is ‘sufficient’), or not, can usually be somehow ascertained through a consensus of
as many relevant domain stake–holders as are feasible.

2.6 Software Design

By software1 design we understand a set of science–based engineering activities which results
in a set of models, ie. a set of documents informing about, describing, and analysing the
construction, structure and behaviour of the software1 that supports required activities of
the domain.

A software description is imperative: Describes how the computing & communication
system, when following the prescription of the software design, behaves.

The software design is expected to satisfy, ie. be correct wrt., the requirements description
in the context of the domain description.

2.7 Discussion

The above triptych of software engineering is based on the dogma of applying mathematical
abstractions in all phases (domain engineering, requirements engineering and software design),
ie. on applying so–called ‘formal methods’. Our recent reports cover this dogma [2, 3, 4, 5].

3 Examples of Domain Models

Several domain examples will be given. Each example will feature its own presentation style.
We have chosen this approach in order to illustrate as a largest variety of narration, abstraction
and modelling principles and techniques.

3.1 Railway Systems

We structure this domain specification according to the model–oriented discrete mathematics
modelling concepts being deployed: Sets, Cartesians, lists, maps and functions.

3.1.1 Set–oriented Description

Narrative — Static Rail Nets: We refer to Figure 1.

CSIT’01, Yerevan, Armenia — September, 2001 7

Figure 1: A Sample Rail Net

Line

Platform Linear Unit

SwitchTrack

SidingCrossover

Switchable Crossover

Station

Station

Railway systems2 contain rail nets, one per system, n:N. [1] Rail nets contain [1–2] one or
more lines (the “things” that connect stations), ℓ:L, [2–3] and two or more stations, s:S. It
does not make realistic sense, for other than tourism oriented vintage and toy model railway
nets to have just one station ! [1,4] Lines and stations, and hence the net, consists of one
or more rail units, u:U. Cf. Figure 1. [1,5] Rail units are delimited by connectors, c:C, such
that: [6] Linear units have two distinct connectors; [7] simple switches, also known, in the
trade, as junctions, or turnouts, in English, resp. American; as weiche in German, and in
French aguilette, have three distinct connectors; [8] switchable crossovers have four distinct
connectors; [8] and so do non-switchable, ie. simple crossovers.

We refer to Figure 2.

We stop for now and show a formalisation.

Formalisation — Static Rail nets:

type

[1] N, L, S, U, C
value

[2] obs Ls: N → L-set
[3] obs Ss: N → S-set
[4] obs Us: (N|L|S) → U-set
[5] obs Cs: (N|L|S|U) → C-set
[6] is linear: U→Bool

2The current author, as child, was one of those “deprived” children who never had a toy model railway !
That may be one reason for explaining our fascination with the railway topic. One that seems shared by many.
Another is the delight he has in travelling around, in Europe and the Far East, by train.

8 Informatics Models of Infrastructure Domains

Figure 2: Four Rail Units

Linear Unit Crossover

Swith

Simple

Crossover

Junction,

Switch,

Turnout

Examples of Rail UnitsLegend
rail

connector

units

can be

switched

and their Connectors

[7] is switch: U→Bool

[8] is cross: U→Bool

axiom

∀ u:U • is linear(u) ⇒ card u=2 ∨ is switch(u) ⇒ card u=3 ∨ is cross(u) ⇒ card u=4

There may be other kinds of units. And there may be such other kinds which also have either
two, or three, or four distinct connectors, etc. We decided, [5], that since nets, lines and
stations consisted of units, and units had connectors, then it might be foresighted to assume
that therefore also nets, lines and stations had connectors. Whether this turns out to be a
useful “abstraction” remains to be seen. “Throwing” such observer functions in is, at this
stage, “for free”. Only if we later, in software designs, make explicit use of the more general
observer functions, then it might come at a cost: We might have to implement separate
connector query procedures for nets, line, stations and units — instead of perhaps just being
able to observe connectors from nets. We shall see.

Narrative — Static Rail net Constraints, Part I: [9] As already said, nets consist
of one or more lines, [10] and two or more stations, [11–12] and these of at least one unit
each. [13] No two otherwise distinct lines of a net have any units in common. [14] No two
otherwise distinct stations of a net have any units in common. [15] No line of a net and no
station of that net have any units in common.

Formalisation — Static Rail net Constraints, Part I:

axiom

[9] ∀ n:N • card obs Ls(n)≥1,
[10] ∀ n:N • card obs Ss(n)≥2,
[11] ∀ ℓ:L • card obs Us(ℓ) ≥ 1
[12] ∀ s:S • card obs Us(s) ≥ 1
[13] ∀ n:N, ℓ,ℓ′:L • {ℓ,ℓ′}⊆obs Ls(n) ∧ ℓ 6=ℓ′⇒ obs Us(ℓ) ∩ obs Us(ℓ′) = {}
[14] ∀ n:N,s,s′:S • {s,s′}⊆obs Ss(n) ∧ s 6=s′ ⇒ obs Us(s) ∩ obs Us(s′) = {}
[15] ∀ n:N,ℓ:L,s:S • ℓ∈ obs Ls(n) ∧ s ∈ obs Ss(n) ⇒ obs Us(ℓ) ∩ obs Us(s) = {}

CSIT’01, Yerevan, Armenia — September, 2001 9

Narrative — Static Rail net Constraints, Part II: [16] Stations have tracks, sl:SL.
[19] Lines and tracks consist of linear sequences of linear units.

[20] No line and station track (of a net) have units in common. [21] No two otherwise
distinct traks of any station have units in common. [22] For every connector of a net there
are at most two units sharing that connector. [23] A line of a net connects exactly two
distinct stations of that net. A set of units is said to form a linear sequence, sq, if the set
can be rearranged into a non–empty list of exactly the same units such that adjacent units
share one connector.

Formalisation — Static Rail net Constraints, Part II:

type

[16] SL
value

[17] obs SLs: (N|S) → SL-set
[18] obs Us: SL → U-set

axiom

[19] ∀ ℓ:L,sl:SL •

∀ u:U • u ∈ obs Us(ℓ) ∪ obs U(sl) ⇒ is linear(u) ∧ sq(obs Us(ℓ)) ∧ sq(obs Us(sl))
[20] ∀ n:N,ℓ:L,s:S,sl:SL •

ℓ∈ obs Ls(n) ∧ s ∈ obs Ss(n) ∧ sl ∈ obs SLs(s) ⇒ obs Us(ℓ) ∩ obs Us(sl) = {}
[21] ∀ n:N,s,s′:S,sl,sl′:SL • {s,s′}⊆obs Ss(n) ∧

sl ∈ obs SLs(s) ∧ sl′ ∈ obs SLs(s′) ∧ sl6=sl′ ⇒ obs Us(s) ∩ obs Us(s′) = {}
[22] ∀ n:N,c:C • c ∈ obs Cs(n) ⇒ 2 ≥

⇒ card{u|u:U•u ∈ obs Us(n)∧c ∈ obs Cs(u)}
[23] ∀ n:N, ℓ:L • ℓ∈ obs Ls(n)

⇒ ∃ ! s,s′:S • {s,s′}⊆obs Ss(n) ∧ s 6=s′ ∧ distinct(ℓ,s,s′)

Auxiliary Functions

value

sq: U-set → Bool

sq(us) ≡
card us = 1 ∨ ∃ u:U • u ∈ us ⇒ card(obs Cs(u) ∩ cs(us \ {u}))=1 ∧ sq(us \ {u})

distinct: L × S × S → Bool

distinct(ℓ,s,s′) ≡
let lcs = cs(obs Us(ℓ)), scs = cs(obs Us(s)), scs′ = cs(obs Us(s′)) in
∃ c,c′:C • c ∈ lcs ∧ c ∈ scs ∧ c′ ∈ lcs ∧ c′ ∈ scs′ end

cs: U-set → C-set
cs(us) ≡ union{{ c | c:C • c ∈ obs Cs(u) } | u:U•u ∈ us }

distinct is an auxiliary predicate, and cs is an auxiliary function. They are introduced in order
to make the axioms look shorter. distinct determines uniqueness of “end of line” and station

10 Informatics Models of Infrastructure Domains

“perimeter” connectors. The predicate expresses that there are unique connectors, one in
each of two distinct stations that “connect” to unique line connectors.

3.1.2 Cartesian–oriented Description

Narrative — Dynamic Rail Nets, I: Units are either closed or open for traffic. Linear
units can be traversed in either of two directions, but other factors can determine whether
they are either closed, or open for traffic in just one, or in just the other, or in both directions.
Several factors may determine this “whether–or”: Signals, for example, up and/or down line,
ie. in one or the other, or both directions “away” from any specific linear unit, may be set so
as to “forbid” traversal in some or all directions. The part of the rail net, where the linear unit
is located, may be of such physical or other characteristics so as to effectively prevent certain
directions of traffic — viz. units in a marshaling yard where special clamps — intended for
braking the speed of rail cars — may be so arranged as to make it physically destructive if
cars are forced through in “the wrong” direction !

Switch units are set in either of two positions. Verbally, without reference to any figure,
let us informally model a switch by the composite character

c|
Y

c/

c
. The switch is said to have

three connectors: {c, c|, c/}. c is the connector of the common rail from which one can either
“go straight” (to) c|, or “fork” (to) c/.

We refer to Figure 3.

Figure 3: States of Sample Units

C’ C C’ C C’ C C’C

States of a Linear Unit

C C C C

CCCC

States of a Switch Unit

C’’ C’’ C’’ C’’

C’’C’’C’’C’’

C’ C’

C’C’C’C’

C’ C’

C

C’

C’’

Open: C to C’ Open: C’ to C Bidirectionally Open

Closed

Closed

Figure 3 shows four, respectively nine possible sets of directions, zero, one or more, that linear
and switch units can be in. If part of a unit has an arrow in some direction then it can be
traversed in that direction. Some parts of a switch unit can have arrows in both directions

CSIT’01, Yerevan, Armenia — September, 2001 11

as determined by the setting of the switch.

Unit States: We therefore introduce abstract concepts of unit paths, unit state, and unit
state space. A unit path, syntactically, is a pair of unit connectors — with the pragmatics
that such a unit path designates a direction of unit traversal. A unit state, semantically, is a
set of unit paths. And a unit state space, again semantically, is a set of unit states. Next we
show the state space, ωgs , of all possible states of a switch.

{ {}, {(c, c|)}, {(c|, c)}, {(c, c|), (c|, c)},

{(c, c/)}, {(c, c/), (c/, c), (c|, c)}, {(c/ , c)}, {(c/, c), (c|, c)},

{(c, c/), (c/, c)} }
ωgs ideally models a general switch. Any particular switch ωps may have ωps⊂ωgs. Nothing is
said about how a state is determined: Who sets and resets it, whether determined solely by
the physical position of the switch gear, or also by visible or virtual (ie. invisible, intangible)
signals up or down the rail away from the switch.

Formalisation — Dynamic Rail Nets, I:

type

[24] P = {| (c,c′):C×C • c6=c′ |}
[25−26] Σ = P-set, Ω = Σ-set

value

[27−28] obs Σ: U → Σ, obs Ω: U → Ω
axiom

[29] ∀ u:U•obs Σ(u)∈ obs Ω(u) ∧
[30] ∀ (c,c′):P•(c,c′)∈ obs Σ(u)⇒{c,c′}⊆obs Cs(u)

[254 P is the path type. [25–26] Σ is the state that a unit may be in at any on “point in
time”, and Ω is the space of all those states that a unit may be in “over time” ! [27–28] From
any unit one can observe its current state and state space. [29] For all σ states of some u,
those σ are in the state space of that u. [30] For all paths of any unit the connectors of that
path must be connectors of the unit.

Discussion: The notion of unit is a powerful one, one that may not be that easy to fully
grasp: Think of a physical piece of rail that someone, an official from the owner of a rail
net, has designated to be a real, an actual unit. There is it: Typically lying on the ground,
perhaps it is just a linear unit, but curved in the terrain, both horizontally and vertically;
with sleepers and many other “adornments” about which we have so far not stated anything.
But any additional attributes, with their current values, that you may think of, are subsumed
by the model being developed: One can simply add more observer functions, etc.

But that same unit, over time, with its changing states, how can we express that it is
indeed the same unit ? So far we have not really had to say that. But we will soon need. So
let us define a “sameness”, an equality predicate.

Formalisation — Dynamic Rail Nets, I, Continued:

12 Informatics Models of Infrastructure Domains

value

equal: U × U → Bool

axiom

∀ u,u′:U • obs Ω(u) = obs Ω(u′) ⇒ equal(u,u′)

3.1.3 List–oriented Description

Preamble Analysis: We refer to Figure 4.

Figure 4: Route of a Rail Net

u1u2

u4

u5u6u7

u9

u10

u16

u13

u12

u11

u8

u3

u18

Route, from u1 to u20

u15

u14

u19 u20

u17

Figure 4 attempts to illustrate the notion of a route as a sequence of unit paths. The units of
a path may be open or closed, and if open they may be open in the “right” or in a “wrong”
direction.

Narrative — Open and Closed Routes: A route is a sequence of paths through units
such that adjacent unit paths “connect” ! A route may be well–formed. A route is planned
either if all its units are closed, or all its units are open and in the “direction” of the unit
path. In the first case the route is said to be closed. In the second case the route is said to
be open.

Formalisation — Open and Closed Routes

type

R′ = (P × U)∗

R = {| r:R′ • wf R(r) |}
value

wf R: R′ → Bool

wf R(r) ≡ ∀ i:Nat • i ∈ inds r ⇒ {i,i+1}⊆inds r ⇒

CSIT’01, Yerevan, Armenia — September, 2001 13

let ((c,c′),u)=r(i),((c′′,c′′′),u′)=r(i+1) in
(c,c′)∈ u ∧ (c′′,c′′′)∈ u′ ∧ c′=c′′ end

open, close: R → Bool

open(r) ≡ ∀ (p,u):(P×U) • (p,u) ∈ elems r ∧ (p,u) ∈ obs Σ(u)
close(r) ≡ ∀ (p,u):(P×U) • (p,u) ∈ elems r ∧ obs Σ(u)={}

Narrative — Route Planning: Given a net one can generate the possibly infinite set
of all finite and indefinite length routes of the net. Some may revisit units “as the route
‘meanders’ on” ! Such routes are said to be crossing. If crossing routes “enters” the “same”3

path repeatedly then it is said to be cyclic.
Given a net one can, more specifically, can define the set of all non–crossing routes between

any two units of the net. Non–crossing route sets between some pairs of units may be empty.
We define the above route generation functions and testing predicates by first defining the

set of all routes of a net.
Basis Clause: For every unit, u, of a net, n, let p be a path of that unit, then 〈(p,u)〉 is a

route of the net.
Induction Clause: Let r be any route of a net, n. Let r be expressible as a concatenation

of a possibly empty subroute r′ and a singleton route 〈((c,c′),u)〉 either as 〈((c,c′),u)〉̂r′ or
r′̂〈((c,c′),u)〉. If there exists a singleton path either 〈((c′′,c),u′)〉, or 〈((c′,c′′),u′)〉, or both, then
either 〈((c′′,c),u′)〉̂〈((c,c′),u)〉̂r′ or r′̂〈((c,c′),u)〉̂ 〈((c′,c′′),u′)〉 or both are routes of the net.

Formalisation — Route Planning, I:

value

all rs: N → R-infset
all rs(n) ≡

let us = obs Us(n) in
let srs = s rs(us) in
let ars = srs ∪

{ r̂〈((c′′,c),u′)〉 | r:R • r ∈ ars ∧ ∃ c,c′,c′′:C, u,u′:U,r′:R •

r = r′̂〈((c,c′),u)〉 ∧ 〈((c′′,c),u′)〉∈ srs }
∪
{ 〈((c′,c′′),u′)〉̂r | r:R • r ∈ ars ∧ ∃ c,c′,c′′:C, u,u′:U,r′:R •

r = 〈((c,c′),u)〉̂r′ ∧ 〈((c′,c′′),u′)〉∈ srs }
in ars end end end

s rs: U-set → R-set
s rs(us) ≡

{〈((c,c′),u)〉 | u:U, c,c′:C • u ∈ us ∧ (c,c′) ∈ obs Σ(u) }
assert: ∀ r:R • r ∈ s rs(us) ⇒ len r = 1

spec rs: U × U → N
∼
→ R-infset

3“Sameness” of rail units, and hence of paths, was dealt with in Section 3.1.2.

14 Informatics Models of Infrastructure Domains

spec rs(fu,tu)(n) ≡
{ r | r:R • r ∈ all rs(n) ∧ let (p,u)=r(1), (p′,u′)=r(len r) in u=fu ∧ u′=tu end }
pre {fu,tu}⊆obs Us(n)

Discussion of Routes: The route generator function all rs is a fix point generating func-
tion. The fix point generated is the solution to the recursive equation is ars (for all routes).
The solution may be an infinite set — but all its elements will be of finite length. The in-
finiteness is mathematically acceptable. But we can do with finite sets, and we can do with
non-crossing routes.

The function spec rs generates the possibly infinite, possibly empty set of routes between
two given units, even if they are the same !

We have not bothered to constrain the route sets only to plannable routes. That can be
expressed later. For now we define functions which generate all non-crossing routes, and all
acyclic routes.

Formalisation — Route Planning, II:

value

nc rs: N → R-set
nc rs(n) ≡

{ r | r:R • r ∈ all rs(n) ∧ ∼∃ i,j:Nat • i<j ∧ {i,j}⊆inds r ∧
let (p,u) = r(i), (p′,u′) = r(j) in u = u′ end }

ac rs: N → R-set
ac rs(n) ≡

let ars = all rs(n) in
{ r | r:R • r ∈ all rs(n) ∧ ∼∃ i,j:Nat • i<j ∧ {i,j}⊆inds r ∧

let ((c,c′),u) = r(i), ((c′′,c′′′),u′) = r(j) in
c = c′′′ assert: u=u′ end } end

3.1.4 Map–oriented Description

Narrative — Train Positions: We refer to Figure 5.

Figure 5 intends to illustrate ten, uniquely identified, trains, tn1, . . . , tn10.

Each train occupies one or more units. Trains, identified by tn5, tn9, and tn10, occupy
just one rail unit. The other trains straddle two or more units.

Analysis — Train Positions: We have not said anything about the state of the units:
Whether open or closed, and, if open, whether in commensurate directions ! We have shown
intended direction of train traffic by placing respective, unique train identifiers at the head of
the trains.

CSIT’01, Yerevan, Armenia — September, 2001 15

Figure 5: Train Positions

tn2

tn3
tn5

tn6

tn4

tn7

tn10

tn8

tn1

tn9

Formalisation — Train Positions:

type

[1] Tn, TR
[2] TP = Tn →m R

value

[3] obs Tn: TR → Tn
[4] obs R: TR → R

axiom

∀

[1] Tn and TR are the sorts of train indentifiers and trains. [2] TP is a model of train positions:
each unique train occupies a route. [3] From a train we can observe, obs Tn, its train identifier,
and [4] obs R its route.

Since we are modelling the domain there is no need to restrict routes of distinct trains to
not overlap: Accidents do occur !

Narrative — Train Movement: We refer to Figure 6.

Figure 6 intends to illustrate the movement, in either direction, of a train.

We explain the eight move transitions (two are numbered 1., otherwise 0.–7.) shown in
Figure 6.

[0→1] The train has moved, but it has stayed within the same route, represented here
just by its units: u1,u2,u3,u4,u5.4 [0→2] The train has moved: “capturing” a unit, u1,
to occupy u1,u2,u3,u4,u5. [0→3] The train has moved: “releasing” a unit, u2, to occupy
u2,u3,u4,u5,u6. [0→4] The train has moved: both “capturing” a unit, u9, and “releasing” —

4The granularity of a route: It being composed from units, some of which may be a few meters long, others
of which may be, say, hundreds of meters long, that “coarse” granularity — with no change to the model —
currently prevents us from a smoother, more continuous model of movement.

16 Informatics Models of Infrastructure Domains

Figure 6: Train Movement

0 0

00

1

1

No capture, no loss

Capture and loss, left and right

Capture, left, resp. right

Loss, left, resp. right

LEGEND:

Vertical bars delineate rail units, digits designate cases

shaded bars stand for trains, arrows for their direction of movement

4

5

2

3

6

7

u2 u3 u4 u5 u6 u7 u8u1

u1 u2 u3 u4 u1 u2 u3 u4 u5 u6

u1 u2 u3 u4 u5

u5

“instantaneously” — a unit, u4, to occupy u1,u2,u3,u4,u5,u6. Etcetera. Notice: Three “real”
movements in either direction makes six, and one indiscernable “move”.

These are, “ideally” speaking, the only logical movements that trains can make. In addi-
tion trains may derail: “Fall” off the rail, “straddle” across “parallel” units, etc.

Formalisation — Train Movement:

value

wf Move: R × R → Bool

wf Move(r,r′) ≡
equal(r,r′) /∗ 0→1 ∗/
∨ ∃ r′′:R, u:U, (c,c′):(C×C) • (c,c′) ∈ obs Σ(u) ∧

r′=〈((c,c′),u)〉̂r′′ ⇒ equal(r,lst(r′)) /∗ 0→2 ∗/
∨ r′=r′′̂〈((c,c′),u)〉 ⇒ equal(r,fst(r′)) /∗ 0→3 ∗/
∨ r′=〈((c,c′),u)〉̂fst(r)⇒equal(fst(r),lst(r′)) /∗ 0→4 ∗/
∨ r′=lst(r)̂〈((c,c′),u)〉⇒equal(lst(r),fst(r′)) /∗ 0→5 ∗/
∨ r′=〈((c,c′),u)〉̂r ⇒ equal(fst(r),r′) /∗ 0→6 ∗/
∨ r′=r̂〈((c,c′),u)〉 ⇒ equal(r,lst(r′)) /∗ 0→7 ∗/

fst: R → R, fst(r) ≡ 〈r[i]|q≤i<len r〉, lst : R → R, lst(r) ≡ 〈r[i]|q<i≤len r〉

equal: R × R → Bool

equal(r,r′) ≡ len r = len r′ ∧

CSIT’01, Yerevan, Armenia — September, 2001 17

∀ i:Nat • i ∈ inds r ⇒
let ((c,c′),u) = r[i], ((c′′,c′′′),u′) = r′[i] in (c,c′) = (c′′,c′′′) ∧ equal(u,u′) end

Narrative — Time Tables: Also time–tables can be used to show model–oriented map
abstractions. Several variants can be shown, and ‘transfer’ functions (isomorphisms) ex-
pressed between them. We select an arbitrary model: To every train, known by its name
(or number), there is associated, in the chosen time–table, a train journey. A train journey
associates stations with train arrival and depature times.

Formalisation — Time Tables:

type

Tn, Sn, T
TT′ = Tn →m J
TT = {| tt:TT′ • ∀ j:J • j ∈ rng tt ⇒ wf J(j) |}
J′ = Sn →m (T × T)
J = {| j:J′ • wf J(j) |}
SV′ = Sn × (T × T)
SV = {| (sn,(t,t′)):SV′ • t < t′ |}
SVl′ = SV∗

SVl = {| svl:SVl • wf SVl(svl) |}
value

wf J: J′ → Bool

wf J(j) ≡ card dom j ≥ 2 ∧ ∃ svl:SVl • svl = 〈(s,j(s))|s:Sn•s ∈ dom j〉 ⇒ wf SVl(svl)

wf SVl: SVl′ → Bool

wf SVl(svl) ≡
∀ i:Nat•{i,i+1}∈ inds svl ⇒

let ((,(t1,t2)),(,(t2,t4)))=(v[i],v[i+1]) in t1<t2<t3<t4 ∧... end

We could, of course, instead have chosen:

type

J′ = SV∗

J = {| j:J′ • wf SVl(j) |}

Etcetera.

3.1.5 Function–oriented Description

Narrative — Train Traffic: We refer to Figure 7.

Figure 7 intends to illustrate the dynamics of train traffic. The two, “thin”, adjacent but
“skewed” (i. “slightly offset”) rectangles, designate the movement of certain trains.

By train traffic we understand a function, continuous over a closed time interval, from
time to pairs of rail nets and train positions. By train positions we mean a discrete map from

18 Informatics Models of Infrastructure Domains

Figure 7: Train Positions

tn3

tn10

tn5

tn2
tn7

tn8

tn9tn6

tn4

trains to open routes. The rail net thus changes over time, to reflect that rail units change
state, ie. to open, to reverse and to close units.

Formalisation — Train Traffic:

type

TN, Vel, AccDec /∗ trains, velocity, acceleration/deceleration ∗/
TF′ = T → (N × (TN →m R))
TF = {| tf:TF′ • wf TF(tf) |}

value

wf TF: TF′ → Bool

obs Tn: TN → Tn, obs Vel: TN → Vel, obs AccDec: TN → AccDec

Narrative — Train Traffic Well—formedness: The train routes must be open at the
time observed, and must all be routes of the network at the time observed. Between any two
“sufficiently close” time points trains must only make well–formed moves. Etcetera.

Formalisation — Train Traffic Well—formedness: Left as an exercise !

Narrative — Traffic Scheduling: Given a time table that is assumed well–formed wrt.
a rail net, and given such a net, one can define the possibly, usually, infinite set of all traffics
that satisfy the net and time table. From such a set one can select a schedule that is optimal
wrt. a number of criteria we shall omit.

Formalisation — Traffic Scheduling:

value

schedules: TT × N → TF-infset

CSIT’01, Yerevan, Armenia — September, 2001 19

schedules(tt,n) as tfs
pre wf TT N(tt,n)
post ∀ tf:TF • tf ∈ tfs ⇒ satisfy(tf)(tt,n)

schedule: TF-infset → TF
schedule(tfs) as tf

pre tfs 6= {}
post tf ∈ tfs ∧ ...

satisfy: TF → (TT × N) → Bool

satisfy(tf)(tt,n) ≡ ...

3.1.6 Discussion

We have developed core aspects of a model of railways: Nets, time tables, traffic and schedul-
ing. The present model is based on many previous models co–developed with Søren Prehn,
Chris George, Li Xiaoshan, a group of five railway professionals (Jin Danhua, Dong YuLin,
Liu Xin, Sun Guoqing, and Ma Chao), S. Parthasarathy — as part of UNU/IIST’s5 R&D for
and with the Chinese Ministry of Railways [25, 26, 27, 28, 29].

3.2 Logistics

We present this example in a rough sketching and formal model style; different from the
previous and following examples. The reason is that it might perhaps be useful to explore the
logistics concepts a bit more informally before showing a terse narrative and its formalisation.
As a consequence we keep the narrative to a minimum.

3.2.1 Rough Domain Sketches

We encircle the problem by informally, and not necessarily systematically, (hence the term
‘rough’) sketching some situations centering on freight clients and logistics firms.

Scenario 1 — A Freight Transport: Let φ designate some piece of cargo, γ, some freight
— for example a box of some volume, of some weight, of some value, of some fragility (fragile,
or robust, etc.), of some security risk (flammable, poisonous or non-poisonous, etc.), sent by
sender α in city A to some receiver ω in city H. Let φ be transported as indicated in Figure 8:

Freight φ follows transport route A→B→C→F→G→H. From A→B freight φ is transported
as described by the bill-of-lading part ab. From B→C freight φ is transported as described
by the bill-of-lading part bc. From C→F freight φ is transported as described by the bill-
-of-lading part cf . From F→G freight φ is transported as described by the bill-of-lading
part fg. From G→H freight φ is transported as described by the bill-of-lading part gh.

5UNU/IIST UN University’s International Institute for Software Technology, located in Macau SAR, China.
The current author was the first and founding UN Director of this research and post–graduate cum post–
doctorial training centre. Please refer to www.iist.unu.edu.

20 Informatics Models of Infrastructure Domains

Figure 8: A Freight Transport

B

G

H

A

C

F

ab

bc

cf fg

gh

out

in

These bill-of-lading parts are part of the total, or overall bill-of-lading, βoλφ. An overall
bill-of-lading registers: sender α, receiver ω, the logistics firm L which has planned and is
now overseeing (monitoring) the “execution” of βoλφ, the particulars of the freight γ — as
indicated above, including the total cost to clients α and ω, pick-up and delivery conditions,
insurance conditions, &c.

Each bill-of-lading part xy describes relevant particulars of the specific transport company
F which carries freight φ from X to Y , date and times of transport (departure from X and
arrival at Y), cost to logistics firm L of the transport of freight φ from X to Y on that
particular date, etc. &c.

Logistics firm L now sees to it that the freight φ is delivered to relevant transport com-
panies Fxy — initially from customer α to Fab, and, along the route A→B→C→F→G→H
from Fbc to Fcf , from Fcf to Ffg, from Ffg to Fgh, and from Fgh to receiver ω. How logistics
firm L does this we presently leave undefined. In other words, logistics firm L traces the
progress of freight φ along the route and regularly informs sender (α) and receiver (ω) about
the progress, any delays or advances, etc.

Etcetera.

Scenario 2 — Freight Planning, I: In order to plan — “to do the ‘logistics’ of” — a
freight transport from location X to location Y logistics firms L must possess information,
let us call it (them) point-to-point transport tables, XY .

These point-to-point transport tables contain information (info) about which transport com-
panies provides transport between these locations (points), and, for each of these, their trans-
port schedules, fees, costs, conditions, etc. &c. We refer to this kind of information as XY .
That part of a total bill-of-lading, xy which concerns the path from X to Y is derived from
XY : That is: there is a “correspondence” predicate r such that r(xy,XY) holds.

Scenario 3 — Freight Planning, II: In order to service a sender, α, and a receiver, ω,
wrt. to a transport from α to ω, ie. from point (location) A, to point H, which, as shown
in Figure 10, are connected by several routes, the logistics firm refers to a logistics network

CSIT’01, Yerevan, Armenia — September, 2001 21

Figure 9: Path Transport Facilities

X

Y

XY

...

xy

r(xy,XY) holds

info

(See Figure 10), and inspects all relevant point-to-point tables — based on finding all routes
between A and H, here just two.

Figure 10: Part of a Logistics Net

B D

E

G

H

A

C

F
CF

EG

FG

GH

AB

BC

BD
DE

The logistics firm, based on client preferences for example selects the route of Figure 8.
More specifically: Amongst several alternative route choices of transport, as described in the
logistics network, the logistics firm first selects all relevant point-to-point tables, and from
these find or negotiates the, or an, optimal combination of point-to-point transport firms and
their scheduled (or perhaps even negotiates unscheduled) transport times, fees, conditions.
The result is a transport plan, which when approved by the clients (α and ω), is made into a
Bill-of-Lading βoλφ for the particular freight φ.

Now the actual transport can start at some time, tAi, after client approval of the transport
plan.

Figure 11 intends to illustrate the trace (ie. the “history”), or a simulation, of the trans-
port, resp. a transport, from A to H.

Initially: Freight φαω (shown as a black bullet •) is delivered by, or informally (ie. not shown)

22 Informatics Models of Infrastructure Domains

Figure 11: The Trace of a Specific Transport

B

G

H

A

C

F

ab

bc

fg

in

out

tAi

tAo

tAo

tBi

tBi

tBo

tBo

tCi

tCi

tCo

tCo

tFi
tFi tFo

tFo

tGi

tGi

tGo

tHi

tHi

tGo

tHo

gh

cf

gh

fg

cf

bc

ab
BoL

fetched from client α at time tAi.6 The freight is passed on to the first transport at time tAo,
commensurate with Bill-of-Lading part ab.

Generally: The freight leaves point X at time tXo, and is transported from X to Y
commensurate with Bill-of-Lading part xy between times tXo and tYi. The transport is
shown as a rounded box within which we illustrate the freight bullet (•). These transport
are shown “as moving” in the appropriate direction — by the dashed arrow. The freight (ie.
the transport) arrives at point Y at time tYi where the freight (not necessarily the transport)
resides till time tYo when the freight is either passed on to next transport, or, in this case for
Y = H fetched by receiver ω.

Scenario 4 — The State of a Logistics Network: We wish to analyse a notion of state:
The state of all “executions” of a specific logistic firm’s, or all logistic firms’, Bill-of-Ladings.

Seen from the point of view of one logistic firm, Figure 12 is intended to be a snapshot at
some (arbitrary) time t, of where 28 different Bill-of-Lading freights along the routes between
points on the paths between A and H are.

Some are moving in one direction, “to the right”, ie. towards H, others are moving “to the
left”. Some transports carry one, some two, and some no freights — understood to be with
respect to a specific logistics firm and only on the stretches shown.7 The transports shown
not carrying freight (for a, or the, particular logistics firm) probably, so we intended it, were
supposed to indeed carry some freight — but that freight probably was mishandled or arrived
too late for loading onto the shown transports.

Scenario 5 — Transactions: Clients α and ω, senders and receivers, often express queries
concerning possible or actual freights, and state orders leading to changes in the state of a

6tXi stands for time input (delivered) at X. tXo stands for time output (delivered) from X.
7That is: there could be other executions of Bill-of-Ladings between other points not shown. Also note

that we allow that freights shown — either on transports or entering or leaving the logistics network — are
intended to be transported only at some proper sub-part of the routes from A to H , resp. from H to A.

CSIT’01, Yerevan, Armenia — September, 2001 23

Figure 12: A State of a Logistics Net

B D

E

G

H

A

C

F

Time t

transportation. Logistics firms need regularly review the performance of past transportations.
Etcetera. We illustrate possible such transactions (in slanted text):

Client to Logistics Firm: (1) Can, and how would you transport this 11

2
ton 4–by–6—by–8

foot box from San Luis, Argentina to Novosibirsk, Siberia, Russia ?. (2) “The above” + the
fastest way as from tomorrow ? (date given). (3) “The above” (first item) + the cheapest
way ? (4) “The above” (first item) + with the fewest number of transfers [priority 1], the
fastest way [priority 2], and cheapest possible [priority 3] ? Logistics Firm to Client: (5) Here
is our answer to your query of such-and-such-data ! Logistics Firm to Transport Firm: (6) Pls.
send us your transport schedules for the period of (two dates are given). Transport Firm to
Logistics Firm: (7) Pls. be informed about our new fee schedules.

Queries are supposed to be presented in the form of a Logistics Plan, ie. a hypothetical
Bill-of-Lading.

(8) Client to Logistics Firm: Please accept this (ie. “such-and-such”) freight and start its
transport as per your proposed Logistics Plan ?. (9) Where, along the route, is my (ie. “such-
-and-such”) freight now ?. (10) Please abort the (ie. “such-and-such”) transportation and
destroy it ? Logistics Firm to Transport Firm: (11) Please [re–]schedule the following freight
items as indicated. Transport Firm to Logistics Firm: (12) We are sorry to inform you that our
transport (such–and–such) sank (if boat), crashed (if flight), or (whatever). Clients to Logistics
Firm: (13) Why was my freight late, or damaged, or not delivered to receiver ? Logistics Firm
to itself (!): (14) What is percentage of “on-time” (eg. less than 2% late), of between 2%
and 10% late, freight during the last 12 months ? (15) What is profit of our business: The
difference between actual costs and invoiced fees in the last three, six and twelve months ?

We observe that these “commands” introduce a number of new concepts, some explicitly,
some rather implicitly.

24 Informatics Models of Infrastructure Domains

3.2.2 A Brief Domain Requirements Narrative

We have rough sketched a larger domain than will be formalised. We will now provide a
narrative for the formalised part of a well–behaving domain such as a desired, a required,
software system shall ensure it.

A logistics system consists of the following reactive behaviours: customers (senders, re-
ceivers) of freight transport, logistics firms arranging such transports, transport companies
which operate conveyors (and hence of these, ie. of transport vehicles [trucks, trains], boats
and aircrafts) that convey freight between hubs (and hence of these), along the routes (and
hence of these) as they form a route network. That is, of c customers, ℓ logistics firms, f
transport companies, k conveyors, h hubs and the route network

Important components of these behaviours include freight items, bill–of–ladings, and con-
veyor time and fee tables.

The route network can be viewed as a graph whose nodes are the hubs and whose directed
edges are the routes. Hubs have a capability for receiving, from logistics firms freight items
for loading, and a capacity for temporarily storing freight items unloaded from conveyors for
further transfer to next conveyors, or for final delivery to logistics firms.

A bill–of–lading is a description, a document. It “defines” the route: The load (origin),
transfer and final (destination) hubs; the load and unload times (ie. schedule); the sending
and receiving logistics firms, etc.

From hence we focus only on the operational meaning of a bill–of–lading: the traces of
temporary storages at hubs, loadings and unloading onto, respectively from conveyors. That
is, we shall describe the actions implied by a bill–of–lading. But we will do so by going straight
to a formalisation of that relevant part of the logistics system.

3.2.3 Domain Requirements Formalisation

In this section we formalise the domain of well–behaving hubs and conveyors such as a required
software system shall help ensure.

Route Network: The network is modelled as follows: Hubs form graph nodes labelled with
hub names (HIdx) and immediate hub–to–next–hub routes form edges. There can be many
such between any pair of hubs. These can be therefore be distinctly labelled and otherwise
provided with route information.

type

HIDx, Rn, RInfo
RN′ = HIDx →m (HIdx →m (Rn →m RInfo))
RN = {| rn:RN′ • wf RN(rn) |}
R = HIDx∗

value

wf RN: RN′ →m Bool

wf RN(rn) ≡ ∪ {dom rs|rs:(HIdx→m (Rn→m RInfo))•rs ∈ rng rn}⊆dom rn
routes: RN → R-infset
routes(rn) ≡

let rs={〈hj,hj′〉|hj,hj′:HIdx•hj ∈ dom rn∧hj′ ∈ dom rn(hj)} in

CSIT’01, Yerevan, Armenia — September, 2001 25

let rs′ = rs ∪{r̂〈hj〉|hj:HIdx,r:R•r ∈ rs′∧let hj′=r[len r] in hj ∈ dom rn(hj′) end}
rs′ end end

A route network defines an infinite set of all finite length routes between any pair of connected
hubs.

Bill of Ladings: An example bill of lading:

value

bol:BoL = (fn,(h0,to,ko,〈(t1a,h1,t1d,k1),(t2a,h2,t2d,k2)〉,td,hd))

informs about the name, fn, of the freight item for which it is the bill of lading, the hub
origin ho, the hub destination h0, the initial departure time to, the initial conveyor name ko,
and if the route involves intermediare hubs, say two, then arrival time, t1a, at first hub h1,
departure time, t1d, from that hub on next conveyor k1, and then arrival time, t2a, at next
hub h2, departure time, t2d, from that hub on final conveyor k2. In other words:

value

rn:RN
type

BoL′ = Fn × (HIdx × T × Kn × (T×sj:HIdx×T×Kn)∗ × T × HIdx)
BoL = {| bol:BoL′ • wf BoL(bol)(rn) |}

value

wf BoL: BoL′ → RN → ... → Bool

wf BoL(fn,(h0,to,ko,lst,td,hd))(rn)(...) ≡ let r = route(bol) in r ∈ routes(rn) ∧ ... end
route: BoL → R
route(fn,(h0,to,ko,lst,td,hd)) ≡ 〈ho〉̂〈sj(lst[i])|1≤i≤len lst〉̂〈hd〉
hubs: BoL → HIdx-set, hubs(bol) ≡ ...
convs: BoL → Kn-set, convs(bol) ≡ ...
nexth: HIdx × Bol → HIdx
nextk: HIdx × Bol → KIdx

The . . . are meant to express the wellformedness of bill of ladings wrt. departure and arrival
times (t) for named conveyors (k) according to transport company and logistics firm transport
schedules.

Freight: From a transported freight item one can observe its freight name, its bill of lading,
and the position of the freight: Either at a hub or on a conveyor from a hub.

type

F, W == F at H(HIdx) | F on K(HIdx,KIdx)
value

obs Fn: F → Fn, obs BoL: F → BoL, obs W: F → W
axiom

∀ f:F •

let fn = obs Fn(f), bol = obs BoL(f), w = obs W(f) in

26 Informatics Models of Infrastructure Domains

let (fn′,(h0,to,ko,lst,td,hd)) = bol in fn′=fn ∧
cases w of

F at H(hj) → hj ∈ hubs(bol),
F on K(hj,ki) → (hj,ki)=(h0,ko) ∨

∃ hj′:HIdx • hj′ ∈ hubs(bol)∧(hj,ki)=(nextH(hj′,bol),nextK(hj′,bol))
end end end

Hubs: From a hub state one can observe the freight temporarily stored at that hub, the
freight to be loaded on a next, named conveyor, and the freight to be delivered to final
receivers.

type

HΣ
value

obs Fs: HΣ → F-set
obs Fs: KIdx → HΣ → F-set
obs final Fs: HΣ → F-set

axiom

∀ hσ:HΣ •

let nfs = union{ obs Fs(kn)(hσ) | ki:KIdx } in

nfs ∩ obs final Fs(hσ) = {} ∧ obs Fs(hσ) = nfs ∪ obs final Fs(hσ) end

Conveyors: From a conveyor state one can observe its route, its current load of freights,
and its current position: At a hub or en route, between hubs.

type

KΣ, KIdx
WK == K at H(HIdx) | K en R(HIdx,HIdx)

value

obs KIdx: KΣ → KIdx, obs R: KΣ → R,
obs Fs: KΣ → F-set, obs WK: KΣ → WK
next Travel: KΣ → R

axiom

∀ kσ:KΣ •

let ki = obs KIdx(kσ), r = obs R(kσ), fs = obs Fs(kσ), wk = obs WK(kσ) in
∀ f:F • f ∈ fs ⇒

let bol = obs BoL(f), w = obs W(f) in
∃ j,j′:Nat•j ∈ inds route(bol)∧j′ ∈ inds r⇒

route(bol)[j]=r[j′]∧∃ j′′:Nat•j′′ ∈ inds r∧j′′>j′∧(route(bol))[j+1]=r[j′′] ⇒
cases (wk,w) of

(K at H(hj),F on K(hj′,ki′))→ r[j′]=hj ∧ ki=ki′,
(K en R(hj,hj′),F on K(hj′′,ki′))→ r[j′]=hj ∧ ki=ki′

end end end

CSIT’01, Yerevan, Armenia — September, 2001 27

value

next H: HIdx → KΣ → HIdx
next H(hj)(kσ) ≡

let r = obs R(kσ), wk = obs WK(kσ) in
cases wk of

K en R(,hj′) → hj′,
K at H(hj′) → assert: hj=hj′ ;

if hj = r[len r] then hd next Travel(kσ)
else let i:Nat • i ∈ inds r ⇒ r[i]=hj in r[i+1]

end end end end

Conveyor routes will here be considered recurrent. An observed route:

〈hj1,hj2,...,hjn〉

is made recurrent as follows. The route, the conveyor travel, starts at hub hj1, next stop is
at hub hj2, and so forth. “Last” stop, on a specific travel, is at hub hjn. Then a next travel,
starts. obs R applied to the conveyor, once it has reached hub hjn, that is: Is in that “final”
state, now yields the next travel, for example, some variant of a “reverse” travel:

〈hjn,hj
′
n−1,...,hj

′
1〉

By suitably decorating the hub names, except the first, viz.: hj′n−1, . . . , hj
′
1, a next, a “reverse”

travel does not have to “mirror” the preceding travel.

System: We focus on just the hub and conveyor behaviours. Between hub and conveyors
sets of freight items are transferred (either direction) when conveyors are at hubs. We model
this transfer ability by synchronisation and communication over channels. Hubs are station-
ary, never move. (Conveyors are mobile, always, almost always move.) When a conveyor is
at a hub it synchronises and communicates with that hub, first providing the hub with the
freight to be unloaded and then waiting for freight to be loaded.

channel

{ khc[ki,hj] | ki:KIdx, hj:HIdx } F-set
value

hub: hj:HIdx → HΣ → in,out{khc[ki,hj]|ki:KIdx} Unit

hub(hj)(hσ) ≡
⌈⌉⌊⌋ { let ufs = khc[ki,hj]? in

let lfs = to be loaded(ki)(hσ) in
khc[ki,hj]!lfs ; hub(hj)(update state(ufs,lfs)(hσ)) end end

| ki:KIdx }

to be loaded: KIdx → HΣ → F-set

update state: (F-set × F-set) → HΣ → HΣ
update state(ufs,lfs)(hσ) as hσ′

28 Informatics Models of Infrastructure Domains

pre ufs ∩ obs Fs(hσ)={}∧lfs⊆obs Fs(hσ)∧...
post lfs ∩ obs Fs(hσ′)={}∧ufs⊆obs Fs(hσ′)∧...

con: ki:KIdx → KΣ → in,out{khc[ki,hj]|hj:HIdx} Unit

con(ki)(kσ) ≡
let w = obs WK(kσ), r = obs R(kσ) in
cases w of

K at H(hj) → con(ki)(at hub(ki,hj,r)(kσ)),
K en R(hj,) → con(i)(move(ki,hj,r)(kσ))

end end

at hub: KIdx × HIdx × R → KΣ → KΣ
at hub(ki,hj,r)(kσ) ≡

let (ufs,kσ′) = unload freight(hj)(kσ) in
khc[ki,hj]!;ufs;
let lfs = khc[ki,hj]? in

load freight(lfs)(kσ) end end

unload freight: HIdx → KΣ → F-set × KΣ
unload freight(hj)(kσ) as kσ′

post ∼∃ f ∈ obs Fs(kσ′) • to be unloaded at(f,hj) ∧...

load freight: F-set → KΣ → KΣ
load freight(lfs)(kσ) as kσ′

pre lfs ∩ obs Fs(kσ) = {} ∧...
post lfs ⊆ obs Fs(kσ′) ∧...

move: KIdx × HIdx × R → KΣ → KΣ
move(ki,hj,r)(kσ) as kσ′

pre obs WK(kσ) = K at H(hj) ∧...
post let wk = obs (kσ′), hj′ = nextH(kσ) in

wk = K en R(hj,hj′) end

Discussion: We ask the reader to compare the two behaviours: hub and conveyor. Their
definition only focuses on well–behaviours: Only freight to be unloaded at a given hub is
so unloaded, and all such freight. Only freight to be loaded onto a given conveyor is so
loaded, and all such freight. The movement of conveyors is hinted at by the move function:
It abstracts movement as discretionary steps, from hub to hub via being ‘en route’.

3.2.4 Discussion

We have unravelled a description of first a domain of logistics, and finally of requirements
to fragments of a software system for the support of loading and unloading of freight to,
respectively from conveyors while at hubs. That is: The informal domain description of

CSIT’01, Yerevan, Armenia — September, 2001 29

Section 3.2.1 portrayed a domain in which things could and will go wrong: Freight is being lost,
loaded onto wrong conveyors, unloaded from conveyors at wrong hubs, etc. That rough sketch
domain description was followed up, ever so briefly, in Section 3.2.2, by a brief narrative of a
logistics system that was assumed well–behaved: No misroutings, etc. Finally, in Section 3.2.3,
we modelled the domain requirements for such a well–behaving logistics system.

3.3 E–Business

To understand e–business we must understand the “space” — “the market” — in which
business takes place today. From a domain analysis of the market we may then be able, more
believably, to arrive at what e–business could be.

3.3.1 Domain: “The Market”

Government, Business and Citizen Transactions: In the case of the government, busi-
ness and citizen infrastructure interactions we can postulate the following domain (ie. not
necessarily computer & data communication supported), transactions: G2G: Government in-
stitutions, G, buy services from other G, and G sell services to other G. The G pay with monies
(obtained through taxes, etc.), respectively offer free services, in return. G2B: G buy services,
or request taxes, from businesses (B), and pay, respectively offer free services, in return. G2C:
G buy services (hire), or request taxes, from citizens (C), and pay, respectively offer free ser-
vices, in return. B2G: Businesses (B) buy services from G, and pay B for these either through
having already paid taxes or by paying special fees. B2B: B buy merchandise or services from
other B, and B offer merchandise or services to other B. B usually pay for these outright. B2C:
B buy services from citizens: ie. hire temporary or permanent staff (employment), and B pay
for these through salaries. C2G: Citizens (C) obtain services from G (passport, drivers licence,
etc., health–care, education, safety and security, etc.) and C pay for these either by paying
special fees or through having already paid taxes. C2B: C buy merchandise from B, and C
pay for this. C2C: Two or more C together enter into political “grass–root” organisations, or
leisure–time hobby club activities, or just plainly arrange meetings (incl. BBQ parties); and
the two or more C “pay” for this by being “together”.

Traders — Buyers and Sellers: Above we have stressed that also government (insti-
tutions) are part of the more general concept of E-Business, some aspects of contractual
obligations, and a seeming “symmetry” between partners to any such contract (ie. buy, sell,
etc.). As such we have stressed that “The Market” consists of buyers and sellers, whom we,
as one, refer to as traders.

Traders — Agents and Brokers: An agent, to us, while we are still only discussing the
domain, is a trader that acts (in a biased manner) on behalf of usually one other trader (either
a buyer, or a seller), vis—a–vis a number of other traders (sellers, respectively buyers), in
order to secure a “best deal”. A broker, to us, while we are still only discussing the domain,
is a trader that acts (in a neutral manner) on behalf one or more buyers and one or more
sellers in order to help them negotiate a “deal.”

30 Informatics Models of Infrastructure Domains

Schematic Transactions Sequences of contractual transactions can be understood in
terms of “primitive” transactions:

A buyer inquires as to some merchandise or service. A seller may respond with a quote.
A buyer may order some merchandise or service. A seller may confirm an order. A seller
may deliver an order. A buyer may accept a delivery. A seller may send an invoice. A
buyer may pay according to the invoice. A buyer may return, within warranty period, a
delivery. And a seller may refund such a return.

We have, deliberately, used the “hedge” ‘may’:
A trader may choose an action of no response, or a trader may inform that a transaction

was misdirected, or a trader may decline to quote, order, confirm, deliver, accept,

pay or refund !

Formalisation of Syntax

type

Trans == Inq|Ord|Acc|Pay|Rej|Qou|Con|Del|Acc|Inv|Ref|NoR|Dec|Mis

Annotations: The first five, resp. the next six items above, list the ‘buyer’, respectively
the ‘seller’ initiated transaction types. The last three items above lists common transaction
types.

U below stand for unique identifications, including time stamps (T), Sui for surrogate
information, and MQP alludes to merchandise identification, quantity, price.

U, T, Su1, Su2, MQP
Inq = MQP × U
Qou = (Inq|Su1) × Inf × U
Ord = Qou|Su2 × U
Con = Ord × U
Del = Ord × U
Acc = Del × U
Inv = Del × U
Pay = Inv × U
Rej = Del × U
Ref = Pay × U
NoR = Trans × U
Dec = Trans × U
Mis = Trans × U

value

obs T: U → T

Annotations: In general we model, in the domain, a “subsequent” transaction by referring
to a complete trace of unique, time stamped transactions. Thus, in general, a transaction
“embodies” the transaction it is a manifest response to, and time of response.

Figure 13 attempts to illustrate possible transaction transitions between buyers and sellers.

CSIT’01, Yerevan, Armenia — September, 2001 31

Figure 13: Buyer / Seller Protocol

Inquiry

Quote,Decline,Wrong

Order, Decline, Wrong

Delivery,Sorry

Confirm,Decline,Wrong

Accept,Reject,Wrong

Invoice, Wrong

Payment,Wrong

Acknowledgement

Return

Refund

BUYER SELLER

Buyer initiative Seller initiative

"Follows, as a consequence of"

Transaction Sequences Figure 14 attempts to show the possible sequences of transac-
tions as related to one “trade”: From inquiry through refunding, that is: For one pair of
buyer/seller.

“The Market” Figure 15 attempts to show that a trader can be both a buyer and a seller.
Thus traders “alternate” between buying and selling, that is: Between performing ‘buy’ and
performing ‘sell’ transactions.

Figure 16 attempts to show “an arbitrary” constellation of buyer and seller traders. It high-
lights three supply chains. Each chain consists, in this example, of a “consumer”, a retailer,
a wholesaler, and a producer.

Formalisation of Process Protocols “The Market” consist of n traders, whether buyers,
or sellers, or both; whether additionally agents or brokers. Each trader τi is able, potentially
to communicate with any other trader {τ1, . . . , τi−1, τi+1, . . . , τn}. We omit treatment of how
traders come to know of one another. We focus only on the internal and external non–
determinism which is always there, in the domain, when transactions are selected, sent and
received.

Our model is in a variant of CSP, but expressed “within” RSL [12].

type

Θ
Idx = {| 1..n |}

channel

{ tc[i,j] | i,j:Idx • i6=j } Trans
value

sys: (Idx →m Θ) × n:Nat → Unit

sys(mθ,n) ≡ ‖ { tra(i)(mθ(i)) | i:Idx }

32 Informatics Models of Infrastructure Domains

Figure 14: Transaction Sequence “Chart”

n/a

n/a

Inquiry

Order

Quote

Decline

n/a

Payment

Invoice

Decline Wrong

n/a

Delivery

Wrong

LEGEND:Acknow.

Refund
LAST

Confirm

n/a

WrongDecline

Sorrry

n/a: NO ACTION

BUYER

SELLER

Return

Wrong

n/a

n/a

n/a

n/a

n/a

Wrong

Wrong

Accept Reject

possibly

Buyer
Initiative

Either of 2, 3 or 4 "responses"

Initiative

both

Seller

tra: i:Idx → Θ → in {tc[j,i]|j:Idx•i6=j} out {tc[i,j]|j:Idx•i6=j} Unit

tra(i)(θ) ≡ tra(i)(nxt(i)(θ))

nxt: i:Idx → Θ → in {tc[j,i]|j:Idx•i6=j} out {tc[i,j]|j:Idx•i6=j} Θ
nxt(i)(θ) ≡

let choice = rcv ⌈⌉ snd in

cases choice of rcv→receive(i)(θ), snd→send(i)(θ) end end

Annotations: The system is the parallel combination of n traders. Traders communicate
over channels: tc[i,j] — from trader i to trader j. Each trader is modelled as a process
which “goes on forever”, but in steps of next state transitions. The next state transition
non—deterministically (internal choice, ⌈⌉) “alternates” between expressing willingness to

CSIT’01, Yerevan, Armenia — September, 2001 33

Figure 15: Trader = Buyer + Seller

TRADER TRADER TRADER

SELLER
BUYER

BUYER
SELLER

inquiry
order

accept
payment
return...

quote
confirm

...

quote
confirm
deliver
invoice
acknow.
refund...refund

acknow.
invoice
deliver

inquiry
order

accept
payment
return...

Atomic Transactions, One way or the Other !

Figure 16: A Network of Traders and Supply Chains

A
B

D

C

H

(Example Supply Chains: ABCG, HDBF, BGAE, ...)

GE

F

receive, respectively desire to send. In “real life”, ie. in the domain, the choice as to which
transactions are taken is non–deterministic. And it is an internal choice. That is: The choice
is not influenced by the environment.

receive: i:Idx → Θ → in {tc[j,i]|j:Idx•i6=j} Θ
receive(i)(θ) ≡ ⌈⌉⌊⌋ {let msg=tc[j,i]? in update rcv state(msg,j)(θ) end|j:Idx}

update rcv state: i:Idx × Trabs → Θ → Θ

Annotations: update rcv state is not a protocol function. update rcv state describes the
deposit of msg in a repository of received messages. If msg is a response to an earlier sent
transaction, msg o, then update rcv state describes the removal of msg o from a repository of
sent messages. remove set msg models the situation where no response (nor) is (ever) made
to an earlier sent message. Once the internal non–deterministic choice (⌈⌉) has been made:
Whether to receive or send, the choice as to whom to ‘receive from’ is also non–deterministic,
but now external (⌈⌉⌊⌋). That is: receive expresses willingness to receive from any other trader.
But just one. As long as no other trader j does not send anything to trader i that trader i

34 Informatics Models of Infrastructure Domains

just “sits” there, “waiting” — potentially forever. This is indeed a model of the real world,
the domain. A subsequent requirement may therefore, naturally, be to provide some form
of time out. A re–specification of receive with time out is a correct implementation of the
above.

send: i:Idx → Θ → in,out {tc[i,j]|j:Idx•i6=j} Θ
send(i)(θ) ≡

let choice = ini ⌈⌉ res ⌈⌉ nor in
cases choice of

ini → send initial(i)(θ),
res → send response(i)(θ),
nor → remove received msg(θ) end end

Annotations: Either a trader, when communicating a transaction chooses an initial (ini)
one, or chooses one which is in response (res) to a message received earlier, or chooses to
not respond (nor) to such an earlier message The choice is again non–deterministic internal.
In the last case the state is updated by a non–deterministical internal choice (not shown)
removing the, or an earlier received message.

Note that the above functions describe the internal as well as the external non–determinism
of protocols. We omit the detailed description of those functions which can be claimed to
not be proper protocol description functions — but are functions which describe more the
particular domain at hand: Here “The Market”.

send initial: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send initial(i)(θ) ≡

let choice = buy ⌈⌉ sell in
cases choice of

buy → send init buy(i)(θ),
sell → send init sell(i)(θ) end end

send response: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send response(i)(θ) ≡

let choice = buy ⌈⌉ sell in
cases choice of

buy → send res buy(i)(θ),
sell → send res sell(i)(θ) end end

Fourth Protocol Observation: In the above functions we have, perhaps arbitrarily cho-
sen, to distinguish between buy and sell transactions. Both send initial and send response
functions — as well as the four auxiliary functions they invoke — describe aspects of the
protocol.

send init buy: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ

CSIT’01, Yerevan, Armenia — September, 2001 35

send init buy(i)(θ) ≡
let choice = inq ⌈⌉ ord ⌈⌉ pay ⌈⌉ ret ⌈⌉ ... in
let (j,msg,θ′) = prepare init buy(choice)(i)(θ) in
tc[i,j]!msg ; θ′ end end

send init sell: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send init sell(i)(θ) ≡

let choice = quo ⌈⌉ con ⌈⌉ del ⌈⌉ inv ⌈⌉ ... in
let (j,msg,θ′) = prepare init sell(choice)(i)(θ) in

tc[i,j]!msg ; θ′ end end

Annotations: prepare init buy is not a protocol function, nor is prepare init sell. They
both assemble an initial buy, respectively sell message, msg, a target trader, j, and update a
send repository state component.

send res buy: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send res buy(i)(θ) ≡

let (θ′,msg)=sel update buy state(θ), j=obs trader(msg) in
let (θ′′,msg′) = response buy msg(msg)(θ′) in
tc[i,j]!msg′; θ′′ end end

send res sell: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send res sell(i)(θ) ≡

let (θ′,msg)=sel update sell state(θ), j=obs trader(msg) in
let (θ′′,msg′) = response sell msg(msg)(θ′) in
tc[i,j]!msg′; θ′′ end end

Annotations: sel update buy state is not a protocol function, neither is sel update sell -
state. They both describe the selection of a previously deposited, buy, respectively a sell
message, msg, (from it) the index, j, of the trader originating that message, and describes the
update of a received messages repository state component. response sell msg and response-
buy msg both effect the assembly, from msg, of suitable response messages, msg′. As such
they are partly protocol functions. Thus, if msg was an inquiry then msg′ may be either a
quote, decline, or a misdirected transaction message. Etcetera.

Discussion In this example the protocol aspect was quite “pronounced”. Again we remind
the reader that we have, so far only described aspects of the domain. Next we shall deal with
requirements.

3.3.2 Requirements: An E–Market

Domain Requirements

Projection Synopsis: We omit consideration of all operations and queries, ie. of any spe-
cific o, io, q and iq in respectively O, IO, Q and IQ, and focus only on the communication

36 Informatics Models of Infrastructure Domains

between traders. We basically ignore the “content” of any transaction, and shall instead focus
on automating certain sequences of transactions.

Instantiation Synopsis: Whereas the domain model of traders was a model, essentially,
intrinsically, of human operations, we now try to automate as much as possible the response
to received transactions. Thus, as an example: (1) If a consumer order can be delivered by the
retailer — without human (retailer staff) intervention — it will be done so. (2) If a consumer
order cannot be delivered by the retailer, but that retailer can re-order from a wholesaler,
who can deliver — both atomic transactions without human (retailer and wholesaler staff)
intervention — it will be done so. (3) And if a consumer order cannot be delivered by the
retailer, but that retailer can re-order from a wholesaler, who then cannot deliver, but must
re–order from producer, who can deliver — all atomic transactions without human (retailer,
wholesaler and producer staff) intervention — it will be done so. Figure 17 attempts to show
the three cases listed above. There might be delays, waiting times, between order receipt and
delivery and/or re–ordering, across the supply–chain.

Figure 17: E–Market Supply Chain

c1
c1

c3 c3

c3

c3c3

c2

c2

c2 c2

c3

order

order

order

order

order

order

deliver

deliver

deliver

deliver deliver deliver

c3

c2

c1

Consumer Retailer Wholesaler Producer

Three Supply-chain Cases: (c1) Direct, (c2) via Retailer, (c3) all the way from Producer

Extension Synopsis We introduce electronic traders, agents and brokers. They permit
arbitrarily wide inquiries: Potentially to all providers (retailers, wholesalers, or producers)
of specified merchandise (or services), offers (“confirmations”) of merchandise (or services)
to all “takers” (consumers, retailers, or wholesalers), first–come–first serve (“auction”-like)
orders, &c. These roughly sketched domain requirements are considered extensions as they
might not be humanly feasible in actual domains.

Initialisation Synopsis Due to our projection we need only consider how traders, agents
and brokers initially, and in an ongoing way, come to know of one another. We omit details
— “left as an exercise”.

CSIT’01, Yerevan, Armenia — September, 2001 37

Interface Requirements

We omit detailed consideration of trader interfaces to the electronic market support. This is
“classic” web–design !

Machine Requirements

The availability, accessibility, and security requirements are assumed “taken care” of by an
“underlying” Internet system. We focus just on the fault tolerance issue: If a trader “goes
out of business”, or electronically “breaks down”, while many transactions, from and to many
other traders, are pending, then what ? Here, for example, the possible simplicity of a supply
chain protocol, as indicated earlier, is at stake. A proper protocol for handling this requires
back–ups, duplication, “proxies” and the like. In other words: Protocol engineering “takes
over” !

3.3.3 Discussion

3.4 Health–care Systems

3.4.1 Narrative: Flow of People, Material and Information

The health–care sector consists of at least the follow stake–holders: (1) citizens (healthy or
sick) C, (2) family physicians (ie. privately practising medical doctors) M, (3) pharmacies
(drug stores) P, (4) community nurses N, (5) clinical test laboratories L, (6) hospitals H, (7)
revalidation centres (physio–therapeutical, chiropractical, etc.) and re-convalescence homes
R, (8) health insurance companies I, (9) medico–technical companies T, (10) pharmaceuticals
Π, . . . , (11) the National Board of Health B, and the (12) Government Ministry of Health G,
etcetera.

Except for the last two, there are many instances within each of these groups of stake–
holders (c, m, p, n, ℓ, h, r, i, t, and π respectively).

We can consider each player within these categories as a having a behaviour: citizen,
meddoc, pharmacy, nurse, lab, hospital, centre, insurance, medico–techn, pharmaceutical, board,
and government. Each behaviour evolves around a changing state: cσ:CΣ, mσ : MΣ, pσ:PΣ,
nσ:NΣ, ℓσ:LΣ, hσ:HΣ, rσ:RΩ, iσ:IΩ, tσ:TΩ, πσ : ΠΣ, bσ:BΣ, and gσ:GΣ

Any one of these behaviours can communicate with any other: A citizen can visit the
family doctor, wait in line, be serviced (be interviewed by the doctor, analysed (tested),
diagnosed, treated and observed), or give up waiting and go elsewhere (for example home, or
to another doctor); or a citizen can go to a pharmacy, wait in line, be serviced (buy some
over-the-counter or prescription medicine), or give up waiting and go elsewhere (for example
home, or to another pharmacy); or a citizen may go hospital (either to the emergency ward,
or being referred there by a physician), be registered, admitted (to a ward, being allocated
a bed, etc.), serviced (the above plus: operated upon [surgery], etc.), and discharged; or a
citizen may visited by a community nurse (interviewed, analysed, treated, and observed);
etc. A practising physician may deposit a prescription with a pharmacy; or a practising
physician may inform a hospital that a patient need be called in; etc. Pharmacies receive
supplies from pharmaceuticals. Medical doctors, community nurses, pharmacies, etc., may
receive instructions (rules & regulations) from the National Board of Health; and they, in

38 Informatics Models of Infrastructure Domains

turn, regularly, or upon request, deliver statistics to that board — which in turn interacts
with the ministry of health. Etcetera. There are many interaction possibilities. And with
each of these there are many functionalities and hence sub–behaviours.

With a citizen one can, in the domain, associate a “virtual” patient medical journal PMJ.
You should here think of a PMJ as consisting of all that which is conceivably knowable and
known about that citizen’s health: From cradle till current time, whether recorded (say on
paper, by X–rays, ECGs, MRs, CTRs, etc.) or just remembered, whether recorded centrally
or geographically widely dispersed, whether remembered by the citizen, or family of that
citizen, by medical professionals, or other. A PMJ typically can be composed from patient
medical records, PMR, and other. A PMR usually is related to a particular case of illness or
its treatment (with the family physician, at a hospital or other). With a citizen one can also,
in the domain, associate a medicine cache: All those pills and pill boxes floating around, at
home, on shelves, in pockets, etc. Similar for medico–technical gadgets, other equipment and
disposable: Blood sugar meter, crutches, band aid, creams, etc.

Whenever a citizen visits any of the “players” described above, the PMJ is inspected and
augmented. So are the medicine (etc.) caches. In-between the citizen consumes parts or all
of these caches.

3.4.2 Formalisation: Flow of People, Material and Information

We limit the presentation to basically only cover the intra and inter–behaviours of citizens
(CΣ), medical doctors (private physicians, MΣ), and pharmacies (PΣ) — and then primarily
wrt. PMJs and medicine (MED) caches. The Σ suffixed type names denote respective state
spaces.

value

c:Nat, m:Nat, p:Nat

type

CIdx = {| 1..c |}, MIdx = {| 1..m |}, PIdx = {| 1..p |}
CΣ, MΣ, PΣ
CΩ = Cidx →m CΣ, MΩ = Midx →m MΣ, PΩ = Pidx →m PΣ,
PMJ, MED

value

obs PMJ: CΣ → PMJ, MΣ → CIdx → PMJ, PΣ → CIdx → PMJ
obs MED: CΣ → MED, MΣ → MED, PΣ → MED

channel

{ cm[i,j] | i:CIdx, j:MIdx }:(CM|MC),
{ cp[i,j] | i:CIdx, j:PIdx }:(CP|PC),
{ mp[i,j] | i:MIdx, j:PIdx }:(MP|PM), ...

value

system: CΩ × MΩ × PΩ → Unit

system(cω,mω,pω) ≡
‖ { citizen(i,cω(i)) | i:CIdx } ‖
‖ { meddoc(i,mω(i)) | i:MIdx } ‖
‖ { pharmacy(i,pω(i)) | i:PIdx } ‖ ...

CSIT’01, Yerevan, Armenia — September, 2001 39

citizen: i:CIdx × CΣ → in,out {cm[i,j]|j:MIdx},{cp[i,j]|j:PIdx},... Unit

citizen(i,cσ) ≡ let cσ′ = cime(i,cσ)⌈⌉ciph(i,cσ)⌈⌉... in citizen(i,cσ′) end

meddoc: i:MIdx × MΣ → in,out {cm[j,i]|j:CIdx},{mp[i,j]|j:PIdx},... Unit

meddoc(i,mσ) ≡ let mσ′ = meci(i,mσ)⌈⌉meph(i,mσ)⌈⌉... in meddoc(i,cσ′) end

pharmacy: i:PIdx × PΣ → in,out {cp[j,i]|j:CIdx},{mp[j,i]|j:MIdx},... Unit

pharmacy(i,pσ) ≡ let pσ′ = phme(i,pσ)⌈⌉phci(i,pσ)⌈⌉... in pharmacy(i,cσ′) end

There are c, m and p citizens, medical doctors and pharmacies. CIdx, MIdx, and PIdx are the
index set over citizens, medical doctors and pharmacies — viz.: Their names and addresses.
CΩ, MΩ, and PΩ are the indexed sets of states spaces for all citizens, medical doctors and
pharmacies. CΩ, MΩ, and PΩ are the individual state spaces of citizens, medical doctors and
pharmacies. From a citizen one can observe that citizen’s PMJ. From a medical doctor and
a pharmacy, given a citizen index, one can observe that citizen’s PMJ as known to them.
Similar for medicine caches. cm, cp, and mp abstracts the ability of citizens to communicate
with medical doctors and vice versa, for citizens to communicate with pharmacies and vice
versa, and for medical doctors to communicate with pharmacies and vice versa. These means
of physical (“meeting up in person” or electronic) communication are abstracted in terms of
indexed sets of channels where indices range over the “parties” to the communication. The
system that we shall consider consists, therefore, of the parallel composition of citizen, medical
doctor and pharmacy behaviours.

We model only that part of the citizen behaviour which involves medical doctors and
pharmacies.

A citizen non–deterministically either interacts with a medical doctor (cime) or a pharmacy
(ciph). The choice is here modelled as being made by the citizen, that is internal ⌈⌉.8 Similarly
for medical doctor and pharmacy behaviours.

The citizen’s cime (citizen to medical doctor) behaviour either is willing to engage in any one
(non–deterministically, external choice ⌈⌉⌊⌋, chosen) interaction (msg=cm[i,j]?) with a medical
doctor behaviour. This models contacts made by a medical doctor (j:MIdx) to citizen i:CIdx.
The medical doctor request (msg) causes the citizen to respond (cm[i,j]!rep) to the medical
doctor contact. The response, rep, is a function of the contact message.

Or the citizen’s cime (citizen to medical doctor) behaviour, by an internal non–deterministic
choice, ⌈⌉, instead selects to contact medical doctor j:MIdx. In that contact the citizen “passes
on” (cm[i,j]!cms) a projection, cms, or all of its state, cσ, to the selected medical doctor j:MIdx.

Similar for citizen to pharmacy and medical doctor to pharmacy interactions.

value

cime: i:CIdx × CΣ → in,out {cm[i,j]|j:MIdx} CΣ
cime(i,cσ) ≡

⌈⌉⌊⌋ { let msg = cm[i,j] ? in let (rep,cσ′) = c res mc(msg,j,cσ) in
cm[i,j] ! rep ; c upd mc(rep,j,cσ′) end end | j:MIdx }

∗ ⌈⌉ let (j,cms) = c res cm(cσ) in cm[i,j] ! cms ; c upd cm(cm[i,j] ?,cσ′) end

8Technically the citizen state (cσ) is given as a parameter to (either of) the two functions, cime or a ciph.
They, in turn, yield citizen state (cσ′) which are “passed” on to the continued citizen behaviour.

40 Informatics Models of Infrastructure Domains

ciph: i:CIdx × CΣ → in,out {cp[i,j]|j:PIdx} CΣ
ciph(i,cσ) ≡

⌈⌉⌊⌋ { let msg = cp[i,j] ? in let (rep,cσ′) = c res pc(msg,j,cσ) in
cp[i,j] ! rep ; c upd pc(rep,j,cσ′) end end | j:PIdx }

⌈⌉ let (j,cps) = c res cp(cσ) in cp[i,j] ! cps ; c upd cp(cp[i,j] ?,cσ) end

meci: i:MIdx × MΣ → in,out {cm[j,i]|j:CIdx} CΣ
meci(j,mσ) ≡

∗ ⌈⌉⌊⌋ { let msg = cm[i,j] ? in let (rep,mσ′) = m res cm(msg,i,mσ) in
∗ cm[i,j] ! rep ; m upd cm(rep,i,mσ′) end end | i:CIdx }

⌈⌉ let (i,mcs) = m res mc(mσ) in cm[i,j] ! mcs ; m upd mc(cm[i,j] ?,mσ) end

meph: i:MIdx × MΣ → in,out {mp[i,j]|j:PIdx} CΣ
meph(i,mσ) ≡

⌈⌉⌊⌋ { let msg = mp[i,j] ? in let (rep,mσ′) = m res pm(msg,j,mσ) in
mp[i,j] ! rep ; m upd pm(rep,j,mσ′) end end | j:PIdx }

⌈⌉ let (j,mps) = m res mp(mσ) in mp[i,j] ! mps ; m upd mp(mp[i,j] ?,mσ) end

phci: j:PIdx × PΣ → in,out {cp[j,i]|j:CIdx} CΣ
phci(j,pσ) ≡

⌈⌉⌊⌋ { let msg = cp[i,j] ? in let (rep,pσ′) = p res cp(msg,j,pσ) in
cp[i,j] ! rep ; p upd cp(rep,j,pσ′) end end | i:CIdx }

⌈⌉ let (i,pcs) = p res pc(pσ) in cm[i,j] ! pcs ; p upd pc(cp[i,j] ?,pσ) end

phme: i:PIdx × PΣ → in,out {mp[j,i]|j:MIdx} CΣ
phme(i,pσ) ≡

⌈⌉⌊⌋ { let msg = mp[i,j] ? in let (rep,pσ′) = p res mp(msg,j,pσ) in
cm[i,j] ! rep ; p upd mp(rep,j,pσ′) end end | j:MIdx }

⌈⌉ let (j,pms) = p res pm(pσ) in mp[i,j] ! pms ; p upd pm(mp[i,j] ?,pσ) end

Each of the above three kinds of behaviours: citizens, medical doctors and pharmacies consist
of a pair of behaviours. The pair “matches” in that a “player” α to player β behaviour is
“mirrored” by a “player” β to player α behaviour.

The “story” told above, in detail for the citizen to medical doctor behaviour is thus
archetypical of all these pairs of players (stake–holders) in the health–care sector. We listed
12 players and need thus define twelve pairs. We show only three pairs, ie. six behaviours.
Instead of defining these 24 behaviours we need define one higher–order, ie. parameterised
functional (“behavioural !”).

We have assumed a set of functions:
α res βα, α upd βα, α res αβ, and α upd αβ, where the pairs (α, β) range over (c,m),

(m,c), (c,p), (p,c), (m,p), and (p,m).
We will only sketch some of the functions: The four that relates to a citizen calling on the

medical doctor, and the medical doctor’s response — the lines marked with * above:

value

CSIT’01, Yerevan, Armenia — September, 2001 41

c res cm: CΣ → j:MIdx × CM, c res cm(cσ) ≡ ... (j,cσ)

type

MC = CΣ
value

m res cm: MC × i:CIdx × MΣ → MC × MΣ
m res mc(cσ,i,mσ) ≡ consultation(cσ,mσ)(i)

consultation: CΣ × MΣ → i:CIdx → CΣ × MΣ
consultation(cσ,mσ)(i) ≡

(cσ,mσ)
⌈⌉
consultation(

let action = intv⌈⌉anal⌈⌉diag⌈⌉trea⌈⌉obse⌈⌉ ... in
cases action of

intv → intvw(cσ,mσ)(i), anal → analy(cσ,mσ)(i),
diag → diagn(cσ,mσ)(i), trea → treat(cσ,mσ)(i),
obse → obser(cσ,mσ)(i), ... → ... end end)(i)

intvw,analy,diagn,treat,obser,...: CΣ × MΣ → i:CIdx → CΣ × MΣ

m upd cm: CM × i:CIdx × MΣ → MΣ, m upd cm(rep,i,mσ) ≡ ...
c upd cm: MC × CΣ → CΣ, c upd cm(cσ′,cσ) ≡ cσ′

c res cm: The citizen chooses a medical doctor and presents an aspect (cms) of its own state
(cσ).

m res cm: The medical doctor either ingnores the presence of the citizen (incl. the citizen
giving up waiting at the medical doctor), or subjects the citizen to some variant of service:
Some sequence of interviews, analyses, diagnostics, treatments and observations. During this
the medical doctor m upd cm updates an own patient medical journal for that citizen as well
as changing the citizen state. The either/or are internal non–deterministic choices (⌈⌉). The
model does not express the pragmatics of who makes this choice: The medical doctor or the
cisitizen, or both !

c upd cm: The next state of the citizen is the result, rep = cσ′, of having visited the
medical doctor — replacing the state of the citizen before going to the medical doctor (ie. no
projection).

3.4.3 Discussion

We have sketched — but a fragment of — a large, seemingly complex system of interacting
stake–holders. We have focused, narrowly, on the interaction between a citizen (a medical
doctor’s patient) and a medical doctor. Other pairwise interactions follow similar “patterns”.
The synchronisations between these stake–holders are modelled by CSPs channel output/input
mechanism: !/? [14, 15, 16]. The flow of people, material and information is modelled by
the communication along the channels. The establishment and augmentation of (possibly

42 Informatics Models of Infrastructure Domains

already established) patient medical records (and/or journals), as well as the dispensing and
consumption of medicine (etc.), is modelled by changes to the citizen and medical doctor
states.

We claim that, using the above “templates” for behaviour and function definitions, we can
model “all” flow aspects of a health–care sector. Of course, the interesting functionalities are
not definable, viz.: interview, analyse, diagnose, treatment, and observer, other than through
suitable signatures and perhaps a few (axiomatic) parts of function pre/post conditions.

Hospitalisation of a citizen thus can be modelled very much like a consultation: The in-
terviews, analyses (tests), diagnostics, treatments and observations now take place in a “larger
setting” where each of these functions may be modelled as behaviours that model the phys-
ical visits, by the patient, to various wards, clinical test laboratories, operating theatres,
revalidation centres (within the hospital), etcetera.

3.5 Financial Service Industry

We model only two of the players in the financial services market: Banks and securities
(typically stock and bond) exchanges. Also: We do not model their interaction, that is,
transfers of securities between banks and stock exchanges9 — but the models presented lend
themselves to such extensions rather easily.

3.5.1 Banking

Domain Analysis

We start out with a major analysis cum domain narrative!

Account Analysis: We choose a simple, ordinary person oriented banking domain.

(This is in contrast to for example an import/export, or an investment, or a portfolio
bank domain. And it is in contrast to the many other perspectives that one could model:
securities and portfolio management, foreign currency trading, customer development, etc.)

On one hand there are the clients, k:K, and on the other hand there is the bank. (We
initially assume that the bank is perceived, by the clients, as a single, “monolithic thing” —
although it may have a geographically widely distributed net of branch offices.) Each person
or other legal entity, who is a client, may have several accounts. Each account has an identity,
c:C, and is an otherwise complex quantity, a:A, whose properties will be unfolded slowly. A
client, k:K, may have more than one account, but has at least one — otherwise there would
be no need to talk about “a client” (but perhaps about a prospective client). (So the banking
domain includes all the client accounts and the bank.) Two or more clientsmay share accounts.

Account Types: Accounts have types: Some are savings & loan accounts; and some are
demand/deposit accounts; yet other accounts are credit (or mortgage) accounts; salary/earnings
accounts, etc. With each account we associate a contract which is set up when the account is
first established.

9Such as was done in Sections 3.2, 3.3 and 3.4.

CSIT’01, Yerevan, Armenia — September, 2001 43

Contract Rules & Regulations: The contract establishes rules & regulations that deter-
mine several account properties.

Example rules & regulations are The demand/deposit account (in question)(i) yields y%
interest, and (ii) has a credit limit of ℓ currency units. (iii) When the account balance is
between 0 and the (negative) credit limit, then the credit interest owed the bank is j%; (iv)
deposits carry interest from the day after deposit; (v) interest on a demand/deposit account is
otherwise calculated as follows: . . . ,10 (vi) the client is sent a statement of transactions every
d days (typically every month, or every quarter, or for every d transactions, or some such
arrangement), . . . the statement lists, in chronological order, all client as well as bank initiated
transactions involving this account and as from (ie. since) the last time a statement was issued.
(vii) Fees for handling certain (or any) transactions could be as follows: account establishment
fee e, statement fee s, loan repayment fee i, exceeding credit (overdraw) limit fee oℓ, account
closure fee t, etc. The rules & regulations, also called the conditions (of the account contract),
for any specific type of account, may differ from client to client, and may change over time.

The rules & regulations are set up when the account is established. Some may be changed
by the client, and some by the bank — giving notice to the client. Establishing an account,
changing its conditions and closing an account are examples of joint client/bank or just bank
transactions.

Transactions: Depending on the account type a number of different kinds of transactions
can be issued “against”, ie. concerning (primarily) a specifically named, c:C, account, a:A.

• Client transactions:

Clients can (i) deposit monies into and (ii) withdraw monies from a demand/deposit
account (rather freely — and the contract may stipulate so); (iii) clients can save money
in a savings & loan account (and the contract may stipulate minimum monthly savings);
(iv) clients can borrow money from their savings & loan account (and the contract will
undoubtedly state frequency and size limits on such loans). (v) Clients may obtain a
large mortgage loan whereafter one regularly, as stipulated in the contract, (vi) repays
the loan by installing — for example — three kinds of monies: (vi.1) interest on the loan
(these are monies that go to a account of the bank), (vi.2) annuity on the loan (this is a
quantity which is deducted from the clients’ mortgage loan balance) and (vi.3) fees (again
monies that go to some [other] bank account). (vii) And a transaction may produce a
statement (balance) of a client account.

A statement is a list of summaries of transactions. The listed transactions give the
date and hour of the transactions, its nature11, the amounts involved (and, in cases
according to which rules & regulations they were calculated), the resulting (current)
account balance, etc., etc. ! A statement also lists the transactions “executed against”
the account but by the bank. See next.

• Bank Transactions:

10. . . : here follows a detailed (pseudo-algorithmic) explanation on how interest is calculated.
11deposit, withdrawal, loan (withdrawal from a loan account), installation of interest, annuity and fees on a

loan (repaymentment), transfer between client accounts, including salary and other payment deposits as well as
payments on for example loans of other client accounts, on credit cards, etc.

44 Informatics Models of Infrastructure Domains

The bank regularly performs transactions “against” several accounts: (viii) calculation
of interests due the clients (say on demand/deposit and savings & loan accounts), and
(ix) calculation of interests due the bank (say on overdrawn demand/deposit and on loan
accounts). The bank may regularly inform clients as to the status of their account: (x)
regular statements, (xi) reminders of loan payments (interests, annuity, fees), (xii) warnings
on overdue payments, information on irregular or regular payments (say of salary) into
(salary) accounts, etc. (xiii) Finally the bank may change the rules & regulations of
contracts, and (xiv) may suspend client transactions on (ie. freeze) an account.

Immediate & Deferred Transaction Handling: When a transaction is issued, say at
time t, some of its implications are transacted “immediately”, some are deferred. Examples
are: installation of interest, annuity and fees on a loan is expected to immediately lead to the
update on client and bank accounts, while a transaction, to be issued by the bank, namely for
a reminder to be issued, say, some period prior to a quarter later, to that client (concerning
amounts of next loan repayments), is deferred. Other transactions are also deferred in relation
to this example. A deferred warning transaction will be invoked if the client has not responded
— as assumed — to a reminder by providing a repayment. That deferred warning transaction
will be annulled if a proper repayment takes place. The warning transaction, if eventually
invoked, as its time “comes up”, will lead to further warning reminders as well as invocation
of mora interest rates, etc. Rules & regulationss concerning these reminders and warnings, etc.,
are also contained in the contract.

Thus we see, on one hand, that the contract is a serious and complex document. In effect
its rule & regulation conditions define a number of named routines that are applied when
relevant transactions are handled (executed). These routines, in the domain, are handled
either manually, semi-automatically or (almost fully) automated. The bank staff (or, in cases,
perhaps even clients) who handle the manual parts of these transactions may and will make
mistakes. And the semi or fully automated routines may be incorrect !

Requirements

We can summarise the analysis as follows:

• Transactions are initiated by:

– Clients:

* Establishment and closing of accounts

* demand (withdrawal) and deposits of monies

* borrowing and repayment of loans

* transfer of monies into or out of accounts

* request for (instantaneous or regular) statements

* &c.

– and the bank:

* Regular calculation of yield and interest

* regular payment of bills

CSIT’01, Yerevan, Armenia — September, 2001 45

* regular issue of statements

* reminder of loan repayments

* warning on overdue payments

* annual account reports

* change in (and advice about) account conditions

* &c.

• Transactions are handled by the bank:

– immediately: certain parts of f.ex. withdrawals, deposits, repayments, etc.

– overnight:12 remaining parts of f.ex. above

– deferred: issue of reminders and preparation for warnings, calculation of interests,
yields, mora and fees. etc.

– conditionally:13 issue of warnings, etc.

• In the domain this handling may be by any combination of human and machine (incl.
computer) labour.

• Support technology is here seen as the various means whereby transactions are pro-
cessed and their effect recorded.

• Examples of support technology are: The paper forms, including (paper) books, used
during transaction and kept as records; mechanical, electro-mechanical and electronic,
hand-operated calculators; chops (used in authentication on paper forms); typewriters;
computers (and hence data communication equipment).

Abstraction of Immediate and Deferred Transaction Processing: We proceed by
first giving — again — a rather lengthy analysis, cum narrative, of transaction processing
related concepts of a bank.

We have a situation where transactions are either “immediately” handled, or are deferred.
For the domain we choose to model this seeming “distinction” by obliterating it ! Each
transaction is instead deferred and affixed the time interval when it should be invoked. If a
transaction is issued at time t and if parts or all of it is to be handled “immediately” then it
is deferred to the time interval (t, t). There is therefore, as part of the bank, a repository of
time interval marked transaction requests. The bank (staff, computers, etc.) now is expected
to repeatedly, ie. at any time t′, inspect the repository. Any transactions that remain in the
repository such that t′ falls in the interval of transaction requests are then to be handled
“immediately”. In the model we assume that the handling time is 0, but that transaction
requests that are eligible for “immediate” handling are chosen non-deterministically. This
models the reality of a domain, but perhaps not a desirable one!

12We will treat overnight transactions as deferred transactions.
13We will treat conditional transactions as deferred transactions.

46 Informatics Models of Infrastructure Domains

Account Temporality: Time is a crucial concept in banking: interests are calculated over
time during which the balance changes and so do the interest rates — with no synchronisation
between for example these two. Because of that temporality, we shall — in the domain
model — “stack” all changes (initialisations and updates) to the contractual conditions (rules
& regulations) such that all such changes are remembered and with a time-stamp of their
occurrence.

Likewise most other account components will be time-stamped and past component values
kept, likewise time-stamped.

A Summary: We shall subsequently repeat and expand on the above while making it more
precise and while also providing an emerging formal specification of a domain model.

Before we do so we will, however, summarise the above:

• There are clients, k:K, and clients may have more than one account, and accounts are
identified, c:C.

• With each accountthere is a contract. The contract lists the conditions, including all the
rules & regulations that shall govern the routine handling of any transaction “against”
the account.

• Transactions are either client initiated such as deposit, withdraw, borrow, repayment,
transfers, etc., or are bank initiated such as interest calculations, reminders, warnings,
issuance of requested regular statements, etc.

• Transactions are expected handled within a certain time-interval — which may be “now”
or later. For simplicity we treat all transactions as deferred (till now or later!).

• So there are transaction requests and transaction processing. The latter corresponds to
the actual, possibly piecemeal, handling of transaction requests.

• And there are statements. This term — which is also a computing science and software
engineering term — has here a purely banking connotation.

• And there are commands. The actual routine handling of a transaction is decribed by
means of a program in a hypothetical Banking Programming Language, BaPL. Programs in
BaPL are commands, and commands may be composite and consist of other commands !

• So please keep the five concepts separate: Transaction requests, transaction processing,
statements, routines and commands. Their relations are simple: Transaction requests
lead to the eventual execution of one or more routines, each as described by means of
commands. The excution of transaction request related routines constitute the trans-
action (ie. the transaction processing). One kind of transaction request may be that of
“printing” a client account statement.

We have given a normative overview of the structure and the logic of some base operations
of typical banks.

That is: We have mentioned a number of important bank state components and hinted at
their inter-relation. But we have not detailed what actions actually occur when a transaction

CSIT’01, Yerevan, Armenia — September, 2001 47

is “executed”: what specific arithmetic is performed on account balances, what specific logic
applies to conditional actions on account components, etc.

We shy away from this as it is normally not a normative property, but highly specialised:
differs from bank to bank, from account to account, etc. These arithmetics and logics are
properties of instantiated banks and accounts. With repect to the latter the arithmetic
and logic transpire from the bank rules & regulations. The essence of the above analysis
is the notion of deferred action. The consequence of this modelling decision is twofold: (i)
First we are able to separate the possibly human (inter)action between clients and tellers, or
between clients and ‘automatic teller machines’ (ATMs) from the actual “backroom” (action)
processing; (ii) and then we are able to abstract this latter considerably wrt. for example the
not so abstract model we shall later give of bank accounts.

There are client, k:K, account identifiers, c:C, accounts a:A, and transactions, tr:Trans.
And there is the bank repository r:R. The repository contains for different time intervals (t,t′)
[where t may be equal to t′] and for different client account identifiers zero, one or more
“deferred” transactions (to be executed).

Each transaction is modelled as a pair: a transaction routine name, rn:Rn, and a list of
arguments (values) to be processed by the routine.

We assume that (for example) client accounts, a:A, contain routine descriptions (scripts).

type

K, C, A
B = ({clients} →m (K →m C-set))⋃

({accounts} →m (C →m A))⋃
({bank} →m R)⋃
({conditions} →m (C →m (Rn →m Routine-set)))

R = (T × T) →m Jobs
Jobs = C →m Trans-set
Trans == mk Trans(rn:Rn,vl:VAL∗)
Routine = /∗ BaPL Program ∗/

Client Transactions: A client may issue a transaction, tr:Trans, w.r.t. to an account,
c:C, and at time t:T. Honouring that request for a transaction the banking system defers the
transaction by repositing it for execution in the (instantaneous) time interval (t,t). The client
may already, for some reason or another, have a set of such reposited transactions.

Insert One Transaction:

value

client: C × Trans → T → B → B
client(c,trans)(t)(b) ≡ insert([(t,t) 7→ [c 7→ {trans}]])(b)

We can safely assume that no two identical:

[(t,t) 7→ [c 7→ tsk]]

can be submitted to the bank since time passes for every one client or bank transaction.

48 Informatics Models of Infrastructure Domains

Insertion of Arbitrary Number of Transactions: You may wish to skip the next two
function definitions. They show that one can indeed express the insertion and merge of
deferred transactions into the bank repository.

value

insert: R
∼
→ B

∼
→ B

insert(r)(β) ≡
if r = []

then beta
else

let r′ = β(bank), (t,t′):(T×T) • (t,t′) ∈ dom r in
let r′′ =

if (t,t′) ∈ dom r′

then

let bjobs = r′(t,t′), cjobs = r(t,t′) in
r′ † [(t,t′) 7→ merge(bjobs,cjobs)] end

else

r′ ∪ [(t,t′) 7→ cjobs] end
insert(r \ {(t,t′)})(β † [bank7→ r′])

end end end

Merge of Jobs: Client Transactions:

value

merge: Jobs × Jobs
∼
→ Jobs

merge(bjobs,cjobs) ≡
if cjobs=[]

then bjobs
else

let c:C • c ∈ dom cjobs in
let jobs =

if c ∈ dom bjobs
then [c 7→ cjobs(c) ∪ bjobs(c)]
else [c 7→ cjobs(c)] end in

merge(bjobs † jobs,cjobs \ {c}) end end

end

The Banking Cycle: The bank at any time t:T investigates whether a transaction is
(“defer”) scheduled [ie. “deferred” for handling] at, or around, that time. If not, nothing
happens — and the bank is expected to repeat this investigation at the next time click ! If
there is a transaction, tr:Trans, then it is fetched from the repository together with the time
interval (t′,t′′) for which it was scheduled and the identity, c:C, of the client account. (c may
be the identity of an account of the bank itself!)

CSIT’01, Yerevan, Armenia — September, 2001 49

value

bank: B → T
∼
→ B

bank(β)(t) ≡
if β(bank) = [] then β else

if is ready Task(β)(t)
then

let (((t′,t′′),c,mk Task(rn,al)),β′) = sel rmv Task(β)(t) in
let rout:Routine • rout ∈ ((β′(conditions))(c))(rn) in
let (β′,r) = E(c,rout)(al)(t,t′,t′′)(β′) in
bank(insert(r)(β′′))(t) end end end

else

let t′′′:T • t′′′ = t + ∆τ in bank(β)(t′′′) end
end end

E: C × Routine
∼
→ VAL∗ ∼

→ (T×T×T)
∼
→ B

∼
→ B × R

The expression ∆ τ yields a minimal time step value.

Auxiliary Repository Inspection Functions:

value

is ready Task: B → T
∼
→ Bool

is ready Task(β)(t) ≡ ∃ (t′,t′′):T×T • (t′,t′′) ∈ dom β(bank) ∧ t′ ≤ t ∧ t ≤ t′′

sel rmv Task: B → T
∼
→ (((T×T) × C × Task) × B)

sel rmv Task(β)(t) ≡
let r = β(bank) in
let (t′,t′′):T×T • (t′,t′′) ∈ dom r ∧ t′ ≤ t ∧ t ≤ t′′ in
let jobs = r(t′,t′′) in
let c:C • c ∈ dom jobs in
let tasks = jobs(c) in
let task:Task • task ∈ tasks in
let jobs′ = if tasks\{task} = {} then jobs\{c} else jobs † [c 7→ tasks\{task}] end in

let r′ = if jobs′ = [] then r\{(t′,t′′)} else r † [(t′,t′′) 7→ jobs′] end in

(((t′,t′′),c,task),β † [bank7→ r′])
end end end end end end end end

Performing the execution as prescribed by the transaction, tr:Trans, besides a changed bank —
except for “new” deferred transactions, result in zero, one or more new deferred transactions,
trs. These are inserted in the bank repository. And the bank is expected to “re-cycle”: ie. to
search for, ie. select new, pending transactions “at that time”! That is: the bank is expected
to handle, ie. execute all its deferred transactions before advancing the clock!

Merging the Client and the Bank Cycles: On one hand clients keep coming and going:
submitting transactions at irregular, unpredictable times.

50 Informatics Models of Infrastructure Domains

On the other hand the bank keeps inspecting its repository for “outstanding” tasks.

These two “processes” intertwine. The client step function extends the client function.
The bank step function “rewrites” the (former) bank function:

value

cycle: B
∼
→ B

cycle(β) ≡ let β′ = client step(β) ⌈⌉ bank step(β) in cycle(β′) end

client step: B
∼
→ B

client step(β) ≡ let (c,tr) = client ch?, t = clock ch? in client(c,tr)(t)(β)

bank step: B
∼
→ B

bank(β) ≡
if β(bank) = []

then β
else

let t = clock ch? in

if is ready Task(β)(t)
then

let (((t′,t′′),c,mk Task(rn,al)),β′) = sel rmv Task(β)(t) in
let rout:Routine • rout ∈ ((β′(conditions))(c))(rn) in
let (β′,r) = E(c,rout)(al)(t,t′,t′′)(β′) in
insert(r)(β′′) end end end

else β end

end end end

The cycle function (internal choice) non–deterministically chooses between either a client step
or a bank step.

The client step inputs a transaction at time t from some client. This is modelled by a
channel communication. Both the client and the bank steps “gets to know what time it is”
from the system clock.

3.5.2 Securities Trading

“What is a Securities Industry ?”: In line with our approach, we again ask a question
— see the section title line just above! And we give a synopsis answer.

Synopsis: The securities industry consists of:

• the following components:

– one or more stock exchanges,

– one or more commodities exchanges,

– &c.

– one or more brokers,

CSIT’01, Yerevan, Armenia — September, 2001 51

– one or more traders,

– &c.

– and associated regulatory agencies,

• together with all their:

– stake-holders,

– states,

– events that may and do occur,

– actions (operations) that change or predicates that inspect these states,

– intra and inter behaviours and

– properties of the above!

A Stock Exchange “Grand” State: Domain-wise we will just model a simple stock
exchange — and from that model “derive” domain models of simple brokers and traders.
Technically we model the “grand” state space as a sort, and name a few additional sorts
whose values are observable in states. To help your intuition we “suggest” some concrete
types for all sorts, but they are only suggestions.

type

S, O, T, Q, P, R
SE = (Buy × Sell) × ClRm
Buy, Sell = S →m Ofrs
Ofrs = O →m Ofr !
Ofr = (T×T) →m (Q × (lo:P×hi:P) × ...)
ClRm = O →m Clrd | Rmvd
Clrd = S × P × T × Ofrs × Ofrs
Rmvd = S × T × O × Ofr
Market = T → SE

The main (state) components of a stock exchange — reflecting, as it were, ‘the market’ —
are the current state of stocks offered (ie. placed) for buying Buy, respectively selling Sell, and
a summary of those cleared (that is bought & sold) and those removed (because the broker
who placed them withdrew the offer or because the time interval of the validity of their offer
elapsed). The placement of an offer of a stock, s:S, results, r:R, in the offer being marked by a
unique offer identification, o:O. The offer otherwise is associated with information about the
time interval, (bt,et):T×T, during which the offer is valid — an offer that has not been cleared
during that time interval is to be removed from buy or sell status, or it can be withdrawn by
the placing broker — the quantity offered and the low to high price range of the offer. (There
may be other information (. . .).)

52 Informatics Models of Infrastructure Domains

Figure 18: A “Snapshot” Stock Exchange View of Current Offers of a Single Stock

Sell

Buy

.....

.....

many buy

few sell offers

many sell

few buy offers

The ... low - high ... price ranges

for several buy, resp. sell offers

of one particular stock

Observers — State Structure: Having defined abstract types (ie. sorts) we must now
define a number of observers. Which one we define we find out, successively, as we later sketch
signatures of functions as well as sketching their definition. As we do the latter we discover
that it would “come in handy” if one had “such and such an observer”! Given the suggested
concrete types for the correspondingly named abstract ones we can also postulate any larger
number of observers — most of which it turns out we will (rather: up to this moment has)
not had a need for!

value

obs Buy: SE → Buy, obs Sell: SE → Sell,
obs ClRm: SE → ClRm
obs Ss: (Buy|Sell) → S-set

obs Ofrs: S × (Buy|Sell)
∼
→ Ofrs

obs Q: Ofr → Q
obs Qs: Ofrs → Q
obs lohi: Ofr → P×P
obs TT: Ofr → T×T
obs O: R → O
obs OK: R → {ok|nok}

Main State Generator Signatures: The following three generators seems to be the major
ones:

• place: expresses the placement of either a buy or a sell offer, by a broker for a quantity
of stocks to be bought or sold at some price suggested by some guiding price interval
(lo,hi), such that the offer is valid in some time (bt,et) interval.14

14We shall [probably] understand the buy (lo,hi) interval as indicating: buy as low as possible, do not buy
at a pricer higher than hi, but you may buy when it is lo or as soon after it goes below lo. Similarly for sell
(lo,hi): sell as high as possible, do not sell at a pricer lower than lo, but you may sell when it is hi or as soon
after it goes above hi; the place action is expected to return a response which includes giving a unique offer
identification o:O.

CSIT’01, Yerevan, Armenia — September, 2001 53

value

place: {buy|sell}×B×Q×S×(lo:P×hi:P)×(bt:T×et:T)×... → SE
∼
→ SE × R

• wthdrw: expresses the withdrawal of an offer o:O (by a broker who has the offer identi-
fication).

• next: expresses a state transition — afforded just by inspecting the state and effecting
either of two kinds of state changes or none!

value

wthdrw: O × T → SE
∼
→ SE × R

next: T × SE → SE

A Next State Function: At any time, but time is a “hidden state” component, the stock
exchange either clears (fclr) a batch of stocks — if some can be cleared (pclr) — or removes
(frmv) elapsed (prmv) offers, or does nothing!

value

next: T × SE → SE
next(t,se) ≡

if pclr(t,se) then fclr(t,se) else if prmv(t,se) then frmv(t,se) else se end end

pclr: T × SE → Bool, fclr: T × SE → SE
prm: T × SE → Bool, frm: T × SE → SE

Next State Auxiliary Predicates: A batch (bs,ss) of (buy, sell) offered stocks of one
specific kind(s) can be cleared if a price (p) can be arrived at, one that satisfies the low to
high interval buy, respectively sell criterion — and such that the batch quantities of buy, resp.
sell offers either are equal or their difference is such that the stock exchange is itself willing
to place a buy, respectively a sell offer for the difference (in order to finally clear the offers).

value

pclr(t,se) ≡ ∃ s:S,ss:Ofrs,bs:Ofrs,p:P • aplcr(s,ss,bs,p)(t,se)

apclr: S×Ofrs×Ofrs×P → T×SE → Bool

apclr(s,bs,ss,p)(t,se) ≡
let buy = obs Buy(se), sell = obs Sell(se) in
s ∈ obs Ss(buy) ∩ obs Ss(sell)
∧ bs ⊆ obs Ofrs(s,buy) ∧ ss ⊆ obs Ofrs(s,sell)
∧ buysell(p,bs,ss)(t)
∧ let (bq,sq) = (obs Qs(bs),obs Qs(ss)) in acceptable difference(bq,sq,s,se) end end

buysell: P×Ofrs×Ofrs → T → Bool

54 Informatics Models of Infrastructure Domains

buysell(p,bs,ss)(t) ≡
∀ ofr:Ofr • ofr ∈ bs ⇒

let (lo,hi) = obs lohi(ofr) in p ≤ hi end
let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

∧ ∀ ofr:Ofr • ofr ∈ ss ⇒
let (lo,hi) = obs lohi(ofr) in p ≥ lo end

let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

Next State Auxiliary Function: We describe the result of a clearing of buy, respectively
sell offered stocks by the properties of the stock exchange before and after the clearing.

Before the clearing the stock exchange must have suitable batches of buy (bs), respectively
sell (ss) offered stocks (of identity s) for which a common price (p) can be negotiated (apclr).

After the clearing the stock exchange will “be in a different state”. We choose to charac-
terise here this “different state” buy first expressing that the cleared stocks must be removed
as offers (rm Ofrs). If the buy batch contained more stocks for offer than the sell batch then
the stock exchange becomes a trader and places a new buy offer in order to make up for the
difference. Similarly if there were more sell stocks than buy stocks. At the same time the
clearing is recorded (updClRm).

fclr(t,se) as se′

pre pclr(t,se)
post

let s:S,bs:Ofrs,ss:Ofrs,p:P•apclr(s,ss,bs,p)(t,se) in
let (bq,sq) = (obs Qs(bs),obs Qs(ss)), buy = obs Buy(se), sell = obs Sell(se) in
let buy′ = rm Ofrs(s,bs,buy), sell′ = rm Ofrs(s,ss,sell) in
obs Buy(se′) = if bq > sq

then updbs(buy′,s,bq−sq,tt buy(s,bq−sq)(t,se)) else buy′ end ∧
obs Sell(se′) = if bq < sq

then updss(sell′,s,sq−bq,tt sell(s,bq−sq)(t,se)) else sell′ end ∧
let clrm = obs ClRm(se) in obs ClRm(se′) = updClRm(s,p,t,bs,ss,clrm) end
end end end

Many comments can be attached to the above predicate for clearability, respectively the
clearing function:

• First we must recall that we are trying to model the domain. That is: we can not
present too concrete a model of stock exchanges, neither what concerns its components,
nor what concerns its actions.

The condition, ie. the predicate for clearable batches of buy and sell stocks must nec-
essarily be loosely defined — as many such batches can be found, and as the “final
clinch”, ie. the selection of exactly which batches are cleared and their (common) prices
is a matter for “negotiation on the floor”. We express this looseness in several ways: the
batches are any subsets of those which could be cleared such that any possible difference
in their two batch quantites is acceptable for the stock exchange itself to take the risk

CSIT’01, Yerevan, Armenia — September, 2001 55

of obtaining a now guaranteed price (and if not, to take the loss — or profit!); the batch
price should satisfy the lower/upper bound (buysell) criterion, and it is again loosely
specified; and finally: Which stock (s) is selected, and that only exactly one stock is
selected, again expresses some looseness, but does not prevent another stock (s 6=s′) from
being selected in a next “transition”.

• There is no guarantee that the stock s buy and sell batches bs and ss and at the price
p for which the clearable condition pclr holds, is also exactly the ones chosen — by
apclr — for clearing (fclr), but that only could be said to reflect the “fickleness” of the
“market”!

• Time was not a parameter in the clearing part of the next function. It is assumed that
whatever the time is all stocks offered have valid time intervals that “surround” this
time, ie. the current time is in their intervals. We shall have more to say about time
later.

• Then we must recall that we are modelling a number of stake-holder perspectives: buyers
and sellers of stocks, their brokers and traders, the stock exchange and the securities
commission. In the present model there is no clear expression, for example in the form
of distinct formulas (distinct functions or lines) that reflect the concerns of precisely
one subset of these stake-holders as contrasted with other formulas which then reflect
the concerns of a therefrom distinct other subset of stake-holders.

Now we have, at least, some overall “feel” for the domain of a stock exchange. We
can now rewrite the formulas so as to reflect distinct sets of stake-holder concerns. We
presently leave that as an exercise!

Auxiliary Generator Functions:

value

rm Ofrs: S × Ofrs × (Buy|Sell)
∼
→ (Buy|Sell)

rm Ofrs(s,os,busl) as busl′

pre s ∈ obs Ss(busl) ∧ subseteq(os,obs Ofrs(s,busl))
post if s ∈ obs Ss(busl) then ∼∃ ... else ... end

3.5.3 Discussion

We have detailed two “narrow” aspects of a financial industry: How banks may choose to
process client (and own) transactions, and how securities are traded. The former model is
chosen so as to reflect all possibilities as they may occur in the domain, ie. in actual situations.
The latter model is sufficiently “loose” to allow a widest range of interpretations, yet it is also
sufficiently precise in that it casts light on key aspects of securities trading.

In this section we have not shown, as we did in several other sections, how the two
infrastructure stake–holders: Banks and securities traders interact. We believe that earlier
models (Sections 3.2, 3.3 and 3.4) show the reader ways of how to model such interactions.

56 Informatics Models of Infrastructure Domains

3.6 Discussion

We have shown five examples. We used different modelling styles. We emphasised different
aspects. Together these five examples illustrate that we can indeed tackle very large scale
domains, yet contain their models to within human scales wrt. reading, and hence compre-
hension and acceptance.

4 Conclusion

We have brought some sketches of domain models of railways, logistics, E–commerce, health-
–care and financial services. We have not dealt with principles and techniques of abstract
modelling, but see [3], nor of domain modelling, but see [4]. In proper development from
reasonably comprehensive domain models one, “next”, develops requirements, see [5], and
then designs the software, see [1].

We have taken the liberty of referring primarily to our own recent summary work. The
reason is simple: The referenced collection of lecture notes (a planned book) and papers
(being submitted, one by one, for publication) constitutes a consistent and reasonably com-
plete whole. No other, scientifically more collegial, referencing would, we seriously think,
comprehend the entire field as does our own documents !

4.1 Informatics Collaboration

One reason for bringing the detailed models of Section 3 is now manifested. Many of the
things that were modelled could be, and was (sketch) modelled in the, by now well–established
computing science and software engineering style of formal specification. But here and there
certain things were left unexplained. We now take up some of these “dangling” explanations.

4.1.1 Possibilities

• Topology:

– Railway Net Topologies:

To calculate train speed along the rail, when making detailed running map sched-
ules, it is necessary to know the specific topology of each individual rail unit: Its
slope (height difference, if any, between connectors), its curvature (expressed, for
example by some Bezier curve parameters, and, when curved rails, the inclination
[the height difference between the two rails]), as well as the actual lengths of rail
units, whether they pass over bridges, through tunnels, along station platforms,
etc.

– Air–dome and Air–Corridor Topologies:

We have not given, but will do so here, a model of an air traffic related airspace
[30]:

type

An, A, D, Cn, C
AS′ = ias:An-set × oas:An-set × w:(An →m (A × D × (An →m (Cn →m C)))

CSIT’01, Yerevan, Armenia — September, 2001 57

AS = {| as:AS′ • wf AS(as) |}
value

wf AS: AS → Bool

An, A, D, Cn, and C stand for airport names, airports (including their topolo-
gies), air–domes (emphasising their topologies), air–corridor names, respectively
air–corridors (emphasising their topologies). The airspace wellformedness crite-
rion includes such considerations as:

* Air–corridors are smooth point sets, sufficiently wide and high to contain flying
aircrafts,

* they are nicely glued onto air–domes,

* and these fit nicely onto airports.

* Intersecting air–corridors must satisfy a number of relations.

* &c.

Modelling these topological issues brings computing science “back into the realm” of
classical mathematics: Here illustrated by simple uses of simple topology.

• Scheduling & Allocation:

– Train Scheduling: Section 3.1.5, towards the end, characterised a pair of scheduling
functions. We left out details on optimality — for good reasons. Such is work, not
so much by software engineers, as it is of operations research analysts.

– Logistics Route Planning: Section 3.2 did not detail transport companies’ conveyor
nets and time tables, and hence did not explicitly go into optimal bill–of–lading
scheduling. We, as software engineers can characterise what we mean by schedules
and optimality once we are told how transport companies and logistics firms wishes
their optimal schedules, but we think it better as work for operations research
analysts to come up with sensible criteria and perhaps clever algorithms for their
subsequent implementation by software engineers.

One can easily identify several other areas where co–design between software engineers
and operations research analysts ought become a professional “standard”.

• Chaos Theory and Fuzzy Systems Theory:

– Securities Buying/Selling Strategies: Section 3.5.2 characterised possible spans of
bid/ask prices that may lead to securities deals. But really the choice is “magic !”
— or is there some clever use of chaos or fuzzy systems theory or other ? We
believe so.

– E–Market Auction Strategies: Section 3.3 did not venture into agents and brokers
and their functions in the E–business market. But one area is that of auctions,
and there are many exciting auction schemes being in place in the market today
as well as being proposed [31, 32].

58 Informatics Models of Infrastructure Domains

All this is to say that we again see an area for co–design, an area to be shared between
software engineers and such applied mathematicians who study and apply theories of
chaos, fuzzy sets, or rough sets.

• Time–Series Analysis &c.:

– Health–care Image Analysis: Section 3.4 only mentioned the concept briefly: That
of patient journals containing MR and CTR scans, X–Ray images, and ECGs. Or
of medical doctors analysing such images. For a proper health–care computing and
communication system to smoothly provide such images on–line, on demand, and
pre–process these in support of the diagnostics work of physicians, we can already
today see much co–design between medical doctors, image processing mathemati-
cians and electronics people. But to secure the smooth on–line provision of data
and analyses we suggest that software engineers be included as they, and only
they, it seems, understand how to formulate the “larger picture”: The “entire”
health–care sector.

• Statistics &c.:

– Epidemiological Statistics: We again refer to Section 3.4 — although little was inti-
mated, it can now be done: Once we develop software and communications support
for wide–area integration of “all” of a health–care sectors’ “zillions” of functions,
we can also, as a side–benefit monitor far more stringently illness statistics, to
closely watch for possible virus disease outbreaks, hopefully long before they reach
epidemic scale. Again we see an area ripe for co–development between software
engineers, medical doctors, and mathematical epidemologists.

4.1.2 Discussion

This survey of relations between computer & computing science, on one hand, and mathe-
matical modelling, on the other hand, is necessarily cursory. We believe the reader can now
easily add own, relevant observations.

4.2 Continuity and Monotonicity

The well–formedness predicates on train movements, train traffic, and air space (and its traf-
fic) were either sketched, or hinted at in Sections 3.1.4 (towards the end of that section),
and 4.1 (above). They really reflect the fact that computing science and the formal speci-
fications of software engineering “move” in a discrete world — in contrast to mathematical
modelling’s Newton/Leibniz world of continuous, integrable and differentiable functions. In
other words: We, computing science cum software engineering, need develop calculi of con-
tinuity and monotonicity over discrete types — such a discrete maps over discrete sets and
lists etc.

Take yet an example: The railway nets of Section 3.1.4 (early in that section) are later
made dynamic: See the definition of train traffic (end of that section). It includes, for each
“continuous time”, a railway net. That is: We must make sure that rail units can be opened
and closed, hence must change the state of the net, hence must make it a function of time.

CSIT’01, Yerevan, Armenia — September, 2001 59

But other factors also require time dependency. From time to time the railway system owner
wish to further develop the net: Add new, or remove old lines, stations, tracks within these,
even just rail units. Such changes must satisfy some kind of monotonicity criterion: “Changes
to the railway net must be incremental or decremental — exemplified as follows: Stations
cannot be removed without first having removed the lines to and from the stations; lines can
probably not be removed in their entirety (for “quick fix” repairs) when carrying traffic, hence
virtual stations must be inserted around the stretch of “fix”, etcetera.”

We look forward to future work on the topic of ‘Continuity and Monotonicity’ over dis-
cretely specified types.

4.3 Future Work

A triangle of previously separate “actors” are here being asked to collaborate: Mathemati-
cians, computer & computing scientists and engineers. Previously engineers were never really
“invited” in to join the scientists in their studies. They now need be. They are the first,
and normally, unfortunately, the only ones, who “meet” the challenges of domains. They
are, or become, familiar with domains. But they are not always themselves alon capable
of establishing proper domain theories. For that to happen they turn to the computer &
computing scientists. And these again turn to mathematicians for reasons sketched in the
previous section.

• A Challenge: We seriously believe that software engineers, computer & computing
scientists as well as applied mathematics mathematicians need interact far more tightly:
First for the purpose of carrying through actual, engineering scale developments cum
experiments. Then for the purpose of conducting first graduate courses in the subject
area. And, finally, to identify and carry out serious research studies in the area.

We may have a handle on what wave propagation is, in physics. But do we really, seriously
and mathematically, know what a work flow system is ? Economists may think they know
main characteristics of macro and micro economics — that is: Mathematically. But have we
tried to broach in a like manner the issue of understanding, mathematically, and as computer
scientists, what an infrastructure, let alone an infrastructure component, is ?

This is, indeed, a fascinating world !

4.4 Acknowledgements

The author wishes to acknowledge (i) many years of collaboration with colleagues Søren Prehn,
Chris W. George, and Bo Stig Hansen; (ii) recent work with students, amongst others, Hans
Madsen Petersen and Li Zhu; and (iii) the deep influence of Michael Jackson’s work.

4.5 Bibliographical Notes

We refer to a major source of inspiration: [33, 34, 35, 36, 37, 38, 39, 40].

Otherwise, as in the introduction, we refer to own, recent work: [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11].

60 Informatics Models of Infrastructure Domains

References

[1] Dines Bjørner. Software Engineering: Theory & Practice. (Publisher is being contacted),
2002. These Lecture Notes represent the author’s Chef d’Œvre — the summary of more
than 25 years of research, development and teaching.

[2] Dines Bjørner. Models, Semiotics, Documents and Descriptions — Towards Software En-
gineering Literacy. Technical report, Informatics and Mathematical Modelling, Building
322, Richard Petersens Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby,
Denmark, 2001. This paper is one of a series of papers currently being submitted for
publication: [3, 4, 5, 6, 7, 8, 9, 10, 11].

[3] Dines Bjørner. Principles and Techniques of Abstract Modelling — Some Basic Classifica-
tions. — Towards a Methodology of Software Engineering. Technical report, Informatics
and Mathematical Modelling, Building 322, Richard Petersens Plads, Technical Univer-
sity of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of
papers currently being submitted for publication: [2, 4, 5, 6, 7, 8, 9, 10, 11].

[4] Dines Bjørner. Domain Engineering — A Prerequisite for Requirements Engineering
— Principles and Techniques. Technical report, Informatics and Mathematical Mod-
elling, Building 322, Richard Petersens Plads, Technical University of Denmark, DK–
2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers currently being
submitted for publication: [2, 3, 5, 6, 7, 8, 9, 10, 11].

[5] Dines Bjørner. Requirements Engineering — Some Principles and Techniques — Bridging
Domain Engineering and Software Design. Technical report, Informatics and Mathemat-
ical Modelling, Building 322, Richard Petersens Plads, Technical University of Denmark,
DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers currently
being submitted for publication: [2, 3, 4, 6, 7, 8, 9, 10, 11].

[6] Dines Bjørner. Healthcare Systems. Towards a Domain Theory for Work Flow Sys-
tems. Technical report, Informatics and Mathematical Modelling, Building 322, Richard
Petersens Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark,
2001. This paper is one of a series of papers currently being submitted for publication:
[2, 3, 4, 5, 7, 8, 9, 10, 11].

[7] Dines Bjørner. E–Business. Towards a Domain Theory for Work Flow Systems. Technical
report, Informatics and Mathematical Modelling, Building 322, Richard Petersens Plads,
Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is
one of a series of papers currently being submitted for publication: [2, 3, 4, 5, 6, 8, 9, 10,
11].

[8] Dines Bjørner. Logistics. Towards a Domain Theory for Work Flow Systems. Technical
report, Informatics and Mathematical Modelling, Building 322, Richard Petersens Plads,
Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is
one of a series of papers currently being submitted for publication: [2, 3, 4, 5, 6, 7, 9, 10,
11].

CSIT’01, Yerevan, Armenia — September, 2001 61

[9] Dines Bjørner. Projects & Production: Planning, Plans & Execution. Towards a Do-
main Theory for Work Flow Systems. Technical report, Informatics and Mathematical
Modelling, Building 322, Richard Petersens Plads, Technical University of Denmark,
DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers currently
being submitted for publication: [2, 3, 4, 5, 6, 7, 8, 10, 11].

[10] Dines Bjørner. Railways Systems: Towards a Domain Theory. Technical report, Infor-
matics and Mathematical Modelling, Building 322, Richard Petersens Plads, Technical
University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a
series of papers currently being submitted for publication: [2, 3, 4, 5, 6, 7, 8, 9, 11].

[11] Dines Bjørner. Financial Service Institutions: Banks, Securities Trading, Insurance, &c.
Towards a Domain Theory for Work Flow Systems. Technical report, Informatics and
Mathematical Modelling, Building 322, Richard Petersens Plads, Technical University of
Denmark, DK–2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers
currently being submitted for publication: [2, 3, 4, 5, 6, 7, 8, 10, 9].

[12] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specifica-
tion Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1992.

[13] Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and
Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

[14] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8),
Aug. 1978.

[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[16] A.W. Roscoe. Theory and Practice of Concurrency. Prentice–Hall, 1997.

[17] D. Bjørner and C.B. Jones. The Vienna Development Method: The Meta-Language,
volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[18] D. Bjørner and C.B. Jones. Formal Specification and Software Development. Prentice-
Hall, 1982.

[19] C.B. Jones. Systematic Software Development using VDM. Prentice Hall International,
second edition, 1990.

[20] John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools and Tech-
niques in Software Development. Cambridge University Press, The Edinburgh Building,
Cambridge CB2 1RU, England, 1997. ISBN 0521 62348 0.

[21] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science, 2nd edition, 1992.

62 Informatics Models of Infrastructure Domains

[22] I. J. Hayes. Specification Case Studies. Prentice Hall International Series in Computer
Science, 2nd edition, 1993.

[23] J. B. Wordsworth. Software Development with Z: A Practical Approach to Formal Meth-
ods in Software Engineering. Addison-Wesley Publishing Company, 1993.

[24] Jean-Raymond Abrial. The B Book. Cambridge University Press, The Edinburgh Build-
ing, Cambridge CB2 1RU, England, 1996.

[25] Dines Bjørner. Prospects for a Viable Software Industry — Enterprise Models, Design
Calculi, and Reusable Modules. Technical Report 12, UNU/IIST, P.O.Box 3058, Macau,
7 November 1993. Appendix — on a railway domain model — by Søren Prehn and Dong
Yulin,
Published in Proceedings from first ACM Japan Chapter Conference, March 7–9, 1994:
World Scientific Publ., Singapore, 1994.

[26] Dines Bjørner, Dong Yu Lin, and S. Prehn. Domain Analyses: A Case Study of Sta-
tion Management. Research Report 23, UNU/IIST, P.O.Box 3058, Macau, 9 November
1994. Presented at the 1994 Kunming International CASE Symposium: KICS’94, Yunnan
Province, P.R.of China, 16–20 November 1994.

[27] Dines Bjørner, C.W. George, and S. Prehn. Scheduling and Rescheduling of Trains,
chapter ???, pages ???–??? Industrial Strength Formal Methods, Eds.: M. Hinchey and
J.P. Bowen. FACIT, Springer–Verlag, London, England, 1999.

[28] Dines Bjørner, Søren Prehn, et al. Formal Models of Railway Systems: Domains. Tech-
nical report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800 Lyngby,
Denmark, September 23 1999. Presented at the FMERail Workshop on Formal Meth-
ods in Railway Systems, FM’99 World Congress on Formal Methods, Toulouse, France.
Avaliable on CD ROM.

[29] Dines Bjørner, Søren Prehn, et al. Formal Models of Railway Systems: Requirements.
Technical report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800
Lyngby, Denmark, September 23 1999. Presented at the FMERail Workshop on Formal
Methods in Railway Systems, FM’99 World Congress on Formal Methods, Toulouse,
France. Avaliable on CD ROM.

[30] Dines Bjørner. Software Systems Engineering — From Domain Analysis to Requirements
Capture [— an Air Traffic Control Example]. Technical Report 48, UNU/IIST, P.O.Box
3058, Macau, November 1995. Keynote paper for the Asia Pacific Software Engineering
Conference, APSEC’95, Brisbane, Australia, 6–9 December 1995.

[31] He Minghua and Leung Ho-fung. An Agent Bidding Strategy based on Fuzzy Logic in
a Continuous Double Auction. In Systems, Man and Cybernetics Conference, page 26
pages, 2001. Department of Computer Science and Engineering, The Chinese University
of Hong Kong, Shatin, Hong Kong, P.R. China.

[32] He Minghua and Leung Ho-fung. Agents in E–Commerce: State of the Art. Technical
report, Department of Computer Science and Engineering, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR, P.R. China, 2001.

CSIT’01, Yerevan, Armenia — September, 2001 63

[33] Michael A. Jackson. Description is Our Business. In VDM ’91: Formal Software Devel-
opment Methods, pages 1–8. Springer-Verlag, October 1991.

[34] Michael A. Jackson. Software Development Method, chapter 13, pages 215–234. Prentice
Hall Intl., 1994. Festschrift for C. A. R. Hoare: A Classical Mind, Ed. W. Roscoe.

[35] Michael A. Jackson. Problems, Methods and Specialisation. Software Engineering Jour-
nal, pages 249–255, November 1994.

[36] Michael A. Jackson. Problems and requirements (software development). In Second IEEE
International Symposium on Requirements Engineering (Cat. No.95TH8040), pages 2–8.
IEEE Comput. Soc. Press, 1995.

[37] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, prin-
ciples and prejudices. ACM Press. Addison-Wesley Publishing Company, Wokingham,
nr. Reading, England; E-mail: ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv
+ 228 pages.

[38] Pamela Zave and Michael A. Jackson. Four dark Corners of Requirements Engineering.
ACM Transactions on Software Engineering and Methodology, 6(1):1–30, January 1997.

[39] Michael A. Jackson. The meaning of requirements. Annals of Software Engineering,
3:5–21, 1997.

[40] Michael A. Jackson. Problem Frames — Analysing and structuring software development
problems. ACM Press, Pearson Education. Addison–Wesley, Edinburgh Gate, Harlow
CM20 2JE, England, 2001.

